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Abstract  

 

Background 

Acute kidney injury (AKI) is a serious complication that typically occurs in the 

context of an acute critical illness or during a postoperative period. Earlier detection 

of AKI may facilitate strategies to preserve renal function, prevent further progression 

of kidney disease, and reduce mortality. Currently, AKI diagnosis relies on a rise in 

serum creatinine levels and/or a fall in urine output; however, creatinine is an 

imperfect marker of kidney function. There is interest in the performance of novel 

biomarkers used in conjunction with existing clinical assessment, such as 

NephroCheck, ARCHITECT urine NGAL, and urine and plasma BioPorto NGAL 

immunoassays. If reliable, these biomarkers may enable earlier identification of AKI 

and enhance management of those with a modifiable disease course.  

 

Objectives 

To evaluate the role of these biomarkers for assessing the risk of AKI in critically ill 

patients who are considered for admission to critical care. 

 

Data sources 

We searched major electronic databases, conference abstracts and ongoing studies up 

to June 2019. 

 

Methods 

Systematic review and meta-analysis to evaluate the performance of these biomarkers 

for detection of AKI and prediction of other relevant clinical outcomes. Random 

effects models were adopted to combine evidence. A decision tree was developed to 

evaluate costs and QALYs accrued due to changes in short-term (up to 90 days) 

outcomes and a Markov model used to extrapolate results over a lifetime horizon. 

 

Results 

56 studies, mainly prospective cohorts, with a total of 17967 participants were 

included in the clinical effectiveness review. There were no studies addressing the 

clinical impact of the use of biomarkers over patient outcomes compared with 
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standard care. The main sources of bias across studies were a lack of information on 

blinding and the optimal threshold for NGAL. In addition, for prediction studies the 

reporting of statistical details was limited. In general, the included studies were 

considered applicable to the remit of this assessment.  

 

While summary estimates from the conducted meta-analyses appeared to show the 

potential ability of these biomarkers to detect and predict the course of AKI, there 

were limited data to establish any causal link with hard clinical outcomes. Moreover, 

confidence in these findings has to be tempered by the heterogeneity, as demonstrated 

by the large confidence and prediction regions in the HSROC plots. 

 

The probability of cost-effectiveness at an ICER < £20,000 per QALY gained for 

scenarios where the NGAL biomarkers are assumed equally effective as 

NephroCheck in preventing AKI ranged from 0% to 15% (NephroCheck); 0-55% 

(BioPorto uNGAL); 0-2% (ARCHITECT uNGAL) and 0-48% (BioPorto pNGAL).  

When it is assumed that the NGAL biomarkers cannot avert AKI, but only reduce its 

severity, the cost-effectiveness of NephroCheck improves, but remains highly 

uncertain with a probability ranging from 0% to 99% across 15 scenario analyses. 

 

Limitations 

Cost-effectiveness results should be interpreted cautiously considering the 

heterogeneity observed in the diagnostic analyses, the unknown impact of NGAL-

guided treatment, and the uncertain causal links between changes in AKI status and 

changes in health outcomes.  

 

Conclusions 

Current evidence is insufficient to make a full appraisal of the role and economic 

value of these biomarkers and determine whether they provide cost-effective 

improvements in clinical outcomes of AKI patients.  
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Future work 

Future studies should evaluate the targeted use of these biomarkers within specific  

patient populations and the clinical impact of their routine use on patient outcomes 

and management.  
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SUPERSEDED –

SEE ERRATUM

Plain English summary  

 

Among people who are very ill or have received surgery, the kidneys may suddenly 

stop to work properly. This is known as acute kidney injury (AKI). AKI can progress 

to serious lasting kidney problems and can be fatal. At present, the level of creatinine 

(a waste product filtered by the kidneys) in the blood or urine is used by health 

professionals to decide whether AKI is present. However, creatinine levels are not a 

precise indicator and they can take hours or even days to rise – this may lead to delays 

in AKI recognition. Novel biomarkers may help health professionals recognise the 

presence of AKI earlier and treat patients more promptly. This work evaluates 

existing evidence for biomarker utility with respect to clinical usefulness and cost. 

 

We reviewed the current evidence on the use of these biomarkers for assessing the 

risk of AKI in people who are very ill and assessed whether they are of good value for 

the NHS. We assessed the ARCHITECT urine NGAL, urine and plasma BioPorto 

NGAL and urine NephroCheck biomarkers.  

 

We checked studies published up to June 2019 and found 56 relevant studies (17,967 

patients). Most studies were conducted outside the UK and investigated people 

already admitted to critical care. We combined the results of the studies and found 

that NephroCheck and NGAL biomarkers might potentially be useful in identifying 

AKI or pre-empting AKI in some circumstances. However, studies differed in patient 

characteristics, clinical setting, and the way biomarkers were used. This could explain 

why the number of people correctly identified and missed by the biomarkers varied 

across studies. Hence, we do not completely trust our pooled results.  

 

When we looked at costs for the NHS we found that AKI is associated with 

substantial cost, but there was insufficient good quality evidence to decide which 

biomarker (if any) offered the best value for money to the NHS. 
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Scientific summary  

 

Background 

Acute kidney injury (AKI) is a common and serious complication that typically 

occurs in the context of an acute critical illness or during a postoperative period. It is 

associated with prolonged hospital stay, increased morbidity and increased mortality. 

AKI is a challenging clinical problem for hospitalised patients. Earlier detection of 

kidney injury may facilitate the adoption of strategies to preserve renal function and 

prevent further progression of kidney disease. 

 

Currently, AKI diagnosis relies on a rise in serum creatinine levels and/or a fall in 

urine output. Despite its widespread use in the monitoring of kidney health and 

disease, creatinine is an imperfect marker of kidney function because its level in the 

blood is not solely dependent on kidney function, and changes in creatinine lag behind 

reductions in kidney function. The limitations of creatinine assessment have led to the 

search for novel biomarkers which may detect kidney damage or kidney stress earlier 

and more reliably. 

 

Biomarker tests for AKI include NGAL (neutrophil gelatinase-associated lipocalin), 

which can be measured using a sample of urine or blood. NGAL is released from 

neutrophils and is induced by inflammation, indicating tubular injury. Another recent 

biomarker for AKI is NephroCheck, which tests for the presence of tissue inhibitor of 

metalloproteinase-2 (TIMP-2) and insulin-like growth factor-binding protein 7 

(IGFBP-7) in the urine. Both TIMP-2 and IGFBP7 are cell-cycle arrest proteins and 

used as markers of cellular stress in the early phase of tubular cell injury. Both 

NephroCheck and NGAL immonoassays are intended to be used in conjunction with 

existing clinical care. This assessment focuses specifically on the ARCHITECT and 

Alinity urine NGAL assays (Abbott), the BioPorto urine and plasma NGAL tests 

(BioPorto Diagnostics), and the NephroCheck test (Astute Medical).   

 

If these biomarkers demonstrated the ability to identify patients at risk of AKI early, 

they could have the potential to enhance current AKI management by enabling timely 

measures to prevent progression of kidney injury, and by informing decisions about 
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the ‘step down’ of low risk patients to a lower level of hospital care, reducing the use 

of hospital resources. The remit of this work was to evaluate the clinical and cost-

effectiveness of biomarker use in the evaluation of patients not in critical care, but 

who might be considered for admission to critical care. 

 

Objectives 

The aim of this project was to summarise the current evidence on the clinical and 

cost-effectiveness of the NephroCheck test, the ARCHITECT and Alinity Urine 

NGAL assays, the BioPorto urine and plasma NGAL tests to assess the risk of AKI in 

critically ill, hospitalised, patients (adults and children) who are considered for 

admission to critical care.  

 

There are several components to this project that fall within the scope of the following 

research questions: 

1. Do the novel biomarkers accurately detect emerging AKI in critically ill 

people who are considered for admission to critical care?  

2. Do the novel biomarkers predict the development of future events (e.g., AKI, 

mortality, need for long-term renal replacement therapy) in critically ill people 

at risk of developing AKI who are considered for admission to critical care?  

3. Does the use of novel biomarkers lead to improvements in clinical outcomes 

of critically ill patients at risk of developing AKI who are considered for 

admission to critical care and whose management is guided by the novel 

biomarkers (e.g. reduction in events rates of mortality and long-term renal 

replacement therapy)?  

4. Does routine use of novel biomarkers affect costs to the NHS, length or 

quality of life (i.e. Quality Adjusted Life Years or QALYs), or cost-

effectiveness measured as incremental cost per QALY gained for critically ill 

people who are considered for admission to critical care?  

