
The National Clinical Guideline Centre *for acute and chronic conditions*

Funded to produce guidelines for the NHS by NICE

Alcohol Use Disorders: Diagnosis and Clinical Management of Alcoholrelated Physical Complications

1 Contents

2			
3	1.1 G	lossary of terms	xii
4	1.2 B	ackground	1
5	1.3 M	lethodology	
6	1.3.1	Aim	3
7	1.3.2	Scope	
8	1.3.3	Audience	3
9	1.3.4	Involvement of people with a history of alcohol-use disorders	
10	1.3.5	Guideline limitations	
11	1.3.6	Other work relevant to the guideline	4
12	1.3.7	Background	5
13	1.3.8	The process of guideline development	7
14	2 Acute	Alcohol Withdrawal	15
15	2.1 A	dmission to hospital	15
16	2.1.1	Clinical Introduction	15
17	2.1.2	Clinical Methodological Introduction	17
18	2.1.3	Clinical Evidence Statements	21
19	2.1.4	Health Economic methodological Introduction	27
20	2.1.5	Health Economic Evidence Statements	
21	2.1.6	From evidence to recommendations	
22	2.1.7	Recommendations	
23	2.1.8	Research Recommendation	
24	2.1.9	Clinical Introduction	
25	2.1.10	Clinical Methodological Introduction	
26	2.1.11	Clinical Evidence Statements	
27	2.1.12	Health Economic Methodological Introduction	
28	2.1.13	Health economic evidence statement	

1	2.1.14	From evidence to recommendation	
2	2.1.15	Recommendations	41
3	2.1.16	Research Recommendations	41
4	2.2 D	osing regimens	42
5	2.2.1	Clinical Introduction	42
6	2.2.2	Clinical Methodological Introduction	43
7	2.2.3	Clinical Evidence Statements	48
8	2.2.4	Health Economic Methodological Introduction	53
9	2.2.5	Health Economic Evidence Statements	53
10	2.2.6	Evidence to recommendations	
11	2.2.7	Recommendations	
12	2.2.8	Research Recommendations	
13	2.3 M	Ianagement of Delirium Tremens	
14	2.3.1	Clinical Introduction	60
15	2.3.2	Clinical Methodological Introduction	60
16	2.3.3	Health economic methodological introduction	60
17	2.3.4	Health economic evidence statements	60
18	2.3.5	GDG discussion	61
19	2.3.6	Recommendations	62
20	2.4 T	reatment of alcohol withdrawal seizures	63
21	2.4.1	Clinical Introduction	63
22	2.4.2	Clinical Methodological Introduction	63
23	2.4.3	Clinical Evidence Statements	64
24	2.4.4	Health Economic methodological introduction	64
25	2.4.5	Health economic evidence statements	65
26	2.4.6	Evidence to recommendations	65
27	2.4.7	Recommendations	66
28	2.5 A	ssessment and monitoring	66

1	2.5.1	Clinical Introduction	66
2	2.5.2	Clinical methodological introduction	67
3	2.5.3	Clinical Evidence Statements	74
4	2.5.4	Health economic methodological introduction	80
5	2.5.5	Evidence to recommendations	80
6	2.5.6	Recommendations	82
7	2.6 V	Vernicke's encephalopathy	82
8	2.6.1	Clinical Introduction	82
9	2.6.2	Clinical methodological introduction	
10	2.6.3	Clinical evidence statements	
11	2.6.4	Health economic methodological introduction	92
12	2.6.5	Health economic evidence statements	
13	2.6.6	Evidence to recommendations	
14	2.6.7	Recommendations	95
15	2.6.8	Research Recommendations	
16	3 Alcoho	ol-related liver disease	97
17	3.1 T	he role of the liver biopsy	97
18	3.1.1	Clinical Introduction	97
19	3.1.2	Clinical methodological introduction	
20	3.1.3	Clinical evidence statements	
21	3.1.4	Health economic methodological introduction	
22	3.1.5	Health economic evidence statements	
23	3.1.6	From evidence to recommendations	
24	3.1.7	Recommendations	
25	3.1.8	Research Recommendation	
26	3.2 R	Referral for consideration of liver transplantation	
27	3.2.1	Clinical Introduction	116
28	3.2.2	Clinical Methodological Introduction	

```
DRAFT FOR CONSULTATION
```

1	3.2.3	Clinical Evidence Statements	118
2	3.2.4	Health economic methodological introduction	119
3	3.2.5	Health economic evidence statement	119
4	3.2.6	From evidence to recommendation	120
5	3.2.7	Recommendations	121
6	3.3 C	orticosteroid treatment for alcohol-related hepatitis	122
7	3.3.1	Clinical introduction	
8	3.3.2	Clinical methodological introduction	
9	3.3.3	Clinical evidence statements	
10	3.3.4	Health economic methodological introduction	
11	3.3.5	Health economic evidence statements	
12	3.3.6	Evidence to recommendations	
13	3.3.7	Recommendations	129
14	3.4 N	utritional Support for alcohol-related hepatitis	129
15	3.4.1	Clinical introduction	129
16	3.4.2	Clinical methodological introduction	130
17	3.4.3	Clinical evidence statements	131
18	3.4.4	Health economic methodological introduction	136
19	3.4.5	Health economic evidence statements	136
20	3.4.6	Evidence to recommendations	136
21	3.4.7	Recommendations	137
22	3.4.8	Research recommendations	137
23	4 Alcoho	ol-related Pancreatitis	138
24	4.1 D	agnosis of Chronic alcohol-related pancreatitis	138
25	4.1.1	Clinical Introduction	138
26	4.1.2	Clinical methodological introduction	139
27	4.1.3	Clinical evidence statements	140
28	4.1.4	Health economic methodological introduction	141

DRAFT FOR CONSULTATION

1	4.1.5	Health economic evidence statements	141
2	4.1.6	Evidence to recommendations	141
3	4.1.7	Recommendations	142
4	4.2 D	viagnosis of acute alcohol-related pancreatitis	142
5 6		ancreatic surgery versus endoscopic therapy for chronic alcohol-relate itis	
7	4.3.1	Clinical introduction	142
8	4.3.2	Clinical methodological introduction	143
9	4.3.3	Clinical evidence statements	
10	4.3.4	Health economic methodological introduction	152
11	4.3.5	Health economic evidence statements	152
12	4.3.6	From evidence to recommendations	156
13	4.3.7	Recommendations	158
14	4.4 P	rophylactic antibiotic treatment for acute alcohol-related pancreatitis	158
15	4.4.1	Clinical Introduction	158
16	4.4.2	Clinical methodological introduction	159
17	4.4.3	Clinical evidence statements	160
18	4.4.4	Health economic methodological introduction	165
19	4.4.5	Health economic evidence statements	166
20	4.4.6	From evidence to recommendations	167
21	4.4.7	Recommendations	167
22	4.5 N	utritional support for acute alcohol-related pancreatitis	168
23	4.5.1	Clinical Introduction	168
24	4.5.2	Clinical methodological introduction	168
25	4.5.3	Clinical evidence statements	173
26	4.5.4	Health economic methodological introduction	179
27	4.5.5	Health economic evidence statements	179
28	4.5.6	From evidence to recommendations	180

1	4.5.7	Recommendations	181
2	4.5.8	Research Recommendation	181
3	4.6	Enzyme supplementation for chronic alcohol-related pancreatitis	
4	4.6.1	Clinical introduction	181
5	4.6.2	Clinical methodological introduction	182
6	4.6.3	Clinical evidence statements	
7	4.6.4	Health economic methodological introduction	
8	4.6.5	Health economic evidence statements	
9	4.6.6		
10	4.6.7		
11	A.1. Cor	ticosteroids versus placebo forest plots	191
12	A.2. Clir	nical questions and literature searches	194
13	A.3. Hea	alth economic analysis – dosing regimens for acute alcohol withdrawal	200
14	A.4. Hea	alth economic analysis – surgery vs endoscopy for chronic pancreatitis	212
15	A.5. Sco	pe	231
16	1.1	Short title	232
17	4.1	Population	236
18	4.2	Healthcare settings	236
19	4.3	Clinical management	236
20	4.4	Status	237
21	5 Appe	endix: Referral from the Department of Health	240
22	A.6. Ref	erence list	240
23			

1	Guideline Development Group
2	
3	Dr Anthony Rudd (GDG Chair), Consultant Stroke Physician, Guy's and St Thomas' NHS
4	Foundation Trust.
	Foundation Trust.
5	Dr Stanhan Staugert (Clinical Advisor) Consultant Hangtalagist Neurosetle Hage True
6	Dr Stephen Stewart (Clinical Advisor), Consultant Hepatologist, Newcastle Upon Tyne.
7	
8	Dr Adam Bakker, General Practitioner, Westminster Primary Care Trust.
9	
10	Dr Adrian Boyle, Consultant emergency physician, Addenbrooke's hospital, Cambridge.
11	
12	Dr Joss Bray, Substance misuse specialist, The Huntercombe Centre, Sunderland, Tyne
13	and Wear. Counted4 CIC, Sunderland, Tyne and Wear.
14	
15	Dr Annabelle Bundle, Associate specialist community paediatrician, Mid-Cheshire NHS
16	Hospitals Foundation Trust.
17	
18	Dr Eilish Gilvarry, Consultant Psychiatrist, Northumberland, Tyne & Wear Addictions
19	Service.
20	
21	Dr Georgina Kirwin, Research Fellow, NCGC (from November 2008 until July 2009).
22	
23	Ms Taryn Krause, Senior Project Manager, NCGC.
24	
25	Dr Philippe Laramee, Health Economist, NCGC.
26	
27	Dr Anne McCune, Consultant Gastroenterologist, Clinical Effectiveness Lead, Medicine
28	Bristol Royal Infirmary.
29	
30	Dr Marsha Morgan, Reader in Medicine and Honorary Consultant Physician, The Centre
31	for Hepatology Royal Free Campus, University College London Medical School.
32	for nepatology Royal Tree dampas, oniversity conege bondon Medical School.
33	Mrs Gerri Mortimore, Lead Liver Nurse Specialist, Derby Hospital.
34	wis derri Mortinore, liead liver wirse specialist, berby hospital.
35	Dr Lynn Owens, Nurse Consultant, Lead for Alcohol Services, Honorary Research Fellow,
36	University of Liverpool, Liverpool Primary Care Trust.
37	Definition Desire Contractory in Henry lass (Contractory lass (The Last's to a
38	Dr Stephen Pereira, Senior Lecturer in Hepatology & Gastroenterology, The Institute of
39	Hepatology, University College London Medical School.
40	
41	Mrs Alison Richards, Senior Information Scientist, NCGC.
42	
43	Mr Colin Standfield, representing service users' and carers' interests.
44	
45	Professor Robin Touquet, Professor of emergency medicine, Imperial College Healthcare
46	Trust.

1	
2	Dr Sharon Swain, Senior Research Fellow, NCGC.
3	
4	Dr Olivier Van den Broucke, Consultant Child and Adolescent Psychiatrist, Hertfordshire
5	Partnership NHS Foundation Trust.
6	
7	
, 8	Invited experts
9	Mr Tom Kurzawinski, Consultant Pancreatic and Endocrine Surgeon, University College
10	London Hospital NHS Trust
11	Dr Allan Thomson, Honorary Senior Lecturer, Molecular Psychiatry Laboratory,
12	Windeyer Institute of Medical Science, Royal Free and University College Medical School;
13	Honorary Senior Lecturer, Institute of Psychiatry, King's College.
14	
15	
16	
17	Acknowledgements
18	Dr Bernard Higgins, Clinical Director NCGC.
19	Di Dernard Higgins, chineai Director Nede.
20	Ms Jill Parnham, Operations Director, NCGC.
20	Ms Jill Farmani, Operations Director, NCCC.
21	Ms Lina Bakhshi, Senior Information Scientist, NCGC.
22	Ms Lina Bakiisiii, Seinor Information Scientist, NCGC.
23 24	Ms Tamara Diaz, Project Co-ordinator, NCGC.
25	MS Tallara Diaz, Project Co-orullator, NCGC.
25 26	Mr David Wonderling Health Economic Load NCCC
	Mr David Wonderling, Health Economic Lead, NCGC.
27	Ma Sugar Lataham Commissioning Managar NICE
28	Ms Susan Latchem, Commissioning Manager, NICE.
29	
30	Ms Victoria Thomas, Patient and Public Involvement Unit Manager, NICE.
31	
32	Dr Jean-Bernard Daeppen, Associate Professor, University of Lausanne, Switzerland.
33	
34	Dr Djuna L. Cahen, Consultant in Gastroenterology, Erasmus Medical Center, Rotterdam,
35	the Netherlands
36	Dr Marcel G.W. Dijkgraaf, Senior Researcher, Academic Medical Center, University of
37	Amsterdam
57	
38	Dr Marco J. Bruno, MD, PhD, gastroenterologist, Consultant in Interventional Endoscopy
39	and GI Oncology, Department of Gastroenterology & Hepatology, Erasmus Medical
40	Centre, Rotterdam, Netherlands.
41	

1	Declarations of Interest
2	
3	Dr Anthony Rudd
4	None declared.
5	
6	<u>Dr Stephen Stewart</u>
7	• Member of the trial management group for a study funded by NIHR-HTA: STOPAH
8	(steroids or pentoxifylline in alcoholic hepatitis).
9	
10	<u>Dr Adam Bakker</u>
11	None declared.
12	
13	Dr Adrian Boyle
14	None declared.
15	
16	Dr Joss Bray
17	None declared.
18	
19	Dr Annabelle Bundle
20	Member of Advisory Panel of NOFAS-UK
21	
22	Dr Eilish Gilvarry
23	None declared.
24	
25	Dr Georgina Kirwin
26	None declared.
27	
28	<u>Ms Taryn Krause</u>
29	None declared.
30	
31	<u>Dr Philippe Laramee</u>
32	None declared.
33	
34	<u>Dr Anne McCune</u>
35	• Member of the trial management group for a study funded by NIHR-HTA: STOPAH
36	(steroids or pentoxifylline in alcoholic hepatitis).
37	
38	<u>Dr Marsha Morgan</u>
39	Paid member of the advisory board of the Institute of Alcohol Studies.
40	
41	<u>Mrs Gerri Mortimore</u>
42	None declared.
43	Dr. Lumn Quyong
44 45	<u>Dr Lynn Owens</u> None declared.
45 46	
TU	

1	<u>Dr Stephen Pereira</u>
2	None declared.
3	
4	Mrs Alison Richards
5	None declared.
6	
7	<u>Mr Colin Standfield</u>
8	• Received honorarium as Chair of the Ealing and West London Research Ethics
9	Committee
10	
11	Professor Robin Touquet
12	Investigator of the Paddington Alcohol Test since 1996
13	• Investigator of teaching on clinical signs 'Safe Moves' and the use of B vitamins
14	Holds two registered patents for blood alcohol concentration sticks
15	
16	Dr Sharon Swain
17	None declared
18	
19	<u>Dr Olivier Van den Broucke</u>
20	None declared.
21	
22	<u>Mr Tom Kurzawinski</u>
23	None declared.
24	
25	Professor Allan Thomson
26	Received payment and expense from Archimedes in respect to occasional consultancy
27	work.
28	
29	

1 1.1 GLOSSARY OF TERMS

2

3 The Department of Health recently revised the way in which it describes drinking

- 4 behaviours; 'hazardous drinkers' are now described as being at increased risk and
- 5 'harmful drinkers' are now described as being at higher risk. Due to the extensive use of
- 6 the terms hazardous and harmful drinking within the scientific literature, the World
- 7 Health Organization International Classification of Diseases (10th revision), and many of
- 8 the tools recommended in this guideline, the committee agreed that it would be helpful
- 9 for methodological reasons and clarity within the clinical field to retain the terms
- 10 hazardous and harmful drinking.

11

12 Abstinence

- 13 Never drinking alcohol. People who do not drink alcohol can be described as
- 14 'abstainers', 'total abstainers' or 'teetotallers'.
- 15

16 Acute alcohol withdrawal

- 17 The physical symptoms someone can experience when they suddenly reduce the
- 18 amount of alcohol they drink if they have previously been drinking excessively for
- 19 prolonged periods of time.

20

- 21 Alcohol
- 22 Ethanol (ethyl alcohol) is the main psychoactive ingredient in alcoholic drinks. By
- extension, the term 'alcohol' can be used interchangeably with ethanol, and to describean alcoholic drink.
- 25

26 Alcohol dependence (condition)

- A cluster of behavioural, cognitive and physiological factors that typically include a
 strong desire to drink alcohol and difficulties in controlling its use. Someone who is
 alcohol-dependent will keep drinking, despite harmful consequences. They will also give
 alcohol a higher priority than other activities and obligations. Please refer to 'Diagnostic
 and attriation manual of mantal diagndary' (DSM UD) (American Daushiatric Acceptation)
- 31 and statistical manual of mental disorders' (DSM-IV) (American Psychiatric Association
- 32 2000) and 'International statistical classification of diseases and related health problems
- 33 10th revision' (ICD-10) (World Health Organization 2007).
- 34

35 Alcohol use disorders

- 36 Alcohol use disorders cover a wide range of mental health problems recognised within
- 37 the international disease classification systems (ICD-10, DSM-IV). These include
- 38 hazardous and harmful drinking and alcohol dependence. See Harmful drinking,
- 39 Hazardous drinking and Alcohol dependence.
- 40

41 Alcohol Use Disorders Identification Test (AUDIT)

- 42 AUDIT is an alcohol screening test designed to detct whether people are drinking
- 43 harmful or hazardous amounts of alcohol. It can also be used to identify people who
- 44 warrant further diagnostic tests for alcohol dependence.
- 45

1	Alcohol-related harm
2	Physical or mental harm caused either entirely or partly by alcohol. If it is entirely as a
3	result of alcohol, it is known as 'alcohol-specific'. If it is only partly caused by alcohol it is
4 r	described as 'alcohol-attributable'.
5 6	ANCOVA
7	Analysis of covariance.
8	
9	Assisted withdrawal
10	See medically assisted withdrawal.
11	
12	Binge drinking
13	A heavy drinking session in which someone drinks at least twice the maximum
14	recommended units of alcohol per day in one session.
15	
16	Blood alcohol concentration (BAC)
17	Blood alcohol concentration is the concentration of alcohol in the blood. In the UK, BAC
18	is reported in milligrams of alcohol per 100 ml of blood (for example, 80 mg per 100 ml).
19	
20	CIWA-Ar
21	The Clinical Institute Withdrawal Assessment (CIWA-Ar) scale is a validated 10-item
22 23	assessment tool that can be used to quantify the severity of the alcohol withdrawal syndrome, and to monitor and medicate patients throughout withdrawal.
23 24	synurome, and to monitor and medicate patients throughout withdrawai.
25	CIWA-Ad
26	The CIWA-Ad is an 8-item version of the CIWA-Ar.
27	
28	Clinical management of people with alcohol-related problems
29	Any pharmacological or psychosocial intervention carried out by a clinician to manage
30	the clinical problems caused by alcohol or any related medical or psychiatric
31	complications. For example, support to help with withdrawal, managing liver damage
32	and treating conditions such as Wernicke's encephalopathy.
33	
34 35	Cochrane review
35 36	The Cochrane Library consists of a regularly updated collection of evidence-based medicine databases including the Cochrane Database of Systematic Reviews (reviews of
37	randomised controlled trials prepared by the Cochrane Collaboration).
38	

- 39 **Coeliac axis block**
- 40 <u>Pain</u> relief by celiac axis nerve or intrapleural block.
- 41
- 42 **Cohort study**
- 43 A retrospective or prospective follow-up study. Groups of individuals to be followed up
- 44 are defined on the basis of presence or absence of exposure to a suspected risk factor or
- 45 intervention. A cohort study can be comparative, in which case two or more groups are
- 46 selected on the basis of differences in their exposure to the agent of interest.
- 47

48 **Commissioning**

DRAFT FOR CONSULTATION 1 Primary care trusts (PCTs) and drug and alcohol action teams (DAATs) may commission 2 alcohol support services to meet patients' needs from a range of 'providers'. This 3 includes GPs, hospitals, mental health trusts and voluntary and private organisations. 4 5 **Confidence interval (CI)** 6 A range of values which contain the true value for the population with a stated 7 'confidence' (conventionally 95%). The interval is calculated from sample data, and 8 generally straddles the sample estimate. The 95% confidence value means that if the 9 study, and the method used to calculate the interval, is repeated many times, then 95% 10 of the calculated intervals will actually contain the true value for the whole population. 11 12 **Cost-consequence analysis** 13 A type of economic evaluation where, for each intervention, various health outcomes are 14 reported in addition to cost, but there is no overall measure of health gain. 15 16 **Cost-effectiveness analysis** An economic study design in which consequences of different interventions are 17 18 measured using a single outcome, usually in natural units (for example, life-years 19 gained, deaths avoided, heart attacks avoided, cases detected). Alternative interventions 20 are then compared in terms of cost per unit of effectiveness. 21 22 **Cost-utility analysis** 23 A form of cost-effectiveness analysis in which the units of effectiveness are quality 24 adjusted life-years (QALYs). 25 26 **Decompensated liver disease** Liver disease that manifests with either jaundice, ascites or encephalopathy 27 28 29 Dependence 30 See 'Alcohol dependence'. 31 Medically assisted alcohol withdrawal 32 33 Deliberate withdrawal from alcohol by a dependent drinker under the supervision of 34 medical staff. Prescribed medication may be needed to relieve the symptoms. It can be 35 carried out at home or in a hospital or other inpatient facility. 36

37 Harmful drinking

- A pattern of drinking alcohol that causes harm to a person's health or wellbeing. Theharm may be physical, psychological or social.
- 40

41 Hazardous drinking

- 42 A pattern of drinking alcohol that increases the risk of harmful consequences for the43 person.
- 44

45 Hepatology advice

- 46 Advice from a person trained in the management of liver conditions.
- 47

48 Incremental cost

- 49 The mean cost per patient associated with an intervention minus the mean cost per
- 50 patient associated with a compartor intervention.

2 Incremental cost-effectiveness ratio (ICER)

- 3 The ratio of the difference in costs between two alternatives to the difference in
- 4 effectiveness between the same two alternatives.
- 5
- 6

7 Intoxication

- A state of functional impairment caused by alcohol. For some people this can occur afterdrinking only a small amount.
- 10

11 Meta-analysis

- A statistical technique for combining (pooling) the results of a number of studies that
 address the same question and report on the same outcomes to produce a summary
 result.
- 15

16 Methodological limitations

- 17 Features of the design or reporting of a clinical study which are known to be associated
- 18 with risk of bias or lack of validity. Where a study is reported in this guideline as having
- 19 significant methodological limitations, a recommendation has not been
- 20 directly derived from it.
- 21

22 Multivariate analysis

- 23 Analysis of more than one variable at a time. Takes into account the
- 24 effects of all variables on the response of interest.
- 25

26 **Observational study**

- 27 Retrospective or prospective study in which the investigator observes the natural
- course of events with or without control groups, for example cohort studies and case-control studies.
- 30

31 Odds ratio

- 32 A measure of treatment effectiveness: the odds of an event happening in the
- 33 intervention group, divided by the odds of it happening in the control group. The 'odds' 24 is the ratio of non-events
- 34 is the ratio of non-events to events.
- 35

36 p values

- The probability that an observed difference could have occurred by chance. A p value ofless than 0.05 is conventionally considered to be 'statistically significant'.
- 39

40 Quality-adjusted life-year (QALY)

- 41 A measure of health outcome which assigns to each period of time a weight, ranging
- 42 from 0 to 1, corresponding to the health-related quality of life during that period, where
- 43 a weight of 1 corresponds to optimal health, and a weight of 0 corresponds to a health
- state judged equivalent to death; these are then aggregated across time periods.
- 45

46 Quality of life (QoL)

- 47 Refers to the level of comfort, enjoyment and ability to pursue daily activities.
- 48

49 Randomised controlled trial (RCT)

- 50 A trial in which people are randomly assigned to two (or more) groups: one (the
- 51 experimental group) receiving the treatment that is being tested, and the other (the
- 52 comparison or control group) receiving an alternative treatment, a placebo (dummy

- 1 treatment) or no treatment. The two groups are followed up to compare differences in
- 2 outcomes to see how effective the experimental treatment was. Such trial designs help
- 3 minimise experimental bias.
- 4

5 Sensitivity analysis

- 6 A measure of the extent to which small changes in parameters and variables affect a
- result calculated from them. In this guideline, sensitivity analysis is used in healtheconomic modelling.
- 9

12

10 Splanchnicectomy

11 Surgical removal of the splanchnic nerves and celiac ganglion.

13 Stakeholder

- Any national organisation, including patient and carer groups, healthcare professionalsand commercial companies with an interest in the guideline under development.
- 16

17 Statistical significance

- 18 A result is deemed statistically significant if the probability of the result occurring by 19 chance is less than 1 in 20 (p < 0.05).
- 20

21 Systematic review

- 22 Research that summarises the evidence on a clearly formulated question according to a
- 23 pre-defined protocol using systematic and explicit methods to identify, select and
- appraise relevant studies, and to extract, collate and report their findings. It may or maynot use statistical meta-analysis.
- 26

27 **Technology appraisal**

- Formal ascertainment and review of the evidence surrounding a health technology,
- restricted in the current document to appraisals undertaken by NICE.

31 Treatment

- 32 A programme designed to reduce alcohol misuse or dependence or related problems. It 33 could involve a mix of counselling, a medical intervention or advice and the provision of
- 34 information. Another term for a treatment is an intervention.
- 35

36 UK drinking guidelines

- 37 Guidelines set by the UK government on how much alcohol may be consumed without a
- 38 serious impact on health. The guidelines recommend that men should not regularly
- drink more than 3–4 units of alcohol per day, and women should not regularly drink
- 40 more than 2–3 units of alcohol per day. Both are recommended to have some alcohol-
- 41 free days. In terms of weekly limits, men are advised to drink no more than 21 units and
- 42 women no more than 14 units per week. Anyone who has drunk heavily in one session is
- 43 advised to go without alcohol for 48 hours, to give their liver and other body tissues
- 44 time to recover. See 'Unit'.
- 45

46 **Unit**

- 47 In the UK, alcoholic drinks are measured in units. Each unit corresponds to
- 48 approximately 8 g or 10 ml of ethanol. The same volume of similar types of alcohol (for
- 49 example, two pints of lager) can comprise a different number of units depending on the
- 50 drink's strength (that is, its percentage concentration of alcohol).

2 Univariate

3 Analysis which separately explores each variable in a data set.

4 5 **Utility**

- 6 A number between 0 and 1 that can be assigned to a particular state of health, assessing
- 7 the holistic impact on quality of life and allowing states to be ranked in order of
- 8 (average) patient preference.

9 Withdrawal

- 10 Withdrawal from alcohol. Also see Acute alcohol withdrawal and Medically assisted
- 11 alcohol withdrawal.
- 12

1 1.2 BACKGROUND

2

3 Alcohol is the most widely used psychotropic drug in the industrialised world; it has 4 been used for thousands of years as a social lubricant and anxiolytic. In the UK, it is 5 estimated that 24% of adult men and 13% of adult women drink in a hazardous or 6 harmful way³. Levels of hazardous and harmful drinking are lowest in the central and 7 eastern regions of England (21–24% of men and 10–14% of women). They are highest 8 in the north (26-28% of men, 16-18% of women)³. Hazardous and harmful drinking are 9 commonly encountered amongst hospital attendees; 12% of emergency department attendances are directly related to alcohol⁴ whilst 20% of patients admitted to hospital 10 11 for illnesses unrelated to alcohol are drinking at potentially hazardous levels⁵. 12 Continued hazardous and harmful drinking can result in dependence and tolerance with 13 the consequence that an abrupt reduction in intake might result in development of a 14 withdrawal syndrome. In addition, persistent drinking at hazardous and harmful levels 15 can also result in damage to almost every organ or system of the body. Alcohol-16 attributable conditions include liver damage, pancreatitis and the Wernicke's 17 encephalopathy. Key areas in the investigation and management of these conditions are 18 covered in this guideline. 19 Many other and diverse conditions are associated with chronic alcohol misuse, which 20 will not be covered in the guideline. There are examples listed in Table 1-1 below. As 21 well as these physical problems there are the social consequences of harmful and 22 hazardous drinking. These vary according to age group, but can be devastating. 23 Antisocial behaiour and teenage pregnancy in the young, domestic violence and 24 employment issues in the middle aged and social isolation in the elderly. Again, these 25 are not covered in this particular guideline.

26

27 Table 1-1. Conditions associated with chronic alcohol misuse.

Acute	Chronic
Accidents and injury	Accidents and injury
Acute alcohol poisoning	Brain damage
Aspiration pneumonia	Oesophagitis
Oesophagitis	Dementia
Mallory-Weiss syndrome	Gastritis
Gastritis	Wernicke-Korsakoff syndrome
Pancreatitis	Malabsorption
Cardiac arrhythmias	Cerebellar degeneration

Alcohol use disorders: clinical management: full guideline DRAFT (September 2009)

Cerebrovascular accidents	Malnutrition		
Neuropraxia Marchiafava-Bignami syndrome			
Myopathy/rhabdomyolysis	Pancreatitis		
Hypoglycaemia	Central pontine myelinolysis		
	Liver damage		
	Peripheral neuropathy		
	Fatty change		
	Myopathy		
	Hepatitis		
	Osteoporosis		
	Cirrhosis		
	Skin disorders		
	Hypertension		
	Malignancies		
	Cardiomyopathy		
	Sexual dysfunction		
	Coronary heart disease		
	Infertility		
	Cerebrovascular accidents		
	Fetal damage		

- 1
- 2
- 3
- 4

5	
6	During the writing of the guideline, the GDG has given consideration to the management
7	of patients according to their gender, age and ethnic origin. Where evidence is age-
8	specific, this is reflected in the recommendations. Among ethnic groups there is
9	variability in the dose and pattern of alcohol consumption 6 and possibly also in the
10	susceptibility to develop alcohol-related cirrhosis ⁷ . This evidence may have an impact
11	on the recommended sensible limits of alcohol consumption (see public health
12	guideline) for specific ethnic groups. In general, however, regardless of susceptibility,
13	the management of the alcohol use disorder is largely the same across ethnic groups.
14	Where the evidence suggests otherwise, this has been reflected in the recommendation.
15	

16

1 1.3 Methodology

2 *1.3.1* Aim

This piece of guidance was developed by the National Collaborating Centre for Chronic
Conditions (NCC-CC) who on 1 April 2009 merged with three other UK collaborating
centres to form the National Clinical Guideline Centre for Acute and Chronic Conditions
(NCGC). As the evidence for this guideline was reviewed before this merger, the
developers will be referred to as the 'NCC-CC' throughout the document for ease of use
and remain the same individuals post merger.

9 The aim of the NCC–CC was to provide a user-friendly, clinical, evidence-based guideline 10 for the National Health Service (NHS) in England and Wales that:

- offers best clinical advice for the management and treatment of people with
 alcohol-use disorders;
- is based on best published clinical and economics evidence, alongside expert consensus;
 - takes into account patient choice and informed decision-making;
- defines the major components of NHS care provision for people with alcoholuse disorders;
 - details areas of uncertainty or controversy requiring further research; and
 - provides a choice of guideline versions for different audiences.
- 20

15

18

19

21 *1.3.2 Scope*

The guideline was developed in accordance with a scope which detailed the remit of theguideline originating from the Department of Health and specified those aspects of care

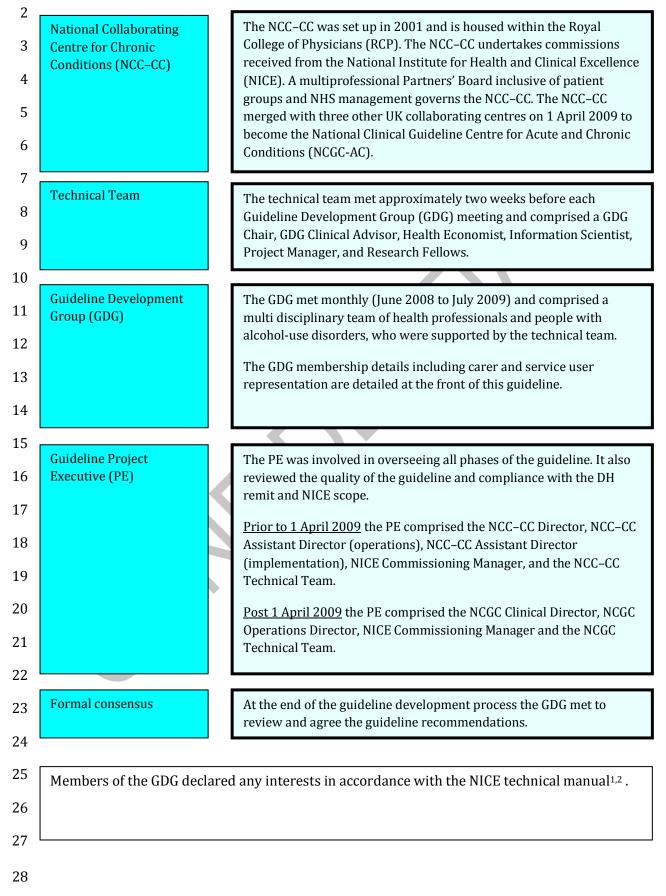
- 24 for people with alcohol-use disorders to be included and excluded.
- 25 Prior to the commencement of the guideline development, the scope was subjected to

stakeholder consultation in accordance with processes established by NICE^{1,2}. The full
 scope is shown in Appendix A5.

- 28 1.3.3 AUDIENCE
- 29 The guideline is intended for use by the following people or organisations:
- 30 all healthcare professionals
 - people with alcohol-use disorders and their carers
- 32 patient support groups
 - commissioning organisations
 - service providers
- 34 35

31

33


- 36 1.3.4 INVOLVEMENT OF PEOPLE WITH A HISTORY OF ALCOHOL-USE DISORDERS
- 37 The NCC–CC was keen to ensure that the views and preferences of people with alcohol
- 38 use disorders and their carers informed all stages of the guideline. This was achieved by:

1 2 3 4 5 6 7		 consulting the Patient and Public Involvement Programme (PPIP) housed within NICE during the pre-development (scoping) and final validation stages of the guideline project. having a person representing the service users' and carers' needs on the GDG. the inclusion of patient groups as registered stakeholders for the guideline.
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1.3.5	 GUIDELINE LIMITATIONS NICE clinical guidelines usually do not cover issues of service delivery, organisation or provision (unless specified in the remit from the Department of Health). NICE is primarily concerned with Health Services and so recommendations are not provided for Social Services and the voluntary sector. However, the guideline may address important issues in how NHS clinicians interface with these sectors. Generally, the guideline does not cover rare, complex, complicated or unusual conditions. It is not possible in the development of a clinical guideline to complete extensive systematic literature reviews of all pharmacological toxicity or effects of an intervention. NICE expect the guidelines to be read alongside the Summaries of Product Characteristics.
23 24 25	1.3.6 ►	OTHER WORK RELEVANT TO THE GUIDELINE Related NICE guidance
26 27 28 29 30 31 32 33 34 35	·	Interventions in schools to prevent and reduce alcohol use among children and young people. NICE public health guidance 7 (2007). Available from www.nice.org.uk/PH007 Community-based interventions to reduce substance misuse among vulnerable and disadvantaged children and young people. NICE public health guidance 4 (2007). Available from www.nice.org.uk/PH1004
36 37 38 39 40 41	∙ ► In d	Nutrition support in adults: oral nutrition support, enteral tube feeding and parenteral nutrition. NICE clinical guideline 32 (2006). Available from; www.nice.org.uk/CG032 evelopment

1 2	• School, college and community-based personal, social and he focusing on sex and relationships and alcohol education. NIC	
3	guidance (publication expected September 2009).	
4		
5	Alcohol use disorders: preventing the development of hazard	lous and harmful
6	drinking. NICE public health guidance (publication expected	March 2010).
7		
8		
9	• Alcohol use disorders: diagnosis and clinical management of	harmful drinking
10	and alcohol dependence. NICE clinical guideline (publication	date to be
11	confirmed).	
12		
13		\sim
14	1.3.7 BACKGROUND	
15	The development of this evidence-based clinical guideline draws up	on the methods
16	described by the NICE Guideline Development Methods manual ^{1,2} (s	
17	www.nice.org.uk)	
1/	www.incc.org.uitj	

- 18 The developers' role and remit is summarised in Table 1-2.
- 19

1 Table 1-2. Role and remit of the developers

Alcohol use disorders: clinical management: full guideline DRAFT (September 2009)

- 1 1.3.8 The process of guideline development
- 2 The basic steps in the process of producing a guideline are:
- 3 Developing clinical questions
 - Systematically searching for the evidence
 - Critically appraising the evidence
- 6 Incorporating health economics evidence
 - Developing health economic models
- 8 Distilling and synthesising the evidence and writing recommendations
- 9 Grading the evidence statements
- 10 Agreeing the recommendations
 - Structuring and writing the guideline
 - Updating the guideline.
- 12 13

4

5

7

14 **Developing evidence based questions**

The technical team drafted a series of clinical questions that covered the guideline scope. TheGDG and PE refined and approved these questions, which are shown in A.2.

17 18

►

Searching for and identifying the relevant evidence

The Information Scientist developed a search strategy for each question. Key words for
the search were identified by the GDG.

22 Systematic literature searches were undertaken to identify evidence within published

23 literature in order to answer the clinical questions. Clinical databases were searched

24 using relevant medical subject headings, free-text terms and study type filters. Non-

25 English language studies were not reviewed and were therefore excluded from searches.

26 Each database was searched up to 22 June, 2009. One initial search was performed for

27 the whole guideline topic which looked for systematic reviews, guidelines and economic

- 28 papers in the relevant populations.
- 29 The clinical questions were formulated using the PICO (Population, Intervention,

30 Comparison, and Outcome) format and this was used as a basis for constructing a search

31 strategy. Quality assurance of search strategies were approached by checking relevant

32 key papers were retrieved, and amending search strategies if appropriate. The

33 questions, the study types applied, the databases searched and the years covered can be

34 found in A.2.

35 When looking for health economic evidence, the search was undertaken with no date

36 restrictions on the NHS economic evaluation database (EED), the health technology

- 37 assessment (HTA) databases, and on Medline and Embase using a specific economic
- 38 filter. Additionally, ad hoc searches were carried out for individual questions as
- 39 required.
- 40 Titles and abstracts of retrieved papers were reviewed by the Research Fellow and
- 41 Health Economist and full papers were ordered for studies potentially relevant to each

Alcohol use disorders: clinical management: full guideline DRAFT (September 2009)

1 clinical question. The full papers were reviewed against pre-specified inclusion and 2 exclusion criteria. 3 Review papers were checked for additional relevant studies which were then ordered. 4 Additional papers identified by the GDG were ordered and reviewed. For areas where no 5 6 RCTs, were identified other evidence (observational studies, diagnostic studies) was 7 included (for example Wernicke's encephalopathy, diagnosis of chronic pancreatitis and 8 referral for liver transplantation). The lack of evidence available in certain areas led to the inclusion of lower quality evidence. Study limitations included small sample sizes, 9 with trials often underpowered for the outcomes of interest; selective reporting of 10 outcomes and statistics; and imprecision (wide confidence intervals). 11 12 13 For the areas covering alcohol-related liver disease and alcohol- related pancreatitis the 14 clinical evidence inclusion criteria covered populations of varying aetiologies (as long as 15 alcohol was included within this). Evidence was used from both unplanned and planned admission settings for the questions relating to medically assisted withdrawal. 16 17 Full economic evaluations (cost–effectiveness, cost-utility and cost-benefit analyses), 18 19 cost-consequence analyses and comparative costing studies that addressed the clinical 20 question were included. 21 22 Studies that only reported cost per hospital (not per patient), or only report average 23 cost–effectiveness without disaggregated costs and effects were excluded. Abstracts, 24 posters, reviews, letters/editorials, foreign language publications and unpublished 25 studies were excluded. Studies judged to have an applicability rating of 'not applicable' 26 were excluded. A judgement was made on a question by question basis regarding 27 whether to include studies with a quality rating of 'very serious limitations', although 28 these would usually be excluded. 29 30 When no relevant economic analysis was found from the economic literature review, 31 relevant UK NHS unit costs related to the compared interventions were presented to the 32 GDG to inform the possible economic implication of the recommendation to make. 33 34 Exclusion lists were generated for each question together with the rationale for the 35 exclusion. The exclusion lists were presented to the GDG. 36 Appraising the evidence 37 The Research Fellow or Health Economist, as appropriate, critically appraised the full 38 39 papers. In general, no formal contact was made with authors however there were ad hoc 40 occasions when this was required in order to clarify specific details. The relevant critical 41 appraisal checklists were compiled for each full paper (clinical or health economic). The 42 evidence was considered carefully by the GDG for accuracy and completeness. 43 44 All procedures are fully compliant with the: 45 NICE methodology as detailed in the 'Guideline Development Methods -• 46 Information for National Collaborating Centres and Guideline Developers' 47 Manual ^{1,2} NCC-CC Quality assurance document and systematic review chart. 48 49 50

Distilling and synthesising the evidence and developing recommendations

The evidence from each full paper was distilled into an evidence table and synthesised
into evidence statements before being presented to the GDG. This evidence was then
reviewed by the GDG and used as a basis upon which to formulate recommendations.

7 Evidence tables are available on-line at (to be completed upon publication)

8

910 Scaling the evidence statements

See Table 3-3 for the levels of evidence for interventional studies and Table 3-4 for the
levels of evidence for diagnostic studies².

13

14 Table 1-3. Levels of evidence for intervention ¹

Level of evidence	Type of evidence
1**	High-quality meta-analyses, systematic reviews of RCTs, or RCTs with a very low risk of bias
1+	Well-conducted meta-analyses, systematic reviews of RCTs, or RCTs with a low risk of bias
1-	Meta-analyses, systematic reviews of RCTs, or RCTs with a high risk of bias*
2**	High-quality systematic reviews of case–control or cohort studies High-quality case–control or cohort studies with a very low risk of confounding, bias or chance and a high probability that the relationship is causal
2+	Well-conducted case–control or cohort studies with a low risk of confounding, bias or chance and a moderate probability that the relationship is causal
2-	Case–control or cohort studies with a high risk of confounding, bias, or chance and a significant risk that the relationship is not causal*
3	Non-analytic studies (for example, case reports, case series)
4	Expert opinion, formal consensus
	a level of evidence '–' should not be used as a basis for making a on (see section 7.4 of guideline development manual ¹

15

16 **Table 1-4. Levels of evidence for diagnostic studies**²

Level of evidence	Type of evidence
Ia	Systematic review (with homogeneity) ^a of level-1 studies ^b
Ib	Level-1 studies ^b
II	Level-2 studies ^c Systematic reviews of level-2 studies
III	Level-3 studies ^d Systematic reviews of level-3 studies
IV	Consensus, expert committee reports or opinions and/or clinical experience without explicit critical appraisal; or based on physiology, bench research or 'first principles'

^a Homogeneity means there are no or minor variations in the directions and degrees of results between individual studies that are included in the systematic review.
^b Level-1 studies are studies:

- that use a blind comparison of the test with a validated reference standard (gold standard)
- in a sample of patients that reflects the population to whom the test would apply. ^c Level-2 studies are studies that have **only one** of the following:
 - narrow population (the sample does not reflect the population to whom the test would apply)
 - a poor reference standard (defined as that where the 'test' is included in the 'reference', or where the 'testing' affects the 'reference')
 - a comparison between the test and reference standard that is not blind
 - case-control design

^d Level-3 studies are studies that have at least two or three of the features listed for level-2 studies.

1

2 **Assessing cost-effectiveness of interventions**

It is important to investigate whether healthcare interventions are cost-effective as well as clinically effective to ensure they offer good value for money. This helps us to get the most health gain from available NHS resources. In any healthcare system resources are finite and choices must be made about how best to spend limited budgets. We want to prioritise interventions that provide a high health gain relative to their cost.

8 Cost-effectiveness analysis compares the costs and health outcomes of two or more

9 alternative healthcare interventions. The criteria applied to an intervention to be10 considered cost-effective were either:

- 11a) The intervention dominated other relevant strategies that is, it is both12less costly in terms of resource use and more clinically effective when13compared to other relevant strategies14b) The intervention cost less than £20,000 per quality-adjusted life-year15(QALY) gained compared with the next best strategy
- 16

- 1 Above a most plausible ICER of £20,000 per QALY gained, judgements about the
- 2 acceptability of the intervention as an effective use of NHS resources will specifically
- 3 take account of the following factors.
- a) The degree of certainty around the ICER. 4 5 b) The presence of strong reasons indicating that the assessment of the change in the quality of life inadequately captured, and may therefore misrepresent, the 6 7 health gain. 8 c) When the intervention is an innovation that adds demonstrable and distinct 9 substantial benefits that may not have been adequately captured in the 10 measurement of health gain. 11 12 Where health outcomes were not expressed in QALYs or economic evidence was not 13 available the GDG made a judgement based on the available evidence. The GDG agreed two priority areas for original health economic modelling for the 14 guideline. The first analysis undertaken assessed the in-hospital management of 15 16 patients with acute alcohol withdrawal. The second compared surgical and endoscopic 17 procedures for treating patients with chronic pancreatitis. See A.3 and A.4 for full 18 reports. A summary of relevant results is also included in each relevant chapter of the 19 guideline. 20 The following general principles were adhered to: The GDG was consulted during the construction and interpretation of the models. 21 • 22 • The GDG informed the structure and the validity of model inputs. 23 Models were based on clinical evidence identified from the systematic review of • 24 clinical evidence. 25 Model inputs and assumptions were reported fully and transparently. Sensitivity analyses were undertaken to explore uncertainties in model inputs and 26 • 27 methods. Costs were estimated from an NHS and PSS perspective (Some interventions may 28 • 29 have a substantial impact on non-health outcomes or costs to other government bodies. If costs to other government bodies are believed to be significant, they may be included 30 31 in a sensitivity analysis and presented alongside the reference case results. Productivity 32 costs and costs borne by patients and carers that are not reimbursed by the NHS or PSS 33 should not be included in any analyses). 34 Agreeing the recommendations 35 36 The GDG employed formal consensus techniques to: 37 ensure that the recommendations reflected the evidence-base • approve recommendations based on lesser evidence or extrapolations from other 38 • 39 situations 40 reach consensus recommendations where the evidence was inadequate • 41 debate areas of disagreement and finalise recommendations. • 42
- 43 The GDG also reached agreement on the following:
- 44 recommendations as key priorities for implementation
- 45 key research recommendations
- algorithms.

Alcohol use disorders: clinical management: full guideline DRAFT (September 2009)

high clinical impact

high impact on reducing variation in practice

following criteria:

1

2

3

4

5

•

•

6 7 8 9 10	 more efficient use of NHS resources allowing the patient to reach critical points in the care pathway more quickly. Audit criteria for this guideline will be produced for NICE following publication in order to provide suggestions of areas for audit in line with the key recommendations for 				
11 12	implementation.				
13	 Structuring and writing the guideline 				
14	The guideline is divided into sections for ease of reading. For each section the layou	ıt is			
15	similar and contains:				
16 17 18	• <i>Clinical introduction:</i> sets a succinct background and describes the curr clinical context	ent			
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	 Clinical methodological introduction: describes any issues or limitations were apparent when reading the evidence base. Point estimates (PE) as confidence intervals (CI) are provided for all outcomes in the evidence available at (to be completed upon publication). In addition within the guideline PE and CI are cited in summary tables for the evidence that pertains to the key priorities for implementation. In the absence of a summary table PE and CI are provided in the narrative text when the outcome adds something to the text and to make a particular point. The may be primary or secondary outcomes that were of particular importation the GDG when discussing the recommendations. The rationale for no citing <i>all</i> statistical outcomes is to try to provide a 'user friendly' readar guideline balanced with statistical evidence where this is thought to be interest to the reader. <i>Clinical evidence statements:</i> provides a synthesis of the evidence-base and statistical evidence statements: 	nd tables ese ance t ble of			
34 35 36 37	usually describes what the evidence showed in relation to the outcome interest. Where the evidence statements are considerable the GDG have attempted to summarise these into a useful summary.				
38 39 40 41	• <i>Health economic methodological introduction:</i> as for the clinical methodological introduction, describes any issues or limitations that w apparent when reading the evidence base.	ere			
42 43 44 45	• <i>Health economic evidence statements:</i> presents, where appropriate, an overview of the cost effectiveness / cost comparison evidence-base, or economic modelling.	any			
46 47 48 49	• <i>From evidence to recommendations:</i> this section sets out the GDG's decise making rationale and aims to provide a clear and explicit audit trail from evidence to the evolution of the recommendations.				

In prioritising key recommendations for implementation, the GDG took into account the

1 2	• <i>Recommendations:</i> provides stand alone, action orientated recommendations.
3 4	• <i>Evidence tables:</i> The evidence tables are not published as part of the full
5	guideline but are available on-line at (to be completed upon publication).
6	These describe comprehensive details of the primary evidence that was
7	considered during the writing of each section.
8	
9	► Writing the guideline
,	
10	The first draft version of the guideline was drawn up by the technical team in
4.4	

- 11 accordance with the decisions of the GDG, incorporating contributions from individual
- 12 GDG members in their expert areas and edited for consistency of style and terminology.
- 13 The guideline was then submitted for a formal public and stakeholder consultation prior
- 14 to publication. The registered stakeholders for this guideline are detailed on the NICE
- 15 website www.nice.org.uk. Editorial responsibility for the full guideline rests with the
- 16 GDG.
- 17

18 The following versions of the guideline are available:

19**Table 1-5. Versions of the guideline**

Full version:	Details the recommendations, the supporting evidence base and the expert considerations of the GDG and available online at (complete upon publication)
NICE version:	Documents the recommendations without any supporting evidence. Available at (to be completed upon publication)
'Quick reference guide':	An abridged version. <mark>Available online upon publication</mark>
'Understanding NICE guidance':	A lay version of the guideline recommendations Available online upon publication

20

21 22

Updating the guideline

23 Literature searches were repeated for all of the clinical questions at the end of the GDG

24 development process, allowing any relevant papers published up until 22 June 2009 to

25 be considered. Future guideline updates will consider evidence published after this cut-

26 off date.

Alcohol use disorders: clinical management: full guideline DRAFT (September 2009)

- 1 Following publication and in accordance with the technical manual, NICE will ask a
- 2 National Collaborating Centre to determine whether the evidence base has progressed
- 3 significantly to alter the guideline recommendations and warrant an update.
- 4

5 Disclaimer

- 6 Healthcare providers need to use clinical judgement, knowledge and expertise when
- 7 deciding whether it is appropriate to apply guidelines. The recommendations cited here
- 8 are a guide and may not be appropriate for use in all situations. The decision to adopt
- 9 any of the recommendations cited here must be made by the practitioner in light of
- 10 individual patient circumstances, the wishes of the patient, clinical expertise and
- 11 resources.
- 12 The Nation Collaborating Centre for Chronic Conditions (now a part of the National
- 13 Clinical Guideline Centre for Acute and Chronic Conditions) disclaim any responsibility
- 14 for damages arising out of the use or non-use of these guidelines and the literature used
- 15 in support of these guidelines.
- 16

17 Funding

- 18 The National Collaborating Centre for Chronic Conditions (now a part of the National
- 19 Clinical Guideline Centre for Acute and Chronic Conditions) were commissioned by the
- 20 National Institute for Health and Clinical Excellence to undertake the work on this
- 21 guideline.
- 22

1 2 ACUTE ALCOHOL WITHDRAWAL

2 2.1 Admission to hospital

3 2.1.1 CLINICAL INTRODUCTION

4 Some drinkers that consume alcohol in quantities outside healthy limits will develop an 5 acute alcohol withdrawal syndrome when they abruptly stop or substantially reduce their 6 alcohol consumption. Most patients manifest a minor symptom complex or syndrome, 7 which may start as early as six to eight hours after an abrupt reduction in alcohol intake. It 8 may include any combination of generalized hyperactivity, anxiety, tremor, sweating, 9 nausea, retching, tachycardia, hypertension and mild pyrexia. These symptoms usually 10 peak between 10 to 30 hours and subside by 40 to 50 hours. Seizures may occur in the first 12 to 48 hours and only rarely after this. Auditory and visual hallucinations may develop; 11 12 these are characteristically frightening and may last for five to six days.

13

Delirium tremens (DTs) occurs uncommonly, perhaps in less than 5% of individuals withdrawing from alcohol. The syndrome usually starts some 48 to 72 hours after cessation of drinking and is characterized by coarse tremor, agitation, fever, tachycardia, profound confusion, delusions and hallucinations. Convulsions may herald the onset of the syndrome but are not part of the symptom complex. Hyperpyrexia, ketoacidosis, and profound circulatory collapse may develop.

20

Minor degrees of alcohol withdrawal are commonly encountered and individuals can be
managed without recourse to specific therapy. However, patients with moderate or severe
alcohol withdrawal symptoms often require sedation to prevent exhaustion and injury.

24

Evidence of physical dependence should always be sought because of the management
 implications; early morning retching, tremor, anxiety and irritability, ingestion of alcohol

27 before midday, amnesia and "blackouts" are all suggestive. A history of previous

28 withdrawal seizures and the development of delirium tremens clearly indicate a history of

29 dependence. Guidance regarding diagnosis of dependence will be included in 'Alcohol use

30 disorders: diagnosis and clinical management of harmful drinking and alcohol

31 dependence' (NICE clinical guideline in development). Individuals who are known or are

32 suspected of being dependent on alcohol may require help to withdraw from alcohol.

33

34 For the purposes of this guideline, medically-assisted withdrawal from alcohol with be 35 referred to as (i) planned, which as the name implies is an elective process which is 36 usually undertaken in the community or else as part of a planned programme within 37 addiction services; or (ii) unplanned which occurs when patients stop or suddenly 38 reduce their alcohol intake either inadvertently because of an intercurrent illness, 39 because they make a conscious decision to stop or were inadvertently deprived of 40 alcohol, for example, following an accident. These patients may present to their GP or to 41 acute hospital or mental health services. 42

1 Making the decision about whether a person presenting with alcohol withdrawal needs 2 admission to hospital is impacted by the severity of the syndrome, the person's co-3 morbidities and the reason for the presentation. The severity of the syndrome can be 4 assessed by experienced clinical staff. There are also well-recognised validated scoring 5 systems to aid assessment of alcohol withdrawal. The most widely recognized is the 6 CIWA-Ar (Clinical Institute of Withdrawal Assessment for Alcohol scale) which is used in 7 the clinical setting and in research studies where a validated score is useful⁸. If the 8 reason for presentation is an intercurrent illness that of itself requires admission, then 9 the decision is made and the management of the withdrawal will occur in tandem. Very 10 often however, the withdrawal symptoms are not life threatening and are the sole 11 reason for presentation and there exists variation in admission practices for this cohort 12 across the United Kingdom.

13

14 There is no doubt that some patients who wish to stop drinking but who have difficulty 15 accessing the required services will deliberately stop drinking in order to gain 16 admission to hospital to complete the process.

17

18 The decision whether patients with acute alcohol withdrawal need admission depends 19 on a variety of factors. The first consideration would be the effectiveness of a hospital 20 admission for medically-assisted withdrawal from alcohol; not only in managing the 21 acute condition, but also in terms of facilitating long term abstinence. This will, in turn, 22 depend on the local availability of, or liaison with, follow-up services aimed at relapse 23 prevention. The second would be the risks involved with discharging the patient with a 24 view to subsequent admission for elective withdrawal versus an immediate admission 25 to complete the withdrawal process. This is of particular importance if it could be shown 26 that elective or planned alcohol withdrawal is more effective. Given that many of these 27 patients will undergo more than one medically-assisted withdrawal from alcohol, the 28 risk of repeating this process is critical. One such proposed risk is the 'kindling effect'; 29 where the severity of the withdrawal symptoms increases after repeated withdrawal 30 episodes. If this were shown to be the case, then the number of medically-assisted 31 withdrawal episodes should perhaps be limited. Weighed up against these concerns is 32 the sincere wish to do the best for an individual who wishes to stop drinking and the 33 need to prevent them from developing severe withdrawal symptoms. It is also 34 important to recognize that these patients may have other alcohol-related conditions 35 and that the opportunity should not be lost, whether the patient is admitted or not, to 36 diagnose these and manage the patient appropriately. 37

38 Therefore, the clinical questions asked, and upon which a literature search was

- 39 undertaken, were:
- 40

41 'What are the benefits and risks of unplanned 'emergency' withdrawal from alcohol in

- 42 acute medical settings versus discharge?
- 43

What criteria (e.g. previous treatment, homelessness, levels of home support, age group)
 should be used to admit a patient with acute alcohol withdrawal for unplanned emergency
 withdrawal from alcohol?'

4

5 2.1.2 CLINICAL METHODOLOGICAL INTRODUCTION

6 No studies were identified that looked at the benefits and harms of unplanned 7 medically-assisted withdrawal compared with planned medically-assisted withdrawal. 8 With respect to the question of whether unplanned medically-assisted withdrawal is 9 'safe', studies were included that looked at the association between the number of 10 previous medically-assisted withdrawals and the incidence of seizures, risk of 11 developing DTs or severity of withdrawal. The severity of withdrawal was measured 12 using the CIWA-Ar score in some studies. This is further described in the section on 13 supportive care. Because there were a large number of potentially confounding 14 variables, only studies that applied multivariate, covariate, regression or discriminant 15 function analyses were included. Nine studies were excluded because they reported the 16 results of univariate analysis only. Studies with a sample size of 50 or fewer were 17 excluded from the evidence review.

18

For the question of what criteria should be used to admit a patient with acute alcohol
withdrawal for unplanned 'emergency' withdrawal from alcohol, studies were included
if they looked at factors that were potential predictors of severe withdrawal, seizure
incidence or the development of DT, namely: age, history of a seizure, history of DTs,
history of severe withdrawal, previous drinking history and breath or blood alcohol
level.

25

Studies were included if they reported on individuals admitted for planned or
unplanned medically-assisted withdrawals, but restricted to acute, inpatient settings
only. Only one study specifically stated that people were recruited through a registry of
trauma patients (and therefore represent a population of patients who may require
unplanned emergency medically-assisted withdrawal in the general hospital setting) ⁹.
Very few studies described how they operationally defined 'detoxification', for example
whether they included medically-assisted withdrawals only. One important

34 methodological limitation is the retrospective nature of the data collection regarding the

35 number of previous episodes of medically assisted withdrawals. Also the majority of

- 1 studies obtained this information from hospital notes and thus the information may be
- 2 of questionable accuracy. The table below summarises the methodological
- 3 characteristics of the studies included in parts (a) and (b) of the question.
- 4
- 5 In one study the effect of multiple withdrawal episodes on cognitive function was
- 6 assessed using a task of frontal lobe function (the Stroop task), a maze learning and
- 7 vigilance task¹⁰. Cognition was compared in individuals who had undergone two or
- 8 fewer medically-supervised detoxifications (LO, N=36) with those who had undergone
- 9 two or more (HIGH, N=6) and a control group of 'mild to moderate' drinkers (CON,
- 10 N=43). The patients were undergoing inpatient treatment and had been off treatment
- 11 for alcohol withdrawal for at least two weeks prior to testing.
- 12
- 13 See Table 2-1for a summary of study characteristics.
- 14

Table 2-1. Summary of the study design, patient population, incidence of previous detoxifications and incidence of withdrawal problems, seizures and DTs.

Study	Patient population	Mean no. of previous detoxificati ons (range)	Incidence of withdrawal problems	Incidence of seizures	Incidence of DT
MALCOLM 2000 ¹¹ Prospective cohort 2++	N=136 Patients with alcohol dependence and withdrawal (DSM-IV) Inclusion: ≥ 26 Mini mental state examination CIWA-Ar ≥ 10 Male and female	Comparison between 0 to 1 and multiple detoxificati ons (range 2 to 5)	NR	NR	NR
SCHUCKIT 1995 ¹² Prospective cohort 2++	N=1648 Patients who were alcohol dependent Setting: Not specified Male and female	Previous total no. of withdrawal episodes: History of seizure/DT 28 (SD 34) versus no history 16 (27)	NR	NR	188/1648 (11%) patients experienced delirium tremens,
WETTERLING	N=723	Mean	100/723	Not reported	61/723

Study	Patient population	Mean no. of previous detoxificati ons (range)	Incidence of withdrawal problems	Incidence of seizures	Incidence of DT
2001 ¹³ Prospective cohort 2++	Males and females admitted to a ward in a general hospital specialising in detoxification	number of prior inpatient detoxificati ons 3 (SD 6.5)	(14%) severe withdrawal syndrome (measured on Alcohol Withdrawal Syndrome scale ¹⁴)		(8%)
BOOTH AND BLOW 1993 ¹⁵ Retrospective cohort 2+	N=6818 Male patients admitted for short inpatient detoxification. Primary diagnosis of alcohol dependence	Previous number of alcohol specific hospitalisat ion (previous 3 years): Withdrawal problems mean 0.95 (SE 0.10) versus no withdrawal problems 0.82 (0.03)	461/6818 (7%) withdrawal problems (DT, alcoholic hallucinations and alcoholic dementia) in index hospitalisation.	Unspecified seizures 193/6818 (3%)	NR
LUKAN 2002 ⁹ 2+	N=1856 Patients admitted for trauma who developed DT whilst in hospital or presenting with a positive blood alcohol concentration (BAC) on admission. Setting: General hospital	NR	NR	NR	105/1856 (6%)
KRAEMER 1997 ¹⁶ Retrospective case series 3	N=284 Patients with alcohol withdrawal Setting: alcohol detoxification unit Almost	No. of prior alcohol treatment programs: mean 1 (range 0 to 3)	NR	Current seizure (index hospitalisatio n) 0% Past withdrawal seizures ranged from 1/21 (5%) (≥ 70 years) to	Current DT (index hospitalizati on) was 3/284 (1%) past DT ranged from 3/21 (14.3%) (≥ 70 years) to 28/74 38%

Page 19

Study	Patient population	Mean no. of previous detoxificati ons (range)	Incidence of withdrawal problems	Incidence of seizures	Incidence of DT
	exclusively male population			17/74 (23%) (50 to 59 years)	(50 to 59 years)
LECHTENBER G 1991 ¹⁷ Retrospective case series 3	N=400 Patients requesting admission for alcohol detoxification Setting: Alcoholism service Patient population: males and females	Mean number of admissions for detoxificati on 2.1 (SD 2.7)		84/400 (21%) of patients had a history of a seizure. No seizures were reported in the current hospital admission for detoxification	
LECHTENBER G 1992 ¹⁸ Retrospective case series 3	N=500 Patients with alcoholism who were at potential risk of: Dangerous or disabling withdrawal, high risks of seizures, DT or hallucinations, failure of previous outpatient detoxification, unstable social situation (admission criteria) Setting: Alcohol detoxification unit Male and female	Mean number of admissions for detoxificati on 2.1 (SD 2.6)		There were no seizures during the current episode of withdrawal 55/98 (56%) patients reported a history of alcohol withdrawal seizures	
PALMSTIERN A ¹⁹ Prospective case series 3	N=334 Patients seeking treatment for alcohol	NR	43% history of DT	139/334 (42%) had a previous epileptic seizure 23/334 (7%)	145/334 (43%) had previously experienced alcohol withdrawal

Page 20

Study	Patient population	Mean no. of previous detoxificati ons (range)	Incidence of withdrawal problems	Incidence of seizures	Incidence of DT
	withdrawal Setting: Psychiatric and dependency emergency unit Patient population: male : female			had a epileptic seizure in the past 48 hours	delirium
FERGUSON 1996 ²⁰ Retrospective cohort 2++	N=200 Patients with alcohol withdrawal or detoxification Setting: Internal medicine hospital at general hospital Male and female	Proportion of patients who had undergone a previous withdrawal Mean 52%	NR	NR	48/200 (24%) developed delirium tremens
KRAEMER 2003 ²¹ Retrospective case series 3	N=284 Patients admitted to an acute inpatients detoxification unit Setting: Inpatient detoxification unit	NR	The incidence of severe withdrawal was 25%	NR	NR

1 NR – not reported

- 2
- 3

4 2.1.3 CLINICAL EVIDENCE STATEMENTS

5 **Previous detoxifications and severity of alcohol withdrawal**

6 The following measures of severity of withdrawal were significantly associated with the

- 7 number of previous detoxifications or were reported to be significantly different
- 8 between patients with no or a small number of previous detoxifications and those with a
- 9 high number:

1	• A slower rate of decline on the CIWA-Ar day 0 to 4 of withdrawal associated with
2	multiple detoxifications (multiple versus 0 to 1 detoxifications; p<0.05). ¹¹
3	Level 2++
4	
5	• Severe withdrawal (requirement for 600 mg or more, total, cumulative
6	benzodiazepine (expressed in chlordiazepoxide equivalents) was significantly
7	associated with participation in two or more prior alcohol treatment programs
8	(OR 2.6 [95%CI 1.3 to 5.6]; p=0.01). ²¹
9	Level 3
10	
11	The following measures of severity of withdrawal were not significantly associated with
12	the number of previous detoxifications or were not significantly different between
13	patients with a low and those with a high number of detoxifications:
14	• The CIWA-Ar score on admission was not significantly related to the number of
15	previous admissions (not significant). ¹¹
16	Level 2++
17	
18	• The severity of alcohol withdrawal (alcohol withdrawal syndrome scale) was not
19	significantly related to the number of previous prior inpatients detoxifications or
20	prior withdrawal delirium (not significant). ¹³
21	Level 2++
22	
23	The frequency of alcohol-specific hospitalisations was not significantly
24	associated with withdrawal problems (DT, alcoholic hallucinations and alcoholic
25	dementia during hospitalisation) (withdrawal problems versus no withdrawal
26	problems mean 0.95 (SE0.10) versus 0.82 [0.03] not significant). ¹⁵
27	Level 2+
28	
29	Previous detoxifications and incidence of seizures
30	Four studies report that patients with a history of previous detoxifications or
31	withdrawals were significantly more likely to experience a seizure:
32	There was a significant difference between those patients who had unspecified
33	seizures in the index hospitalisation and those who did not and the mean
34	number of previous alcohol-specific hospitalizations (with a primary diagnoses

1	of alcohol dependence and acute alcohol intoxification) (in the previous 3 years)
2	(mean 1.48 [SE0.23] versus 0.81 [SE0.03]; MD 0.67; p<0.01). ¹⁵
3	Level 2+
4	
5	• Two studies reported a significant association between the history of a seizure
6	and the total number of previous detoxification admissions (mean 2, R ² -Ad
7	0.035, F=13.2; p<0.001) ¹⁷ (mean 2, R ² -Ad 0.041, F=15.1; p<0.0001) ¹⁸ .
8	Level 3
9	
10	A history of DTs and/or convulsions compared with no history of DTs and/or
11	convulsions was significantly associated with a history of more withdrawal
12	episodes (28 versus 16) (OR 1.01, 95%CI 1.00 to 1.02; p<0.01) ¹² .
13	Level 2++
14	
15	Previous detoxifications and incidence of DTs
16	One study reported no significant association between previous detoxification history
17	and the development of DTs (0.94; 95%CI 0.68 to 1.29;p=0.70) 20 .
18	Level 2++
19	
20	Cognitive impairments
21	There were no significant differences (ANCOVA) reported between patients with a high
22	number of previous detoxifications and those with a low number on the Stroop task
23	(errors 2.67 [SE1.73] versus 2.62 [0.55]; MD 0.05; ns, maze learning [errors 1.73
24	{SE0.34} versus 1.47 {0.41}]; MD 0.26; not significant) or vigilance tasks (number
25	correct 0.67 (SE0.07 versus 0.79 [0.02]; MD 0.12; ns) ¹⁰ .
26 27	Level 2++
27	Factors associated with the incidence of solution
28 29	 Factors associated with the incidence of seizures ▶ Previous history of a seizure
30	No studies reported on this outcome.
31	
32	Previous history of DT
33	No studies reported on this outcome.
34	
35	►Age

1	Two studies reported that:
2	• The prevalence of seizure history was not significantly correlated with age (not
3	significant). ¹⁷ , ¹⁸
4	Level 3
5	
6	Alcohol consumption/history
7	The following were not correlated with prevalence of seizure history:
8	• Years of alcoholism ¹⁷ ; R2-AD 0.007; F=20.3; p=0.1064) ¹⁸ .
9	Level 3
10	
11	• A history of DTs and/or convulsions compared with no history of DTs and/or
12	convulsions was significantly associated with the higher number of drinks in 24
13	hour (lifetime) (41 versus 25) (OR 1.02, 95%CI 1.01 to 1.03; p<0.001) ¹² .
14	Level 2++
15	
16	► Alcohol level on admission
17	No studies reported on this variable in relationship to the incidence of seizures.
18	
19	Factors associated with the risk of developing DT
20	One study developed a model for identifying patients with a high risk of developing
21	delirium tremens after assessment in the emergency department. Five risk factors were
22	significantly associated with its occurrence, (of relevance to those factors included in
23	this evidence review):
24	• a history of previous withdrawal seizures (R ² =0.068, t=2.35; p=0.019). A
25	previous history of withdrawal seizures independently contributed 6.8% to the
26	risk of developing DTs ¹⁹ .
27	Level 3
28	
29	• a history of previous episodes of DTs (R ² =060, t=2.07; p=0.039). A previous
30	history of alcohol–related DTs contributed 6% to the risk of developing DTs ¹⁹ .
31	Level 3
32	

1	• Signs of overactivity of the autonomic nervous system accompanied by an
2	alcohol concentration of more than 1 gram per litre of body fluid (R^2 =0.129
3	t=3.11; p=0.002) ¹⁹ .
4	Level 3
5	
6	• alcohol concentration of more than 1 gram per litre of body fluid not
7	accompanied by signs of autonomic hyperactivity was not associated with the
8	risk of developing DTs (ns in univariate analysis and therefore not entered into
9	the regression model) ¹⁹
10	Level 3
11	
12	►Age
13	One study on trauma patients reported that:
14	• age > 40 years was a significant predictor of DTs (OR adjusted 2.98; 95%CI 1.97
15	to 4.51; p<0.001) ⁹ .
16	Level 2+
17	
18	Alcohol consumption/history
18 19	Alcohol consumption/history One study reported that:
19	One study reported that:
19 20	One study reported that:more days since the last drink was an independent predictor of the development
19 20 21	 One study reported that: more days since the last drink was an independent predictor of the development of DTs (OR 1.3; 95%CI 1.09 to 1.61; p=0.0047) ²⁰.
19 20 21 22	 One study reported that: more days since the last drink was an independent predictor of the development of DTs (OR 1.3; 95%CI 1.09 to 1.61; p=0.0047) ²⁰.
19 20 21 22 23	 One study reported that: more days since the last drink was an independent predictor of the development of DTs (OR 1.3; 95%CI 1.09 to 1.61; p=0.0047) ²⁰. Level 2+
19 20 21 22 23 24	 One study reported that: more days since the last drink was an independent predictor of the development of DTs (OR 1.3; 95%CI 1.09 to 1.61; p=0.0047) ²⁰. Level 2+ ► Alcohol level on admission
19 20 21 22 23 24 25	 One study reported that: more days since the last drink was an independent predictor of the development of DTs (OR 1.3; 95%CI 1.09 to 1.61; p=0.0047) ²⁰. Level 2+ ► Alcohol level on admission One study reported that:
19 20 21 22 23 24 25 26	 One study reported that: more days since the last drink was an independent predictor of the development of DTs (OR 1.3; 95%CI 1.09 to 1.61; p=0.0047) ²⁰. Level 2+ ► Alcohol level on admission One study reported that: blood alcohol concentration ≥ 43 mmol/L (200 mg/dL) was a significant
19 20 21 22 23 24 25 26 27	 One study reported that: more days since the last drink was an independent predictor of the development of DTs (OR 1.3; 95%CI 1.09 to 1.61; p=0.0047) ²⁰. Level 2+ ► Alcohol level on admission One study reported that: blood alcohol concentration ≥ 43 mmol/L (200 mg/dL) was a significant predictor of the development of DTs (DT present versus DT absent 52/104
19 20 21 22 23 24 25 26 27 28	 One study reported that: more days since the last drink was an independent predictor of the development of DTs (OR 1.3; 95%CI 1.09 to 1.61; p=0.0047) ²⁰. Level 2+ ► Alcohol level on admission One study reported that: blood alcohol concentration ≥ 43 mmol/L (200 mg/dL) was a significant predictor of the development of DTs (DT present versus DT absent 52/104 [60%] versus 833/1751 [48%]; OR 1.69 [95%CI 1.08 to 2.62]; p=0.02)⁹.
19 20 21 22 23 24 25 26 27 28 29 30 31	One study reported that: more days since the last drink was an independent predictor of the development of DTs (OR 1.3; 95%CI 1.09 to 1.61; p=0.0047) ²⁰. Level 2+ Alcohol level on admission One study reported that: blood alcohol concentration ≥ 43 mmol/L (200 mg/dL) was a significant predictor of the development of DTs (DT present versus DT absent 52/104 [60%] versus 833/1751 [48%]; OR 1.69 [95%CI 1.08 to 2.62]; p=0.02)⁹. Level 2++ Factors associated with severe alcohol withdrawal
19 20 21 22 23 24 25 26 27 28 29 30	 One study reported that: more days since the last drink was an independent predictor of the development of DTs (OR 1.3; 95%CI 1.09 to 1.61; p=0.0047) ²⁰. Level 2+ ► Alcohol level on admission One study reported that: blood alcohol concentration ≥ 43 mmol/L (200 mg/dL) was a significant predictor of the development of DTs (DT present versus DT absent 52/104 [60%] versus 833/1751 [48%]; OR 1.69 [95%CI 1.08 to 2.62]; p=0.02)⁹. Level 2++

1	a bistory of with drawal asiguras was not a significant prodictor of severa	
1	• a history of withdrawal seizures was not a significant predictor of severe	
2	withdrawal (symptom-triggered regimen, 600 mg or more, total, cumulative	
3	benzodiazepine [expressed in chlordiazepoxide equivalents]) ²¹ .	
4	Level 3	
5		
6	Previous history of DT	
7	One study reported that:	
8	• a history of DTs was a significant predictors of severe withdrawal (600 mg or	
9	more, total, cumulative benzodiazepine (expressed in chlordiazepoxide	
10	equivalents) (OR 2.9; 95%CI 1.3 to 6.2; p=0.007) ²¹ .	
11	Level 3	
12		
13	►Age	
14	Two studies reported no significant associations between age:	
15	• maximum Alcohol Withdrawal Scale (AWS) score (not significant) ¹³ .	
16	Level 2++	
17		
18	• maximal CIWA-Ar score (not significant) ²² .	
19	Level 3	
20		
21	• Initial CIWA-Ar score (not significant) ²² .	
22	Level 3	
23		
<u>-</u> 3	► Alcohol consumption/history	
25	Two studies reported no significant associations between drinking consumption and	
26	drinking history and:	
27	 Withdrawal severity (maximum AWS score) and alcohol duration, alcohol 	
27	intake/drinking day (not significant) ¹³ .	
	Level 2++	
29 30	LEVEL 2TT	
31 22	There was no significant association between severity of withdrawal (600 mg or more)	,
32	total, cumulative benzodiazepine [expressed in chlordiazepoxide equivalents]) and:	
33	 daily alcohol intake (not significant)²¹ 	
34	 number of drinking days over past month (not significant)²¹. 	
35	Level 3	_

1	
2	► Alcohol level on admission
3	One study reported on the association between breath alcohol level on admission and
4	the severity of withdrawal. The results were reported separately for admission to a non-
5	medical setting and a medical setting ²³ .
6	Level 2+
7	
8	Non-medical setting
9	Linear regression analysis showed a significant relationship between breath
10	alcohol levels on admission and severity of withdrawal (amount of
11	chlordiazepoxide used in first 48 hours) ($R^2=0.26$;p<0.0001). When patients
12	were classified in to two groups based on the median level of breath alcohol on
13	admission (\leq 33 mmol/L [150 mg/dL versus > 33 mmol/L]) higher levels were
14	associated with more severe adverse outcomes, including transfer to acute care
15	hospital for medical detoxification and a maximum withdrawal assessment score
16	of greater than 6 (indicating medical consultation is required). When the same
17	threshold was applied to the medical setting, the threshold distinguished
18	between those patients who required a total of 50 mg chlordiazepoxide or less
19	and those who required more ²³ .
20	Level 2+
21	
22	Medical setting
23	Linear regression analysis showed a significant relationship between breath
24	alcohol levels on admission and severity of withdrawal ($R^2=0.41$; p<0.0001) ²³ .
25	Level 2+
26	
27	2.1.4 Health Economic methodological Introduction
28	One UK cost-effectiveness analysis was identified and was presented to the GDG.
29 30 31 32	Parrot 2006 ²⁴ presented a cost-utility analysis (reporting cost per QALY gained) based on a case series (n = 54) from a direct-access alcohol detoxification service in Manchester (Smithfield Centre). This service offered a 10-day detoxification including three to four days for the management of withdrawal. The following six to seven days
33	involved social care interventions. All non-referred admissions for alcohol detoxification
34 35	from April to November 1998 were prospectively followed for a 6-month period to collect quality of life and resource use data (non-direct-access patients formally referred
35 36	from other services or professionals were excluded). Retrospective resource use data

1 were collected for the 6-month period before the admission by interview/questionnaire.