 

Methods  

Assessment of clinical effectiveness 

Comprehensive electronic searches were undertaken to identify relevant reports of 

published studies up to June 2019.  
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SUPERSEDED –

SEE ERRATUM

The population of interest was critically ill people at risk of developing AKI who are 

considered for admission to critical care. Studies were eligible for inclusion only if 

they enrolled at least 100 participants at risk of AKI. The biomarkers under 

investigation were the NephoCheck test (Astute Medical), the ARCHITECT and 

Alinity Urine NGAL assays (Abbott), the urine and plasma BioPorto tests (BioPorto 

Diagnostics), all used in conjunction with existing care. At present, there is no 

universally accepted reference standard for diagnosing AKI. The relevant comparator 

for this assessment was existing clinical criteria for monitoring serum creatinine and 

urine output in conjunction with clinical judgement, and in line with current clinical 

classification systems (RIFLE, paediatric-modified RIFLE, AKIN and KDIGO) (see 

NICE Clinical Guidance 169 on the prevention, detection and management of AKI). 

 

The outcomes of interest were: detection of AKI, prediction of AKI, prediction of 

mortality, prediction of the need for long-term renal replacement therapy (RRT) and 

prediction of developing chronic kidney disease (CKD) over 90 days post-AKI. 

 

The quality of included studies was assessed using the QUADAS-2 and PROBAST 

tools. 

 

Assessment of cost-effectiveness 

The impact of biomarker diagnostic accuracy on short-term costs and QALYs up to 

90-days was modelled using a decision tree. As there is no evidence to describe the 

impact of the use of the AKI biomarkers on important health outcomes (such as need 

for ICU care, length of hospital stay, 90-day mortality or development of CKD), it 

was necessary to use a linked evidence approach that relied on observational 

associations to infer how prevention of AKI, or reduction in its severity may affect 

changes in health outcomes. These associations necessitate causal assumptions, but 

while a causal link between AKI and poor outcomes is plausible, the extent of this 

causal relationship is uncertain and controversial. These hypothesised links are tested 

extensively in sensitivity analysis. 

 

The surviving proportion from each decision tree pathway at 90 days entered a 

Markov model (starting age = 63) with six mutually exclusive health states (out-

patient follow up, CKD stages 1-4, end stage renal disease [ESRD] without dialysis, 
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ESRD with dialysis, transplantation and death).  The cohort can enter the Markov 

model in the outpatient or CKD states with the starting proportions dependent on the 

experience of AKI up to 90 days.   

 

NHS perspective costs (2018 values) in the first 90 days included the cost of the 

diagnostic biomarkers, the costs of implementing an additional three days of a 

KDIGO care bundle for test-positive patients, detailed costs over the initial hospital 

period including days in ICU, on ward and need for acute RRT. Costs over the longer-

term Markov phase included follow-up costs post-discharge, costs of CKD, ESRD 

costs, cost of long-term dialysis treatment, transplantation, immunosuppressant costs 

and post-transplant follow-up costs.  

 

Health state utility values, based on EQ-5D data obtained from the literature, were 

combined with mortality estimates for each health state to calculate QALYs. For the 

acute stage, utilities were applied to the level of hospital care required (ICU, hospital 

ward, or discharged). An additional utility decrement was applied for the proportion 

of the cohort receiving acute RRT. For the chronic phase health state utility values 

were applied to CKD, ESRD, and ESRD with dialysis. It was assumed that after 

recovery from a transplant, utility reverted back to that of the outpatient post-

discharge state. All utilities were adjusted for UK age- and sex-specific general 

population norms. 

 

The model captured the cumulative cost and QALY implications of transitions 

through the health states in annual cycles over a life-time horizon from an NHS 

perspective. All future costs and QALYs were discounted at 3.5% per annum. All 

analyses were reported probabilistically. 

 

Results  

Assessment of clinical effectiveness  

A total of 56 studies were included in the systematic review of clinical effectiveness 

evidence. The majority were prospective cohort studies. No studies addressing the 

impact of the routine use of the biomarkers on clinical outcomes of critically ill 

people considered for admission to critical care were identified. Of the 56 included 

studies, 46 enrolled only adults, 8 only children and 2 both adults and children. The 
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total number of participants was 17,967 of which 16,247 were adults (average age 

range from 49 to 77 years) and 1720 were children (average age range from 1 day to 5 

years). The 46 studies that focused on an adult population assessed patients after 

cardiac surgery (n=12), non-surgical cardiac care (n=4), major abdominal surgery 

(n=1), hepatobiliary surgery (n=1),	patients admitted to ICUs (n=16), patients with 

liver disease (n=5, mainly cirrhosis), sepsis (n=2), CKD (n=2) and patients presenting 

to the emergency department (n=3). Of the eight studies that focused on children, 6 

studies assessed children (including neonates) undergoing cardiac surgery and 2 

children admitted to a paediatric ICU or neonatal ICU. The two studies that assessed 

both adults and children included patients undergoing cardiac surgery. 

 

For the purpose of the statistical and cost-effectiveness analyses the participants were 

grouped into three categories according to the clinical setting reported in the included 

studies: patients undergoing cardiac surgery, patients undergoing major non-cardiac 

surgery, and patients admitted to critical care (mixed patient population). 

 

NGAL was the most commonly studied biomarker (41/56 studies; 37 studies used 

urine NGAL assays and 4 plasma NGAL assays). NephroCheck was assessed in 8 

studies. Seven studies provided data on more than one assay (6 studies on urine 

NGAL and plasma NGAL assays and 1 study on NephroCheck, urine NGAL and 

plasma NGAL assays). Among the NGAL studies, 24 used the urine NGAL 

ARCHITECT platform (Abbott) and 20 used the urine NGAL BioPorto Diagnostics 

assay. All 11 plasma NGAL studies used the BioPorto Diagnostics assay. No studies 

used the NGAL Alinity platform (Abbott). 

 

The main source of bias across diagnostic studies was the lack of information on 

blinding and of a common threshold for NGAL. Among prediction studies, the risk of 

bias for the analysis domain was unclear in 58% of studies and high in 42%. In 

particular, the statistical prediction models differed between studies and often were 

not sufficiently detailed. In general, the included studies were considered applicable to 

the remit of this assessment. 

 

With regard to the detection of AKI, the results of the meta-analyses of sensitivity and 

specificity estimates suggest that the biomarkers under investigation may potentially 
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have a role in the detection of AKI in patients already admitted to critical care. There 

were too few studies assessing patients after cardiac surgery or major non-cardiac 

surgery. The urine NephroCheck test at a common threshold of 0.3 ng/mL2/1000 had 

the higher pooled sensitivity (0.83) but the worst pooled specificity (0.51), while the 

uNGAL ARCHITECT and the BioPorto uNGAL tests had slightly lower pooled 

sensitivity estimates (0.70 and 0.72, respectively) but better pooled specificity 

estimates (0.72 and 0.87 respectively). The urine NGAL BioPorto pooled sensitivity 

was similar to that of plasma NGAL BioPorto (0.72 versus 0.76), whilst the pooled 

specificity was better for urine NGAL BioPorto (0.87 versus 0.67). NGAL thresholds 

varied across studies. The biomarkers had a similar performance across all clinical 

settings:  

 NephroCheck pooled sensitivity and specificity were 0.75 and 0.61, 

respectively;  

 uNGAL ARCHITECT pooled sensitivity and specificity were 0.67 and 0.72, 

respectively;  

 uNGAL BioPorto pooled sensitivity and specificity were 0.73 and 0.83, 

respectively;  

 pNGAL BioPorto pooled sensitivity and specificity were 0.76 and 0.67, 

respectively, with pNGAL BioPorto showing the higher sensitivity (0.76) and 

uNGAL BioPorto the higher specificity (0.83). 

 

While summary estimates from these meta-analyses appeared to show some 

diagnostic usefulness of the use of the biomarkers, confidence in these findings has to 

be tempered by the considerable heterogeneity observed across studies and 

demonstrated by the large confidence and prediction regions in the HSROC plots. 

 

Moreover, for studies with a low prevalence of AKI (low number of AKI events) the 

relationship between sensitivity and specificity estimates appeared to be quite 

different from that of studies for which prevalence was higher. 

 

For prediction of relevant clinical outcomes, only a limited number of studies were 

available for each biomarker in each clinical setting and this hampered the possibility 

to perform pooled analyses. Moreover, details of the methodology used for the 

statistical models in individual studies were scant. 
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Similarly, while there was an indication that the addition of biomarkers to existing 

clinical models might improve the prediction of relevant clinical outcomes, studies 

varied substantially in terms of study characteristics and of statistical methods used to 

assess prediction hindering any reliable conclusion.  

 

In general, all included studies varied considerably in terms of clinical setting, NGAL 

threshold levels, time of sample collection, definition of AKI, time of AKI diagnosis, 

number of AKI events, assay platforms. Therefore, we have limited confidence in the 

validity and reliability of our findings. 

 

Results of the cost-effectiveness model (including sensitivity analyses) 

Published data show that NephroCheck-guided implementation of a KDIGO care 

bundle has potential to avert AKI. However, no such data exist for the NGAL tests. 

Therefore, two base case analyses were considered. Base case 1 can be considered an 

optimistic scenario for the NGAL biomarkers assuming that all NGAL tests are 

equally effective as NephroCheck in terms of the potential to avert AKI. Base case 2 

can be considered a more conservative analysis. It assumes, in the absence of 

evidence to suggest otherwise, that only NephroCheck can avert AKI, but that all tests 

have the potential to reduce AKI severity if it occurs.   