2 The costs incorporated in the analysis were the 10-day treatment cost at the centre, and

3 the costs related to health services, alcohol services, criminal justice services, and social

- 4 services. Patient-level quality of life data were collected on admission to the centre and 6
- 5 month later using the EuroQol (EQ-5D) questionnaire²⁵. No sensitivity analysis was
- 6 undertaken.
- 7

8 2.1.5 Health Economic Evidence Statements

9 Results of the Parrot 2006 study²⁴ were calculated comparing data from the case series 10 pre- and post-detoxification. Two cost-effectiveness ratios were presented. The first 11 cost-effectiveness ratio considered the QALY gain from admission to 6 months postdischarge (0.033), and the 10-days detoxification cost only. The result indicated a cost of 12 13 £33,727 per QALY gained. The second cost-effectiveness ratio presented considered the 14 same QALY difference (0.033), but estimated the impact on costs by comparing 6-month 15 costs pre- and post-detoxification from a broader perspective including health service 16 costs, alcohol service costs, criminal justice service costs, and social service costs. The 17 result indicated a cost of £65,454 per QALY gained. If the costs relating to the criminal 18 justice services are excluded, then the costs would be £69,090 per QALY gained - this 19 would be the usual NICE reference case.

20 The Parrot analysis²⁴ was based on outcomes collected from a case series pre- and post-

21 treatment. This method might be more biased than a cohort study comparing an

22 intervention with a control group. However, the magnitude and direction of this bias is

23 unknown. The small size of the case series (n=54) is another limitation of this study.

Finally, results from this analysis need to be considered carefully as the study was

- undertaken on a specialist alcohol unit with a potentially different caseload to that of a
- 26 general hospital.
- 27
- 28

29 2.1.6 FROM EVIDENCE TO RECOMMENDATIONS

30 The GDG recognised this is a very difficult area in which to produce guidance as each

31 individual is different and the clinical problem is often compounded by social problems.

It was emphasised that these clinical decisions must be made with compassion and withthe patient's best interests in mind.

34

People with a co-incident medical problem requiring admission were excluded from the
review as these individuals will be admitted for the co-incident problem and started on a
regimen to manage their withdrawal from alcohol.

38

39 The majority of the studies collated data retrospectively which raises questions about

- 40 the accuracy of reporting.
- 41

The GDG noted the evidence review did not find that repeated unplanned medically
 assisted withdrawals from alcohol caused harm. Some low quality studies supported a

assisted withdrawals from alcohol caused harm. Some low quality studies supported an
 association, but there were as many studies showing no association. While the kindling

4 hypothesis was not disproved, the group agreed there was not enough clinical evidence

4 hypothesis was not disproved, the group agreed there was not enough clinical evidence

- 5 in favour of the hypothesis to support a recommendation.
- 6

7 As there were no studies comparing the efficacy of hospital admission for an unplanned 8 medically assisted withdrawal from alcohol with either a planned admission or planned 9 out-patient management it was not possible to make an evidence-based 10 recommendation regarding the efficacy of unplanned medically assisted withdrawal 11 from alcohol. Nevertheless, consensus opinion based on experience within the group 12 was that unplanned medically assisted withdrawal from alcohol in isolation is rarely an 13 effective long-term treatment for alcohol dependence. It may be the case that patients 14 who have planned to stop drinking and present to general hospitals may have good 15 long-term outcomes with regard to abstinence if the appropriate follow up services 16 focusing on relapse prevention are provided on discharge. At present, however, there is 17 often a delay between discharge and the institution of relapse prevention treatment. It 18 was felt that, on balance, these patients were likely to get better long-term benefits by 19 undergoing a planned withdrawal in an elective manner, organised through addiction

- 20 services, with the relevant and appropriate follow-up.
- 21

22 As such, the GDG emphasised the need to direct people presenting with withdrawal 23 towards alcohol addiction services and encourage them to undergo planned withdrawal 24 (to be covered in 'Alcohol use disorders: diagnosis and clinical management of harmful 25 drinking and alcohol dependence' [NICE clinical guideline in development]). The risks of 26 sudden withdrawal from alcohol should be made clear to the person and advice should 27 be given about how best to engage with the most appropriate local addiction services. 28 Advice about reducing and stopping drinking may be given at this point, but what this 29 advice should be was outside the scope of this guidance. It is important to recognize, 30 however, that we are, by definition, referring to a dependent population in withdrawal 31 and that the most acute concerns are the assessment and management of the acute 32 withdrawal episode. If the patient does not require admission, this will usually involve 33 drinking and then slowly reducing alcohol consumption or undergoing a planned 34 medically assisted withdrawal of alcohol.

35

The GDG agreed, by expert consensus, that individuals may also need admission due to the severity or predicted severity of the syndrome. More specifically, if a person presents following or in a withdrawal seizure or delirium tremens they should be admitted for medical care. In addition the evidence was examined to identify which factors confer a high risk of the withdrawal episode progressing to either seizure or delirium tremens. Factors increasing the risk of DTs have been investigated ¹⁹ and have been identified as:

- 43
- history of alcohol withdrawal seizures
- 45 a history of DTs

- signs and symptoms of autonomic over-activity with blood ethanol concentration
 greater than 100mg/100ml
- 3

4 The GDG considered that these factors should be used as predictors of a severe 5 withdrawal episode and accepted as an indication that the person should be admitted 6 for medically assisted withdrawal. While some of these features may not mandate 7 admission if the current withdrawal episode is mild, it was agreed they each have 8 predictive utility in a clinical setting. Without stronger evidence it was not felt 9 appropriate to give guidance about the severity of autonomic symptoms and BAC that 10 would constitute high risk. This will be dictated by the clinical setting with each of the 11 above predictors being of relevance. 12 13 All of the studies reviewed were in adult populations although age was not restricted 14 when undertaking the literature search. As such, the GDG agreed that while the 15 presentation of a young person with alcohol withdrawal is rare it is associated with a 16 unique set of problems and management should always include addressing any

17 underlying long-term psychosocial issues. The GDG agreed that this population is

18 particularly vulnerable and that admission should be considered at a lower threshold in

those under 18 and advised in those under 16. The GDG recognises that intoxication is amore common problem than withdrawal in this age group.

21

No correlation was found between age and the severity of withdrawal: however, it was
noted that frail people may be more susceptible to post-discharge injury from falls, slips
and the like. The GDG agreed there should be a lower threshold for admission for the
medical management of alcohol withdrawal in this population. They recognised that
biological is more important than chronological age.

27

The GDG noted that a person's level of social support outside the hospital setting can
make a considerable difference to the outcome and may impact upon the decision as to
whether they will require admission or not.

31

32 2.1.7 RECOMMENDATIONS

- R1 For people in acute alcohol withdrawal with, or who are assessed to be at high
 risk of developing, alcohol withdrawal seizures or delirium tremens, offer
 admission to hospital for medically assisted alcohol withdrawal.
- R2 For young people under 16 years who are in acute alcohol withdrawal, offer
 admission to hospital for physical and psychosocial assessment, in addition to
 medically assisted alcohol withdrawal.

R3 For certain vulnerable people who are in acute alcohol withdrawal (for example,
those who are frail, have cognitive impairment or multiple comorbidities, lack
social support, have learning difficulties or are 16 or 17 years), consider a lower
threshold for admission to hospital for medically assisted alcohol withdrawal
(see sections 2.2, 2.3, 2.4 and 2.5 for usual indications for hospital admission).

1	R4	For people who are alcohol dependent but not admitted to hospital, offer advice
2		to avoid a sudden reduction in alcohol intake ^a and information about how to
3		contact local alcohol support services.

4

5 2.1.8 RESEARCH RECOMMENDATION

6 RR1. What is the clinical and cost effectiveness of admitting patients attending
7 hospital in mild or moderate acute alcohol withdrawal for unplanned medically
8 assisted withdrawal compared with no admission and a planned medically
9 assisted withdrawal from alcohol with regard to the outcome of long term
10 abstinence?

^a While abstinence is the goal, a sudden reduction in alcohol intake can result in severe withdrawal in dependent drinkers.

1 Treatment for acute alcohol withdrawal

2 2.1.9 CLINICAL INTRODUCTION

3 Often, alcohol withdrawal requires no drug management. Whether drugs are required or 4 not, it is important that the patients are comfortable, in a well lit room and well 5 hydrated. This is particularly important when delirium is present. It is also important to 6 maintain the dignity of the patient. 7 8 Several classes of drug can be used to treat the symptoms of alcohol withdrawal. The 9 most widely used are the benzodiazepines, but within this class there are many drugs, 10 each with a different bioavailability and half life. In addition, other agents such as 11 anticonvulsants and antipsychotics have been used. While the application of these drugs 12 is often "off-label", there has been a lot of experience with their use in withdrawal. In 13 general, drugs are prescribed through the oral route unless they have been refused. 14 Then intramuscular or intravenous routes are used. 15 16 During a planned medically-assisted withdrawal (to be covered in 'Alcohol use 17 disorders: diagnosis and clinical management of harmful drinking and alcohol 18 dependence' [NICE clinical guideline in development]), the aim is to prevent symptoms 19 of withdrawal. In the acute, unplanned setting patients may present with withdrawal of 20 varying severity which may include seizures or delirium. 21 22 The goals of treatment when managing withdrawal are to minimize the symptoms, 23 promote the comfort and dignity of the patient and prevent complications such as 24 seizures and delirium tremens. Care must be taken not to over-sedate the patient, and 25 certain groups are more susceptible to complications than others; most notably those 26 with respiratory illness or liver failure. 27 28 In current UK practice, benzodiazepines are the most commonly used agents, with 29 chlordiazepoxide and diazepam favoured in many places. Others favour clomethiazole 30 or carbamazepine. 31 32 The clinical question asked, and upon which the literature search was undertaken, 33 was: 34 35 'What is the safety and efficacy of a benzodiazepine (chlordiazepoxide or 36

diazepam, alprazolam, oxazepam, clobazam, lorazepam) versus a) placebo b)
other benzodiazepines (chlordiazepoxide or diazepam, alprazolam, oxazepam,
clobazam, lorazepam) c) other agents (clomethiazole or carbamazepine) d) other
agents (clomethiazole or carbamazepine) versus placebo for patients in acute
alcohol withdrawal?'

41

42 2.1.10 CLINICAL METHODOLOGICAL INTRODUCTION

- 1 For this question, studies were restricted to systematic reviews/ meta-analysis of RCTs
- 2 or individual RCTs. One Cochrane systematic review on benzodiazepines for alcohol
- 3 withdrawal was identified and appraised²⁶. This reported on the efficacy and safety of
- 4 benzodiazepines in comparison with placebo or other pharmacological intervention or
- 5 other benzodiazepines.
- 6 Level 1++
- 7

8 The Cochrane systematic review included studies on patients who were not in acute 9 alcohol withdrawal. In addition, some studies were on pharmacological interventions 10 that were not relevant for the clinical question under consideration here. In addition, the 11 drug clomethiazole was classified as an anticonvulsant in the Cochrane and re-classified 12 as a hypnotic (other agents) for the meta-analysis presented. After these studies had 13 been removed, 21 out of the 56 studies were included in the meta-analysis. However, 14 not all studies reported on the outcomes reported here. The follow-up period ranged

- 15 from eight hours to 14 days.
- 16
- The outcome 'therapeutic success' included measures of severity of withdrawalsyndrome (for example, the CIWA-Ar score).
- 19
- 20 There was a large degree of heterogeneity in the trials with respect to sample size,
- 21 patient population (for example including severity of alcohol withdrawal,
- 22 inclusion/exclusion criteria) and dosage and scheduling of pharmacological agents.
- 23
- No relevant papers were identified for any of the drug comparisons that reported on
 safety and efficacy for specific patient populations, for example older adults or
 adolescents.
- 27
- 28 2.1.11 CLINICAL EVIDENCE STATEMENTS
- 29 See Table 2-2 for a summary of results.
- 30

31 **Benzodiazepines versus placebo**

32 Alcohol withdrawal seizures

- A meta-analysis of three studies (Chlordiazepoxide N=2, Lorazepam N=1) found that
- benzodiazepines were significantly more effective than placebo (RR: 0.16 [95% CI: 0.04
- to 0.69] p=0.01). See Figure 2-1 for the forest plot extracted from the Cochrane
- 36 systematic review ²⁶.
- 37 Level 1++
- 38
- 39 Figure 2-1. Forest plot extracted from Cochrane review²⁶.

Analysis I.2. Comparison I Benzodiazepine versus Placebo, Outcome 2 Alcohol withdrawal seizures.

Review: Benzodíazepines for alcohol withdrawal Comparison: I Benzodiazepine versus Placebo

Study or subgroup	Treatment	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Random,95% CI		M-H,Random,95% C
I Benzodiazepine vs. Plac	ebo				
Kaim 1969	1/103	9/130		51.7 %	0.14 [0.02, 1.09]
Naranjo 1983	0/21	1/20		22.0 %	0.32 [0.01, 7.38]
Sellers 1983	0/25	4/25		26.3 %	0.11 [0.01, 1.96]
Total (95% CI)	149	175	-	100.0 %	0.16 [0.04, 0.69]
Total events: 1 (Treatmen	t), I4 (Control)				

0.1

Favours treatment

Т 10

Favours control

1 2 3

1 **Table 2-2. Summary of results.**

Outcome	Benzodiazepines versus placebo	Benzodiazepines versus Benzodiazepines	Benzodiazepines versus anticonvulsant
Therapeutic success	Chlorodiazepoxide (2 of 8 studies) Lorazepam RR: 1.40 (95%CI: 0.87-2.27) p=0.2 (3 of 8 studies)	Lorazepam versus diazepam RR:0.95 (95% CI: 0.86 to 1.05) p=0.3 Chlordiazepoxide versus diazepam RR:1.17 (95% CI: 0.86 to 1.58) p=0.3 Alprazolam versus diazepam RR: 1 (95% CI: 0.87 to 1.13) p=0.9 Alprazolam versus chlordiazepoxide RR: 0.98 (95% CI: 0.88 to 1.09) p=0.7 (4 of 12 studies)	n/a
Alcohol	RR: 0.16 (95% CI:	Lorazepam versus	Oxazepam
withdrawal	0.04 to 0.69) p=0.01	Chlordiazepoxide RR:5 (95% CI:	versus
seizures	(3 of 8 studies)	0.25 to 99.16) p=0.3 Lorazepam versus diazepam	carbamazepine RR: 3 (95%CI:
		RR:3 (95% CI: 0.13 to 69.52) p=0.5 Alprazolam versus Chlordiazepoxide RR: 2.25 (95% CI: 0.74 to 6.83) p=0.2 (3 of 12 studies)	0.13 to 70.74) p=0.5 (1 of 3 studies)
Mortality	No deaths in 8 studies	No deaths in 10 studies Alprazolam versus Chlordiazepoxide RR: 0.33 (95% CI: 0.01 to 7.99) p=0.5 (1 study)	No deaths in 3 studies
Side effects	Chlordiazepoxide RR: 1.10 (95% CI: 0.08 to 15.36) p =0.9 (1 of 8 studies)	Lorazepam versus diazepam RR:2.56 (95% CI: 0.35 to 18.62) p=0.4 Chlordiazepoxide versus diazepam RR:3 (95% CI: 0.14 to 63.15) p=0.5 (4 of 12 studies)	Oxazepam versus carbamazepine RR: 0.75 (95%CI: 0.44 to 1.29) p=0.3 (1 of 3 studies)
Life threatening side effects	n/a	Chlordiazepoxide versus diazepam: none Alprazolam versus diazepam: none Alprazolam versus	n/a

Outcome	Benzodiazepines versus placebo	Benzodiazepines versus Benzodiazepines	Benzodiazepines versus
			anticonvulsant
		Chlordiazepoxide	
		RR: 0.33 (95% CI: 0.01 to 7.99)	
		p=0.5	
		(3 of 12 studies)	
Discontinuation	Chlordiazepoxide	Alprazolam versus	Oxazepam
due to side	RR: 0.36 (95% CI:	chlordiazepoxide	versus
effects	0.02 – 8.03) p=0.5 (2 of 8 studies)	RR: 1 (95% CI: 0.21 to 4.72) p=1 Lorazepam versus diazepam RR:1.66 (95% CI: 0.21 to 12.95)	carbamazepine RR: 0.14 (95%CI: 0.01 to 2.65)
		p=0.6	p=0.19
		Chlordiazepoxide versus	(1 of 3 studies)
		diazepam	
		RR:3 (95% CI: 0.14 to 63.15)	
		p=0.5	
		Lorazepam versus	
		Chlordiazepoxide: none	
		Alprazolam versus diazepam	
		RR: 0.36 (95% CI: 0.02 to 8.47)	
		p=0.5	
		(8 of 12 studies)	-
Alcohol	n/a	Lorazepam versus diazepam	Oxazepam
withdrawal		RR: 5.18 (95% CI: 0.26 to 103.15)	versus
delirium		p=0.3	carbamazepine
		Alprazolam versus Chlordiazepoxide	RR: 5 (95%CI: 0.25 to 99.82)
		RR: 1 (95% CI: 0.21 to 4.72) p=1	p=0.29
		(2 of 12 studies)	(1 of 3 studies)
CIWA-Ar ¹ score	n/a	Chlordiazepoxide versus	Oxazepam
(change from	ii) a	diazepam	versus
baseline) at		RR: 4.5 (95%CI:	carbamazepine
48hours		-2.44 to 11.44) p=0.2	Oxazepam
10110410		(1 of 12 studies)	versus
			carbamazepine
			lorazepam
			versus
			carbamazepine
			WMD: -0.73 (95%
			CI: -2.88 to1.42) p
			= 0.5
			(3 of 3 studies)
CIWA-Ar score	n/a	Chlordiazepoxide versus	Oxazepam
(change from		diazepam	versus
baseline) at end		RR: 3.3 (95%CI:	carbamazepine
of treatment		-4.19 to 10.79) p=0.4	Oxazepam
		(1 of 12 studies)	versus
			carbamazepine
			Lorazepam

	Outcome	Benzodiazepines versus placebo	Benzodiazepines versus Benzodiazepines	Benzodiazepines versus anticonvulsant
				versus
				carbamazepine
				WMD: -1.04 (95%
				CI: -3.45 to 1.38)
				p = 0.4
				(3 of 3 studies)
1				
2 3	There were no si	gnificant differences b	petween benzodiazepines and	placebo for ²⁶ :
4	• therapeu	tic success		
5	 mortality 	τ		
6	• side effec	cts		
7	• discontin	uation due to side effe	ects.	
8	Level 1++			
9				
10	Benzodiazepi	ines versus benzodia	Izepines	
11	There were non-	significant differences	when one benzodiazepine wa	s compared with
12	another benzodia			
13	 alcohol w 	vithdrawal seizures		
14	• therapeu	tic success		
15	 mortality 	τ		
16	• side effec	cts		
17	• life threa	tening side effects		
18	• discontin	uation due to side effe	ects	
19	 alcohol w 	vithdrawal delirium		
20	Clinical In	nstitute Withdrawal A	ssessment for Alcohol (CIWA-	Ar) score (change
21	from bas	eline) at 48 hours		, , , ,
22	• CIWA-Ar	score (change from ba	aseline) at end of treatment.	
23	Level 1++			
24				
25	► Benzodiazep	ines versus carbama	zepine	
26	There were no si	gnificant differences v	when benzodiazepines were co	mpared with
27	anticonvulsants	for ²⁶ :		
28	 alcohol w 	vithdrawal seizures		
29	 mortality 	7		
30	• side effec	cts		
31	• discontin	uation due to side effe	ects	
32	 alcohol w 	vithdrawal delirium		
33	• CIWA-Ar	score (change from ba	aseline) at 48 hours	
34	• CIWA-Ar	score (change from ba	aseline) at end of treatment.	
35	Level 1++			
36				

1	Benzodiazepines versus clomethiazole		
2	There were non-significant differences when benzodiazepines was compared with		
3	clomethiazole for ²⁶ :		
4	alcohol withdrawal seizures		
5	therapeutic success		
6	mortality		
7	• side effects		
8	life threatening side effects		
9	• discontinuation due to side effects.		
10	Level 1++		
11			
12	► Clomethiazole versus placebo		
13	There were no results reported in the Cochrane systematic review for the outcomes		
14	specified ²⁶ .		
15	Level 1++		
16			
17	► Carbamazepine versus placebo		
18	No relevant papers were identified.		
19			
20			
21	2.1.12 Health Economic Methodological Introduction		
22	No relevant economic evidence was identified that assessed the cost-effectiveness of		
23	giving benzodiazepines, clomethiazole or other agents as a treatment for acute alcohol		
24	withdrawal. GDG members received a list of costs for the different drugs appraised by		
25	the clinical literature review, in association with the specific dosages as recommended		
26	for use in England and Wales.		
27			
28	2.1.13 Health economic evidence statement		

- 29 The cost of medications for treating patients with acute alcohol withdrawal (AAW) is
- relatively low²⁷ (See Table 2-3), and this treatment is given for a short period (mean
- duration of treatment for AAW was reported to be between 9 hours to 101 hours²⁸⁻³⁰).
- 32 The cost-impact related to this therapy is therefore likely to be small.
- 33

34 **Table 2-3**

Drug treatment for AAW and DT*			
Indication/Dose	Acquisition price		
Diazepam			
 By mouth, anxiety, 2 mg 3 times daily increased if 	Diazepam (Non-proprietary)		
necessary to 15–30 mg daily in divided doses; elderly (or debilitated) half adult dose	• Tablets, diazepam 2 mg, net price 28 = 96p; 5 mg, 28 = 99p; 10 mg, 28 = £1.03.		
• By intramuscular injection or slow intravenous injection, for severe acute anxiety, control of acute panic attacks, and	• Injection (solution), diazepam 5 mg/mL. Net price 2-mL amp = 45p.		
acute alcohol withdrawal, 10 mg, repeated if necessary after not less than 4 hours	 Injection (emulsion), diazepam 5 mg/mL. Net price 2-mL amp = 92p. 		
Lorazepam			

 By mouth, anxiety, 1–4 mg daily in divided doses; elderly (or debilitated) half adult dose By intramuscular or slow intravenous injection (into a large vein), acute panic attacks, 25–30 micrograms/kg (usual range 1.5–2.5 mg), repeated every 6 hours if necessary; child not recommended Chlordiazepoxide 	 Lorazepam (Non-proprietary) Tablets, lorazepam 1 mg, net price 28-tab pack = £8.14; 2.5 mg, 28-tab pack = £13.72. Injection, lorazepam 4 mg/mL. Net price 1-mL amp = 35p.
• Anxiety, 10 mg 3 times daily increased if necessary to 60– 100 mg daily in divided doses; elderly (or debilitated) half adult dose; child not recommended	 Chlordiazepoxide (Non-proprietary) Capsules, chlordiazepoxide hydrochloride 5 mg, net price 100-cap pack = £3.60; 10 mg, 100-cap pack = £10.39. Chlordiazepoxide Hydrochloride (Non-proprietary) Tablets, chlordiazepoxide hydrochloride 5 mg, net price 100 = £4.24; 10 mg, 100 = £11.34.
 Alprazolam 250–500 micrograms 3 times daily (elderly or debilitated 250 micrograms 2–3 times daily), increased if necessary to a total of 3 mg daily; child not recommended 	 Alprazolam (Non-proprietary) Tablets, alprazolam 250 micrograms, net price 60-tab pack = £2.97; 500 micrograms, 60-tab pack = £5.69.
 Carbamazepine By mouth, epilepsy, initially, 100–200 mg 1–2 times daily, increased slowly to usual dose of 0.4–1.2 g daily in divided doses; in some cases 1.6–2 g daily in divided doses may be needed; elderly reduce initial dose; child daily in divided doses, up to 1 year 100–200 mg, 1–5 years 200–400 mg, 5–10 years 400–600 mg, 10–15 years 0.4–1 g 	 Carbamazepine (Non-proprietary) Tablet, carbamazepine 100 mg, net price 28 = £5.64; 200 mg, 28 = £4.90; 400 mg, 28 = £6.59.
 Chlomethiazole Restlessness and agitation in the elderly, 1 capsule 3 times daily Alcohol withdrawal, initially 2–4 capsules, if necessary repeated after some hours; day 1 (first 24 hours), 9–12 capsules in 3–4 divided doses; day 2, 6–8 capsules in 3–4 divided doses; then gradually reduced over days 4–6; total treatment for not more than 9 days 	 Heminevrin® Capsules, grey-brown, clomethiazole base 192 mg in an oily basis. Net price 60-cap pack = £4.78.
 Phenytoin By mouth, initially 3–4 mg/kg daily or 150–300 mg daily (as a single dose or in 2 divided doses) increased gradually as necessary (with plasma-phenytoin concentration monitoring); usual dose 200–500 mg daily (exceptionally, higher doses may be used); child initially 5 mg/kg daily in 2 divided doses, usual dose range 4–8 mg/kg daily (max. 300 mg daily) * BNF no. 58²⁷ 	 Phenytoin (Non-proprietary) Tablets, coated, phenytoin sodium 100 mg, net price 28-tab pack = £30.00.

2 2.1.14 From evidence to recommendation

- 3 The research studies considered in this review assessed short-term outcomes for safety
- 4 and efficacy of agents used for the prevention and treatment of symptoms of alcohol
- 5 withdrawal including seizures. The trials did not capture any qualitative aspects of the
- 6 patient experience (for example, safety, dignity and comfort) and the number of events
- 7 recorded for each outcome was small. The incidence of reported side-effects of
- 8 medication was low. No deaths were reported in any of the studies.
- 9

1

- 1 The GDG noted that the study sizes were small and heterogeneous with respect to 2 inclusion / exclusion criteria and none included young people or older adults in their 3 samples. Therefore, the study populations may not be representative of those 4 presenting to clinical practice especially as patients with a history of substance misuse 5 or a concurrent medical or psychiatric condition were excluded. 6 7 The cost to the NHS for each of the agents was low and no information was available 8 about how any of the agents affects length of hospital stay or other elements of resource 9 use. The cost-effectiveness is therefore uncertain but given the low cost the GDG 10 suspected that these therapies would be considered cost-effective. 11 12 The evidence showed benzodiazepines to be more effective than placebo for the 13 prevention of alcohol withdrawal seizures. No other significant differences were found 14 within and across the agents considered (benzodiazepines, carbamazepine and 15 clomethiazole). In particular, there was no evidence to support the widely held view that 16 clomethiazole is less safe than the other agents, although the GDG were concerned about 17 use of this agent outside a closely monitored inpatient setting. The trial evidence 18 available was not sufficient to reassure the GDG regarding the use of this agent outside 19 these circumstances. The GDG noted that there is wide variation in the choice of agent 20 used in clinical practice, which reflects the lack of evidence supporting a particular 21 agent. 22 23 In older adults and people with compromised liver function, long-acting agents are 24
- known to accumulate. In the absence of clinical evidence supporting one agent over 25 another, the GDG agreed on consensus that a shorter-acting agent (e.g. oxazepam or 26 lorazepam) could be offered to the elderly or if there was evidence of encephalopathy. 27 Patients with decompensated liver disease and alcohol withdrawal can be very 28 challenging to manage. While not necessarily requiring management on liver units, it 29 was felt that these patients would benefit from the input of a clinician experienced in the 30 management of liver disease and encephalopathy as well as withdrawal. Specific 31 recommendations for the management of these patients have not been made as 32 treatment will depend on the severity of the liver disease as well as the severity of the 33 withdrawal. In general, shorter acting agents should be used with closer monitoring. 34 Lorazepam has the benefit of being short acting, and not being metabolized in the liver. 35 Longer acting benzodiazepines can be used with the knowledge that less wil be 36 required, accumulation will be greater and metabolism will be slower. 37
- 38 No recommendation has been made about the setting of the management of withdrawal.39 If patients are discharged form hospital to finish their withdrawal in the community,
- 40 howver, it is very important to co-ordinate the care with the care giver in the41 community.
- 42
- 43
- 44
- 45
- 46

1	2.1.15 I	Recommendations
2		
3	R5	Offer pharmacotherapy to treat the symptoms of acute alcohol withdrawal;
4 5		benzodiazepines ^b and carbamazepine ^c may be considered. Clomethiazole ^d is a suitable alternative when used with caution in inpatient settings only. (See
6		sections 3 and 4 for treatment of delirium tremens and alcohol withdrawal
7		seizures.)
8	R6	Offer hepatology advice (from a healthcare professional experienced in the
9		management of patients with liver disease) to people with decompensated
10		liver disease who are being treated for acute alcohol withdrawal.
11	R7	Offer information about how to contact local alcohol support services to
12		people who are being treated for acute alcohol withdrawal.
13		
14		
15		
16	2.1.161	Research Recommendations
17		

^b Benzodiazpines are used in UK clinical practice in the management of alcohol-related withdrawal symptoms. Diazepam and chlordiazepoxide have UK marketing authorisation for the management of acute alcohol withdrawal symptoms. However, at the time of publication (January 2010), alprazolam did not have UK marketing authorisation for this indication. In addition, the SPC advises that benzodiazepines should be used with extreme caution in patients with a history of alcohol abuse. Clobazam did not have UK marketing authorisation for this indication. In addition the SPC states that clobazam must not be used in patients with any history of alcohol dependence (due to increased risk of dependence). Lorazepam did not have UK marketing authorisation for this indication. In addition, the SCP advises that use in individuals with a history of alcoholism should be avoided (due to increased risk of dependence). Informed consent on the use of alprazolam, clobazam and lorazapam in these situations should be obtained and documented.

^c Carbamazepine is used in UK clinical practice in the management of alcohol-related withdrawal symptoms. At the time of publication (January 2010), carbamazepine did not have UK marketing authorisation for this indication. Informed consent should be obtained and documented.

^d Clomethiazole has UK marketing authorisation for treatment of alcohol withdrawal symptoms where close hospital supervision is also provided. However, the SPC (January 2010) advises caution in prescribing for individuals known to be addiction prone and to outpatient alcoholics. It also advises against prescribing to patients who continue to drink or abuse alcohol. Alcohol combined with clomethiazole particularly in alcoholics with cirrhosis can lead to fatal respiratory depression even with short term use. Clomethiazole should only be used in hospital under close supervision or, in exceptional circumstances, on an outpatient basis by specialist units when the daily dosage must be monitored closely.

- 1RR2What is the efficacy and cost effectiveness of clomethiazole compared to2chlordiazepoxide or carbamazepine or benzodiazepines for the treatment of3acute alcohol withdrawal with regard to the outcomes of withdrawal severity,4risk of seizures, risk of delirium tremens, length of treatment and patient5satisfaction?
- 6

7 2.2 Dosing regimens

8 2.2.1 CLINICAL INTRODUCTION

People with acute alcohol withdrawal will respond differently to the drugs used to treat
this condition. This variability is dictated partly by the severity of the withdrawal, but
also by the person's age and co-morbidities. As such, it is very important to deliver the
appropriate dose of drugs at the right time to control the withdrawal and keep them
comfortable, but not over-sedated.

- 14
- 15 Many centres across the UK have protocols recommending fixed dose regimen of drugs.
- 16 However, this is only one of three possible treatment regimens (see Table 2-3 for an
- 17 example of these) and the GDG's aim was to determine which is the safest and most
- 18 effective for achieving the goals of therapy for acute alcohol withdrawal:
- 19

20 Fixed dose

In general, these regimen start with a standard dose, which is then reduced over the
next several days. Most include an "as required" option to treat breakthrough symptoms.

23

24 Symptom-triggered

- This type of regimen tailors treatment to the person's requirements as determined bythe severity of their withdrawal signs and symptoms. As such the patient is regularly
- 27 assessed and monitored, either using clinical experience and questioning alone or with
- 28 the help of a designated questionnaire such as the CIWA-Ar. Pharmacotherapy is
- provided if the patient needs it and treatment is withheld if there are no symptoms ofwithdrawal.
- 31

32 Front-loaded

- 33 The loading dose regimen provides a large dose of long-acting pharmacotherapy at the
- 34 start of the treatment regimen and then provides it on an 'as required' basis after this.
- 35

36 **Table 2-3. Example of dosing regimens for acute alcohol withdrawal.**

	Treating alcohol withdrawal with chlordiazepoxide			
Dosing Regimen	Day 1	Day 2	Day 3	Day 4
Fixed dose	50 to 100 mg four times daily	50 to 100 mg three times	50 to 100 mg twice daily	50 to 100 mg at bedtime

				daily		
	Sympto triggere		50 to 100 mg every 4 to 6 hours as needed based on symptoms*	50 to 100 mg every 6 to 8 hours as needed	50 to 100 mg every 12 hours as needed	50 to 100 mg at bedtime as needed
1	Front- loaded^		100 to 200 mg every 2 to 4 hours until sedation is achieved; then 50 to 100 mg every 4 to 6 hours as needed	50 to 100 mg every 4 to 6 hours as needed	50 to 100 mg every 4 to 6 hours as needed	None
1 2 3		press	ure greater than 90 mm Hg or s quently, very little additional m	signs of withdra	wal.	
$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ \end{array}$	sympto regimen specific assessm widely judgem alcohol The clin	ms sin n. Clin cally for nent fi used c ine wl ent al withd nical of 'In ad efficat trigge sympt compo What clinico patier	questions asked, and upon wh ults and young people in acute a cy and safety of, and patient sat ered compared with a fixed-sche tom triggered compared with lo ared with fixed-schedule regime assessment tools, including clin al and patient outcomes when u nts with acute alcohol withdraw	s required' treat ed by tools that ne revised clinic his 10 point too ohol withdrawa ssessment tool naging the treat ich a literature s alcohol withdraw isfaction associa edule benzodiaze ading-dose regin en? ical judgement, ssing a symptom pal?'	ment in all three have been devel al institute with l has become the l severity. We all compared to clin ment of people search was under val, what is the of the with, a) a sy epine dose regime men c) loading-of are associated w	e dosing loped adrawal e one of the imed to nical with acute ertaken were: clinical mptom- en b) dose
28 29 30 31 32	 2.2.2 CLINICAL METHODOLOGICAL INTRODUCTION Four studies were identified that compared symptom-triggered with fixed-dosing regimens ^{28,29,31,30}. Level 3 					
32 33 34 35	Two studies compared symptom-triggered management with routine hospital detoxification practice ³² , ³³ . Level 3			ital		

1 Four studies compared front-loading with fixed-dose treatment regimens ³⁴, ³⁵, ³⁶, ³⁷.

- 2
- 3

4 One further study was identified that compared symptom-triggered bolus therapy with

- 5 a continuous infusion of flunitrazepam, clonidine and haloperidol³⁸.
- 6 Level 1+

Level 2+

7

8 Three of the studies comparing symptom-triggered with fixed-dosing were undertaken 9 in patients admitted to specialised addiction service/dependency units ²⁸,²⁹,³⁰. One study 10 was undertaken in patients admitted to general medical wards with alcohol dependence 11 and a comorbid medical condition³¹. One of the studies excluded patients with a history 12 of alcohol withdrawal seizures ²⁹ and two studies included these patients ²⁸,³⁰. Two of

- 13 the studies almost exclusively include men ²⁸,²⁹.
- 14 Level 3
- 15

16 Of the two retrospective case series studies comparing symptom-triggered therapy with 17 'routine' hospital practice, one included patients with 'uncomplicated' alcohol 18 withdrawal syndrome ³³ and the other included patients admitted to a general medical 19 service but excluded those presenting with seizure or admitted to ITU³². In one study 20 routine hospital practice was defined as 'patients received medication as ordered by the 21 admitting provider, usually a medical or psychiatry resident. Only the addiction unit 22 used a standardized withdrawal assessment tool. Other services used vital sign 23 parameters or non specific terminology such as 'alcohol withdrawal' for PRN orders in a 24 less standardized way, with or without a scheduled medication taper'³³. In the remaining 25 study routine hospital practice referred to 'usual care - empiric benzodiazepine dosage 26 usually on a tapering fixed-dose regimen or with as-needed doses at the discretion of 27 medical staff but without a uniform pattern'³². 28 Level 3 29 30 All the studies comparing front-loading with fixed-dosing regimens were undertaken in 31 patients admitted to specialised addiction service/dependency units ³⁴, ³⁵, ³⁷, ³⁶. 32 Level 2+ 33 34 The study comparing symptom-triggered bolus therapy with a continuous infusion was 35 undertaken in patients with trauma or gastrointestinal surgery who subsequently 36 developed alcohol withdrawal syndrome in the intensive care unit (ICU).³⁸ 37 Level 1+ 38 39 The studies differed with respect to patient populations, intervention, CIWA-Ar criteria 40 for treatment/ no treatment, frequency of CIWA-Ar administration and treatment

- 41 regimens. See table Table 2-4 below.
- 42

43 **Table 2-4. Summary of included studies.**

	Study type,	
Reference	evidence level, intervention	Comparison
	Symptom-triggered therapy versus	fixed-dosing
DAEPPEN 2002 ²⁸	Symptom-triggered therapy N=56	Fixed-dose, N=61
RCT 1++	Total no. treated with oxazepam: N=22/56 (39%)	Oxazepam every six hours, 4 doses of 30 mg and then 8 doses of 15 mg
	Placebo every six hours, 4 doses of 30 mg followed by 8 doses of 15 mg	Plus
	Plus	As-needed medication as for symptom-triggered
	As-needed medication (score-based dose):	
	CIWA-Ar administered half an hour after each placebo dose	
	Score: ≤ 7 - no medication 8-15 - 15 mg of oxazepam ≥ 15 - 30 mg of oxazepam	
SAITZ 1994 ²⁹ RCT 1++	Symptom-triggered N=51	Fixed-dose N=50
	Placebo every 6 hours for 12 doses Plus	Chlordiazepoxide every six hours for 12 doses (4 doses of 50mg followed by 8 doses of 25mg).
	CIWA-Ar administered hourly: Score ≥8:	Plus
	25 to 100 mg of chlordiazepoxide hourly (dose based on nurse 'judgement')	'As-needed medication': CIWA-Ar administered hourly: Score ≥8: 25 to 100 mg chlodiazepoxide (dose based on nurse 'judgement')
WEAVER 2006 ³¹ Quasi-randomised	Symptom triggered N=91	Fixed-dose, N=92
trial 2+	CIWA-Ar at initial assessment and then every four hours	First 48 hours lorazepam 2 mg every four hours (total 12 doses)
	If score > 30 hourly assessment until < 30 when it went to 4 hourly.	Tapering: 1 mg every 4 hours for six doses (24 hours), followed by 0.5 mg every 4 hours for 6 doses,
	Lorazepam dose (based on score): < 5 no medication	then discontinued
	6 to 9 0.5 mg 10 to 19 1 mg	If score > 30 additional lorazepam ever hour as need until score < 30

	Study type,	
Reference	evidence level,	Comparison
	intervention	÷.
	20 to 29 2 mg	for two consecutive assessments
	30 to 39 3 mg	
	> 40 4 mg	
LANGE-	Symptom-triggered N=33	Fixed-dose N=32
ASSCENFELDT ³⁰		
2003 Retrospective	CIWA-Ar (modified German version)	CMZ administered as soon as
chart analysis 3	administered at initial assessment	patient exhibits first signs of
	and then:	alcohol withdrawal.
	every two hours during day 0 (day	CMZ dosage/schedule:
	of admission), and days 1 to 3	
		Mild to moderate withdrawal
	every 4 hour days 4 and 5	symptoms:
		1 capsule = 192 mg
	4 times daily on day 6	Initial dose 2 capsules (trial dose)
	3 times daily on day 7	Day 0 (first 24 hour) 9 to 12
		capsules in 3 or 4 doses
	Twice daily days 8 and 9	Days 1 and 2 6 to 8 capsules in 3 or 4 doses
	Clomethiazole (CMZ) dose:	Days 3 and 4, 4 to 6 capsules in 2
	Total score 0 to 4 - 0 mg	or 3 doses
	5 to 7 -192 mg	Days 5 to 9 gradually tapered
	8 to 10 - 384 mg	
	> 10 - 576 mg	Severe withdrawal symptoms:
		Initial 2 capsules (trial dose)
		Day 0 1 to 2 capsules 2 hourly
		until sustained symptom
		resolution (day X) depending on
		response to initial trial dose
		Day X to end gradually tapered

Refere	Study type, ence evidence level, intervention	Comparison
	Symptom-triggered versus routine hospita	l practice
JAEGER 200132	Symptom-triggered N=84	Usual care N=132
Retrospective		
chart analysis 3	CIWA-Ar administered every one to two hours	'Empirical' dosage usually on a
		tapering fixed-dose or with as-
	CIWA-Ar ≥ 10: chlordiazepoxide 50 to 100 mg	needed doses at the discretion of
	starting dose and then repeated until 'CIWA-Ar	medical staff
	score began to decline'	
REOUX 200033	Symptom triggered N=26	Non-protocol based
Retrospective	(inpatient alcohol unit)	detoxification N=14
chart analysis 3		(general medication ward [N=6]
	CIWA-Ar administered one hour after being	or inpatient psychiatry unit
	medication	[N=8])
	Score:	
	\geq 10 30 mg oxazepam or 50 mg chloridazepoxide	Medication ordered on a
		scheduled plus PRN (5/8 [62%])
	≤ 9 no medication	or PRN only (3/8 [38%])

	Study type,		
Refere		Comparison	
	intervention		
34	Front-loading dose versus fixed-dosi		
DAY 2004 ³⁴ RCT	Front-loading N=11	Fixed-dose N=12	
1+			
	CIWA-Ar administered every 90 minutes	30 mg chloridazepoxide every six	
		hours on the first day, with dose	
	Score:	tapering to zero according to a	
	≥ 11 diazepam 20 mg	defined regimen over a 10-day	
		period.	
	≤ 10		
	no medication	20 mg chloridazepoxide every 6	
		hours if required.	
	Assessment/medication discontinued when score		
	\leq 10 on two consecutive occasions	The CIWA-Ar was administered	
		to all patients twice daily prior to	
		the administration of the	
		medication for the first ten days	
		of the period of admission	
JAUHAR 1999 ³⁵ RCT 1+	Front-loading N=11	Fixed-dosing N=9	
	Diazepam 40 mg once daily plus three placebo	Chlodiazepoxide 80 mg four	
	tablets	times daily	
	Dose reduced over eight days	Dose reduced over eight days	
	Modified alcohol withdrawal chart administered	Modified alcohol withdrawal	

Refer	intervention	Comparison	
	four times daily	chart administered four times	
		daily	
	Rescue medication:		
	Oxazepam 20 mg	Rescue medication:	
		Oxazepam 20 mg	
MANIKANT 1993 ³⁷ RCT 1+	Front-loading N=20	Fixed-dosing N=21	
	CIWA-Ar administered every 90 minutes	Diazepam 60, 40, 20, 20, 10 and 10 mg from day 1 to 7	
	Score:	respectively	
	CIWA-Ar 10 diazepam 20 mg		
WASILEWSKI 1996 ³⁶	Front-loading N=51	Fixed-dosing N=45	
Prospective	CIWA-Ar administered every one to two hours	Diazepam (N=43) 20 to 80 mg,	
cohort 2+	Score:	Haloperidol	
		(N=29)	
	≥ 11 diazepam 10 to 20 mg	5 to 30 mg	
	≤ 10	Other medication included:	
	no medication	Promethazine	
		Hydroxyzine	
		Clomethiazole	
		Perazine	
		Chlorpromazine	
		Oxazepam	

1

2 One retrospective case series looked at patients treated with front-loading diazepam

3 who were given subsequent doses of diazepam with (N=133) or without (N=117)

4 reference to the CIWA-Ar. The CIWA-Ar was administered hourly 'during the early

5 stages of withdrawal' and then on an as-needed basis. If the score was greater than 10,

6 20 mg diazepam or 100 mg chlordiazepoxide were administered. In the comparison

7 group patients were given additional medication without reference to the CIWA-Ar (the

8 decision whether to use the scale was left to the staff i.e. non random) ³⁹.

- 9 **Level 3**
- 10

11 **Part b**

12 What assessment tools, including clinical judgement, are associated with improved clinical

13 and patient outcomes when using a symptom-triggered dose regimen in patients with

14 acute alcohol withdrawal?

15

16 No papers were identified for the question.

17

18

19 2.2.3 CLINICAL EVIDENCE STATEMENTS

20 Symptom-triggered versus fixed-dosing regimen

Overall, symptom-triggered dosing was associated with significantly lower doses of
benzodiazepines than fixed-dosing ³¹ and with a shorter treatment duration and
importantly without an increase in the incidence of seizures or delirium tremens ²⁸; ²⁹;
³⁰. One study reported that the difference in the amount of medication received between
the two regimens was dependent on CIWA-Ar score at day one (the higher the initial

A summary of the results is presented in the table Table 2-5 below.

- 8 score the greater the difference)³¹.
- 9 **Level 3**
- 10

1

- 11 Despite decreased doses of medication with symptom-triggered compared with fixed-
- 12 dosing, the former were not associated with an increase in the severity of withdrawal
- 13 during treatment as indicated by the non-significant differences in number and amount
- 14 of 'as-needed' or rescue medication required ²⁸; ²⁹; or co-medication ³⁰.
- 15 Level 3
- 16
- 17 There were no significant differences in the number of patients reporting 'health
- 18 concerns', for example discomfort ²⁹ or depression ²⁸ when comparing symptom-
- 19 triggered with fixed-dose regimen (not significant). One study reported no significant
- 20 differences between symptom-triggered with fixed dose regimen on the Medical
- 21 Outcomes Study Short-Form Health Survey (MOS SF-36) when assessed at day three
- 22 (physical functioning 91.9 [SD11.32] versus 84.2 [19.04]; p<0.01; vitality (59.6 [19.03]
- 23 versus 55.2 [21.51]; ns; energy 67.0 [17.37] versus 66.3 [21.94]; ns)
- 24 Level 1++
- 25
- 26 One study reported significantly more protocol errors, for example, dose inconsistent
- 27 with CIWA-Ar score or a mixture of scheduled doses and those based on assessment in
- the symptom-triggered group compared to the fixed-schedule dosing (18 versus 8%;
- 29 p<0.05)³¹.
- 30 Level 2++
- 31

32 Table 2-5. Summary of results.

Study	Total amount of medication	Duration of treatment	Severity of alcohol withdrawal	Incidence of seizures	Incidence of DTs
SAITZ 1994 ²⁹	Median 100 (IQR 0 to 400) versus 425 (350 to 750) mg chlodiazepoxide ↓ symptom versus fixed (p<0.001)	Median 9 (IQR 0 to 43) versus 68 (64 to 73) hour↓ symptom versus fixed (p<0.001)	Highest CIWA-AR score 11 (SD5) versus 11 (5); MD 0; 95%CI -1.85 to 1.85; p=1.0)	N=0	N=0
DAEPPEN 2002 ²⁸	Mean 38 (81.7) versus 231 (29.4) mg oxazepam (MD -	Median 20 (24.5) versus	Mean CIWA-Ar	N=1 symptom-	N=0
2002	193.9; 95%CI -228.8 to	63 (5.4) hour	score	triggered	

Study	Total amount of medication	Duration of treatment	Severity of alcohol withdrawal	Incidence of seizures	Incidence of DTs
	-159.0; p<0.00001) ↓ symptom versus fixed	↓ symptom versus fixed p<0.001)	Day 1 8.1 (SD5.8) versus 5.5 (3.7) (MD2.6; 95%CI 0.02 to 5.18; p=0.05) Day 3 4.2 (3.9) versus 2.7 (2.7) (MD1.5; 95%CI -0.27 to 3.27; p=0.10)		
WEAVER ³¹	29 mg versus 100 mg lorazepam↓symptom versus fixed (p<0.0001) ¹	Not reported	Not reported	Not reported	Not reported
LANGE- ASSCENFELD T 2003 ³⁰	Median 4352 (4589) versus 9921 (6599) mg clomethiazole ↓ symptom versus fixed (p=0.0004)	Median 4.2 (SD2.9) versus 7.5 days $(3.3) \downarrow$ symptom versus fixed (p=0.0003)	Not reported	N=1 symptom triggered	None reported

1 \downarrow denotes significant decrease \uparrow denotes significant increase

2 ¹Protocol by CIWA-Ar interaction (see text for details)

3

4 Symptom-triggered versus routine hospital practice

5 In one retrospective case series 15/26 (58%) patients who received symptom-triggered

6 dosing did not reach the threshold required to receive medication and 3/14 (21%) in

7 the non-protocol group (PRN medication ordered by not administered) ³³. In the other

8 retrospective case series 88% of patients receiving the symptom-triggered protocol and

9 82% on the fixed-dose/ as-needed protocol were prescribed benzodiazepines ³².

10 Level 3

11

12 **Medication**

One study reported significant differences in favour of the symptom-triggered compared
with the routine hospital practice with respect to mean number of doses of medication

15 (1.7 [SD3.1] versus 10.4 [7.9], MD-8.7;95%CI -11.2 to -6.2; p<0.00001); the total amount

16 of medication (82.7 [153.6] versus 367.5 [98.2] mg, MD -284.8; 95%CI -363.1 to -206.5;

17 p<0.00001); but not the duration of medication use (10.7 [20.7] versus 64.3 [60.4]

18 hours; MD-49.7; 95%CI -101.2 to 1.76; p=0.06) ³³.

- 19 Level 3
- 20

1 2 3 4 5 6 7 8	In contrast, the study on medical in-patients reported no significant differences between those patients on symptom-triggered dosing compared with 'usual care' (a fixed-dose/as-needed protocol) for the duration of treatment (mean 55.5 [SD54.5] versus 44.9 [49.6] hour; MD10.6; 95%CI -17.9 to 39.1; p=0.47); the proportion of patients prescribed benzodiazepines (74/84 [88%] versus 108/132 [82%]; RR1.08 [0.96 to 1.20]; p=0.20) ; or the mean total amount (mg) of benzodiazepines prescribed (20.1 [SD20.7] versus 20.1 [29.7] MD0.00; 95%CI -6.73 to 6.73; p=1.00) ³² . Level 3
9	
10	► Complications
11	One study reported that no patient developed DTs or experienced a seizure ³³ .
12	Level 3
13	
14	One study reported that symptom-triggered compared with 'usual care' was most
15	effective at reducing the incidence on DTs in those patients without a prior history of
16	DTs (17/84 versus 9/132; RR2.97; 95%CI 1.36 to 6.35; p=0.005). In those with a prior
17	history of DTS the rates were 39% and 40% respectively (p=0.03 for the interaction
18	between the intervention and prior history of DTs) ³² .
19	Level 3
20	
21	Loading-dose versus fixed-dosing
22	A summary of the results is presented in the table Table 2-6 below.
23	
24	Three of the studies reported reduced total amounts of medication in patients treated
25	with front-loading compared with fixed-dosing ³⁴ ; ³⁷ ; ³⁶ , although only one performed
26	statistical analyses ³⁴ . Two studies reported no significant differences in severity of
27	alcohol withdrawal measured using the CIWA-Ar 37 and a scoring system developed
28	within the hospital ³⁵
29	Level 2+
30	
31	In patients presenting with alcohol dependence with a history of DTs ³⁴ or with alcohol
32	withdrawal syndrome presenting with DTs ³⁶ , front-loading compared with fixed-dosing
33	was associated with a significantly reduced duration of DTs.
34	Level 2+
35	
36	Owing to a low incidence rate of seizures, none of the studies performed statistical
37	analyses on the data. However, all of the reported seizures were in the front-loading
38	groups ³⁴ ; ³⁷ ; ³⁶ .
39	Level 2+
40	
41	Front-loading was not associated with any significant differences on a measure of
42	patient satisfaction ³⁴ . Nursing staff reported that patients in the front-loading group
43	were less sedated throughout the detoxification period and this enabled them to
44	participate in psychological group work earlier than those in the fixed-dosing group ³⁴ .
45	Level 1+
46	

1 **Table 2-6. Summary of results.**

Study	Total amount of medication	Duration of treatment	Severity of alcohol withdrawal	Incidence of seizures	Incidence of DTs
DAY 2004 ³⁴	222 versus 700 mg chlrodiazepoxide equiv. (p<0.001) ↓ front loading versus fixed	Mean 8 versus 242 hours (p<0.001)↓ symptom versus fixed	Not reported	N=1 front loading	N=0
JAUHAR 199935	NR	NR	NS	N=0	N=0
MANIKANT 1993 ³⁷	Mean 67 versus 200 mg diazepam loading dose versus fixed dose (no analysis reported)	Not reported	Mean CIWA- Ar score NS	Not reported	Not reported
WASILEWSKI 1996 ³⁶	Mean 87 (SD47.2) versus 1784 (1800) diazepam mg (MD -1697;95%CI -2235 to -1159; p<0.00001) (per treatment) ↓ front loading versus fixed	6.9 (4.8) versus 33.8 (25.7) hours (MD 26.9; 95%CI -34.7 to -19.1; p<0.0001) ↓ front loading versus fixed	Not reported	N=5 front loading versus N=2 fixed dose	All patients presented with DTs

2

3

4 Symptom-triggered bolus therapy (bolus group) versus continuous

5 infusion

- 6 In the study on surgical intensive care patients who developed alcohol withdrawal, the
- 7 results indicated that bolus-titrated therapy compared with infusion-titration led to a
- 8 reduction in medication, incidence of intubation and pneumonia and duration of ITU
- 9 stay (see table Table 2-7 below) ³⁸.
- 10 Level 1+
- 11
- 12 The daily mean CIWA-Ar remaining elevated for a significantly longer period in patients
- 13 and the duration of AWS was significantly shorted than in the bolus titrated compared
- 14 with the infusion titrated group (both $p \le 0.01$).
- 15 Level 1+
- 16

17 **Table 2-7. Summary of results.**

Bolus titrated	Infusion titrated	P value
	Bolus titrated	Bolus titrated Infusion titrated

			1
flunitrazepam	70 (12.5 to 143.9)	162 (91.4 to 807.0)	p≤0.01
clonidine	1270 (1050 to 4768)	61098 (7188 to 147384)	p≤0.01
haloperidol	180 (80 to 554)	1713 (270 to 3288)	p≤0.01
propofol (rescue)	6 (2.2 to 15.1)	9 (1.4 to 21.5)	p=0.03
Intubation			
Incidence (%)	15/23 (65)	19/21 (90)	P=0.05
Duration (days)	6 (3 to 8)	12 (5 to 20)	p≤0.01
Length of ITU stay	8 (5 to 10)	14 (7 to 25)	p≤0.01
(days)			
Incidence of	9/23 (39)	15/21 (71)	p≤0.01
pneumonia (%)			

1 2

3 Front-loading plus CIWA-Ar compared with front-loading alone

4 Patients treated with reference to the CIWA-Ar received significantly less diazepam

5 (median total dose 50 mg diazepam equivalent versus 75 mg, p=0.04) and a significantly

6 greater proportion received low dose treatment (< 20 mg diazepam) (44/133 [25%]

7 versus 25/117 [21%], p=0.05) in comparison with those treated without reference to

8 the CIWA-Ar. There was no significant difference between the two groups with respect

9 to mean length of stay (3.9 [SD2.2] versus 4.3 [2.4]; MD -0.40; 95%CI-0.97 to 0.17;

10 p=0.17). One patient in each group developed delirium tremens and two patients in the

11 group treated with reference to the scale developed seizures ³⁹.

12 Level 3

13 14

15 2.2.4 HEALTH ECONOMIC METHODOLOGICAL INTRODUCTION

16 No cost-effectiveness analysis was identified comparing treatment regimen for use in17 people with acute alcohol withdrawal (AAW).

18 The clinical evidence review showed that the symptom-triggered dosing regimen of

19 benzodiazepines was associated with significantly lower doses of benzodiazepines³¹ and

shorter treatment duration compared to a fixed-dosing regimen²⁸⁻³⁰. A quality of life

21 assessment found that a symptom-triggered dosing regimen improved patients' physical

- functioning compared to the fixed-dosing regimen $(p<0.01)^{28}$.
- 23 There are different cost implications associated with each type of dosing regimen. In

24 addition to the difference in drug cost, the duration of treatment could have a large

25 impact on the hospital length of stay and related costs. Similarly, each dosing regimen

26 has different training and implementation implications and demands different amount

27 of staff resource (to assess and monitor patients).

We undertook our own economic evaluation of symptom-triggered versus fixed-doseacute alcohol withdrawal (see A.3 for the full analysis).

- 30
- 31 2.2.5 Health Economic Evidence Statements

1 The objective of the economic analysis undertaken was to assess the cost-effectiveness 2 of the fixed-schedule dosing regimen of benzodiazepines or clomethiazole, compared to 3 a symptom-triggered dosing regimen, for the in-hospital management of patients with 4 AAW in England and Wales. This economic analysis had mainly considered the 5 experience of implementing and using the symptom-triggered regimen in the 6 Addenbrooke's Hospital (Cambridge), the Huntercombe Centre (Sunderland), and the 7 Royal Liverpool and Broadgreen University Hospital Trust. Four cost-effectiveness 8 analyses were conducted, each based on a different clinical study comparing the 9 symptom-triggered regimen with the fixed-dosing regimen. Two populations of patients 10 were considered: patients with AAW admitted for the treatment of this condition alone; 11 and patients with AAW admitted for a co-morbid medical condition. The economic 12 modelling of the three clinical studies on patients admitted for AAW only (Deappen 2002²⁸, Saitz 1994²⁹, Lange-Asschenfeldt 2003³⁰) considered the difference in length of 13 14 hospital stay, which was significantly lower in the symptom-triggered arm of all three 15 studies (see A.3 for details). In the Weaver study³¹ (where patients were admitted for a 16 co-morbid condition) there was no difference in the length of hospital stay between the 17 trial arms as the co-morbid condition determined the length of hospital stay. The health 18 outcome considered for this analysis was the Quality-Adjusted Life Year (QALY). This 19 analysis was conducted from an England and Wales NHS perspective, with a time 20 horizon extending to the end of the hospital admission.

21 None of the studies measured utility (health-related quality of life on a zero-one scale) 22 but one study²⁸ employed the SF-36. We therefore derived mean utilities for each 23 regimen by applying the SF-6D algorithm⁴⁰ to the original patient-level SF-36 data from 24 this study 28 . The difference in utility scores between the cohorts was modest (0.0194) 25 and non-significant (95% CI, -0.00972 to 0.4843; p=0.19). The Daeppen study²⁸ assessed 26 health-related quality of life (SF-36) at three days post start of treatment and asked the 27 patients to judge their health-related quality of life over the past three days for both the 28 symptom-triggered and the fixed-dosing cohorts. QALYs were calculated by multiplying 29 the utility score by the three days' duration for each arm. The Daeppen QALY gain was 30 applied to the other studies.

31 Four categories of cost were considered in this analysis: drug treatment; hospitalisation; 32 staff time for a nurse monitoring a patient with AAW; and the cost of implementing the 33 symptom-triggered regimen. The cost of staff time was calculated by multiplying the 34 average hourly cost of an NHS nurse by the time a nurse would be in contact with the 35 patient. The amount of time a nurse is in contact with the patient was determined by the 36 assessment schedule used by the nurse monitoring the patient and the number of 37 minutes required to conduct each assessment. The assessment schedule assumptions 38 used to calculate the staff time cost were based on schedules used in the clinical studies 39 and in a selection of hospitals in England and Wales. The implementation cost was 40 calculated considering that the training for staff is conducted in-house.

- 41 For the base-case analysis, in addition to a deterministic analysis (where cost and effect
- 42 variables were analysed as point estimates), a probabilistic analysis was undertaken
- 43 applying probability distributions to each model parameter and presenting the
- 44 empirical distribution of the cost-effectiveness results. Deterministic sensitivity analyses

- 1 were performed to assess the robustness of the results to plausible variations in the
- 2 model parameters: one-way sensitivity analyses involved varying the treatment cost, the
- 3 hospitalisation cost, and the staff time cost; scenario sensitivity analyses varied the staff
- 4 time cost (using alternative scenarios of assessment schedule and also varying the time
- 5 a nurse is in contact with a patient for one assessment).
- 6 Deterministic results of the base-case analysis of the four cost-effectiveness analyses
- 7 found the symptom-triggered regimen dominates the fixed-dosing regimen (it was more
- 8 effective and less costly refer to Table 2-8). The deterministic sensitivity analysis
- 9 showed the conclusions of the base-case analyses are robust as the symptom-triggered
- 10 option always remains dominant (cost-saving) or cost-effective (Table 2-8). The
- 11 probabilistic results of the base-case analysis are in agreement with the deterministic
- 12 results, showing that using a symptom-triggered regimen is cost-saving for treating
- 13 patients admitted for AAW and those admitted for a co-morbid condition compared to a
- 14 fixed-dosing regimen (Table 2-9). However, the probability of cost-effectiveness is quite
- 15 low, reflecting the lack of significance in the difference in utility scores in the Daeppen
- 16 trial (p=0.19).
- 17 The results were most sensitive to the assumptions about time spent per assessment. In
- 18 the Weaver analysis (patients with AAW admitted for treating a co-morbid condition), if
- 19 nurses spend more time on the symptom-triggered assessments than on the fixed-
- 20 dosing assessments, then the symptom-triggered dosing regimen is likely to be no
- 21 longer cost-saving. If the difference is more than 4 minutes per assessment, then
- 22 symptom-triggered dosing regimen is no longer cost-effective (it costs more than
- 23 £20,000 per QALY gained).

Deterministic results Patients admitted Patients admitted for treating AAW for treating a comorbid condition Lange-Analysis Daeppen Saitz Weaver Asschenfeld **Base case analysis** Dominant Dominant Dominant Dominant (£398)* (£551)* (£723)* (£27)* Sensitivity analysis **Remove hospitalisation** Dominant Dominant Dominant cost (£6)* (£13)* (£2)* n/a Using other drug 1 Dominant Dominant Dominant (£395)* (£557)* (£54)* n/a Using other drug 2 Dominant n/a n/a n/a (£16)* Inpatient cost £254 per Dominant Dominant Dominant (£838)* dav (£461)* (£637)* n/a Inpatient cost £271 per Dominant Dominant Dominant (£491)* (£679)* (£894)* dav n/a No. of assessment Dominant Dominant Dominant Dominant (favour S-T) (£408)* (£559)* (£752)* (£43)* No. of assessment Dominant Dominant Dominant Dominant (favour F-D) (£379)* (£544)* (£698)* (£2)*

24 **Table 2-8. Deterministic results.**

Nurse cost - Band 6	Dominant	Dominant	Dominant	Dominant		
	(£399)*	(£554)*	(£723)*	(£29)*		
Time per nurse	Dominant	Dominant	Dominant	ICER =		
assessment	(£376)*	(£533)*	(£671)*	£7,489/QALY**		
Nurse cost – adding	Dominant	Dominant	Dominant	Dominant		
non-contact time	(£400)*	(£563)*	(£723)*	(£33)*		
	Probabilistic results					
Base-case analysis	Dominant	Dominant	Dominant	Dominant		
	(£396)*	(£563)*	(£735)*	(£29)*		

1 * The symptom-triggered regimen is more efficient and *less* costly compared to the

2 fixed-dosing regimen (total cost saved per patient using the symptom-triggered regimen

- 3 is presented).
- 4 ** The symptom-triggered regimen is more effective and *more* costly compared to the
- 5 fixed-dosing regimen; the Incremental Cost-Effectiveness Ratio (ICER) is presented
- 6 (which is below the NICE threshold of £20k/QALY gained).

7 Table 2-9. Probabilistic results.

Probabilistic results					
Analysis	Probability of symptom-triggered being cost-effective at £20,000/QALY				
Daeppen ²⁸	£1,683	63%			
Saitz ²⁹	£1,581	62%			
Lange- Asschenfeldt ³⁰	£1,879	63%			
Weaver 31	£1,128	59%			

8

9 According to the results presented, the implementation and use of a symptom-triggered

10 dosing regimen in patients with AAW in hospitals in England and Wales is cost-effective

11 for the NHS, in both assessed populations of patients (those patients admitted for AAW

12 treatment and those admitted for a co-morbid condition). The results of the four

13 economic analyses, each based on a different trial, are in agreement, even considering

14 the heterogeneity of trial results (drug dose and duration of treatment).

15 Results of the analyses conducted on the population of patients admitted for AAW

16 treatment are mainly driven by the hospitalisation cost saved from the reduced length of

17 hospitalisation using the symptom-triggered regimen. Results of the analyses conducted

18 on the population of patients admitted for a co-morbid condition are mainly driven by

19 the staff time cost saved using the symptom-triggered regimen. The sensitivity analysis

20 illustrates the robustness of the results, even considering the small difference in QALYs

- 21 between the compared regimens.
- 22 It was necessary to make some assumptions when developing this economic analysis
- and these were based on the clinical experience of GDG members with the aim of
- 24 reflecting current medical practice. The assessment schedule assumptions used to
- 25 calculate the staff time cost were based on schedules used in the clinical studies and in a

1 selection of hospitals in England and Wales. For the base-case analyses, determining the

- 2 assessment schedule for fixed-dosing regimen was straight forward as all protocols
- 3 proposed were similar. As there was variability in the assessment schedules in the
- 4 symptom-triggered protocols used in the clinical trials, agreeing the frequency of
- 5 monitoring to use in the base case was more problematic. The commonly used
- 6 symptom-triggered assessment schedule in the Addenbrooke's Hospital (Cambridge) is
- 7 every hour for 6 hours, then every 2 hours for 18 hours, then every four hours; in the
- 8 Huntercombe Centre (Sunderland), 10 assessments in the first 24 hours and then 4
- 9 hourly; and in the Royal Liverpool and Broadgreen University Hospital Trust, every hour
- 10 for 12 hours then every 4 hours. The latter was used in base-case analyses and is
- 11 considered to be the most conservative (i.e. least favourable to the symptom-triggered
- 12 dosing regimen). The Huntercombe Centre regimen was used in the scenario favouring
- 13 symptom-triggered option in the deterministic sensitivity analysis as this was the least
- 14 intensive of the symptom-triggered schedules. The scenario favouring the fixed-dosing
- 15 regimen is a hypothetical scenario that uses an increased number of assessments than
- 16 what we believe would be usual for current practice. Even in this scenario, the
- 17 symptom-triggered dosing regimen remains cost-effective.
- 18 The results of the analysis conducted on patients admitted for a co-morbid condition are
- 19 sensitive to how long a health-care worker spends with a patient each assessment. If the
- 20 health-care worker spends longer than four minutes extra per assessment using the
- 21 symptom-triggered regimen compared to using the fixed-dosing regimen, then the
- 22 symptom-triggered option is no longer cost-effective. While it is unlikely that a
- 23 competent nurse would ever spend longer than five minutes on each assessment, this
- 24 highlights the need for effective training prior to implementing the symptom-triggered
- 25 regimen in a service.
- 26 The cost of training nurses and implementing the symptom-triggered regimen was
- 27 marginal and removing this cost did not affect the results of the analyses.
- 28
- 29

30 2.2.6 Evidence to recommendations

The clinical evidence for the front-loading versus fixed-schedule dosing studies was of
lower quality (particularly with regard to sample size) compared to the evidence
examining symptom-triggered versus fixed-schedule dosing. Therefore, the GDG agreed

there was insufficient evidence to recommend front-loading dosing regimen at this time.