 

Fifteen scenario analyses were conducted for each potential base case, ranging from a 

set of optimistic assumptions where biomarker-guided care bundles led to substantial 

improvements in health outcomes (need for ICU, hospital length of stay, CKD, 

mortality) to a set of more conservative assumptions where changing of AKI status 

had no effect on health outcomes. 

 

ICERs were highly uncertain, and subject to wide variation depending on the set of 

scenarios chosen. The probability of cost-effectiveness at an ICER < £20,000 per 

QALY gained for scenarios where all NGAL biomarkers were assumed equally 

effective as NephroCheck in preventing AKI ranged from 0% to 15% (NephroCheck); 

0-55% (BioPorto urine NGAL); 0-2% (ARCHITECT urine NGAL) and 0-48% 

(BioPorto plasma NGAL). BioPorto urine NGAL was usually the test associated with 

the greatest probability of cost-effectiveness, albeit highly uncertain, when compared 
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to standard care only. This was because the BioPorto urine NGAL biomarker was 

estimated to have slightly better diagnostic test accuracy data from the meta-analysis 

and incurred slightly lower test costs compared with the comparators. However, there 

was substantial uncertainty in diagnostic accuracy information, driven by substantial 

study heterogeneity. The cost-effectiveness results should therefore be interpreted 

cautiously.   

 

When it was assumed that NGAL biomarkers could not avert AKI, but could only 

reduce its severity, the cost-effectiveness case for NephroCheck improved 

substantially, whilst remaining highly uncertain with a probability of cost-

effectiveness ranging from 0% to 99% across the explored scenarios. 

 

Discussion 

Strengths, limitations of the analyses and uncertainties 

The methods used to conduct this assessment were detailed, thorough and in line with 

current methodological standards. We identified a large volume of potentially relevant 

literature, which required significant screening resources and adoption of additional 

inclusion criteria to ensure that the assessment remained feasible and timely. 

 

The main limitations of the clinical effectiveness assessment are summarised below: 

i) Considerable clinical and statistical heterogeneity in the diagnostic and 

prediction analyses; 

ii) Use of an imperfect reference standard for detection of AKI (clinical 

assessment based on serum creatinine and urine output); 

iii) Variation in the use of the NGAL assays and lack of a common threshold for 

identification of AKI; 

iv) Uncertainty regarding the best timing of biomarker measurements;  

v) Variation in AKI prevalence across studies with very low number of AKI 

events in some studies; 

vi) Lack of data on the impact of the routine use of the biomarkers on health 

outcomes over current clinical assessment. 

 

The majority of the included studies were conducted outside the UK and assessed 

hospitalised patients admitted to critical care, with large variation in delivery of 
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critical and intensive care medicine across the world. There is great uncertainty on 

how well findings of studies that are predominantly based in intensive care, non-UK 

and heterogenous, could be applied to a UK clinical scenario of people at risk of AKI 

who do not currently receive critical care.  

 

With regard to the economic modelling, we identified three key areas of uncertainty, 

which mirror those identified for the clinical effectiveness assessment and limit the 

robustness of the cost-effectiveness results:  

i) Lack of direct evidence on the impact of the use of the biomarkers on 

health outcomes;  

ii) Heterogeneity in the diagnostic accuracy data (including uncertainty in the 

prevalence of AKI in a broad, poorly defined population); 

iii) Uncertainty around the impact of an NGAL-guided implementation of a 

KDIGO care bundle on the frequency and severity of AKI. 

 

Given these uncertainties, the results of the cost-effectiveness modelling were largely 

speculative and should be interpreted with caution. Whilst we conducted extensive 

probabilistic analyses for all scenario analyses, these may still not capture the full 

magnitude of uncertainty faced in the implementation of these biomarkers in clinical 

practice.  

 

Generalisability of the findings 

Due to the limitations listed above, it is unclear how the findings of this assessment 

can be generalised to current UK practice. 

 

Conclusions 

Future studies should evaluate the targeted use of the biomarkers within specific 

clinical populations and circumstances were there is potential for benefit with a 

plausible and feasible intervention. They should focus on the assessment of the impact 

of routine biomarker use on a reduction in mortality, major clinical adverse events, 

modification of clinical care, and resource utilization. 
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There is also a need to harmonise the methods and platforms for collection, handling 

and storage of urine and plasma biomarker samples as well as reporting of biomarkers 

concentrations (units of measurement). 

 

Study registration 

This study is registered as PROSPERO CRD42019147039 

 

Funding 

This report was commissioned by the NIHR Systematic Reviews Programme as 

project number 12/88/97. 
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1 Objectives 

 

The overall objective of this assessment was to summarise the current evidence on the 

clinical and cost-effectiveness of using NephroCheck test, ARCHITECT and Alinity 

urine NGAL, and urine and plasma BioPorto NGAL immunoassays to help assess the 

risk of AKI in critically ill hospitalised patients who are considered for admission to 

critical care. AKI is still a challenging clinical problem for hospitalised patients 

especially for those in need of critical care. Earlier detection of kidney injury may 

facilitate the adoption of strategies to preserve renal function and prevent further 

progression of kidney disease. 

 

There are several components to this assessment that fall within the scope of the 

following research questions: 

1. Do novel biomarkers (NephroCheck test, ARCHITECT and Alinity Urine 

NGAL assays, urine and plasma BioPorto NGAL tests) accurately detect 

emerging AKI in critically ill people who are considered for critical care? (re 

2. Do the novel biomarkers (NephroCheck test, ARCHITECT and Alinity Urine 

NGAL assays, urine and plasma BioPorto NGAL tests) predict the 

development of future events (e.g., AKI, mortality, need for long-term renal 

replacement therapy) in critically ill people at risk of developing AKI who are 

considered for admission to critical care?  

3. Does the use of novel biomarkers (NephroCheck test, ARCHITECT and 

Alinity Urine NGAL assays, urine and plasma BioPorto NGAL tests) lead to 

improvements in clinical outcomes of critically ill people who are considered 

for admission to critical care? (i.e., reduction in events rates – such as 

mortality and long-term renal replacement therapy - among patients whose 

management is guided by the novel biomarkers)  

4. Does routine use of novel biomarkers (NephroCheck test, ARCHITECT and 

Alinity Urine NGAL assays, urine and plasma BioPorto NGAL tests) affect 

costs to the NHS, length or quality of life (i.e. Quality Adjusted Life Years, 

QALYs), or cost-effectiveness measured as incremental cost per QALY 

gained for critically ill people who are considered for admission to critical 

care?  
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In brief, the main objectives of this assessment are the following: 

 To determine the diagnostic accuracy, prognostic accuracy and clinical impact 

of the use of novel biomarkers (NephroCheck test, ARCHITECT and Alinity 

Urine NGAL assays, urine and plasma BioPorto NGAL tests) for the 

assessment of acute kidney injury in critically ill patients (adults and children) 

who are being assessed for admission to critical care. 

 To develop an economic model to assess the cost-effectiveness of the use of 

novel biomarkers (NephroCheck test, ARCHITECT and Alinity Urine NGAL 

assays, urine and plasma BioPorto NGAL tests) for the assessment of acute 

kidney injury in critically ill patients (adults and children) who are considered 

for admission to critical care. 
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2 Background and definition of the decision problem 

 

Health problem 

Acute kidney injury (AKI) is a common and serious complication that typically 

occurs in the context of an acute critical illness or during a postoperative period. It is 

associated with prolonged hospital stay, severe morbidity and increased mortality.1, 2 

Delayed identification of AKI contributes to worse outcomes.3  

 

To pre-empt or avoid lasting consequences of AKI, early detection may be beneficial. 

Traditionally, AKI diagnosis relies on a rise in serum creatinine levels and/or a fall in 

urine output. Despite its widespread use in the monitoring of kidney health and 

disease, creatinine is an imperfect marker of kidney function because its level in the 

blood is not solely dependent on kidney function, and changes in creatinine lag behind 

when kidney function reduces in AKI.4 When kidney function suddenly falls, even if a 

reduction in renal excretion occurs instantly, it can take hours or sometimes days for 

the level to creatinine to rise in the blood sufficiently for AKI to be diagnosed 

according to current international definitions. Moreover, in response to stress or even 

kidney damage, the kidneys have reserve capacity and can compensate so that kidney 

function is maintained. For this reason, in some clinical settings significant kidney 

damage can occur without AKI being apparent from changes in blood creatinine. In 

other settings, such as during a temporary reduction in blood flow to kidneys, rises in 

creatinine and a reduction in urine can occur, even when no significant damage has 

occurred. These limitations related to the use of creatinine assessment have led to the 

search for novel biomarkers that may detect kidney damage or kidney stress earlier 

and more reliably. 

 

Biomarker tests for AKI include the NGAL test (neutrophil gelatinase-associated 

lipocalin), which can be measured using a sample of urine or blood.5 NGAL is 

released from neutrophils and is induced by inflammation, indicating tubular injury.4 

One limitation of NGAL is that it is produced throughout the body making it difficult 

to distinguish systemic inflammation from localised renal inflammation.4 Novel 

NGAL tests include the ARCHITECT and Alinity Urine NGAL assays (Abbott), the 
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BioPorto NGAL plasma test (BioPorto Diagnostics) and the BioPorto NGAL urine 

test (BioPorto Diagnostics).  

 

Another biomarker for AKI is the NephroCheck test (Astute Medical), a combination 

of two urinary biomarkers, the tissue inhibitor of metalloproteinase-2 (TIMP-2) and 

the insulin-like growth factor-binding protein 7 (IGFBP-7).  Both TIMP-2 and 

IGFBP7 are cell-cycle arrest proteins that are released into urine as markers of cellular 

stress in the early phase of tubular cell injury due to a variety of insults (e.g., toxins, 

drugs, oxidative stress and inflammation), which lead to AKI6. The US Food and 

Drug Administration has approved these combined biomarkers to assess the risk of 

AKI in critically ill patients.4  

 

These novel biomarkers have been developed to detect early damage or stress in the 

kidneys. If reliable use of these biomarkers can be demonstrated, they may enable 

earlier identification of AKI, and, therefore, early management of those with a 

modifiable disease course - with potential for downstream benefits in patients’ clinical 

outcomes. If demonstrated, the ability of these novel biomarkers for early detection of 

AKI could have the potential to improve current AKI management by enabling timely 

measures that could prevent progression to more severe kidney injury as well as by 

informing decisions about the ‘step down’ of low risk patients to a lower level of 

hospital care, reducing the use of hospital resources.  

 

The purpose of this assessment is to review the current evidence on the diagnostic 

accuracy, prognostic accuracy, impact on clinical outcomes and cost-effectiveness of 

novel biomarkers (NephroCheck test, ARCHITECT and Alinity Urine NGAL assays, 

BioPorto NGAL plasma test and BioPorto NGAL urine test) for the assessment of 

AKI in critically ill patients who are considered for critical care admission.   

 

Aetiology, pathology and prognosis 

AKI ranges from minor loss of kidney function to complete kidney failure. In current 

practice, reduced kidney function is identified by elevated serum creatinine levels 

and/or reduced urine output.  
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There are many causes of acute kidney injury7, including:  

 

Pre-renal: Reduced oxygen delivery to the kidneys, caused by:  

 low blood volume (after bleeding, excessive vomiting or diarrhoea and severe 

dehydration),  

 reduced blood flow from the heart (potentially caused by sepsis or heart/liver 

failure)  

 damage to blood vessels which can be caused by inflammation or blockages 

within the kidneys  

 medications that affect blood flow to the kidneys  

 

Intrinsic/Renal: Damage to the kidney potentially caused by drugs, infections or 

contrast agents  

 

Post-renal: A blockage preventing drainage from the kidneys (potentially caused by 

an enlarged prostate, a tumour in the pelvis or kidney stones).  

 

Incidence and/ or prevalence 

Major surgery is a significant risk factor for the development of acute kidney injury4. 

In general, incidence of post-operative AKI depends on the type surgery. Rates of 

AKI after cardiac surgery have been reported to range from 8% to 40% according to 

the patient populations4. Recent meta-analyses have reported a pooled incidence of 

AKI in patients admitted to intensive care after abdominal surgery of 13.4% (95% CI 

10.9% to 16.4%)8 and after major trauma of 24% (95% CI 20% to 29%)7 and 21% 

(95% CI 16.5% to 24.9%).9 

 

The incidence of AKI for all major, non-cardiac surgery patients and trauma patients 

can be as high as 50% (e.g., liver transplant patients). In a retrospective cohort of over 

27,000 patients the incidence of AKI defined according to the RIFLE criteria was 

37%.10, 11 

 

Impact of health problem 

People with AKI have a higher mortality and longer hospital stay.1, 2 In addition, acute 

kidney injury is associated with a higher risk of developing chronic kidney disease 
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(CKD) and need for long term dialysis. The risk of CKD increases with severity of 

acute kidney injury. More severe acute kidney injury has also been associated with 

increased mortality, length of hospital stay and use of intensive care services, in 

addition to a reduced chance of renal recovery.1, 2 People with more severe acute 

kidney injury (and a greater loss of renal function) are more likely to need temporary 

renal replacement therapy. 

 

Measurement of disease 

Several tools are available for determining the stage of AKI. The NICE Clinical 

Knowledge Summary12 on acute kidney injury outlines a summarised staging system 

for acute kidney injury in adults based on the RIFLE (Risk, Failure, Loss of kidney 

function, End-stage disease),13 AKIN (Acute Kidney Injury Network)14 and KDIGO 

(Kidney Disease: Improving Global Outcome)15 systems (see Table 1 below). A 

patient’s acute kidney injury should be staged by the criterion, and a classification of 

stage 1 or above indicates acute kidney injury.  
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Table 1  Summary of the staging system for acute kidney injury in adults (based 

on the KDIGO, RIFLE and AKIN systems) 

Criteria  Stage Definition 

KDIGO15 1 Creatinine rise of 26 micromol or more within 48 hours  

OR Creatinine rise of 50–99% from baseline within 7 days* (1.50–1.99 x 

baseline) 

OR Urine output** < 0.5 mL/kg/h for more than 6 hours 

2 100–199% creatinine rise from baseline within 7 days* (2.00–2.99 x 

baseline)  

OR Urine output** < 0.5 mL/kg/hour for more than 12 hours 

3 200% or more creatinine rise from baseline within 7 days* (3.00 or more x 

baseline)  

OR Creatinine rise to 354 micromol/L or more with acute rise of 26 

micromol/L or more within 48 hours or 50% or more rise within 7 days  

OR Urine output** < 0.3 mL/kg/hour for 24 hours or anuria for 12 hours  

RIFLE13 R ≥ 1.5- and < 2-fold increase from baseline SCr or ≥ 25% fall in GFR from 

baseline 

or urine output < 0.5 ml/kg/hour for ≥ 6 and < 12 hours  

I ≥ 2- and < 3-fold increase from baseline SCr or ≥ 50% fall in GFR from 

baseline or 

urine output < 0.5 ml/kg/hour for ≥ 12 hours and < 24 hours 

F ≥ 3-fold increase from baseline SCr or ≥ 75% fall in GFR from baseline or 

SCr 

≥ 4 mg/dl with an acute rise of ≥ 0.5 mg/dl or urine output < 0.3 ml/kg/hour 

for 

≥ 24 hours or anuria for ≥ 12 hours 

L Complete loss of renal function for > 4 weeks 

E End-stage renal disease 

AKIN14 1 Increase in SCr of ≥ 0.3 mg/dl (≥ 26.4 μmol/l) or increase in SCr to 

≥ 150–200% (1.5- to 2-fold) of baseline value or urine output < 0.5 

ml/kg/hour for 

≥ 6 and < 12 hours 
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Criteria  Stage Definition 

2 Increase in SCr to > 200–300% (> 2- to 3-fold) of baseline value or urine 

output < 0.5 ml/kg/hour for ≥ 12 hours and < 24 hours 

3 Increase in SCr to > 300% (3-fold) of baseline value or SCr ≥ 4.0 mg/dl 

(≥ 354 μmol/l) with an absolute increase of ≥ 0.5 mg/dl (≥ 44 μmol/l) or 

initiation of 

RRT or urine output < 0.3 ml/kg/hour for ≥ 24 hours or anuria for ≥ 12 

hours 

* The rise is known (based on previous blood tests) or presumed (based on history) to have occurred 

within 7 days.  

** Measurement of urine output may not be practical in a primary care population, but can be considered 

in a person with a catheter. 

Source: NICE Clinical knowledge summaries on acute kidney injury (2018)12 

 

Description of the technologies under assessment 

The NephroCheck test, the ARCHITECT and Alinity Urine NGAL assays, the NGAL 

plasma test and the NGAL urine test may help to assess AKI in critically ill people 

who are considered for admission to critical care in hospital. These tests may be able 

to detect kidney injury earlier than methods currently used for monitoring kidney 

function. 

 

The NeproCheck test 

The NephroCheck test (Astute Medical, Inc., USA) measures the level of 2 

biomarkers in urine, the TIMP-2 (tissue inhibitor of metalloproteinase 2) and IGFBP-

7 (insulin-like growth factor binding protein 7), to assess risk of moderate to severe 

acute kidney injury (defined as per KDIGO guidelines) in the subsequent 12 hours. 

The test result must be used in conjunction with clinical evaluation and results of 

other tests such as serum creatinine and urine output.  