- 35
- 36 Overall, symptom triggered dosing is associated with significantly lower doses of
- 37 benzodiazepines and with a shorter treatment duration without an increase in the
- 38 incidence of seizures or delirium tremens. Despite decreased doses of medication with
- 39 symptom-triggered compared with fixed-dosing regimen, the former regimen were not
- 40 associated with an increase in the severity of withdrawal during treatment as indicated
- 41 by the non-significant differences in number and amount of 'as-needed' or rescue
- 42 medication required.
- 43

1 Health economic evidence suggests that symptom-triggered regimen is also cost-

- 2 effective.
- 3

4 The GDG reviewed the evidence and noted that in the two studies comparing symptom-5 triggered with fixed dosing regimen and the one study comparing front-loading with 6 fixed dosing regimens which also measured patient-reported outcomes (e.g. discomfort 7 and depression), these data were gathered at the end of the treatment. Therefore, these 8 reports may not have been as accurate as if the information was reported during 9 treatment. 10 11 The majority of studies were obtained from predominantly male populations admitted 12 to specialist addiction services. There was only one study which reported on the 13 management of withdrawal in a general medical ward setting. The GDG have therefore 14 recommended that further research on the most appropriate regimen is carried out 15 specifically in the acute setting of general hospitals with patients admitted for an

- 16 unplanned medically assisted withdrawal from alcohol.
- 17

18 The trials reviewed provide evidence from both planned and unplanned medically-19 assisted alcohol withdrawal episodes. There was debate amongst the members of the 20 GDG as to whether data from planned episodes could be extrapolated to unplanned 21 episodes. It was considered that while the symptoms and signs of withdrawal in the two 22 populations may be similar, the patients admitted in unplanned withdrawal may have a 23 more severe syndrome at presentation than those with planned withdrawal and, as a 24 result, may be more likely to progress to a seizure or the DTs. In addition, the setting of 25 planned and unplanned withdrawal from alcohol is often different. As a result, people 26 presenting for planned withdrawal are more likely to be managed by dedicated alcohol 27 workers with specific sets of skills, while those presenting in withdrawal to a general 28 hospital are more likely to be managed by doctors and nurses with more general skills. 29 30 The GDG discussed their concerns about the suitability of recommending a treatment 31 regimen that has been proven to be successful in a certain setting (specialist addition 32 services) and recommending it in another setting where the conditions are likely to be 33 different and the people required to deliver the treatment often do not have the 34 necessary skills (general medical hospital ward). Nevertheless, because of the paucity of 35 studies in the acute setting and the apparent benefits of a symptom-triggered regimen in 36 the controlled setting, it was ultimately decided that the recommendation should reflect

- this apparent superiority. It was agreed that a caveat regarding the facilities for
- 38 assessment and monitoring should be included in the recommendation.
- 39
- 40 All of the evidence for symptom-triggered versus fixed-schedule regimens used the
- 41 CIWA-Ar to measure the severity of alcohol withdrawal. While this provided consistency
- 42 between the studies, it did not allow us to compare the CIWA-Ar with other assessment
- 43 tools. In addition, there were no studies that compared the use of CIWA-Ar to
- 44 supplement clinical judgement with clinical judgement alone.
- 45

1 The GDG noted that symptom-triggered dosing regimen require people to be closely 2 monitored for changes in the severity of their withdrawal. In addition, specialist 3 expertise is required, that is health care workers with clinical knowledge to identify 4 signs and symptoms that imply a change in severity of withdrawal. The GDG considered 5 that in specialist units this can be achieved through experience, but that the introduction 6 of a symptom-triggered regimen into a general medical setting may need to include 7 training in the use of a valid and reliable tool (for example, the CIWA-Ar) to supplement 8 clinical judgement. This question will be further assessed when discussing the aspects of 9 supportive care required to manage patients with acute alcohol withdrawal. 10 11 The cost-effectiveness analysis comparing symptom-triggered and fixed-dosing 12 regimens was assessed by the GDG. In this analysis, the symptom-triggered option was 13 likely to be cost-saving in a majority of scenario. For patients admitted for AAW, the 14 length of hospital stay was the main cost component, this resource use clearly favoring 15 the symptom-triggered option^{28,29,30}. The probabilistic sensitivity analysis showed the 16 robustness of the results, and the relatively low probability of cost-effectiveness was 17 mainly due to the lack of significance in the difference in quality of life from the Daeppen 18 trial²⁸. In the economic assessment based on the Weaver trial³¹ (patient admitted for a 19 co-morbid condition), the length of stay did not differ between compared regimens, and 20 results were sensitive to the cost related to health-care worker time: if the difference 21 was more than 4 minutes per assessment, then symptom-triggered dosing regimen was 22 no longer cost-effective (it costs more than £20,000 per QALY gained). With regard to 23 this, the GDG questioned the feasibility of implementing the symptom-triggered option 24 and the likelihood that health-care workers would be able to get optimal skills to use it 25 (results of the cost-effectiveness analysis assumed that health-care workers using 26 symptom-triggered regimen are properly trained to dilever it). According to GDG 27 members experience of implementing the symptom-triggered regimen, it was 28 guaranteed that it could be done easily and that health-care workers could get the 29 appropriate skills to deliver it. 30 2.2.7 RECOMMENDATIONS 31 32 33 R8 For people in acute alcohol withdrawal who are in hospital or other settings 34 where 24-hour assessment and monitoring are available (see Section 2.6.6 35 for recommendations on assessment and monitoring), follow a symptom-36 triggered regimen for drug therapy. 37 38 39 2.2.8 Research Recommendations

RR3. What is the clinical and cost effectiveness of interventions delivered in an
acute hospital setting by an alcohol specialist nurse compared to those
managed through acute care setting with no input from an alcohol nurse
specialist?

40

1 2	
3	
4	2.3 MANAGEMENT OF DELIRIUM TREMENS
5	2.3.1 Clinical Introduction
6	Delirium tremens (DT) is an extremely distressing condition, and patients may
7	represent a danger to themselves or others. Untreated, it has a significant mortality
8	associated with severe sympathetic over-activity. DTs occur primarily under two
9 10	circumstances (i) when a patient with established withdrawal or who is at risk of
10 11	developing withdrawal receives treatment which is ineffective (break through) or (ii) when a patient presents late with established symptoms having not received treatment.
12	There is no consensus on the best pharmacological agent to manage this condition.
13	There is no consensus on the best pharmacological agent to manage this condition.
14	The clinical question asked, and upon which literature searching was undertaken was:
15	"What is the safety and efficacy of a) neuroleptic agents, promazine hydrochloride,
16	haloperidol, clozapine, risperidone, olanzapine, quetiapine) versus placebo b) other
17	neuroleptic agents c) neurolepetic agents in combination with benzodiazepines
18	(diazepam, chlordiazepoxide, alprazolam, oxazepam, clobazam, lorazepam) for
19	patients with DTs?"
20	
21	
22	2.3.2 CLINICAL METHODOLOGICAL INTRODUCTION
23	No relevant papers were identified for this question.
24 25	
25 26	2.3.3 HEALTH ECONOMIC METHODOLOGICAL INTRODUCTION
20 27	No relevant economic evidence was identified that assessed the cost-effectiveness of
27	using benzodiazepines, neuroleptic agents, and other agents as treatment for people
20 29	with delirium tremens. GDG members received a list of costs for the different drugs
30	assessed by the clinical question, in association with the specific dosages as
31	recommended for use in England and Wales.
32	
33	2.3.4 Health economic evidence statements
34	The cost of oral lorazepam, identified by the GDG as potential first-line treatment, is low
35	(few pence per dose ²⁷ – Table 2.3). If symptoms are severe or oral medication is
36	declined, parenteral lorazepam, haloperidol or olanzapine are options. Parenteral
37	olanzapine is more expensive than lorazepam and haloperidol (£3.48 per olanzapine

38

40 **Table 2-3**

Drug treatment for seizures*				
Indication/Dose Acquisition price				

dose (10mg), versus few pence per dose for lorazepam and haloperidol²⁷ – Table 2.3).

	Lorazepam				
	 By mouth, anxiety, 1–4 mg daily in divided doses; elderly (or debilitated) half adult dose By intramuscular or slow intravenous injection (into a large vein), acute panic attacks, 25–30 micrograms/kg (usual range 1.5–2.5 mg), repeated every 6 hours if necessary; child not recommended 	 Lorazepam (Non-proprietary) Tablets, lorazepam 1 mg, net price 28-tab pack = £8.14; 2.5 mg, 28-tab pack = £13.72. Injection, lorazepam 4 mg/mL. Net price 1-mL amp = 35p. 			
	Haloperidol				
	 Short-term adjunctive management of psychomotor agitation, excitement, and violent or dangerously impulsive behaviour, by intramuscular or by intravenous injection, adult over 18 years, initially 2–10 mg, then every 4–8 hours according to response to total max. 18 mg daily; severely disturbed patients may require initial dose of up to 18 mg; elderly (or debilitated) initially half adult dose 	 Haldol® Injection, haloperidol 5 mg/mL, net price 1-mL amp = 29p. 			
	Olanzapine				
	 Control of agitation, by intramuscular injection, adult over 18 years, initially 5–10 mg (usual dose 10 mg) as a single dose followed by 5–10 mg after 2 hours if necessary; elderly initially 2.5–5 mg as a single dose followed by 2.5– 5 mg after 2 hours if necessary; max. 3 injections daily for 3 days; max. daily combined oral and parenteral dose 20 mg 	 Zyprexa® Injection, powder for reconstitution, olanzapine 5 mg/mL, net price 10-mg vial = £3.48. 			
1	* BNF no.58 ⁴¹	•			
2					
3	2.3.5 GDG DISCUSSION				
4	The GDG considered the clinical and cost-effectiveness ev	vidence for the treatment of			
5	delirium tremens under circumstances where the treatm				
6	has not been effective (break through) or the patient pre	_			
7	symptoms having not received treatment. The clinical ev				
, 8	to inform the discussion so any recommendations are ba				
9	-	sed on experience and			
	consensus.				
L0					
1	The GDG noted that people experiencing delirium tremen				
2	important to provide treatment urgently. As it is unclear	0			
.3	regimen will become effective, the clinician will need to a	6			
.4	until the point the initial regimen takes over. As there wa	e e			
5	preference for one agent over another the GDG agreed or				
.6	should be relieved using oral lorazepam in the first insta				
7	oral medication is declined, parenteral lorazepam, halop	eridol or olanzapine may be			
18	used.				
9					
20	The GDG felt that olanzapine has a better side effect profile than lorazepam and				
21	haloperidol, especially in high doses, which is the case here. In spite of the additional				
2	cost associated with parenteral olanzapine compared to lorazepam and haloperidol, the				
3	overall cost-impact of giving this treatment is likely to be	e small because this indication			
4	often only required a single dose, and the number of pati				
5	treatment are few, especially if used as a second-line treat				
		5			
6					

1 2.3.6 RECOMMENDATIONS

2

R9 If delirium tremens develops in a person during treatment for acute alcohol
withdrawal, review their underlying pharmacotherapy.

R10 Offer oral lorazepam^e to treat delirium tremens in the first instance. If
symptoms persist or oral medication is declined, give parenteral lorazepam,
haloperidol^f or olanzapine^g.

8

9

10

11

^e Lorazepam is used in UK clinical practice in the management of delirium tremens. At the time of publication (January 2009) lorazepam did not have UK marketing authorisation for this indication. Informed consent on the use of lorazepam in this situation should be obtained and documented. In addition, the SCP advises that use in individuals with a history of alcoholism should be avoided (due to increased risk of dependence).

^f Haloperidol is used in UK clinical practice in the management of delirium tremens. At the time of consultation (September 2009) haloperidol did not have UK marketing authorisation for this indication. Informed consent on the use of haloperidol in this situation should be obtained and documented. In addition, the SCP advises caution in patients suffering from conditions predisposing to convulsions, such as alcohol withdrawal.

^g Olanzapine is used in UK clinical practice in the management of delirium tremens. At the time of consultation (September 2009) olanzapine did not have UK marketing authorisation for this indication. Informed consent on the use of olanzapine in this situation should be obtained and documented. In addition, the SCP advises that the safety and efficacy of intramuscular olanzapine has not been evaluated in patients with alcohol intoxication.

2 2.4 TREATMENT OF ALCOHOL WITHDRAWAL SEIZURES

3 2.4.1 CLINICAL INTRODUCTION

4 One of the important goals of treatment in acute alcohol withdrawal is the prevention of 5 seizures. In fact, one of the outcome measures used to determine the success of a 6 treatment regimen is the frequency of seizures in the population treated. Guidelines for 7 the prevention of seizures are therefore the same as the guidelines for the management 8 of acute alcohol withdrawal. Good management will reduce the incidence of seizures, 9 but guidance is still required to manage seizures should they occur. This can happen 10 during a planned or unplanned medically assisted withdrawal from alcohol with the frequency reported as around 8%. Seizures may also be the presenting feature of alcohol 11 12 withdrawal when a dependent drinker has reduced their alcohol consumption in the 13 community. 14 15 The primary goal of treatment is initially to terminate the seizure. Fortunately, alcohol-16 withdrawal seizures are almost universally self-limiting, and, most commonly, patients 17 present after the event. In this situation the goal is to prevent further seizures and allow 18 the continued management of the other features of alcohol withdrawal as recommended 19 above. This is the most common clinical scenario. 20 21 Although several different benzodiazepines and anticonvulsants are in regular clinical 22 use, the optimum management of this common problem is still unclear. 23 24 25 The clinical question asked, and upon which literature searching was undertaken was: 26 27 What is the safety and efficacy of benzodiazepines versus a) placebo b) other 28 *benzodiazepines c) other anticonvulsants for the prevention of recurrent seizures* 29 during acute alcohol withdrawal? 30 31 2.4.2 CLINICAL METHODOLOGICAL INTRODUCTION 32 33 One meta-analysis (N=4 placebo-controlled randomised trials) was identified 34 addressing the management of recurrent seizures in patients with acute alcohol 35 withdrawal⁴². 36 Level 1+ 37 38 One trial (N=188) ⁴³ in the meta-analysis compared lorazepam 2mg with saline in 39 patients presenting to the emergency department after a witnessed generalised seizure. 40 Patients were observed for a minimum seizure-free period of 6 hours. 41 Level 1+ 42

- 1 Three trials in the meta-analysis (N=252 patients in total) compared phenytoin with
- 2 placebo ⁴⁴; ⁴⁵; ⁴⁶. Two of the studies observed patients for a minimum seizure-free period
- 3 of 6 hours ⁴⁵; ⁴⁶ and in the remaining study for 12 hours ⁴⁴
- 4 Level 1+
- 5
- 6 All of the studies recruited patients who presented to an emergency department with a
- 7 seizure thought to be related to acute alcohol withdrawal and were therefore not on
- 8 medication for treatment of this condition. The question addressed here is how to
- 9 manage patients who have been started on a treatment regimen for acute alcohol
- 10 withdrawal but who then have a seizure presumed to be withdrawal-related.
- 11 12

13 2.4.3 CLINICAL EVIDENCE STATEMENTS

14 Lorazepam but not phenytoin is effective in the management of withdrawal seizures

15 compared with placebo (see table below for details of the individual studies in the meta-

16 analysis) ⁴². The number of patients needed to be treated with lorazepam to prevent one

17 seizure is five (95%CI 3.2 to 8.5)^h. See table 2-10 for a summary of results.

- 18 Level 1+
- 19
- 20

21 **2-10. Summary of results.**

	Observa- tion time (hours)	Number of patients developing seizures		Risk difference (cases of seizures per 100 patients)	95% CI
Study		Intervention	Placebo		
Benzodiazepines ve	ersus placebo			-21.4 treated	-31.7 to
				with	-11.7
				benzodiazepine	
D'ONOFRIO et al.	6	3/100 (3%)	21/86 (24%)	-0.7 treated	-10.4 to
1999 ⁴³				with ACs	9
Anticonvulsants ve	rsus placebo				
ALLDREDGE et al.	12	6/45 (13%)	6/45 (13%)	RR1.00	0.35 to
198944				P=1.0	2.87
CHANCE 199145	6	6/28 (21%)	5/27 (19%)	RR1.16	0.40 to
				P=0.79	3.35
RATHLEV et al.	6	10/49 (20%)	12/51 (24%)	RR0.87	0.41 to
199446				P=0.71	1.82

- 22
- 23 24

2.4.4 HEALTH ECONOMIC METHODOLOGICAL INTRODUCTION

^h The meta-analysis reports the NNT as -150 (95%CI 10 to -1)

- 1 No relevant cost-effectiveness evidence was identified involving patients suffering from
- 2 recurrent seizures, and the efficacy of anticonvulsant agents and benzodiazepines. GDG
- 3 members received a list of costs for the different drugs appraised by the clinical
- 4 literature review, in association with the specific dosages as recommended for use in
- 5 England and Wales.
- 6

7 2.4.5 HEALTH ECONOMIC EVIDENCE STATEMENTS

8 The cost of medications for treating patients with AAW is relatively low²⁷ (see Table 2-3

9 in Section 2.2.5), and this treatment is given for a short period (mean duration of

10 treatment for AAW was reported to be between 9 hours to 101 hours²⁸⁻³⁰). The cost-

11 impact related to this therapy is therefore likely to be small.

12 2.4.6 EVIDENCE TO RECOMMENDATIONS

- 13 The GDG discussed the difference between preventing seizures, treating a patient during
- 14 a seizure and preventing recurrent seizures. It was noted that effective treatment of
- 15 acute alcohol withdrawal will result in the prevention of seizures. As such, a seizure in a
- 16 patient during treatment can be considered as a treatment failure. The GDG therefore
- agreed that it was important to emphasise the need to review a patient's treatment
- regimen if they develop a seizure as this may be due to a sub-optimal level of initialtreatment.
- 20 Further discussion revolved around the issues of treating an acute seizure and
- 21 preventing further seizures in those patients who present having had a seizure. The GDG
- 22 noted that the evidence considered was obtained from people not receiving any
- 23 treatment for acute alcohol withdrawal but who presented to Accident and Emergency
- following an initial alcohol withdrawal related seizure. In spite of this, the GDG thought
- 25 that the evidence could be extrapolated to those patients that have had a seizure on a
- 26 withdrawal regimen.
- 27
- 28 It is rare for an alcohol withdrawal seizure not to be self-limiting, so the clinical question
- 29 had been posed to determine how to manage a patient who has had a seizure.
- 30 Specifically, it had been posed to determine if benzodiazepines or anticonvulsants were
- 31 efficacious in this clinical situation.
- 32
- The evidence included a low quality meta-analysis with no assessment of individual
 study quality. The evidence did not report any adverse events or complications
- associated with lorazepam.
- 36
- 37 The D'Onofrio⁴³ study showed that lorazepam was superior to placebo in preventing
- 38 further seizures. It was noted that this study excluded people after enrolment if they
- 39 required treatment for moderate to severe withdrawal. As such, the GDG recognised
- 40 significant limitations with the study as it does not reflect the population in the UK that
- 41 usually needs treatment to prevent recurrent seizures.
- 42

1 2 3 4	The GDG considered it important that the three studies comparing phenytoin with placebo reported no significant differences in the incidence of recurrent seizures. None of the evidence reviewed included people from the young adult and older adult				
5 6 7	population				
8 9 10	2.4.7 RE0 R11	<i>COMMENDATIONS</i> If alcohol withdrawal seizures develop in a person during treatment for alcohol withdrawal, review their underlying pharmacotherapy.			
11 12 13	R12	In patients with alcohol withdrawal seizures, consider offering a quick- acting benzodiazepine (such as lorazepam ¹) to reduce the likelihood of further seizures.			
14	R13	Do not offer phenytoin to treat alcohol withdrawal seizures.			
15 16 17					
18	2.5 Asse	ESSMENT AND MONITORING			
19	2.5.1 CLI	NICAL INTRODUCTION			
20 21 22 23 24 25 26 27 28	withdrawa problems le emergency such patien manage the to detect al	no are alcohol dependent and therefore at risk of developing acute alcohol I (AAW) may have complex needs. They are likely to have experienced health eading to frequent attendance at acute hospitals, particularly accident and departments ⁴ . It would seem both sensible and practical to ensure that when ets present, health professionals in this setting have the necessary skills to eir condition in an effective and timely manner. Such skills include the ability cohol dependence at an early stage in a presentation, and to accurately assess y of, or the risk of developing AAW.			
29 30 31 32 33 34 35 36	the severity of, or the risk of developing AAW. It is recognised that the management of AAW varies according to the expertise available at the point of assessment. Early detection and prompt initiation of treatment is crucial as untreated AAW may progress to delirium tremens, which can be fatal in untreated patients. Death may result from respiratory and cardiovascular collapse or cardiac arrhythmias. As well as reducing mortality, accurate assessment and optimal treatment results in fewer complications, reduces progression to delirium, reduces the course and duration of AAW, and consequently reduces length of stay in hospital.				

ⁱ Lorazepam is used in UK clinical practice in the management of alcohol withdrawal seizures. At the time of consultation (September 2009) lorazepam did not have UK marketing authorisation for this indication. Informed consent on the use of lorazapam in this situation should be obtained and documented. In addition, the SCP advises that use in individuals with a history of alcoholism should be avoided (due to increased risk of dependence).

1	The scope of this guidance is to provide recommendations for the medical management
2	of AAW. Thus, we need to determine if tools are available to assist in accurate
3	assessment of the severity of alcohol withdrawal, if these tools are clinically effective,
4	and who is best placed to utilise these tools in the development of effective care
5	pathways.
6 7	The dedicated alcohol specialist nurse (ASN) is considered important in assessing
7 8	patients and enhancing patient compliance and concordance, augmenting medical
9	treatments and co-ordinating aftercare and follow-up. These factors have been
10	demonstrated to be essential components of effective treatment. It is noteworthy that
10	the recently revised version of CIWA-Ar, the CIWA-Ad, has been demonstrated to have
12	good inter-rater reliability for use by nurses, the K-value for the entire AAS scale being
13	0.64^{47} .
14	
15	The clinical question asked, and upon which literature searching was undertaken was:
16	1) What is the accuracy of a tool and/or clinical judgement for the a) assessment
17	b) monitoring of patients who are alcohol dependent and therefore at risk of
18	developing acute alcohol withdrawal?
19	
20	2) Does the assessment and monitoring of patients with acute alcohol withdrawal
21	improve patient outcomes?
22	
23	2.5.2 CLINICAL METHODOLOGICAL INTRODUCTION
24	What is the accuracy of a tool and/or clinical judgement for the a) assessment b)
25	monitoring of patients who are alcohol dependent and therefore at risk of
26	developing acute alcohol withdrawal?
27	One paper (N= 203) was identified. The study reported on patients under the care of all
28	specialties, [and of] general and orthopaedic surgeons, who were identified as at risk of
29	alcohol withdrawal within the first 24 hours of admission. The Clinical Institute
30	Withdrawal Assessment (CIWA) score was used to determine frequency of monitoring
31	(range one to four hourly), duration of monitoring and treatment based on a loading
32	dose regimen ⁴⁸ .
33	Level 3
34	
35	
36	Does the assessment and monitoring of patients with acute alcohol withdrawal
37	improve patient outcomes?
38	Papers were included if they compared outcomes before and after the implementation
39 40	of a protocol, guideline or patient pathway that used a tool, scale or clinical judgement to
40 41	assess and/or monitor patients with acute alcohol withdrawal.
42	An important methodological consideration is that the majority of studies changed the
43	treatment regimen whilst simultaneously altering aspects of assessment and
44	monitoring. Some studies also implemented an education/training programme. The
45	large numbers of confounding variables make it impossible to identify precisely which of
	Se se serve en contracted mane to impressione to monenty processory which of

1 2		different components were associated with changes in outcome. The results are ed as follows:
2	report	eu as follows:
3 4 5 6 7 8 9	•	One prospective case series (N=539 episodes) reported on factors associated with the incidence of seizures, hallucinations or delirium in patients in a general hospital who experienced alcohol withdrawal (only the factor 'delayed assessment' is reported here) ⁴⁹ . Level 3
10	٠	Four studies reported on patients at risk of, or with, alcohol withdrawal that
11		were treated with reference to a rating scale compared to those that were
12		treated without reference to a scale ^{50 51 14,52} . See table 2-11 below for
13		methodological details.
14		Level 3
15		
16 17	•	One study of patients with uncomplicated alcohol withdrawal, implemented a change from fixed-dose scheduling to a symptom-triggered regimen ⁵³ . See Table
17		2-11below for methodological details.
19		Level 3
20		
21	٠	One study was included that reported on the inappropriate use of symptom-
22		triggered dosing in medical and surgical patients admitted to a general hospital
23		$(N=124)^{54}$.
24		Level 3
25		
26	٠	One study reported on patients with acute alcohol withdrawal admitted to
27 28		intensive care unit ⁵⁵ . See Table 2-11below for methodological details. Level 3
20 29		
<i>L</i>)		

30 Table 2-11. Summary of included studies.

Study	Study type and number	Patient population and setting	Intervention	Comparison
Pletcher	Retrospective	Patients with	Post-protocol,	Pre-protocol,
200552	case series,	alcohol-related	N=202	N=188
	N=500	discharge		
		diagnosis (ICD-	CIWA	Fixed-schedule dosing
		9)	monitoring fixed	without the use of
			dose scheduling	standard monitoring
		Setting: General	for at risk or	
		hospital	symptomatic	
			patients with	
			CIWA	
			monitoring to	
			allow for extra	
			doses as-needed.	

Study	Study type and number	Patient population and setting	Intervention	Comparison
Repper- DeLisi 2008 ⁵⁰		Patients with alcohol withdrawal alcohol consumption within two weeks of admission and/or withdrawal or treatment for alcohol withdrawal or treatment for alcohol withdrawal during the index admission Setting: medical and surgical patients admitted to a general hospital	Education campaign Standard order form Post-pathway, N=40 Pathway developed to: Increase recognition of those at risk of withdrawal and to treat patients before they became symptomatic. Also, to facilitate aggressive treatment of alcohol withdrawal Assessment consisted of: CAGE, vital signs, alcohol history, withdrawal signs, delirium, risk factors.	Pre-pathway, N=40 Benzodiazepines at the discretion of staff, such as without a protocol
			dose benzodiazepines Training and education program	
Hecksel 2008 ⁵⁴	Retrospective case series 3, N=124 episodes	Patients who received symptom- triggered therapy according to the CIWA-Ar	Appropriate symptom- triggered therapy	Inappropriate symptom-triggered therapy

Study	Study type and number	Patient population and setting	Intervention	Comparison
DeCarolis	Retrospective	protocol Setting: Medical and surgical patients admitted to a general hospital Patients	Protocol-treated	Non-protocol patients
200755	case series 3 N=40	admitted to a medical intensive care unit with a primary diagnosis of severe alcohol withdrawal	patients N=24 (21 patients) Minnesota Detoxification Scale (MINDS) to monitor symptoms. Treatment: Lorazepam administered as intermittent intravenous doses, progressing to a continuous intravenous infusion according to the MINDS score Assessments performed every 15 minutes to 2 hours depending on MINDS scoreb	N=16 (15 patients) Patients treated according to physician preference; the standard local practice was administration of a continuous infusion of midazolam without a protocol
Stanley 2007 ⁵¹	Before and after retrospective case series 3	Patients at risk of alcohol withdrawal admitted to the surgery or internal medicine services	Guideline managed patients, N=106 The guideline comprised of: Symptom- triggered dosing schedule,	Non-guideline managed patients, N=82 Prior to the guideline benzodiazepines were given around the clock and/or as needed and these vitamin

Study	Study type	Patient population and	Intervention	Comparison
Study	and number	setting	Intervention	Comparison
			guideline on how to manage a seizure or delirium and patients with specified comorbid conditions. Monitor using the Alcohol Withdrawal Scale type indicator every two to four hours according to score	supplements were commonly prescribed for patients with suspected or known alcohol abuse
Foy 1997 ⁴⁹	Prospective case series N=539	Patients with alcohol withdrawal Inclusion criteria (one or more of the following): 100g alcohol daily or more; admission with an alcohol- related diagnosis; previous documented alcohol withdrawal and still drinking; a blood alcohol level of 0.2% without impairment of consciousness, and who had an Alcohol Withdrawal Scale (AWS) ≥ 10	Alcohol Withdrawal Scale (AWS) – modification of the CIWA-A Loading dose diazepam 20 mg if: Two scores of 15 or more or one of 20 then consider treatment but the decision to treat, dose and technique was at the discretion of the treating team Timing of assessment If AWS \geq 10 assess every two hours, if \geq 15 then hourly	Whether a delay in assessment was associated with seizures, hallucinations and delirium
Wetterling 1997 ¹⁴	Prospective case series 3,	Patients with long-standing	Symptom-based protocol, N=256	Non-protocol group (validation phase),

Study	Study type and number	Patient population and setting	Intervention	Comparison
Morgan 1996 ⁵³	N=387 Retrospective before and after time series/case series 3, N=197	alcohol dependence (DSM-IV) admitted for detoxification. Setting: psychiatric emergency ward Patients needing hospitalization to treat uncomplicated alcohol withdrawal syndrome. Setting: psychiatric unit	Alcohol Withdrawal Scale (AWS) derived from the CIWA-Ar. AWS administered every 2 hours Treatment protocol: Mild AWS – no medication Moderate AWS – carbamazepine up to 900mg/day Severe AWS – clomethiazole. Post-pathway, N=56 Pathway for uncomplicated alcohol withdrawal incorporating the use of the CIWA-Ar Move towards symptom- triggered dosing but clinicians made decisions independently benzodiazepine prescribing One year after pathway implementation N=75	N=131 Patients were treated without reference to a rating scale (no further details reported). Pre-pathway, N=66 No standard assessment scale. Implied that fixed- dosing scheduling used but not explicitly stated.

	Patient Study type Patient Comparison					
Study	and number	population and setting	Intervention	Comparison		
		Setting	Pathway			
			included a			
			protocol for			
			benzodiazepine			
			dosing according			
			to a symptom-			
			triggered			
			CIWA-Ar based			
L	Datas are actions	Detient with a	schedule	Havelerer		
Jaeger 2001 ³²	Retrospective case series 3	Patient with a discharge	Symptom- triggered	Usual care (Pre-		
	case series 5	diagnoses of	(Post	implementation),N=132		
	N=216	alcoholism,	implementation),	implementation, N=152		
	admissions	delirium	N=84	'Empirical' dosage		
	uuiiiiooroiio	tremens, alcohol		usually on a tapering		
		withdrawal or	CIWA-Ar	fixed-dose or with as-		
		alcohol	administered	needed doses at the		
		withdrawal	every 1 to 2	discretion of medical		
		seizures.	hours	staff		
		Patients who				
		received	CIWA-Ar ≥ 10:			
		thiamine and	chlordiazepoxide			
		benzodiazepines	50 to 100 mg			
		simultaneously.	starting dose and then repeated			
		Setting:	until 'CIWA-Ar			
		Patients on	score began to			
		general medical	decline'			
		wards				
Reoux 2000 ³³	Retrospective	Patients with	Symptom	Non-protocol based		
	case analysis 3	discharge codes	triggered dosing	detoxification, N=14		
		for alcohol	(CIWA-Ar), N=26			
	N=40	withdrawal,	0	Detoxification		
		delirium	CIWA-Ar ≥ 10	occurred in a general medication ward		
		tremens, drug withdrawal or	30mg oxazepam or 50 mg	(N=6) or inpatient		
		alcohol	chloridazepoxide	psychiatry unit (N=8)		
		hallucinosis	emonualepoxide	poyennary and (11-0)		
			CIWA-Ar	Protocol:		
		Setting: Alcohol	administered	Medication ordered on		
		unit, medication	hourly and	a scheduled plus PRN		
		ward, inpatient	continued to	(5/8 [62%]) or PRN		
		psychiatry unit	receive	only (3/8 [38%])		
			medication until			
			the score			
			dropped below			
			10.			

1 2	
2	2.5.3 Clinical Evidence Statements
3 4	Accuracy of a tool for assessing and monitoring
5	One study reported on the use of a modified CIWA in the management of alcohol
6	withdrawal in a general hospital ⁴⁸ .
7	Level 3
8	
9	► Incidence of complications
10	• 110/204 (54%) patients had a score of greater than 15 and received at least one
11	dose of diazepam 20 mg 48 .
12	Level 3
13	
14	• 15/93 (16%) of those patients who scored less than 15 received prophylactic
15	treatment with at least diazepam 20 mg ⁴⁸ .
16	Level 3
17	
18	• 37/204 (18%) patients suffered complicated alcohol withdrawal reactions (N=4
19	seizures, N=33 confusion with or without hallucinations, N=0 hallucinations
20	alone) ⁴⁸ .
21	Level 3
22	
23	Scores were significantly higher in patients who developed complications
24	(confusion, hallucinations or seizures) compared to those patients who did not
25	develop complications (mean highest score 21.8 [SD1.2] versus 15.6 [0.55],
26	MD6.10; 95%CI 5.67 to 6.53; p<0.00001) 48
27	Level 3
28	
29	Prophylactic effect of treatment on different scores
30	• Of the 110/204 (54%) patients who had scores greater than 15, 75 were treated,
31	of whom 11 developed severe withdrawal. In the 35 who were not treated, 21
32	(15% of 204) developed severe withdrawal. The relative risk of severe
33	withdrawal in those remaining untreated was 3.72 (95%CI 2.85 to 4.85) $^{ m 48}$
34	
35	Overall, the scale was reported as valuable at identifying patients in early withdrawal
36	who need drug therapy to avoid complications. Table 2-12 below gives the relative risks
37	for untreated patients according to the score on the modified CIWA ⁴⁸ .
38 20	Level 3
39	

40 **Table 2-12. Relative risks for untreated patients according to CIWA score.**

	Complicated	Uncomplicated	RR untreated versus treated	95%CI
Score < 15				
Untreated	5	73	1.92	0.27 to 13.6

Treated	0	15			
Score 16 to 20	1				
Untreated	9	12	2.74	1.06 to 7.05	
Treated	5	17			
Score 21 to 25					
Untreated	7	1	5.46	2.14 to 13.9	
Treated	4	21			
Score > 25					
Untreated	5	1	7.50	3.87 to 29.07	
Treated	2	15			
Assessment and p	atient outcom	es			
► Timing of asse			itoring		
			cidence of seizures, ha	allucinations and	
	-		vents in patients with		
withdrawal admit			-		
Level 3	2	-			
A delay of greater	than 24 hours	before the fir	st assessment was sig	nificantly associated	
with:					
• any comp	lication (25/52	2 [48%], OR [a	dj.] 4.0; 95%CI 2.7 to 7	7.6)	
• delirium (20/52 [38%],	OR [adj.] 8.1; 9	95%CI 3.7 to 17.7)		
 hallucinat 	ions (18/52 [3	5%], OR [adj.]	3.2; 95%CI 1.6 to 6.0)	⁴⁹ .	
Level 3					
-	ng those with c	omplications o	on admission) whose r	nonitoring was	
delayed were:					
	•	-	cations compared wit		
identified in the first 24 hours (25/52 [48%] versus 71/408 [17%]; RR2.76;					
95%CI 1.94 to 3.93; p<0.0001) ⁴⁹ .					
Level 3					
			- C		
-	01		fixed-dose regim	en	
► Timing of asse	, ,		0		
	=	lementation o	f a pathway was assoc	nated with a non	
significant increas					
		0	over three days (pre ve	-	
= =	versus 25.9 [17	.1]; MD-5.90;	95%CI -12.46 to 0.66;	p=0.08J ⁵⁰ .	
Level 3					
Madiantian J.	60				
► Medication do			ha ahan are in sur die si	on hoforr and the	
		=	to changes in medicati		
the implementation	UII UI A TIXEO O	use patnway a	are presented in Table	2-13:	
Table 2 12 Sum	mary of result	ts.			

Page 75

Medication dose					
Study and Outcome	Pre versus Post pathway	P value			
Pletcher 2005 ⁵²	patnway				
% treated with diazepam	49/188 (26%) versus 10/202 (5%)	5.26; 2.25 to 10.09; p<0.00001			
% treated with any benzodiazepine	143/188 (77%) versus 152/202 (75%)	1.01; 0.90 to 1.13; p=0.85			
% treated with lorazepam	120/188(64%) versus 131/202 (65%)	0.98; 0.85 to 1.14; p=0.83			
% treated with chloridazepoxide	98/188 (52%)versus 91/202 (45%)	1.16; 0.94 to 1.42; p=0.16			
Repper-DeLisi 2008 ⁵⁰	Approx				
% of benzodiazepine administered as	Day one 56 versus 75	<0.05			
standing doses	Day two 62 versus 82	<0.01			
Days one, two and three	Day three 64 versus 80	< 0.05			
Stanley 2007 ⁵¹					
% receiving drug therapy	9/82 (11%) versus 36/106 (34%)	RR0.32; 95%CI 0.17 to 0.63; p=0.001 <0.01			
Mean total lorazepam mg (range)	23.3 (0 to 186) versus 7.8 (0 to 58)	<0.01			
Mean total clonidine mg	0.05 (0 to 1) versus 0.2 (0 to 6.6)	0.17			
Mean total haloperidol mg	5.9 (0 to 129) versus 4.0 (0 to 106)	RR4.74; 2.68 to 8.38; p<0.0001			
% discharged on tapered	44/82 versus 12/106				
benzodiazepine therapy					
Wetterling 1997 ¹⁴					
% receiving clomethiazole	64/132 (48%) versus 58/256 (23%)	RR2.14; 1.61 to 2.85; p<0.0001			
Mean amount of applied dose of		·			
clomethiazole	7680 (SD 8952) versus	MD 2619; 1058 to 4179;			
per patients mg	5061 (2626)	p=0.001			

To summarise, fixed dose regimen pathways compared to hospital practice prior to the
implementation of the pathway were associated with

- 3 4 5
- 6 7
- significantly fewer patients being treated with diazepam ⁵²
- a significantly lower proportion of benzodiazepines administered as a standing dose, days one to three ⁵⁰

1	• significantly more patients receiving drug therapy but with significantly lower
2	doses of lorazepam and clonidine ⁵¹
3	 significantly fewer patients discharged on tapered benzodiazepine therapy ⁵¹
4	 significantly fewer patients receiving clomethiazole and at a lower mean dose
5	per patient ⁵⁶
6	
7	Length of stay/duration of treatment
8	Pre versus post-implementation:
9	• a significant <i>increase</i> in the length of stay when comparing pre and post
10	implementation of pathway (median 3 [2 to 6] versus 4 [2 to 7] days [OR adj. 0%
11	or percent increase 18% [95%Cl0.9 to 37%]) and a similar finding was reported
12	when comparing pre-pathway with a two year follow-up (median 3 versus 4
13	days; OR [adj) -3% (-14% to 8%) ⁵² .
14	Level 3
15	
16	• a significant <i>decrease</i> in the duration of treatment (mean 3.8 [SD1.6] versus 2.7
17	[2.5] days; MD1.10; [95%CI 0.28 to 1.92; p=0.009]) ⁵⁶ .
18	Level 3
19 20	
20	One study reported:
21 22	• no significant difference in the length of stay when time periods before and after the implementation of pathway were compared (5.3 versus 3.9; not significant)
22	51 5.4 (SD4.9) vd 4.0 (2.7); MD1.40; 95% (CI -0.33 to 3.13; p=0.11) 50 .
23 24	Level 3
25	
26	► Complications
27	Pre- versus post-implementation:
28	• a significant increase in the proportion of patients who died (2.7 versus 3.5%);
29	OR (adj) 2.1 (95%CI 1.0 to 4.6). A similar finding was reported when comparing
30	pre-pathway with two years after pathway implementation (2.2 versus 3.3%; OR
31	[adj] 1.2 [95%CI 0.6 to 2.4])/ ⁵² . Note: no explanation for this finding was
32	identified.
33	Level 3
34	
35	• a significant decrease in the proportion of patients transferred to a higher level
36	of care after the implementation of a pathway (22 versus 17%; OR [adj] 0.6
37	[95%CI 0.3 to 1.0]) ⁵²
38	Level 3
39	
40	• a significant decrease in the incidence of delirium tremens (adjusted 52% versus
41	40%; p<0.05) ⁵⁰ ;
42	Level 3
43	
44	There was no significant difference when comparing pre and post implementation of
45	pathway for:

1	• the incidence of delirium tremens (41 versus 35%, OR [adj.] 1.2; 95%CI 0.8 to
2	1.9, ns) ⁵² ; 27/256 (11%) versus 13/131 (10%); ns ⁵⁶
3	• the incidence of seizures (3.2 versus 3.5%, OR [adj.] 1 versus 0.9; 95%CI 0.3 to
4 5	3.0, ns) ⁵² . Level 3
5 6	Level 3
7	Protocol changing from a fixed-dose schedule to symptom-triggered
8	prescribing in patients with 'uncomplicated alcohol withdrawal'
9	 Medication dose
10	One study reported that following the initiation of the pathway changing from a fixed-
11	dose regimen to a symptom-triggered regimen (with no prescribing regime) followed by
12	a symptom-triggered regimen with prescribing based on the CIWA-Ar score ('one year'
13	after) there was:
14	
15	• a significant decrease in the mean dose of benzodiazepine per episode as
16	scheduled medication (diazepam equivalents) (74.6 [SD 92.7] mg to 31.4 [SD
17	47.5] mg after [RR43.20; 95%CI 17.6 to 68.8; p=0.009]), and to 9.9 (SD 32.2) 1
18	year after (RR64.7; 95%CI 41.2 to 88.2; p<0.00001) ⁵³ .
19 20	Level 3
20 21	• Mean milligrams of benzodiazepine per episode-total (diazepam equivalents)
22	significantly decreased from 95.3 (SD 100.2) diazepam equivalents (mg) to 47.5
23	(SD 56.6) after pathway initiated (RR47.8; 95CI 19.4 to 76.2; p=0.0010), and
24	dropped further to 31.4 (SD 41.9) 1 year after (RR63.9;95%CI 37.9 to 89.9;
25	p<0.00001) ⁵³ .
26	Level 3
27	
28	Length of stay/duration of treatment
29	The implementation of a clinical pathway for uncomplicated alcohol withdrawal
30	incorporating the use of the CIWA-Ar to 'encourage' symptom-triggered dosing (after)
31 32	and in a follow-up with a more prescriptive protocol for benzodiazepine dosing based on the CIWA-Ar resulted in:
32 33	on the CrwA-Ar resulted III.
34	• a non significant decrease significantly following initiation of pathway, from a
35	mean 6.67 (SD 5.14) days before to 5.25 (SD 3.50) after (RR 1.42:95%CI -0.12 to
36	2.96; p=0.07), and a significant decrease to 4.31 (SD 2.96) days 1 year after (RR
37	2.36;95%CI0.95 to 3.77; p=0.001) ⁵³ .
38	Level 3
39	
40	ITU setting
41	► Medication dose
42	One prospective case series looked at outcomes in patients with alcohol withdrawal
43 44	delirium in patients admitted to ITU when treated with a symptom-driven benzodiazepine protocol versus non-protocol benzodiazepine infusions ⁵⁵
44 45	Level 3
10	

1	
2	The symptom-triggered protocol compared to the pre-protocol was associated with
2	significantly:
4	• Less time to reach a Minnesota Detoxification Scale MINDS score of less than 20
5	(symptom control) (mean 7.7 [4.9] versus 19.4 [9.7]; MD -11.70;95%CI 16.26 to
6	-7.14; p=<0.00001)
7	
7 8	• Lower cumulative mean benzodiazepine dose (1044 [SD534] versus 1677 (937) lorazepam equivalent; MD-633; 95%CI -113.9 to -126.6; p=0.01).
9 10	• Less time receiving continuous-infusion benzodiazepine (52 [35] versus 122
10 11	[64] hours; MD -70; 95CI -104.34 to -35.66; p<0.0001) ⁵⁵ .
11	Level 3
	I an ath a fatan (downtion of two atmosphere
13	► Length of stay/duration of treatment
14	• There was no significant difference in the mean length of stay when time periods
15	before and after the implementation of a symptom-driven protocol were
16	compared (15 [SD9] versus 11 [3] days;MD-4.00; 95%CI -8.57 to 0.57; p=0.09)
17	55 _.
18	Level 3
19	
20	► Complications
21	Pre-protocol group:
22	There were 7 treatment-related complications (44%):
23	 N=3 intubations (N=2 due to over sedation)
24	N=2 aspiration pneumonia
25	• N=2 diazepam IV extravasations.
26	
27	Symptom-triggered group:
28	There were 6 treatment-related complications (25%) including
29	• N=2 intubations for acute respiratory failure
30	• N=2 propylene glycol toxicity in patients receiving high infusion rates of
31	lorazepam.
32	
33	
34	Inappropriate use of symptom-triggered therapy
35	One study reported on the inappropriate use of symptom-triggered therapy in medical
36	and surgical patients. Symptom-triggered therapy was deemed appropriate if the person
37	has a history of recent alcohol abuse and has intact verbal communication (symptoms of
38 39	withdrawal were monitored using the CIWA-Ar that depends on the ability to communicate) ⁵⁴ .
39 40	Level 3
40 41	TCACI 2
	• 60/124 (4004) notion to mat both inclusion exiteria (driving history and
42 43	• 60/124 (48%) patients met both inclusion criteria (drinking history and communication) for symptom triggered therapy. Of the remaining 64, pine
43 44	communication) for symptom-triggered therapy. Of the remaining 64, nine patients (14%) were heavy drinkers but had been unable to communicate; 35
44	patients (14%) were neavy urmkers but had been unable to communicate; 35

1 2 3 4		patients (55%) did not have a recent history of heavy drinking but were able to communicate; 20 (31%) fulfilled neither criteria ⁵⁴ . Level 3
5 6 7 8 9 10	•	A multivariate analysis reported that liver disease (OR 0.25; 95%CI 0.20 to 0.80; p=0.02) and postoperative status (OR 3.10; 95%CI 1.35 to 7.09; p=0.008) were associated with inappropriate placement on the CIWA-Ar protocol, with the former less likely and the latter more likely to experience inappropriate placement ⁵⁴ . Level 3
11 12 13 14 15 16	•	There was no significant difference between those patients who received appropriate and those that received inappropriate therapy with respect the incidence of adverse events (not significant) ⁵⁴ . Level 3
17	2.5.4	HEALTH ECONOMIC METHODOLOGICAL INTRODUCTION
18 19		evant economic analysis related to the assessment and monitoring of patients AW was identified by the economic review.
20 21 22 23 24 25 26 27 28 29 30	the fixe sympto AAW, c trigger which t Assche are use AAW m	bnomic analysis developed for this guideline assessing the cost-effectiveness of ed-schedule dosing regimen of benzodiazepines or clomethiazole, compared to a pm-triggered dosing regimen, for the in-hospital management of patients with onsidered the use of a monitoring tool when managing patients using a symptom- ed dosing regimen. The CIWA-Ar scale was used in the four clinical studies on the economic analysis was based on (Daeppen 2002 ²⁸ , Saitz 1994 ²⁹ , Lange- nfeldt 2003 ³⁰ , Weaver 2006 ³¹). In addition, the CIWA-Ar and the CIWA-AD scales d in England and Wales where the symptom-triggered regimen forms part of the nanagement protocol, and experience from current practice was considered when ping the economic analysis. The full analysis is presented in Section A.3.
31 32 33 34 35	The GD genera	<i>EVIDENCE TO RECOMMENDATIONS</i> OG noted that the majority of studies are representative of people admitted to I hospitals under the care of a number of different specialties rather than ted alcohol services.
36 37 38 39 40 41	schedu assessr of the s	ajority of studies involved a change in treatment regimen (for example, from fixed le to symptom-triggered dosing) whilst concurrently changing methods of nent and monitoring. Education and training also form a component of a number studies. It is therefore impossible to identify the specific aspect of care that was ited with any change in patient outcomes.
42 43 44	and mo	noted that all of the protocol-based studies used an assessment scale to quantify onitor symptoms of withdrawal. In some studies this was also used to guide acological intervention. In clinical practice, the severity of withdrawal can be

- 1 assessed by an experienced clinician. An ideal assessment tool will be rapid to perform
- 2 and will give a validated score that can act as an adjunct to clinical experience. In some
- 3 circumstances assessment tools may be useful when there is less experience in
- 4 managing patients with withdrawal. One prospective case series reported that the
- 5 CIWA-Ar was valuable at identifying patients in early withdrawal who required drug
- 6 therapy to avoid complications.
- 7

8 The GDG discussed the study which reported that a delay in assessment (greater than 24 9 hours) was associated with alcohol withdrawal complications. This reflects the group's 10 experience that the late recognition of withdrawal leads to a more severe syndrome, and 11 promotes the concept that hazardous and harmful alcohol misusers should be assessed 12 as soon as possible after presentation for dependence (and therefore risk of 13 withdrawal)(see 'Alcohol use disorders: diagnosis and clinical management of harmful 14 drinking and alcohol dependence' [NICE clinical guideline in development]). Those 15 patients in alcohol withdrawal should be assessed by an appropriately skilled health

- 16 worker for the severity of AAW and the need for pharmacotherapy.
- 17

One study reported that some medical and surgical patients were inappropriately
started on symptom-triggered dosing. This was deemed inappropriate if they were
either unable to communicate or did not have a recent history of alcohol misuse, or both.
Although this was not associated with adverse events, it further highlighted to the GDG
the need for adequate training in those managing the syndrome. Some group members
have had experience of symptom-triggered regimen being effective when in the hands of

- 24 well-trained staff and ineffective when the staff are not appropriately trained.
- 25

One of the studies reported that changing from fixed to symptom-triggered regimen
resulted in a decrease in the amount of medication prescribed and length of stay;
compatible with recommendations made elsewhere in this guideline. A reduction in
medication was reported in another study on patients with alcohol-related delirium

- 30 admitted to the intensive care unit.
- 31
- 32 It was noted that none of the studies reported on patient experience.
- 33

Results of the cost-effectiveness analysis comparing fixed-dosing and symptom-

35 triggered regimens concluded that the use of symptom-triggered was likely to be cost

36 saving (reducing the hospitalization cost when the patient was admitted for treating

AAW; and reducing the staff time cost when the patient treated for AAW was admitted

38 for a co-morbid condition). The GDG recognized that these results are consequential to

- 39 the proper use of the CIWA-Ar with symptom-triggered.
- 40
- 41
- 42
- 43 44
- 44
- 45

1 2.5.6 RECOMMENDATIONS

2

- 3 R14 People in acute alcohol withdrawal should be assessed immediately on 4 admission to hospital by a specially trained healthcare professional.
- 5 R15 Ensure that the healthcare professionals who care for people in acute 6 alcohol withdrawal are trained in the assessment and monitoring of 7 withdrawal symptoms and signs.
- 8 R16 Follow locally specified protocols to assess and monitor patients in acute 9 alcohol withdrawal. Consider using a tool (such as the Clinical Institute Withdrawal Assessment – Alcohol, revised [CIWA–Ar] scale^j) as an adjunct 10 11 to clinical judgement.
- 12
- 13

2.6 WERNICKE'S ENCEPHALOPATHY 14

2.6.1 CLINICAL INTRODUCTION 15

The Wernicke-Korsakoff syndrome develops in problem drinkers who are thiamine 16 17 deficient. However, other as yet unidentified factors must be important in its genesis as thiamine deficiency is not invariably associated with the development of this syndrome. 18 19 Wernicke's encephalopathy comprises a triad of global confusion, eye signs and ataxia; 20 the confusional state is accompanied by apathy, disorientation and disturbed memory, but 21 drowsiness and stupor are uncommon. The ocular abnormalities include nystagmus, gaze 22 palsies and ophthalmoplegia, while the ataxia affects the trunk and lower extremities. The clinical abnormalities may develop acutely or evolve over several days. The cerebral lesion 23 24 is characterized by degenerative changes in the structures surrounding the third ventricle 25 and aqueduct, particularly the mammilliary bodies. Korsakoff's psychosis is an amnesic 26 state in which there is profound impairment of both retrograde and anterograde memory 27 but relative preservation of other intellectual abilities; confabulation may be a feature. The 28 cerebral lesion is characterized by changes in the dorsomedial thalamus. Korsakoff's 29 psychosis generally develops after an acute episode of Wernicke's encephalopathy. 30 However, some patients develop a combined syndrome, from the outset, with memory loss, 31 eye signs and unsteadiness but without confusion; others do not develop either the eye 32 signs or ataxia. 33 34 Post-mortem analysis has demonstrated that Wernicke's encephalopathy may occur in 35 as many as 12.5% of chronic alcohol misusers ⁵⁷, although Wernicke's encephalopathy or 36 Korsakoff's psychosis (characterised by a chronic amnesic syndrome and short-term 37 memory loss) has historically been diagnosed during life in only 5-20%⁵⁷⁻⁶⁰). The

38 discrepancy between the pathological findings and the clinical recognition of the

1 syndrome may be explained by the fact that the classical presentation is seen in only 2 10% of patients 60. A presumptive diagnosis of the Wernicke-Korsakoff syndrome should 3 therefore be made in patients with a history of harzardous or harmful drinking and one or 4 more of the following otherwise unexplained symptoms: ataxia, ophthalmoplegia, 5 nystagmus, confusion, memory disturbance, comatosed/unconscious, hypotension, and or 6 hypothermia. 7 8 The pathogenesis is most likely linked to inadequate dietary intake and poor thiamine 9 absorption. Oral thiamine absorption is limited by an active transport process, a single 10mg-30mg oral dose seeming to maximise absorption. No additional benefit is 10 11 apparent from higher oral doses as passive diffusion does not occur⁶¹. Absorption of 12 thiamine appears to be independently affected by both alcohol and malnutrition. 13 Absorption is reduced by around 70% in abstinent malnourished previous alcohol 14 misusers and the remaining absorption is reduced by a further 50% in a third of patients 15 by the concomitant administration of alcohol⁶². Other factors commonly seen in alcohol 16 misusers such as poor diet, diarrhoea and vomiting may additionally affect 17 absorption^{63,64}. Once alcohol is stopped, oral thiamine absorption may take six weeks to 18 return to normal⁶³. As thiamine requirements are linked to carbohydrate intake it is 19 very important that intravenous dextrose is not given to a thiamine deficient patient 20 without concomitant thiamine. 21 22 It is now common practice to give patients with Wernicke's encephalopathy (and those 23 with a presumptive diagnosis) intravenous thiamine but the dose and length of 24 treatment required is unclear and there is variation in prescribing practices across the 25 UK⁶⁵. It is also common practice to give prophylactic thiamine to hospitalised 26 malnourished harmful drinkers but there are no routinely used evidence-based 27 recommendations for the route of administration, dose and length of treatment. It is also 28 not clear which patients are most at risk of Wernicke's encephalopathy and which 29 require long term prophylaxis or the dose or form that this prophylaxis should take. 30 31 The GDG searched the literature around the following clinical questions: 32 33 a)For the prevention and treatment of Wernicke's encephalopathy, what is: 34 i) the safety and efficacy ii) optimum dose iii) optimum duration of treatment of a) 35 Pabrinex b) oral b vitamin c) oral thiamine d) multivitamins e) placebo or any 36 combinations or comparison a-e 37 38 b) Which patients are at risk of developing Wernicke's encephalopathy and 39 therefore require prophylactic treatment? 40 41 42 2.6.2 CLINICAL METHODOLOGICAL INTRODUCTION 43 Studies were included that reported on the safety, efficacy, dosing or treatment duration 44 of Pabrinex, oral b vitamin, oral thiamine, multivitamins, placebo or any combinations or 45 comparison of these for the prevention and/or treatment of Wernicke's encephalopathy. 46 Outcomes included mortality and morbidity.

5

7

- 2 Studies comparing the safety and efficacy of intravenous (i.v.) or intramuscular (i.m.)
- 3 thiamine or multivitamins compared with oral preparations reporting on tissue
- 4 thiamine levels as an outcome were also included.
- 6 Five studies were included in the review⁶⁶⁻⁷⁰.
- 8 One randomised-control trial reported on the use of thiamine in the prevention of
- 9 Wernicke's encephalopathy ⁶⁸. See Table 2-14 below for study details.
- 10 Level 1+
- 11

12 Table 2-14. Summary of included study details.

Population	Intervention	Outcome	Follow up
All patients	Randomly assigned to 1 of 5	Test of working	3 days
conformed to a DSM-	treatments:	memory (delayed	
IV diagnosis of alcohol dependence but did not have the triad of acute symptoms of Wernicke-Korsakoff syndrome (WKS)	 5 mg of thiamine hydrochloride im 1/day for 2 days n=20 20 mg of thiamine hydrochloride im 1/day for 2 days n=24 	alternation task) - assessed by psychologist blind to treatment groups.	
	3. 50 mg of thiamine hydrochloride im 1/day for 2 days n=21		
	hydrochloride im 1/day for 2 days n=24		
	5. 200 mg of thiamine hydrochloride im 1/day for 2 days n=18		
	All patients conformed to a DSM- IV diagnosis of alcohol dependence but did not have the triad of acute symptoms of Wernicke-Korsakoff	All patients conformed to a DSM- IV diagnosis of alcohol dependence but did not have the triad of acute symptoms of Wernicke-Korsakoff syndrome (WKS)Randomly assigned to 1 of 5 treatments:1. 5 mg of thiamine hydrochloride im 1/day for 2 days n=201. 5 mg of thiamine hydrochloride im 1/day for 2 days n=243. 50 mg of thiamine hydrochloride im 1/day for 2 days n=213. 50 mg of thiamine hydrochloride im 1/day for 2 days n=214. 100 mg of thiamine hydrochloride im 1/day for 2 days n=245. 200 mg of thiamine hydrochloride im 1/day	All patients conformed to a DSM- IV diagnosis of alcohol dependence but did not have the triad of acute symptoms ofRandomly assigned to 1 of 5 treatments:Test of working memory (delayed alternation task) - assessed by psychologist blind to treatmentWernicke-Korsakoff syndrome (WKS)1. 5 mg of thiamine hydrochloride im 1/day for 2 days n=20memory (delayed alternation task) -

13

- 14 Two case series reported on the use of thiamine for the treatment of Wernicke's
- 15 encephalopathy ^{66,67}. These two studies used the same cohort of patients, with the more
- 16 recent publication reporting on different outcomes. See Table 2-15 below for study
- 17 details.
- 18 Level 3
- 19
- 20 **Table 2-15. Summary of study details.**

	Population	Intervention	Outcome	Follow up
WOOD 1986/1995 ^{66,67}	Patients admitted over a 33 month period with a diagnosis of acute Wernicke's	Thiamin hydrochloride - administered after initial examination	Thiamine status, gross nutritional state, biochemical response to	6-18 months
N=32 Level 3	encephalopathy (WE). A diagnosis of WE was recorded if ophthalmoplegia was present with at least 2 of 3 other features- nystagmus, ataxia and global confusional state.	 first dose intravenous then given intramuscularly for 1 week all other vitamins were withheld for 1 week after 1 week, patients received thiamine and multi-vitamin by mouth 	treatment, Korsakoff's psychosis, clinical features.	

2

3 One RCT compared treatment with thiamine i.m. with oral thiamine and a control group

4 on no vitamins ⁷⁰. See Table 2-16 below for study details.

- 5 Level 1+
- 6

7 One non-randomized trial ⁶⁹ compared treatment with i.v. thiamine with oral thiamine

- 8 and a control group given placebo ⁶⁹. See Table 2-16 below for study details.
- 9 **Level 2+**
- 10

11 **Table 2-16. Summary of study details.**

	Population	Intervention	Comparison	Outcomes	Follow up
BAINES 1988 ⁷⁰ Level 1+ N=25	Patients admitted to a special unit for treatment of alcohol dependence, drinking up to the day of admission but not requiring urgent medical treatment and showing the capacity for	Multivitamin supplementation containing 250mg thiamine by single i.m. injection for 5 days N=8	 1) Oral multivitamin supplementation containing 50mg thiamin 5 times daily for 5 days N=8 2) control group who received no vitamins 	Erythrocyte thiamine diphosphate (TDP) (measure of the physiologically active form of thiamine in tissue)	7 days

	rehabilitation.		N=9		
BROWN 1983 ⁶⁹ Level 2+ N=97	Patients admitted to the detoxification unit who had not taken vitamin preparations within one month of admission and who had no signs of Wernicke's encephalopathy. All patients had been drinking in	Group A: Parentrovite i.v. HP 10ml daily for 5 days (1 dose of parentrovite contains 250mg thiamine HCl) N=26 By day 5 they had received	Group B: oral orovite 1 tablet 3 times a day for 5 days. (3 tablets of orovite contains 150mg thiamine) By day 5 they had received 750mg of oral thiamine and 100mg i.v N=24	Thiamine, riboflavin, pyridoxine status (via erythrocyte transketolase (ETK), glutathione reductase (EGR) and glutamate- oxaloacetate transaminase (EGOT)	5 days
	excess of 150cl of alcohol per day and were chemically dependent.	1250 ml i.v. thiamine.	Group C: placebo given 3 times per day for 5 days. N=23		

2 One case-control study was excluded due to low quality methodology with no statistical

3 analysis of results, no consideration of potential confounders and no clear

4 differentiation made between cases and controls.⁷¹.

5 Level 2-

6

7 No studies were found that directly answered the question 'Which patients are at risk of 8 developing Wernicke's encephalopathy and therefore require prophylactic treatment?'

9

10 2.6.3 CLINICAL EVIDENCE STATEMENTS

11 ► Prevention of Wernicke's encephalopathy

12 Test of working memory (delayed alternation task):

- 13 • There was a significant difference between dosage groups in the number of trials 14 taken to reach the alternation task criterion, p=0.047, with 50 mg thiamine 15 treatment group needing the fewest trials (38) to reach the criterion and the 16 20mg treatment group needing the most (56).
- 17 Although the 50mg treatment group appeared to require fewer trials, post-hoc • 18 comparisons made between the 50mg group and the other treatment groups 19 were non-significant (5 versus 50 mg p=0.166; 20 versus 50 mg p=0.043; 100
- 20 versus 50mg p=0.090; 200 versus 50mg p=0.561; critical alpha for all 21
 - comparisons 0.013)

- A comparison between the 200mg treatment group and the mean of the other dosage groups was significant, p=0.031

• Treatment of Wernicke's encephalopathy

The initial study by Wood et al.⁶⁶ reported on change in clinical characteristics between
admission and follow-up after treatment with thiamine hydrochloride. See Table 2-17

- 9 and Table 2-18 below.
- 10 Level 3

- **Table 2-17.**

On admission and disc	harge (N=32)			
Outcome	On	At	RR (95% CI)	P value
	admission	discharge		
Ophthalmoplegia	30/32 (94%)	2/32 (13%)	15.00 (3.91,	< 0.001
			57.57)	
Nystagmus	29/32 (91%)	26/32	1.12 (0.91, 1.36)	0.29
		(81%)		
Long-term memory	28/31 (90%)	18/31	1.56 (1.13, 2.14)	< 0.01
deficit		(58%)		
Short-term memory	30/30	24/29	1.20 (1.01, 1.44)	< 0.05
deficit	(100%)	(83%)		
Peripheral neuropathy	:			
Muscle weakness	16/31 (51%)	6/30 (20%)	2.58 (1.17, 5.70)	< 0.05
Reflex impairment	30/32 (94%)	27/30	1.04 (0.90, 1.21)	0.59
		(90%)		
Sensory impairment	22/31 (71%)	17/30	1.25 (0.85, 1.84)	0.25
		(57%)		

Table 2-18.

At discharge and at last visit (N=27)				
Outcome	At	At last visit	RR (95% CI)	P value
	discharge			
Ophthalmoplegia	4/22	2/27 (15%)	2.45 (0.49, 12.17)	0.27
	(15%)			
Nystagmus	22/27	21/27 (78%)	1.05 (0.80, 1.37)	0.74
	(82%)			
Long-term memory	14/26	21/26 (81%)	0.67 (0.45, 1.00)	0.05

deficit	(54%)			
Short-term memory	17/24	24/26 (92%)	0.77 (0.58, 1.01)	0.06
deficit	(71%)			
Peripheral				
neuropathy:				
Muscle weakness	5/25	3/24 (13%)	1.60 (0.43, 5.97)	0.48
	(20%)			
Reflex impairment	23/25	21/25 (92%)	1.10 (0.89, 1.35)	0.39
	(92%)			
Sensory impairment	12/25	10/25 (40%)	1.20 (0.64, 2.25)	0.57
	(48%)			
Korsakoff's psychosis	14/27	16/26 (52%)	0.84 (0.52, 1.35)	0.48
	(52%)			

	(52%)						
1							
2	A significant reduction was seen in:						
3	Ophthalmoplegia						
4	Long-term memory deficit						
5	Short-term memory deficit						
6	• Muscle weakness ⁶⁶ .						
7	Level 3						
8							
9	► Mortality						
10	• At long term follow up (5 lost) 2/27 (7%) patients died and three others could						
11	not be located. ⁶⁶ .						
12	Level 3						
13							
14	The second publication from the same cohort of patients reported further details on						
15	ophthalmoplegia, nystagmus, global confusion state and global severity of Wernicke's						
16 17	encephalopathy, see below ⁶⁷ .						
17 18	Level 3						
10 19	▶ Ophthalmoplegia						
20	 The participants of improvement was affected by the severity of liver disease, 						
20	p<0.001 and by the severity of fatty liver, $p<0.001$						
22	 Participants with no fatty liver had the fastest improvement in ophthalmoplegia 						
23	to treatment, but all participants reached the same level by the end of 14 days.						
24	67						
25	Level 3						
26							
27	►Nystagmus						
28	 Scores for individual tests of nystagmus all showed improvement, p<0.01 						
29	At discharge only six participants were completely free of nystagmus ⁶⁷ .						
30	Level 3						
31							
32	► Global confusion state (see Table 2-19 below)						

- The state of consciousness rapidly improved within hours of thiamine treatment, p<0.001 and continued to improve slowly, p<0.02
 - The severity of disorientation in time improved over time, p<0.001, but improvement slowed by 7 days, p<0.05, and thereafter, p<0.01.
 - By discharge, most participants were still disorientated in time and 18 patients still did not know the day of the week⁶⁷.
- 7 **Level 3**
- 8

2

3

4

5

6

9 **Table 2-19**.

Global severity of acute Wernicke's	Admission	Discharge
Class 4: ophthalmoplegia, ataxia +/- confusion	3/32	0/32
Class 3: ophthalmoplegia, nystagmus, ataxia +/-	27/32	4/32 (a)
confusion		
Class 2: nystagmus, ataxia +/- confusion	2/32 (b)	22/32
Class 1: nystagmus, +/- confusion	0/32	0/32
Class 0: complete absence of these features	0/32	6/32

10 (a)- Residual ophthamoplegia only

- 11 (b)- One case was subsequently found to have received thiamine just prior to
- 12 assessment.
- 13

14 Limitations:

- The study did not report the dose of thiamine given. It is also possible that the
 dose of thiamine that they gave was too small and/or the treatment period too
- 17 short.