 

The concentrations of TIMP-2 and IGFBP-7 are used to calculate an AKIRisk score 

(the concentrations of each [ng/ml] multiplied together and divided by 1,000). A score 

of 0.3 or less indicates a low risk of developing moderate to severe AKI within 12 

hours of assessment, while a score of greater than 0.3 indicates a high risk of 

developing moderate to severe AKI within 12 hours of assessment5.  
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When used with the Astute 140 Meter,NephroCheck test system consists of the 

following components:  

 Astute140 Meter Kit (a benchtop analyser)  

 Astute140 Electronic Quality Control device  

 NephroCheck Test Kit (includes a single-use NephroCheck test cartridge and 

reagents)  

 NephroCheck Liquid Control kit  

 NephroCheck Calibration Verification kit  

 

A fresh or thawed urine sample (mixed with reagent) is added to a single-use test 

cartridge, which is then inserted into an Astute140 Meter for incubation and result 

calculation. Preparation takes 3 to 5 minutes and results of NephroCheck are available 

in about 20 minutes. In the NHS, the Astute 140 Meter would be used in a laboratory 

and not at the point of care. 

 

The test can also be run on the VITROS 3600 immunodiagnostic System and on the 

VITROS 5600 Integrated System clinical chemistry analysers. All systems generate a 

single numerical result (the AKIRisk score).  

 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

 

For surgical patients the NephroCheck test is recommended to be administered 2 to 4 

hours after surgery. As NephroCheck exhibits a characteristic rise and fall after 

various exposures, a second administration of the test within the first 24 hours may be 

considered in patients with an ongoing risk of developing AKI. 

 

In the UK, Nephrocheck test is marketed for people aged over 21 years old. 
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Neutrophil gelatinase-associated lipocalin (NGAL) assays 

ARCHITECT and Alinity Urine NGAL assays 

The ARCHITECT Urine NGAL assay (Abbot, Germany) is a chemiluminescent 

micro particle immunoassay for the quantitative determination of NGAL in human 

urine. NGAL can be used as a marker of kidney injury.  

 

ARCHITECT Urine NGAL assay might be used as follows: 

 Early detection of acute kidney injury;  

 Provides a measure of the severity of acute kidney injury;  

 Predicts the requirement for renal replacement therapy;  

 Helps differentiate acute kidney injury from chronic kidney disease and 

dehydration. 

 

For diagnostic purposes, the test results should be used in conjunction with clinical 

assessment and the results of any other testing that has been done (including serum 

creatinine and urine output). In addition, if the NGAL results are inconsistent with 

clinical assessment and other test results, additional testing can be done to confirm the 

NGAL results.  

 

The test could be used daily until a diagnosis is made or treatment for acute kidney 

injury is initiated. 

 

The expected range for the assay (for people without kidney injury) is less than or 

equal to 131.7 ng/ml, based on the 95th percentile from specimens from non-

hospitalised donors, but results from individual laboratories may vary and the 

manufacturer recommends that each laboratory should determine its own reference 

range based upon the particular locale and population characteristics. The test has no 

age restrictions in use. 

 

The assay is run on the ARCHITECT system (i1000SR, i2000, i2000SR, ci4100, 

ci8200 or ci16200) in a laboratory. The throughput of the system is up to 200 tests per 

hour, and the time to first result is 36 minutes.  
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In addition to the ARCHITECT Urine NGAL Reagent Kit, the following materials are 

also needed:  

 ARCHITECT Urine NGAL Calibrators  

 ARCHITECT Urine NGAL Controls or other control material  

 ARCHITECT i pre-trigger solution  

 ARCHITECT i trigger solution  

 ARCHITECT i wash buffer  

 ARCHITECT i reaction vessels  

 ARCHITECT i sample cups  

 ARCHITECT i septum  

 ARCHITECT i replacement caps  

 

The Abbott NGAL assay is also available for use on Alinity immunoassay analyser, 

The reagents for the Alinity and ARCHITECT NGAL assays are the same. 

 

The BioPorto NGAL Test (using urine or plasma) 

The BioPorto NGAL Test (BioPorto Diagnostics, Denmark) is particle-enhanced 

turbidimetric immunoassay for the quantitative determination of NGAL in human 

urine, EDTA plasma and heparin plasma on automated clinical chemistry analysers. 

NGAL measurements may be useful in pre-empting the diagnosis of acute kidney 

injury, which may lead to acute renal failure. Urinary NGAL can serve as an early 

marker of acute kidney injury after cardiopulmonary bypass surgery and both urinary 

and plasma levels of NGAL provide an early indication of acute renal injury in 

unselected patients in intensive care. 

 

The NGAL test is intended to be used alongside monitoring of serum creatinine and 

urine output (not as a stand-alone test) and the significance of any raised NGAL level 

should be interpreted in the light of a patient’s clinical features.  

 

The NGAL test can be administered as a single measurement but also as a serial 

measurement to detect any further development of acute kidney injury during 

hospitalisation, or any improvement in the clinical condition. In patients admitted to 
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intensive care the test can be used to predict stage 2/3 AKI or as a negative predictive 

marker to rule out the presence of acute kidney injury. 

 

To indicate the presence of acute kidney injury, NGAL concentration in an isolated 

sample of urine and/or EDTA plasma should exceed 250 ng/mL. This threshold has 

been chosen to minimise the risk of an unacceptably high proportion of false positive 

results.  

 

The assay can be run on clinical chemistry analyser systems from Roche (Cobas, 

Modular P), Siemens (ADVIA), Abbott (AEROSET, ARCHITECT) and Beckman 

Coulter (Olympus AU) in a laboratoty. The assay time is 10 minutes.  

 

In addition to the NGAL Test Reagent Kit, the following materials are also needed:  

 The NGAL Test Calibrator Kit  

 The NGAL Test Control Kit  

 0.9% w/v aqueous sodium chloride solution as zero calibrator  

 Analyzer-specific reagent containers  

 

At present, the test has no age restrictions on use. XXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

 

Identification of important sub-groups 

The primary scope of this assessment is the optimisation of current secondary care of 

critically ill patients, to decide whether the use of novel biomarkers would improve 

detection of AKI and consequently the current care pathway. The relevant population 

considered in this assessment is critically ill people at risk of developing AKI (i.e., 

who are having their serum creatinine and urine output monitored) who are being 

assessed for possible admission to critical care. In most studies conducted outside UK, 

critically ill participants are usually admitted to critical or intensive care due to the 

variation in intensive care ultilisation across the world. The following patient 

subgroups have been identified as particularly relevant for the purpose of this 

assessment.  
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Relevant subgroups include: 

 Type of surgery (e.g., major vascular/cardiac surgery, major non-vascular 

surgery, trauma, solid organ transplant) 

 Type of setting (e.g., post-surgery care, cardiac care, intensive or critical care, 

emergency department) 

 Type of sample media (i.e., urine, blood plasma) 

 People with a different underlying risk of AKI (e.g., people with chronic 

kidney disease, sepsis, hip fracture, major trauma, chronic liver disease) 

 People with or without urinary infection and other inflammatory conditions 

(tests may perform differently in these populations) 

 

Relevant comparator 

Novel biomarkers need to be compared for incremental advantage over standard 

approaches to measuring kidney function. As discussed earlier, AKI diagnosis 

traditionally relies on a rise in serum creatinine levels and/or fall in urine output. 

Creatinine has limitations as a biomarker because it depends on the total body muscle 

mass, which varies between individual people. Some creatinine is also eliminated 

from the body by mechanisms other than filtering by the kidneys, which can be 

influenced by a variety of medications, including some commonly used antibiotics. In 

an illness where kidney function suddenly falls (AKI), there may be a lag of hours to 

days before creatinine levels in the blood rise to a level sufficient for AKI to be 

diagnosed according to current international definitions. In addition, in response to 

stress or even kidney damage, the kidneys have reserve capacity and can compensate 

so that kidney function is maintained. For this reason, in some clinical settings 

significant kidney damage can occur without AKI being apparent from changes in 

blood creatinine. In other settings, such as during a temporary reduction in blood flow 

to kidneys, rises in creatinine and a reduction in urine can occur, even when no 

significant damage has occurred. 

 

Care pathway 

The NICE clinical guideline on acute kidney injury16 recommends measuring serum 

creatinine and comparing with baseline for adults, children and young people with 

acute illness if risk factors for the condition are likely or present. Risk factors include 
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sepsis, hypovolemia and deteriorating early warning scores (using a paediatric version 

for children and young people). NHS England and NHS Improvement have endorsed 

the National Early Warning Score (NEWS) for use in acute and ambulance settings. 

An updated version of the score (NEWS2)17 was published in December 2017. The 

score should not be used in children (under 16 years) or pregnant women.  

 

The NICE guideline further recommends monitoring serum creatinine regularly in all 

adults, children and young people with or at risk of acute kidney injury. The guideline 

development group did not wish to define 'regularly' because this would vary 

according to clinical need, but recognised that daily measurement was typical while in 

hospital.  

 

An AKI algorithm to help with detection and diagnosis of the condition has been 

endorsed by NHS England18. In some hospitals the algorithm has been integrated into 

Laboratory Information Management Systems (LIMS) to help identify potential cases 

of acute kidney injury from laboratory data in real time.  

 

The KDIGO Clinical Practice Guideline for Acute Kidney Injury19 highlights the 

importance of screening patients who have had an exposure that may cause acute 

kidney injury (such as sepsis or trauma) and that high-risk patients should continue to 

be monitored until risk subsides. The guideline states that intervals of checking serum 

creatinine is a matter of clinical judgement, but suggest as a general rule that high risk 

in-patients should have serum creatinine measured at least daily and more frequently 

after an exposure. Critically ill patients should also have urine output monitoring.  

 

For adults who are at risk of acute kidney injury, the NICE AKI guideline16 also 

recommends that systems are in place to recognise and respond to oliguria (urine 

output less than 0.5 ml/kg/hour).  

 

For children and young people who are at risk of acute kidney injury, the guideline 

recommends:  

 measure urine output  

 record weight twice daily to determine fluid balance  
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 measure urea, creatinine and electrolytes  

 think about measuring lactate, blood glucose and blood gases.  

 

Further detail on these recommendations, and further recommendations on the 

ongoing assessment of the condition of patients in hospital, can be found in section 

1.2 of the NICE clinical guideline on AKI.16 

  

The NICE guideline recommends diagnosing acute kidney injury in line with the 

RIFLE13 (or paediatric-modified RIFLE – pRIFLE),20 AKIN14 or KDIGO15 

definitions, by using any of the following criteria:  

 a rise in serum creatinine of 26 micromol/litre or greater within 48 hours  

 a 50% or greater rise in serum creatinine known or presumed to have occurred 

within the past 7 days  

 a fall in urine output to less than 0.5 ml/kg/hour for more than 6 hours in 

adults and more than 8 hours in children and young people  

 a 25% or greater fall in eGFR in children and young people within the past 7 

days.  

 

There are no direct therapies for treating acute kidney injury. Care focuses on 

optimising hemodynamics and fluid status, avoiding nephrotoxic treatments, and 

carrying out investigations to identity and resolve the underlying cause as quickly as 

possible. In general, the goal of care is to prevent any further kidney injury and stop 

worsening of the underlying illness; in particular, to prevent mortality or renal 

progression to a stage where renal replacement therapy is needed.  

 

The NICE clinical guideline on AKI16 highlights the importance of identifying the 

cause, or causes, of acute kidney injury and has recommendations on the use of 

urinalysis and ultrasound for this purpose.  

 

The KDIGO Clinical Practice Guideline for Acute Kidney Injury19 also 

recommends prompt evaluation of people with acute kidney injury to determine the 

cause. Identifying possible reversible causes of the condition is highlighted as 

important to reduce severity of the condition.  
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The NICE clinical guideline on AKI16 has recommendations on managing acute 

kidney injury (section 1.5); covering removing urological obstruction, 

pharmacological management, renal replacement therapy and referral to nephrology 

services. The KDIGO Clinical Practice Guideline for Acute Kidney Injury19 

recommends staging severity of acute kidney injury with serum creatinine and urine 

output, and to manage the condition according to stage and cause. General 

management principles for people at high risk of acute kidney injury (or with the 

condition) are to:  

 discontinue nephrotoxic agents if possible,  

 monitor volume status and perfusion pressure,  

 consider functional haemodynamic monitoring,  

 monitor serum creatinine and urine output,  

 avoid hyperglycaemia,  

 consider alternatives to radiocontrast procedures.  

 

Further actions should only be considered at higher stages of acute kidney injury, such 

as renal replacement therapy. Dosages of drugs may also need to be adapted because 

of reduced kidney function. The KDIGO guideline also has more detailed guidance on 

the prevention and treatment of acute kidney injury (section 3). This includes 

haemodynamic monitoring and support, glycemic control and nutritional support, the 

use of diuretics and vasodilator therapy. 

 

In UK clinical practice the NephroCheck test and NGAL assays are likely to be used 

for the assessment of AKI in people who are considered for admission to critical care 

rather than in patients already admitted to critical care. It is worth pointing out that the 

NephroCheck test, the ARCHITECT and Alinity Urine NGAL assays, the NGAL 

plasma test and the NGAL urine test would not replace serum creatinine and urine 

output monitoring but they would be used alongside current monitoring to facilitate 

earlier detection of kidney injury and prompt adoption of strategies to prevent further 

progression of kidney disease. 
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Chapter 3 Assessment of clinical effectiveness 

 

Systematic review methods 

Identification of studies 

Comprehensive electronic searches were conducted to identify relevant reports of 

published studies. Highly sensitive search strategies were developed, to include index 

terms, free-text words, abbreviations and synonyms, to combine biomarkers and AKI. 

The electronic databases Ovid MEDLINE, Ovid EMBASE, Web of Science Core 

Collection, HTA Database, CINAHL and CENTRAL were searched, with no 

restriction on date or publication type. Full details of the search strategies are 

presented in Appendix 1. The searches were undertaken during the period of 17 May 

to 10 June 2019.  

 

Additionally, we searched the following sources for ongoing or unpublished studies: 

ClinicalTrials.gov (www.clinicaltrials.gov/), WHO International Clinical Trials 

Registry Platform (ICTRP) Search Portal (apps.who.int/trialsearch) and WHO Global 

Index Medicus (www.who.int/library/about/The Global Index Medicus/en/). 

Furthermore, websites of relevant professional organisations and health technology 

agencies, as well as appropriate clinical experts, were consulted to obtain any 

additional potentially relevant reports. The reference lists of all included studies were 

perused to identify further potentially relevant studies. We also considered evidence 

provided by the manufacturers of the biomarkers included in this assessment (Astute 

Medical, Abbott and BioPorto Diagnostics). 

 

Inclusion and exclusion criteria 

Inclusion and exclusion criteria for each of the clinical effectiveness questions 

considered in this assessment are summarised in Table 2 below. Only studies that 

fulfilled these criteria were deemed suitable for inclusion. 
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Table 2  Eligibility criteria for the systematic review  

Research 

question 

1. Do novel biomarkers accurately detect 

emerging AKI in critically ill people who 

are considered for admission to critical 

care? 

2. Do the novel biomarkers predict the 

development of future events in critically ill 

people at risk of developing AKI who are 

considered for admission to critical care? 

3. Does the use of novel biomarkers lead to 

improvements in clinical outcomes of critically ill 

people who are considered for admission to 

critical care? 

Population 

and setting 

Critically ill patients (adults and children) at 

risk of AKI in an unselected hospitalised 

population (medical or surgical hospital 

admissions) in the following settings: 

 general hospital 

 emergency department 

 post-surgery or post-operative care 

 intensive or critical care, e.g. ICU 

(intensive care unit), CCU (critical care 

unit), ITU (intensive treatment unit), and 

paediatric intensive care unit (PICU) 

Patients who had established AKI before 

being admitted to intensive or critical care and 

those who were managed in the community 

setting were excluded.   

 

While the eligible patient population is an 

unselected critically ill population considered 

for admission to critical care, the following 

Critically ill patients (adults and children) at risk 

of AKI in an unselected hospitalised population 

(medical or surgical hospital admissions) in the 

following settings: 

 general hospital 

 emergency department 

 post-surgery or post-operative care 

 intensive or critical care, e.g. ICU 

(intensive care unit), CCU (critical care 

unit), ITU (intensive treatment unit), and 

paediatric intensive care unit (PICU) 

Patients who had established AKI before being 

admitted to intensive or critical care and those 

who were managed in the community setting 

were excluded.   

 

While the eligible patient population is an 

unselected critically ill population considered 

for admission to critical care, the following 

Critically ill patients (adults and children) at risk of 

AKI in an unselected hospitalised population 

(medical or surgical hospital admissions) in the 

following settings: 

 general hospital 

 emergency department 

 post-surgery or post-operative care 

 intensive or critical care, e.g. ICU (intensive 

care unit), CCU (critical care unit), ITU 

(intensive treatment unit), and paediatric 

intensive care unit (PICU) 

Patients who had established AKI before being 

admitted to intensive or critical care and those who 

were managed in the community setting were 

excluded.   

 

While the eligible patient population is an 

unselected critically ill population considered for 

admission to critical care, the following subgroups 
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Research 

question 

1. Do novel biomarkers accurately detect 

emerging AKI in critically ill people who 

are considered for admission to critical 

care? 

2. Do the novel biomarkers predict the 

development of future events in critically ill 

people at risk of developing AKI who are 

considered for admission to critical care? 