1 • Parenteral versus oral thiamine

- 2 The response of Erythrocyte thiamine diphosphate (TDP) level
- 3 One study reported on the response of erythrocyte TDP level when giving oral compared to i.m. (parental) preparations of thiamine ⁷⁰. See Table
- 4 2-20 below for results.
- 5 **Level 1+**
- 6 Table 2-20. (Normal reference range for TDP level 165-286 nmol/l)

	None (n=9)	Oral (n=8)	Parenteral (n=8)	RR (95% CI)	P value
	Mean (± S.D.)	Erythrocyte T	. ,		
Day 0 (pre-treatment)	218 (± 29)	218 (± 27)	207 (± 47)	Oral versus none: 0.00 (-26.63, 26.63)	Oral versus none: 1.00
				Parenteral versus none: -11.00 (-48.68, 26.68)	Parenteral versus none: 0.57
Day 1 (post 250mg thiamine orally or parenterally)	209 (± 39)	265 (± 51)	328 (± 117)	Oral versus none: 56.00 (12.43, 99.57)	Oral versus none: 0.01
				Parenteral versus none: 119.00 (61.12, 176.88)	Parenteral versus none: <0.001
Day 7 (post 5 × 250mg thiamine as above)	220 (± 56)	308 (± 64)	298 (± 75)	Oral versus none: 88.00 (30.51, 145.49)	Oral versus none: 0.003
				Parenteral versus none: 78.00 (14.44, 141.56)	Parenteral versus none: 0.02
Change in mean after 250mg thiamin, or control	-9	+47	+121	-	-
Change in mean after 5 × 250mg thiamine or control	+2	+90	+91	-	-

1	
2	Limitations:
3	• There is some debate over the most accurate measure of tissue thiamine level,
4	with previous studies reporting erythrocyte enzyme transketolase (ETKA)
5	rather than TDP. This may affect the final results.
6	• This study excluded patients with vitamin deficiencies, which may be an
7	important group of patients in which thiamine is used. Also there was no
8	explanation of what defined a patient as vitamin deficient.
9	 Short-term follow up of only 7 days may have not been a sufficient time to see
10	results.
10	
12	Response of erythrocyte transketolase (ETK) activity
13	One study reported on the response of ETK to treatment with intravenous and oral
14	thiamine compared with placebo ⁶⁹ .
15	 intravenous thiamine (n=26) versus placebo (n=23) at day 2:
16	• Mean \pm SD: 68.7* \pm 14.0 versus 68.4 \pm 13.8; MD 0.30 (-7.50, 8.10),
10	p=0.94
18	 intravenous thiamine (n=26) versus placebo (n=23) at day 5:
10 19	• Mean \pm SD: 75.5** \pm 12.9 versus 75.8** \pm 15.2; MD -0.30 (-8.25, 7.65),
20	p=0.94
20	 Oral thiamine (n=24) versus placebo (n=23) at day 2:
21	• Mean \pm SD: 70.0* \pm 12.5 versus 68.4 \pm 13.8; MD 1.60 (-5.94, 9.14),
22	p=0.68
	-
24 25	• Oral thiamine (n=24) versus placebo (n=23) at day 5:
25	 Mean ± SD: 76.8**± 11.4 versus 75.8**± 15.2; MD 1.00 (-6.71, 8.71), - 0.0069
26	$p=0.80^{69}$
27	Level 2+
28	Note: the significant differences (within each group) from the previous mean are
29 20	Note: the significant differences (within each group) from the previous mean are indicated at the 0.5% (*) and 0.0% (**) confidence levels
30	indicated at the 95% (*) and 99.9% (**) confidence levels.
31 32	Response of ETK activity to vitamin supplementation in patients originally
33	deficient
34	 intravenous thiamine (n=16) versus placebo (n=15) at day 2:
35	• Mean \pm SD: 59.5* \pm 7.8 versus 60.6 \pm 9.9; MD -1.10 (-7.40, 5.20), p=0.73
36	 intravenous thiamine (n=16) versus placebo (n=15) at day 5:
30 37	• Mean \pm SD: 66.8** \pm 6.1 versus 67.9** \pm 12.1; MD -1.10 (-7.91, 5.71),
38	p=0.75
39	 Oral thiamine (n=16) versus placebo (n=15) at day 2:
40	• Mean \pm SD: 64.4* \pm 8.5 versus 60.6 \pm 9.9; MD 3.80 (-2.72, 10.32),
40 41	p=0.25
42	-
42 43	 Oral thiamine (n=16) versus placebo (n=15) at day 5: Mean ± SD: 71.8** ± 8.2 versus 67.9** ± 12.1; MD 3.90 (-3.42, 11.22),
43 44	o Mean \pm SD: 71.8 \pm 8.2 versus 67.9 \pm 12.1; MD 3.90 (-3.42, 11.22), p=0.30 ⁶⁹
44 45	Level 2+
45 46	
40	

- 1 Note: the significant differences (within each group) from the previous mean are
- 2 indicated at the 95% (*) and 99.9% (**) confidence levels.
- 3
- 4

7

5 Limitations:

- The measure ETK may not be the most accurate measure of tissue thiamine levels.
- The doses of oral and parenteral thiamine given were not equal, and may not
 have been given at an adequate dose.
- Both groups were given i.v. thiamine at the start, which may have affected the
 final results.
 - Short term follow up of only five days may not have been sufficient.
- 12 13
- 14

15 2.6.4 HEALTH ECONOMIC METHODOLOGICAL INTRODUCTION

- 16 No relevant economic analysis was identified assessing the cost-effectiveness of
- 17 vitamin supplementation for the treatment/prevention of Wernicke's encephalopathy.
- 18 Costs and resource use information associated with the use of vitamin
- 19 supplementation for the treatment/prevention of Wernicke's encephalopathy were
- 20 presented to the GDG.
- 21
- 22 2.6.5 Health economic evidence statements
- 23 Vitamin-supplementation options used for the treatment/prevention of Wernicke's
- 24 encephalopathy have a low-drug cost (especially oral preparations). Pabrinex is the
- 25 only treatment given parenterally for rapid correction of acute vitamin depletion and
- 26 is more costly than oral preparations (few pence for high dose of oral preparations
- versus £1.96 for Pabrinex intravenous preparation [10 ml in 2 ampoules] and for
 Pabrinex intramuscular preparation [7 ml in 2 ampoules]^{72,73}). Parenteral treatment
- Pabrinex intramuscular preparation [7 ml in 2 ampoules]^{72,73}). Parenteral treatment is
 normally given to patients when hospitalized for a co-morbidity and therefore use of
- 30 Pabrinex does not affect the length of hospital stay in its current use. Nevertheless,

31 additional staff time is associated with giving parenteral preparations.

- 32 The use of parenteral thiamine (Pabrinex) is associated with a potentially serious
- 33 allergic adverse reaction that may rarely occur during, or shortly after administration.
- 34 Since the January 1989 UK Committee on Safety of Medicines warning, 0.5 to 1 million
- 35 pairs of ampoules of each preparation of Parentrovite were sold annually in the UK.
- 36 There were four reports of an anaphylactoid reaction for every 1 million pairs of
- 37 intravenous ampoules and one report per five million intramuscular ampoules sold⁷⁴.
- 38 This reaction may incur extra treatment costs in addition to morbidity. However,
- 39 allergic reactions from the use of parenteral thiamine are extremely rare and the extra
- 40 cost associated to it is likely to be marginal. The BNF⁷² recommends that the potential
- 41 serious allergic adverse reaction should not preclude the use of parenteral thiamine in
- 42 patients where this route of administration is required. This is crucial in patients at
- 43 risk of Wernicke-Korsakoff syndrome where treatment with thiamine is essential
- 44 considering the serious long-term implications of developing this syndrome and the

- 1 high cost related to it (supported accommodation for example). In light of the above,
- 2 the treatment/prevention of Wernicke's encephalopathy with vitamin-
- 3 supplementation is likely to be highly cost-effective.
- 4
- 5 2.6.6 EVIDENCE TO RECOMMENDATIONS
- 6 The GDG noted that the absence of RCTs on this subject would mean any
- 7 recommendations would need to be by consensus. Due to this lack of RCTs and the
- 8 potentially catastrophic long term effects of acute thiamine deficiency some of the
- 9 evidence that was presented was based on clinical studies of thiamine absorption and
- 10 metabolism.
- 11

12 The GDG first considered evidence on prevention of Wernicke's encephalopathy with

- 13 thiamine prophylaxis. It then considered treatment where there was a presumptive or
- 14 actual diagnosis.
- 15

16

17 **Prophylaxis**

- 18 In order to determine which patients should receive prophylaxis and how, the risk
- 19 factors for thiamine deficiency and the absorption of oral thiamine were discussed.
- 20 Malnourishment is a key pre-disposing factor to thiamine deficiency and the risk
- 21 factors for malnourishment are dietary intake reduction, nausea and vomiting. Alcohol
- 22 intake and liver dysfunction also predispose to thiamine deficiency. It was emphasised
- that patients who are malnourished are not only more likely to be thiamine deficient,
- 24 but also likely to have impaired absorption of oral thiamine.
- 25
- 26 When deciding which patients should receive prophylaxis certain other factors were
- 27 felt to be important. These were; compliance, the treatment for the underlying
- 28 malnutrition, cost and the inconvenience of daily tablets or parenteral thiamine. We

29 divided patients into low and high risk of developing Werniecke's encephalopathy.

30

31 ► 'Low risk' group

- 32 This was defined as people who are alcohol-dependent but otherwise eating a normal 33 diet and with no other alcohol-related problem. This will tend to be people with mild 34 or moderate dependence as those with more severe dependence will start to neglect 35 their diet. It was not felt that there was evidence to recommend thiamine to this group. 36 The sub-group of younger people was discussed because nutritional requirements are 37 higher and they may be more susceptible to alcohol-induced neuro-degeneration. It 38 was decided not to make a separate recommendation about thiamine use in this group 39 because of a lack of evidence.
- 40

In conclusion, the GDG noted that it could not recommend widespread use of thiaminein this low risk group.

43

44 ► 'High risk' group

- The GDG discussed features that might necessitate thiamine use in hazardous, harmful
 or dependent drinkers to prevent Wernicke's. The GDG highlighted the following:
 - Page 93

1	Alcohol-related liver disease
2	 medically-assisted withdrawal from alcohol (planned or unplanned)
3	acute alcohol withdrawal
4	 malnourishment or risk of malnourishment; this may include;
5	 weight loss in past year
6	o reduced BMI
7	 loss of appetite
8	 nausea and vomiting
9	 a general impression of malnourishment
10	hospitalised for acute illness
11	 hospitalised for co-morbidity or another alcohol issue.
12	
13	The GDG decided that any of these risk factors were enough to recommend
14	prophylactic thiamine. These patients do not have Wernicke's but are at risk, so it is
15	important to increase the patient's thiamine stores but this does not need to be done
16	emergently. It was recognised that an adequate diet would likely suffice in many
17	situations, but it was felt that additional prophylaxis should be provided. Although
18	absorption is inhibited in some of these situations, it was felt that oral thiamine would
19	be adequate prophylaxis. Evidence for a specific dose was lacking. It was decided by
20	consensus that the dosing should be at the upper limit of the BNF recommendations as
21	the lower end (10-25mg/day) may not be adequate in this higher risk group.
22	
23	Concerns were raised about patients with severe withdrawal or with co-morbid
24	conditions that may mask the neurological signs of Wernicke's such as
25	encephalopathy. These concerns arise from evidence showing that some patients
26	develop Wernicke's during withdrawal of alcohol. It was felt that parenteral therapy
27	should be used in malnourished patients if withdrawal is severe enough to warrant
28	hospital attendance or admission. This recommendation was then extended to cover
29	harmful and hazardous drinkers that are at risk of malnutrition if they attend hospital
30	for any reason. This was done so that the opportunity to give intravenous thiamine
31	would not be lost in these patients. This may be a single dose followed up by oral
32	thiamine, or intravenous treatment for several days followed up by oral thiamine. It is
33	accepted that formal nutritional assessment is rarely available or practical in this
34	setting. The recommendation is written with the assumption that malnourishment will
35	be assessed during the routine examination, and that risk of malnourishment can be
36	assessed based on a good clinical history – recent dietary intake, vomiting and
37	unintentional weight loss being examples of risk factors.
38	
39	
40	It was also emphasised that patients with comorbid conditions that may mask the
41	features of Wernicke's should be managed cautiously. The index of suspicion for
42	considering Wernicke's in these patients should be high and the threshold for
43	considering following the treatment recommendations should be low.
44	
45	
46	

1 Diagnosis and treatment

- 2 The GDG discussed the issue of treatment of Wernicke's encephalopathy. The main
- 3 themes of the discussion were the difficulty in making the diagnosis and the
- 4 catastrophic nature of a missed diagnosis. Most patients do not present with the
- 5 classical triad of symptoms so there needs to be a high index of clinical suspicion. The
- 6 GDG discussed the difficulty in making a diagnosis in the confused patient who
- 7 misuses alcohol and emphasised the importance of confusion in a patient with a blood
- 8 alcohol concentration of zero.
- 9
- 10 Due to the need for rapid absorption of thiamine in patients that are suspected of
- 11 having Wernicke's encephalopathy the oral route of administration was felt to be
- 12 inadequate. It was noted that blood thiamine levels fall rapidly after administration so
- 13 the treatment should be given more than once a day. Due to the concern of long term
- brain injury, it was felt that patients with even a low index of suspicion for Wernicke's
- 15 encephalopathy should be treated with parenteral thiamine. With no evidence to guide
- 16 the period of treatment, the recommendation was based on the group's expert
- 17 consensus.
- 18

19 Finally, the GDG accepted that the use of vitamin-supplementation for the

20 treatment/prevention of Wernicke's encephalopathy is likely to be highly cost-

21 effective, especially given the considerable clinical and economic impact related to the

- 22 development of Wernicke-Korsakoff syndrome.
- 23

24 2.6.7 RECOMMENDATIONS

- R17 Offer thiamine to people at high risk of developing, or with suspected,
 Wernicke's encephalopathy. Thiamine should be given in doses toward
 the upper end of the British National Formulary range. It should be given
 orally or parenterally as follows.
- 29
- Offer prophylactic oral thiamine to harmful or dependent drinkers:
- 30
- a) if they are malnourished or at risk of malnourishment¹¹ or

¹¹ Malnourishment or risk of malnourishment should be suspected if a person has had unintentional weight loss or a decrease in BMI in the past year, loss of appetite, nausea and vomiting, or looks malnourished from visual inspection (for example, has wasted muscles, loose fitting clothes, fragile skin and poor wound healing). See Nutrition support in adults: oral nutrition support, enteral tube feeding and parenteral nutrition. Clinical guideline 32 (2006). Available from www.nice.org.uk/CG032.

1		 b) if they have decompensated liver disease or
2		 - c) if they are in acute withdrawal or
3		 d) before and during a planned medically assisted alcohol
4		withdrawal.
5		• Offer prophylactic parenteral thiamine to patients from groups a) and
6		b) above who attend an emergency department or are admitted to
7		hospital with an acute illness or injury. Oral prophylactic thiamine
8		treatment should follow parenteral therapy.
9		Offer parenteral thiamine to people with suspected Wernicke's
10		encephalopathy. Maintain a high level of suspicion for the possibility of
11		Wernicke's encephalopathy, particularly if the person is intoxicated.
12		Parenteral treatment should be given for a minimum of 5 days, unless
13		Wernicke's encephalopathy is excluded. Oral thiamine treatment
14		should follow parenteral therapy.
15		
16	2.6.8	Research Recommendations
17	RR4.	What is the clinical and cost effectiveness for the use of parenteral versus oral
18		thiamine in preventing the first onset of Wernicke's encephalopathy in people
19		undergoing medically-assisted alcohol withdrawal?

3 **3** Alcohol-related liver disease

4 Alcohol produces a spectrum of liver injury but only a minority of individuals misusing 5 alcohol, some 20 to 30%, develop cirrhosis; of these, approximately 15% will develop 6 hepatocellular carcinoma as a terminal event. The factors that determine an individual's 7 susceptibility to develop significant alcohol-related liver injury are largely unknown. 8 9 The majority of individuals abusing alcohol will develop fatty change in their liver. This 10 lesion is not in itself harmful and quickly reverses when alcohol is withdrawn. Individuals 11 are usually asymptomatic and generally present incidentally. 12 13 Individuals who develop alcohol-related hepatitis may remain asymptomatic and not be 14 detected until they present for other reasons. Alternatively they may present with clear 15 evidence of chronic liver disease such as jaundice, hepatomegaly and fluid retention. 16 17 The outcome in individuals with alcohol-related hepatitis is determined by their 18 subsequent drinking behaviour, their gender and by the severity of the disease. The 19 mortality rate in individuals presenting with severe hepatitis may be as high as 40%. 20 21 Individuals who develop alcohol-related cirrhosis may remain asymptomatic and come 22 to attention only if inadvertently identified, for example, at an insurance medical 23 examination. Alternatively, they may present with features of hepatocellular failure and 24 portal hypertension, such as jaundice, fluid retention, blood clotting abnormalities, 25 hepatic encephalopathy and variceal haemorrhage. 26 27 The outcome for patients with cirrhosis is determined largely by the degree of 28 decompensation at presentation and by the subsequent drinking behaviour. The 29 presence of superimposed alcohol-related hepatitis and the development of 30 hepatocellular carcinoma significantly reduce survival. 31 32 The most important management aim is to ensure long-term abstinence from alcohol. 33 Complications such as fluid retention and variceal bleeding have specific therapies. This 34 chapter will review the role of liver biopsy in the investigation of alcohol-related liver 35 disease and the management of alcohol-related hepatitis. The GDG will also consider 36 referral for orthotopic liver transplantation for the treatment of patients with 37 decompensated alcohol-related cirrhosis. 38

39 3.1 THE ROLE OF THE LIVER BIOPSY

40 3.1.1 CLINICAL INTRODUCTION

- 41 Although the first diagnostic liver biopsy was reported in 1923 ⁷⁵, the procedure has
- 42 only been used regularly in the last 50 years or so. During this time, a variety of

1 techniques have been used, and the indications have changed as non-invasive

Liver biopsy can be performed percutaneously, transvenously (with the transjugular

- 2 diagnostic tests have been introduced.
- 3 4

5 approach being the most common) or, rarely, laparoscopically. Of these three 6 techniques, the first two are the ones most commonly performed in patients suspected 7 of having alcohol-related liver injury. Percutaneous liver biopsies themselves can be 8 transthoracic or subcostal and either ultrasound guided or 'blind'. The transjugular 9 approach is reserved for patients with contra-indications to the percutaneous 10 approach such as ascites or coagulation defects. Unfortunately, these contra-11 indications are quite common in liver disease, particularly in patients with alcohol-12 related hepatitis. 13 14 The purpose of liver biopsy in alcohol-related liver disease (ALD) is to confirm the 15 diagnosis and stage the disease. Staging is a practice common to all types of liver 16 disease and involves a pathological semi-quantification of the degree of fibrosis or 17 liver scarring. This is absent in a healthy liver and advanced in the case of cirrhosis. 18 With the advent of serum and radiological markers of fibrosis, there is much debate 19 about the role of liver biopsy for this purpose. If non-invasive markers are validated 20 against the histological 'gold standard', they make an attractive alternative to an 21 invasive procedure. This debate is one which covers all of hepatology and is not 22 specific to alcohol-related liver disease. As such, the GDG did not include a clinical 23 question around the role of liver biopsy in the staging of alcohol related liver injury. 24 The clinical questions the GDG asked relate to the issue of whether a liver biopsy is 25 required to confirm the diagnosis of ALD or to determine whether there is an active 26 alcohol-related hepatitis. 27 28 The diagnosis of alcohol-related liver disease is based on the history (a confirmed 29 history of hazardous or harmful drinking and the absence of other risk factors for liver 30 disease) and examination and certain abnormalities of laboratory variables. Radiology, 31 particularly ultrasound, can also help with the diagnosis. It is important to exclude 32 other liver diseases which could cause the laboratory abnormalities. 33 34 In cases where there are laboratory abnormalities and no clear alcohol history or a 35 high index of suspicion of another liver condition there may well be an increased 36 incentive to biopsy. The question is, if one suspects that a patient has alcohol-related 37 liver disease and the clinical work-up has excluded other causes of liver disease, is a 38 biopsy required to confirm the clinical suspicion? 39 40 The first clinical question therefore asked and upon which the literature was searched 41 is: 42 43 What is the accuracy of laboratory and clinical markers versus liver biopsy for 44 the diagnosis of alcohol-related liver disease versus other causes of liver injury?'

- 45
- 46 Alcohol-related hepatitis (alcoholic hepatitis or AH) is an inflammatory condition of
- 47 the liver and part of the spectrum of ALD. It is a histological diagnosis with the

1 characteristic features of neutrophil infiltration, hepatocyte ballooning and Mallory 2 bodies. It may arise *de novo* or superimposed on an already established cirrhosis. 3 Alcohol-related hepatitis may remain silent and its presence may not be marked by 4 any untoward clinical symptoms or signs. However, severe hepatitis presents with the 5 features of hepatic decompensation which include jaundice, gastro-intestinal bleeding, 6 coagulopathy and encephalopathy. The prognosis can be determined using a variety 7 of clinical scores, with the most widely used being Maddrey's discriminant function 8 (DF), a score based on the bilirubin and prothrombin time. As well as being a useful 9 prognostic marker, this score has also been used to determine which patients will 10 benefit most from specific therapies for AH. 11 12 The problem with making clinical decisions based on the prothrombin time and 13 bilirubin level is that these can be abnormal in ALD in patients who do not have AH. 14 This can happen in advanced cirrhosis without superimposed AH, particularly if there 15 is decompensation for another reason such as gastrointestinal bleeding or infection. 16 17 Some clinicians will insist upon a liver biopsy before providing specific therapies for 18 severe AH. Others will argue that an experienced clinician will be able to make the 19 diagnosis of AH without biopsy. Again the answer will depend on how frequently the 20 pre-biopsy diagnosis of AH is proven to be incorrect when histology is obtained. 21 22 The second clinical question therefore asked and upon which the literature was 23 searched is: 24 25 What is the safety and accuracy of laboratory and clinical markers versus liver 26 biopsy for the diagnosis of alcohol related hepatitis versus decompensated 27 cirrhosis?' 28 29 3.1.2 CLINICAL METHODOLOGICAL INTRODUCTION 30 Accuracy of liver biopsy 31 Studies were included that reported on the accuracy of a clinical judgement based on 32 33 history, clinical examination and routine laboratory and/or ultrasonography findings 34 or routine laboratory findings. Papers were excluded if they reported on the 35 diagnostic accuracy of individual laboratory findings or whether individual laboratory 36 findings differentiated between clinical conditions. Nine studies were included in the evidence review 76,77 78 79 80 81 82 83 84. 37 38 Level 2+ 39 40 The details of these studies are summarised in Table 3-1 below. The studies 41 varied considerably with respect to what aspects of clinical management, 42 laboratory findings etc they reported. 43 44

Table 3-1. Summary of included studies.

Study, number of biopsies	Rationale	Prebiopsy diagnosis	Final diagnosis (alcohol- related only)	Patient Population	Comparison
Alcoholic liv	ver disease				
ELPHICK 2007 ⁷⁶ Level 1b++ N=110	Reported on the histological features suggestive of ALD in patients with presumed decompens ated ALD	110/110 (100%) decompensat ed ALD	104/110 (95%) decompen sated ALD 78/110 (71%) had cirrhosis	Patients with presumed decompensa ted ALD defined as Child's Grade B or C, consumptio n of at least 60 units of alcohol per week (men) or 40 units/week (females) for at least 5 yrs prior to the episode of decompensa tion, no other liver disease on extensive noninvasive workup	Histological features of ALD: fatty infiltration, a neutrophil infiltrate, ballooning hepatocyte degeneration, and Mallory's hyaline
VAN NESS 1989 ⁸¹ Level 1b+	Reported on the diagnostic accuracy of	26/90 (29%) ALD: alcoholic steatosis	23/90 (26%) alcoholic liver	Patients with elevated liver	Pre-biopsy (clinical diagnosis

N=90	diagnosis made before biopsy on the basis of non- invasive work-up (history, physical examinatio n, laboratory values and imaging) and a final diagnosis made after biopsy for alcoholic liver disease	2/26 (8%), 12/26 (46%) mild alcoholic liver disease, 2/26 (8%) moderate alcoholic liver disease, 10/26 (38%) alcoholic cirrhosis 19/90 fatty liver, 25/90 chronic necroinflam matory disease, 20/90 Misc	disease: 7/23 alcoholic cirrhosis, 5/23 alcoholic hepatitis with fibrosis, 4/23 alcoholic hepatitis without firbrosis, alcoholic foamy degenerati on 2/23, alcoholic siderosis 1/23	associated enzymes. Patients with previously undiagnose d liver disease were included if at least one liver- associated enzyme (asparate aminotransf erase (AST), alkaline phosphatas e (AP), alanine aminotranfe rase (ALT), gamma glutamyl transpeptid ase (GGT)) was elevated to 1.5 times the upper limit of normal for 3 months or more	The complete blood count, platelet count, prothrombin time and partial thromboplasti ne time were measured within 3 days before the biopsy
TALLEY 1988 ⁸⁰ Level 1b+	Clinical diagnosis recorded before	35/108 (32%) ALD	25/108 (23%) alcoholic liver	All patients who underwent liver biopsy	Clinical diagnosis
N=108	biopsy was compared with the histological diagnosis of	73/108 (78%) non- ALD	disease: 25/35 (71%) with a prebiopsy	regardless of their alcohol intake. All patients had	Included: Bilirubin, alanine aminotransfer ase (ALT),

	a panel of	biopsy Cirrhosis:		alcohol	1101, 10101
THABUT 2006 ⁷⁷	Diagnostic accuracy of	Diagnosis based on biopsy		Patients with an	AshTest: AST, total
KRYGER 1983 ⁷⁹ Level 1b++ N=357	Patients who had undergone liver biopsy. Clinicians reviewed the case histories without knowledge of the biopsy results.	200/357 (56%) had a history of alcoholism	172/357 (48%) alcohol- induced changes: 80/357 (22%) alcoholic cirrhosis, 84/357 (26%) steatosis, 8/357 (2%) alcoholic hepatitis without cirrhosis	Patients who had undergone liver biopsy	Anamnestic, clinical and biochemical findings
	an experience d histopathol ogist.		diagnosis had a final diagnosis of ALD: cirrhosis 14/25 (56%), cirrhosis and alcoholic hepatitis 1/25 (4%), alcoholic hepatitis 6/25 (24%), 1/25 (4%) fibrosis and lipogranul omas	prebiopsy diagnosis of hepatic disease and undergoing biopsy for the first time. Of these, 35/108 (32%) had a prebiopsy diagnosis of ALD and 73/108 (68%) non- ALD	aspirate aminotransfer ase (AST), gamma glutamyltrans ferase (GGT), serum alkaline phosphatise, albumin

N=225diagnosis of alcoholic hepatitis in patients with alcoholic liver disease. The results were compared with those btained from using Maddrey discrimina nt function 2 32 and the AST:ALT ratioValidation group 1: 56/62 (90%)serum and liver biopsyhaptoglobinAlcoholic liver disease. The results were compared with those obtained from using Maddrey discrimina nt function 2 32 and the AST:ALT ratioAlcoholic hepatitis features: Necrosis and polynuclear neutrophils: Training group 42/70 (60%)Image: Serum and liver biopsyImage: Serum and liver biopsyValidation group 2 22/93 (24%)Validation group 2 22/93 (24%)Image: Serum and liver biopsyImage: Serum and liver biopsyValidation group 2 22/93 (24%)Validation group 2 22/93 (24%)Image: Serum and liver biopsyImage: Serum and liver biopsyValidation group 1 12/62 (19%)Validation group 1 12/62 (25%)Image: Serum and liver biopsyImage: Serum and liver biopsyValidation group 1 12/62 (25%)Validation group 1 32/62 (52%)Image: Serum and liver biopsyImage: Serum and liver biopsyVANBLERVReported55/10120/104PatientsC-Reactive	1b++	(AshTest)	Training group	57/70	g/d with	macroglobuli
patients with alcoholic liver (90%) Validation group 1: 30/02 Image: Solution of the soluticon of the solution of the solution of the solution o	N=225	-	(81%)			n, Apo A1, haptoglobin
disease. Validation group 2: 23/93 Image: Signature state		patients with	-	ıp 1: 56/62		
with those obtained from using Maddrey discrimina nt function the AST:ALT ratioAlcoholic hepatitis features: Training group 42/70 (60%)Institution ratioInstitution ratioValidation group 1 12/62 (19%)Validation group 1 12/62 (19%)Institution ratioInstitution ratioValidation group 2 22/93 (24%)Validation group 2 22/93 		disease. The results		ıp 2: 23/93		
discrimina nt function ≥ 32 and the 		with those obtained	-	atitis		
≥ 32 and the AST:ALT ratioTraining group 42/70 (60%)Image: Second seco		discrimina	-	oolynuclear		
VAlidation group 1 12/62 (19%)Image: Section 12/62 (19%)Image: Section 12/62 (24%)Image: Section 12/62 (24%)Image: Section 12/62 (S7%)Image: Section 12/62 (S2%)Image: Section 12/62 (S2%) <t< td=""><th></th><td>≥ 32 and the AST:ALT</td><td></td><td>42/70</td><td></td><td></td></t<>		≥ 32 and the AST:ALT		42/70		
(24%) $(24%)$ $(24%)$ $(24%)$ $At least one hepatitisfeature:(12%)-ıp 1 12/62$			-	ıp 1 12/62		
feature:Image: Training group 61/70 (87%)Image: Training group 61/70 (87%)Image: Training group 132/62 (52%)Image: Training group 132/62 (52%)VANBIERVReported55/10120/104PatientsC-Reactive			_	ıp 2 22/93		
(87%)(87%)Validation group 1 32/62 (52%)Validation group 1 32/62 (52%)Validation group 2 65/93 (70%)Validation group 2 65/93 (70%)VANBIERVReported55/10120/104PatientsC-Reactive				epatitis		
(52%)(52%)Image: Section of the				61/70		
VANBIERVReported55/10120/104PatientsC-Reactive			0	ıp 1 32/62		
			-	ıp 2 65/93		
	VANBIERV LIET	Reported on the	55/101 (55%) mild	20/104 (19.8%)	Patients admitted to	C-Reactive

2006 ⁷⁸ Level 1b++ N=104	diagnostic accuracy of CRP for alcoholic hepatitis in heavy drinkers	fibrosis, 46/101 (45%) significant liver fibrosis	cirrhosis 29/104 (30%) acute alcoholic hepatitis	a liver unit for detoxificatio n and evaluation	Protein (CRP)
GOLDBER G 1986 ⁸² Level 1b+ N=89	Patients with clinically mild biopsy- proven alcoholic hepatitis were followed- up for ≥ 30 months. The diagnostic accuracy of laboratory tests for cirrhosis was reported	89/89 (100%) mild biopsy- proven alcoholic hepatitis	34/89 (38%) cirrhosis	Patients with biopsy- proven alcoholic hepatitis and 'seemingly' mild (bilirubin ≤ 5 mg/dl) liver disease. An alcoholic was defined as a history of consuming more than 80 g/day of ethanol during the preceding year. Any alcoholic with a history of recent drug abuse or the presence of HBsAg was excluded	The step-wise logistic discriminant analysis identified IgA, prothrombin time and SGOT/SGPT ratio (in order of importance) as the best predictors of cirrhosis Final model of discriminate function (DF) was derived to predict the probability of being cirrhotic, where DF = 0.606 (SGOT/SGPT) + 9.43 (IgA), with IgA expressed as g/dl
KITADAI 1985 ⁸⁴	Diagnostic accuracy of	Diagnosis base 37/67 (55%) a		Patients classified at	Age, total alcohol

Level 1b+	age, total	liver cirrhosis,	14/67	habitual	intake,
	alcohol	(24%) alcoholi		drinkers	hepatomegaly
N=67	intake,	7/67 (9%)	e nepuenes,	with liver	and 12 liver
	hepatomeg	7,07 (570)		injury; all	function tests
	aly and 12			presented	Tunction tests
	liver			-	
				history of	
	function			daily	
	tests for			alcohol	
	biopsy-			consumptio	
	proven			n of more	
	alcoholic			than 90 ml	
	liver			ethanol	
	cirrhosis			equivalents	
	and			per day for	
	hepatitis			over 5 yrs	
		D. 1. 1. 2. 27			
IRELAND	Review of	Raised GGT	17/117	Patients	Raised GGT
1991 ⁸³	patients	17/117	(14.5%)	with	
1 1 2 -	with	(15%)	cirrhosis	suspected	
Level 2+	suspected		18/117	alcoholic	Raised AST
N=117	alcoholic		-	liver disease	and GGT
N-117	liver	Raised AST	(15%)		
	disease	and GGT	hepatitis		
	who had	34/117			
	undergone	(29%)			Widespread
	biopsy.	(2970)			abnormal
	Patients				results
	were				
	grouped	Widespread			
	into those	abnormal			
	with raised	results			
	GGT, raised	66/117			
	GGT,	(56%)			
	increased				
	AST				
	activity				
	with or				
	without				
	raised GGT				
	or				
	widespread				
	abnormal				
	liver				
	function				
	tests				

1 Seven studies stated that the biopsy was performed blind to the pre-biopsy diagnosis

2 ⁷⁶ ⁷⁷ ⁷⁸ ⁷⁹ ⁸⁰ ⁸¹ ⁸². One study did not state if the biopsy diagnosis was performed blind ⁸³.

3 One study involved re-classifying data using a decision making model and therefore

4 can be considered 'blind' ⁸⁴.

5 Level 2+

6

It should be noted that the studies may be vulnerable to selection bias, due to the
necessary inclusion criteria of liver biopsy. Patients with ALD who undergo biopsy are
more likely to have severe disease or more than one medical condition than those who
do not undergo biopsy. For example, 113/355 (32%) of patients with presumed
decompensated ALD attending a liver unit had liver histology and were therefore

12 eligible for inclusion ⁷⁶.

13 Level 1b

14

- 15 One study involved histological diagnosis based on needle biopsy in the majority of
- 16 patients (101/110, 92%) but also postmortem specimens (7/110, 6%) or explants at
- 17 liver transplantation (2/110, 2%). 13/110 (12%) tissue specimens were performed
- 18 prior to their first episode of decompensation ALD (median 5.4 years) and 41/110
- 19 (37%) were obtained after the date of first presentation with decompensation (usually
- 20 to establish alcoholic hepatitis for patients who may require corticosteroid therapy).
- 21 56/110 (51%) specimens were obtained more than 31 days (median 15.6 months)
- 22 after first presentation with decompensation ⁷⁶.
- 23 Level 1b
- 24

25 Safety of liver biopsy

- 26 For this question 15 papers were identified that reported on the safety of liver biopsy,
- 27 reporting on the agreed outcomes, namely death, bleeding, perforation and infection.
- 28 The populations studied included patients with all forms of liver disease (not just
- 29 alcohol related liver disease).
- 30
- 31 Some studies were included if they compared outcomes for different needle types, or
- 32 for inpatient versus outpatient liver biopsy. For percutaneous liver biopsy, studies
- 33 were excluded if the number of biopsies was less than 500 and for transjugular/
- 34 transvenous less than 100. The large amount of evidence in this area led to this
- restricted inclusion criteria in order to produce a manageable and meaningful review.
- 36

38

- 37 The studies were reported according to the type of biopsy performed:
 - Percutaneous
- 39• Transjugular/ transvenous biopsy
- 40

41 **•** Percutaneous biopsy

- 42 Twelve studies reported on the safety of percutaneous liver biopsy.⁸⁵⁻⁹⁶
- 43

► Transjugular/ transvenous biopsy 1

- 2 Three studies reported on the safety of transjugular/transvenous liver biopsy.97-99
- 3

4 3.1.3 CLINICAL EVIDENCE STATEMENTS

5 Accuracy of liver biopsy

6 ► Alcoholic liver disease

- 7 In a review of 'heavy' drinkers with decompensated liver disease with a presumed
- 8 diagnosis of ALD (based on alcohol history and extensive non-invasive workup), a
- 9 total of 104 of the 110 (95%) patients had at least one of the histological features
- 10 suggestive of ALD: fat, Mallory's hyalin, neutrophilic infiltrate, and hepatocyte
- 11 ballooning. These features were more prevalent in tissue obtained within a month
- 12 after presentation with decompensation than in that obtained before decompensation
- 13 or more than one month after. In patients with presumed decompensated ALD, other
- 14 liver diseases are uncommon ⁷⁶.

15 Level 1b

- 16
- 17
- 18 The diagnosis of patients with chronically elevated liver enzymes (N=90) on the basis
- 19 of history, physical examination, laboratory findings and imaging studies was
- 20 compared with that based on histology. The results are presented in Table 3-2 below 81
- 21
- 22

23 Table 3-2. Summary of results.

	Final diagnostic group					
	Alcohol	Fatty liver	Chronic	Misc		
	(N=23)	(N=27)	necroinflammatory	(N=24)		
			disease (N=26)			
Positive	88 (95%CI 75	56 (37 to 75)	81 (66 to 96)	65 (46 to 84)		
predictive	to 100)					
value						
Negative	97 (90 to 100)	90 (79 to 100)	92 (82 to 100)	87 (75 to 100)		
predictive						
value						
Sensitivity	91 (79 to 100)	59 (40 to 78)	81 (66 to 96)	63 (44 to 82)		
Specificity	96 (88 to 100)	89 (77 to 100)	92 (82 to 100)	91 (80 to 100)		

24

- 25 One study (N=108) reported on the diagnostic value of liver biopsy in alcoholic liver
- disease. A pre-biopsy clinical diagnosis of alcoholic liver disease (n=35) was confirmed 26
- 27 by biopsy in all but one case. The specificity and sensitivity of a pre-biopsy diagnosis of
- alcoholic liver disease was 98% and 79% 80. 28
- 29 Level 1b
- 30

31 ► Alcohol-related hepatitis and cirrhosis

- 32 One study asked four clinicians differing with respect to professional experience to
- 33 make a diagnosis based on case history and blind of the biopsy results. They were also

- 1 asked to rate the certainty of their diagnosis. The results for the diagnostic accuracy
- 2 (number of patients, total N=200) of clinical compared with histological diagnosis for
- 3 alcoholic cirrhosis versus no alcoholic cirrhosis are given in Table 3-3 below ⁷⁹.
- 4 Level 1b
- 5

6 **Table 3-3. Summary of results.**

	Biopsy diagnosis			
	Clinical diagnosis	Positive	Negative	
	Positive	65	13	
	Negative	15	107	
7			i	
8	The sensitivity of the clinica	l diagnosis was 81	% (95%CI 73 to 99%)	
9	The specificity of the clinical	diagnosis was 899	% (95%CI 84 to 95%)	
10	The positive predictive value	=	-	
11	The negative predictive valu	e was 88% (95%C	I 82 to 94%). ⁷⁹	
12	Level 1b			
13				
14			holic cirrhosis but were given a	
15	negative clinical diagnosis (f	alse-negative):		
16	• 14/15 had steatosis			
17	• 1/15 had acute viral	•		
18			is $(0/15)$ in those patients whom the	
19	clinicians were certa	in of their diagnos	IS.	
20	Level 1b			
21 22	12 nationte wore given a clin	vical diagnosis of a	coholic cirrhogic but the higtology	
22	was negative (false positive)	-	coholic cirrhosis but the histology	
23 24			opatitis	
24 25	 4/13 showed steatos 5/13 showed steatos 		epatitis	
25 26	 1/13 showed stasis h 			
20 27	 2/13 had large-duct 	-		
28	 1/13 had normal live 			
20 29	Level 1b	l'uiscuse.		
30				
31	There was no statistical diffe	erence for the num	ber of correct or incorrect clinical	
32	diagnosis according to profe			
33	• Chief physician N=3	-		
34	• Senior resident N=5			
35	• Resident N=4			
36	• Junior resident N=7.7	79		
37	Level 1b			
38				
39	The diagnostic accuracy of C	-reactive protein (CRP) was reported for alcoholic	
40	hepatitis in heavy drinkers (N=101). 29/101 (3	30%) patients were diagnosed with	
41	alcoholic hepatitis on biopsy	. Using optimized	cut-off values (CRP > 19 mg/L) to	

- 1 discriminate between patients with alcoholic hepatitis and those without these
- 2 histological lesions, the sensitivity, specificity, positive, negative predictive value and
- diagnostic accuracy were 41%, 99%, 92%, 81% and 82%, respectively ⁷⁸.
- 4 **Level 1b**
- 5
- 6 One study (N=117) reported on whether raised gamma glutamyltranspeptidase (GGT)
- 7 alone was a sufficient indication for performing liver biopsy. Patients with suspected
- 8 alcoholic liver disease who had a liver biopsy were categorised in to three groups,
- 9 namely raised GGT only (17/117, 15%), increased aspartate aminotransferase (AST)
- with or without raised GGT (34/117, 29%) or widespread abnormal liver function test
 (66/117, 56%). The following results were reported:
- 12
 - 0/17 raised GGT has biopsy diagnosis of hepatitis or cirrhosis
 - 5/34 (15%) with raised GGT and AST had hepatitis
- 14 3/34 (9%) had cirrhosis
- 15 13/66 (20%) with widespread abnormalities had hepatitis
- 16 14/66 (21%) had cirrhosis.⁸³
- 17 Level 2+
- 18

- 19 One study (N=89) reported on patients with clinically mild biopsy-proven alcoholic
- 20 hepatitis for a follow-up period of at least 30 months. Although clinical and laboratory
- abnormalities were minimal, cirrhosis was present in 38%. A decision rule based on
- 22 the best predictors of cirrhosis (immunoglobulin A (IgA), prothrombin time and serum
- 23 glutamic-oxaloacetic transaminase (SGOT)/serum glutamic pyruvic transaminase
- 24 (SGPT)) was derived to predict the probability of being cirrhotic. The sensitivity was
- 25 72% and specificity 88%. ⁸²
- 26 Level 1b
- 27
- 28 One study (N=225) aimed to identify a panel of biomarkers (AshTest) for the diagnosis
- 29 of alcoholic steato-hepatitis (ASH), in patients with chronic alcoholic liver disease. At a
- 30 0.50 cut-off, the sensitivity of AshTest was 0.80 and the specificity was 0.84%. 77
- 31 Level 1b
- 32
- 33 One study selected patients with histologically classified alcoholic liver cirrhosis or
- 34 alcoholic hepatitis and reclassified them using a likelihood method using 15 or 5
- 35 parameters (best combination based on stepwise regression) (see clinical
- 36 methodology above). The diagnostic accuracy of using the first or second likelihood
- diagnosis is presented in Table 3-4 below⁸⁴.
- 38 Level 1b

39 **Table 3-4. Diagnostic accuracy.**

Group	Correct diagnosis rate of 1 st likelihood diagnosis		Correct diagnosis rate of 1 st or 2 nd likelihood diagnosis	
	15 variables 5 variables		15 variables	5 variables
Alcoholic	27.5 cases	30.5 (82)	34 (92%)	34 (92)
liver	(74%)			
cirrhosis				

	N=37								
	Alcoholic	10.5 (75%)	7 (50)	13 (93)	11 (79)				
	hepatitis								
	N=14								
1									
2	Safety of liver	r biopsy							
3	► Mortality								
4	<u>Percutaneous:</u> In the largest study (N=68,276) the mortality rate was 0.009%. ⁸⁶								
5 6	0	idy (N=68,276) th	ie mortality rate w	as 0.009%.86					
0 7	Level 3								
8	Overall, the mortality rate ranged from 0 to 0.4% (N=10)								
9	overun, ene mor	tunty fute fungeu		10)					
10	<u>Transjugular/ tr</u>	ansvenous:							
11			from 0.4 to 0.96%	(N=2)					
12									
13	► Bleeding								
14	Percutaneous:								
15	-		otal, in patients wi	-					
16	-		ed in 0.032% and						
17	-		occurred in 0.0059		case				
18			0059% and 0.004%						
19 20		iorax occurred in	0.018% to 0.022%	of cases.					
20 21	Level 3								
22	The overall blee	ding rate ranged	from 0.06 to 1.7% ((N=10).					
23									
24	Bleeding was rej	ported to be high	er in patients with	increased INR (>1	.5), raised				
25	bilirubin and lov	ver platelet count	s (150 x 10 ⁹ /l). ¹⁹⁰						
26	Level 3	-							
<u>2</u> 0									
28	Haemoperitoneu	ım resulting in de	eath was also highe	er in cirrhotic patie	ents. ⁸⁶				
29	Level 3								
30									
31	<u>Transjugular/ tr</u>								
32	The overall bleeding rate ranged from 0.96 to 3.3% (N=2).								
33	One study reported that the majority of patients undergoing transjugular biopsy have								
34 25	• •	,							
35 36		=	us liver biopsy such gher risk for bleed	-					
36 37		•	ifferent biopsy tech	• • •					
38	Level 3		inerent biopsy teel	mquesi					
39									

¹ patients with an INR of 1.5 would not normally be considered for a straight percutaneous biopsy (occasionally ultrasound guided plugged biopsy).

1	► Perforation
2	Percutaneous:
3	In the largest study (N=68,276) (total, in patients with cirrhosis) ⁸⁶ :
4	 Pneumothorax occurred in 0.035% and 0.035% of cases
5	 Lung puncture occurred on 0.0015% and 0.004% of cases
6	 Colon puncture occurred in 0.004% and 0.004% of cases
7	• Kidney puncture occurred in 0.003% and 0% of cases
8	• Gallbladder puncture 0.012% and 0.013% of cases
9	Level 3
10	
11	The overall rate of perforation ranged from 0.06 to 0.5% (N=2).
12	
13	<u>Transjugular/ transvenous:</u>
14	The overall rate of perforation ranged from 0.6 to 5.8% (N=3)
15	
16	The study reporting perforation in 5.8% of case consisted of the highest number of
17	patients with cirrhosis (80.8%) ⁹⁹ .
18	Level 3
19	
20	► Infection
21	Percutaneous:
22	In the largest study (N=68,276) (total, in patients with cirrhosis) ⁸⁶ :
23	• sepsis occurred in a total of 0.0088% of cases and in 0.018% with cirrhosis.
24	Level 3
25	
26	The overall infection rate ranged from $< 0.0001\%$ to 0.018% (N=2).
27	
28	Transjugular/ transvenous:
29	Infection rate was not reported in two of the studies ^{98,99} , and one study reported
30	negative blood cultures in patients with pyrexia or rigors. ⁹⁷
31	
32	
33	Percutaneous biopsy:

- 34 Table 3-5shows the results according to date of the study:
- 35

36 **Table 3-5. Summary of results.**

	Date	Numbe r of biopsie s	Bleeding	Mortality	Perforati on	Infection
PERRAULT ⁹⁶	1978	1000	0%	NR	NR	NR
PICCININO 86	1986	68,276	Total	Total	Total	Total
			0.06%	0.009%	0.04% (of	0.0088%
			(of		patients	(of
			patients		with	patients

			with		cirrhosis:	with
			cirrhosis:		0.06%)	cirrhosis:
			0.3%)			0.018%)
COLOMBO ⁸⁹	1988	1,192	0.25%	NR	NR	NR
MCGILL 87	1990	9,212	0.38%	0.11%	NR	NR
MAHARAJ ⁸⁸	1992	2,646	0.3%	0.3%	NR	0.04%
DOUDS 95	1995	546	1.5%	0.4%	NR	NR
GILMORE 90	1995	1,500	1.7 %	0.13-	NR	NR
				0.33%		
WAWRZYNOWI	2002	861	0.6%	0%	0.5%	0.11%
CZ ⁹⁴						
FIRPI ⁹²	2005	3,214	0%	0.06%	NR	NR
VAN DER	2006	1,398	0.5%	0.13%	NR	NR
POORTEN 91						
MANOLAKOPO	2007	631	0.3%	0%	NR	NR
ULOS ⁹³						
MYERS ⁸⁵	2008	4,275	0.35%	0.14%	NR	< 0.0001%

1 NR = not reported

2

- 3 <u>Transjugular biopsy:</u>
- 4 Table 3-6shows the results according to the date of the study.

5

6 **Table 3-6. Summary of results.**

	Date	Number of biopsies	Bleeding	Mortality	Perforation	Infection
VELT ⁹⁸	1984	160	NR	NR	0.6%	NR
GAMBLE 98	1985	436	3.3%	0.4%	3.9%	0%
VLAVIANOS	1991	104	0.96%	0.96%	5.8%	NR
99						

7 NR = not reported

8

9

10 3.1.4 Health economic methodological introduction

11 No relevant economic evidence was identified assessing the cost-effectiveness of liver

12 biopsy, and laboratory and clinical markers for the diagnosis of alcoholic liver disease.

13 Costs associated with liver biopsy were presented to the GDG.

14

15 3.1.5 HEALTH ECONOMIC EVIDENCE STATEMENTS

- 16 The two most commonly performed approaches for liver biopsy used in alcohol-
- 17 related liver diseases are the percutaneous and the transjugular approaches. In
- 18 England and Wales, a liver biopsy procedure can be performed as a day-case
- 19 intervention or the patient being hospitalized. The cost for liver biopsy procedure is

- 1 high (for the percutaneous approach, from £1,253 to £4,638 when the patient is
- 2 hospitalised, considering possible complications and the inpatient stay; and from £437
- 3 to £490 when performed as a day-case intervention¹⁰⁰. The transjugular approach is
- 4 not available in all hospital in England and Wales, and patients need to be transferred
- 5 to another hospital for the procedure. This involves additional costs.
- 6
- 7 3.1.6 FROM EVIDENCE TO RECOMMENDATIONS
- 8 The GDG recognised that the role of liver biopsy in ALD is not clear and that this is a
- 9 complicated area. Practice differs throughout the country and the indications,
- 10 modality and access are not uniform. We have attempted to give guidance in some
- 11 areas that may affect practice.
- 12
- First we discussed the safety of liver biopsy. There was a broad range of death and
 complication rates recorded for liver biopsy. Mortality ranged from 0 0.4% for
 percutaneous and 0.4 0.96% for transjugular/transvenous methods. The possible
- 16 reasons for this broad range of results include the sample size, the period in which the
- 17 data were collected, the patient populations and the type and the method (needle type,
- 18 ultrasound guided versus non-ultrasound guided) used. For the outcomes of bleeding,
- 19 infection and perforation the studies varied considerably with respect to how
- 20 outcomes were defined. In spite of these differences, there were some large studies,
- 21 and, on the whole, the GDG accepted the figures for mortality and major morbidity.
- 22 The GDG felt that the true current figures are likely to be at the lower end of the
- 23 reported risks for both transcutaneous and transvenous biopsy. Nevertheless, it is
- 24 important to recognise that there are still mortalities from what is a diagnostic
- 25 procedure.
- 26
- 27 The GDG then discussed the issue of sampling error. This is more important with
- 28 regard to staging than diagnosis but it should be noted that data from twin biopsy
- 29 studies in non-alcohol-related steatohepatitis (NASH) have shown variability
- throughout one liver¹⁰¹ calling into question the role of liver biopsy as the 'gold
 standard' diagnostic and staging tool.
- 32
- 33 The GDG then spent some time discussing the context of the questions. It had been 34 decided that they would not ask a question about the role of liver biopsy in the staging 35 of ALD. This decision had been made for several reasons. First, the question does not 36 map directly to the scope of the guidance. Second, the question is not an alcohol-37 related liver disease question but more a general hepatology question. Third, studies 38 have not yet been reported determining the role of non-invasive markers of fibrosis 39 (such as fibroscan and serum markers) in ALD. As such the debate would not be 40 informed and it would be difficult to make clear recommendations. 41 42 Some members of the GDG felt that it was very difficult to separate diagnosis from
- 43 staging. They discussed the fact that in the real life clinical scenario, a patient with
- 44 suspected ALD may have a biopsy for several reasons. This may be partly to exclude
- 45 other conditions and confirm the diagnosis, partly to stage the disease and partly to

1 demonstrate to the patient the severity of their condition in an effort to persuade them 2 to remain or become abstinent. As such, the questions that have been posed do not 3 answer the question of whether a patient with suspected ALD should have a liver 4 biopsy or not. In order to do this we would need to have explored each of the 5 proposed indications above. Rather, the recommendations will offer guidance as to 6 whether the biopsy should be done for specific indications; to exclude other liver 7 diseases and to confirm alcohol-related hepatitis before treatment. 8 9 In this complex area, a further issue was discussed outside of the questions and 10 recommendations. This referred to the investigation of abnormal liver function in 11 patients with a negative liver screen. The paper by Skelly et al¹⁰² confirms that a 12 significant proportion of these patients are found to have ALD and admit to drinking 13 when further questioned. These data refer to the question of abnormal liver function 14 with no obvious explanation. An inclusion criterion into this study was the denial of a 15 strong alcohol history. Again, this issue has not been covered by our clinical questions. 16 We recognise that liver biopsy has a role in the investigation of unexplained liver 17 blood test abnormalities, but our question refers to the utility of liver biopsy in 18 patients in whom there is a strong pre-clinical suspicion of ALD (through a typical 19 history, appropriate laboratory tests and compatible imaging). 20 21 Studies looking at the accuracy of liver biopsy in the diagnosis of alcohol-related liver 22 disease and non-alcohol-related liver diseases were of low to moderate quality. 23 Patient populations varied considerably, particularly with respect to the non-alcohol 24 liver disease populations (different aetiologies of liver disease). 25 26 Overall, if there was a high clinical suspicion of ALD and the liver screen (blood tests 27 done to exclude other causes of liver disease) was negative the biopsy usually revealed 28 ALD and rarely revealed other liver diseases. It must be highlighted again that this did 29 not include patients in whom there was significant 'pre-biopsy' clinical doubt about 30 the condition.. On balance, the GDG felt that if these conditions were adhered to, a 31 biopsy was not required to confirm that alcohol was the cause of the liver disease and that there was no indication to do a liver biopsy solely to exclude other causes. When 32 33 discussing these data, the GDG agreed that the issues surrounding the diagnosis of 34 ALD and the role of a biopsy can be complex and should be made by an experienced 35 clinician. These sentiments are reflected in the guidance. 36 37 The GDG recognises that some clinicians will still undertake a biopsy for staging 38 purposes as this can not be assured with certainty from indirect markers. It is 39 particularly important to differentiate those patients with well compensated cirrhosis 40 as they will require long-term surveillance for hepatocellular carcinoma. 41 When the GDG discussed the evidence for the role of liver biopsy in the differentiation 42 of alcohol-related hepatitis from decompensated cirrhosis there were several 43 important themes. The first was that the clinical (pre-biopsy) differentiation of 44 alcohol-related hepatitis from decompensated cirrhosis is inaccurate. While there is a 45 paucity of good studies, a combination of clinical data and GDG experience suggests that the sensitivity and specificity of a pre-biopsy suspicion of alcohol-related hepatitis 46 47 is between 80 and 90% in those patients that have severe disease. These figures

1 reflect the fact that, without a biopsy, it is difficult to determine which patients should 2 have specific therapy. There are concerns, particularly with corticosteroids, that 3 treatment of a suspected case of alcohol-related hepatitis may be detrimental to the 4 patient if, in fact, they have decompensated cirrhosis. The second major theme of the 5 discussion was that patients in this population often have contra-indications to 6 percutaneous liver biopsy mandating the transjugular approach if biopsy is required. 7 This has increased risks and current access to this procedure is limited to specialist 8 centres. 9 The GDG further discussed the Ramond and Carithers papers; one of which mandated 10 biopsy prior to trial inclusion (excluding those without alcohol-related hepatitis) while 11 the other did not. The results from both trials were remarkably similar. This was 12 thought to infer that, as long as the patients had the clinical syndrome of recent onset 13 of jaundice with a DF>32 on the background of prolonged heavy drinking, they would 14 get benefit from steroids regardless of the findings of the liver biopsy. Unfortunately, 15 there is no data that can confirm whether patients with this syndrome, that have had a 16 biopsy showing no alcohol-related hepatitis, will benefit from steroids. 17 On balance, it was felt that a biopsy should be done if the clinician felt that it would 18 change their management. That is to say, if the clinician would not give or stop 19 steroids if the biopsy did not show alcohol-related hepatitis, in spite of the 20 presentation and the DF being greater than 32. This will depend on the clinician and 21 how closely the patient resembles those that were included in the relevant trials 22 showing a benefit of steroids. The wording of the recommendation allows for steroids 23 to be started with a presumed diagnosis prior to the biopsy (as the biopsy may take a 24 few days to obtain). 25 The GDG await the results of a large RCT which compares steroids to placebo, 26 pentoxifylline and dual therapy. Some patients will be biopsied in this study, but the 27 biopsy results will not influence the treatment. When the results of this study are 28 available it should inform a future revision of this recommendation. 29 3.1.7 RECOMMENDATIONS 30 31 32 R18 For people with a history of harmful or hazardous drinking, who have 33 abnormal liver blood test results, exclude alternative causes of liver 34 disease.

- R19 A clinical diagnosis of alcohol-related liver disease should be confirmed by
 a specialist experienced in the management of alcohol-related liver
 disease.
- R20 Take into account the small but definite risks of morbidity and mortality
 when considering liver biopsy for the investigation of alcohol-related liver
 disease. Discuss the benefits and risks of liver biopsy with the patient and
 ensure informed consent is obtained.
- R21 In people with suspected acute alcohol-related hepatitis, consider a liver
 biopsy to confirm the diagnosis if the hepatitis is severe enough to require

- 1
- 2

specific therapy such as corticosteroids (see section 3.3.7). Take into account availability of local services and safety.

3

4

5

3.1.8 RESEARCH RECOMMENDATION

6 RR5 What is the cost-effectiveness of the use of liver biopsy in addition to
7 laboratory and clinical markers for the diagnosis of alcohol-related liver
8 disease or alcohol-related hepatitis in patients with suspected alcohol-related
9 liver disease?

10 3.2 Referral for consideration of liver transplantation

11 3.2.1 CLINICAL INTRODUCTION

12 Since initial reports of success in the 1980s, alcohol-related cirrhosis has become an 13 increasingly common indication for orthotropic liver transplantation. Several studies 14 have convincingly demonstrated that the survival of patients transplanted for alcohol-15 related cirrhosis is comparable to patients with cirrhosis of alternative aetiologies ¹⁰³. 16 Furthermore, there is no evidence that patients with alcohol-related liver disease have 17 a higher frequency of post-operative complications; although there may be a higher 18 incidence of some specific complications such as post-operative confusion 19 20 However, transplantation for this condition still remains controversial, principally due 21 to concerns over the risk of post-transplant recidivism and its effect on outcome and 22 public opinion at a time of increasing donor shortage. 23 24 It is beyond the scope of these guidelines to determine the safety, efficacy or cost-25 effectiveness of liver transplantation for alcohol-related cirrhosis. In addition, it is not 26 within the scope to write guidelines around which patients should be given access to 27 this procedure. The principles of selection to a liver transplant list in the UK have 28 recently been revised ¹⁰⁴ and the assessment of co-morbidities and risk of recidivism 29 are the role of the liver transplant units (see Table 3-7). For the nationally agreed 30 guidelines in the context of alcohol-related liver disease go to 31 http://www.uktransplant.org.uk/ukt/about transplants/organ allocation/pdf/liver a 32 dvisory group alcohol guidelines-november 2005.pdf.

33

Table 3-7. Variant syndromes and definitions for selection to the adult elective liver transplant waiting list¹⁰⁴

i. Diuretic resistant ascites	Ascites unresponsive to or intolerant of maximum diuretic dosage and non responsive to TIPS or where TIPS deemed impossible or contraindicated and in whom the UKELD score at registration is less than or equal to 49
ii. Hepatopulmonary syndrome	Aerial Po2 less than 7.8 kPa. Alveolar-arterial oxygen gradient less than 20 mm Hg. Calculated shunt fraction greater than 8% (brain uptake following

	technetium macro-aggregate almumin), pulmonary
	vascular dilation documented by positive contrast
	enhanced trans-thoracic echo in the absence of overt
	chronic lung disease.
iii. Chronic hepatic	Confirmed by EEG or trail making tests with at least
encephalopathy	two admissions in 1 year due to exacerbations of
	encephalopathy that has not been manageable by
	standard therapy. Structural or neurological disease
	must be excluded by appropriate imaging and if
	necessary paychometric testing.
iv. Persistent and intractable	Pruritus consequent on cholestatic liver disease
pruritus	which is intractable after therapeutic trials which
	might include cholestyramine, ursodeoycholic acid,
	rifampicin, ondansetron, naltrexone and after
	exclusion of psychiatric co-morbidity that might
	contribute to the itch.
v. Familial amyloidosis	Confirmed transthyretin mutation in the absence of
	significant debilitating cardiac involvement or
	autonomic neuropathy.
vi. Primary hyperlipidaemias	Homozygous familial hypercholesterolaemia with
	absent LDL receptor expression and LDL receptor
	gene mutation.
vii.Polycystic liver disease	Intractable symptoms due to the mass of liver or pain
	unresponsive to cystectomy or severe complications
	secondary to portal hypertension.

2

3

4 It is, however, within our scope to address the timing of referral for transplantation. It

5 is likely that patients with alcohol-related cirrhosis are under-represented on

6 transplant waiting lists given the prevalence of the condition compared to other

- 7 aetiologies of cirrhosis. There are likely to be many reasons for this but awareness of
- 8 both which patients to refer and when to refer them probably plays a significant role.
- 9 Whom to refer is determined by the criteria for selection on to a transplant list (refer

10 to Table 3-7), but the GDG believe the timing of referral with regard to the drinking

11 history is critical. Further evidence of the need for recommendations comes from the

- geographical variability of referral of patients with ALD cirrhosis to liver units acrossthe UK⁵.
- 14

15 People who are still actively drinking alcohol are not candidates for referral. A period

- 16 of abstinence is required for a variety of reasons. It is very important to satisfy public
- 17 opinion (donated organs are a public resource) that the patient is trying to help
- 18 themselves and there are some data that it associates with post-transplant abstinence
- 19 but this is controversial. Most importantly, a period of abstinence may allow the liver
- 20 to recover to a such a degree that transplantation is no longer necessary.

1	Unfortunately, there is still controversy over what period of abstinence is necessary to
2 3	achieve maximal improvement.
4 5	As such, the clinical question upon which the evidence was searched was:
6	What length of abstinence is needed to establish non-recovery of liver damage,
7	which thereby necessitates referral for consideration for assessment for liver
, 8	transplant?
9	
10	
11	3.2.2 CLINICAL METHODOLOGICAL INTRODUCTION
12	One case series ¹⁰⁵ was identified addressing the length of abstinence required to allow
13	improvement in liver function. The study looked at the proportion of patients with
14	severe alcoholic cirrhosis who would need a liver transplant and tried to determine
15	the optimal time needed to evaluate an abstinent patient prior to referral for liver
16	transplantation. All patients recruited for this study were presenting for the first time
17	with severely decompensated alcohol-related cirrhosis, classified as a Child-Pugh class
18	С.
19	Level 3
20	
21	Studies were excluded if they looked at the impact of abstinence or continued alcohol
22	consumption on liver disease progression and reported survival as the only outcome.
23	
24	The reliability of this evidence is poor as it is based on a single case series with a small
25	sample size.
26	Level 3
27	
28	

29 3.2.3 CLINICAL EVIDENCE STATEMENTS

30 **Improvement of Liver Function**

31 One study ¹⁰⁵ reported on a change in Child-Pugh score from C to B or A as a measure

32 of improved liver function in abstinent patients. Improvement always began within

three months if it occurred at all. See Table 3-8 below for a summary of results.

34

35 **Table 3-9. Summary of results.**

Study	Patient	Intervention	Outcome	Improvement of liver
	population		measures	function
Veldt et al.	N= 74	Abstinence	Survival and	The rate of liver
2002105			transplantation	improvement in
	N=19 at follow	Patients were		abstinent patients:
Retrospective/	up	considered as	Prognostic	- 1 month: 23%
prospective		abstinent	factors	- 2 months: 40%
case series 3	Patients that	when they		- 3 months: 66%
	required	declared to	Improvement of	- 6 months: 66%
	admission to	be so and	liver function	

Page 118

hospital for	evolution of	(Child-Pugh	Improvement in Child-
complications	biological	score	Pugh score always
of a first	markers was	improvement	began within 3 months if
episode of	in	from C to B or	it occurred.
Child C	accordance.	A)	
cirrhosis of			
alcoholic origin			

- 1
- 2

3 3.2.4 Health economic methodological introduction

4 There were no health economic studies found that pertained to the duration of

5 abstinence. However we found one UK health technology assessment evaluating the

6 cost-effectiveness of liver transplant for different patient groups. This study suggested

7 that transplantation was not cost-effective for patients with alcoholic liver disease; if

8 this is true then it could preclude the need for the clinical question. Therefore we

9 reviewed the study to establish the validity of this conclusion.

10 Longworth 2003¹⁰⁶ presented a cost-utility analysis (reporting cost per QALY gained)

11 based on 1995-1996 prospective cohorts of transplanted patients treated for alcoholic

12 liver disease (ALD, n=155), primary biliary cirrhosis (PBC, n=122), and primary

13 sclerosing cholangitis (PSC, n=70). Comparative outcomes for patients not receiving

14 the intervention (liver transplant) were obtained from patient-level pre-

15 transplantation data and from prognostic models, which are based on historical

16 cohorts of patients treated for PBC, ALD, or PSC. A UK NHS perspective was taken for

17 this analysis. Cost and QALYs outcomes were estimated 27 months after a patient was

18 placed on the liver transplant waiting list (approximately 24 months after the

19 transplant procedure). Health outcomes considered for this analysis were survival and

- 20 health-related quality-of-life (HRQL). HRQL was assessed using the EuroQol EQ-5D
- 21 classification system, administered to patients at time of listing, at 3-month intervals
- 22 until transplantation, and then at 3, 6, 12, and 24 months post-transplantation. Costs
- 23 included were initial assessment for transplantation, hospitalisation, outpatient visits,
 24 drugs blood products putrities absorbed by a set of the set
- 24 drugs, blood products, nutrition, physiotherapy sessions, dietician sessions, tests,
- 25 treatments, and the transplant operation (1999 GBP). Costs were discounted at 6%
- 26 and QALYs at 1.5%. Extensive sensitivity analyses were undertaken.

27

28 3.2.5 Health economic evidence statement

As noted in 3.2.4 above there were no health economic studies found that pertained tothe duration of abstinence.

- 31 Longworth 2003¹⁰⁶ reported incremental cost-effectiveness ratios for liver transplant
- 32 of £48,000 per QALY gained for ALD patients, £29,000 per QALY gained for PBC
- 33 patients, and £21,000 per QALY gained for PSC patients. The study considered the
- 34 initial assessment cost and the time on the waiting list, this being integral components
- 35 of the UK liver transplantation program. The cost for pre-transplant assessment

- 1 influenced largely the result for ALD patients: "The larger incremental cost-per-QALY
- 2 ratio for ALD patients is in part the influence of a larger proportion of ALD patients
- 3 being considered unsuitable for transplantation after undergoing the assessment
- 4 process. A reduction in the size of this group of patients, possibly through better
- 5 evaluation of patients before assessment at transplant centres, would reduce the mean
- 6 incremental cost-per-QALY ratio for the ALD group"¹⁰⁶. In addition, the author
- 7 mention that if calculated from the time of transplantation (i.e. excluding assessment
- 8 costs), the incremental cost-effectiveness ratio would be over 50% lower.
- 9 This study showed that referring ALD patients for liver transplantation under the
- 10 1995-1996 system was not cost-effective and that better referral criteria in primary
- and secondary care would improve the cost-effectiveness ratio. Hence, the specifics of
- 12 the referral process for liver transplant for ALD patients might have significant impact
- 13 on service costs.
- 14 An important limitation of the study is that it measured cost-effectiveness of liver
- 15 transplantation only up to 27 months from time of listing. A lifetime analysis is more
- 16 appropriate as mortality is impacted by the intervention. In addition, a longer time
- 17 frame may better cover all costs and benefits related to the intervention, and is likely
- 18 to increase the QALY gain and improve the cost-effectiveness ratio in favour of
- 19 transplantation. Furthermore, clinical and resource use data were collected from a
- 20 1995-1996 prospective cohort. Discussions with clinical experts suggest that the
- 21 current UK referral pathway is now much more selective and presumably more cost-
- 22 effective than it was at the time of the study.
- 23 This study has significant limitations. The GDG felt that liver transplantation in its
- 24 current form is likely to be cost-effective for ALD patients, when long-term benefits
- 25 and modern selection practices are taken into account.
- 26

27 3.2.6 FROM EVIDENCE TO RECOMMENDATION

- Only one small case series was reviewed¹⁰⁵ and limited results of interest were
 reported.
- 30
- 31 It was found that improvement in liver function, if it occurred at all following
- 32 abstinence from alcohol, was always evident within three months. This is in
- agreement with the clinical experience of GDG members.
- 34

35 The paper reported on abstinent (those who declared they were abstinent and

- 36 confirmed by biological markers), sober (those who decreased their consumption to a
- 37 non-excessive level: less than 3 units per day for a man, 2 units for a woman; with
- 38 normalisation of GGT and MCV) and relapsing (one or more periods of abstinence
- 39 alternating with periods of excessive consumption) people. The GDG agreed that while
- 40 the study findings were not in completely abstinent people, it was important to
- 41 include the term 'abstinent' be included in the recommendation, particularly as it
- 42 concerns the allocation of a public resource.
- 43

1	The GD	OG recognized that there are patients, particularly with alcohol-related hepatitis,
2	that wi	ll not survive the three months until they are referred. Currently, alcohol-
3	related	hepatitis is a contra-indication to liver transplantation in the UK, and our
4	recom	nendations are in keeping with the national recommendations for the
5		ions for transplantation. The GDG understand that this may change in the future
6	and thi	s recommendation may need reviewed and adapted should the national
7	recom	nendations change.
8		
9	The he	alth economic analysis by Longworth et al. conducted from a UK perspective
10		ded that liver transplantation was not cost-effective for alcohol liver disease
11		s, mainly because of the lack of selectivity of the 1995-1996 referral scheme,
12	leading	to important additional cost in assessing unsuitable patients for
13	transp	lantation. The GDG agreed that optimising the selection of patients before
14	assessi	nent at transplant centres is essential, and noted that while the referral process
15	may ha	we led to a reduction in the number of people being inappropriately referred
16	since 1	995, there is still room for improvement. In addition, when a referred patient is
17	seen at	a transplant centre, there is a tendency to repeat many of the costly tests that
18	have al	ready been carried out, and an improvement in communication between the
19	transp	lant centres and the referring hospitals may effect substantial cost savings.
20		
21		
22	3.2.7	Recommendations
23	R22	If a person still has decompensated liver disease after best management
24		and 3 months' abstinence from alcohol, and if they are otherwise a
25		suitable candidate for liver transplantation ^m , refer them for consideration
26		for assessment for liver transplant.
27		
21		
28		
29		
20		
30		
31		

^m For the nationally agreed guidelines in the context of alcohol-related liver disease go to <u>http://www.uktransplant.org.uk/ukt/about_transplants/organ_allocation/pdf/liver_advisory_group_alcohol_guidelines-november_2005.pdf</u>.

2 3.3 CORTICOSTEROID TREATMENT FOR ALCOHOL-RELATED HEPATITIS

3 3.3.1 CLINICAL INTRODUCTION

4 Corticosteroids have been the most intensively studied of all treatments for acute 5 alcohol-related hepatitis. They are used as anti-inflammatory agents in this acute 6 inflammatory condition, but it is the potential side-effects, including poor wound 7 healing and susceptibility to infection, that have made these drugs unpopular with 8 some clinicians. These side effects are of particular concern as patients with severe 9 alcohol-related hepatitis often die of sepsis or bleeding.

10

1

In order to determine their efficacy, corticosteroids have been delivered intravenously
and orally for varying durations at varying doses in RCTs over the last 40 years.
Results of these trials have, however, been conflicting and corticosteroids are used
with varying frequency for this condition throughout the UK.

15

Before searching for and discussing trials assessing the efficacy of corticosteroids the GDG agreed that it was important to highlight the population of patients that would be considered for treatment. This is critical to the understanding of the history of corticosteroid use for this condition.

20

21 ► Diagnosis

22 In many trials the diagnosis of alcohol-related hepatitis was not biopsy-proven. Many 23 hepatologists believe this is a major omission particularly as evidence detailed earlier 24 in this guideline has shown that this diagnosis can not always be made with certainty 25 on clinical and laboratory evidence alone. Furthermore, it is easy to confuse the 26 clinical picture of alcohol-related hepatitis with that of decompensated cirrhosis and 27 these patients may do badly if inadvertently given corticosteroids. Only one 28 corticosteroid treatment trial mandated biopsy but for purposes of this review it was 29 decided not to exclude trials where biopsy was not undertaken in all patients. This 30 was, however, borne in mind during the review of available evidence.

31

32 **Disease severity**

33 The definition of severity has changed through the years. The presence of hepatic 34 encephalopathy, severe coagulopathy and a high bilirubin were used in early studies. 35 A major advance in the management of alcoholic related hepatitis came when 36 Maddrey described the discriminant function (DF) (calculated from the prothrombin 37 time and bilirubin) which correlates well with mortality¹⁰⁷. Since this study, other 38 scoring systems have been used, such as the Glasgow Alcoholic Hepatitis Score (GAHS) 39 and the Model of End stage Liver Disease (MELD) score, but the discriminant function 40 remains the one most widely used in the UK.

41

42 It was clear before we asked the clinical question that we would primarily be 43 concentrating on patients with severe disease and we decided to use the Maddrey 44 score of \geq 32 to define this.

45

The GDG therefore asked the clinical question:
'In patients with acute alcohol-related hepatitis, what is the safety and efficacy of corticosteroids versus placebo?'
'What is the safety and efficacy of corticosteroids for acute alcohol-related hepatitis?'