3. Does the use of novel biomarkers lead to 

improvements in clinical outcomes of critically ill 

people who are considered for admission to 

critical care? 

subgroups were identified to be particularly at 

risk of developing AKI: 

 People undergoing major cardiac or 

cardiovascular surgery 

 People undergoing major non-cardiac or 

non-vascular surgery 

 People undergoing major trauma surgery 

 People undergoing solid organ transplant 

(except kidney) 

 People undergoing hip replacement 

 People with sepsis 

 People with chronic kidney disease 

(CKD) 

 People with chronic liver disease 

 People with a serious (non-surgical) 

acute cardiac event or emergency, e.g. 

myocardial infarction  

 

Exclusion: 

subgroups were identified to be particularly at 

risk of developing AKI: 

 People undergoing major cardiac or 

cardiovascular surgery 

 People undergoing major non-cardiac or 

non-vascular surgery 

 People undergoing major trauma surgery 

 People undergoing solid organ transplant 

(except kidney) 

 People undergoing hip replacement 

 People with sepsis 

 People with chronic kidney disease (CKD) 

 People with chronic liver disease 

 People with a serious (non-surgical) acute 

cardiac event or emergency, e.g. 

myocardial infarction  

 

 

Exclusion: 

were identified to be particularly at risk of 

developing AKI: 

 People undergoing major cardiac or 

cardiovascular surgery 

 People undergoing major non-cardiac or non-

vascular surgery 

 People undergoing major trauma surgery 

 People undergoing solid organ transplant 

(except kidney) 

 People undergoing hip replacement 

 People with sepsis 

 People with chronic kidney disease (CKD) 

 People with chronic liver disease 

 People with a serious (non-surgical) acute 

cardiac event or emergency, e.g. myocardial 

infarction  

 

 

Exclusion: 
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Research 

question 

1. Do novel biomarkers accurately detect 

emerging AKI in critically ill people who 

are considered for admission to critical 

care? 

2. Do the novel biomarkers predict the 

development of future events in critically ill 

people at risk of developing AKI who are 

considered for admission to critical care? 

3. Does the use of novel biomarkers lead to 

improvements in clinical outcomes of critically ill 

people who are considered for admission to 

critical care? 

 People with other clinical conditions 

or illnesses.  

 People assessed immediately after a 

kidney transplant (within 365 days of 

index test).   

 Preterm infants and low birth weight 

babies  

 People with other clinical conditions or 

illnesses.  

 People assessed immediately after a 

kidney transplant (within 365 days of 

index test).   

 Preterm infants and low birth weight 

babies  

 People with other clinical conditions or 

illnesses.  

 People assessed immediately after a kidney 

transplant (within 365 days of index test).   

 Preterm infants and low birth weight babies  

 

Biomarkers 

under 

investigation  

 the NephoCheck test (Astute Medical) 

 the ARCHITECT and Alinity Urine 

NGAL assays (Abbott) 

 the BioPorto NGAL urine test (BioPorto 

Diagnostics) 

 the BioPorto NGAL plasma test 

(BioPorto Diagnostics) 

All used in conjunction with existing care 

 

The primary timepoint for biomarker 

measurement was immediately after surgery 

or on admission to critical or intensive care. 

When multiple measurements were reported, 

 the NephoCheck test (Astute Medical) 

 the ARCHITECT and Alinity Urine 

NGAL assays (Abbott) 

 the BioPorto NGAL urine test (BioPorto 

Diagnostics) 

 the BioPorto NGAL plasma test (BioPorto 

Diagnostics) 

All used in conjunction with existing care 

 

The primary timepoint for biomarker 

measurement was immediately after surgery or 

on admission to critical or intensive care. When 

multiple measurements were reported, we 

AKI care initiated according to the results of the 

biomarkers under investigation (the NephoCheck 

test, ARCHITECT and Alinity Urine NGAL assays, 

BioPorto NGAL urine test, BioPorto NGAL plasma 

test). 
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Research 

question 

1. Do novel biomarkers accurately detect 

emerging AKI in critically ill people who 

are considered for admission to critical 

care? 

2. Do the novel biomarkers predict the 

development of future events in critically ill 

people at risk of developing AKI who are 

considered for admission to critical care? 

3. Does the use of novel biomarkers lead to 

improvements in clinical outcomes of critically ill 

people who are considered for admission to 

critical care? 

we selected the time closest to the primary 

timepoint.  

 

Exclusion 

 Solid tissue (not fluid) biomarkers or 

imaging modalities for detection of 

AKI  

 Biomarkers that used different assays 

than those listed above or did not 

specify the details of the assay 

selected the time closest to the primary 

timepoint.  

 

Exclusion 

 Solid tissue (not fluid) biomarkers or 

imaging modalities for detection of 

AKI  

 Biomarkers that used different assays 

than those listed above or did not 

specify the details of the assay 

Reference 

standard/ 

Comparator 

At present, there is no universally accepted 

reference standard for the diagnosis of AKI. 

The current methods for detecting or 

predicting AKI are in line with the RIFLE (or 

paediatric-modified RIFLE), AKIN and 

KDIGO classification systems, which are 

based on the assessment of serum creatinine 

levels and urine output alongside clinical 

judgement (see NICE Clinical Guidance 169 

Existing clinical criteria for the monitoring of 

serum creatinine and urine output used in 

conjunction with clinical judgement (reference 

standard) 

AKI care initiated according to standard clinical 

practice (existing clinical criteria without 

biomarkers). 
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Research 

question 

1. Do novel biomarkers accurately detect 

emerging AKI in critically ill people who 

are considered for admission to critical 

care? 

2. Do the novel biomarkers predict the 

development of future events in critically ill 

people at risk of developing AKI who are 

considered for admission to critical care? 

3. Does the use of novel biomarkers lead to 

improvements in clinical outcomes of critically ill 

people who are considered for admission to 

critical care? 

on prevention detection and management of 

AKI).  

 

 

Outcomes Detection of AKI (using measures of accuracy 

– i.e., sensitivity and specificity)  

 

 

 Mortality 

 Need for long-term renal replacement 

therapy (RRT) 

 Chronic kidney disease (CKD) >90 days 

post-AKI  

 

At abstract screening, studies that did not 

report any of the above selected outcomes 

were excluded.  

 

 

Clinical outcomes: 

 Mortality 

 AKI-associated morbidity (e.g., chronic 

kidney disease/end stage renal disease, 

other organ failure) 

 

Patient-reported outcome: 

 Health-related quality of life 

 

Intermediate outcomes may include: 

 Incidence of AKI (and severity/stage of 

condition)   

 Incidence/duration of acute renal 

replacement therapy within 7 days 

 Incidence of chronic kidney disease-related 

renal replacement therapy post AKI 
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Research 

question 

1. Do novel biomarkers accurately detect 

emerging AKI in critically ill people who 

are considered for admission to critical 

care? 

2. Do the novel biomarkers predict the 

development of future events in critically ill 

people at risk of developing AKI who are 

considered for admission to critical care? 

3. Does the use of novel biomarkers lead to 

improvements in clinical outcomes of critically ill 

people who are considered for admission to 

critical care? 

 Length of stay in critical/intensive care 

 Length of stay in hospital 

 Length of AKI episode 

 Incidence of hospital readmission post-

discharge  

 Impact of test result on clinical decision 

making 

 Impact on steady state estimated 

glomerular filtration rate at 90 days 

 Time to test results 

 Equivalence of biomarkers (e.g., the NGAL 

assays) 

Study design  Any cross-sectional study which 

investigates the diagnostic accuracy 

of a single biomarker (NephroCheck 

test or NGAL test) against the 

reference standard in the same study 

population 

 Any fully paired direct comparison 

(observational or randomised direct 

comparison) in which one of the 

Prospective studies reporting: 

 prognostic accuracy for the specified 

outcomes (e.g. sensitivity, specificity, 

ROC curve, AUC) 

 sufficient information to complete a two-

by-two contingency table for the specified 

outcomes (i.e. true positives, false 

positives, negatives and true negatives); as 

a minimum, the number of disease 

 Randomised controlled trials 

 Prospective cohort studies with a concurrent 

comparison group 

 

Exclusion: 

 Studies with <100 participants 

 Pilot studies or studies of preliminary 

results only 
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Research 

question 

1. Do novel biomarkers accurately detect 

emerging AKI in critically ill people who 

are considered for admission to critical 

care? 

2. Do the novel biomarkers predict the 

development of future events in critically ill 

people at risk of developing AKI who are 

considered for admission to critical care? 

3. Does the use of novel biomarkers lead to 

improvements in clinical outcomes of critically ill 

people who are considered for admission to 

critical care? 

biomarkers under investigation 

(NephroCheck test or NGAL test) is 

compared with another biomarker in 

the same study population against the 

reference standard  

Exclusion: 

 Studies with <100 participants 

 Pilot studies or studies of preliminary 

results only 

 Case reports 

 Conference abstracts or proceedings 

 Studies published in language other 

than English 

 Studies with insufficient information 

to complete a two-by-two 

contingency table  

positives (number of participants with 

AKI) and disease negatives (number 

without AKI)  

 a statistical prediction model for the 

specified outcomes 

Exclusion: 

 Studies with <100 participants 

 Pilot studies or studies of preliminary 

results only 

 Case reports 

 Conference abstracts or proceedings 

 Studies published in language other 

than English 

 

 Case reports 

 Conference abstracts or proceedings 

 Studies published in language other than 

English 
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Study selection and data extraction 

A screening tool was developed to assist study selection and data extraction 

(Appendix 2). One reviewer (CR) screened the titles and abstracts identified by the 

search strategies for inclusion or exclusion. A second reviewer (MI) double-checked 

all non-selected citations. As many relevant information was not available from the 

titles or abstracts (e.g., information about the immunoassay used and type of analyses) 

of the reports identified by the literature searches, our selection approach was over-

inclusive. Full-text copies of all potentially relevant reports were retrieved and 

assessed for inclusion by one reviewer (MAM, MI or CR). A second reviewer (MAM, 

MI or CR) double checked 20% of the reports. Any disagreement was resolved by 

discussion or referred to a third reviewer (MB).  