10 3.3.2 Clinical methodological introduction

- 11 Eleven RCT's were identified that compared steroids with placebo or control
- 12 treatment in patients with alcohol-related severe acute hepatitis ¹⁰⁸; ¹⁰⁹; ¹¹⁰; ¹¹¹; ¹¹²; ¹¹³;
- 13 ¹⁰⁷; ¹¹⁴; ¹¹⁵; ¹¹⁶; ¹¹⁷. One RCT was excluded for using a treatment regimen not currently
- 14 used in clinical practice (methylprednisolone for 3 days ¹¹⁸. For the sub-group
- 15 analysis of patients with discriminate function (DF) greater than or equal to 32, data
- 16 for one study ¹¹⁵ was taken from a paper reporting the results of an individual patients
- 17 data analysis ¹¹⁹. The studies published before Maddrey introduced the discriminant
- 18 function criteria were included if the patients could be classified as severe alcohol-
- 19 related hepatitis e.g., presence of spontaneous encephalopathy.
- 20 Level 1+
- 21
- 22 Table 3-10below summarises the inclusion criteria and treatment intervention for the
- 23 included studies. Follow-up ranged from one and a half weeks to one year.

Table 3-10. Summary of inclusion criteria and treatment intervention for included studies.

Study	Inclusion criteria	No. of patitnets with biopsy/no. of patients	Intervention (initial dose)	Duration of treatment
HELMAN 1971 ¹⁰⁸	Subset with severe hepatitis	17/17	Prednisolone 40mg	4 weeks
PORTER 1971 ¹⁰⁹	Severe	18/20	Methyl- prednisolone 40mg	10 days continued until improvement or tapered
CAMPRA 1973 ¹¹⁰	Severe	26/45	Prednisolone 0.5 mg/kg	6 weeks
BLITZER	Severe	14/28	Prednisolone	26 days

Study	Inclusion criteria	No. of patitnets with biopsy/no. of patients	Intervention (initial dose)	Duration of treatment
1977111			40mg	
SHUMAKER 1978 ¹¹²	Subset with hepatic encephalopath y	10/17	Methyl- prednisolone 80mg	4 weeks
LESESNE 1978 ¹¹³	Severe	11/14	Prednisolone 40mg	6 weeks
MADDREY 1978 ¹⁰⁷	DF ≥ 32 or hepatic encephalopath y	24/55	Prednisolone 40mg	32 days
DEPEW 1980 ¹¹⁴	DF ≥ 32 or hepatic encephalopath y	21/34	Prednisolone 40mg	42 days
MENDENHALL 1984 ¹¹⁵	Subset with severe hepatitis	12/96 (total population)	Prednisolone 60mg	30 days
CARITHERS 1989 ¹¹⁶	DF ≥ 32 or hepatic encephalopath y	Not reported /66	Methyl- prednisolone 32mg	42 days
RAMOND 1992 ¹¹⁷	DF ≥ 32 or hepatic encephalopath y	61/61	Methyl- prednisolone 40 mg	28 days

- 2 The following outcomes were reported:
- 3 All cause mortality follow-up one month
- 4 All cause mortality follow-up six months
- 5 Liver-related mortality follow-up one month
- 6 Liver-related mortality follow-up six months
- 7 Rate of Infection
- 8 Rate of gastro-intestinal bleeding
- 9 Length of stay

- 1
- 2 Where available, data is reported for all patients randomised. In some studies, data
- 3 was available for all randomised patients for some outcomes only.
- 4
- 5 3.3.3 CLINICAL EVIDENCE STATEMENTS
- 6 Patients with $DF \ge 32$, hepatic encephalopathy or severe hepatitis
- 7 For a summary of the results see Table 3-11below. See A.1for the forest plots.

8 **Table 3-11. Summary of results.**

	No. of studies	Risk Ratio (Mantel-Haenszel) M-H, Fixed, 95% Cl) Corticosteroids vs control	Heterogeneity
All cause mortality – one month	7	0.45 (0.30 to 0.67); p<0.00001	4% p=0.40
All case mortality – six months –	11	0.54 (0.41 to 0.70); p<0.00001	53% p=0.02
Liver related mortality – one month	3	0.24 (0.09 to 0.62); P=0.003	0% p=0.61
Liver related mortality – six months	6	0.63 (0.41 to 0.97); p=0.04	36% p=0.04
GI bleeding	2	0.63 (0.21 to 1.96); p=0.43	69% p=0.07
Infection	4	1.14 (0.72 to 1.81) P=0.46	0% p=0.58

9 Level 1+

10

11 **•** Length of stay

Two studies reported on this outcome ¹¹⁴; ¹¹⁰. None of the studies provides confidence
intervals and therefore the data could not be entered into a meta analysis. See Table
3-12 for a summary of results.

15 Level 1+

16

1 Table 3-12. Summary of results.

Study	Steroid	Control	P value
DEPEW ¹¹⁴	65.6	56.2	NR
CAMPRA ¹¹⁰	47	48	NR

2

3 Summary

For patients with severe hepatitis, $DF \ge 32$ or hepatic encephalopathy, steroids were associated with a significant reduction in the following compared to control:

- 6 All cause mortality follow-up one month
 - All cause mortality follow-up six months (with significant heterogeneity)
 - Liver-related mortality follow-up one month
 - Liver-related mortality follow-up six months
- 9 10

7

8

11 There were no significant differences between steroids and control for:

- 12 Infection rate
- 13 Gastro-intestinal bleeding
- 14

15 Note, that the estimate of effect for liver-related mortality at one and six months and

- 16 for the rates of infection and GI bleeding are 'imprecise' (wide confidence intervals).
- 17 Level 1+

18

19 **Patients with DF \geq 32**

Table 3-13below summarises the results for patients with $DF \ge 32$. See A.1for the

21 forest plots.

22 Table 3-13. Summary of results.

	No. of studie s	Risk Ratio (M-H, Fixed, 95% CI) corticosteroids versus control	Heterogeneit y
All cause mortality –	4	0.42 (0.26, 0.69);	35% p=0.20
one month		p=0.0006	
All case mortality –	4	0.38 (0.23, 0.61);	52% p=0.10
six months		p=<0.0001	
Liver related	2	0.17 (0.03, 0.87);	0% p=0.45
mortality – one		p=0.03	
month			
Liver related	2	0.52 (0.11, 1.02);	45% p=0.18

	mortality – six months	p=0.05				
1						
2	► Length of stay					
3	No studies reported on this outcome for this patient population.					
4						
5	► Gastrointestinal bleeding					
6	No studies reported on this outcome for this patient population.					
7						
8	► Infection					
9	One study reported no cases of infection associated with corticosteroids or placebo ¹⁰⁷ .					
10						
11	Summary					
12 13	For patients with severed alcoholic hepatitis defined as DF \ge 32, steroids were associated with a significant reduction in the following compared to control:					
14 15 16 17	All cause mort	llity follow-up one month llity follow-up six months nortality follow-up one month				
18 19	There were no significant differences between steroids and control for liver-related mortality follow-up six months.					
20						

- 1
- 2

3 3.3.4 Health economic methodological introduction

- 4 No relevant economic analysis was identified assessing the cost-effectiveness of
- 5 corticosteroids in patients with acute alcohol-related hepatitis. The cost of oral
- 6 corticosteroids was presented to the GDG.
- 7

8 3.3.5 HEALTH ECONOMIC EVIDENCE STATEMENTS

9 The cost of oral corticosteroids is low (few pence per dose [prednisolone]⁴¹). The
10 effect of this therapy on the hospital length of stay was not conclusive from the clinical

11 review. With regard to the cost of the drug treatment²⁷ (Table 3-14 the cost-impact of

12 treating patients with acute alcohol-related hepatitis with oral corticosteroids is likely

- 13 to be marginal.
- 14

15 **Table 3-14**

Oral corticosteroids*						
Dose	Acquisition price					
Prednisolone						
 By mouth, initially, up to 10–20 mg daily (severe disease, up to 60 mg daily); can often be reduced within a few days but may need to be continued for several weeks or months Maintenance, usual range, 2.5–15 mg daily, but higher doses may be needed 	 Prednisolone (Non-proprietary) Tablets, prednisolone 1 mg, net price 28-tab pack = 87p; 5 mg, 28-tab pack = £1.00; 25 mg, 56-tab pack = £20.00. Tablets, both e/c, prednisolone 2.5 mg, net price 30-tab pack = £4.67; 5 mg, 30-tab pack = £4.73. Soluble tablets, prednisolone 5 mg (as sodium phosphate), net price 30-tab pack = £7.45. 					

16 * BNF no.58²⁷

17

18 3.3.6 EVIDENCE TO RECOMMENDATIONS

The GDG discussed the variability in the trials. The early studies included many patients with mild disease and did not mandate liver biopsy. Some studies used the development of spontaneous hepatic encephalopathy as a marker of severity but this syndrome may develop in patients with decompensated cirrhosis per se. The analysis was restricted to those trials using oral corticosteroids but even within these the periods of treatment were not uniform.

25

To allow the use of data from before the Maddrey study in 1978 the definition of severity was a DF of \geq 32 **or** the development of spontaneous hepatic encephalopathy.

28 In addition, the data were analysed using only DF32 as a marker of severity. This

restricted the trials that could be included but the GDG felt it was a more accurateassessment of disease severity.

31

The GDG noted the efficacy of corticosteroids to reduce one and six month mortality using both definitions of severe disease. In addition there was no significant increase in bleeding or sepsis. The GDG felt that it was appropriate to recommend corticosteroids for patients with severe disease and that the Maddrey score of 32

1	should be the cut-off to define this. Encephalopathy was not included as a marker of
2	severity in the recommendation as the GDG felt that they did not have robust evidence
3	to recommend corticosteroids to a population with a DF <32 and encephalopathy.
4	
5	The GDG did not include contraindications to corticosteroids in their recommendation.
6	Gastrointestinal bleeding and active infection are generally considered to be
7	contraindications and have been associated with a poorer outcome. It was agreed by
8	the group that controlled bleeding should not be a contraindication. There is now
9	evidence that if confirmed infection is treated and corticosteroids are started, the
10	outcome is unaffected ¹²⁰ . If bleeding or infection are present they should be treated
11	appropriately and corticosteroids should still be used as the treatment for the liver
12	condition.
13	The CDC and success of a lower DCT about to shout in the UK subish is some wine story ide
14 15	The GDG are aware of a large RCT about to start in the UK which is comparing steroids
15 16	with placebo, pentoxifylline and combination treatment. The results of this trial are eagerly awaited and will further inform the debate regarding the best treatment for
10	these patients.
18	these patients.
19	Given the modest drug cost and the substantial reduction in mortality we expect
20	corticosteroids to be highly cost-effective in appropriately selected patients.
21	
22	
23	3.3.7 Recommendations
24	R23 Offer corticosteroid ⁿ treatment to people with severe acute
25	alcohol-related hepatitis and a discriminant function ^o of 32 or
26	more.
27	
28	
29	
30	
31	3.4 NUTRITIONAL SUPPORT FOR ALCOHOL-RELATED HEPATITIS
32	3.4.1 Clinical introduction

ⁿ Corticosteroids are used in UK clinical practice in the management of severe alcoholrelated hepatitis. At the time of publication (January 2010), prednisolone did not have UK marketing authorisation for this indication. Informed consent should be obtained and documented.

^o The Maddrey's discriminant function (DF) was described to predict prognosis in alcoholrelated hepatitis and identify patients suitable for treatment with steroids. It is 4.6 x [prothrombin time – control time (seconds)] + bilirubin in mg/dl. To calculate Maddrey discriminant function using bilirubin in micromol/l divide bilirubin value by 17. (<u>http://www.mdcalc.com/maddreys-discriminant-function-for-alcoholic-hepatitis</u>)

1 2 3 4 5 6 7 8 9 10 11	Patients with acute alcohol-related liver disease are often malnourished and this has a detrimental effect on survival ¹¹⁵ . Initial trials with parenteral amino acid therapy yielded conflicting results in improving survival ^{121,122} , but more recently the emphasis has switched to providing enteral nutrition. As well as providing calories and protein it is postulated that enteral feeding also provides specific therapy to the underlying inflammatory condition. Alcohol increases gut permeability and the subsequent portal endotoxinaemia can result in lipopolysaccharide-induced cytokine release from liver macrophages and hepatic inflammation. Enteral feeding can improve this gut permeability and this may be a mode through which the therapy can have an impact on liver inflammation and, ultimately, the outcome of an episode of acute alcohol-related hepatitis.
12	related nepatitis.
13 14 15 16 17	Patients that are fed after a period of reduced nutritional intake are prone to a syndrome known as the refeeding syndrome. This is not covered in this guideline, but recommendations for management are available. It is important to be vigilant for the development of this syndrome in this population of patients.
17 18 19 20 21 22	The exact role of enteral nutrition and whether it should be provided with another treatment or as monotherapy is not clear. Certainly, enteral nutrition is not used as standard therapy in all hospitals in the UK who manage this condition. For this reason, we asked the clinical question:
23 24 25 26 27 28	In patients with acute alcohol-related hepatitis, what is the safety and efficacy of: a) enteral nutrition versus standard diet b) enteral nutrition versus corticosteroids c) enteral nutrition in combination with corticosteroids versus enteral diet
29	3.4.2 CLINICAL METHODOLOGICAL INTRODUCTION
30 31 32 33 34 35	Studies were included that reported on the safety and efficacy of enteral nutrition versus standard diet (hospital diet); enteral nutrition versus corticosteroids; enteral nutrition in combination with corticosteroids versus enteral diet in patients with acute alcohol-related hepatitis. Outcomes of interest were survival and adverse events from corticosteroids.
36 37 38	Three RCTs ¹²³⁻¹²⁵ and one non-randomised-control trial were included in the review ¹²⁶ .
39 40 41 42	Outcomes reported were mortality, length of stay, weight change and adverse events/side effects, including infections, hepatic encephalopathy, GI bleeding, diarrhoea and ascites.
43 44 45 46	 The studies were reported under the following categories: 1. enteral nutrition versus standard diet (n=3) 2. enteral nutrition versus corticosteroids (n=1)

- 1 No studies were found that reported on the comparison enteral nutrition in
- 2 combination with corticosteroids versus enteral diet.
- 3
- 4 In two studies ^{124,126} patients allocated to the standard diet group had significantly
- 5 lower protein, nitrogen balance and calorie intake compared to patients in the enteral
- 6 nutrition group^{pq}. Therefore, in effect the comparison could be seen to be adequate
- 7 enteral nutrition versus inadequate oral nutrition.
- 8
- 9 Two of the studies ^{123,124} included patients with alcohol-related cirrhosis.
- 10
- 11 3.4.3 CLINICAL EVIDENCE STATEMENTS

12 Enteral nutrition versus standard diet (n=3)

- 13 **Mortality**
- 14 All three studies reported on mortality in patients on enteral nutrition versus standard
- diet ¹²⁴⁻¹²⁶. The Figure 3-1. shows the meta-analysed results, showing a non-significant
- 16 (albeit borderline) reduction in mortality with enteral nutrition compared to standard
- 17 diet.

18

19 **Figure 3-1**.

The **T**

20

21 Level 1+

22

23 **•** Length of stay

One study reported on the difference in length of hospital stay between the groups

25 enteral nutrition versus standard diet¹²⁴.

• Enteral group: 11 days; standard diet group: 12 days

9 Mendenhall 1985: During 30 days hospitalization, calorie intake (kcal/day): standard diet: 2313 ± 121; enteral group: 3236 ± 102, p=0.0001; protein intake (g/day): standard diet: 81.3 ± 4.6; enteral group: 98.3 ± 3.5, p=0.05

^p Kearns 1992: Protein per day: enteral group: $103 \pm 6g$; standard diet group: $50 \pm 4g$, p<0.02; average nitrogen balance: enteral group: 480 mmol, standard diet group: 107 mmol; amount of resting energy expenditure (REE) consumed: enteral group: 1.7 ± 0.3 times their REE in first 2 weeks, standard diet group: 0.8 ± 0.1 of their REE in first 2 weeks.

1 Level 1+

2

4	
3 4 5 6	► Weight change One study reported on weight change in both groups during the two week study period ¹²⁴ , with a significant decrease in weight reported in the standard diet group, and a non-significant decrease in the enteral nutrition group:
7 8 9	 Enteral nutrition group:74 ± 4 to 72 ± 5 kg, MD 2.00 [-0.57, 4.57], P=0.13 Standard diet group:78 ± 3 to 72 ± 4 MD 6.00 [3.47, 8.53], P<0.001 Level 1+
10	
11 12 13 14 15 16 17	 Diarrhoea Two studies reported on the difference in the number of cases of diarrhoea between the groups enteral nutrition versus standard diet^{124,125}. One study reported no cases in either group ¹²⁵. Level 1+
18 19 20 21 22 23	 One study reported a non-significantly lower number of cases of diarrhoea in the enteral nutrition group compared to the standard diet group ¹²⁴: Enteral nutrition group 5/16 versus Standard diet group 6/15, RR 0.78 (0.30, 2.03), P=0.61 Level 1+
24 25 26	► <i>Hepatic encephalopathy</i> Three studies reported on the difference in the number of cases of hepatic encephalopathy between the groups enteral nutrition versus standard diet ¹²⁴⁻¹²⁶ .
27 28 29 30	One study reported no cases of hepatic encephalopathy associated with the enteral nutrition group ¹²⁵ . Level 1+
31 32	One study ¹²⁴ reported a significant improvement in the mean grade of encephalopathy over the nine week trial period in the enteral nutrition group:
33	• ± 0.3 to 0.4 ± 0.2, MD 0.70 (0.52, 0.88), p<0.001
34 35 36	With significant deterioration in the mean grade of encephalopathy over the 9 week trial period in the standard diet group:
37 38	 0.7 ± 0.2 to 0.9 ± 0.3, MD -0.20 (-0.38, -0.02), p=0.03 Level 1+
39	

Page 132

1 2	One study reported on the difference in portal systemic encephalopathy between the groups enteral nutrition versus standard diet ¹²⁶ .
3 4	There were a non-significantly higher number of post-therapy cases in the standard diet group compared to enteral nutrition group:
5 6 7	 Post therapy: Nutritional support group: 4/14 (29); standard diet group: 6/27 (59), RR 1.29 (0.43, 3.82)
8 9	There was a significant increase in the number of cases seen pre-therapy compared to post-therapy in the standard diet group:
10 11 12	• Standard diet group: pre versus post treatment: 21/34 (62) versus 6/27 (59), RR 2.78 (1.31, 5.91), P=0.008
12 13 14	There was a significant reduction in the number of cases seen pre-therapy compared to post-therapy in the enteral nutrition group:
15 16 17	 Nutritional support group: pre versus post treatment: 13/18 (72) versus 4/14 (29); RR 2.53 (1.05, 6.07), P=0.04 Level 1+
18	
19 20 21	► <i>Ascites</i> One study reported on the difference in the number of cases of ascites between the groups enteral nutrition versus standard diet ¹²⁶ .
22 23	There were a non-significantly higher number of post-therapy cases in the standard diet group compared to enteral nutrition group:
24 25 26	 post therapy: nutritional support group: 7/14 (50); standard diet group: 16/27 (59), RR 0.84 (0.46, 1.55), p=0.59
27 28	There was a significant reduction in the number of cases seen pre-therapy compared to post-therapy in the standard diet group:
29 30 31	 standard diet group: pre versus post treatment: 29/34 (85) versus 16/27 (59), RR 1.44 (1.02, 2.03), P=0.04
32 33	There was a significant reduction in the number of cases seen pre-therapy compared to post-therapy in the enteral nutrition group:
34 35 36	 nutritional support group: pre versus post treatment: 16/18 (89) versus 7/14 (50); RR 1.78 (1.03, 3.08), P=0.04
37 38 39	Enteral nutrition versus corticosteroids ▶ Mortality

1 2	One study reported on mortality (as per protocol) in patients on enteral nutrition versus corticosteroids ¹²³ .
3 4	There was a non-significant increase in mortality in the enteral nutrition group compared to the corticosteroid group during the treatment period:
5 6 7	• Treatment period: enteral group: 10/27, corticosteroid group: 9/36; RR 1.48 (0.70, 3.14), P=0.30
8 9 10	There was a non-significant reduction in mortality in the enteral nutrition group compared to the corticosteroid group during the follow up period (1 year or until death):
11 12 13	 Follow up: enteral group: 1/17, corticosteroid group: 10/27; RR 0.16 (0.02, 1.13), p=0.07 Level 1+
14	

15 **Length of stay (hospitalization)**

One study reported on the difference in the length of stay between patients on enteral
 nutrition versus corticosteroids ¹²³. There was a non-significant reduction in length of
 stay in the enteral nutrition group compared to the corticosteroid group:

- enteral group: 5.3 ± 12.3, corticosteroid group: 8.6 ± 13.6 Mean difference -3.30 (9.33, 2.73), p=0.28
- 21 Level 1+

22

23 ► Infections

- 24 One study reported on infections in patients on enteral nutrition versus
- corticosteroids ¹²³. There was a non-significant increase in infections in the enteral
- 26 nutrition group compared to the corticosteroid group:
- enteral group: 15/35; corticosteroid group: 14/36; RR 1.10 (0.63, 1.93), P=0.73
 Level 1+

29

30 ► Side effects

- 31 One study reported on side effects in patients on enteral nutrition versus
- 32 corticosteroids ¹²³. There was a non-significant increase in side effects in the enteral
- 33 nutrition group compared to the corticosteroid group:
- enteral group: 10/35, corticosteroid group: 5/36; RR 2.06 (0.78, 5.41), P=0.14
 Level 1+

36

37 Summary

38 **•** Enteral nutrition versus standard diet (n=3)

- Enteral nutrition resulted in a significant improvement in:
- 3 Mean grade of encephalopathy ¹²⁴
- 4 5
 - Enteral nutrition resulted in a significant reduction in:
- 6 Portal systemic encephalopathy ¹²⁶
- 7 Ascites ¹²⁶
- 8
- 9 Enteral nutrition resulted in a non-significant reduction in:
- 10 Mortality¹²⁴⁻¹²⁶
- 11 Weight loss ¹²⁴
- 12 Diarrhoea (compared to standard diet group) ¹²⁴
- 13

14 **•** Enteral nutrition versus corticosteroids (n=1)

- 15 Enteral nutrition resulted in a non-significant reduction in:
- Mortality at follow up ¹²³
- 17 Length of stay ¹²³

18

- 19 Enteral nutrition resulted in a non-significant increase in:
- 20 Mortality during treatment period ¹²³
- Infections ¹²³
- Side effects ¹²³

3.4.4 HEALTH ECONOMIC METHODOLOGICAL INTRODUCTION

No relevant economic analysis was identified assessing the cost-effectiveness of corticosteroids, standard diet, and enteral nutrition in patients with acute alcohol-related hepatitis. The cost of oral corticosteroids was presented to the GDG.

3.4.5 HEALTH ECONOMIC EVIDENCE STATEMENTS

The cost of oral corticosteroids is low (few pence per dose [prednisolone]²⁷ – Table 3-15). No cost evidence was found on the use of enteral nutrition in patients with acute alcohol-related hepatitis.

Table 3-15

Oral corticosteroids*						
Dose	Acquisition price					
Prednisolone						
 By mouth, initially, up to 10–20 mg daily (severe disease, up to 60 mg daily); can often be reduced within a few days but may need to be continued for several weeks or months Maintenance, usual range, 2.5–15 mg daily, but higher doses may be needed 	 Prednisolone (Non-proprietary) Tablets, prednisolone 1 mg, net price 28-tab pack = 87p; 5 mg, 28-tab pack = £1.00; 25 mg, 56-tab pack = £20.00. Tablets, both e/c, prednisolone 2.5 mg, net price 30-tab pack = £4.67; 5 mg, 30-tab pack = £4.73. Soluble tablets, prednisolone 5 mg (as sodium phosphate), net price 30-tab pack = £7.45. 					

* BNF no.5827

3.4.6 EVIDENCE TO RECOMMENDATIONS

The GDG accepted the limitations of the clinical evidence. Evidence that enteral nutrition consistently improved outcomes as monotherapy or in combination with other therapies in severe alcohol-related hepatitis was not available.

The studies comparing enteral nutrition to placebo showed reduction in mortality but this was not significant and the meta-analysis although showing a similar trend also failed to reach significance. The heterogeneity of the patient populations complicates the evidence, particularly since the studies concentrating on patients with alcohol-related hepatitis were less convincing than the study in patients with decompensated cirrhosis.

The study comparing enteral nutrition to corticosteroids is not adequate to determine whether there is a difference between the efficacy of corticosteroids and nutrition in the early phase or in follow up but the pattern of mortality during the trial fits conceptually with the action of each treatment and made us ask the question of what enteral nutrition may add to corticosteroid therapy in this population. The GDG emphasised the importance of further trials in this area and this is reflected in the research recommendation. In addition, the evidence to date, though weak, is in support of the consensus that enteral tube feeding improved outcomes in patients with alcohol-related hepatitis. The GDG considered the ESPEN recommended nutritional supplementation advice of non-protein energy 35-45 kcal/kg/day and protein 1.2-1.5 g/kg/day given orally or enterally or both. This was felt to be appropriate in this setting.

No economic evidence was available assessing the effect of adding enteral nutrition support in patients with alcohol-related hepatitis. As discussed above, the study comparing enteral nutrition to corticosteroids showing no difference in length of stay is not adequate. From studies comparing enteral nutrition and standard diet, the GDG concluded on consensus that enteral nutrition improves outcomes in patient with alcohol-related hepatitis. Given the trend of reduction in mortality from these clinical studies and the likelihood that enteral nutrition improves the patient status from GDG consensus, we believe that enteral nutrition could also have a positive impact on length of stay. Thereby, we consider that the use of enteral nutrition in this patient population is likely to be cost-effective.

3.4.7 RECOMMENDATIONS

R24 Offer nutritional support to people with acute alcohol-related hepatitis. This may require nasogastric tube feeding¹⁸.

3.4.8 Research recommendations

RR6. What is the clinical and cost-effectiveness of enteral nutritional support versus normal diet to improve survival in patients with acute severe alcohol-related hepatitis?

¹⁸ See Nutrition support in adults: oral nutrition support, enteral tube feeding and parenteral nutrition. Clinical guideline 32 (2006). Available from www.nice.org.uk/CG032

Alcohol use disorders: clinical management: full guideline DRAFT (September 2009)

4 Alcohol-related Pancreatitis

Prolonged hazardous drinking can result in progressive and irreversible damage to the pancreas gland. This occurs on the background of pancreatic inflammation, acinar atrophy and, ultimately, fibrosis and can result in significant exocrine and endocrine insufficiency. Some individuals may develop this condition with alcohol intakes as low as 20 g/day; others may need to drink in excess of 200 g/day before evidence of the disease develops; others may never develop this condition no matter how much they drink or for how long. In susceptible individuals the longer the duration of drinking the greater the risk of developing significant pathology.

Acute alcohol-related pancreatitis may present as an acute episode of abdominal pain, nausea and vomiting and in severe cases can be accompanied by profound metabolic abnormalities and circulatory collapse. These acute episodes may recur, often precipitated by an increase in alcohol intake. Complications such as narrowing of the common bile duct, localized leakage of pancreatic fluid and pancreatic exocrine and endocrine insufficiency may develop resulting in jaundice, pseudocyst formation, malabsorption and diabetes. In some individuals, however, the clinical course is insidious with progression to pancreatic insufficiency without acute inflammatory episodes.

The major clinical features of chronic pancreatitis are abdominal pain coupled with malabsorption/maldigestion and diabetes resulting from the exocrine and endocrine insufficiency. The stages and natural history of alcohol-related chronic pancreatitis have been difficult to characterize due to the fact that patients may present having suffered from symptoms for varying periods of time. In addition, the pancreas is rarely biopsied unless malignancy is suspected. Nevertheless, withdrawal of alcohol at an early stage may arrest the process and, even when the condition is established, may reduce the number of inflammatory episodes and allow for better control of both exocrine and endocrine insufficiencies.

4.1 DIAGNOSIS OF CHRONIC ALCOHOL-RELATED PANCREATITIS

4.1.1 CLINICAL INTRODUCTION

The diagnosis of chronic pancreatitis is based on relevant symptoms, imaging and the assessment of pancreatic function. Histological diagnosis requires a biopsy, which is rarely available. With specific treatments available for pancreatic pain and insufficiencies it is important to investigate appropriately and to confirm the diagnosis as early as possible in the pathogenic process.

The clinical question asked and upon which the literature was searched was:

"What is the diagnostic accuracy of abdominal ultrasound versus computed tomography (CT) for the diagnosis of alcohol-related chronic pancreatitis?"

4.1.2 CLINICAL METHODOLOGICAL INTRODUCTION

Three studies were identified that reported on the diagnostic accuracy of CT and abdominal ultrasound in patients with chronic pancreatitis ¹²⁷; ¹²⁸; ¹²⁹. Papers were excluded if they reported on either CT *or* ultrasound but not both. None of the papers reported the results of patients with alcohol-related chronic pancreatitis separate from other aetiologies of chronic pancreatitis. The three studies varied with respect to the patient population and the 'gold standard' used for diagnosis. See Table 3-1 for further details. Note, the studies are likely to overestimate diagnostic accuracy due to incorporation bias. Incorporation bias occurred when the result of the index test is used in establishing the final diagnosis, **Level 1b+**

Bibliographic	No. of	Prevalence	Patient characteristics	Type of	Reference
reference	patie			test	standard
	nts				
SWOBODNIK	N=75	27/75 (36%)	Patients referred for	Ultrasound	73% laboratory
1983128	N=70	chronic	endoscopic retrograde	СТ	data, functional
Prospective	includ	pancreatitis	cholangiopancreatography		tests and
	ed in		(ERCP) with suspected		morphological
	analys		pancreatitis		imaging and 6
	is				month to 1 year
			Male:female 42:33, mean		follow-up
			age 49 yrs		27% final
					diagnosis
					confirmed by
					laparotomy or
D.0.0011 0.0.0130	N. 404	50 (10)			autopsy
ROSCH 2000 ¹²⁹	N=184	53/184	Inpatients referred for	Clinical	Surgery,
Retrospective		(29%) Chronic	suspected pancreatitis	assessment (laboratory	histology and cytology plus
		pancreatitis	Male:female 111:73, mean	findings	information
		without focal	age 56 yrs	plus	from one year
		inflammatory	age 50 yrs	ultrasound)	follow-up
		mass; 18/184		ultrasoulluj	ionow-up
		(10%)		СТ	
		Chronic			
		pancreatitis			
		with			
		inflammatory			
		mass			

Table 4-1. Summary of included studies.

		77/10/			
		77/184			
		pancreatic			
		malignancy			
		(42%)			
BUSCAIL 1995127	N=81	44/81 (54%)	Patients referred for	Ultrasound	Diagnosis based
Prospective		diagnosed	suspected pancreatitis	СТ	on clinical,
		with chronic	Chronic pancreatitis		biochemical and
		pancreatitis	With calcifications:		CT, abdominal
			male:female 22:2, mean		ultrasound,
			age 48 years, clinical		endoscopic
			symptoms: abdominal pain		ultrasonography
			and/or weight loss 22/24		and ERCP
			Alcohol aetiology 24/24		
			Without calcifications:		
			With calcifications:		
			male:female 17:3, mean		
			age 47 years, clinical		
			symptoms: abdominal pain		
			and/or weight loss 16/20,		
			pain and jaundice 2/20,		
			alcohol aetiology 20/20		

4.1.3 CLINICAL EVIDENCE STATEMENTS

Table 4-2 below summarises the results for the three studies

Table 4-2. Summary of results.

		СТ			Ultrasound			
	Specifi city	Sensiti vity	PPV	NPV	Specifi city	Sensiti vity	PPV	NPV
BUSCAIL 1995 ¹²⁷) Chronic pancreatitis (patients with and without calcifications)	75%	95%	95%	86%	58%	75%	67%	66%
ROSCH 2000 ¹²⁹ Pancreatic disease versus normal pancreas	91%	78%	97%	51%	94%1	35%	96%	27%
SWOBODNIK 1983 ¹²⁸								

Chronic pancreatitis	98%	74%	95%	85%	100%	52%	100%	77%
								ł

PPV Positive predictive value, NPV negative predictive value

¹ Clinical assessment - laboratory values and ultrasound results

Level 1b+

4.1.4 HEALTH ECONOMIC METHODOLOGICAL INTRODUCTION

No relevant economic analysis was identified that assessed the cost-effectiveness of abdominal ultrasound and computed tomography scan for the diagnosis of alcohol-related chronic pancreatitis. The cost of the procedures in England and Wales were presented to the GDG.

4.1.5 HEALTH ECONOMIC EVIDENCE STATEMENTS

In England and Wales, computed tomography scans (two areas with contrast) are approximately twice as expensive as ultrasound scans: the national average unit cost varies from £96 to £125 per procedure for computed tomography scans and from £45 to £64 per procedure for ultrasound scans ¹⁰⁰.

We believe that in current practice, a patient would usually be offered a CT scan in specialist clinical practice (based on history and symptoms), but would more likely get an ultrasound in primary care due to easier access. Even though CT scans are more expensive they may well be cost-effective or even cost saving compared with ultrasound in patients where there is a high clinical suspicion since they are far more sensitive at diagnosing chronic pancreatitis and have a high level of specificity. However, this might require direct access to CT scans for primary care practices.

4.1.6 EVIDENCE TO RECOMMENDATIONS

Before reviewing the evidence the GDG discussed the difficulty in writing guidance for the diagnosis of chronic alcohol-related pancreatitis. Chronic pancreatitis is characterised by progressive irreversible damage that ultimately results in both endocrine and exocrine insufficiency , and structural abnormality of the pancreas. The extent of each of these will vary between patients. The GDG concluded that no single test will give all of the information needed to make a diagnosis. Rather, an assessment of structure and function is required and this is reflected in the first recommendation.

When reviewing the evidence for ultrasound scan (USS) versus CT for the diagnosis of chronic pancreatitis, the GDG felt that there was an important differentiation to make: abdominal USS is a good first line test in patients with abdominal pain of unknown aetiology, however, if the history and symptoms suggest chronic pancreatitis, (if the index of Alcohol use disorders: clinical management: full guideline DRAFT (September 2009) 141

suspicion is high), USS does not have comparable sensitivity and a CT should be the first line investigation. In addition, given the higher sensitivity of CT compared to USS and its high specificity, even being twice as expensive, the GDG believe that the use of CT in well selected patients is likely to be cost-effective (improving clinical outcomes and reducing the use of public resources). Finally, it was recognized by the GDG that if the clinical picture strongly suggests chronic pancreatitis and the USS does not, the patient will have a CT at some point. In addition, if chronic pancreatitis is suggested by an USS, the patient will also, ultimately, have a CT scan. Therefore, if the clinical picture is suggestive, it was felt that it was better to skip the USS and use CT as the first line imaging modality. This is reflected in the second recommendation.

4.1.7 RECOMMENDATIONS

- R25 To inform a diagnosis of chronic alcohol-related pancreatitis use a combination of:
 - the patient's symptoms
 - an imaging modality (see also recommendation 26) to determine pancreatic structure **and**
 - tests of pancreatic exocrine and endocrine function.
- R26 Use computed tomography as the first-line imaging modality for the diagnosis of chronic alcohol-related pancreatitis in those patients with a history and symptoms suggestive of chronic alcohol-related pancreatitis.

4.2 DIAGNOSIS OF ACUTE ALCOHOL-RELATED PANCREATITIS

The comparison of diagnostic tools used to obtain a diagnosis of acute pancreatitis was included the scope of this guideline, however, as this is considered uncontroversial it was de-prioritised for literature review. The GDG refer readers to the publication issued by the UK working party on acute pancreatitis publication titled 'UK guidelines for the management of pancreatitis'¹³⁰ for further information in this area.

4.3 PANCREATIC SURGERY VERSUS ENDOSCOPIC THERAPY FOR CHRONIC ALCOHOL-RELATED PANCREATITIS

4.3.1 CLINICAL INTRODUCTION

The most troublesome symptom of chronic alcohol-related pancreatitis is pain. This pain is usually epigastric and may radiate to the back and flanks. It can be intermittent or continuous, and may alleviate late in the natural history; possibly associated with the loss in pancreatic exocrine function. Patients with chronic pancreatitis may, in addition to the pain they experience intrinsic to the disease itself, also develop pain in association with episodes Alcohol use disorders: clinical management: full guideline DRAFT (September 2009) 142

of acute pancreatitis, formation of pseudocysts or associated conditions such as peptic ulceration. However, it is the pain of chronic pancreatitis to which we refer in this guideline. In spite of the varying aetiologies of chronic pancreatitis, the presenting symptoms are the same. As such the evidence was taken from studies of all types of chronic pancreatitis.

It is important to encourage abstinence from alcohol in this patient population. Abstinence probably reduces the severity of the pain and improves the response to treatment. Typically, pain is managed with simple analgesics but the dosage and strength of these may need to be increased over time. Many patients require high doses of opiates to control pain at its worst. However there are now a number of interventional procedures that can also be used to treat pain in this population. These range from nerve block/destruction (coeliac plexus block and thoracoscopic splanchnicectomy) to pancreatic endotherapy and surgery.

It was the aim of the GDG to determine which of these interventional therapies was most effective in the management of pain in this patient population. In addition, they aimed to determine the most appropriate timing for these procedures and whether they were best performed early in the natural history or later, after, for instance, analgesic failure. The following clinical questions were asked and upon which the literature was searched:

 In patients with chronic alcohol-related pancreatitis, does early versus later referral for a) coeliac axis block b) transthoracic splanchnicectomy c) early referral for coeliac axis/plexus block versus transthoracic splanchnicectomy improve patient outcomes?
 In patients with chronic alcohol-related pancreatitis, what is the safety and efficacy of a) transthoracic splanchnicectomy compared with coeliac axis/plexus block? b) or either intervention compared to conservative management?
 In patients with chronic alcohol-related pancreatitis, does early versus later referral for a) endoscopic interventional procedures b) surgery c) early referral for surgery versus endoscopic interventional procedures improve patient outcomes?
 In patients with chronic alcohol-related pancreatitis, what is the safety and efficacy of endoscopic interventional procedures improve patient outcomes?
 In patients with chronic alcohol-related pancreatitis, what is the safety and efficacy of endoscopic interventional procedures compared with surgery? Or either intervention compared with conservative management?

4.3.2 CLINICAL METHODOLOGICAL INTRODUCTION

The following studies were identified:

- One paper incorporating two case-control studies comparing coeliac plexus block with splanchnicectomy ¹³¹.
 Level 2+
- Two RCTs comparing surgery with endoscopic procedures ¹³²,¹³³ Level 1+

- Two prospective cohorts comparing surgery with conservative management (no surgery) ^{134,135}
 Level 2+
- One prospective case series comparing surgery with patients on opioids and one with those not on opioids (patients who are not on opioids are likely to be younger with a shorter duration of illness than those not on opioids and may therefore represent an early versus late surgery comparison) ¹³⁶
 Level 2+

Coeliac plexus block versus splanchnicectomy

One study, based on two non-randomised, prospective, case control studies compared patients with chronic pancreatitis treated with neurolytic coeliac plexus block (NCPB) or videothorascopic splanchnicectomy (VERSUSPL) in both of which the control patients were managed conservatively ¹³¹. In both studies, the patient 'chose the procedure according to their needs'. The two studies differed with respect to the quality of life measures used. A meta-analysis was performed on the data, but no details of heterogeneity were reported. Important methodological aspects of the study include:

- Non-randomised design
- the patients chose which intervention to undergo
- small sample size
- limited reporting of clinical and demographical variables at baseline
- analyses did not including confounding variables or adjust for baseline differences
 Level 2+

Surgery versus conservative management

Two prospective cohort studies compared patients with chronic pancreatitis who underwent surgery with patients who did not undergo surgery ¹³⁵; ¹³⁴. The studies differed with respect to patient population, surgical intervention and length of follow-up. Importantly, patients who underwent surgery may represent a more severe end of the disease spectrum than those who did not undergo surgery. In one study, disabling pain was present in all patients who were operated on, but in only 28/44 (64%) of patients who were not operated on ¹³⁵. No details of any differences between patients who were operated on compared with those who were not were reported in the remaining study ¹³⁴. One additional prospective cohort study compared patients who were on opioids prior to surgery with those who were not on opioids ¹³⁶.

Level 2+

Surgery versus endoscopic therapy

Two RCTs were identified that compared surgery with endoscopic interventions ¹³³,¹³². In the Dite study, 72 patients were randomised and an additional 68 patients chose whether to

undergo surgery or endoscopic treatment. The two studies differed with respect to both interventions. In the Dite study, 80% of patients opting for surgery underwent resection. In the Cahen study, all patients underwent a drainage procedure. The Dite study tailored the surgery to the individual. In comparison to the Cahen study, the Dite study did not use shock-wave lithotripsy, cumulative stenting or repeated treatment after recurrence of symptoms

Level 1+

- 1 4.3.3 CLINICAL EVIDENCE STATEMENTS
- 2 Coeliac plexus block versus splanchnicectomy
- 3 **•** Pain and quality of life
- 4 Table 3-3below shows that at eight-week follow-up both treatments reduced pain, but
- 5 VERSUSPL was more effective than NCPB. Physical well-being and fatigue also improved
- 6 with treatment compared to conservative management but with little difference
- 7 between the two treatments. Note, the follow-up period was relatively short ¹³¹.
- 8 Level 2+
- 9

10 **Table 4-3. Summary of results.**

Outcome	VERSUSPL (n=18) mean effect (compared with control) (95%CI)	NCPB (n=30) mean effect (compared with control) (95%Cl)
Pain (VAS) 0 to 100%	15.82 (14.68 to 16.96)	8.89 (8.30 to 9.48)
severe pain		
Physical well-being	1.81 (1.57 to 2.06)	2.19 (2.96 to 2.42)
Emotional well-being	0.08 (-0.11 to 0.29)	3.55 (3.27 to 3.84)
Fatigue	2.52 (2.25 to 2.79)	6.87 (6.39 to 7.34)
Ailments typical for the	0.05 (-0.14 to 0.26)	0.64 (0.45 to 0.83)
illness		

11

12

16

17

18

19

13 ► Opioid use

- There was no statistical difference in the proportion of patients who underwent NCPBand VERSUSPL for:
 - Opioid withdrawal (8/18 (47%) versus 11/30 (36%); RR1.21; 95%CI 0.60 to 2.44; p=0.59)
 - Reduction in opioid dose (9/18 (53%) versus 14/30(45%); RR1.07; 95%CI 0.59 to 1.95; p=0.82)¹³¹
- 20
- 21 22

Adverse events/complications

Level 2+

Orthostatic hypotension was observed for three days in 9/30 (30%) from the NCPB
group and in 1/18 (5.5%) patients in the VERSUSPL group (RR5.40; 95%CI 0.74 to
39.17; p=0.10). Intermittent intercostal pain was treated with paracetamol for two
weeks in 4/18 (22%) patients in the VERSUSPL group. In one of these, an intercostal
nerve block was performed and in one patient a classic thoracotomy was performed due

- to massive adhesions (excluded from study) ¹³¹.
- 29 Level 2+
- 30
- 31 **Mortality**
- 32 No cases reported ¹³¹.
- 33 Level 2+
- 34

1		
2	Surgery versus conservative man	agement
3	▶ Pain	
4		n in pain in patients who underwent surgery
5	compared to those managed conservativ	ely:
6		
7 8	• Disabling abdominal pain $(28/44)$ 0.51 to 0.90; p<0.00001) ¹³⁵ .	(64%) versus 41/41 (100%); RR0.64; 95%CI
o 9	0.51 to 0.90; p<0.00001) ¹³³ .	
9 10	A second study reported no significant d	fference in pain in the surgery group compared
10	with the conservative management grou	
12	with the conservative management grou	
13	• pain disappeared or distinctly su	bsided immediately after operation in 62/70
14		ntation of the postoperative course: 40 had pain
15		ars, but pain relapse occurred in 22 (36%)
16		eration. There was no significant difference in
17		d and non-operated patients ($p=0.61$) ¹³⁴
18	Level 2+	
19		
20	▶ Weight gain	
21	One study reported on this outcome.	
22		
23	A significantly higher proportion of patie	nts who underwent surgery compared with
24	those who did not:	
25		sus 5/38 [13%]; RR6.33; 95CI 2.76 to 14.56;
26		gained was significantly higher (4.2 kg [1.4 to
27	12.7] versus 0.50 kg [-3.6 to 2.7];	p<0.05) ¹³⁵ .
28	Level 2+	
29		
30	► Pancreatic function	
31		rence between the surgery and no surgery
32	groups for the proportion of patients wh	_
33) (16/19 [84%] versus 7/24 [29%]; RR2.89;
34 25		gressed to 'severe' (3/19 [16%]versus 17/24
35 26	[71%]; RR0.22; 95%CI 0.08 to 0.65; p=0.	JU6) ¹⁵⁵ .
36 37	Level 2+	
37 38	► Mortality	
39	 One operative death occurred ¹³⁵ 	
40	Level 2+	
41		
42	• Three natients died within eight	weeks of surgery. Three further patients died of
43	hypoglycaemia ¹³⁴ .	income of surgery. Three further patients all of
44	Level 2+	
45		
46	► Complications	
	Alcohol use disorders: clinical management: full g	uideline DRAFT (September 2009) 147

- 1 Three patient had wound infections ¹³⁵.
- 2 Level 2+ 3 4 Surgery plus previous opioid use versus surgery with no previous 5 opioid use 6 One prospective cohort reported on the outcomes of patients following pancreatic 7 resection in patients with prior opioid use ¹³⁶. 8 Level 3 9 10 ► Group differences 11 Patients not on opioids compared to those who were on opioids prior to surgery: 12 were significantly older (median 48 [18 to 79] versus 42 [21 to 63]; p=0.001) • were significantly older when the first symptoms appeared (median 43 [9 to 77] 13 • versus 35 [8 to 59] years; p=0.004) 14 had significantly fewer hospitalisations (median 3 [0 to 42] versus 10 [1 to 30]; 15 • 16 p=0.001) 17 had a significantly shorter duration of symptoms (2 [0 to 40.5] versus 5.9 [0.1 to • 18 22.1]; p=0.038) significantly more patients in the opioid compared to the non-opioid group 19 20 underwent one or more types of total pancreatectomy (21 [46%] versus 19 21 [14%]; p=0.0002).¹³⁶ 22 Level 3 23 ► Pain 24 25 There was a significant difference in the non-opioid and opioid groups on the visual 26 analogue scale (VAS) score preoperatively (median 7 [0 to 10] versus 9 [7 to 10]; 27 p=0.001)and at 3 months (median 2 [0 to 7] versus 3 [0 to 9]; p=0.030). There were no 28 significant differences at 12 (no data) or 24 months (no pain 57 versus 49%; not 29 significant).136 30 Level 3 31 32 ► Complications 33 Patients on opioids experienced a significantly greater number of haemorrhages and 34 early reoperation ¹³⁶. See Table 3-4below.
- 35 Level 3

36

37 **Table 4-4. Summary of results.**

	Patients without opioid use n=66	Patients with opioid use n=46	p value
Patients with	34	27	0.56
complications			
Deaths	1	4	0.15
Pulmonary	8	12	0.079
complications			
Cardiovascular	6	3	0.73

complications			
Gastrointestinal fistula	12	10	0.63
Abscess/collection	6	8	0.24
Delayed gastric	4	2	0.99
emptying			
Haemorrhage	2	8	0.015
Early reoperation	3	11	0.003
Other complications	6	2	0.46
Hospital stay	20 (19 to 38)	24 (23 to 47)	0.34

1 2

3 Surgery versus endoscopy

4 One RCT reported that surgery was more effective than endoscopic treatment with

5 respect to pain control, physical health and the number of procedures required. The

6 mean difference between surgery and endoscopic interventions (adjusting for baseline

7 differences) was 24 points out of 100 on the Izbicki pain score, representing no pain

8 (surgery) or daily pain (endoscopic interventions) or taking no sick leave for pain

9 (surgery) or being permanently unable to work (endoscopic interventions) ¹³². The

10 results are summarised in Table 3-5below.

11 Level 1++

12

13 **Table 4-5. Summary of results.**

	Endoscopy	Surgery	Endoscopic versus	p value
	N=19	N=20	Surgical	
			(95%CI)	
Izbicki pain	51±23	25±15	24 (11 to 36)*	< 0.001
score (0 to 100,				
100 severe pain)				
Pain relief - no.	6 (32%)	15 (75%)	-43 (-72 to -15)**	0.007
(%)				
Technical	10 (53%)	20 (100%)	-47 (-70 to -25)**	< 0.001
success				
Complications	11 (58)	7 (35)	23 (-8 to 53)**	0.15
no. (%)				
Major	0	1 (5)		
Minor	11 (58)	6 (30)		
Death no. (%)	1 (5)	0	5 (-5 to 15)**	0.49
Hospital stay -	8 (0 to 128)	11 (5 to 59)	-3 (-9 to 4)***	0.13
median no. days				
(range)				
Procedures -	8 (1 to 21)	3 (1 to 9)	5 (2 to 8)***	< 0.001
median no.				
(range)				
SF-36 quality of				

1:6				
life				
Physical	38±9	47±7	-8 (-13 to -3)*	0.003
Mental	40±9	45±9	-3 (-8 to 1)*	0.15
Exocrine				
function				
Insufficiency	11	13	RR0.69; 0.54 to 1.47	0.65
persisted no.				
Insufficiency	6	1	RR6.32; 0.84 to 47.69	0.07
developed no.				
Insufficiency	1	3	RR0.35; 0.04 to 3.09	0.35
resolved no.				
Sufficiency	0	3	RR0.15; 0.01 to 3.72	0.2
persisted no.				
Endocrine				
function				
Insufficiency	3	4	RR0.79; 0.20 to 3.07	0.73
persisted no.				
Insufficiency	3	1	RR3.16; 0.36 to 27.78	0.30
developed no.				
Insufficiency	1	0	RR3.15; 0.14 to 71.88	0.47
resolved no.				
Sufficiency	11	15	RR0.77; 0.49 to 1.22	0.27
persisted no.				
No - number				

1 No. = number

2 * Mean difference after analysis of covariance with adjustment for baseline values

3 ** Absolute difference between the percentages

4 *** Difference between the medians

- 1 Similarly, the study by Dite also reported a significant improvement in pain and increase
- 2 in body weight associated with surgery compared with endoscopic procedures. The
- 3 results are summarized in Table 3-6below.
- 4 Level 1+
- 5
- 6 **Table 4-6. Summary of results.**

	Total	group N=1	140	Randomi	sed group	N=72
	Endoscopic	Surgery	RR;	Endoscopic	Surgery	RR;
	n=64 (%)	n=76	95%CI;p	n=36 (%)	n=36	95%CI;
		(%)			(%)	P value
Mortality	0	0	-	0	0	-
Technical	62/64 (97)	-	-	-	-	-
Success				,		
Complications	5 (8)	6 (8)	0.99;	NR	NR	NR
			0.32 to			
			3.09;			
			p=0.99			
Abdominal						
pain:						
Complete	9/64 (14)	28/76	0.38;	5/36 (14)	12/36	0.42;
absence		(37)	0.19 to		(33)	0.16 to
			0.75;			1.06;
			p=0.005			p=0.07
					10.10.1	
Partial relief	33/64 (52)	37/76	1.06;	17/36 (47)	19/36	0.89;
		(49%)	0.76 to		(53)	0.54 to
			1.47;			1.42;
N			p=0.73	11/06 (00)	F (0)	p=0.64
No success	22/64 (34)	11/76	2.38;	14/36 (39)	5/36	2.80;
		(14)	1.25 to		(14)	1.13 to
			4.52;			6.95;
Deducialit	17/(4(27)	20/76	p=0.008	10/26 (20)	17/06	p=0.03
Body weight:	17/64 (27)	39/76	0.52;	10/36 (28)	17/36	0.59;
Increase		(51)	0.33 to		(47)	0.31 to
			0.82;			1.10;
			p=0.05			p=0.10
Unchanged	15/64 (23)	15/76	1.19;	9/36 (33)	9/36	1.0;
onenangeu	10/01 (20)	(20)	0.63 to	2700 (00)	(33)	0.45 to
			2.24;			2.23;
			p=0.60			p=1.0
			r 0.00			r
Decrease	32/64 (50)	22/76	1.73;	17/36 (47)	10/36	1.70;
_	, ()	(29)	1.12 to	, , ,	(28)	0.91 to
			1	1		1

			p=0.01			p=0.10
Diabetes	23/64 (36)	33/76	0.83;	12/36 (33)	14/36	0.86;
mellitus		(43)	0.55 to		(39)	0.46 to
			1.25;			1.59;
			p=0.37			p=0.62

NR = not reported

1 2

3 Complications

4 **Endoscopic procedures**

- Two bleeding episodes, two cases of acute pancreatitis and one pancreatic abscess ¹³³
 were reported.
- 7 Level 1+
- 8 9

► Surgery

- 10 Two cases of acute pancreatitis, two fistulas, one case of ileus and one case of
- 11 anastomotic leakage. One patient underwent repeat surgery due to ileus and one
- 12 patients for anastomotic leakage ¹³³.
- 13 Level 1+
- 14

15 4.3.4 HEALTH ECONOMIC METHODOLOGICAL INTRODUCTION

- 16 No cost-effectiveness analysis was identified that assessed the treatment and the timing
- 17 for treating people with alcohol-related chronic pancreatitis using coeliac access block,
- 18 splanchnicectomy, endoscopic interventional procedures, or surgery.
- 19 In current medical practice in England and Wales, surgical and endoscopic interventions
- 20 are available for patients with chronic pancreatitis and a dilated pancreatic duct. The
- 21 clinical literature review included two RCTs comparing endoscopic and surgical
- 22 interventions in this population of patients^{132,133}. The findings of both RCTs showed that
- 23 surgical drainage of the pancreatic duct was more effective than endoscopic drainage.
- 24 Surgical and endoscopic drainage of the pancreatic duct are interventions associated
- 25 with extensive resource use and cost, and there is a lack of published health economic
- 26 evidence to support the use of one or the other. For these reasons, we undertook our
- 27 own economic evaluation comparing these two interventions (see A.4 for the full
- 28 analysis).
- 29

30 4.3.5 Health economic evidence statements

- 31 The objective of the economic analysis undertaken was to assess the cost-effectiveness
- 32 of the surgical drainage of the pancreatic duct compared to the endoscopic drainage, for
- 33 patients with chronic pancreatitis and an obstructed pancreatic duct in England and
- 34 Wales.
- This economic analysis was conducted mainly based on the Cahen 2007 study¹³², from
- 36 an England and Wales NHS perspective, over a 24-month time horizon for the base-case
- analysis (median follow-up time in the Cahen trial). A lifetime horizon was used in the

- 1 sensitivity analysis. The health outcome considered was Quality-Adjusted Life Year
- 2 (QALY). An annual discount rate of 3.5% was applied to both costs and health outcomes
- 3 incurred after one year.

4 In the Cahen study¹³², the EQ-5D questionnaire was completed by participants 5 (unpublished). Data were collected for each arm at baseline, six weeks, three months, six 6 months, 12 months, 18 months, and 24 months. The patient-level EQ-5D data from the 7 trial was obtained and utility scores generated for both arms at every follow-up point 8 using the UK tariff. As the baseline utility scores differed slightly between arms, it was 9 controlled for utility score at baseline by applying linear regression. The utility scores 10 were used to calculate QALYs (utility score * time-period) for the 24-month duration of 11 the trial for the base-case analysis, and a lifetime horizon in sensitivity analyses. For the 12 lifetime horizon, a constant utility score, post trail, was assumed for the endoscopy 13 group (using the value at 24 months). No difference in utility score post-trial between 14 the cohorts and therefore applied the constant utility score of the endoscopy group 15 (value at 24 months) to the surgical cohort was assumed.

16 Costs considered in this analysis, taken from the Cahen trial¹³² for the first 24 months

17 (Cahen trial follow-up), were related to therapeutic procedures (surgical drainage,

18 endoscopic drainage, and lithotripsy sessions), diagnosis procedures, the treatment of

19 complications, the treatment of exocrine insufficiency, and the conversion to surgical

20 drainage for patients in the endoscopic arm in who the treatment failed. After 24-

21 months, the same yearly cost was applied to patients in both the surgery and endoscopy

22 groups, and was extrapolated from the observed resource usage from the Cahen trial.

23 In the Cahen 2007^{132} RCT, one death was reported in the endoscopy group (5%), which 24 was not clearly related to the intervention. There were no deaths related to the 25 interventions in the Dite 2003¹³³ RCT. For the base-case analysis, we assumed no 26 mortality in either group. From a review of clinical studies, the mortality related to 27 surgical drainage was estimated to be 0.9%. It was decided to use a mortality rate 28 related to surgery of 0.9% and an upper estimate of 2% in the sensitivity analysis. These 29 mortality rates were applied to patients in the surgical group and to patients who 30 converted to surgery in the endoscopic group, and were applied on the Cahen within-31 trial time horizon (24 months) and on a lifetime horizon.

32

Sensitivity analyses were performed to assess the robustness of the results to plausible 33 34 variations in the model parameters. Five one-way sensitivity analyses were conducted, 35 varying one parameter at a time from the base case: two were costing differently the 36 diagnostic procedures; two were varying the ratio of patients who convert to surgery 37 after failure of the endoscopic treatment using extreme values from a review of clinical 38 studies; and one varied the length of hospital stay adjusting the amount of in-patient 39 bed-days from the length of hospital stay included in the HRG-code cost to the amount 40 reported by the Cahen study¹³². In addition, two-way sensitivity analyses were 41 performed, concurrently using two extreme varying estimates from a review of clinical 42 studies: the probability of stent-related complication (endoscopic group) and the rate of 43 re-operation (surgical group). Four combinations were assessed. Finally, sensitivity 44 analyses were conducted applying mortality rates to surgical drainage on the Cahen 45 within-trial time horizon (24 months) and on a lifetime horizon.

- 1
- 2 The result of the base-case analysis was that surgical drainage of the pancreatic duct
- 3 dominates endoscopic drainage (it was more effective and less costly – Table 3-7.). The
- sensitivity analysis showed that the surgical option remains dominant (cost-saving) in 4
- 5 the majority of scenarios (Table 3-8 and Table 3-9). The results were sensitive to the
- proportion of patients in the endoscopy group who convert to surgical drainage when 6 7 the endoscopic drainage failed. When patient conversion to surgery was less than 10%,
- 8 surgical drainage was no longer cost-saving, but it was still highly cost-effective when
- compared with a threshold of £20,000 per OALY gained (£1,495 per OALY gained when 9
- the probability of conversion to surgery was 0% Table 3-8). In addition, surgical 10
- 11 drainage was no longer cost-saving when a lower complication rate was applied to
- 12 endoscopy and a higher re-opearation rate was applied to surgery. Nevertheless,
- 13 surgery was again highly cost-effective (£700 per QALY gained - Table 3-8). The base-
- 14 case analysis, the analyses considering mortality rates related to surgical drainage, and 15 all other sensitivity analyses showed very high probabilities of cost-effectiveness for
- surgical drainage compared to endoscopic drainage. The presented results reveal that 16
- 17 surgical drainage is highly cost-effective compared to endoscopic drainage.
- 18

19 Table 4-7.

Base-case analysis probabilistic results: Mean costs					
	Endoscopy	Surgery			
Therapeutic procedures	£5,257	£6,108			
Diagnostic procedures	£498	£337			
Complications	£192	£280			
Exocrine function	£800	£671			
Conversion to surgery	£1,210	n/a			
Total	£7,957	£7,396			
Table 4-8.					

20

21 Table 4-8.

	Probabilistic results					
	Cost Difference (surgery- endoscopy)	Probability of surgery being cost-saving	QALY gained (surgery – endoscopy)	Incremental Net Monetary Benefit* (surgery - endoscopy)	Probability of surgery being cost- effective*	
Base-case analysis	-£561	54.5%	0.39	£8,441	99.0%	
Sensitivity analyses	considering m	ortality relate	ed to surgery			
0.9% mortality related to surgery – 24-month time horizon	-£561	54.4%	0.38	£8,183	98.8%	
2% mortality related to surgery – 24-month time horizon	-£561	54.4%	0.37	£7,878	98.5%	
0.9% mortality related to surgery – lifetime horizon	-£733	57.1%	0.33	£7,305	97.8%	
2% mortality	-£873	59.2%	0.25	£5,898	95.2%	

			1		
related to surgery –					
lifetime horizon					
Other one-way sensi	tivity analysis	1			
Diagnostic	-£745	56.1%	0.39	£8,580	99.1%
procedure - 100%					
MRI					
Diagnostic	-£636	55.9%	0.39	£8,516	99.3%
procedure - 100%					
CT-Scan					
Lower estimate for	£584	42.1%	0.39	£7,232	97.0%
conversion to					
surgery post-					
endoscopy (0%)					
Higher estimate for	-£860	58.4%	0.39	£8,704	99.7%
conversion to					
surgery post-					
endoscopy (26%)					
Length of hospital	-£53	48.3%	0.39	£7,903	98.8%
stay adjustment					

1 * Compared with a threshold of £20,000 per QALY gained

2

3 **Table 4-9**.

Two-way sensitivity analysis		Endoscopic complication rates			
		Higher (55%) Lower (3%)			
Surgical	Higher	-£142*	£274		
complication rates	(17.5%)	49.9%**	44.7%		
		£7,980¥	£7,552		
		98.6% ^{¥¥}	98.5%		
	Lower	-£913	-£611		
	(2.6%)	58.9%	56.8%		
	_	£8,735	£8,466		
		99.2%	99.3%		

4 * Cost difference (surgery - endoscopy)

5 ** Probability of surgery being cost-saving

6 ¥ Incremental Net Monetary Benefit – £20,000 per QALY gained (surgery - endoscopy)

7 ****** Probability of surgery being cost-effective at £20,000 per QALY gained

8

A 24-month time horizon was chosen for the base-case analysis as this was the period
covered by the Cahen study¹³². It was judged that extrapolating the results of the Cahen
trial would involve uncertainty and that the 24-month time horizon adequately captures
the difference in economic and health outcomes between the compared interventions

(keeping in mind that these treatments are undertaken for pain-control). The Cahen trialwas stopped after an interim analysis on the basis of a significant difference in outcomes

favouring surgery. This may have resulted in overestimating the health outcomes infavour of surgery.

18

19 The sensitivity analysis, varying the probability for conversion to surgery in the

20 endoscopy group showed that surgical drainage was no longer cost-saving when patient

21 conversion to surgery was less than 10%. However, even with a probability of

22 conversion to surgery of 0% surgery was highly cost-effective with a cost of £1,495 per

- 1 QALY gained. In addition, surgical drainage was no longer cost-saving when a lower
- 2 complication rate was applied to endoscopy and a higher re-opearation rate was applied
- 3 to surgery. Nevertheless, surgery was again highly cost-effective (£700 per QALY
- 4 gained).
- 5 The sensitivity analysis adjusting the amount of in-patient bed-days from the length of 6 7 hospital stay included in the HRG-code cost to the amount reported by the Cahen 8 study¹³², showed low cost savings for surgery, with the probability that surgery is cost-9 saving being 48%. However, the probability that surgery is cost-effectiveness for this analysis was 98.8%. The Cahen study¹³² was conducted in the Netherlands, a country 10 with a healthcare system and with practices in this area that may be different to the UK 11 12 NHS. Therefore the base-case analysis using the HRG-code length of hospital stay is 13 perhaps more relevant for estimating the cost impact on the UK NHS.
- 14
- 15 The sensitivity analysis applying mortality rates of 0.9% and 2% to surgical drainage
- showed cost-saving results with very high probabilities of cost-effectiveness. 16
- 17 Furthermore, the probability that surgery is cost-effective was very high across all
- analyses, varying from 95.2% to 99.7%. This was due to the magnitude of the 18
- 19 improvement in quality of life with surgical drainage compared to endoscopic drainage. 20
- 21 We have used medians to estimate means for some resource use outcomes, because they 22 were the best available estimates as reported by Cahen 2007¹⁹. In health economic 23 assessments, the mean is the most informative measure for costing resource use, and 24 provide information about the total cost that will be incurred by treating all patients, 25 which is needed as the basis for healthcare policy decisions. The median in contrast describe a 'typical' cost for an individual¹³⁷. The most costly interventions (surgical and 26 27 endoscopic therapeutic procedures, and lithotripsy sessions) were costed using median estimates. Although, the mean estimates by Dite 2003¹³³ for numbers of therapeutic 28 procedures seem to be in agreement with Cahen 2007¹³² medians. Moreover, to be safe, 29 30 we used conservative assumptions not favouring surgical drainage when costing 31 lithotripsy sessions.
- 32
- 33 Finally, the results of the present study cannot be extrapolated to all patients with ductal 34 obstruction due to chronic pancreatitis because patients with an inflammatory mass 35 were excluded from the Cahen trial¹³².
- 36
- 37
- 4.3.6 FROM EVIDENCE TO RECOMMENDATIONS 38
- 39 The GDG recognised that it was not within their scope to determine the safety or efficacy
- 40 of a specific surgical procedure for pain. Instead, they searched for evidence that would
- 41 help determine whether there is benefit for referral for intervention rather than
- 42 conservative management and when this should be done (either 'early', when the pain
- 43 commences, or 'late' after conventional escalation of treatment along the analgesic
- 44 ladder until this fails). More specifically, they attempted to determine whether there was
- 45 evidence for preferring coeliac axis block over splanchnicectomy, if either is considered,
- 46 and whether endoscopic procedures are better than surgery, if either of these is
- 47 considered.

¹⁹ Number of surgical and endoscopic therapeutic interventions; number of diagnostic interventions; total length of hospital stay; number of lithotripsy sessions.

- 1 2 The GDG noted that without intervention, a proportion of patients will become relatively 3 pain-free due to the natural history of the disease. However, there was concern that the 4 proportion of patients who become pain-free without intervention may be over-5 estimated. 6 7 The group discussed the likelihood that most patients with pain related to chronic 8 pancreatitis are not referred for consideration for surgical or endoscopic procedures. A 9 critical step in determining the optimal treatment is to determine whether the patient 10 has large (obstructive) or small (non-obstructive) duct disease. It was agreed that this 11 disease sub-stratification should be done as part of the routine assessment of these patients. The recommendations reflect this consideration by encouraging referral to a 12 13 specialist centre for consideration of multidisciplinary assessment. 14 The evidence comparing splanchnicectomy to coeliac axis block was of poor quality and 15 16 consisted of two case-control studies with small sample sizes. Due to the very limited 17 evidence base, the GDG felt that they were unable to make any recommendations that 18 would favour one intervention over the other. 19 20 There were two moderate-quality trials comparing surgery with conservative 21 management. The GDG did not think these provide definitive information, but support
 - the recommendation that patients should be referred for multidisciplinary assessmentand consideration of surgery.
 - 24
 - The literature comparing early to late surgery (before versus after long term opioid use)
 indicated that it was better to operate early thereby avoiding the possible problem of
 opioid dependence.
 - 28

29 With regard to large (obstructive) duct disease, there were two RCTs comparing 30 endoscopic against surgical intervention; one of moderate quality and one of high 31 quality. The high-quality study was terminated early due to significantly improved 32 outcomes associated with surgical intervention. This trial suggests that surgical 33 treatment is optimal in this population. The GDG was, however, reluctant to recommend 34 surgical therapy as the only option in these patients. There is a small, but definite 35 mortality and some patients may do well with endoscopic therapy. On the other hand, 36 endoscopic drainage involves more interventions than surgical drainage (median of 5 37 versus median of 1 according to the high quality study – Cahen 2007¹³²). The cost-38 effectiveness analysis undertaken comparing surgical and endoscopic drainages in 39 patients with large duct (obstructive) chronic pancreatitis showed that surgical drainage 40 is highly cost-effective compared to endoscopic drainage. It was agreed that patients 41 with large duct (obstructive) chronic pancreatitis should be offered surgery given that 42 current evidence suggests better outcomes with surgery compared to endoscopy. 43 44 With regard to pain from small duct disease, there is considerable debate over the

- 45 optimum management. Coeliac axis block, splanchnicectomy and surgery are available
- 46 options. Surgery was considered more controversial than in the large duct disease

- 1 population. In addition, the GDG was unable to determine from the evidence whether
- 2 coeliac axis block or splanchnicectomy was better for pain relief in this population. The
- 3 GDG felt that it is not possible to mandate these procedures based on the poor evidence
- 4 available.
- 5 In current practice, patients with poorly controlled pain from small duct disease will get
- 6 more analgesia in most places. The GDG recognise that coeliac axis block,
- 7 splanchnicectomy and surgery should be considered when appropriative. The
- 8 availability of this type of surgery is currently limited in England and Wales. The group
- 9 did agreed on consensus that patients with severe symptoms should be consider for
- 10 these procedures and offered them when appropriate. This is unlikely that the
- 11 recommendation will have much impact on resource utilisation.
- 12
- 13 4.3.7 Recommendations
- 14
- 15R27Refer people with pain from chronic alcohol-related pancreatitis to a16specialist centre for multidisciplinary assessment.
- 17R28Offer surgery, in preference to endoscopic therapy, to people with pain from18large-duct (obstructive) chronic alcohol-related pancreatitis.
- 19R29Offer coeliac axis block, splanchnicectomy or surgery to people with poorly20controlled pain from small-duct (non-obstructive) chronic alcohol-related21pancreatitis.
- 22
- 23
- 4.4 PROPHYLACTIC ANTIBIOTIC TREATMENT FOR ACUTE ALCOHOL-RELATED
 PANCREATITIS

26 4.4.1 CLINICAL INTRODUCTION

Acute alcohol-related pancreatitis can present as a relatively mild syndrome which 27 28 resolves spontaneously or as a severe illness with a high mortality. Acute necrotizing 29 pancreatitis can be complicated by infection of the necrotic pancreatic tissue and this 30 infection has an impact on morbidity and mortality. These infections are often bacterial. 31 Whilst antibiotic treatment for acute infections is not debated amongst clinicians, the 32 role of prophylactic antibiotics is; randomised trials of prophylactic antibiotics have 33 been performed since the 1970s. In spite of this, there is variation in practice across the 34 UK, presumably because of conflicting trial results. 35 36 The GDG sought to provide recommendations for the use of antibiotics in this condition

- 37 and thus searched the literature to address the following clinical question:
- 38

- 1 In patients with acute alcohol-related pancreatitis, what is the safety and efficacy
- 2 of prophylactic antibiotics versus placebo?
- 3
- 4 4.4.2 CLINICAL METHODOLOGICAL INTRODUCTION
- 5 For the comparison antibiotics versus placebo/no treatment, three RCTs on patients
- 6 with acute mild pancreatitis were identified ¹³⁸; ¹³⁹; ¹⁴⁰. These studies were performed
- 7 before CT imaging was available. See table 4-10 below for the study characteristics.
- 8 Level 1+
- 9

10 **Table 4-10**

Study (No.)	Severity	Inclusion criteria	Alcohol Aetiology
Mild pancreatitis			
HOWES ¹⁴⁰ N=95	Mild	Clinical pancreatitis	No details
1+		plus amylase > 160U/ml	reported
CRAIG ¹³⁹ N=46	Mild	Clinical pancreatitis	43/46 episodes
1+			
FINCH ¹³⁸ N=58	Mild	Clinical pancreatitis	22/31 (71%)
		plus amylase > 160	antibiotic vs
1+		U/ml	16/27 (59%) control

- 11
- 12
- 13 For patients with acute severe pancreatitis, six RCTs were identified ¹⁴¹ ¹⁴² ¹⁴³ ¹⁴⁴ ¹⁴⁵ ¹⁴⁶.
- 14 Only papers that used CT to confirm the diagnosis of pancreatitis were included. One
- 15 open label RCT was excluded due to study limitations ¹⁴⁷. See table 4-11 below for
- 16 study characteristics.
- 17 Level 1+
- 18
- 19 **Table 4-11**.

Study	Blinding	N Treatment/control	Diagnosis confirmed by	Mean Ransen score	Intervention	Duration of treatment (days)
GARCIA- BARRASA	Double- blind	22/19	СТ	NR	Ciprofloxacin	10 days

2008 ¹⁴² 1+						
DELLINGER	Double-	50/50	СТ	4.5	Metropenem	Mean
2007^{141} 1++	blind					10.6
ISENMANN 2004 ¹⁴³	Double	58/56	СТ	2.3	Ciprofloxacin with	21
1++					metronidazole	
SCHWARZ 1997 ¹⁴⁶	Open	13/13	СТ	4.8	Ofloxacin with metronidazole	10
1+						
SAINIO 1995 ¹⁴⁵	Open	30/30	СТ	5.5	Cefuroxime	> 14
1+			\frown			
PEDERZOLI 1993 ¹⁴⁴	Open	41/33	СТ	3.7	Impenem	14

1

2 4.4.3 CLINICAL EVIDENCE STATEMENTS

3 ► Mild pancreatitis

4 A summary of the results is presented in Table 3-10below. There were no significant

5 differences between the patients treated with antibiotics and those without in terms of

6 mortality, length of hospitalisation, duration of elevated serum amylase or fever ¹³⁸; ¹³⁹;

7 ¹⁴⁰.

8 Level 1+

- 910 One study reported that a significantly greater proportion of patients treated with
- 11 antibiotics experienced recurrent pancreatitis ¹³⁸.
- 12 Level 1+
- 13

14 **Table 4-12. Summary of results.**

	Antibiotic	No antibiotic	P value
Mortality			
HOWES ¹⁴⁰	0	0	ns
FINCH ¹³⁸	1	0	ns
CRAIG ¹³⁹	0	0	ns
Hospitalisation			

(days)			
HOWES ¹⁴⁰	9	12	ns
FINCH ¹³⁸	10	11	ns
CRAIG ¹³⁹	NR	NR	-
Amylase elevation			
(days)*			
HOWES ¹⁴⁰			
FINCH ¹³⁸	2	2	ns
CRAIG ¹³⁹	5	4.5	ns
	6	5	ns
Fever (days)**			
HOWES ¹⁴⁰	3	3	ns
FINCH ¹³⁸	7	6	ns
CRAIG ¹³⁹	3	3	ns
Recurrent			
Pancreatitis			
HOWES ¹⁴⁰	NR	NR	-
FINCH ¹³⁸	6/31 (19.4%)	2/27 (7.4%)	P<0.05
CRAIG ¹³⁹	NR	NR	-

*Howes and Craig – mean number of days with findings; Finch – Normal serum amylase
 achieved by day. Elevated serum amylase > 160 UI/dl

3 ** Howes and Craig – mean number of days with findings; Finch – Mean day at which

- 4 patient afebrile
- 5

6 ► Complications

7 There were no significant differences in the number of serious complications reported in

8 relation to antibiotic use. ¹³⁸ ¹³⁹ ¹⁴⁰

9 Level 1+

10

1 Severe necrotising pancreatitis

- 2 Table 3-11below summarises the results of the meta-analysis (all studies) for the RCTs
- 3 on patients with severe acute pancreatitis. Refer to figures Figure 3-1, Figure 3-2, Figure
- 4 3-3, Figure 3-4, and Figure 3-5 for forest plots from the meta-analysis.

Table 4-13. Summary of results.

	Overall	Carbapenem	Other	
Pancreatic infection	0.97 (0.69 to 1.37);	1.06 (0.53 to 2.16);	antibiotics 0.94 (0.63 to	
(Carbapenem N=2;	p=0.87	p=0.86	1.38)	
Other N=4)	p 0.07	p 0.00	1.50)	
Heterogeneity	0%; p=0.82	15%; p=0.86	0%; p=0.81	
Mortality	0.54 (0.33 to 0.88);	0.94 (0.47 to 1.90)	0.32 (0.16 to	
(Carbapenem N=2;	p=0.01	P=0.87	0.67); p=0.002	
Other N=4)				
Heterogeneity	16%; p=0.31	0%; p=0.47	0%; p=0.66	
Non-pancreatic	0.60 (0.44 to 0.82);	0.51 (0.34 to 0.78)	0.74 (0.46 to	
Infection	p=0.001	P=0.002	1.17); p=0.20	
(Carbapenem N=2;				
Other N=3)				
	0%; p=0.42	63%; p=0.10	0%; p=0.88	
Surgical intervention	0.98 (0.71 to 1.35);	1.07 (0.65 to 1.75);	0.91 (0.59 to	
(Carbapenem N=2;	p=0.89	p=0.79	1.40); p=0.67	
Other N=3)				
	15%; p=0.89	0%; p=0.44	50%; p=0.67	
Length of stay	-10.60 (-27.93 to 6.73); p=0.23			
(Other N=1)				
60				

- **L**

3 Figure 3-1. Antibiotics versus placebo, outcome: pancreatic infection.

No.

7
8 Figure 3-2. Antibiotics versus placebo, outcome: mortality.

13 Figure 3-3. Antibiotics versus placebo, outcome: Non-pancreatic infection.

1 2	
3	
4	Figure 3-4. Antibiotics versus placebo, outcome: Surgical intervention
5	
6 7	
8	
9	Figure 3-5. Antibiotics versus placebo, outcome: Length of stay
10	

11 12

1	
2	Summary of findings
3	► Antibiotics versus placebo
4	Overall, prophylactic antibiotics compared to placebo were associated with a significant
5	reduction in:
6	Mortality
7	Non-pancreatic infection
8	Level 1+
9	
10	There were no significant differences between prophylactic antibiotics and placebo for:
11	Pancreatic infection
12	Surgical intervention
13	Length of stay
14	Level 1+
15	
16	► Carbapenem versus placebo
17	Carbapenem compared with placebo was associated with a significant reduction in:
18	 non-pancreatic infection (moderate to high heterogeneity)
19	Level 1+
20	
21	There are no significant differences between carbapenem and placebo for:
22	 pancreatic infection
23	 mortality
23 24	
24 25	surgical intervention.
26	No data was reported for length of stay.
20	Level 1+
28	
20 29	 'Other antibiotics' versus placebo
30	'Other antibiotics' compared to placebo were associated with a significant reduction in:
31	
32	 mortality. Level 1+
	Level 1+
33 34	There was no significant difference between 'other antibiotics' and placebo for
	There was no significant difference between 'other antibiotics' and placebo for:
35	pancreatic infection
36	non-pancreatic infection
37	surgical intervention
38	length of stay.
39	Level 1+
40	
41	4.4.4 HEALTH ECONOMIC METHODOLOGICAL INTRODUCTION
41 42	
	No relevant economic analysis was identified assessing the cost-effectiveness of
43	prophylactic antibiotics for patients with acute alcohol-related pancreatitis. Costs and
44	resource use information associated with the use of prophylactic antibiotics in patients

45 with acute alcohol-related pancreatitis were presented to the GDG. Alcohol use disorders: clinical management: full guideline DRAFT (September 2009) 1

2 4.4.5 HEALTH ECONOMIC EVIDENCE STATEMENTS

- 3 The main components of resource use associated with prophylactic antibiotic therapy
- 4 for patients with acute alcohol-related pancreatitis are the treatment itself and the
- 5 hospital stay. The treatment cost is high, varying from £200 to nearly £2000 when
- 6 costing therapies used in clinical trials included from the clinical review⁴¹. For the
- 7 hospitalisation cost, the clinical review showed that the length of hospital stay was not
- 8 significantly reduced using prophylactic antibiotics either in patients with mild acute
- 9 pancreatitis or in patients with severe acute pancreatitis.

- 1
- 2

3 4.4.6 FROM EVIDENCE TO RECOMMENDATIONS

The evidence for this clinical question is reported separately for mild and severe acute
pancreatitis. There was variability in the definition of severe pancreatitis which makes it
difficult to issue clear guidance based on the available evidence. In addition, the trials
used different antibiotics for different durations.

8

9 **Mild acute pancreatitis**

The GDG considered the evidence for antibiotic treatment in mild acute alcohol-related pancreatitis. It was noted that the trials were over 30 years old and were performed before the advent of CT as a diagnostic and prognostic tool. All the trials used a short course of ampicillin. The clinical evidence did not support the use of antibiotics on the

- 14 basis of the chosen outcomes.
- 15
- 16 Given that the evidence for antibiotics in mild pancreatitis was based on a single
- 17 drug (ampicillin) the GDG found it difficult to make a recommendation based
- 18 solely on the clinical evidence review. There was no health economic evidence
- 19 available to influence the recommendation.
- 20

21 The GDG therefore agreed, by consensus, that antibiotics should not be given to

- 22 patients with mild acute pancreatitis as no positive evidence for their use had been
- 23 found. Patients should to be monitored to ensure that their condition does not
- progress from a mild to severe state, when the question of antibiotic use would beraised again.
- 26

27 Severe acute pancreatitis

28 The GDG considered the evidence for use of prophylactic antibiotics in severe acute 29 pancreatitis. There was variability in the definition of severe pancreatitis and the trials 30 used different antibiotics for different treatment durations. While a carbapenem was 31 found to reduce non-pancreatic infections, it was 'other antibiotics' that were found to 32 reduce mortality in the meta-analysis. At present there is no nationwide or European 33 clinical consensus on this topic and the evidence reviewed was variable and is 34 interpreted differently between centres in the UK. The GDG did not believe there was 35 enough evidence to support a recommendation for offering antibiotics for acute alcohol-36 related pancreatitis.

- 37
- 38
- 39 4.4.7 Recommendations
- 40
- R30 Do not give prophylactic antibiotics to people with mild acute alcohol-related
 pancreatitis unless otherwise indicated.
- 43
- 44

1 4.5 NUTRITIONAL SUPPORT FOR ACUTE ALCOHOL-RELATED PANCREATITIS

2 4.5.1 CLINICAL INTRODUCTION

3 Supportive care is the mainstay of treatment for acute pancreatitis. The timing and 4 delivery of nutritional therapy is an important component of this care. There are three 5 broad treatment options; withhold feeding, enteral nutrition (either oral or tube 6 feeding) and parenteral nutrition. Each option has historically had periods of clinical 7 favour. The supporters of withholding enteral feeding (or feeding nasojejunally) suggest 8 that resting the pancreas avoids exocrine secretion and further pancreatic injury. 9 Supporters of enteral feeding highlight the importance of maintaining nutritional intake 10 and intestinal integrity, reducing bacterial translocation and thereby limiting the 11 systemic inflammatory immune response. 12 Oral nutritional intake in pancreatitis, particularly if severe, is often limited by nausea so 13 enteral feeding often implies either nasogastric or nasojejunal feeding. Parenteral 14 15 feeding is generally given as total parenteral nutrition. Many trials have attempted to 16 answer the question of which form of feeding is superior and results have been 17 conflicting. By looking at all the evidence to date with regard to a wide variety of 18 outcome measures from mortality to sepsis and multi-organ failure, the GDG aimed to 19 provide guidance on the most clinical and cost-effective modality. The data are based on 20 studies in patients with acute pancreatitis irrespective of aetiology. 21 22 The clinical question searched was: 23 'In patients with acute alcohol-related pancreatitis, what is the safety and 24 efficacy a) of nutritional supplementation vs no nutritional 25 supplementation b) early (first 48 hours) versus late supplementation c) NJ 26 versus NG) versus parenteral nutrition?' 27 28 In patients with acute alcohol-related pancreatitis, what is the safety and efficacy 29 of: 30 a) nutritional supplementation versus no supplementation 31 b) early (first 48 hours) versus late supplementation 32 c) enteral versus parenteral nutrition 33 d) nasojejunal versus nasogastric feeding 34

35 4.5.2 CLINICAL METHODOLOGICAL INTRODUCTION

- 36 Studies were included that reported on the safety and efficacy of nutritional
- 37 supplementation versus no supplementation; early (first 48hours) versus late
- 38 supplementation; enteral versus parenteral nutrition or nasojejunal versus nasogastric
- 39 nutrition in patients with acute alcohol related pancreatitis. Outcomes of interest were
- 40 mortality, length of hospitalisation, systemic inflammatory response syndrome (SIRS),
- 41 multiple organ failure (MOF), operative intervention, infection and local complications
- 42 (such as abscesses).
- 43

- 1 Fifteen studies were included in the review; thirteen RCTs ¹⁴⁸⁻¹⁶⁰ and two SRs ^{161,162} The
- 2 results of the studies included in the SRs were reported separately if they included
- 3 further outcomes of interest not covered by the SRs.
- 4
- 5 Outcomes reported were mortality, infection, length of stay, MOF, SIRS, pancreatic
- 6 complications and operative interventions.
- 7

9

10

11

12

15

- 8 The studies were reported under the following categories:
 - 1. nutritional supplementation versus no supplementation (n=4)
 - 2. enteral versus parenteral nutrition (n=9)
 - 3. nasojejunal versus nasogastric (n=3)
- 13 No studies were found that directly compared early (first 48 hours) versus late
- 14 supplementation. A more detailed summary of the included studies can be seen below.

16 Limitations

- The number of patients with alcohol related pancreatitis ranged from 11% ¹⁶⁰ to
 81% ¹⁴⁹ across the studies, and was not reported in one of the SRs ¹⁶¹.
- A number of the included studies were underpowered for outcomes of interest
 153,154,157
 - One of the NJ versus NG studies ¹⁵⁴ included patients with both mild and severe acute pancreatitis rather than severe acute pancreatitis which was the clinically relevant population selected
- 23 24

21

22

25 Summary table of included studies

	Population	Intervention	Comparison
ECKERWALL	Patients with clinical signs of mild	Fasting (+ iv	Immediate oral
2007150	acute pancreatitis, pancreas	fluids)	feeding
	amylase ≥ 3 times above normal,	- oral fluids and	(+ iv fluids when
	onset of abdominal pain within	diet	needed)
	48h, acute physiological and	reintroduced in	
	chronic health evaluation score	a traditional	N=30
	(APACHE) II <8 and C-reactive	step-wise	(1 dropped out
	protein (CRP) <150mg/L.	manner as	n=29
	N=60 (one drop out)	tolerated.	completed)
	Alcohol related: oral feeding		
	group 3/30; fasting group 5/30;	N=30	
	total 13%		
SAX 1987 ¹⁵⁸	Patients with acute abdominal	TPN +	Conventional
	pain, clinical findings of	conventional	therapy (iv
	abdominal tenderness in the left	therapy (see	fluids,
	upper quadrant, nausea, or	comparison)	analgesics,
	vomiting; a history of alcohol	started within	antacids,
	abuse or gallbladder disease; and	24 hrs of	nasogastric
	laboratory findings of an	admission.	insertion)
	increased amylase level +/-		

XIAN-LI	radiographic confirmation of pancreatic calcifications consistent with chronic pancreatitis. N=54 Alcohol related: early TPN 86%; no nutrition 76% Patients with severe acute	n=29 Group I:	n=26 Group II:
2004160	pancreatitis (SAP) diagnosed by clinical evaluations, clinical biochemistry and CT scanning of the pancreas, according to the universal standard for SAP diagnosis in China. N=64 Alcohol related: 7/64 (11%)	traditional conservative therapy (iv fluids, electrolyte replacement, starvation treatment, NG decompression, analgesics, pancreatic exocrine secretion suppression, prophylactic antibiotics and necessary infusion of albumin or fresh plasma) n=23	traditional conservative therapy + TPN (iso-caloric + iso-nitrogenous) n=21 Group III: traditional conservative therapy + TPN + additional glutamine dipeptide- supplementatio n n=20
PETROV 2008 ¹⁶¹	n=9 studies included patients with severe acute pancreatitis. n=6 studies included patients with mild and severe acute pancreatitis. N=15 studies in total N= 617 patients Alcohol related: not reported	 enteral nutrition (n=11 studies) parenteral nutrition (n=3 studies) enteral nutrition (n=1 study) 	 parenteral nutrition no supplementary nutrition no supplementary nutrition
ECKERWALL 2006 ¹⁶³	Patients with a clinical diagnosis of acute pancreatitis (abdominal pain, amylase 3 or more time the upper limit of normal, onset of abdominal pain within 48 hrs, APACHE II 8 or more and/or CRP	Parental N=26	Enteral N=24

	of 150 mg/L or more and/or		
	pancreatic liquid shown on CT)		
	N=50		
	Alcohol related:14%		
ABOU-ASSI	Patients with acute pancreatitis	Total	Total enteral
2002159	who were in need of nutritional	parenteral	nutrition (TEN)
	support, with acute abdominal	nutrition (TPN)	–via NJ tube
	pain, 3-fold elevation of serum	n=27	n=26
	pancreatic enzymes, amylase,		
	lipase.		
	N=53		
	Alcohol related: 62%		
McCLAVE	Patients with acute pancreatitis or	Total	Total enteral
1997 ¹⁵⁷	an acute flare of chronic	parenteral	nutrition (TEN)
	pancreatitis	nutrition (TPN)	n=16
	N=32	n=16	
	Alcohol related: TEN group: 75%		
	(±11.2); TPN group: 62.5 %		
	(±12.5)		
PETROV	Patients with severe acute	Parental	Enteral
2006151	pancreatitis within 72 hrs of		
	onset. Diagnosis was based on	N=34	N=35
	clinical and biochemical		
	presentation		
	N=69		
	Alcohol related: enteral: 11/35;		
	parenteral: 15/34; total 38%		
GUPTA	Patients with acute pancreatitis	Parental	Enteral
2006155	(defined as abdominal pain and		
	serum amylase concentration of	N=9	N=8
	1000 U/I or more). The diagnosis		-
	of predicted severe acute		Feeding through
	pancreatitis was established by		NJ tube
	the presence of APACHE II of 6 or		
	more		
	N=17		
	Alcohol related: enteral 1/8;		
	parenteral 5/9; total 35%		
KALFARENTZ	Patients with acute severe	Parental	Enteral
OS 1997 ¹⁵⁶	pancreatitis (3 or more criteria		Litterui
	according to the Imrie	N=20	N=18
	classification or APACHE II score		
	of 8 or more, C-reactive protein >		Through
	120 mg/l within 48 hrs of		nasoenteric
	admission, and grade D or E by CT		feeding tube
	according to Balthazar criteria)		

	N=38		
	Alcohol related: enteral 3/18;		
	parenteral 2/20; total 13%		
OLAAH		Danantal	Entoral
0LAAH 2002 ¹⁴⁹	Patients with acute pancreatitis	Parental	Enteral
2002149	admitted to the surgical ward	N=48	N-41
	(clinical symptoms and laboratory	N=48	N=41
	signs of pancreatitis (amylase >		NU toolo a
	200 U/L)		NJ tube
	N=89		
	Alcohol related: enteral 33/41;		
	parenteral 39/48; total 81%	D i l	
WINDSOR	Patients with acute pancreatitis	Parental	Enteral nutrition
1998148	with a serum amylase of > 1000 IU	nutrition	
	N=34		N=16
	Alcohol related: enteral 2/16;	N=18	
-	parenteral 2/18; total 12%		
PETROV	RCTs of nasogastric versus	Enteral	Enteral nutrition
2008161	nasojejunal feeding in patients	nutrition via	via nasojejunal
	with severe acute pancreatitis.	nasogastric	feeding
	N=2 studies in meta-analysis	feeding	
	N=79 patients		N=36
	Alcohol related: total in NG group	N=43	
	10/43 (23%)		
KUMAR	Patients with severe acute	Nasojejunal	Nasogastric
2006153	pancreatitis. The severity was	(NJ) feeding	(NG) feeding
	defined according to Atlanta		
	criteria- presence of organ failure	N=14	N=16
	and acute physiology and chronic		
	health evaluation score of ≥8 or	-all patients	-all patients
	CT severity score ≥7.	achieved the	achieved the
	N=31	goal of	goal of 1800kcal
	Alcohol related: NJ group 4/14;	1800kcal	within 7 days
	NG group 4/16; total 27%	within 7 days	from start of
		from start of	feeding (6
		feeding (4	patients were
		patients were	supplemented
		supplemented	by parenteral
		by parenteral	nutrition during
		nutrition	feeding)
		during feeding)	
ЕАТОСК	Patients with both a clinical and	Nasogastric	Nasojejunal
2005154	biochemical presentation of acute	feeding	feeding
	pancreatitis (abdominal pain +		
	serum amylase at least 3 times the	N=27	N=22
	upper limit of the reference		
	range), and objective evidence of	77.8% of target	76.1% of target

		disease severity (Glasgow	calories were	calories were
		prognostic score 3 or more, or a	delivered	delivered
		APACHE II score 6 or more or a	beyond 60 hrs	beyond 60 hrs.
		CRP level >150 mg/L)		
		N=49		
		Alcohol related: total 24.5%		
1				
2				
3	4.5.3 CLINIC	AL EVIDENCE STATEMENTS		
4	Nutritional s	support versus no nutritional	support	
5	► Mortality			
6	The systematic	review ¹⁶¹ reported on the difference	e in mortality in th	ose treated with:
7	a) parenteral n	utrition versus none (3 RCTs):		
8	• Parente	eral nutrition resulted in a statistical	ly significant 64%	reduction in risk.
9	Parente	eral group 4/56; no nutrition group 1	13/57. RR0.36 (959	% CI 0.13, 0.97)
10	p=0.04	(no heterogeneity)		
11	-	ition versus None (1 RCT):		
12		nutrition resulted in a 78% reduction	on in risk. RR (95%	CI): 0.22 (0.07-
13	0.70) p	= 0.01		
14	Level 1+			
15				
16		ly reported on the difference in mort		e treated with
17		refeeding (+ iv fluids when needed)	versus fasting ¹⁵⁰ :	
18		ths in either group.		
19	Level 1	+		
20				
21	► Infection			direction of a direct
22		review ¹⁶¹ reported on the difference	e în înfectious com	plications in those
23	treated with:	utrition versus none (2 D(Te)		
24 25		utrition versus none (3 RCTs)	hunon significant i	$m_{\rm emperator} = f_2(0)/im$
25 26		eral nutrition resulted in a statistical of infectious complications. Parente	• •	
20 27		isk ratio 1.36 (95% CI 0.18-10.40) p=		
28		n study results).		eterogeneity
20 29	Detwee	ii study results).		
30	h) enteral nutri	ition versus none (1 RCT):		
31	-	duced non-significantly by 44% with	the use of enteral	nutrition over no
32		on. RR (95% CI): 0.56 (0.07-4.32) p=(
33		nificant due to the small sample size		e was probably
33 34	Level 1+	inneant are to the sman sample size		
35				
36	► Length of st	av (LOS)		
37		eported on the differences in length	of stay between th	ose treated with
38		port versus no nutritional support. S	-	
39	results.	r		

1

2 Table 4-14. Summary of results.

		LOS (days	5)	
	Nutrition	No nutrition	Mean	P value
	support	support	Difference	
			(95% CI)	
ECKERWALL 2007 ¹⁵⁰	4	6	-	0.047
(mean) immediate oral				
feeding versus fasting				
XIAN-LI 2004 ¹⁶⁰ (mean ±	28.6 ± 6.90	39.1 ± 10.60	-10.50	< 0.05
SD)			(-15.74, -5.26)	
- TPN versus conservative				
therapy				
XIAN-LI 2004 ¹⁶⁰ (mean ±	25.3 ± 7.60	39.1 ± 10.60	-13.80	< 0.01
SD)			(-19.26, -8.34)	
- TPN + additional				
glutamine dipeptide-				
supplementation versus				
conservative therapy				
SAX 1987 ¹⁵⁸ (mean)	16	10	-	< 0.04
- TPN versus conservative				
therapy				

3 Level 1+

4

5 **•** Multi-organ failure (MOF)

6 One study reported on MOF in those treated with nutritional support versus no

- nutritional support, and showed no obvious benefit. See Table 3-13 for a summary ofresults.
- 9

10 Table 4-15. Summary of results.

	MOF			
	Nutrition support	No nutrition support	RR	
	Nucl telon support	support No nucleion support		
XIAN-LI 2004 ¹⁶⁰ (mean ± SD)	2/21	4/23	0.55	
- TPN versus conservative			(0.11, 2.69)	
therapy				
XIAN-LI 2004 ¹⁶⁰ (mean ± SD)	0/20	4/23	0.13	
- TPN + additional glutamine			(0.01, 2.22)	
dipeptide-supplementation				
versus conservative therapy				

- 11 Level 1+
- 12
- 13

14 Systemic inflammatory response syndrome (SIRS) (CRP, leukocytes)

- 1 One study reported on two markers of SIRS, CRP and leukocytes in those treated with
- 2 immediate oral feeding versus fasting, and showed no obvious benefit. See Table 3-14
- 3 and Table 3-15 for a summary of results.
- 4

5 Table 4-16. a) CRP

	CRP (Mg/L)		
	Nutrition support	No nutrition support	P value
ECKERWALL 2007 ¹⁵⁰ mean (range)	61 (26-127)	81 (45-139)	NS

6 7

8 Table 4-17. b) leukocytes

	Leukocy		
	Nutrition support	No nutrition support	P value
ECKERWALL 2007 ¹⁵⁰	6.6 (6.3-10.2)	7.7 (6.4-10.8)	NS
mean (range)			
Level 1+			

9 10

11 Pancreatic complications

- 12 One study ¹⁵⁰ reported on this outcome for nutritional support versus no nutritional
- 13 support and reported no complications such as necrosis, abscess or pseudocysts in
- 14 either group.

15 Level 1+

16

17 ► Operative interventions

- One study ¹⁵⁰ reported on this outcome for nutritional support versus no nutritional 18
- 19 support and reported no significant difference between groups concerning the number
- 20 of interventions performed during hospital stay (cholecystectomy and endoscopic 21 retrograde cholangiopancreatography)
- 22 • Fasting 7/30 versus oral refeeding 6/29, p>0.30; RR 1.13 (95% CI 0.43, 2.96) Level 1+ 23
- 24

Enteral versus parenteral 25

26 ► Mortality

- 27 The SR ¹⁶¹ reported on the difference between in-hospital mortality in those treated with 28 enteral versus parenteral nutrition (n=9 RCTs)
- 29 • Enteral nutrition resulted in a non-significant 40% reduction in risk. Enteral 30 group 16/191; parenteral group 34/213; risk ratio 0.60 (95% CI 0.32, 1.14) 31 p=0.12. Heterogeneity explained by random variation. Level 1+
- 32

► Infection

33 34

- 35 The SR ¹⁶¹ reported on the difference in infectious complications seen between those
- 36 treated with enteral versus parenteral nutrition (n=10 RCTs).

Alcohol use disorders: clinical management: full guideline DRAFT (September 2009)

Enteral nutrition resulted in a significant 59% reduction in risk compared to
 parenteral nutrition. Enteral group 33/204; parenteral group 89/226; RR0.41
 (95% CI 0.30, 0.57) P<0.00001. Heterogeneity explained by random variation.
 Level 1+

6 ► Length of stay

7 Six of the studies reported on the difference in length of stay between those treated

- 8 with enteral versus parenteral nutrition. A meta-analysis was performed on two of the
- 9 studies ^{157,159} where adequate data were available. However due to 80% heterogeneity
- 10 between the studies the results were reported separately. Overall, no difference was

seen between the groups. See Table 3-16 for a summary of results.

12

5

		Length of stay (d	ays)	
	Enteral (EN)	Parenteral (PN)	Mean difference (95% CI)	P value
McCLAVE 1997 ¹⁵⁷ mean ± SD	9.7 ± 1.3	11.9 ± 2.6	-2.20 (-3.62, -0.78)	-
ABOU-ASSI 2002 ¹⁵⁹ mean ± SD	14.2 ± 1.9	18.4 ± 1.9	-4.20 (-5.22, -3.18)	-
ECKERWALL 2006 ¹⁵² Median (range)	7 (6-14)	9 (7-14)	-	0.19
GUPTA 2003 ¹⁵⁵ Median (range)	7 (4-14)	10 (7-26)	-	0.05
KALFARENTZOS 1997 ¹⁵⁶ Median (range)	40 (25-93)	39 (22-73)	-	-
WINDSOR 1998 ¹⁴⁸ Median (range)	12.5 (9.5-14)	15 (11-28)	-	NS

13 **Table 4-18. Summary of results.**

14 Level 1+

15

16 ► Multi-organ failure (MOF)

17 Four studies reported on the difference in MOF between those treated with enteral

- 18 versus parenteral nutrition. The results varied across the studies. However, most
- 19 showed a non-significant difference across the groups favouring enteral feeding. See
- 20 Table 3-17 for a summary of results.
- 21

22 Table 4-19. Summary of results.

		MOF		
	Enteral (EN)	Parenteral (PN)	RR (95% CI)	P value
ECKERWALL 2006 (%) ¹⁵²	1/24 (4)	1/26 (4)	1.08	-
			(0.07,16.38)	
PETROV 2006 (%) ¹⁵¹	7/35 (20)	17/34 (50)	0.40	0.05

Alcohol use disorders: clinical management: full guideline DRAFT (September 2009)

 \sim

Image: construct the series of the series	-					
-severe pancreatitis $2/7 (29)$ $5/10 (50)$ $(0.10, 2.29)$ 0.57 NS subgroupWINDSOR 1998 (%) ¹⁴⁸ $0/16 (0)$ $5/18 (28)$ 0.10 $(0.01, 1.70)$ Level 1+Nasogastric (NG) versus nasojejunal (NJ) feeding \blacktriangleright Mortality One SR ¹⁶² reported on the difference in mortality in those treated with NG versus NJ nutrition.Nasogastric feeding was associated with a non-significant reduction in the risk of death: • NG feeding: $10/43$; NJ feeding $11/36$; RR 0.77 ; 95% CI 0.37 to 1.62 ; p= 0.50 Level 1+Level 1+Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture)One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: • NJ group: $6/14 (43\%)$; NG group: $7/16 (44\%)$; P= 0.467 ; RR $0.98 (95\%$ CI 0.43 , 2.23) Level 1+Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: $1+$					(0.19, 0.84)	
-severe pancreatitis 2/7 (29) 5/10 (50) 0.57 NS subgroup 0/16 (0) 5/18 (28) 0.10 - WINDSOR 1998 (%) ¹⁴⁸ 0/16 (0) 5/18 (28) 0.10 - Level 1+ 0 0.05 (0.01, 1.70) - - Nasogastric (NG) versus nasojejunal (NJ) feeding Mortality - - One SR ¹⁶² reported on the difference in mortality in those treated with NG versus NJ nutrition. Nasogastric feeding was associated with a non-significant reduction in the risk of death: • NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% CI 0.37 to 1.62; p=0.50 Level 1+ Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: • NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ Level 1+ Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for		OLAAH 2002 (%) ¹⁴⁹	2/41 (5)	5/48 (10)	0.47	NS
subgroup (0.15, 2.15) WINDSOR 1998 (%) ¹⁴⁸ 0/16 (0) 5/18 (28) 0.10 (0.01, 1.70) (0.01, 1.70) Level 1+ Nasogastric (NG) versus nasojejunal (NJ) feeding <i>Mortality</i> One SR ¹⁶² reported on the difference in mortality in those treated with NG versus NJ nutrition. Nasogastric feeding was associated with a non-significant reduction in the risk of death: NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% CI 0.37 to 1.62; p=0.50 Level 1+ Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for					(0.10, 2.29)	
WINDSOR 1998 (%) ¹⁴⁸ 0/16 (0) 5/18 (28) 0.10 - Level 1+ Nasogastric (NG) versus nasojejunal (NJ) feeding > Mortality One SR ¹⁶² reported on the difference in mortality in those treated with NG versus NJ nutrition. Nasogastric feeding was associated with a non-significant reduction in the risk of death: • NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% CI 0.37 to 1.62; p=0.50 Level 1+ > Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: • NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ > Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for		-severe pancreatitis	2/7 (29)	5/10 (50)	0.57	NS
Level 1+ Nasogastric (NG) versus nasojejunal (NJ) feeding > Mortality One SR ¹⁶² reported on the difference in mortality in those treated with NG versus NJ nutrition. Nasogastric feeding was associated with a non-significant reduction in the risk of death: • NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% Cl 0.37 to 1.62; p=0.50 Level 1+ > Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: • NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% Cl 0.43, 2.23) Level 1+ > Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for					(0.15, 2.15)	
 Level 1+ Nasogastric (NG) versus nasojejunal (NJ) feeding Mortality One SR ¹⁶² reported on the difference in mortality in those treated with NG versus NJ nutrition. Nasogastric feeding was associated with a non-significant reduction in the risk of death: NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% CI 0.37 to 1.62; p=0.50 Level 1+ Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: 		WINDSOR 1998 (%) ¹⁴⁸	0/16(0)	5/18 (28)	0.10	-
 Nasogastric (NG) versus nasojejunal (NJ) feeding Mortality One SR ¹⁶² reported on the difference in mortality in those treated with NG versus NJ nutrition. Nasogastric feeding was associated with a non-significant reduction in the risk of death: NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% CI 0.37 to 1.62; p=0.50 Level 1+ Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: (see Table 3-18 for 					(0.01, 1.70)	
 Mortality One SR ¹⁶² reported on the difference in mortality in those treated with NG versus NJ nutrition. Nasogastric feeding was associated with a non-significant reduction in the risk of death: NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% CI 0.37 to 1.62; p=0.50 Level 1+ Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 		Level 1+				
 Mortality One SR ¹⁶² reported on the difference in mortality in those treated with NG versus NJ nutrition. Nasogastric feeding was associated with a non-significant reduction in the risk of death: NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% CI 0.37 to 1.62; p=0.50 Level 1+ Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 						
 Mortality One SR ¹⁶² reported on the difference in mortality in those treated with NG versus NJ nutrition. Nasogastric feeding was associated with a non-significant reduction in the risk of death: NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% CI 0.37 to 1.62; p=0.50 Level 1+ Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 						
 One SR ¹⁶² reported on the difference in mortality in those treated with NG versus NJ nutrition. Nasogastric feeding was associated with a non-significant reduction in the risk of death: NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% CI 0.37 to 1.62; p=0.50 Level 1+ Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 			s nasojejunal (I	NJ) feeding		
 nutrition. Nasogastric feeding was associated with a non-significant reduction in the risk of death: NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% CI 0.37 to 1.62; p=0.50 Level 1+ Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 		-				
 Nasogastric feeding was associated with a non-significant reduction in the risk of death: NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% CI 0.37 to 1.62; p=0.50 Level 1+ Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 		-	lifference in mortal	lity in those treate	d with NG versus	NJ
 NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% CI 0.37 to 1.62; p=0.50 Level 1+ Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 		nutrition.				
 NG feeding: 10/43; NJ feeding 11/36; RR 0.77; 95% CI 0.37 to 1.62; p=0.50 Level 1+ Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 						
 Level 1+ ► Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ ► Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 						
 Infection (includes positive blood culture, tracheal aspirate, pancreatic aspirate and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 		0 1	√J feeding 11/36; R	RR 0.77; 95% CI 0.	37 to 1.62; p=0.50	
 and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ ► Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 		Level 1+				
 and bile culture) One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ ► Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 						_
 One study ¹⁵³ reported on the infection rate in patients treated with NG versus NJ feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ ► Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 		► Infection (includes position	ive blood culture, i	tracheal aspirate	e, pancreatic aspi	rate
 feeding. No significant difference was reported between the groups: NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ ► Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 		11.1 1				i dee
 NJ group: 6/14 (43%); NG group: 7/16 (44%); P=0.467; RR 0.98 (95% CI 0.43, 2.23) Level 1+ ► Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for 		2				, acc
2.23) Level 1+ ► Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for		One study ¹⁵³ reported on th				
Level 1+ ► Length of stay Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for		One study ¹⁵³ reported on the feeding. No significant differ	rence was reported	between the grou	ips:	
► <i>Length of stay</i> Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for		One study ¹⁵³ reported on the feeding. No significant differ • NJ group: 6/14 (43%	rence was reported	between the grou	ips:	
Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for		One study ¹⁵³ reported on the feeding. No significant differ • NJ group: 6/14 (43% 2.23)	rence was reported	between the grou	ips:	
Two studies ^{153,154} reported on length of stay in patients treated with NG versus NJ feeding. No significant difference was reported between the groups (see Table 3-18 for		One study ¹⁵³ reported on the feeding. No significant differ • NJ group: 6/14 (43% 2.23)	rence was reported	between the grou	ips:	
feeding. No significant difference was reported between the groups (see Table 3-18 for		One study ¹⁵³ reported on the feeding. No significant differ • NJ group: 6/14 (43% 2.23) Level 1+	rence was reported	between the grou	ips:	
		One study ¹⁵³ reported on the feeding. No significant differ ● NJ group: 6/14 (43% 2.23) Level 1+ ► Length of stay	rence was reported %); NG group: 7/16	between the grou (44%); P=0.467;	ıps: RR 0.98 (95% CI 0).43,
summary or results).		One study ¹⁵³ reported on the feeding. No significant differ • NJ group: 6/14 (43% 2.23) Level 1+ ► Length of stay Two studies ^{153,154} reported	rence was reported %); NG group: 7/16 %) on length of stay in	between the grou (44%); P=0.467; a patients treated	ıps: RR 0.98 (95% CI 0 with NG versus NJ).43,
		One study ¹⁵³ reported on the feeding. No significant differ ● NJ group: 6/14 (43% 2.23) Level 1+ ► Length of stay Two studies ^{153,154} reported feeding. No significant differ	rence was reported %); NG group: 7/16 %) on length of stay in	between the grou (44%); P=0.467; a patients treated	ıps: RR 0.98 (95% CI 0 with NG versus NJ).43,

26 **Table 4-20. Summary of results.**

	Length of stay				
	NG group	NJ group	Mean difference (95% CI)	P value	
KUMAR	24.06 ± 14.35	29.93 ± 25.54	-5.87	0.437	
2006153			(-20.98, 9.24)		
(mean ± SD)					
EATOCK	16 (10-22)	15(10-42)	-	-	
2005154					
Mean (range)					

27 Level 1+

28

29 **•** Operative interventions

1	One study ¹⁵³ reported on the number of operative interventions in patients treated with
2	NG versus NJ feeding. No significant difference was reported between the groups.
3	• NJ group: 2/14; NG group: 1/16; RR 2.29 (95% CI 0.23, 22.59), p=0.48
4	Level 1+
5	
6	
7	Summary
8	▶ Nutritional supplementation versus no supplementation $(n=3)$
9	Nutritional supplementation resulted in a statistically significant reduction in:
10	Mortality (Parenteral versus none and enteral versus none) ¹⁶¹
11	• Length of stay ^{150,158,160}
12	Level 1+
13	
14	Nutritional supplementation resulted in a statistically non-significant reduction in:
15	Infections (Enteral versus none) ¹⁶¹
16	• SIRS ¹⁵⁰
17	• MOF ¹⁶⁰
18	Operative interventions ¹⁵⁰
19	Level 1+
20	
21	Nutritional supplementation (parenteral versus none) resulted in a statistically non-
22	significant increase in:
23	• Infections ¹⁶¹
24	Level 1+
25	
26	Enteral versus parenteral nutrition (n=9)
27	Enteral nutrition resulted in a statistically significant reduction in:
28	• Infections ¹⁶¹
29	• Length of stay ^{155,157,159}
30	• MOF ¹⁵¹
31	Level 1+
32	
33	Enteral nutrition resulted in a statistically non-significant reduction in:
34	Mortality ¹⁶¹
35	Length of stay ^{148,152}
36	• MOF 148,149,152
37	Level 1+
38	
39	► NJ versus NG (n=3)
40	NG feeding resulted a non-significant reduction in:
41	• Mortality ¹⁶¹
42	Level 1+
43	
44	There was a statistically non-significant difference between NJ versus NG in:
45	Operative interventions ¹⁵³

- 1 Length of stay ¹⁵³
- 2 Infections ¹⁵³
- 3 Level 1+
- 4

5 4.5.4 HEALTH ECONOMIC METHODOLOGICAL INTRODUCTION

- 6 No cost-effectiveness analysis was identified assessing nutritional supplementation in
- 7 patients with acute alcohol-related pancreatitis. Three RCTs^{155,156,164} reporting a cost-
- 8 comparison assessment of the use of enteral nutrition versus parenteral nutrition were
- 9 selected and presented to the GDG.
- 10

11 4.5.5 HEALTH ECONOMIC EVIDENCE STATEMENTS

- 12 Table 4-22 presents cost-comparison assessments of the use of enteral nutrition versus
- 13 parenteral nutrition in patients with acute pancreatitis. One of the three assessments
- 14 presented was conducted from a United Kingdom perspective ¹⁵⁵, and the other two
- 15 were conducted from the perspective of countries with a health-care system reasonably
- 16 comparable to the NHS (Canada ¹⁶⁴ and Greece ¹⁵⁶). The three assessments concluded
- 17 that the use of enteral nutrition is less costly than parenteral nutrition in patients with
- 18 acute pancreatitis.

19 Table 4-21. Cost-comparison of enteral nutrition

Study (RCT)	Gupta 2003 ¹⁵⁵	Louie 2005 ¹⁶⁴	Kalfarentz os 1997 ¹⁵⁶
Perspective	United Kingdom; Southampton General Hospital; between November 1996 and April 1998	Canada; between July 1999 and December 2001	Greece; between July 1990 and December 1995
Population	Patients with predicted severe acute pancreatitis (APACHE II >6)	Patients with acute pancreatitis with a Ranson's score greater than 2	Patient with acute pancreatitis
Comparators	 EN (N=8); given for a median of 2 days (2 to 7) PN (N=9); given for a median of 4 days (2 to 7) 	 EN (N=10); nasojejunal feeding tubes were placed via gastroscopy and confirmed radiographically PN (N=18); long-term vascular catheters were placed percutaneously and confirmed radiographically 	 EN (N=18); nasoente ric tube PN (N=20); central venous catheter
Complications	No complication of	The replacement or confirmation	Both EN

Study (RCT)	Gupta 2003 ¹⁵⁵	Lou	ue 2005 ¹⁶⁴		Kalfarentz os 1997 ¹⁵⁶
	feeding	of placement	of removed o	r	and PN
	tube/catheter	dislodge naso			were well
	placement/replace	generated add		of \$289	tolerated
	ment in both groups	(£159) per EN	l patient		
Direct cost	 EN cohort = £55 per patient PN cohort = £297 per patient 	nutrition it costs assoc support (p: placement	B (£1431) includes the vo self and over tiated with nu roduction of l of nasojejuna n of percutan	head itrition PN; il tubes	 EN = £30 per patient per day (mean 34.8 days) PN = £100 per patient per day (mean
					32.8 days)
Indirect cost	Not reported	Cost	EN	PN	Not
		Radiology	\$735	\$852	reported
		p=0.5	(£403)	(£468)	
		Intensive	\$21 022	\$21 49	5
		care p=0.9	(£11 537)	(£11 797)	
		Operative	\$3039	\$4662	
	J'	p=0.8	(£1668)	(£2559	D
	EN = Enteral Nutrition;		1	1	<u> </u>

1

- 2
- 3

4 4.5.6 FROM EVIDENCE TO RECOMMENDATIONS

5 A significant reduction in mortality and length of stay was associated with provision of

6 nutritional support either enterally or parenterally (compared to withholding feeding)

7 and clearly supported a recommendation. Although there were no papers specifically

8 comparing early to late feeding, the consensus of the GDG was that feeding should be

9 initiated soon after admission.

10

1 The GDG discussed the route for providing nutritional support. They agreed that the 2 evidence supports enteral feeding over parenteral feeding primarily due to a reduced 3 incidence of infection and a reduced length of stay. This evidence reflects the clinical 4 experience of the group. Enteral feeding is also associated with reduced cost. 5 6 When discussing the type of enteral tube feeding it was apparent that the evidence did 7 not clearly favour any particular route (NG or ND or NJ). The GDG discussed whether a 8 recommendation could reflect this and support the most practical and non-invasive 9 option, but it was felt that the evidence was insufficient and that there may be other 10 benefits that were not identified in the studies conducted to date. As such, it was decided 11 that the best approach was to make a research recommendation to determine the 12 optimal method of delivery for people with severe acute alcohol-pancreatitis. 13 14 4.5.7 RECOMMENDATIONS Offer nutritional support²⁰ to people with acute alcohol-related pancreatitis 15 R31 16 early (on diagnosis) and 17 by enteral tube feeding rather than parenterally where possible. 18 19 20 4.5.8 RESEARCH RECOMMENDATION What is the clinical and cost-effectiveness of nasogastric versus nasojejunal 21 RR7 22 delivery of nutritional support to patients with acute severe alcohol-related 23 pancreatitis? 24 4.6 ENZYME SUPPLEMENTATION FOR CHRONIC ALCOHOL-RELATED 25 PANCREATITIS 26 27 4.6.1 CLINICAL INTRODUCTION Steatorrhoea and weight loss are features of chronic pancreatitis and arise because of 28 the associated exocrine insufficiency. Steatorrhoea is caused by an increase in faecal fat 29 30 due to a significant (usually over 90%) drop in pancreatic lipase production.

- 31 Maldigestion of other nutrients can occur, but fat maldigestion is the first to become
- 32 clinically relevant. Pancreatic enzymes are often prescribed for these manifestations of
- 33 chronic pancreatitis, and once they have been started, they are often continued lifelong.

²⁰ See Nutrition support in adults: oral nutrition support, enteral tube feeding and parenteral nutrition. Clinical guideline 32 (2006). Available from www.nice.org.uk/CG032

Alcohol use disorders: clinical management: full guideline DRAFT (September 2009)

1 2 3	Pancreatic enzyme supplementation is also prescribed for the pain of chronic pancreatitis by some clinicians, on the basis that the exogenous enzymes may rest the pancreas and reduce endogenous enzyme production, thereby relieving the pain.
4	The GDG searched for evidence for the efficacy of enzyme supplementation for
5 6	steatorrhoea, weight loss and pain in chronic pancreatitis. In addition, they wished to determine if there was a benefit of one formulation of enzymes over another.
7	Therefore the clinical question posed and upon which the literature was searched was:
8	In patients with chronic alcohol-related pancreatitis, what is the safety and
9	efficacy of pancreatic enzyme supplementation versus placebo for a) steatorrhoea
10	and weight gain b) abdominal pain, duration of pain episodes, intensity of pain and
11	analgesic use for pancreatic exocrine insufficiency?
12	
13	4.6.2 CLINICAL METHODOLOGICAL INTRODUCTION
14	Studies were included that reported on the safety and efficacy of pancreatic enzymes in
15	patients with chronic pancreatitis (predominantly alcohol-related pancreatitis) that
16	reported on the outcomes of steatorrhoea, weight gain, abdominal pain duration of pain
17	episodes, intensity of pain, analgesic use, absorption and wellbeing score.
18	
19	Twelve studies were included in the evidence review ¹⁶⁵⁻¹⁷⁶
20	Level 1+/1++
21 22	These studies were reported under the categories:
23	Enzyme versus placebo (N=7)
24	Enzyme versus enzyme (N=3)
25	Comparisons of different doses (N=2)
26	
27	The studies, sample size (number of patients completing the study) and the quality
28	rating are presented below:
29	
30	Enzyme versus placebo
31	• Van Hoozen 1997 ¹⁷⁴ (N=11) 1+
32	• Isaksson 1983 ¹⁶⁵ (N=19) 1++
33	• Halgreen 1986 ¹⁶⁷ (N=20) 1+
34	• Mossner ¹⁷² 1992 (N=43) 1+
35	• O'Keefe 2001 ¹⁷⁵ (N=29) 1+
36	• Slaff 1984 ¹⁶⁶ (N=20) 1+
37	• Delchier 1991 ¹⁷¹ (N=6) 1+
38	
39	Enzyme versus enzyme
40	• Delhaye 1996 ¹⁷³ (N=25) 1+
41	• Gouerou 1989 ¹⁷⁰ (N=20) 1+
42	• Lankisch 1986 ¹⁷⁰ (N=8) 1+

- 1 Comparison of different dose
 - Vecht 2006¹⁷⁶ (N=16) 1+
 - Ramo 1989¹⁶⁹ (N=10) 1+
- 3 4

2

- 5 Two studies were excluded from the review because they were of low quality with no
- 6 reporting on randomisation, allocation concealment or blinding ^{177,178}.
- 7 Level 1-
- 8

9 Eleven of the twelve studies were cross-over trials, however only two of these studies
10 reported on a wash-out period between treatments ^{165,173}. The overall quality of the
11 studies was low, in nine studies the method of randomisation was poor or unclear ^{166,168-}
171,173-176; in nine studies allocation concealment was unclear ^{165-168,170,171,173,174,176} and in
13 ten studies the method of blinding was unclear ^{166,168,170-176}. Two studies also had high

- 14 drop out rates, between 22-23% ^{170,173}.
- 15
- 16 4.6.3 CLINICAL EVIDENCE STATEMENTS

17 Steatorrhoea/ faecal fat

- 18 **Placebo versus pancreatic enzyme**
- 19 Four studies comparing a pancreatic enzyme preparation with placebo reported on
- 20 change in faecal fat ^{167,171,175,179}. Two studies reported a significant difference in faecal fat
- 21 reduction when comparing pancreatic enzyme preparations with placebo ^{171,175}. One
- 22 study reported a significant reduction in faecal fat with enzyme preparation compared
- to placebo in patients with steatorrhoea ¹⁶⁷. See Table 3-21below.
- 24 Level 1+
- 25

26 Table 4-22. Summary of results.

STUDY	Pancreatic enzyme preparation	Mean Faecal Fat: g/day (after treatment)	Mean difference (versus placebo)	% mean reduction (from basal value)	P value (compared to placebo score)
MOSSNER ¹⁷²	Panzytrat 20 000	11	-	25	NS*
HALGREEN ¹⁶⁷	Pancrease 25 000	Patients with steatorrhoea: 10.4	-	-	<0.01
		Patients without steatorrhoea: 3.3	-	-	NS
O'KEEFE ¹⁷⁵	Creon	20.3	-27.70 [-33.66, - 21.74]	-	<0.0001
DELCHIER ¹⁷¹	Eurobiol 25	24	-10.00	-	0.007

000		[-17.21, - 2.79]	
Eurobiol	32	-18.00	< 0.001
		[-21.80, -	
		14.20]	

- 1 * This result may have been affected by the inclusion of 10 patients (23%) who had
- 2 normal faecal fat excretion at the start of the study ¹⁷⁹.
- 3 Level 1+
- 4
- 5 One study used a symptom score to measure steatorrhoea and reported no significant
- 6 difference between the placebo and pancreatic enzyme preparation ¹⁶⁵.
- 7 Level 1++
- 8

9 • Enzyme versus enzyme/Comparisons of different doses:

- 10 Three studies comparing different pancreatic enzyme preparations reported on change
- 11 in faecal fat ^{168,170,173}. One study reported on change in faecal fat when looking at
- 12 different dosing of pancrease ¹⁷⁶. See Table 3-22below
- 13
- 14
- 15
- 16

17 **Table 4-23. Summary of results.**

STUDY	Pancreatic	Faecal Fat:	% mean	P value
	enzyme	g/day	reduction	(compared to
	preparation			basal score)
DELHAYE ¹⁷³	Pancrease HL	10.68 ± 0.66	-	NS
GOUEROU ¹⁷⁰	Pancrease	13.9 ± 12.96	40	NS*
DELHAYE ¹⁷³	Pancrease HL +	9.52 ± 0.71	-	0.03
	omeprazole			
VECHT ¹⁷⁶	Pancrease,	17.9 ± 6.5	51	< 0.01
	10,000 +			
	omeprazole			
	Pancrease,	18.3 ± 4.7	50	< 0.01
	20,000 +			
	omeprazole			
LANKISCH ¹⁶⁸	Kreon	12.6	79	< 0.05
DELHAYE	Creon 3	10.26 ± 0.61	-	NS
	Creon 3 +	9.14 ± 0.56	-	0.03
	omeprazole			
LANKISCH	Pankreon 700	33.5	44	NS*
	Pankreon 700 +	23.6	60	NS*
	cimetidine			
GOUEROU ¹⁷⁰	Eurobiol	12.32 ± 9.48	46	NS

18 * These studies included patients without steatorrhoea and this may have affected the

19 result 165,167

1	NS = not significant
2	Level 1+
3	
4	Weight gain
5	▶ Placebo versus pancreatic enzyme
6	Two studies which compared a pancreatic enzyme preparation with placebo reported
7	on the outcome body weight. Patients randomized to receive pancreatin gained 3.6-
8	5.5kg in body weight over the 8 week period compared to no weight gain in those
9	randomized to placebo ¹⁷⁴ .
10	Level 1+
11	
12	► Enzyme versus enzyme
13	One study comparing different pancreatic enzyme preparations reported on body
14	weight. No significant change in body weight was seen between day 0 compared to day
15	56 at which point all the different enzyme preparations had been taken ¹⁷³ .
16	Level 1+
17	
18	► Comparisons of different doses
19	One study comparing regular dosing of a pancreatic enzyme (as recommended by the
20	manufacturer) with individually administered dosing (symptom triggered) found no
21	significant change in weight between the two dosing regimens ¹⁶⁹ .
22	Level 1+
23	
24	Abdominal pain (duration of pain episodes, intensity of pain and
25	analgesic use)
26	► Placebo versus pancreatic enzyme
27	Six studies comparing pancreatic enzyme preparations with placebo reported on change
28	in pain ^{165-167,172,174,175} .
29	Level 1+
30	
31	Three studies reported no significant change in pain scores between the placebo and
32	pancreatic enzyme preparation ^{167,172,174} .
33	
34	Two studies reported an improvement in pain scores when using pancreatic enzyme
35	supplementation compared with placebo ^{165,166} :
36	• Examiner rated pain was significantly lower when patients were on pancreatic
37	enzyme compared with placebo (N=1)
38	• The patient-rated mean pain score during the week was significantly lower
39	when patients were on enzyme supplementation compared with placebo (N=1)
40	• The examiner-rated mean pain score was significantly lower on pancreatic
41	enzyme compared with placebo (N=1)
42	 The frequency of pain was significantly lower in patients on enzyme
43	supplementation compared with placebo (N=1)
44	• For patients with mild to moderate disease the average daily pain score was
45	significantly lower on enzyme supplementation compared with placebo (N=1).
16	

46 Level 1+

1	
2	Two studies saw a reduction in pain when comparing a pancreatic enzyme preparation
3	to placebo ^{165,166} :
4 5	• 15/19 had pain relief during the week on pancreatic enzyme treatment compared with placebo (N=1)
6	• Patients with mild to moderate impairments of exocrine function (maximum biased and a structure in the countration for the transmission of a structure for and a structure for and a structure for an experimentation of the structure for an experi
7	bicarbonate concentration in the secretin test between 50 and 80 mEq/L and
8	normal faecal fat determination) had significantly more pain relief with enzyme
9	supplementation than placebo (N=1)
10	• 75% with mild to moderate disease experienced pain relief with enzyme
11	supplementation compared to 25% of patients with severe disease
12	(steatorrhoea) (statistically non-significant difference) (N=1)
13	Level 1+
14	
15 16	Two studies reported no significant change in abdominal pain when comparing placebo
10	with a pancreatic enzyme preparation. ^{167,175} . Level 1+
18	Level 1+
10	Two studies reported no significant change in analgesic use when comparing placebo
20	with a pancreatic enzyme preparation 167,172 . However, one study reported a 40%
20	reduction in the use of analgesics ¹⁶⁶ .
22	Level 1+
23	
23 24	► Enzyme versus enzyme
25	Two studies comparing different enzyme preparations found no significant change in
26	pain ^{170,173} .
27	Level 1+
28	
29	Comparisons of different doses
30	One study comparing different doses of a pancreatic enzyme preparation reported a
31	significant reduction in abdominal symptoms score with both doses compared to basal
32	values (0-10).
33	Level 1+
34	
35	One study reporting on different dosing regimes reported a significantly lower pain
36	score during the self-administration of pancrease.
37	Level 1+
38	
39	Wellbeing score
40	► Placebo versus pancreatic enzyme
41	One study reported on patients' general wellbeing and found no significant difference
42	between the placebo and enzyme group, however no data were provided, so the exact
43	difference could not be assessed ¹⁶⁷ .
44	Level 1+
45	
46	► Enzyme versus enzyme

- 1 One study reported on this outcome and found no significant change in wellbeing score
- 2 during the four treatment periods, however no data was provided ¹⁷³.
- 3 Level 1+
- 4

5 **Comparisons of different doses**

- 6 One study reported on this outcome and found a significant improvement in wellbeing
- 7 score when using both doses of pancrease in comparison to basal values ¹⁷⁶.
- 8 Level 1+
- 9

10 Absorption

11 Placebo versus pancreatic enzyme

- 12 Two studies comparing a pancreatic enzyme preparation with placebo reported results
- 13 on the outcome absorption ^{174,175}. Both studies reported a significant increase in fat
- 14 absorption when taking the pancreatic enzyme preparation compared to placebo.
- 15 Level 1+
- 16
- 17 One study reported a non-significant improvement in carbohydrate and protein
- 18 absorption when using a pancreatic enzyme preparation compared to placebo ¹⁷⁴.
- 19 However they did report a significant increase in total energy absorption when using a
- 20 pancreatic enzyme preparation.
- 21 Level 1+
- 22

23 **Enzyme versus enzyme**

- One study comparing different enzyme preparations reported on the change in fat and
 protein absorption. No significant difference in fat or protein absorption was found
- 25 protein absorption. No significant unierence in fat of protein absorption was foun 26 hetween different ensure of exactly between the addition of emergence 172
- 26 between different enzymes or with or without the addition of omeprazole ¹⁷³.
- 27 Level 1+
- 28

34

29 Comparisons of different doses

- One study reported difference in fat absorption when using different doses of a
 pancreatic enzyme preparation. They found a significant increase in fat absorption in
- 32 both treatment groups (pancrease 10,000 and pancrease 20,000) compared to placebo.
- 33 Level 1+

35 **Subgroup: Studies looking at pancreatic enzymes in combination with**

36 H² blockers versus pancreatic enzymes alone.

37 Steatorrhoea/faecal fat

- 38 One study ¹⁷³ reporting fat excretion (g/day) saw no significant difference with the
- 39 addition of omeprazole to pancrease or creon.
- 40 Level 1+
- 41
- 42 One study ¹⁶⁸ reported a significant reduction in faecal fat with the addition of
- 43 cimetidine or when using the pH sensitive enzyme preparation Kreon compared to a
- 44 non-significant reduction with pankreon alone.
- 45 Level 1+
- 46

1 ► Weight gain

No results were reported on the difference with and without the addition of an H2blocker.

4

5 **•** Abdominal pain (duration of pain episodes, intensity of pain and analgesic use)

- 6 One study ¹⁷³ reported no significant difference in the severity of abdominal pain with
- 7 Creon or Pancrease HL with or without the addition of omeprazole.
- 8 Level 1+
- 9

10 **•** Wellbeing score

- 11 One study ¹⁷³ reported no significant difference in general wellbeing with Creon or
- 12 Pancrease HL with or without the addition of omeprazole.
- 13 Level 1+
- 14

15 **Absorption**

- One ¹⁷³ reported no significant difference in percentage fat or protein absorption with
 Creon or Pancrease HL with or without the addition of omeprazole.
- Creon or Pancrease HL with or without the addition of
- 18 Level 1+

1920 Limitations of evidence:

- The small sample size of most of these studies (range N=6-43) may have left the studies
- 22 underpowered to detect a significant change in any of the reported outcomes. All of the
- 23 studies were reporting on short-term use of pancreatic enzymes (24 hours to 30 days
- 24 per treatment), which may not have allowed time for the enzymes to take full effect.
- 25 26

27 4.6.4 HEALTH ECONOMIC METHODOLOGICAL INTRODUCTION

- 28 No relevant economic analysis was identified assessing the cost-effectiveness of
- 29 pancreatic enzyme supplementation in patients with alcohol-related pancreatitis. The
- 30 cost of drugs used for pancreatic enzyme supplementation was presented to the GDG.
- 31

32 4.6.5 Health economic evidence statements

- 33 In NHS current medical practice, pancreatic enzyme supplementation is given to a large
- 34 number of patients suffering from chronic alcohol-related pancreatitis, primarily as a
- 35 means for controlling pain. The cost of treatment options are presented in Table 4-24.

36 Table 4-25.

Dose	Acquisition price	Cost per month
Creon® 10000		
 Adult and child initially 1–2 capsules with each meal 	 Capsules (protease 600 units, lipase 10 000 units, amylase 8000 units), net price 100-cap pack = £14.00 	• Initially: £12.60-£25.20 per month
Creon® Micro		
 Adult and child initially 	Gastro-resistant granules (protease	• Initially: 14.18 per month

100 mg with each meal	200 units, lipase 5000 units, amylase 3600 units per 100 mg), net price 20g = £31.50	
Nutrizym 10®		
• Adult and child 1–2 capsules with meals and 1 capsule with snacks	 Capsules (protease 500 units, lipase 10 000 units, amylase 9000 units), net price 100 = £14.47 	• £21.71-£34.73 per month
Pancrex®		
• Adult and child 5–10 g just before meals	 Granules (protease 300 units, lipase 5000 units, amylase 4000 units/g), net price 300g = £20.39 	• £30.59-£61.17 per month
Pancrex V®		
Capsules Adult and child over 1 year 2-6 capsules with each meal 	• Capsules (protease 430 units, lipase 8000 units, amylase 9000 units), net price 300-cap pack = £15.80	• £9.48-£28.44 per month
Tablets Adult and child 5–15 tablets before each meal 	• Tablets (protease 110 units, lipase 1900 units, amylase 1700 units), net price 300-tab pack = £4.51	• £6.77-£20.30 per month
Tablets forteAdult and child 6–10 tablets before each meal	• Tablets forte (protease 330 units, lipase 5600 units, amylase 5000 units), net price 300-tab pack = £13.74	• £24.73-£41.22 per month
 Powder Adult and child over 1 month, 0.5–2 g before each meal 	 Powder (protease 1400 units, lipase 25 000 units, amylase 30 000 units/g), net price 300 g = £24.28 	• £3.64-£14.57 per month
	Higher-strength preparations	
Creon® 25 000		
• Adult and child initially 1 capsule with meals	 Capsules (protease 1000 units, lipase 25 000 units, amylase 18 000 units), net price 100-cap pack = £28.25 	• Initially: £25.43 per month
Creon® 40000		
 Adult and child initially 1– 2 capsules with meals 	• Capsules (protease 1600 units, lipase 40 000 units, amylase 25 000 units), net price 100-cap pack = £60.00	• Initially: £54-£108 per month
Nutrizym 22®		
 Adult and child over 15 years, 1–2 capsules with meals and 1 capsule with snacks Pancrease HL® 	• Capsules (protease 1100 units, lipase 22 000 units, amylase 19 800 units), net price 100-cap pack = £33.33	• £50-£80 per month
 Adult and child over 15 years, 1–2 capsules during each meal and 1 capsule with snacks 	• Capsules (protease 1250 units, lipase 25 000 units, amylase 22 500 units), net price 100 = £32.34	• £48.51-£77.62 per month

1 * BNF no.58

2

3

4 4.6.6 FROM EVIDENCE TO RECOMMENDATIONS

- 5 The small sample size of most of these studies (range N=6–43) means that they may be
- 6 underpowered to detect a significant change in any of the reported outcomes. All of the
- 7 studies were reporting on short-term use of pancreatic enzymes (24 hours to 30 days

- per treatment), this may not have allowed time for the enzymes to produce a clinically
 significant effect.
- 3

A number of studies included dietary intervention (moderation of fat intake) andmoderation of alcohol intake.

6 7

8

9

10

The studies in general showed a reduction in faecal fat in those patients on pancreatic enzyme supplementation. The GDG felt that this was important in terms of symptom control (steatorrhoea) and with regard to calorie and fat soluble vitamin absorption in the longer term. In spite of the short length of the studies, there was also some evidence

- 11 for weight gain with enzyme supplementation to support their use.
- 12

13 The GDG felt that there was not sufficient evidence to support the use of enzyme 14 supplements for pain related to chronic pancreatitis. While there may be patients with

- 15 pain that require enzyme supplementation for other reasons, supplementation should
- 16 not be used as a treatment for pain or in those patients with pain without steatorrhoea
- 17 or weight loss. These patients should be managed with reference to the specific
- 18 guidance on the management of pain associated with chronic pancreatitis (see Chapter
- 19 4.3). In addition, considering that enzyme supplementation is currently used mostly for
- 20 pain control, the non-negligible cost of this treatment and the necessity to avoid
- unnecessary expenditure of public resources was highlighted. The GDG also noted that
 many patients in current practice need higher doses of enzyme supplementation than
- 23 proposed in the BNF.
- 24

As there is no clinical evidence favouring one enzymatic preparation over another, the GDG felt that the choice of which one to prescribed should be based on cost. It was noted that acid suppression may be required in addition to enzyme supplementation when the 'older' formulations are used which are not microencapsulated. This would involve additional costs.

30

In summary, it was felt that there was sufficient evidence to recommend enzyme
 supplementation to improve nutritional status and steatorrhoea in patients with
 pancreatic exocrine insufficiency, but not for pain alone.

34

35 4.6.7 RECOMMENDATIONS

- R32 Offer pancreatic enzyme supplements to people with chronic alcoholrelated pancreatitis who have symptoms of steatorrhoea and poor
 nutritional status due to exocrine pancreatic insufficiency.
- R33 Do not prescribe pancreatic enzyme supplements to people with chronic
 alcohol-related pancreatitis if pain is their only symptom.
- 41

APPENDICES

A.1. CORTICOSTEROIDS VERSUS PLACEBO FOREST PLOTS

Corticosteroids vs placebo (patients with $DF \ge 32$ or encephalopathy)

Forest plot of comparison: 1 Corticosteroids vs placebo (severe hepatitis patients), outcome: 1.1 Mortality - all cause (one month).

E a

Forest plot of comparison: 1 Corticosteroids vs placebo (severe hepatitis patients), outcome: 1.2 Mortality - all cause (6 months).

T

Forest plot of comparison: 1 Corticosteroids vs placebo (severe hepatitis patients), outcome: 1.3 Mortality - liver related (28 days).

Forest plot of comparison: 1 Corticosteroids vs placebo (severe hepatitis patients), outcome: 1.4 Mortality - liver related (6 months).

iin**t**

Forest plot of comparison: 1 Corticosteroids vs placebo (severe hepatitis patients), outcome: 1.5 Gastro-intestinal bleeding.

First

Forest plot of comparison: 1 Corticosteroids vs placebo (severe hepatitis patients), outcome: 1.6 Infection.

Corticosteroids versus placebo (patients with $DF \ge 32$)

Forest plot of comparison: 1 Corticosteroids vs placebo (all patients), outcome: 1.1 Mortality - all cause (one month).

Elec**T**

Forest plot of comparison: 1 Corticosteroids vs placebo (severe hepatitis patients), outcome: 1.2 Mortality - all cause (6 months).

Forest plot of comparison: 1 Corticosteroids vs placebo (severe hepatitis patients), outcome: 1.3 Mortality - liver related (28 days).

17.**T**

Forest plot of comparison: 1 Corticosteroids vs placebo (severe hepatitis patients), outcome: 1.4 Mortality - liver related (6 months).

The second s

A.2. Clinical questions and literature searches

Question ID	Question wording	Study Type Filters used	Databases and Years
BENZO	'What is the safety and efficacy of a benzodiazepine (chlordiazepoxide or diazepam, alprazolam, oxazepam, clobazam, lorazepam) versus a) placebo b) other benzodiazepines benzodiazepine (chlordiazepoxide or diazepam, alprazolam, oxazepam, clobazam, lorazepam) c) other agents (clomethiazole or carbamazepine) d) other agents (clomethiazole or carbamazepine) versus placebo for patients in acute alcohol withdrawal?'	Systematic Reviews, RCTs, Comparative and Observational Studies	Medline 1950- 2009 Embase 1980-2009 Cinahl 1982-2009 Cochrane 1800- 2009
NEUROLEP	"What is the safety and efficacy of a) neuroleptic agents, promazine hydrochloride, haloperidol, clozapine, risperidone, olanzapine, quetiapine) versus placebo b) other neuroleptic agents c) neuroleptic agents in combination with benzodiazepines (diazepam, chlordiazepoxide, alprazolam, oxazepam, clobazam, lorazepam) for patients with DTs?"	Systematic Reviews, RCTs, Comparative and Observational Studies	Medline 1950- 2009 Embase 1980-2009 Cinahl 1982-2009 Cochrane 1800- 2009

Question	Question wording	Study Type	Databases and
ID	Question wording	Filters used	Years
		Filters used	10015
DIAZ		Contant in	N II: 1050
DIAZ	What is the safety and efficacy of	Systematic Reviews,	Medline 1950-
	benzodiazepines versus a) placebo b) other benzodiazepines c) other	RCTs,	2009
	anticonvulsants for the prevention of	Comparative	Embase 1980-2009
	recurrent seizures during acute	and	
	alcohol withdrawal?	Observational	Cinahl 1982-2009
		Studies	Cochrane 1800-
			2009
DIAG1	'In adults and young people in acute	Systematic Reviews,	Medline 1950-
	alcohol withdrawal, what is the	RCTs,	2009
	clinical efficacy and safety of, and patient satisfaction associated with,	Comparative,	Embase 1980-2009
	a) a symptom-triggered compared	Observational	
	with a fixed-schedule benzodiazepine	and	Cinahl 1982-2009
	dose regimen b) symptom triggered	Diagnostic studies	Cochrane 1800-
	compared with loading-dose regimen	studies	2009
	c) loading-dose compared with fixed-		
	schedule regimen?		
	What assessment tools, including		
	clinical judgement, are associated		
	with improved clinical and patient		
	outcomes when using a symptom-		
	triggered dose regimen in patients		
DETOX	with acute alcohol withdrawal?'	Systematic	Medline 1950-
DEIUX	'What are the benefits and risks of	Reviews,	2009
	unplanned 'emergency' withdrawal	RCTs,	2009
	from alcohol in acute medical	Comparative	Embase 1980-2009
	settings versus discharge?	and Observational	Cinahl 1982-2009
		Studies	Cinain 1902 2009
	What criteria (e.g. previous		Cochrane 1800-
	treatment, homelessness, levels of		2009
	home support, age group) should be		
	used to admit a patient with acute		
	alcohol withdrawal for unplanned		
	emergency withdrawal from		
	alcohol?'		

Question ID	Question wording	Study Type Filters used	Databases and Years
TRANSP	What length of abstinence is needed to establish non-recovery of liver damage, which thereby necessitates referral for consideration for assessment for liver transplant?	Systematic Reviews, RCTs, Comparative, Observational and Diagnostic studies	Medline 1950- 2009 Embase 1980-2009 Cinahl 1982-2009 Cochrane 1800- 2009
NURS	 What is the accuracy of a tool and/or clinical judgement for the a) assessment b) monitoring of patients at risk of acute alcohol withdrawal? Does the assessment and monitoring of patients with acute alcohol withdrawal improve patient outcomes? 	Systematic Reviews, RCTs, Comparative and Observational Studies	Medline 1950- 2009 Embase 1980-2009 Cinahl 1982-2009 Cochrane 1800- 2009
DIAG2	'What is the accuracy of laboratory and clinical markers versus liver biopsy for the diagnosis of alcohol- related liver disease versus other causes of liver injury?' 'What is the safety and accuracy of laboratory and clinical markers versus liver biopsy for the diagnosis of alcohol related hepatitis versus decompensated cirrhosis?'	Systematic Reviews, RCTs, Comparative, Observational and Diagnostic Studies	Medline 1950- 2009 Embase 1980-2009 Cinahl 1982-2009 Cochrane 1800- 2009

Question ID	Question wording	Study Type Filters used	Databases and Years
SURG	 1) In patients with chronic alcohol- related pancreatitis, does early versus later referral for a) coeliac axis block b) transthoracic splanchnicectomy c) early referral for coeliac axis/plexus block versus transthoracic splanchnicectomy improve patient outcomes? 2) In patients with chronic alcohol- related pancreatitis, what is the safety and efficacy of a) transthoracic splanchnicectomy compared with coeliac axis/plexus block? b) or either intervention compared to conservative management? 3) In patients with chronic alcohol- related pancreatitis, does early versus later referral for a) endoscopic interventional procedures b) surgery c) early referral for surgery versus endoscopic interventional procedures improve patient outcomes? 4) In patients with chronic alcohol- related pancreatitis, what is the safety and efficacy of endoscopic interventional procedures? 4) In patients with chronic alcohol- related pancreatitis, what is the safety and efficacy of endoscopic interventional procedures compared with surgery? Or either intervention compared with conservative management? 	Systematic Reviews, RCTs, Comparative, Observational and Diagnostic Studies	Medline 1950- 2009 Embase 1980-2009 Cochrane 1800- 2009
ENZYME	In patients with chronic alcohol- related pancreatitis, what is the safety and efficacy of pancreatic enzyme supplementation versus placebo for a) steatorrhoea and weight gain b) abdominal pain, duration of pain episodes, intensity of pain and analgesic use for pancreatic exocrine insufficiency?	None	Medline 1950- 2009 Embase 1980-2009 Cinahl 1982-2009 Cochrane 1800- 2009

Question ID	Question wording	Study Type Filters used	Databases and Years
NUTRI4	a)For the prevention and treatment of Wernicke's encephalopathy, what is: i) the safety and efficacy ii) optimum dose iii) optimum duration of treatment of a) Pabrinex b) oral b vitamin c) oral thiamine d) multivitamins e) placebo or any combinations or comparison a-e b) Which patients are at risk of developing Wernicke's encephalopathy and therefore require prophylactic treatment?	Systematic Reviews, RCTs, Comparative and Observational Studies	Medline 1950- 2009 Embase 1980-2009 Cinahl 1982-2009 Cochrane 1800- 2009
ANTIBIO	In patients with acute alcohol-related pancreatitis, what is the safety and efficacy of prophylactic antibiotics versus placebo?	Systematic Reviews, RCTs, Comparative and Observational Studies	Medline 1950- 2009 Embase 1980-2009 Cinahl 1982-2009 Cochrane 1800- 2009
NUTRI2	In patients with acute alcohol-related pancreatitis, what is the safety and efficacy a) of nutritional supplementation vs no nutritional supplementation b) early (first 48 hrs) vs late supplementation c) NJ vs NG) vs parenteral nutrition?	Systematic Reviews, RCTs, Comparative and Observational Studies	Medline 1950- 2009 Embase 1980-2009 Cinahl 1982-2009 Cochrane 1800- 2009

Question ID	Question wording	Study Type Filters used	Databases and Years
DIAG3	"What is the diagnostic accuracy of abdominal ultrasound versus computed tomography (CT) for the diagnosis of alcohol-related chronic pancreatitis?"	Systematic Reviews, RCTs, Comparative, Observational and Diagnostic Studies	Medline 1950- 2009 Embase 1980-2009 Cinahl 1982-2009 Cochrane 1800- 2009
NUTRI1	In patients with acute alcohol-related hepatitis, what is the safety and efficacy of: a) enteral nutrition versus standard diet b) enteral nutrition versus corticosteroids c) enteral nutrition in combination with corticosteroids versus enteral diet	Systematic Reviews, RCTs, Comparative and Observational Studies	Medline 1950- 2009 Embase 1980-2009 Cinahl 1982-2009 Cochrane 1800- 2009
CORTICO	'In patients with acute alcohol- related hepatitis, what is the safety and efficacy of corticosteroids versus placebo?'	Systematic Reviews, RCTs, Comparative, Observational and Diagnostic Studies	Medline 1950- 2009 Embase 1980-2009 Cinahl 1982-2009 Cochrane 1800- 2009

A.3. HEALTH ECONOMIC ANALYSIS – DOSING REGIMENS FOR ACUTE ALCOHOL

WITHDRAWAL

1. Background

Acute alcohol withdrawal (AAW) is a medical condition that manifests in alcoholdependent patients who reduce or discontinue their alcohol intake. The symptoms associated with this condition range over a spectrum of severity from mild to moderate (tremor, restlessness, insomnia, nausea and tachycardia) to the more severe (seizures and delirium tremens). The clinical evidence review showed that benzodiazepines were more effective than placebo for the prevention of delirium tremens and alcohol withdrawal seizures²⁶. In addition, benzodiazepines were not found to be more efficient than neuroleptics, carbamezepine, and clomethiazole for the treatment of patients with AAW²⁶.

Different management options are available for the assessment and monitoring of patients with AAW. The symptom-triggered dosing regimen of benzodiazepines was associated with significantly lower doses of benzodiazepines³¹ and shorter treatment duration compared to a fixed-dosing regimen²⁸⁻³⁰. A quality of life assessment found that a symptom-triggered dosing regimen improved patients' physical functioning compared to the fixed-dosing regimen (p<0.01)²⁸. The fixed-dosing regimen is the most commonly used method in general hospitals across England and Wales.

The Clinical Institute Withdrawal Assessment for Alcohol scale (CIWA-A) and its revised form, the CIWA-Ar, are validated scales applied for managing patients with AAW. The CIWA-Ar was the scale used in the clinical studies comparing symptom-triggered and fixed-dosing regimens included in this review²⁸⁻³¹. The CIWA-Ar scale was reported to be valuable for identifying patients in the general hospital setting who are in early withdrawal and require drug therapy to avoid complications⁴⁸. The CIWA-Ar scale and a recently revised version, the CIWA-AD, are used in England and Wales where the symptom-triggered regimen forms part of the AAW management protocol.

There are different cost implications associated with each type of dosing regimen. In addition to the difference in drug cost, the duration of treatment could have a large impact on the hospital length of stay and related costs. Similarly, each dosing regimen has different training and implementation implications and demands different amount of staff resource (to assess and monitor patients).

The length of hospital stay is impacted directly by the regimen used when a patient is admitted for the treatment of the AAW syndrome alone²⁸⁻³⁰). However, when a patient is admitted for a co-morbid condition, the regimen is not the key determinant of the patient's length of stay³¹).

There is a lack of health economic evidence on this topic. From a systematic literature search, no relevant cost-effectiveness evidence was identified that compared treatment regimens for use in people with AAW. This cost-effectiveness analysis was therefore undertaken to discern whether the symptom-triggered regimen is a cost-effective option to use for the NHS in England and Wales.

2. Objective

The objective of this economic analysis was to assess the cost-effectiveness of the fixedschedule dosing regimen of benzodiazepines or clomethiazole, compared to a symptomtriggered dosing regimen, for the in-hospital management of patients with acute alcohol withdrawal in England and Wales.

This economic analysis had mainly considered the experience of implementing and using the symptom-triggered regimen in the Addenbrooke's Hospital (Cambridge), the Huntercombe Centre (Sunderland), and the Royal Liverpool and Broadgreen University Hospital Trust.

3. Model

Four cost-effectiveness analyses were conducted, each based on a different clinical study comparing the symptom-triggered regimen with the fixed-dosing regimen. Two populations of patients were considered: patients with AAW admitted for the treatment of this condition alone; and patients with AAW admitted for a co-morbid medical condition. The health outcome considered for this analysis was the Quality-Adjusted Life Year (QALY). This analysis was conducted from an England and Wales NHS perspective, with a time horizon extending to the end of the hospital admission.

4. Clinical studies

Four studies ²⁸⁻³¹ met the inclusion criteria for the clinical literature review as outlined in the methods chapter at the beginning of the guideline. Three were conducted using patients admitted for AAW only (Daeppen 2002²⁸, Saitz 1994²⁹, Lange-Asschenfeldt 2003³⁰) whilst one study (Weaver 2006³¹) considered a population of patients with AAW admitted for a co-morbid condition. Table 1 summarises the results of these studies.

	Clinical studies					
Study	Type of study	Drug used	Symptom-triggered		Fixed-schedule	
			Mean duration of treatment (hours)	Mean dose of drug (mg)	Mean duration of treatment (hours)	Mean dose of drug (mg)
Daeppen	RCT	Oxazepam	20	37.5	63	231.4
Saitz	RCT	Chlordiazepoxide	9	100	68	425
Lange- Asschenfeldt	Retrospective analysis	Clomethiazole	101	4352	180	9921
Weaver	Quasi- randomised Trial	Lorazepam	Not reported	28.8	Not reported	102.1

Table 1

These studies reported rates of complications for developing delirium tremens, seizures, lethargy and hallucinations, and showed no significant difference between the fixed-dosing and the symptom-triggered cohorts²⁸⁻³¹. In addition, there was no significant difference between cohorts in the use of co medications³⁰.

A meta-analysis of results presented in Table 1 was not possible as the data are very heterogeneous. Therefore, each of the four studies was modelled in a separate cost-effectiveness analysis.

The economic modelling of the three clinical studies on patients admitted for AAW only (Daeppen 2002²⁸, Saitz 1994²⁹, and Lange-Asschenfeldt 2003³⁰) considered the difference in length of hospital stay between the two cohorts. In the Weaver study³¹ (where patients were admitted for a co-morbid condition) there was no difference in the length of hospital stay between the trial arms as the co-morbid condition determined the length of hospital stay.

5. QALYs

Utility scores were obtained for each regimen by applying the SF-6D algorithm⁴⁰ to the original SF-36 data from the Daeppen study²⁸. The difference in utility scores between the cohorts was marginal (0.0194) and non-significant (95% CI, -0.00972 to 0.4843; p=0.19) (Table 2).

The Daeppen study²⁸ assessed health-related quality of life (SF-36) at 3 days post start of treatment and asked the patients to judge their health-related quality of life (HRQoL) over the past 3 days for both the symptom-triggered and the fixed-dosing cohorts. QALYs were calculated by multiplying the utility score by the 3 days' duration for each arm. In the base case analysis, it was assumed that there would be no HRQoL difference between the cohorts after 3 days, and the Daeppen QALY gain was applied to the other studies (Table 2).

Table 2

Health outcomes						
	Population (Deappen)	Utility s	cores	Duration	Quality adju years (Q	
Regimen	N	Mean	Std. deviatio	Days (Deappen)	QALYs	QALY differenc
			n			е
Symptom-	56	.6614	.07376	3	.005436	.000159
triggered						
Fixed-dosing	60*	.6420	.08423	3	.005277	

* Data from one patient were excluded as they were reported incorrectly.

6. Cost

Four categories of cost were considered in this analysis: treatment; hospitalisation; staff time for a nurse monitoring a patient with AAW; and the cost of implementing the symptom-triggered regimen.

6.1. Treatment cost

In the base-case analysis, for each of the four cost-effectiveness models, the UK cost of the oral drugs used in the respective studies was included (Table 1). Table 3 shows the price of the drugs used in this study.

Drug price				
Drug Price				
Chlordiazepoxide Hydrochloride	5mg tablet; 20-tab pack = £0.50			
Lorazepam	1mg tablet; 28-tab pack = £8.28			
Oxazepam 10mg tablet; 28-tab pack = £6.17				
Clomethiazole	192mg capsule; 60-caps pack = £4.78			

Table 3

Source: BNF No. 57, March 2009⁴¹.

This drug cost was varied in a one-way sensitivity analysis by substituting the price of other drug options to see if it affected the results of the analysis (Table 4).

Table 4

Drug cost – sensitivity analysis*				
Study Drug used in the study Drug(s) for the sensitivity analysi				
Daeppen	Oxazepam	Chlordiazepoxide		
Saitz	Chlordiazepoxide	Oxazepam		
Lange-Asschenfeldt	Clomethiazole	Not applicable***		
Weaver	Lorazepam	Chlordiazepoxide / Oxazepam		

* The sensitivity analysis considered the cost of using chlordiazepoxide and oxazepam (two widely used drugs for in-hospital treatment of patients with AAW in England and Wales).
 ** The equivalent drug doses used were: Chlordiazepoxide 15mg; Oxazepam 15mg; Lorazepam 0.5mg¹⁸⁰

*** It is not possible to convert the dose of clomethiazole to that of a benzodiazepine.

6.2. Hospitalisation cost

Hospitalisation cost was estimated by multiplying the duration of treatment reported in the clinical studies (Table 1) by the average cost of an inpatient day.

A patient with AAW can be admitted to a number of different services/specialty settings and Table 5 summarizes these costs per in-patient day. The average cost for treating patients with AAW across all trusts in England and Wales was estimated to be £219 per in-patient day¹⁸¹. This cost was used in the base-case analysis for the three modelled clinical studies where there was a difference in length of stay between the cohorts(Daeppen 2002²⁸, Saitz 1994²⁹, Lange-Asschenfeldt 2003³⁰. A one-way sensitivity analysis considered other inpatient costs: £254 and £271 per inpatient day¹⁸¹ (Table 5).

Inpatient cost				
NHS Service	Cost per inpatient day			
NHS inpatient treatment for people who misuse	£219 *			
drugs/alcohol				
A&E Observation ward	£271 **			
All specialities (Weighted average)	£254 **			
Acute NHS hospital services for people with	£219 *			
mental health problems				

* Source: Unit Costs of Health and Social Care 2008¹⁸¹.

** Source: National Schedule of Reference Costs 2006-07 - NHS Trusts¹⁰⁰.

6.3. Staff time cost

The cost of staff time was calculated by multiplying the hourly cost of nurse time (Table 8) by the time a nurse is in contact with a patient. The amount of time a nurse is in contact with the patient is determined by the assessment schedule used by the nurse monitoring the patient and the number of minutes required to conduct each assessment.

6.3.1. Assessment schedule

Clinical studies did not report the time a nurse was in contact with a patient during the monitoring process, but reported the protocols used for each regimen. Table 6 summarises the assessment schedules used in the clinical studies for both symptom-

triggered and fixed-dosing regimens. It also presents schedules from a selection of hospitals, as submitted by GDG members.

Table 6

Table 6				
Clinical study protocols for symptom-triggered regimens				
Daeppen 2002*	Saitz 1994*	Weaver 2006*	Lange-Asschenfeldt 2003*	
 > 8: every 30 	 > 8: hourly 	 > 30: hourly 	 Every 2 hours (day 0-3) 	
minutes	 < 8: every 6 hours 	< 30: every 4	 Every 4 hours (day 4-5; mean 	
 < 8: every 6 hours 	-	hours	duration of treatment: 4.2	
5			days)	
	UK protocols for sv	mptom-triggered regi		
Royal Liverpool and	Addenbrookes	Huntercombe	Greenwich PCT (based on St	
Broadgreen	Hospital*	Centre,	Thomas' Hospital)*	
University Hospital		Sunderland**		
Trust**				
 Hourly (independent 	• 0-5: every 4 hours	 < 20: every 4 	Every 2 hours (only for first	
of score)	 6-8: every 2 hours 	hours	24 hours; followed by a fixed-	
 Every 4 hours (when 	 > 9: hourly 	 > 20: hourly 	dosing regimen)	
symptom controlled)	, in nourry	Dornourly		
ey inpreside controlled)	Clinical study protoc	ols for fixed-dosing re	gimens	
Daeppen 2002	Saitz 1994	Weaver 2006	Lange-Asschenfeldt 2003	
 4 times a day 	 4 times a day 	 6 times a day 	 Day 0-2: 3/4 times 	
 As-needed 	 As-needed 	 As-needed 	 Day 3-4: 2/3 times 	
medication	medication	medication	 Day 5-9: tapered 	
medication		r fixed-dosing regime		
Royal Liverpool	Derby Hospital	Imperial College	University Hospital Bristol	
Hospital Trust	Derby nospital	Healthcare	oniversity nospital bristor	
nospital must		Hospital		
• Day 1-3: 4 times	• Day 1-5: 4 times	 Day 1-6: 4 times 	Day 1-5: 4 times	
 Day 4-6: 3 times 	Day 6: 3 times	 Day 7: 3 times 	Day 6: 2 times	
 Day 7: 2 times 	 Day 7: 1 time 	 Day 8: 2 times 	 Day 7: 1 time 	
 Day 8-9: 1 time 	 Day 7. 1 time No PRN 	 Day 0: 2 times Day 9: 1 time 	 2 PRN (day 1 & 2) 	
 No PRN 	- 101100	 Day 9.1 time No PRN 	- 21 KN (uay 1 & 2)	
- 101 KN		 Severe AAW: 1 		
		PRN 1 st day		
Cambridge University	Greenwich PCT	Maudsley	Royal Free Hampstead NHS	
Hospitals	(based on St	prescribing	Trust	
nospitais	Thomas' Hosp)	guideline	11 ust	
• Day 1: 3/4 times +	 Begin after 24 hrs 	 Day 1-4: 4 times 	Chlordiazepoxide	
PRN	of symptom-	 Day 1-4. 4 times Day 5: 2 times 	• Day 1-4: 4 times + prn	
 Day 2: 3 times + PRN 	triggered	 Day 5. 2 times No PRN 	\circ Day 5: 2 times + prn	
 Day 2: 3 times + PRN Day 3: 3 times + PRN 	 4 times a day 	110 1 1111	• Day 5: 2 times + prin	
 Day 3: 3 times + PRN Day 4: 2 times + PRN 	 A times a day No PRN 		 Day 6. 1 time + prin Clomethiazole 	
 Day 4: 2 times + PRN Day 5: 3 times + PRN 	- 11011111			
5			• Day 1-3: 3/4 times + prn (1-	
 Day 6: 2 times + PRN Day 7: 1 time no 			2) D_{2}	
Day 7: 1 time, no			• Day 4-5: 2/3 times + prn (1-	
PRN			2)	
	WA-Ar scale		 Day 6-7: Tapered 	

* Protocol using the CIWA-Ar scale

** Protocol using the CIWA-AD scale

On the basis of the protocols described in Table 6 and the clinical experience of the GDG, the fixed-dosing regimen the base-case analyses assumed was one assessment every four hours for the first 48 hours (4 doses + 2 PRN), then one every six hours. For the symptom-triggered regimen, the base-case analyses assumed one hourly assessment for the first 12 hours and one every four hours thereafter.

A sensitivity analysis considered extreme scenarios of assessment scheduling favouring either the symptom-triggered regimen or the fixed-dosing regimen (Table 7).

Assessment schedules					
	Symptom-triggered Assessment schedule	Fixed-schedule Assessment schedule			
Base case analysis					
	Hourly for 12 hours, then	Every 4 hours for 48 hours,			
	every 4 hours	then every 6 hours			
Sensitivity analysis					
Scenario favouring	Hourly for 6 hours, then every	Every 4 hours			
symptom-triggered regimen	4 hours				
Scenario favouring fixed-	Hourly for 24 hours, then	Every 6 hours			
dosing regimen	every 4 hours				

Table 7

6.3.2. Treatment duration

The treatment durations for the three studies²⁸⁻³⁰ on populations of patients admitted for treating AAW only are reported in Table 1.

The Weaver study³¹ (population of patients treated for AAW admitted for a co-morbid condition) did not report treatment duration but detailed a four-day protocol²¹ for the fixed-dosing regimen. The average of the ratios of treatment duration with symptom-triggered and fixed-dosing regimens from the 3 studies reporting it is 33.7%²⁸⁻³⁰. Using this ratio and considering that the treatment duration for the fixed-dosing regimen is 96 hours in the Weaver study, the treatment duration for the symptom-triggered regimen was estimated to be 32 hours for this study.

Using the assessment schedules determined by the GDG and the treatment durations from the four respective studies, we calculated the number of assessments per patient (Table 8).

Table 8	

Number of assessments used in the base case analyses					
Study	Symptom	-triggered	Fixed-schedule		
	Duration of treatment (hours)	Number of assessment	Duration of treatment (hours)	Number of assessment	
Daeppen	20	14 *	63	15 **	
Saitz	9	9*	68	15 **	
Lange- Asschenfeldt	101	34 *	180	34 **	
Weaver	32	17 *	96	20 **	

* Hourly assessment for the first 12 hours, then one every four hours.

** Every four hours for the first 48 hours, then one every six hours.

Using the alternative assessment schedules from Table 7, we re-estimated the number of assessments for a scenario sensitivity analysis – refer to Table 9.

Table 9

Number of assessments used in the sensitivity analyses

²¹ First 48 hrs: Lorazepam 2 mg every 4 hrs (total 12 doses) / Tapering: 1 mg every 4 hrs for 6 doses (24 hrs), followed by 0.5 mg every 4 hrs for 6 doses (24 hrs), then discontinued.

Study	Symptom- triggered regimen	Fixed-dosing regimen	symptom- regir		fixed-dosin	n favour of g regimen - assessment
	Duration of treatment (hours)	Duration of treatment (hours)	Symptom- triggered	Fixed- dosing	Symptom- triggered	Fixed- dosing
Daeppen	20	63	10	16	20	11
Saitz	9	68	7	17	9	11
Lange- Asschenfeldt	101	180	30	45	43	30
Weaver	32	96	13	24	26	16

6.3.3. Nurse time

To reflect clinical practice, for costing nurses monitoring patients with AAW we used a band 5 nurse. A one-way sensitivity analysis considered a band 6 nurse (Table 10).

For base-case analyses, we costed the nurse time considering only the time the nurse was in contact with the patient, assuming that the time not in contact with the patient (preparation, writing notes) was the same for compared regimens. A one-way sensitivity analysis included the cost for the time the nurse was not in contact with the patient to deliver the intervention (Table 10).

Table 10

Nurse time cost					
Nurse band	Cost per hour (in contact with the patient)*	Cost per hour (considering extra time for the intervention not in contact with the patient)*			
Band 5	£23	£47			
Band 6	£29	N/A			
Band 7	£33	N/A			

* Source: Unit Costs of Health and Social Care 2008¹⁸¹.

The GDG estimated the average time a nurse is in contact with a patient for one assessment to be 5 minutes in both dosing regimens. This time was varied in a scenario sensitivity analysis using 7 minutes for the symptom-triggered regimen and 3 minutes for the fixed-dosing regimen.

6.4. Implementation costs

The cost of implementing the symptom-triggered regimen in services currently using fixed-dosing regimen was considered in this analysis. This includes the cost of training nurses who will manage patients with AAW, and supervision costs (post-training) for these nurses.

This analysis was based on the experience of implementing and using the symptomtriggered regimen primarily in the Addenbrooke's Hospital (Cambridge), the Huntercombe Centre (Sunderland), and the Royal Liverpool and Broadgreen University Hospital Trust.

6.4.1. Training

The estimated cost of training nurses to use the symptom-triggered regimen assumes that this training is done in-house. The training takes one hour and is delivered by an alcohol nurse specialist (band 7) to the nurse monitoring patients with AAW (band 5). It

was conservatively assumed that this training is effective for one year. The hourly cost of nurse time is £23 for band 5 nurses and £33 for band 7 nurses¹⁸¹ (Table 10).

Cost of training per nurse: (1 hour per training * (£23 per hour + £33 per hour))
 * 1 year efficiency of training = £56

The cost for one nurse monitoring one patient assumes that the nurse works 207 days per year^{22, 181}. Whilst the number of patients a nurse manages using the symptom-triggered regimen varies in different environments²³, the conservative number of two patients per day was used in this analysis.

Cost of training per nurse per patient: £56 / 207 working days / 2 patients monitored per day = £0.14

6.4.2. Supervision post-training

From the experience of implementing the symptom-triggered regimen in the Addenbrooke's Hospital (Cambridge), the alcohol nurse specialist (band 7) spent one week (5 days) supporting the staff post training during one hour per day, and currently oversees them for approximately 20 minutes per day. To calculate the supervision time, we considered the previous assumption that a nurse works 207 days per year¹⁸¹ (7.5 hours a day), and that the training is effective for one year.

Supervision time: ((5 days * 1 hour) + ((1/3 hour / 7.5 hours a day) * (207 working days - 5 days)) * 1 year efficiency of training = 14 hours

The total supervision cost was calculated considering that the hourly cost of nurse time is $\pm 33^{181}$ for band 7 nurses (Table 10).

Supervision cost: 14 hours * £33 = £461

To calculate this cost per nurse monitoring patients with AAW, we assumed that ten nurses are needed every time to manage all patients treated for AAW (using data from the Royal Free Hospital [Table 11], and using the previous assumption that one nurse monitors two patients per day [7,697 patients / 365 days / 2 patients = 10].

Supervision cost per nurse: £461 / 10 nurses = £46.1

The supervision cost per nurse per patient was calculated by assuming one nurse monitors two patients per day (previous assumption), and that a nurse works 207 days per year¹⁸¹.

> Supervision cost per nurse per patient: £46.1 / 2 / 207 = £0.11

Table 11

Royal Free Hospital - Alcohol-related finished consultant episodes (1 April 2005-31 March 2006)						
Assessment variable	e AAW AAW Total					
	1 st diagnosis	Non-1 st diagnosis				

²² 29 days annual leave; 8 statutory leave days; 5 study/training days; 12 sicknesses leave; 5-day working week.

²³ The number of patients a nurse monitors using the symptom-triggered regimen is: 3 per day (Huntercombe Centre); 8-10 per week (Addenbrookes Hospital); 10 patients per day (Royal Liverpool and Broadgreen University Hospital Trust).

Finished consultation	221	727	948
episodes (n)			
Average stay (days)	4.4	9.2	8.1
Bed-days (n)	975	6,722	7,697

Source: Data from the Royal Free Hospital, London

7. Sensitivity analysis

Deterministic and probabilistic sensitivity analyses were performed to assess the robustness of the results to plausible variations in the model parameters.

7.1 Deterministic sensitivity analysis

The deterministic sensitivity analysis was conducted using two approaches: one-way sensitivity analysis; and scenario sensitivity analysis.

The one-way sensitivity analysis involved varying the treatment cost (Section 6.1), the hospitalisation cost (Section 6.2), and the staff time cost (varying the nurse hourly cost – Section 6.3.3). In addition, for the three analyses done on populations of patients admitted for AAW only²⁸⁻³⁰, the hospitalisation cost was removed. The scenario sensitivity analysis varied the staff time cost (using alternative scenarios of assessment schedule – Section 6.3.1 & 6.3.2; and also varying the time a nurse is in contact with a patient for one assessment – Section 6.3.3).

7.2 Probabilistic sensitivity analysis

For the probabilistic sensitivity analysis, probability distributions were assigned to model parameters (Table 12). We used a Beta distribution for utility scores (bounded between 0 and 1), and a Gamma distribution (bounded at 0) for dose of drug, treatment duration, and hourly cost of nurse time. The main results were re-calculated 5000 times, with all of the model parameters set simultaneously, selected at random from the respective parameter distribution. We present the results in terms of the mean of the 5000 computed simulations.

Parameters used in the probabilistic sensitivity analysis					
Description of variable	Mean value	Probability distributio	Parameters	Source	
		n			
SYMPTOM-TRIGGE	RED REGIMEN				
Dose of drug (mg)					
Daeppen (N=56)	37.5	Gamma	α = 0.211	Mean and SD from	
	SD = 81.7		β = 177.997	Daeppen	
Saitz (N=51)	100	Gamma	α = 1.498	Mean from Saitz and SD	
	SD = 81.7		β = 66.749	from Daeppen	
Lange-Asschenfeldt	4352	Gamma	$\alpha = 0.899$	Mean and SD from	
(N=33)	SD = 4589		β = 4838.906	Lange-Asschenfeldt	
Weaver (N=91)	28.8	Gamma	α = 0.124	Mean from Weaver and	
	SD = 81.7		β = 231.687	SD from Daeppen	
Treatment					
duration (hour)					
Daeppen (N=56)	20	Gamma	α = 0.669	Mean and SD from	
	SD = 24.45		β = 29.890	Daeppen	

Table 1

		C		Maan farm Caite and CD
Saitz (N=51)	9 SD = 24.45	Gamma	$\alpha = 0.135$	Mean from Saitz and SD
I an an Ana al an fal de		Comment	$\beta = 66.423$	from Daeppen
Lange-Asschenfeldt	100.8	Gamma	$\alpha = 2.098$	Mean and SD from
(N=33)	SD = 69.6	6	$\beta = 48.057$	Lange-Asschenfeldt
Weaver (N=91)	32 SD = 24.45	Gamma	$\alpha = 1.713$	Mean from assumption
	5D = 24.45		β = 18.681	(Section 6.3.2) and SD from Daeppen
Utility score	0.6614	Beta	α = 37.038	Daeppen (Section 5)
(N=56)	SD = 0.07376	Deta	$\beta = 18.962$	Daeppen (Section 5)
Hourly cost of	23	Gamma	$\alpha = 61.46$	Unit Costs of Health and
nurse time	SE = 2.934	Gainna	$\beta = 0.37$	Social Care 2008
nui se time	56 - 2.754		by assuming the 95% CI	Social Care 2000
			is equal to the mean	
			±25%	
FIXED-DOSING REG	IMEN			
Dose of drug (mg)				
Daeppen (N=61)	231.4	Gamma	α = 61.822	Mean and SD from
	SD = 29.43		β = 3.743	Daeppen
Saitz (N=50)	425	Gamma	α = 208.543	Mean from Saitz and SD
	SD = 29.43		β = 2.038	from Daeppen
Lange-	9921	Gamma	α = 2.260	Mean and SD from
Asschenfeldt	SD = 6599		$\beta = 4389.356$	Lange-Asschenfeldt
(N=32)				
Weaver (N=92)	102.11	Gamma	$\alpha = 12.038$	Mean from Weaver and
	SD = 29.43		β = 8.482	SD from Daeppen
Treatment				
duration (hour)	10 -			
Daeppen (N=61)	62.7	Gamma	$\alpha = 132.843$	Mean and SD from
	SD = 5.44		$\beta = 0.472$	Daeppen
Saitz (N=50)	68	Gamma	$\alpha = 156.25$	Mean from Saitz and SD
	SD = 5.44		$\beta = 0.435$	from Daeppen
Lange- Asschenfeldt	180 SD = 79.2	Gamma	$\alpha = 5.165$	Mean and SD from
	5D = 79.2		$\beta = 34.848$	Lange-Asschenfeldt
(N=32) Weaver (N=92)	96	Gamma	α = 311.419	Mean from assumption
weaver (11-52)	SD = 5.44	Jainina	$\beta = 0.308$	(Section 6.3.2) and SD
	JD - J.TT		h – 0.000	from Daeppen
Utility score	0.642	Beta	α = 38.52	Daeppen (Section 5)
(N=60)	SD = 0.07376		$\beta = 21.48$	=
Hourly cost of	23	Gamma	$\alpha = 61.46$	Unit Costs of Health and
nurse time	SE = 2.934		$\beta = 0.37$	Social Care 2008
			by assuming the 95% CI	
			is equal to the mean	
			±25%	

8. Results

8.1 Deterministic results

A deterministic analysis is where cost and effect variables are analysed as point estimates¹⁸². Deterministic results of the base-case analysis of the four cost-effectiveness analyses found the symptom-triggered regimen dominates the fixed-dosing regimen (it was more effective and less costly – Table 13). The deterministic sensitivity analysis showed the conclusions of the base-case analyses are robust as the symptom-triggered option always remains dominant (cost-saving) or cost-effective (Table 13). The results were most sensitive to the assumptions about time spent per assessment. In the Weaver analysis (patients with AAW admitted for treating a co-morbid condition), if nurses spend more time on the symptom-triggered assessments than on the fixed-dosing assessments, then the symptom-triggered dosing regimen is likely to be no longer cost-saving. If the difference is more than 4 minutes per assessment then symptom-triggered is no longer cost-effective (it costs more than £20,000 per QALY gained).

Deterministic results						
	Patient	Patients admitted for treating a co- morbid condition				
Analysis	Daeppen	Saitz	Lange- Asschenfeld	Weaver		
Base case analysis						
	Dominant	Dominant	Dominant	Dominant		
	(£398)*	(£551)*	(£723)*	(£27)*		
Sensitivity analysis						
Remove hospitalisation cost	Dominant (£6)*	Dominant (£13)*	Dominant (£2)*	n/a		
Using other drug 1	Dominant (£395)*	Dominant (£557)*	n/a	Dominant (£54)*		
Using other drug 2	n/a	n/a	n/a	Dominant (£16)*		
Inpatient cost £254 per	Dominant	Dominant	Dominant	n/a		
day	(£461)*	(£637)*	(£838)*			
Inpatient cost £271 per	Dominant	Dominant	Dominant	n/a		
day	(£491)*	(£679)*	(£894)*			
No. of assessment	Dominant	Dominant	Dominant	Dominant		
(favour S-T)	(£408)*	(£559)*	(£752)*	(£43)*		
No. of assessment	Dominant	Dominant	Dominant	Dominant		
(favour F-D)	(£379)*	(£544)*	(£698)*	(£2)*		
Nurse cost - Band 6	Dominant	Dominant	Dominant	Dominant		
	(£399)*	(£554)*	(£723)*	(£29)*		
Time per nurse	Dominant	Dominant	Dominant	ICER =		
assessment	(£376)*	(£533)*	(£671)*	£7,489/QALY**		
Nurse cost – adding	Dominant	Dominant	Dominant	Dominant		
non-contact time	(£400)*	(£563)*	(£723)*	(£33)*		
		obabilistic results				
Base-case analysis	Dominant	Dominant	Dominant	Dominant		
	(£396)*	(£563)*	(£735)*	(£29)*		

Table 13

* The symptom-triggered regimen is more efficient and less costly compared to the fixed-dosing regimen (total cost saved per patient using the symptom-triggered regimen is presented). ** The symptom-triggered regimen is more effective and more costly compared to the fixed-dosing regimen; the Incremental Cost-Effectiveness Ratio (ICER) is presented (which is below the NICE threshold of £20k/QALY gained).

8.2 Probabilistic results

A probabilistic analysis applies probability distributions for key parameters and presents the empirical distribution of the cost-effectiveness results¹⁸². The probabilistic results of this economic analysis are in agreement with the deterministic results, showing that using a symptom-triggered regimen is cost-saving for treating patients admitted for AAW and those admitted for a co-morbid condition compared to a fixed-

dosing regimen (Table 13). However, the probability of cost-effectiveness is quite low, reflecting the lack of significance in the difference in quality of life scores in the Daeppen trial (p=0.19) (Table 14).

Probabilistic results				
	Probability of symptom-			
	(using symptom-triggered regimen compared	triggered being cost-		
Analysis	with fixed-dosing)	effective at £20k/QALY		
Daeppen	£1,683	63%		
Saitz	£1,581	62%		
Lange-				
Asschenfeldt	£1,879	63%		
Weaver	£1,128	59%		

Table 14

9. Discussion

According to the results presented, the implementation and use of a symptom-triggered dosing regimen in patients with AAW in hospitals in England and Wales is cost-effective for the NHS, in both assessed populations of patients (those patients admitted for AAW treatment and those admitted for a co-morbid condition). Results of the four economic analyses are in agreement, even considering the large heterogeneity of trial results (drug dose and duration of treatment).

Results of the analyses conducted on the population of patients admitted for AAW treatment are mainly driven by the hospitalisation cost saved from the reduced length of hospitalisation using the symptom-triggered regimen. Results of the analyses conducted on the population of patients admitted for a co-morbid condition are mainly driven by the staff time cost saved using the symptom-triggered regimen. The sensitivity analysis illustrated the robustness of the results, even considering the small difference in QALYs between the compared regimens.

It was necessary to make some assumptions when developing this economic analysis and these were based on the clinical experience of GDG members with aim to reflect current medical practice. The assessment schedule assumptions used to calculate the staff time cost were based on schedules used in the clinical studies and in a selection of hospitals in England and Wales. For the base-case analyses, determining the assessment schedule for fixed-dosing regimen was straight forward as all protocols proposed were similar. As there was variability in the assessment schedules in the symptom-triggered protocols used in the clinical trials, agreeing the frequency of monitoring to use in the base case was more problematic. The commonly used assessment schedule in the Addenbrooke's Hospital (Cambridge) is every hour for 6 hours, then every 2 hours for 18 hours, then every four hours; in the Huntercombe Centre (Sunderland), 10 assessments in the first 24 hours and then 4 hourly; and in the Royal Liverpool and Broadgreen University Hospital Trust, every hour for 12 hours then every 4 hours. The latter was used in base-case analyses and is considered to be the most conservative (i.e. least favourable to the symptom-triggered dosing regimen). The Huntercombe Centre regimen was used in the scenario favouring symptom-triggered option (Table 7) in the deterministic sensitivity analysis. The scenario favouring the fixed-dosing regimen (Table 7) is a hypothetical scenario that uses an increased number of assessments than what we believe would be usual for current practice. Even in this scenario, the symptom-triggered dosing regimen remains cost-effective.

The results of the analysis conducted on patients admitted for a co-morbid condition are sensitive to how long a health-care worker spends with a patient each assessment. If the health-care worker spends longer than 4 minutes extra per assessment using the symptom-triggered regimen compared to using the fixed-dosing regimen, then the symptom-triggered option is no longer cost-effective. While it is unlikely that a competent nurse would ever spend longer than 5 minutes on each assessment, this highlights the need for effective training prior to implementing the symptom-triggered regimen in a service.

The cost of training nurses and implementing the symptom-triggered regimen was marginal and removing this cost did not affect the results of the analyses.

10. Conclusion

The symptom-triggered dosing regimens of benzodiazepines or clomethiazole are costeffective compared to fixed-dosing regimens in NHS hospitals. This held true for patients admitted for AAW and those admitted for a co-morbid condition.

11. Acknowledgment

We would like to thank Jean-Bernard Daeppen, MD (Associate Professor, University of Lausanne; Director Alcohol Treatment Center, CHUV, Lausanne, Switzerland), first author of the 2002 clinical study²⁸, for sending us the original SF-36 data from the study for use in this economic analysis.

A.4. HEALTH ECONOMIC ANALYSIS – SURGERY VS ENDOSCOPY FOR CHRONIC

PANCREATITIS

1. Background

Chronic pancreatitis is a progressive inflammatory disorder, which can cause abdominal pain, various local complications, and endocrine-exocrine pancreatic insufficiency. It is often alcohol-related. When chronic pancreatitis is associated with an obstructed pancreatic duct, a suitable therapy is ductal decompression, using an endoscopic or a surgical approach.

In current medical practice in England and Wales, surgical and endoscopic interventions are available for patients with chronic pancreatitis and an obstructed pancreatic duct. When the disease is associated with alcohol misuse, an intervention is offered to patients whose pain persists despite stopping drinking.

In the literature, after performing a systematic clinical review, two RCTs were found comparing endoscopic and surgical interventions in patients with chronic pancreatitis and an obstructed pancreatic duct^{132,133}. The Cahen 2007 study¹³² was judged to be of

high quality and the Dite 2003 study¹³³ was judged to be medium quality²⁴. The findings of both RCTs showed that surgical drainage of the pancreatic duct was more effective than endoscopic drainage.

2. Objective

The objective of this economic analysis was to assess the cost-effectiveness of the surgical drainage of the pancreatic duct compared to the endoscopic drainage, for patients with chronic pancreatitis and an obstructed pancreatic duct in England and Wales.

3. Model

This economic analysis was conducted mainly based on the Cahen 2007 study¹³², from an England and Wales NHS perspective, and over a 24-month time horizon for the base-case analysis. A lifetime horizon was used in the sensitivity analysis. The health outcome considered was Quality-Adjusted Life Year (QALY). An annual discount rate of 3.5% was applied to both costs and health outcomes incurred after one year.

A 24-month time horizon was chosen for the base-case analysis because this was the median follow-up time in the Cahen trial, and it was judged to illustrate the difference in economic and health outcomes between the interventions that were compared. In addition, extrapolating the Cahen results for time-periods greater than 24 months would involve many assumptions and uncertainties. In the Cahen 2007¹³² RCT, one death was reported in the endoscopy group (5%), which was not clearly related to the intervention²⁵. There were no deaths related to the interventions in the Dite 2003¹³³ RCT. For the base-case analysis, we assumed no mortality in either group. Mortality rates were assigned to the surgical procedure in sensitivity analyses (conducted on the Cahen within-trial time horizon and on a lifetime horizon).

4. Clinical study

The Cahen 2007 RCT¹³² was conducted in patients recruited from the Academic Medical Centre in Amsterdam and was carried out between January 2000 and October 2004. All symptomatic patients with chronic pancreatitis and a distal obstruction of the pancreatic duct (without an inflammatory mass) were eligible to participate. Thirty-nine patients underwent randomisation: 19 to endoscopic transampullary drainage of the pancreatic duct; and 20 to operative pancreaticojejunostomy. The baseline demographic and clinical characteristics of patients in the two treatment groups were similar, with the exception of ongoing alcohol abuse (n=5 in the surgical cohort; n=0 in the endoscopic cohort; p=0.05). The most common cause of chronic pancreatitis was alcohol abuse in both treatment groups (60% in the surgical cohort; 47% in the endoscopic cohort). Chronic pancreatitis was associated with complex pathologic features in the studied population (combination of stricture and stones in 79% of patients). The study

²⁴ Underpowered; Partly randomised; Baseline characteristics were not reported. It is unclear if groups were similar at baseline. It is unclear if the effect sizes were adjusted for confounding variables.

²⁵ One patient died of a perforated duodenal ulcer four days after a lithotripsy session. This patient was treated with a nonsteroidal antiinflammatory drug, which may have had a role in the development and perforation of the ulcer. Given the interval between treatment and death, a causative role of lithotripsy cannot be clearly ruled out.

was ended by the safety committee after an interim analysis on the basis of a significant difference in outcomes. At this time, seven patients had not completed the planned follow-up period of 24 months. The median follow-up time was 24 months (6-24) for both cohorts.

The endoscopic drainage involved sphincterotomy, dilation of strictures, and removal of stones. The endoscopic procedure was preceded by lithotripsy when one or more intraductal stones (more than 7mm in diameter) were identified by imaging studies. For the surgical cohort, a pancreaticojejunostomy was performed by the method of Partington and Rochelle. The Whipple and Frey procedures were considered for specific disease presentations.

5. Health outcomes

Results of the Cahen 2007 study¹³² showed that, in patients with chronic pancreatitis and an obstructed pancreatic duct, surgical drainage was more effective than endoscopic drainage during 24 months of follow-up (Table 1). In addition, the benefits of surgery were demonstrated by more rapid, effective, and sustained pain relief. Finally, one death was reported in the endoscopy group, which was not clearly related to the intervention²⁵.

Health outcomes – Cahen 2007 trial ¹³²						
	Endoscopy group	Surgery group	p-value 95% CI			
Izbicki pain score* (mean)	51±23	25±15	< 0.001			
			11 to 36			
Pain relief**	32%	75%	0.007			
			-72 to -15			
SF-36 – Physical health	38±9	47±7	0.003			
component			-13 to -3			
SF-36 – Mental health	40±9	45±9	0.15			
component			-8 to 1			

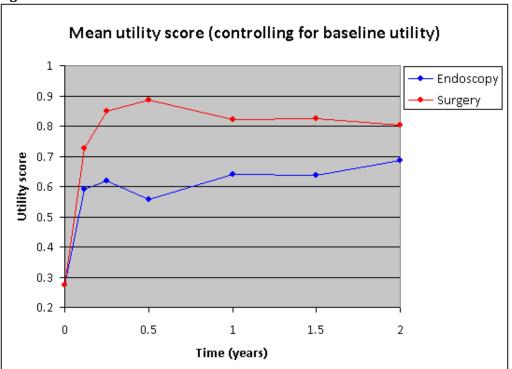
Table 1

* 0-100 scale; higher score = higher pain.

** Benefits of surgery were demonstrated by more rapid, effective, and sustained pain relief.

6. QALYs

In the Cahen study¹³², the EQ-5D questionnaire was completed by patients (unpublished). Data were collected for each arm at baseline, six weeks, three months, six months, 12 months, 18 months, and 24 months. We obtained the patient-level EQ-5D data from the trial and generated utility scores for both arms at every follow-up point using the UK tariff. As the baseline utility scores differed slightly between arms (0.335 versus 0.275), we controlled for utility score at baseline by applying linear regression. Utility scores for both arms at every follow-up period are presented in Table 2.


Utility scores				
	Endoscopy	Surgery-Endoscopy*	Surgery	
Baseline	0.275		0.275	
	(SE=0.073, n=18)	0	(SE=0.069, n=19)	
6 weeks	0.590	0.136	0.726	
	(SE=0.059, n=17)	(SE=0.09)	(SE=0.065, n=17)	
3 months	0.618	0.233	0.851	
	(SE=0.064, n=17)	(SE=0.072)	(SE=0.031, n=18)	

6 months	0.557	0.328	0.885
	(SE=0.078, n=18)	(SE=0.091)	(SE=0.045, n=20)
12 months	0.639	0.183	0.822
	(SE=0.052, n=15)	(SE=0.068)	(SE=0.038, n=19)
18 months	0.638	0.186	0.824
	(SE=0.093, n=13)	(SE=0.096)	(SE=0.037, n=15)
24 months	0.686	0.118	0.804
	(SE=0.062, n=13)	(SE=0.083)	(SE=0.052, n=17)

* Controlling for baseline utility

We used the utility scores presented in Table 2 to calculate QALYs (utility score * timeperiod) for the 24-month duration of the trial for the base-case analysis, and a lifetime horizon in sensitivity analyses (Section 7.7). For the 24-month time horizon, the QALY difference between the surgery and the endoscopy groups was the area between the curves presented in Figure 1, and was calculated to be 0.40 (1.63 [surgery] – 1.23 [endoscopy]). When discounting at 3.5% utility scores at 18 and 24 months, the QALY difference between arms at 24 months was 0.39 (1.60 [surgery] – 1.21 [endoscopy]).

As discussed in Section 7.7, in sensitivity analyses we applied mortality rates of 0.9% and 2% to patients in the surgery group and to patients who converted to surgery in the endoscopy group. We did this first measuring QALYs within the trial time horizon (24 months), and we repeated this with a lifetime horizon (Section 7.7). For the lifetime horizon, we assumed, post-trial, a constant utility score for the endoscopy group (using the value at 24 months). We assumed no difference in utility score post-trial between the cohorts and therefore applied the constant utility score of the endoscopy group (value at 24 months) to the surgical cohort. For the surgery group, mortality rates were

added at the six weeks follow-up²⁶. For the endoscopy group, we applied morality rates at 12-months post randomisation²⁷.

7. Resource use

Outcomes reported by Cahen 2007¹³² involving resource use are presented in Table 3.

Table 3

Resource use – Cahen trial ¹³²				
Outcome	Endoscop	Surgery	Endoscopy vs	
	У	N=20	Surgery	
	N=19		95% CI / p-value	
Procedures (diagnostic and therapeutic) – median	8 (1-21)	3 (1-9)	5 (2 to 8) / < 0.001	
(range)				
Therapeutic procedures – median (range) *	5 (1-11)	1 (1-5)		
Diagnostic procedures – median (range)	3 (0-11)	2 (0-8)		
Hospital stay – median of days (range)	8 (0-128)	11 (5-59)	-3 (-9 to 4) / 0.13	
Complications (total) – no. (%)	11 (58)	7 (35)	23% (-8% to 53%) /	
			0.15	
Minor complications – no. (%)	11 (58)	6 (30)		
Major complications – no. (%)	0	1 (5)		
Exocrine function			p=0.05	
Insufficiency persisted – no. (%)	11 (61)	13 (65)		
Insufficiency developed – no. (%)	6 (33)	1(5)		
Insufficiency resolved – no. (%)	1 (6)	3 (15)		
Sufficiency persisted – no. (%)	0	3 (15)		
Endocrine function			p=0.48	
Insufficiency persisted – no. (%)	3 (17)	4 (20)		
Insufficiency developed – no. (%)	3 (17)	1 (5)		
Insufficiency resolved – no. (%)	1 (6)	0		
Sufficiency persisted – no. (%)	11 (60)	15 (75)		
Conversion to surgery	4 (21)	NA		

* The number of therapeutic interventions reported for the two treatment groups encompassed all endoscopic and surgical therapeutic procedures (including the initial one), endoscopic ultrasonography-guided nerve blockage, and placement of jejunal feeding tube.

7.1 Therapeutic interventions

The number of therapeutic interventions reported for the two treatment groups encompassed all endoscopic and surgical therapeutic procedures, endoscopic ultrasonography-guided nerve blockage, and placement of jejunal feeding tube.

For the endoscopy group (n=19), the Cahen study¹³² reported a median of five interventions per patient. The Dite 2003 RCT¹³³ is in agreement with Cahen 2007,

²⁶ The surgery was performed within 4 weeks after randomisation in the Cahen 2007 trial¹³²; From expert judgement, if a patient dies from complications related to surgery, this will typically occur within the first 30 days; and 30-day mortality is usually reported in surgical series.

²⁷ Common endoscopic methodology is to change stents every 3 months for up to 12 months.

reporting a mean of 5.15 endoscopic interventions per patient²⁸. In our analysis, we costed five endoscopic interventions per patient in the endoscopy group (Table 4).

In the Cahen 2007 trial¹³², 16 patients in the endoscopy group were referred for lithotripsy treatment before attending the endoscopic procedure: ten patients received one session; and six patients received multiple sessions (median of 1 [1 to 5]). In our analysis, we assumed that ten patients received one session, and six patients received two sessions (Table 4). In the Cahen 2007 trial, for patients attending a lithotripsy session before an endoscopic procedure, general anaesthesia with propofol was administered. For patients not requiring a lithotripsy session, endoscopic procedures were performed under conscious sedation. No additional cost was added for patients requiring general anaesthesia with propofol and we assumed that the cost of anaesthesia / sedation was already included in the therapeutic procedure cost.

For the surgery group (n=20), Cahen reported a median of one intervention per patient. Eighteen patients underwent a pancreaticojejunostomy, one patient a Whipple procedure, and one patient a Frey procedure. We costed 18 pancreaticojejunostomy, one Whipple procedure, and one Frey procedure (Table 4).

	Therapeutic procedure			
Procedure	HRG-code classification	Mean unit cost	Mean length of stay	
Endoscopic intervention	Endoscopic Retrograde Cholangiopancreatography category 2 with a length of stay of 2 days or less	£739	1 day	
Extracorporeal shockwave lithotripsy of calculus of pancreas	Endoscopic/Radiology category 2 without complications	£1,394	3 days	
pancreaticojejunostomy	Hepatobiliary Procedures category 5 with complications	£6,024	10 days	
Frey procedure	Hepatobiliary Procedures category 5 with complications	£6,024	10 days	
Wipple procedure	Hepatobiliary Procedures category 7	£7,697	13 days	
Laparotomy intervention	Hepatobiliary Procedure category 5 without complication	£5,528	8 days	

Table 4

Source: National Schedule of Reference Costs 2006-07100

7.2 Diagnostic procedures

The Cahen paper¹³² discussed the use of 'Magnetic resonance cholangiopancreatography' and 'Contrast-enhanced computed tomography' for diagnostic assessments. The study reported a median of two diagnostic procedures in the surgery group and of three in the endoscopy group. The cost for these diagnostic procedures in England and Wales are presented in the Table 5.

Table 5

Diagnostic procedure		
Diagnostic procedures	Inpatient	Outpatient

²⁸ 48% of patients received a mean of two initial interventions (sphincterotomy); and 52% received a mean of two initial interventions plus a mean of six stent exchanges during a 5-year follow-up period¹³³.

	cost	cost
Computed Tomography Scan, 2 areas, with contrast	£121	£125
Magnetic Resonance Imaging Scan, one area, no contrast	£228	£198
Magnetic Resonance Imaging Scan, one area, no contrast £228 £198 Source: National Schedule of Peterance Costs 2006 07100		

Source: National Schedule of Reference Costs 2006-07¹

For the base-case analysis we costed 50% of the diagnostic interventions as 'Magnetic Resonance Imaging Scan, one area, no contrast', and 50% as 'Computed Tomography Scan, 2 areas, with contrast'. These interventions were costed as an inpatient procedure for the first assessment in both cohorts, and as an outpatient procedure for the second assessment in the surgical cohort and for the second and third assessments in the endoscopic cohort.

We also conducted two one-way sensitivity analyses: one assuming all tests were CT scans, the other assuming all were MRIs.

7.3 Complications

For the endoscopy group, 18 minor complications were reported in 11 patients: one patient suffered a skin wound caused by the shock-wave lithotripsy; five patients had stent complications which involved stent replacement; four patients developed pancreatitis; and one patient developed cholecystitis. For the base-case analysis, it was considered that 26% of patients in the endoscopy arm would need a further endoscopic intervention for treating stent-related complications (Table 4). The treatment of the skin wound was not costed as it was taken to be an unusual complication of the lithotripsy intervention. The cost of treatments for pancreatitis and cholecystitis were not included as we assumed that these treatment costs would be captured within the HRG cost for the main procedure (Section 7.1).

Clinical studies assessing endoscopic drainage for treating patients with chronic pancreatitis were reviewed for stent-related dysfunction/complication rates. Table 6 details results of this review, showing probabilities varying between 3% and 55%. These extreme values were used in the sensitivity analysis.

Stent-dysfunctions / Stent-related complications			
Study	Method	Rates for stent-dysfunctions / stent-related complications	
Cahen 2007 ¹³²	 RCT 2 years follow-up 19 patients in the endoscopy group 	5/19 (26%)	
Smits 1995 ¹⁸³	Retrospective case series34 months follow-up	27/49 (55%)	
Renou 2000 ¹⁸⁴	Prospective case series29 months follow-up	1/13 (8%)	
Eleftheriadis 2005 ¹⁸⁵	Prospective case series69 months follow-up	4/100 (4%)	
Dumonceau 2007 ¹⁸⁶	 RCT 51.3 months follow-up 29 patients in the endoscopy group 	1/29 (3%)	
Brand 2000 ¹⁸⁷	Prospective case series7 months follow-up	5/38 (13%)	
Farnbacher 2002 ¹⁸⁸	 Retrospective case series From January 1991 to December 1996 	11/125 (9%)	
Total		54/373 (15%)	

Table 6

For the surgery group, complications were reported in seven patients: one had leakage of the anastomosis, requiring a laparotomy intervention (major complication); two had suspected bleeding which were treated with blood transfusion (minor complication); one patient developed pneumonia (minor complication); and three patients had a wound infection (minor complication). For our analysis, we only considered the laparotomy intervention for treating the leakage of anastomosis in one patient (5%) (Table 4). The cost of treatment for other complications was not included as we assumed that these treatment costs were included in the HRG cost for the main procedure (Section 7.1). Indeed, in current medical practice, complications from surgery are usually treated in 'post-operative care unit', and these costs ought to be captured within the HRG cost.

Clinical studies assessing surgery for treating patients with chronic pancreatitis were reviewed for reoperation rates. Table 7 details results of this review, showing probabilities varying between 2.6% and 17.5%. These extreme values were used in the sensitivity analysis.

Re-operation			
Study	Method	Re-operation rates	
Cahen 2007132	• RCT	1/20 (5%)	
	 2 years follow-up 		
	20 patients in the surgery group		
Dite 2003133	• RCT	2/76 (2.6%)	
	5 years follow-up		
Sielezneff 2000189	Retrospective case series	10/57 (17.5%) (3 for	
	 65 months follow-up 	treating operative	
		complication; 7	
		subsequent)	
Adams 1994 ¹⁹⁰	Prospective case series	7/84 (8.3%)(1 early; 6	
	6.3 years follow-up	late)	
Lucas 1999 ¹⁹¹	 Prospective case series 	7/124 (5.6%) (1 for	
	 36.1 months follow-up 	treating operative	
		complication; 6	
		subsequent)	
Schnelldorfer 2003 ¹⁹²	Retrospective cohort study	• 3/21 (14.3%) patient in	
	Records of patients from 1995	pancreas divisum group	
	through 2001 were reviewed	(1 early; 2 late)	
	• 21 with chronic pancreatitis	• 12/108 (11.1%) in the	
	associated with pancreas divisum	other group (2 early; 10	
	• 108 with chronic pancreatitis	late)	
	associated with other aetiologies	• Total: 15/129 (11.6%)	
Madura 2003 ¹⁹³	Prospective case series	4/35 (11.4%) (4	
	Last follow-up visit at 1 year	operations in 3 patients)	
	35 patients		
Total		8.8%	

Table 7

7.4 Length of hospital stay

The total length of hospital stay was reported to be a median of eight days for the endoscopy group, and a median of 11 days for the surgery group.

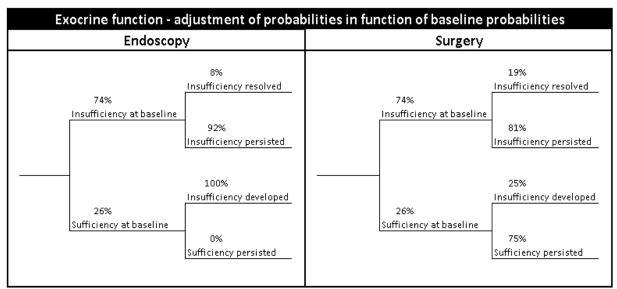
A number of inpatient bed-days were already included in the therapeutic interventions cost (surgery, endoscopy, and lithotripsy), and in the cost of treating complications. The total number of inpatient bed-days was 206 for the endoscopic cohort (N=19) and 211

for the surgical cohort (N=20). Using the median total length of hospital stay per patient reported by Cahen 2007¹³² of eight days for the endoscopy group and of 11 days for the surgery group, the total inpatient bed-day for each cohort was calculated to be 152 days for the endoscopic cohort and 220 days for the surgical cohort. It shows that, using the number of inpatient bed-days proposed by the *National Schedule of Reference Costs 2006-07¹⁰⁰* (included in the therapeutic interventions cost and in the treatment of complications cost), resulted in an overestimation of the length of hospital stay for the surgical cohort.

A sensitivity analysis was performed to vary the length of hospital stay, increasing the cohort-number of inpatient bed-days for the surgery group by nine days, and reducing the endoscopy group inpatient bed-days by 54 days. Using the mean cost per inpatient bed-day for the surgical and the endoscopic procedures of £185.50²⁹, we adjusted the hospitalisation cost removing £527.21 per patient from the endoscopy group, and adding £83.48 per patient to the surgery group.

7.5 Pancreas function

Outcomes on exocrine function from the Cahen 2007 trial¹³² are presented in Table 3. The difference in effect of interventions on the exocrine function status between groups was non-significant (p=0.05). However, due to a marginal trend toward significance and to the high cost of the drug therapy, it was decided to cost the treatment of exocrine insufficiency.


We adjusted the baseline rate of exocrine insufficiency to be the same in each arm (Table 8 and Figure 2). Probabilities used for our analysis are presented in Table 9.

Exocrine function			
Endoscopy Surgery Combined			
Insufficiency at baseline	12/18=67%	16/20=80%	28/38=74%
Insufficiency resolved / insufficient at baseline	1/12=8%	3/16=19%	N/A
Insufficiency developed / Sufficient at baseline	6/6=100%	1/4=25%	N/A

Table 8

Figure 2

²⁹ £104 per inpatient bed-day for the endoscopic procedure ('Elective Inpatient Excess Bed Day – Endoscopic Retrograde Cholangiopancreatography category 2 with a length of stay of 2 days or less') and £267 for the surgical intervention ('Elective Inpatient Excess Bed Day – Hepatobiliary Procedures category 5 with complications')¹⁰⁰.

Notes: (1) The probabilities of sufficiency/insufficiency at baseline are counting patients of the surgical and the endoscopic cohorts; (2) n=20 for surgery group, n=18 for endoscopy group (results were not reported for one patient in the endoscopy group) – Table 3; (3) The second tier of both algorithms are presenting probabilities related to the surgical cohort or the endoscopic cohort alone.

Table 9

Adjusted exocrine function probabilities			
Exocrine function statusEndoscopySurgery			
Insufficiency resolved	74%*8% = 6%	74%*19% = 14%	
Insufficiency persisted	74%*92% = 68%	74%*81% = 60%	
Insufficiency developed	26%*100% = 26%	26%*25% = 7%	
Sufficiency persisted	26%*0% = 0%	26%*75% = 20%	

The treatment of exocrine insufficiency with pancreatic enzyme supplementations was calculated for two years in patients whose insufficiency persisted, and for one year in patients whose insufficiency developed or resolved. This treatment was costed as eight capsules a day of Creon 10000 (Creon is widely used in current practice in England and Wales). The 10000 formulation (as compared with 25000) was chosen, being a conservative decision (Table 10).

Table 10

Exocrine insufficiency – Treatment cost				
Drug Cost per pack Unit per pack Cost per year (8 capsules a day)				
Creon® 10 000 £16.66 100 £486.47				
$S_{1} = 0$				

Source: BNF No. 57 (March 2009)⁴¹

In the Cahen 2007 trial¹³², the difference between groups for the effect of the interventions on the endocrine function status was non-significant (p=0.48) (Table 3). This is in agreement with the Dite 2003 RCT¹³³, which reported non-significant probabilities for developing diabetes (new onset) between the surgical and the endoscopic cohorts at five years follow-up. Therefore, the treatment for endocrine insufficiency was not costed in our analysis.

7.6 Conversion to surgery

In the Cahen study¹³², four patients converted to surgery as the endoscopic treatment was considered to have failed (21%). A pancreaticojejunostomy was costed for these four patients (Table 4).

Clinical studies assessing endoscopic drainage for treating patients with chronic pancreatitis were reviewed for rates of conversion to surgery. Table 11 details results of this review, showing probabilities varying between 0% and 26%. These extreme values were used in the sensitivity analysis.

Patients needing surgery after undergoing endoscopic drainage				
Study	Method	Rates of patients undergoing surgery		
Cahen 2007 ¹³²	 RCT 2 years follow-up 19 patients in the endoscopy group 	4/19 (21.1%)		
Dite 2003 ¹³³	 RCT (endoscopy group n=64) 5 years follow-up 	0/64 (0%)		
Rosch 2002 ¹⁹⁴	 Retrospective case series 4.9 years follow-up 	238/1018 (23%)		
Binmoeller 1995 ¹⁹⁵	 Retrospective case series From April 1985 to July 1994 	24/93 (26%)		
Renou 2000 ¹⁸⁴	 Prospective case series 29 months follow-up 	2/13 (15%)		
Farnbacher 2002 ¹⁸⁸	 Retrospective case series From January 1991 to December 1996 	15/125 (12%)		
Eleftheriadis 2005 ¹⁸⁵	Prospective case series69 months follow-up	4/100 (4%)		
Dumonceau 2007 ¹⁸⁶	 RCT 51.3 months follow-up 29 patients in the endoscopy group 	3/29 (10%)		
Smits 1995183	Retrospective case series 34 months follow-up	6/49 (12%)		
Cremer 1991 ¹⁹⁶	Prospective case series37 months follow-up	11/75 (15%)		
Total		19%		

Table 11

7.7 Mortality

In the Cahen 2007¹³² RCT, one death was reported in the endoscopy group (5%), which was not clearly related to the intervention³⁰. There were no deaths related to the interventions in the Dite 2003¹³³ RCT. For the base-case analysis, we assumed no mortality in either group. From a review of clinical studies (Table 12), the mortality related to surgical drainage was estimated to be 0.9%. It was decided to use a mortality rate related to surgery of 0.9% and an upper estimate of 2% in the sensitivity analysis. These mortality rates were applied to patients in the surgery group and to patients who converted to surgery in the endoscopy group.

³⁰ One patient died of a perforated duodenal ulcer four days after a lithotripsy session. This patient was treated with a nonsteroidal antiinflammatory drug, which may have had a role in the development and perforation of the ulcer. Given the interval between treatment and death, a causative role of lithotripsy cannot be clearly ruled out.

We conducted sensitivity analyses using mortality rates of 0.9% and 2% for surgical drainage. We did this first measuring QALYs within the trial time horizon (24 months). We repeated this sensitivity analysis with a lifetime horizon. When based on a lifetime horizon, we assumed, post-trial, no difference between cohorts in the yearly cost for treating patients. The yearly cost per patient post-trial is presented in Section 8. In addition for the lifetime horizon analyses, we assumed, post-trial, a constant utility score for the endoscopy group (using the value at 24 months). We assumed no difference in utility score of the endoscopy group (value at 24 months) to the surgical cohort.

According to a review from Bornman 2001¹⁹⁷, the life expectancy for patients with advanced chronic pancreatitis is typically shortened by 10-20 years. In the Cahen 2007 trial¹³², patients had chronic pancreatitis associated with complex pathologic features (combination of strictures and stones in 79% of patients). The mean age was 46±12 years for the surgery group and this cohort included 75% males. Using the male UK life expectancy of 77 years¹⁹⁸, considering that the life expectancy for patients with chronic pancreatitis is shortened by 15 years and that patients are attending surgery at 46 years old, the life expectancy was estimated to be 16 years. This life expectancy was used for both the surgery and the endoscopy groups.

Mortality related to surgery for chronic pancreatitis *			
Study	Method	Surgical mortality	
Cahen 2007132	• RCT	No death	
	 2 years follow-up 		
	20 patients in the surgery group		
Dite 2003133	• RCT	No death	
	 5 years follow-up 		
	 76 patients in the surgery group 		
Lucas 1999 ¹⁹¹	Prospective case series	• 2 patients died in the hospital after	
	 36.1 months follow-up 	the surgery **	
	124 patients		
Schnelldorfer	Retrospective cohort study	 Post-operative mortality: 	
2003192	• Records of patients from 1995 through 2001	 0/21 patient died in pancreas 	
	were reviewed	divisum group	
	• 21 with chronic pancreatitis associated with	$_{\circ}$ 2/108 died in the other group [¥]	
	pancreas divisum		
	• 108 with chronic pancreatitis associated with		
Adams 1994 ¹⁹⁰	other aetiologies	No notions diad in the 20 days	
Adams 1994 ¹⁹⁰	Prospective case series	No patient died in the 30 days following the surgery	
	 6.3 years follow-up 85 patients	following the surgery	
Kalady 2001 ¹⁹⁹	Retrospective case series	No death	
Kalauy 2001	 Retrospective case series 38 months follow-up	• No death	
	 60 patients 		
Sielezneff 2000 ¹⁸⁹	Retrospective case series	No death	
Sicieziicii 2000	 65 months follow-up 	· No death	
	• 57 patients		
Terrace 2007 ²⁰⁰	Retrospective cohort study	• 2 patients died during the 30-days	
	• 30 months follow-up	period following the surgery ^{¥¥}	
	• 50 patients		
Madura 2003 ¹⁹³	Prospective case series	No operative death	
	Last follow-up visit at 1 year		
	• 35 patients		
Rios 1998 ²⁰¹	Retrospective case series	No death	
	• 10.3 months follow-up		

Table 12

	• 17 patients	
Total		• 0.9 (6/653)

* From expert judgement, if a patient dies from complications related to surgery, this will typically occur within the first 30 days; and 30-day mortality is usually reported in surgical series.

** One patient died of an unrecognized oesophageal perforation during intubation and the other of leakage of one-layer pancreaticojejunostomy (after a DuVal procedure and a Thal procedure). * The first patient was on perioperative immunosuppressive therapy for a cadaveric renal transplant and systemic lupus erythematosus with end-stage renal disease. The second case was a patient with poorly controlled diabetes mellitus with end-stage renal disease, history of alcohol abuse, and severe coronary artery disease. Both patients had spontaneous dehiscence of the pancreatic anastomosis leading to sepsis and, consequently, death.

^{¥¥} One patient died following a post-operative myocardial infarction; and one patient sustained Roux-limb infarction leading to sepsis, multi-organ failure and death.

8. Costs post-trial

The yearly cost applied to patients in both the surgery and endoscopy groups after 24months was extrapolated from the observed resource usage from the trial (Table 13). This cost was estimated to be £1 866. Table 13 presents how this cost was calculated.

				chronic pancreatitis (post-trial)
Cost component	Estimate	Unit cost	Yearly	Rational
Diagnostic procedure (no)	1	£125*	cost £125	 We assumed an average of one outpatient CT- Scan visit per patient per year
Hospitalisation (days)	4	£185.50*	£742	 The number of inpatient days was taken from the endoscopic cohort in the Cahen trial (8 for 24 months) We used the mean cost per inpatient bed-day for the surgical and the endoscopic procedures** We used data from the endoscopy group to be consistent with the previous assumption that, post-trial, the constant utility score applied to the endoscopy group (value at 24 months for endoscopy) was also applied to the surgical cohort (Section 7.7)
Exocrine				
dysfunction Insufficiency persisted (%)	68%	486.47¥	£330.80	 Data were taken from the endoscopic cohort in the Cahen trial and adjusted with the baseline characteristics of the surgical cohort (Section 7.5) We assumed that patients were taking Creon 10000 as enzyme supplementation. The yearly cost is presented We used data from the endoscopic cohort for the reason explained above
Insufficiency developed (%)	26%	486.47¥	£126.48	Same as for 'Insufficiency persisted' above
Endocrine dysfunction				
Insufficiency persisted (%)	16%	£284.70¥	£45.55	 Data were taken from the endoscopic cohort in the Cahen trial and adjusted with the baseline characteristics of the surgical cohort (adjusted

Table 13

		1		in the same way as presented for eventing
				in the same way as presented for exocrine dysfunction in Section 7.5)
				 We costed a long-acting recombinant human
				insulin analogue ('Insulin Detemir') as 30 units
				per day (in two divided doses)
				 We used data from the endoscopic cohort for
				the reason explained above
Insufficiency	17%	£284.70¥	£48.40	 Same as for 'Insufficiency persisted' above
developed (%)	1770	2204.70	240.40	- Same as for insumerency persisted above
Outpatient visit	4	£89*	£356	We assumed four outpatient visit per year to
(no)				reflect current practice
				 The cost was taken from the NHS reference
				cost database: 'Consultant Led Follow up
				Attendance Outpatient, Hepatobiliary &
				Pancreatic Surgery' ¹⁰⁰
Analgesic use				
Opiate (%)	14%	£528.28¥	£73.96	 Data were taken from a UK retrospective
				cohort study (Terrace 2007 ²⁰⁰), assessing
				patients attending a pancreaticojejunostomy.
				The data presented are post surgery (all
				patients were on analgesic treatment before
				surgery)
				• We assumed that 80% of patients were taking
				400mg/day of oral tramadol, and 20% of
				patients was using fentanyl patches releasing
				75 micrograms/hour for 72 hours. The yearly
New ended	2007		£17.76	cost is presented.
Non-opiate	39%	£45.55¥	£1/./6	 Data were taken from the Terrace 2007
(%)				study ²⁰⁰
				 We costed 4g of paracetamol daily. The yearly cost is presented
Total			£1865.95	cost is presented.
Total			E1002.92	

* Source: NHS reference cost 100.

** £104 per inpatient bed-day for the endoscopic procedure ('Elective Inpatient Excess Bed Day – Endoscopic Retrograde Cholangiopancreatography category 2 with a length of stay of 2 days or less') and £267 for the surgical intervention ('Elective Inpatient Excess Bed Day – Hepatobiliary Procedures category 5 with complications')¹⁰⁰.

[¥]Source: *BNF No. 57 (March 2009)*⁴¹

9. Sensitivity analysis

Sensitivity analyses were performed to assess the robustness of the results to plausible variations in the model parameters. Five one-way sensitivity analyses were conducted, varying one parameter at a time from the base case: two were costing differently the diagnostic procedures (Section 7.2); two were varying the ratio of patients who convert to surgery after failure of the endoscopic treatment (Section 7.6); and one varied the length of hospital stay (Section 7.4). In addition, two-way sensitivity analyses were performed, concurrently using two extreme varying estimates: the probability of stent-related complication (endoscopy group – Section 7.3) and the rate of re-operation (surgery group – Section 7.3). Four combinations were assessed. Finally, sensitivity analyses were conducted applying mortality rates to surgical drainage on the Cahen within-trial time horizon (24 months) and on a lifetime horizon (Section 7.7).

10. Probabilistic analysis

This economic analysis presents probabilistic results. A probabilistic analysis applies probability distributions for model parameters and presents the empirical distribution

of the cost-effectiveness results. A gamma distribution was applied to cost estimates (bounded at 0). A beta distribution was applied to probability estimates and to utility scores (bounded between 0 and 1) (Table 14). Results of the base-case analysis and of the sensitivity analyses were re-calculated 5000 times, with all of the model parameters set simultaneously, selected at random from the respective parameter distribution. Results presented are the mean of the 5000 computed simulations.

Tuble 14	Parameters used i	n the probabilis	tic sensitivity analysis	
Description of variable	Mean value	Probability distribution	Parameters	Source
Cost units estimates				
Endoscopic intervention (therapeutic & for treating complications)	£739 SE = 483	Gamma	$\alpha = 2.34$ $\beta = 316.11$ Using interquartile range* (£402 - £1,054)	National Schedule of Reference Costs 2006-07 ¹⁰⁰
Lithotripsy treatment	£1,394 SE = 880	Gamma	$\alpha = 2.51$ $\beta = 555.43$ Using interquartile range (£499 - £1,686)	National Schedule of Reference Costs 2006-07 ¹⁰⁰
Surgery (pancreaticojejunost omy & Frey)	£6,024 SE = 2580	Gamma	$\alpha = 5.45$ $\beta = 1104.75$ Using interquartile range (£2,867 - £6,347)	National Schedule of Reference Costs 2006-07 ¹⁰⁰
Surgery (Wipple)	£7,697 SE = 4419	Gamma	$\alpha = 3.03$ $\beta = 2536.92$ Using interquartile range (£4,710 - £10,671)	National Schedule of Reference Costs 2006-07 ¹⁰⁰
Surgery (for treating complications post- surgery / repeated surgery)	£5,528 SE = 2837	Gamma	α = 3.80 β = 1455.92 Using interquartile range (£2,273 - £6,100)	National Schedule of Reference Costs 2006-07 ¹⁰⁰
CT-Scan / Inpatient	£121 SE = 59	Gamma	$\alpha = 4.16$ $\beta = 29.07$ Using interquartile range (£78 - £158)	National Schedule of Reference Costs 2006-07 ¹⁰⁰
CT-Scan / Outpatient	£125 SE = 63	Gamma	α = 3.94 β = 31.76 Using interquartile range (£75 - £160)	National Schedule of Reference Costs 2006-07 ¹⁰⁰
MRI / Inpatient	£228 SE = 128	Gamma	α = 3.16 β = 72.14 Using interquartile range (£121 - £294)	National Schedule of Reference Costs 2006-07 ¹⁰⁰
MRI / Outpatient	£198 SE = 115	Gamma	$\alpha = 2.97$ $\beta = 66.68$ Using interquartile range (£116 - £271)	National Schedule of Reference Costs 2006-07 ¹⁰⁰
Inpatient bed-day - Endoscopic	£104 SE = 121	Gamma	$\alpha = 0.74$ $\beta = 140.39$ Using interquartile range (£130 - £293)	National Schedule of Reference Costs 2006-07 ¹⁰⁰
Inpatient bed-day - Surgery	£267 SE = 68	Gamma	α = 15.33 β = 17.42 Using interquartile range (£167 - £259)	National Schedule of Reference Costs 2006-07 ¹⁰⁰

Table 14

Outpatient visit	£89 SE = 13	Gamma	$\alpha = 44.49$ $\beta = 2.00$ Using interquartile range (£87 - £105)	National Schedule of Reference Costs 2006-07 ¹⁰⁰	
Probability estimates Stent-related complications / base case	5/19 (26%)	Beta	$\alpha = 5$ $\beta = 14$	Cahen 2007 ¹³²	
Stent-related complications / sensitivity analyses using lower estimate	1/29 (3%)	Beta	$\alpha = 1$ $\beta = 28$	Dumonceau 2007 ¹⁸⁶	
Stent-related complications / sensitivity analyses using higher estimate	27/49 (55%)	Beta	$\alpha = 27$ $\beta = 22$	Smits 1995 ¹⁸³	
Re-operation post surgery / base case	1/20 (5%)	Beta	$\alpha = 1$ $\beta = 19$	Cahen 2007 ¹³²	
Re-operation post surgery / sensitivity analyses using lower estimate	2/76 (2.6%)	Beta	$\alpha = 2$ $\beta = 74$	Dite 2003 ¹³³	
Re-operation post surgery / sensitivity analyses using higher estimate	10/57 (17.5%)	Beta	$\alpha = 10$ $\beta = 47$	Sielezneff 2000 ¹⁸⁹	
Surgery post- endoscopy / base case	4/19 (21%)	Beta	$\alpha = 4$ $\beta = 15$	Cahen 2007 ¹³²	
Surgery post- endoscopy / sensitivity analysis using higher estimate	24/93 (26%)	Beta	$\begin{array}{l} \alpha = 24\\ \beta = 69 \end{array}$	Binmoeller 1995 ¹⁹⁵	
Exocrine function					
(see figure 1) Insufficiency at baseline	28/38	Beta	$\alpha = 28$ $\beta = 10$	Cahen 2007 ¹³²	
Insufficiency resolved – Surgery group	3/16	Beta	$\alpha = 3$ $\beta = 13$	Cahen 2007 ¹³²	
Insufficiency resolved – Endoscopy group	1/12	Beta	$\alpha = 1$ $\beta = 11$	Cahen 2007 ¹³²	
Insufficiency developed – Surgery group** Endocrine function	1/4	Beta	$\alpha = 1$ $\beta = 3$	Cahen 2007 ¹³²	
Insufficiency at baseline	8/38 (21%)	Beta	$\alpha = 8$ $\beta = 30$	Cahen 2007 ¹³²	
Insufficiency resolved – Endoscopy group [¥]	1/4 (25%)	Beta	$\alpha = 1$ $\beta = 3$	Cahen 2007 ¹³²	
Insufficiency developed – Surgery group	1/16 (6%)	Beta	$\alpha = 1$ $\beta = 15$	Cahen 2007 ¹³²	
Insufficiency developed –	3/14 (21%)	Beta	$\alpha = 3$ $\beta = 11$	Cahen 2007 ¹³²	

Endoscopy group				
Surgical mortality	6/647 (0.9%)	Beta	$\begin{array}{l} \alpha = 6\\ \beta = 647 \end{array}$	Clinical review (Table 10)
Opiate use	4/28 (14%)	Beta	$\alpha = 4$ $\beta = 24$	Terrace 2007 ²⁰⁰
Non-opiate use	11/28 (39%)	Beta	$\alpha = 11$ $\beta = 17$	Terrace 2007 ²⁰⁰
Utility scores				
Difference between cohorts at 6 weeks controlling for baseline utility	0.136 SE = 0.090	Beta	$\alpha = 1.97$ $\beta = 12.53$	Unpublished data from Cahen 2007 ¹³²
Difference between cohorts at 3 months controlling for baseline utility	0.233 SE = 0.072	Beta	$\alpha = 8.03$ $\beta = 26.44$	Unpublished data from Cahen 2007 ¹³²
Difference between cohorts at 6 months controlling for baseline utility	0.328 SE = 0.091	Beta	$\alpha = 8.73$ $\beta = 17.89$	Unpublished data from Cahen 2007 ¹³²
Difference between cohorts at 12 months controlling for baseline utility	0.183 SE = 0.068	Beta	$\alpha = 5.92$ $\beta = 26.42$	Unpublished data from Cahen 2007 ¹³²
Difference between cohorts at 18 months controlling for baseline utility	0.186 SE = 0.096	Beta	$\alpha = 3.06$ $\beta = 13.37$	Unpublished data from Cahen 2007 ¹³²
Difference between cohorts at 24 months controlling for baseline utility	0.118 SE = 0.083	Beta	$\alpha = 1.78$ $\beta = 13.32$	Unpublished data from Cahen 2007 ¹³²

*We used the interquartile range (IQR) to approximately estimate the SE of the mean using the following equation: se=0.5xIQR / $Z_{0.75}$

**This estimate was not varied for the endoscopy group; the probability of sufficiency that persisted in this group was reported to be 0% in the Cahen paper¹³² (Table 3).
* This estimate was not varied for the surgical group; the probability of insufficiency that resolved in this group was reported to be 0% in the Cahen paper¹³².

11. Results

The result of the base-case analysis was that surgical drainage of the pancreatic duct dominates endoscopic drainage (it was more effective and less costly – Table 15). The sensitivity analysis showed that the surgical option remains dominant (cost-saving) in the majority of scenarios (Table 16 and Table 17). The results were sensitive to the proportion of patients in the endoscopy group who convert to surgical drainage when the endoscopic drainage failed. When patient conversion to surgery was less than 10%, surgical drainage was no longer cost-saving, but it was still highly cost-effective when compared with a threshold of £20,000 per QALY gained (£1,495 per QALY gained when the probability of conversion to surgery was 0% - Table 16). In addition, surgical drainage was no longer cost-saving when a lower complication rate was applied to endoscopy and a higher re-opearation rate was applied to surgery. Nevertheless, surgery was again highly cost-effective (£700 per QALY gained - Table 16). The basecase analysis, the analyses considering mortality rates related to surgical drainage, and all other sensitivity analyses showed very high probabilities of cost-effectiveness for surgical drainage compared to endoscopic drainage. The presented results reveal that surgical drainage is highly cost-effective compared to endoscopic drainage.

Table 15

Base-case analysis probabilistic results: Mean costs				
	Endoscopy	Surgery		
Therapeutic procedures	£5,257	£6,108		
Diagnostic procedures	£498	£337		
Complications	£192	£280		
Exocrine function	£800	£671		
Conversion to surgery	£1,210	n/a		
Total	£7,957	£7,396		

Table 16

Tuble 10		Probabilistic re	sults		
	Cost Difference (surgery- endoscopy)	Probability of surgery being cost-saving	QALY gained (surgery – endoscopy)	Incremental Net Monetary Benefit* (surgery - endoscopy)	Probability of surgery being cost- effective*
Base-case analysis	-£561	54.5%	0.39	£8,441	99.0%
Sensitivity analyses cons	U				
0.9% mortality related to surgery – 24-month time horizon	-£561	54.4%	0.38	£8,183	98.8%
2% mortality related to surgery – 24-month time horizon	-£561	54.4%	0.37	£7,878	98.5%
0.9% mortality related to surgery – lifetime horizon	-£733	57.1%	0.33	£7,305	97.8%
2% mortality related to surgery – lifetime horizon	-£873	59.2%	0.25	£5,898	95.2%
Other one-way sensitivity	y analysis				
Diagnostic procedure - 100% MRI	-£745	56.1%	0.39	£8,580	99.1%
Diagnostic procedure - 100% CT-Scan	-£636	55.9%	0.39	£8,516	99.3%
Lower estimate for conversion to surgery post-endoscopy (0%)	£584	42.1%	0.39	£7,232	97.0%
Higher estimate for conversion to surgery post-endoscopy (26%)	-£860	58.4%	0.39	£8,704	99.7%
Length of hospital stay adjustment	-£53	48.3%	0.39	£7,903	98.8%

* Compared with a threshold of £20,000 per QALY gained

Table 17

Two-way sensitivity analysis		Endoscopic complication rates		
		Higher (55%)	Lower (3%)	
Surgical	Higher	-£142*	£274	
complication rates (17.5%)		49.9%**	44.7%	
-		£7,980¥	£7,552	
		98.6% ^{¥¥}	98.5%	

Lower	-£913	-£611
(2.6%)	58.9%	56.8%
	£8,735	£8,466
	99.2%	99.3%

* Cost difference (surgery - endoscopy)

** Probability of surgery being cost-saving

^{*} Incremental Net Monetary Benefit – £20,000 per QALY gained (surgery - endoscopy)
 ^{**} Probability of surgery being cost-effective at £20,000 per QALY gained

12. Discussion

A 24-month time horizon was chosen for the base-case analysis as this was the period covered by the Cahen study¹³². It was judged that extrapolating the results of the Cahen trial would involve uncertainty and that the 24-month time horizon adequately captures the difference in economic and health outcomes between the compared interventions (keeping in mind that these treatments are undertaken for pain-control). The Cahen trial was stopped after an interim analysis on the basis of a significant difference in outcomes favouring surgery. This may have resulted in overestimating the health outcomes in favour of surgery.

The sensitivity analysis, varying the probability for conversion to surgery in the endoscopy group showed that surgical drainage was no longer cost-saving when patient conversion to surgery was less than 10%. However, even with a probability of conversion to surgery of 0% surgery was highly cost-effective with a cost of £1,495 per QALY gained. In addition, surgical drainage was no longer cost-saving when a lower complication rate was applied to endoscopy and a higher re-opearation rate was applied to surgery. Nevertheless, surgery was again highly cost-effective (£700 per QALY gained).

The sensitivity analysis adjusting the amount of in-patient bed-days from the length of hospital stay included in the HRG-code cost to the amount reported by the Cahen study¹³², showed low cost savings for surgery, with the probability that surgery is cost-saving being 48%. However, the probability that surgery is cost-effectiveness for this analysis was 98.8%. The Cahen study¹³² was conducted in the Netherlands, a country with a healthcare system and with practices in this area that may be different to the UK NHS. Therefore the base-case analysis using the HRG-code length of hospital stay is perhaps more relevant for estimating the cost impact on the UK NHS.

The sensitivity analysis applying mortality rates of 0.9% and 2% to surgical drainage showed cost-saving results with very high probabilities of cost-effectiveness. Furthermore, the probability that surgery is cost-effective was very high across all analyses, varying from 95.2% to 99.7%. This was due to the magnitude of the improvement in quality of life with surgical drainage compared to endoscopic drainage.

We have used medians to estimate means for some resource use outcomes, because they were the best available estimates as reported by Cahen 2007³¹. In health economic assessments, the mean is the most informative measure for costing resource use, and provide information about the total cost that will be incurred by treating all patients, which is needed as the basis for healthcare policy decisions. The median in contrast describe a 'typical' cost for an individual¹³⁷. The most costly interventions (surgical and

³¹ Number of surgical and endoscopic therapeutic interventions; number of diagnostic interventions; total length of hospital stay; number of lithotripsy sessions.

endoscopic therapeutic procedures, and lithotripsy sessions) were costed using median estimates. Although, the mean estimates by Dite 2003¹³³ for numbers of therapeutic procedures seem to be in agreement with Cahen 2007¹³² medians. Moreover, to be safe, we used conservative assumptions not favouring surgical drainage when costing lithotripsy sessions.

Finally, the results of the present study cannot be extrapolated to all patients with ductal obstruction due to chronic pancreatitis because patients with an inflammatory mass were excluded from the Cahen trial¹³².

13. Conclusion

Surgical drainage of the pancreatic duct is highly cost-effective compared to endoscopic drainage for treating patients with chronic pancreatitis and an obstructed pancreatic duct from the perspective of the NHS in England and Wales.

14. Acknowledgment

We would like to thank Marco J. Bruno, MD, PhD (gastroenterologist, Consultant in Interventional Endoscopy and GI Oncology, Department of Gastroenterology & Hepatology, Erasmus Medical Centre, Rotterdam, Netherlands), Djuna L. Cahen, MD, PhD (consultant in gastroenterology, Erasmus Medical Center, Rotterdam, the Netherlands), and Marcel G.W. Dijkgraaf, PhD (senior researcher, Academic Medical Center, University of Amsterdam), for sending us the EQ-5D data collected during the Cahen 2007 study¹³⁰, for use in this economic analysis.

A.5. Scope

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE SCOPE

This is the scope for the second of three pieces of NICE guidance addressing alcohol-use disorders.

Part 1 – Prevention (developed by the Centre for Public Health Excellence at NICE, publication expected March 2010)

The prevention of alcohol-use disorders in people 10 years and older, covering: interventions affecting the price, advertising and availability of alcohol; how best to detect alcohol misuse both in and outside primary care; and brief interventions to manage alcohol misuse in these settings.

Part 2 – Clinical management (developed by the National Collaborating Centre for

Chronic Conditions, publication expected March 2010)

The assessment and clinical management in adults and young people 10 years and older of: acute alcohol withdrawal including delirium tremens; liver damage including hepatitis and cirrhosis; acute and chronic pancreatitis; and the management of Wernicke's encephalopathy in adults and young people older than 10 years .

Part 3 – Dependence (developed by the National Collaborating Centre for Mental Health, publication expected December 2010)

A scope will be produced for this guidance in early 2009; it is expected to cover alcohol dependence and psychological interventions.

1 Guideline title

Alcohol-use disorders in adults and young people: clinical management

1.1 Short title

Alcohol-use disorders (clinical management)

2 Background

- a) The National Institute for Health and Clinical Excellence ('NICE' or 'the Institute') has commissioned the National Collaborating Centre for Chronic Conditions to develop a clinical guideline on the management of alcohol-use disorders in adults and young people for use in the NHS in England and Wales. This follows referral of the topic by the Department of Health (see appendix). The guideline will provide recommendations for good practice that are based on the best available evidence of clinical and cost effectiveness.
- b) The Institute's clinical guidelines support the implementation of National Service Frameworks (NSFs) in those aspects of care for which a Framework has been published. The statements in each NSF reflect the evidence that was used at the time the Framework was prepared. The clinical guidelines and technology appraisals published by the Institute after an NSF has been issued have the effect of updating the Framework.

c) NICE clinical guidelines support the role of healthcare professionals in providing care in partnership with patients, taking account of their individual needs and preferences, and ensuring that patients (and their carers and families, where appropriate) can make informed decisions about their care and treatment.

3 Clinical need for the guideline

- a) Government guidelines on alcohol use suggest that women should not regularly exceed three units per day and that men should not regularly exceed four units per day.
- b) The term alcohol-use disorders encompass physical, mental and behavioural conditions associated with alcohol use. Health problems can be related to heavy alcohol use over a relatively short period of time (for example, intoxication) or to the long-term use of alcohol (for example, cirrhosis of the liver).
- c) The Alcohol Needs Assessment Research Project (ANARP; Department of Health, 2005) identifies three categories of alcoholuse disorders.
 - Hazardous drinking: people drinking above recognised 'sensible' levels but not yet experiencing harm.
 - Harmful drinking: people drinking above 'sensible' levels and experiencing harm.

Alcohol dependence: people drinking above 'sensible' levels and experiencing harm and symptoms of dependence.

- In addition, the term 'binge drinking' refers to people who drink
 more than double the daily recognised sensible levels in any 1 day
- e) In 2005, an estimated 1.55 million people in England were classified as 'harmful' drinkers and further 6.3 million as 'hazardous' drinkers (North West Public Health Observatory, 2007).

- f) In 2005, the rate of alcohol-specific mortality in England for people younger than 75 years was 12.5 per 100,000 for men and 5.7 per 100,000 for women. (North West Public Health Observatory, 2007).
- g) The total cost to the NHS of alcohol-use disorders in England is estimated at £1.7 billion each year (Royal College of Physicians 2001).
- In England the rates of alcohol-specific hospital admissions for 2005–6 were 339.7 per 100,000 population for men and 161.1 per 100,000 population for women. The number of alcohol-attributable admissions was 909.0 and 510.4 for men and women respectively (North West Public Health Observatory, 2007).
- There is no national consensus on the safe and sensible levels of drinking in adolescents. Government guidance is expected in 2008.
- j) A 2006 study showed that 21% of children aged 11 to 15 years who had drunk alcohol in the previous week consumed an average of 11.4 units – up from 5.4 units in 1990. Drinking prevalence increases with age: 3% of pupils aged 11 had drunk alcohol in the previous week compared with 41% of those aged 15.
- Among children younger than 16 there were 5280 hospital admissions in England in 2005–6 with either a primary or secondary diagnosis specifically related to alcohol.
- Binge drinking in young people is associated with alcohol-use disorders in later life (Viner and Taylor 2007).

4 The guideline

a) The guideline development process is described in detail in two publications that are available from the NICE website (see 'Further information'). 'The guideline development process: an overview for stakeholders, the public and the NHS' describes how organisations can become involved in the development of a guideline. 'The guidelines manual' provides advice on the technical aspects of guideline development.

- b) This document is the scope. It defines exactly what this guideline will (and will not) examine, and what the guideline developers will consider. The scope is based on the referral from the Department of Health (see appendix).
- c) The areas that will be addressed by the guideline are described in the following sections.

1 4.1 Population

2 4.1.1 Groups that will be covered

a) Adults and young people (aged 10 years and older) who have an
alcohol-use disorder and whose condition is wholly alcoholattributable or where alcohol is a contributory cause.

6 4.1.2 Groups that will not be covered

- 7 a) Women who are pregnant.
- 8 b) Children younger than 10 years.

9 4.2 Healthcare settings

10 Primary and secondary NHS care, including referral to tertiary care.

11 **4.3** Clinical management

- 12 **4.3.1** Areas that will be covered
- 13 a) Management of acute alcohol withdrawal including seizures and
 14 delirium tremens.
- 15 b) Liver damage, including hepatitis and cirrhosis:
- diagnosis and assessment of severity of alcohol-related liver
 disease the role of clinical and laboratory markers in
 conjunction with liver biopsy
- nutrition and pharmacotherapy for the management of acute
 alcoholic hepatitis
- 21 timing of referral for possible liver transplantation for alcohol-related
 - cirrhosis.

22

25

- 23 c) Acute and chronic pancreatitis:
- comparison of diagnostic tools
 - management of acute pancreatitis

22	4.4.1	Scope
21	4.4	Status
20		Part 3 of the NICE guidance on alcohol-use disorders).
19		syndrome and impairments of cognition (these will be considered in
18	b)	Disorders of the central nervous system, including Korsakoff's
17		misuse disorders or hepatitis C.
16	a)	Comorbidities other than alcohol-use disorders, for example, drug
15	4.3.2	Areas that will not be covered
14		implementation' section of the guideline.
13		given to listing such recommendations in the 'Key priorities for
12		If the resources released are substantial, consideration will be
11		efficient use of resources, can be made, they will be clearly stated.
10		for optimal use, or changing the approach to care to make more
9		and credible recommendations for re-positioning the intervention
8		identify ineffective interventions and approaches to care. If robust
7	f)	The Guideline Development Group will take reasonable steps to
6		interventions or approaches to care relevant to the guideline topic.
5		recommendations on the principal complementary and alternative
4	e)	The Guideline Development Group will consider making
3	d)	Management of Wernicke's encephalopathy.
2		pancreatitis
1		management of pain and exocrine insufficiency in chronic alcoholic

23 This is the final scope.

24 4.4.2 Related NICE guidance

25 Published

- 26 Antenatal care: routine care for the healthy pregnant woman. NICE clinical
- 27 guideline 62 (2008). Available from: www.nice.org.uk/guidance/CG062

DRAFT FOR CONSULTATION

- 1 Interventions in schools to prevent and reduce alcohol use among children
- 2 and young people. NICE public health guidance 7 (2007). Available from
- 3 www.nice.org.uk/guidance/PH007
- 4 Behaviour change at population, community and individual levels. NICE public
- 5 health guidance 6 (2007). Available from: www.nice.org.uk/guidance/PH006
- 6 Community-based interventions to reduce substance misuse among
- 7 vulnerable and disadvantaged children and young people. NICE public health
- 8 guidance PHI 4 (2007) www.nice.org.uk/guidance/PHI004
- 9 Schizophrenia: core interventions in the treatment and management of
- 10 schizophrenia in primary and secondary care. NICE clinical guideline 1
- 11 (2002). Available from: www.nice.org.uk/guidance/CG001

12 In development

- 13 School, college and community-based personal, social and health education
- 14 focusing on sex and relationships and alcohol education. NICE public health
- 15 guidance (publication expected September 2009).
- 16 Alcohol-use disorders in adults and young people: prevention. Public health
- 17 guidance (publication expected March 2010).
- 18 Care of pregnant women with complex social factors. NICE clinical guideline
- 19 (publication expected June 2010).
- 20 Alcohol-use disorders: the management of alcohol dependence and related
- brain damage. NICE clinical guideline (publication date to be confirmed).

22 **4.4.3 Guideline**

23 The development of the guideline will begin in July 2008.

5 Further information

- 25 Information on the guideline development process is provided in:
- ²⁶ 'The guideline development process: an overview for stakeholders, the public

27 and the NHS' Alcohol use disorders: clinical management: full guideline DRAFT (September 2009)

DRAFT FOR CONSULTATION

- 1 'The guidelines manual'.
- 2 These booklets are available as PDF files from the NICE website
- 3 (<u>www.nice.org.uk/guidelinesmanual</u>). Information on the progress of the
- 4 guideline will also be available from the website.
- 5
- 6

L

2	5 APPENDIX: REFERRAL FROM THE DEPARTMENT OF
3	Health
4	The Department of Health asked NICE:
5	'To produced combined public health and clinical guidance on management of
6	alcohol-use disorders in adults and adolescents.'
7	
8	
9	
10	
11	A.6. Reference list
12 13	
14 15	1 National Institute for Health and Clinical Excellence. <i>The Guidelines Manual.</i> NICE, 2007.
16 17	2 National Institute for Health and Clinical Excellence. <i>The Guidelines Manual.</i> London: NICE, 2009.
18 19	3 NHS Information Centre, Lifestyle Statistics. <i>Statistics on Alcohol: England, 2009.</i> UK: Health and Social Care Information Centre, 2009.
20 21	4 Pirmohamed M, Brown C, Owens L et al. The burden of alcohol misuse on an inner-city general hospital. <i>QJM.</i> 2000; 93(5):291-295.
22 23 24	5 Royal College of Physicians. Alcohol - can the NHS afford it? Recommendations for a coherent alcohol strategy for hospitals. A report of a working party of the Royal College of Physicians. Royal College of Physicians, 2001.
25 26 27	6 Caetano R, Clark CL, Tam T. Alcohol consumption among racial/ethnic minorities: theory and research. <i>Alcohol Health & Research World.</i> 1998; 22(4):233-241.
28 29 30	7 Stinson FS, Grant BF, Dufour MC. The critical dimension of ethnicity in liver cirrhosis mortality statistics. <i>Alcoholism: Clinical & Experimental Research.</i> 2001; 25(8):1181-1187.
31 32 33	8 Sullivan JT, Sykora K, Schneiderman J et al. Assessment of alcohol withdrawal: the revised clinical institute withdrawal assessment for alcohol scale (CIWA-Ar). <i>British Journal of Addiction.</i> 1989; 84(11):1353-1357.

1 2 3	9	Lukan JK, Reed DN, Jr., Looney SW et al. Risk factors for delirium tremens in trauma patients. <i>Journal of Trauma-Injury Infection & Critical Care.</i> 2002; 53(5):901-906.
4 5 6	10	Duka T, Townshend JM, Collier K et al. Impairment in cognitive functions after multiple detoxifications in alcoholic inpatients. <i>Alcoholism: Clinical & Experimental Research.</i> 2003; 27(10):1563-1572.
7 8 9	11	Malcolm R, Roberts JS, Wang W et al. Multiple previous detoxifications are associated with less responsive treatment and heavier drinking during an index outpatient detoxification. <i>Alcohol.</i> 2000; 22(3):159-164.
10 11 12	12	Schuckit MA, Tipp JE, Reich T et al. The histories of withdrawal convulsions and delirium tremens in 1648 alcohol dependent subjects. <i>Addiction.</i> 1995; 90(10):1335-1347.
13 14	13	Wetterling T, Driessen M, Kanitz RD et al. The severity of alcohol withdrawal is not age dependent. <i>Alcohol & Alcoholism.</i> 2001; 36(1):75-78.
15 16 17	14	Wetterling T, Kanitz RD, Besters B et al. A new rating scale for the assessment of the alcohol-withdrawal syndrome (AWS scale). <i>Alcohol & Alcoholism.</i> 1997; 32(6):753-760.
18 19	15	Booth BM, Blow FC. The kindling hypothesis: further evidence from a U.S. national study of alcoholic men. <i>Alcohol & Alcoholism.</i> 1993; 28(5):593-598.
20 21 22	16	Kraemer KL. The cost-effectiveness and cost-benefit of screening and brief intervention for unhealthy alcohol use in medical settings. <i>Substance Abuse.</i> 2007; 28(3):67-77.
23 24 25	17	Lechtenberg R, Worner TM. Relative kindling effect of detoxification and non- detoxification admissions in alcoholics. <i>Alcohol & Alcoholism.</i> 1991; 26(2):221- 225.
26 27	18	Lechtenberg R, Worner TM. Total ethanol consumption as a seizure risk factor in alcoholics. <i>Acta Neurologica Scandinavica</i> . 1992; 85(2):90-94.
28 29	19	Palmstierna T. A model for predicting alcohol withdrawal delirium. <i>Psychiatric Services</i> . 2001; 52(6):820-823.
30 31	20	Ferguson JA, Suelzer CJ, Eckert GJ et al. Risk factors for delirium tremens development. <i>Journal of General Internal Medicine.</i> 1996; 11(7):410-414.
32 33	21	Kraemer KL, Mayo SM, Calkins DR. Independent clinical correlates of severe alcohol withdrawal. <i>Substance Abuse.</i> 2003; 24(4):197-209.
34 35 36	22	Kraemer KL, Mayo SM, Calkins DR. Impact of age on the severity, course, and complications of alcohol withdrawal. <i>Archives of Internal Medicine.</i> 1997; 157(19):2234-2241.
37 38	23	Vinson DC, Menezes M. Admission alcohol level: a predictor of the course of alcohol withdrawal. <i>Journal of Family Practice.</i> 1991; 33(2):161-167.

1 2	24	Parrott S, Godfrey C, Heather N et al. Cost and outcome analysis of two detoxification services. <i>Alcohol & Alcoholism.</i> 2006; 41(1):84-91.
3 4	25	Anon. EuroQola new facility for the measurement of health-related quality of life. The EuroQol Group. <i>Health Policy.</i> 1990; 16(3):199-208.
5 6	26	Ntais C, Pakos E, Kyzas P et al. Benzodiazepines for alcohol withdrawal. <i>Cochrane Database of Systematic Reviews.</i> 2005;CD005063.
7 8 9	27	British Medical Association and Royal Pharmaceutical Society of Great Britain. <i>British National Formulary</i> . 58 ed. London:UK: BMJ Group and RPS Publishing; 2009.
10 11 12	28	Daeppen JB, Gache P, Landry U et al. Symptom-triggered vs fixed-schedule doses of benzodiazepine for alcohol withdrawal: a randomized treatment trial. <i>Archives of Internal Medicine.</i> 2002; 162(10):1117-1121.
13 14 15	29	Saitz R, Mayo-Smith MF, Roberts MS et al. Individualized treatment for alcohol withdrawal: A randomized double- blind controlled trial. <i>Journal of the American Medical Association</i> . 1994; 272(7):519-523.
16 17 18	30	Lange-Asschenfeldt C, Muller MJ, Szegedi A et al. Symptom-triggered versus standard chlormethiazole treatment of inpatient alcohol withdrawal: clinical implications from a chart analysis. <i>European Addiction Research.</i> 2003; 9(1):1-7.
19 20 21	31	Weaver MF, Hoffman HJ, Johnson RE et al. Alcohol withdrawal pharmacotherapy for inpatients with medical comorbidity. <i>Journal of Addictive Diseases.</i> 2006; 25(2):17-24.
22 23	32	Jaeger TM, Lohr RH, Shane P. Symptom-triggered therapy for alcohol withdrawal syndrome in medical inpatients. <i>Mayo Clinic Proceedings.</i> 2001; 76(7):695-701.
24 25 26	33	Reoux JP, Miller K. Routine hospital alcohol detoxification practice compared to symptom triggered management with an Objective Withdrawal Scale (CIWA-Ar). <i>American Journal on Addictions.</i> 2000; 9(2):135-144.
27 28 29	34	Day EJ, Patel J, Georgiou G. Evaluation of a sympton-triggered front-loading detoxification technique for alcohol dependence: a pilot study. <i>Psychiatric Bulletin.</i> 2004; 28(11):407-410.
30 31 32	35	Jauhar P. Is daily single dosage of diazepam as effective as chlordiazepoxide in divided doses in alcohol withdrawal - A pilot study. <i>Alcohol & Alcoholism.</i> 2000; 35(2):212-214.
33 34	36	Wasilewski D, Matsumoto H, Kur E et al. Assessment of diazepam loading dose therapy of delirium tremens. <i>Alcohol & Alcoholism.</i> 1996; 31(3):273-278.
35 36	37	Manikant S, Tripathi BM, Chavan BS. Loading dose diazepam therapy for alcohol withdrawal state. <i>Indian Journal of Medical Research.</i> 1993; 98:170-173.
37 38 39	38	Spies CD, Otter HE, Huske B et al. Alcohol withdrawal severity is decreased by symptom-orientated adjusted bolus therapy in the ICU. <i>Intensive Care Medicine</i> . 2003; 29(12):2230-2238.

1 2 3	39	Sullivan JT, Swift RM, Lewis DC. Benzodiazepine requirements during alcohol withdrawal syndrome: clinical implications of using a standardized withdrawal scale. <i>Journal of Clinical Psychopharmacology.</i> 1991; 11(5):291-295.
4 5	40	Brazier J, Roberts J, Deverill M. The estimation of a preference-based measure of health from the SF-36. <i>Journal of Health Economics.</i> 2002; 21(2):271-292.
6 7 8	41	British Medical Association and Royal Pharmaceutical Society of Great Britain. <i>British National Formulary</i> . 57 ed. London:UK: BMJ Group and RPS Publishing; 2009.
9 10 11	42	Hillbom M, Pieninkeroinen I, Leone M. Seizures in Alcohol-Dependent Patients: Epidemiology, Pathophysiology and Management. <i>CNS Drugs.</i> 2003; 17(14):1013-1030.
12 13 14	43	D'Onofrio G, Rathlev NK, Ulrich AS et al. Lorazepam for the prevention of recurrent seizures related to alcohol. <i>New England Journal of Medicine.</i> 1999; 340(12):915-919.
15 16 17	44	Alldredge BK, Lowenstein DH, Simon RP. Placebo-controlled trial of intravenous diphenylhydantoin for short-term treatment of alcohol withdrawal seizures. <i>American Journal of Medicine.</i> 1989; 87(6):645-648.
18 19	45	Chance JF. Emergency department treatment of alcohol withdrawal seizures with phenytoin. <i>Annals of Emergency Medicine</i> . 1991; 20(5):520-522.
20 21 22	46	Rathlev NK, D'Onofrio G, Fish SS et al. The lack of efficacy of phenytoin in the prevention of recurrent alcohol-related seizures. <i>Annals of Emergency Medicine.</i> 1994; 23(3):513-518.
23 24	47	Foy A, McKay S, Ling S et al. Clinical use of a shortened alcohol withdrawal scale in a general hospital. <i>Internal Medicine Journal.</i> 2006; 36(3):150-154.
25 26 27	48	Foy A, March S, Drinkwater V. Use of an objective clinical scale in the assessment and management of alcohol withdrawal in a large general hospital. <i>Alcoholism:</i> <i>Clinical & Experimental Research.</i> 1988; 12(3):360-364.
28 29	49	Foy A, Kay J, Taylor A. The course of alcohol withdrawal in a general hospital. <i>QJM.</i> 1997; 90(4):253-261.
30 31 32	50	Repper-DeLisi J, Stern TA, Mitchell M et al. Successful implementation of an alcohol-withdrawal pathway in a general hospital. <i>Psychosomatics.</i> 2008; 49(4):292-299.
33 34 35	51	Stanley KM, Worrall CL, Lunsford SL et al. Efficacy of a symptom-triggered practice guideline for managing alcohol withdrawal syndrome in an academic medical center. <i>Journal of Addictions Nursing.</i> 2007; 18(4):207-216.
36 37 38 39	52	Pletcher MJ, Fernandez A, May TA et al. Unintended consequences of a quality improvement program designed to improve treatment of alcohol withdrawal in hospitalized patients. <i>Joint Commission Journal on Quality & Patient Safety.</i> 2005; 31(3):148-157.

1 2 3	53	Morgan T, Kofoed L, Petersen DB. Clinical pathway effects on treatment of the alcohol withdrawal syndrome. <i>South Dakota Journal of Medicine.</i> 1996; 49(6):195-200.
4 5 6	54	Hecksel KA, Bostwick JM, Jaeger TM et al. Inappropriate use of symptom- triggered therapy for alcohol withdrawal in the general hospital. <i>Mayo Clinic</i> <i>Proceedings</i> . 2008; 83(3):274-279.
7 8 9	55	DeCarolis DD, Rice KL, Ho L et al. Symptom-driven lorazepam protocol for treatment of severe alcohol withdrawal delirium in the intensive care unit. <i>Pharmacotherapy.</i> 2007; 27(4):510-518.
10 11 12	56	Wetterling T, Weber B, Depfenhart M et al. Development of a rating scale to predict the severity of alcohol withdrawal syndrome. <i>Alcohol & Alcoholism.</i> 2006; 41(6):611-615.
13 14 15	57	Torvik A, Lindboe CF, Rogde S. Brain lesions in alcoholics. A neuropathological study with clinical correlations. <i>Journal of the Neurological Sciences.</i> 1982; 56(2-3):233-248.
16 17 18	58	Blansjaar BA, Vielvoye GJ, Van Dijk JG et al. Similar brain lesions in alcoholics and Korsakoff patients: MRI, psychometric and clinical findings. <i>Clinical Neurology & Neurosurgery.</i> 1992; 94(3):197-203.
19 20 21	59	Harper CG. Wernicke's encephalopathy: a more common disease than realised. A neuropathological study of 51 cases. <i>Journal of Neurology, Neurosurgery & Psychiatry.</i> 1979; 42(3):226-231.
22 23 24	60	Harper CG, Giles M, Finlay JR. Clinical signs in the Wernicke-Korsakoff complex: a retrospective analysis of 131 cases diagnosed at necropsy. <i>Journal of Neurology, Neurosurgery & Psychiatry</i> . 1986; 49(4):341-345.
25 26 27	61	Cook CC, Hallwood PM, Thomson AD. B Vitamin deficiency and neuropsychiatric syndromes in alcohol misuse. [Review] [127 refs]. <i>Alcohol & Alcoholism.</i> 1998; 33(4):317-336.
28 29 30	62	Cook CC, Hallwood PM, Thomson AD. B Vitamin deficiency and neuropsychiatric syndromes in alcohol misuse. [Review] [127 refs]. <i>Alcohol & Alcoholism.</i> 1998; 33(4):317-336.
31 32 33	63	Thomson AD. Mechanisms of vitamin deficiency in chronic alcohol misusers and the development of the Wernicke-Korsakoff syndrome. <i>Alcohol & Alcoholism-supplement.</i> 2000; 35(1):2-7.
34 35	64	Chick J. Psychiatric disorders associated with alcohol misuse. <i>Hospital Pharmacist.</i> 2000; 7:251-254.
36 37 38	65	Ward D, Murch N, Agarwal G et al. A multi-centre survey of inpatient pharmacological management strategies for alcohol withdrawal. <i>QJM.</i> 2009; 102(11):773-780.
39 40 41	66	Wood B, Currie J, Breen K. Wernicke's encephalopathy in a metropolitan hospital. A prospective study of incidence, characteristics and outcome. <i>Medical Journal of Australia.</i> 1986; 144(1):12-16.
	A1 1 1	

Alcohol use disorders: clinical management: full guideline DRAFT (September 2009)

1 2	67	Wood B, Currie J. Presentation of acute Wernicke's encephalopathy and treatment with thiamine. <i>Metabolic Brain Disease</i> . 1995; 10(1):57-72.
3 4 5	68	Ambrose.M.L., Bowden SC, Whelan G. Thiamin treatment and working memory function of alcohol-dependent people: preliminary findings. <i>Alcoholism: Clinical & Experimental Research.</i> 2001; 25(1):112-116.
6 7 8	69	Brown LM, Rowe AE, RYLE PR et al. Efficacy of Vitamin Supplementation in Chronic Alcoholics undergoing Detoxification. <i>Alcohol & Alcoholism.</i> 1983; 18(2):157-166.
9 10 11	70	Baines M, Bligh JG, Madden JS. Tissue thiamin levels of hospitalised alcoholics before and after oral or parenteral vitamins. <i>Alcohol & Alcoholism.</i> 1988; 23(1):49-52.
12 13 14	71	Victor M, Adams RD, Collins GH. <i>The Wernicke-Korsakoff syndrome. A clinical and pathological study of 245 patients, 82 with post-mortem examinations.</i> Philadelphia: F A Davis; 1971.
15 16 17	72	British Medical Association and Royal Pharmaceutical Society of Great Britain. <i>British National Formulary</i> . 56 ed. London: UK: BMJ Group and RPS Publishing; 2008.
18 19 20	73	Datapharm Communications Limited. <i>electronic Medicines Compendium</i> . 2009. Leatherhead: UK, Datapharm Communications Limited. <u>http://emc.medicines.org.uk/</u>
21 22 23	74	Cook CC, Thomson AD. B-complex vitamins in the prophylaxis and treatment of Wernicke-Korsakoff syndrome. <i>British Journal of Hospital Medicine.</i> 1997; 57(9):461-465.
24 25	75	Bingel A. Uber die Parenchympunktion der Leber. Verhandlungen der Deutschen Gesellschaft fur Innere Medizin. 1923; 35:210-212.
26 27 28	76	Elphick DA, Dube AK, McFarlane E et al. Spectrum of liver histology in presumed decompensated alcoholic liver disease. <i>American Journal of Gastroenterology.</i> 2007; 102(4):780-788.
29 30 31	77	Thabut D, Naveau S, Charlotte F et al. The diagnostic value of biomarkers (AshTest) for the prediction of alcoholic steato-hepatitis in patients with chronic alcoholic liver disease. <i>Journal of Hepatology.</i> 2006; 44(6):1175-1185.
32 33 34	78	Vanbiervliet G, Le Breton F, Rosenthal-Allieri MA et al. Serum C-reactive protein: A non-invasive marker of alcoholic hepatitis. <i>Scandinavian Journal of</i> <i>Gastroenterology.</i> 2006; 41(12):1473-1479.
35 36 37	79	Kryger P, Schlichting P, Dietrichson O et al. The accuracy of the clinical diagnosis in acute hepatitis and alcoholic liver disease. Clinical versus morphological diagnosis. <i>Scandinavian Journal of Gastroenterology.</i> 1983; 18(5):691-696.
38 39	80	Talley NJ, Roth A, Woods J et al. Diagnostic value of liver biopsy in alcoholic liver disease. <i>Journal of Clinical Gastroenterology</i> . 1988; 10(6):647-650.

1 2 3	81	van Ness M, Diehl AM. Is liver biopsy useful in the evaluation of patients with chronically elevated liver enzymes? <i>Annals of Internal Medicine.</i> 1989; 111(6):473-478.
4 5 6 7	82	Goldberg S, Mendenhall C, Anderson S. VA cooperative study on alcoholic hepatitis. IV. The significance of clinically mild alcoholic hepatitis - Describing the population with minimal hyperbilirubinemia. <i>American Journal of Gastroenterology.</i> 1986; 81(11):1029-1034.
8 9	83	Ireland A, Hartley L, Ryley N et al. Raised gamma-glutamyltransferase activity and the need for liver biopsy. <i>British Medical Journal.</i> 1991; 302(6773):388-389.
10 11 12	84	Kitadai M, Itoshima T, Hattori S et al. Comparative diagnosis of alcoholic liver diseases by multivariate and histological analysis. <i>Acta Medica Okayama.</i> 1985; 39(1):11-18.
13 14 15	85	Myers RP, Fong A, Shaheen AAM. Utilization rates, complications and costs of percutaneous liver biopsy: A population-based study including 4275 biopsies. <i>Liver International.</i> 2008; 28(5):705-712.
16 17 18	86	Piccinino F, Sagnelli E, Pasquale G et al. Complications following percutaneous liver biopsy. A multicentre retrospective study on 68,276 biopsies. <i>Journal of Hepatology.</i> 1986; 2(2):165-173.
19 20 21	87	McGill DB, Rakela J, Zinsmeister AR et al. A 21-year experience with major hemorrhage after percutaneous liver biopsy. <i>Gastroenterology.</i> 1990; 99(5):1396-1400.
22 23 24	88	Maharaj B, Bhoora IG. Complications associated with percutaneous needle biopsy of the liver when one, two or three specimens are taken. <i>Postgraduate</i> <i>Medical Journal.</i> 1992; 68(806):964-967.
25 26 27	89	Colombo M, Del NE, de FR et al. Ultrasound-assisted percutaneous liver biopsy: superiority of the Tru-Cut over the Menghini needle for diagnosis of cirrhosis. <i>Gastroenterology.</i> 1988; 95(2):487-489.
28 29 30 31	90	Gilmore IT, Burroughs A, Murray LI et al. Indications, methods, and outcomes of percutaneous liver biopsy in England and Wales: an audit by the British Society of Gastroenterology and the Royal College of Physicians of London. <i>Gut.</i> 1995; 36(3):437-441.
32 33 34	91	van der Poorten D, Kwok A, Lam T et al. Twenty-year audit of percutaneous liver biopsy in a major Australian teaching hospital. <i>Internal Medicine Journal.</i> 2006; 36(11):692-699.
35 36 37	92	Firpi RJ, Soldevila PC, Abdelmalek MF et al. Short recovery time after percutaneous liver biopsy: should we change our current practices? <i>Clinical Gastroenterology & Hepatology.</i> 2005; 3(9):926-929.
38 39 40	93	Manolakopoulos S, Triantos C, Bethanis S et al. Ultrasound-guided liver biopsy in real life: comparison of same-day prebiopsy versus real-time ultrasound approach. <i>Journal of Gastroenterology & Hepatology.</i> 2007; 22(9):1490-1493.

1 2	94	Wawrzynowicz SM, Kruszewski T, Boron KA. Complications of percutaneous liver biopsy. <i>Romanian Journal of Gastroenterology.</i> 2002; 11(2):105-107.
3 4	95	Douds AC, Joseph AE, Finlayson C et al. Is day case liver biopsy underutilised? <i>Gut.</i> 1995; 37(4):574-575.
5 6	96	Perrault J, McGill DB, Ott BJ et al. Liver biopsy: complications in 1000 inpatients and outpatients. <i>Gastroenterology.</i> 1978; 74(1):103-106.
7 8	97	Gamble P, Colapinto RF, Stronell RD. Transjugular liver biopsy: A review of 461 biopsies. <i>Radiology.</i> 1985; 157(3):589-593.
9 10	98	Velt PM, Choy OG, Shimkin PM et al. Transjugular liver biopsy in high-risk patients with hepatic disease. <i>Radiology.</i> 1984; 153(1):91-93.
11 12 13	99	Vlavianos P, Bird G, Portmann B et al. Transjugular liver biopsy: Use in a selected high risk population. <i>European Journal of Gastroenterology & Hepatology</i> . 1991; 3(6):469-472.
14 15 16 17	100	Department of Health. <i>NHS reference costs 2006-07</i> . 2009. UK, Department of Health. http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/Publications PolicyAndGuidance/DH 082571
18 19	101	Ratziu V, Charlotte F, Heurtier A et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. <i>Gastroenterology.</i> 2005; 128(7):1898-1906.
20 21 22	102	Skelly MM, James PD, Ryder SD. Findings on liver biopsy to investigate abnormal liver function tests in the absence of diagnostic serology. <i>Journal of Hepatology.</i> 2001; 35(2):195-199.
23 24	103	Neuberger J, Schulz KH, Day C et al. Transplantation for alcoholic liver disease. <i>Journal of Hepatology.</i> 2002; 36(1):130-137.
25 26 27	104	Neuberger J, Gimson A, Davies M et al. Selection of patients for liver transplantation and allocation of donated livers in the UK. <i>Gut.</i> 2008; 57(2):252-257.
28 29 30	105	Veldt BJ, Laine F, Guillygomarc'h A et al. Indication of liver transplantation in severe alcoholic liver cirrhosis: quantitative evaluation and optimal timing. <i>Journal of Hepatology.</i> 2002; 36(1):93-98.
31 32 33	106	Longworth L, Young T, Buxton MJ et al. Midterm cost-effectiveness of the liver transplantation program of England and Wales for three disease groups. <i>Liver Transplantation.</i> 2003; 9:1295-1307.
34 35	107	Maddrey WC, Boitnott JK, Bedine MS et al. Corticosteroid therapy of alcoholic hepatitis. <i>Gastroenterology.</i> 1978; 75(2):193-199.
36 37 38	108	Helman RA, Temko MH, Nye SW et al. Alcoholic hepatitis. Natural history and evaluation of prednisolone therapy. <i>Annals of Internal Medicine.</i> 1971; 74(3):311-321.

1 2 3	109	Porter HP, Simon FR, Pope CE et al. Corticosteroid therapy in severe alcoholic hepatitis. A double-blind drug trial. <i>New England Journal of Medicine.</i> 1971; 284(24):1350-1355.
4 5 6	110	Campra JL, Hamlin EM, Jr., Kirshbaum RJ et al. Prednisone therapy of acute alcoholic hepatitis. Report of a controlled trial. <i>Annals of Internal Medicine.</i> 1973; 79(5):625-631.
7 8 9	111	Blitzer BL, Mutchnick MG, Joshi PH et al. Adrenocorticosteroid therapy in alcoholic hepatitis. A prospective, double-blind randomized study. <i>American Journal of Digestive Diseases.</i> 1977; 22(6):477-484.
10 11 12 13	112	Shumaker JB, Resnick RH, Galambos JT et al. A controlled trial of 6- methylprednisolone in acute alcoholic hepatitis. With a note on published results in encephalopathic patients. <i>American Journal of Gastroenterology.</i> 1978; 69(4):443-449.
14 15 16	113	Lesesne HR, Bozymski EM, Fallon HJ. Treatment of alcoholic hepatitis with encephalopathy. Comparison of prednisolone with caloric supplements. <i>Gastroenterology.</i> 1978; 74(2:Pt 1):t-73.
17 18 19	114	Depew W, Boyer T, Omata M et al. Double-blind controlled trial of prednisolone therapy in patients with severe acute alcoholic hepatitis and spontaneous encephalopathy. <i>Gastroenterology.</i> 1980; 78(3):524-529.
20 21 22	115	Mendenhall CL, Anderson S, Garcia PP et al. Short-term and long-term survival in patients with alcoholic hepatitis treated with oxandrolone and prednisolone. <i>New England Journal of Medicine.</i> 1984; 311(23):1464-1470.
23 24 25	116	Carithers RL, Jr., Herlong HF, Diehl AM et al. Methylprednisolone therapy in patients with severe alcoholic hepatitis. A randomized multicenter trial. <i>Annals of Internal Medicine.</i> 1989; 110(9):685-690.
26 27 28	117	Ramond MJ, Poynard T, Rueff B et al. A randomized trial of prednisolone in patients with severe alcoholic hepatitis. <i>New England Journal of Medicine.</i> 1992; 326(8):507-512.
29 30	118	Theodossi A, Eddleston AL, Williams R. Controlled trial of methylprednisolone therapy in severe acute alcoholic hepatitis. <i>Gut.</i> 1982; 23(1):75-79.
31 32 33 34	119	Mathurin P, Mendenhall CL, Carithers RL, Jr. et al. Corticosteroids improve short- term survival in patients with severe alcoholic hepatitis (AH): individual data analysis of the last three randomized placebo controlled double blind trials of corticosteroids in severe AH. <i>Journal of Hepatology.</i> 2002; 36(4):480-487.
35 36 37	120	Louvet A, Wartel F, Castel H et al. Infection in patients with severe alcoholic hepatitis treated with steroids: early response to therapy is the key factor. <i>Gastroenterology.</i> 2009; 137(2):541-548.
38 39	121	Nasrallah SM, Galambos JT. Aminoacid therapy of alcoholic hepatitis. <i>Lancet.</i> 1980; 2(8207):1276-1277.

1 2 3	122	Diehl AM, Goodman Z, Ishak KG. Alcohollike liver disease in nonalcoholics. A clinical and histologic comparison with alcohol-induced liver injury. <i>Gastroenterology.</i> 1988; 95(4):1056-1062.
4 5 6	123	Cabre E, Rodriguez IP, Caballeria J et al. Short- and long-term outcome of severe alcohol-induced hepatitis treated with steroids or enteral nutrition: a multicenter randomized trial. <i>Hepatology.</i> 2000; 32(1):36-42.
7 8	124	Kearns PJ, Young H, Garcia G et al. Accelerated improvement of alcoholic liver disease with enteral nutrition. <i>Gastroenterology.</i> 1992; 102(1):200-205.
9 10 11	125	Cabre E, Gonzalez HF, Abad LA et al. Effect of total enteral nutrition on the short-term outcome of severely malnourished cirrhotics. A randomized controlled trial. <i>Gastroenterology.</i> 1990; 98(3):715-720.
12 13 14 15	126	Mendenhall CL, Bongiovanni G, Goldberg S et al. VA Cooperative Study on Alcoholic Hepatitis. III: Changes in protein-calorie malnutrition associated with 30 days of hospitalization with and without enteral nutritional therapy. <i>Journal</i> <i>of Parenteral & Enteral Nutrition.</i> 1985; 9(5):590-596.
16 17 18 19	127	Buscail L, Escourrou J, Moreau J et al. Endoscopic ultrasonography in chronic pancreatitis: a comparative prospective study with conventional ultrasonography, computed tomography, and ERCP. <i>Pancreas.</i> 1995; 10(3):251-257.
20 21 22	128	Swobodnik W, Meyer W, Brecht K. Ultrasound, computed tomography and endoscopic retrograde cholangiopancreatography in the morphologic diagnosis of pancreatic disease. <i>Klinische Wochenschrift.</i> 1983; 61(6):291-296.
23 24 25	129	Rosch T, Schusdziarra V, Born P et al. Modern imaging methods versus clinical assessment in the evaluation of hospital in-patients with suspected pancreatic disease. <i>American Journal of Gastroenterology.</i> 2000; 95(9):2261-2270.
26 27	130	Anon. UK guidelines for the management of acute pancreatitis. <i>Gut.</i> 2005; 54(Suppl 3):iii1-iii9.
28 29 30	131	Basinski A, Stefaniak T, Vingerhoets A et al. Effect of NCPB and VSPL on pain and quality of life in chronic pancreatitis patients. <i>World Journal of Gastroenterology.</i> 2005; 11(32):5010-5014.
31 32 33	132	Cahen DL, Gouma DJ, Nio Y et al. Endoscopic versus surgical drainage of the pancreatic duct in chronic pancreatitis. <i>New England Journal of Medicine.</i> 2007; 356(7):676-684.
34 35 36	133	Dite P, Ruzicka M, Zboril V et al. A prospective, randomized trial comparing endoscopic and surgical therapy for chronic pancreatitis. <i>Endoscopy.</i> 2003; 35(7):553-558.
37 38 39	134	Lankisch PG, Lohr HA, Otto J et al. Natural course in chronic pancreatitis. Pain, exocrine and endocrine pancreatic insufficiency and prognosis of the disease. <i>Digestion</i> . 1993; 54(3):148-155.

1 2 3	135	Nealon WH, Townsend CM, Jr., Thompson JC. Operative drainage of the pancreatic duct delays functional impairment in patients with chronic pancreatitis. A prospective analysis. <i>Annals of Surgery.</i> 1988; 208(3):321-329.
4 5 6	136	Alexakis N, Connor S, Ghaneh P et al. Influence of opioid use on surgical and long-term outcome after resection for chronic pancreatitis. <i>Surgery.</i> 2004; 136(3):600-608.
7 8	137	Thompson SG, Barber JA. How should cost data in pragmatic randomised trials be analysed? <i>British Medical Journal</i> . 2000; 320(7243):1197-1200.
9 10	138	Finch WT, Sawyers JL, Schenker S. A prospective study to determine the efficacy of antibiotics in acute pancreatitis. <i>Annals of Surgery.</i> 1976; 183(6):667-671.
11 12	139	Craig RM, Dordal E, Myles L. Letter: The use of ampicillin in acute pancreatitis. <i>Annals of Internal Medicine.</i> 1975; 83(6):831-832.
13 14	140	Howes R, Zuidema GD, Cameron JL. Evaluation of prophylactic antibiotics in acute pancreatitis. <i>Journal of Surgical Research</i> . 1975; 18(2):197-200.
15 16 17	141	Dellinger EP, Tellado JM, Soto NE et al. Early antibiotic treatment for severe acute necrotizing pancreatitis: a randomized, double-blind, placebo-controlled study. <i>Annals of Surgery.</i> 2007; 245(5):674-683.
18 19 20	142	Garcia-Barrasa A, Borobia FG, Pallares R et al. A Double-blind, Placebo- controlled Trial of Ciprofloxacin Prophylaxis in Patients with Acute Necrotizing Pancreatitis. <i>Journal of Gastrointestinal Surgery.</i> 2008;
21 22 23	143	Isenmann R, Runzi M, Kron M et al. Prophylactic antibiotic treatment in patients with predicted severe acute pancreatitis: a placebo-controlled, double-blind trial. <i>Gastroenterology.</i> 2004; 126(4):997-1004.
24 25 26	144	Pederzoli P, Bassi C, Vesentini S et al. A randomized multicenter clinical trial of antibiotic prophylaxis of septic complications in acute necrotizing pancreatitis with imipenem. <i>Surgery, Gynecology & Obstetrics.</i> 1993; 176(5):480-483.
27 28	145	Sainio V, Kemppainen E, Puolakkainen P et al. Early antibiotic treatment in acute necrotising pancreatitis. <i>Lancet.</i> 1995; 346(8976):663-667.
29 30 31	146	Schwarz M, Isenmann R, Meyer H et al. Antibiotic use in necrotizing pancreatitis. Results of a controlled study (English Abstract). <i>Deutsche Medizinische</i> <i>Wochenschrift</i> . 1997; 122(12):356-361.
32 33 34	147	Nordback I, Sand J, Saaristo R et al. Early treatment with antibiotics reduces the need for surgery in acute necrotizing pancreatitisa single-center randomized study. <i>Journal of Gastrointestinal Surgery.</i> 2001; 5(2):113-118.
35 36 37	148	Windsor AC, Kanwar S, Li AG et al. Compared with parenteral nutrition, enteral feeding attenuates the acute phase response and improves disease severity in acute pancreatitis. <i>Gut.</i> 1998; 42(3):431-435.
38 39 40	149	Olaah A, Pardavi G, Belaagyi T et al. Early nasojejunal feeding in acute pancreatitis is associated with a lower complication rate. <i>Nutrition.</i> 2002; 18(3):259-262.

Alcohol use disorders: clinical management: full guideline DRAFT (September 2009)

1 2 3	150	Eckerwall GE, Tingstedt BB, Bergenzaun PE et al. Immediate oral feeding in patients with mild acute pancreatitis is safe and may accelerate recoverya randomized clinical study. <i>Clinical Nutrition.</i> 2007; 26(6):758-763.
4 5 6 7 8	151	Petrov MS, Kukosh MV, Emelyanov NV. A randomized controlled trial of enteral versus parenteral feeding in patients with predicted severe acute pancreatitis shows a significant reduction in mortality and in infected pancreatic complications with total enteral nutrition. <i>Digestive Surgery.</i> 2006; 23(5-6):336-344.
9 10 11	152	Eckerwall GE, Axelsson JB, Andersson RG. Early nasogastric feeding in predicted severe acute pancreatitis: A clinical, randomized study. <i>Annals of Surgery.</i> 2006; 244(6):959-965.
12 13 14 15	153	Kumar A, Singh N, Prakash S et al. Early enteral nutrition in severe acute pancreatitis: a prospective randomized controlled trial comparing nasojejunal and nasogastric routes. <i>Journal of Clinical Gastroenterology.</i> 2006; 40(5):431-434.
16 17 18	154	Eatock FC, Chong P, Menezes N et al. A randomized study of early nasogastric versus nasojejunal feeding in severe acute pancreatitis. <i>American Journal of Gastroenterology</i> . 2005; 100(2):432-439.
19 20 21 22	155	Gupta R, Patel K, Calder PC et al. A randomised clinical trial to assess the effect of total enteral and total parenteral nutritional support on metabolic, inflammatory and oxidative markers in patients with predicted severe acute pancreatitis (APACHE II > or =6). <i>Pancreatology</i> . 2003; 3(5):406-413.
23 24 25	156	Kalfarentzos F, Kehagias J, Mead N et al. Enteral nutrition is superior to parenteral nutrition in severe acute pancreatitis: results of a randomized prospective trial. <i>British Journal of Surgery.</i> 1997; 84(12):1665-1669.
26 27 28	157	McClave SA, Greene LM, Snider HL et al. Comparison of the safety of early enteral vs parenteral nutrition in mild acute pancreatitis. <i>Journal of Parenteral & Enteral Nutrition.</i> 1997; 21(1):14-20.
29 30 31	158	Sax HC, Warner BW, Talamini MA et al. Early total parenteral nutrition in acute pancreatitis: lack of beneficial effects. <i>American Journal of Surgery</i> . 1987; 153(1):117-124.
32 33 34	159	Abou-Assi S, Craig K, O'Keefe SJ. Hypocaloric jejunal feeding is better than total parenteral nutrition in acute pancreatitis: results of a randomized comparative study. <i>American Journal of Gastroenterology.</i> 2002; 97(9):2255-2262.
35 36 37	160	Xian-li H, Qing-jiu M, Jian-guo L et al. Effect of total parenteral nutrition (TPN) with and without glutamine dipeptide supplementation on outcome in severe acute pancreatitis (SAP). <i>Clinical Nutrition Supplements.</i> 2004; 1(1):43-47.
38 39 40	161	Petrov MS, Pylypchuk RD, Emelyanov NV. Systematic review: Nutritional support in acute pancreatitis. <i>Alimentary Pharmacology & Therapeutics.</i> 2008; 28(6):704-712.

1 2 3	162	Petrov MS, Correia MITD, Windsor JA. Nasogastric tube feeding in predicted severe acute pancreatitis. A systematic review of the literature to determine safety and tolerance. <i>Journal of the Pancreas.</i> 2008; 9(4):440-448.
4 5 6	163	Eckerwall G, Olin H, Andersson B et al. Fluid resuscitation and nutritional support during severe acute pancreatitis in the past: what have we learned and how can we do better? <i>Clinical Nutrition.</i> 2006; 25(3):497-504.
7 8 9 10	164	Louie BE, Noseworthy T, Hailey D et al. 2004 MacLean-Mueller prize enteral or parenteral nutrition for severe pancreatitis: a randomized controlled trial and health technology assessment. <i>Canadian Journal of Surgery.</i> 2005; 48(4):298-306.
11 12	165	Isaksson G, Ihse I. Pain reduction by an oral pancreatic enzyme preparation in chronic pancreatitis. <i>Digestive Diseases & Sciences.</i> 1983; 28(2):97-102.
13 14	166	Slaff J, Jacobson D, Tillman CR. Protease-specific suppression of pancreatic exocrine secretion. <i>Gastroenterology.</i> 1984; 87(1):44-52.
15 16 17	167	Halgreen H, Thorsgaard P, Worning H. Symptomatic effect of pancreatic enzyme therapy in patients with chronic pancreatitis. <i>Scandinavian Journal of Gastroenterology.</i> 1986; 21(1):104-108.
18 19 20	168	Lankisch PG, Lembcke B. Therapy of pancreatogenic steatorrhoea: does acid protection of pancreatic enzymes offer any advantage? <i>Zeitschrift für Gastroenterologie.</i> 1986; 24(12):753-757.
21 22 23	169	Ramo OJ, Puolakkainen PA, Seppala K et al. Self-administration of enzyme substitution in the treatment of exocrine pancreatic insufficiency. <i>Scandinavian Journal of Gastroenterology.</i> 1989; 24(6):688-692.
24 25 26	170	Gouerou H. Alipase versus nonenteric-coated enzymes in pancreatic insufficiency. A french multicenter crossover comparative study. <i>International</i> <i>Journal of Pancreatology.</i> 1989; 5 Suppl:45-50.
27 28 29	171	Delchier JC, Vidon N, Saint MGM et al. Fate of orally ingested enzymes in pancreatic insufficiency: comparison of two pancreatic enzyme preparations. <i>Alimentary Pharmacology & Therapeutics.</i> 1991; 5(4):365-378.
30 31 32	172	Mossner J, Secknus J, Meyer J et al. Treatment of pain with pancreatic extracts in chronic pancreatitis: Results of a prospective placebo-controlled multicenter trial. <i>Digestion.</i> 1992; 53(1-2):54-2.
33 34 35 36	173	Delhaye M. Comparative evaluation of a high lipase pancreatic enzyme preparation and a standard pancreatic supplement for treating exocrine pancreatic insufficiency in chronic pancreatitis. <i>European Journal of Gastroenterology & Hepatology.</i> 1996; 8(7):699-703.
37 38 39	174	Van Hoozen CM, Peeke PG, Taubeneck M et al. Efficacy of enzyme supplementation after surgery for chronic pancreatitis. <i>Pancreas.</i> 1997; 14(2):174-180.

1 2 3	175	O'Keefe SJ, Cariem AK, Levy M. The exacerbation of pancreatic endocrine dysfunction by potent pancreatic exocrine supplements in patients with chronic pancreatitis. <i>Journal of Clinical Gastroenterology.</i> 2001; 32(4):319-323.
4 5 6	176	Vecht J. Efficacy of lower than standard doses of pancreatic enzyme supplementation therapy during acid inhibition in patients with pancreatic exocrine insufficiency. <i>Journal of Clinical Gastroenterology.</i> 2006; 40(8):721-725.
7 8 9	177	Dutta SK, Tilley DK. The pH-sensitive enteric-coated pancreatic enzyme preparations: an evaluation of therapeutic efficacy in adult patients with pancreatic insufficiency. <i>Journal of Clinical Gastroenterology.</i> 1983; 5(1):51-54.
10 11 12 13	178	Schneider MU, Knoll RM, Domschke S et al. Pancreatic enzyme replacement therapy: comparative effects of conventional and enteric-coated microspheric pancreatin and acid-stable fungal enzyme preparations on steatorrhoea in chronic pancreatitis. <i>Hepato-Gastroenterology.</i> 1985; 32(2):97-102.
14 15	179	Mossner J. Is there a place for pancreatic enzymes in the treatment of pain in chronic pancreatitis? <i>Digestion.</i> 1993; 54(suppl 2):35-39.
16 17	180	Pharmaceutical Press. <i>Martindale: the complete drug reference</i> . London: UK: Pharmaceutical Press; 2008.
18 19	181	Personal Social Services Research Unit. <i>Unit Costs of Health and Social Care 2008.</i> Canterbury: UK: Personal Social Services Research Unit, 2008.
20 21	182	Drummond MF, Sculpher MJ, Torrance GW, O'Brien BJ, Stoddart GL. <i>Methods for the Evaluation of Health Care Programmes</i> . 3 ed. Oxford University Press; 2005.
22 23	183	Smits ME, Badiga SM, Rauws EA et al. Long-term results of pancreatic stents in chronic pancreatitis. <i>Gastrointestinal Endoscopy.</i> 1995; 42(5):461-467.
24 25 26	184	Renou C, Grandval P, Ville E et al. Endoscopic treatment of the main pancreatic duct: correlations among morphology, manometry, and clinical follow-up. <i>International Journal of Pancreatology.</i> 2000; 27(2):143-149.
27 28	185	Eleftheriadis N, Dinu F, Delhaye M et al. Long-Term Outcome after Pancreatic Stenting in Severe Chronic Pancreatitis. <i>Endoscopy.</i> 2005; 37(03):223-230.
29 30 31	186	Dumonceau JM, Costamagna G, Tringali A et al. Treatment for painful calcified chronic pancreatitis: extracorporeal shock wave lithotripsy versus endoscopic treatment: a randomised controlled trial. <i>Gut.</i> 2007; 56(4):545-552.
32 33 34 35	187	Brand B, Kahl M, Sidhu S et al. Prospective evaluation of morphology, function, and quality of life after extracorporeal shockwave lithotripsy and endoscopic treatment of chronic calcific pancreatitis. <i>American Journal of Gastroenterology.</i> 2000; 95(12):3428-3438.
36 37 38	188	Farnbacher MJ, Schoen C, Rabenstein T et al. Pancreatic duct stones in chronic pancreatitis: criteria for treatment intensity and success. <i>Gastrointestinal Endoscopy.</i> 2002; 56(4):501-506.

1 2 3	189	Sielezneff I, Malouf A, Salle E et al. Long term results of lateral pancreaticojejunostomy for chronic alcoholic pancreatitis. <i>European Journal of Surgery.</i> 2000; 166(1):58-64.
4 5 6	190	Adams DB, Ford MC, Anderson MC. Outcome after lateral pancreaticojejunostomy for chronic pancreatitis. <i>Annals of Surgery.</i> 1994; 219(5):481-487.
7 8	191	Lucas CE, McIntosh B, Paley D et al. Surgical decompression of ductal obstruction in patients with chronic pancreatitis. <i>Surgery.</i> 1999; 126(4):790-797.
9 10 11	192	Schnelldorfer T, Adams DB. Outcome after lateral pancreaticojejunostomy in patients with chronic pancreatitis associated with pancreas divisum. <i>American Surgeon.</i> 2003; 69(12):1041-1044.
12 13 14	193	Madura JA, Canal DF, Lehman GA et al. Wall stent-enhanced lateral pancreaticojejunostomy for small-duct pancreatitis. <i>Archives of Surgery</i> . 2003; 138(6):644-650.
15 16 17	194	Rosch T, Daniel S, Scholz M et al. Endoscopic treatment of chronic pancreatitis: a multicenter study of 1000 patients with long-term follow-up. <i>Endoscopy.</i> 2002; 34(10):765-771.
18 19 20	195	Binmoeller KF, Jue P, Seifert H et al. Endoscopic pancreatic stent drainage in chronic pancreatitis and a dominant stricture: long-term results. <i>Endoscopy.</i> 1995; 27(9):638-644.
21 22 23	196	Cremer M, Deviere J, Delhaye M et al. Stenting in severe chronic pancreatitis: results of medium-term follow-up in seventy-six patients. <i>Endoscopy.</i> 1991; 23(3):171-176.
24 25	197	Bornman PC, Beckingham IJ. ABC of diseases of liver, pancreas, and biliary system. Chronic pancreatitis. <i>British Medical Journal.</i> 2001; 322(7287):660-663.
26 27 28	198	Office for National Statistics. <i>Life Expectancy: life expectancy continues to rise</i> . 2008. Ofice for National Statistics. <u>http://www.statistics.gov.uk/cci/nugget.asp?ID=168</u>
29 30 31	199	Kalady MF, Broome AH, Meyers WC et al. Immediate and long-term outcomes after lateral pancreaticojejunostomy for chronic pancreatitis. <i>American Surgeon.</i> 2001; 67(5):478-483.
32 33	200	Terrace JD, Paterson HM, Garden OJ et al. Results of decompression surgery for pain in chronic pancreatitis. <i>HPB.</i> 2007; 9(4):308-311.
34 35 36	201	Rios GA, Adams DB, Yeoh KG et al. Outcome of lateral pancreaticojejunostomy in the management of chronic pancreatitis with nondilated pancreatic ducts. <i>Journal of Gastrointestinal Surgery.</i> 1998; 2(3):223-229.
37 38		