 

One reviewer (MAM, MB, MI, AP or CR) extracted data from each eligible study 

using a form developed and piloted for the purpose of this assessment. Where 

multiple publications of the same cohort of participants were identified, the 

publication with the most complete or suitable data set was considered as the primary 

source of information. Any uncertainty related to the data extraction process was 

discussed among reviewers and resolved by consensus. 

 

From each study, data were extracted as follows: 

1. Characteristics of studies: first author, year of publication, study centre, 

country, inclusion and exclusion criteria, method of participant enrolment. 

2. Characteristics of study participants: age, gender, target condition, setting, 

number of participants enrolled, number of participants analysed, number 

excluded from analysis, main reasons for exclusion. 

3. Characteristics of the biomarkers (e.g., manufacturer, detection method, 

threshold, timing of the measurement). 

4. Characteristics of the reference standard (i.e., creatinine and urine output 

criteria for AKI). 

5. Outcome data: 

 Data on the diagnostic performance of the biomarkers for detection of 

AKI (absolute number of true positive (TP), false positive (FP), false 

negative (FN) and true negative (TN) cases; sensitivity and specificity 

values; area under the receiver-operating characteristic curve - AUC).  
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 Data on the prediction of development of AKI, worsening of AKI, 

mortality, renal replacement therapy and CKD as provided by the study 

authors (e.g., AUC values, odds ratio or hazard ratio, length of follow 

up). 

 Data on the clinical utility of the biomarkers (impact of the use of the 

biomarkers on clinical outcomes) as reported by study authors (e.g., 

number of events and number of participants for each relevant binary 

outcome; mean, standard deviation and number of participants for each 

relevant continuous outcome). 

 

Assessment of risk of bias 

Validated tools were used to assess the risk of bias of the included studies according 

to their study design. We used the QUADAS-2 tool21 to assess the risk of bias of 

studies assessing the diagnostic and prognostic accuracy of the biomarkers under 

investigation. The QUADAS-2 tool consists of four domains: patient selection, index 

test, reference standard, and flow and timing. Each domain is assessed in terms of 

‘low’, ‘high’ or ‘unclear’ risk of bias, and the first three in terms of concerns 

regarding ‘low’, ‘high’ or ‘unclear’ applicability.  

 

We used the Prediction model Risk Of Bias ASsessment Tool (PROBAST)22, which 

is structured into four domains (participants, predictors, outcome and analysis) to 

assess the risk of bias and applicability of prediction model studies.  

 

A single reviewer (MAM, MB, MI, AP or CR) assessed the risk of bias of each of the 

included studies. Any uncertainty was discussed among reviewers and resolved by 

consensus.  

 

No other types of study design were identified.  

 

Data synthesis and analysis  

For each assay, for each study we calculated sensitivity, specificity and prevalence 

values from the reported numbers of TP, FP, FN and TN cases. If studies did not 

provide 2x2 data, these were derived from the sensitivity and specificity estimates, 
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where given. We entered diagnostic data into Review Manager software (RevMan 

version 5.3, Nordic Cochrane Centre, Copenhagen), 23 to produce forest plots of 

sensitivity and specificity estimates together with their 95% confidence intervals 

(CIs).  

Where appropriate we performed meta-analysis of each pair of sensitivity and 

specificity estimates from each included study for each relevant assay. Since reported 

threshold levels for a positive test differed across studies, we conducted random 

effects meta-analyses using the Hierarchical Summary ROC (HSROC) model24, 25 

implemented in STATA® (METANDI command)26 to estimate summary values for 

sensitivity and specificity. The model takes into account both these measures of 

accuracy and their correlation, assumes that accuracy and thresholds vary between 

studies and incorporates both within- and between-studies variability. We constructed 

a summary ROC using the HSROC model, produced sensitivity and specificity 

summary estimates and hence a summary operating point, and calculated the 95% 

confidence and prediction regions. In accordance with the STATA requirements, we 

performed meta-analyses when data from four or more studies were available. For 

studies that reported multiple thresholds, we selected only one threshold to be 

included in the analysis. We performed separate meta-analyses for each biomarker, 

clinical setting, mode of sampling (urine, plasma) and type of patient population 

(adults, children). To inform the economic model, we also performed separate meta-

analyses for each biomarker across all clinical settings. 

 

For each biomarker, heterogeneity was assessed by visual inspection of the forest 

plots of sensitivity and specificity estimates and of the size of the prediction region in 

the HSROC plots.  

 

When possible, we performed meta-analyses of AUC values using a random-effects 

model to measure the performance of each biomarker for the prediction of each 

relevant outcome (i.e., AKI, mortality, RRT and CKD). We assessed the proportion of 

between-study variation in the AUC-ROC due to heterogeneity rather than sample 

error using the prediction interval. We considered an AUC >0.70 as indicative of a 

useful risk predictor.  
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STATA® software version 15.0 (StataCorp LP, College Station, TX, USA)27 was 

used for all statistical analyses. Graphs were made using either STATA or Review 

Manager software version 5.3 (Nordic Cochrane Centre, Copenhagen).23 

 

Results of the assessment of clinical effectiveness 

Literature searches results 

The literature searches identified 6379 records and 86 additional records were 

identified in either trial registers (i.e., EU Clinical Trials Register, International 

Clinical Trials Registry Platform, Clinical Trials.gov) and other literature collections 

(i.e., HTA Database, WHO Global Index Medicus) for a total of 6465 retrieved 

records. After de-duplication, 2348 records were screened for relevance. Of these, 

1050 were considered potentially relevant and selected for full text assessment. Four 

articles could not be obtained. Of the 1046 records retrieved and assessed in-depth, 71 

met our inclusion criteria. After excluding secondary or multiple publications, we 

selected 56 studies for inclusion in the systematic review of effectiveness. Figure 1 

(PRISMA diagram) shows the flow of studies through the selection process. The 

bibliographic details of the studies retrieved for full-text assessment and subsequently 

excluded together with the main reasons for their exclusion are presented in Appendix 

7.  

 



60 
 

Figure 1  PRISMA flow diagram of selected studies 

 

 

86 additional records identified 

through other sources 

6379 records identified 

through database searching 

2348 records after duplicates removed 

2348 records 

screened on title and 

abstract 

1298 records excluded 

1050 full-text 

articles assessed for 

eligibility 

979 full-text articles excluded:  

No focus on diagnostic or prognostic accuracy for 
AKI: 58 
Not relevant population: 159 
N<100: 458 
Not relevant biomarker: 127 
No relevant outcome: 22 
Pilot study/preliminary analysis: 5 
Non-English language: 8 
Not primary study (e.g., editorial): 98 
Retracted: 1 
Duplicate: 3 
Background material (e.g., systematic review): 36 
Full text not available: 4 

56 studies (71 articles) 

included in the evidence 

synthesis 
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Overview of included studies  

General characteristics of the 56 included studies and their associated references are 

provided in Table 3 for the adult population and in Table 4 for the child population. 

The majority of studies were cohort studies. In 46 studies data were collected 

prospectively, in one study data were collected prospectively but analysed 

retrospectively, in one study data were collected retrospectively, and in eight studies 

information on data collection was unclear. Fifty-three studies provided suitable data 

on the use of the biomarkers for detection or prediction of AKI in critically ill patients 

admitted to hospital, 16 studies provided information on prediction of mortality in 

critically ill patients at risk of AKI, and eight on prediction of RRT. No studies 

provided suitable data for prediction of CKD.  

 

No randomised controlled trials (RCTs) or controlled clinical trials (CCTs) were 

identified; no studies provided data on the incremental value of the use of the 

biomarkers compared with standard clinical care. 

 

Of the 56 included studies, 36 involved a single centre and 13 multiple centres. Seven 

studies did not provide this information. Twenty seven studies were conducted in 

Europe (4 in the UK, 6 in Germany, 3 in Italy, 3 in Spain, 2 in France, 2 in Greece, 2 

in Denmark, 1 in the Netherlands, 1 in Belgium, 1 in Finland, 1 in Norway, and 1 in 

Switzerland); 15 in North America (12 in the US, 2 in the US and Canada, and 1 in 

Canada); 9 in Asia (3 in Japan, 3 in South Korea, 2 in Thailand, and 1 in China); and 

one in Australia. One study did not provide clear information on the geographical 

location.  

 

NGAL was the most common studied biomarker (41/56 studies; 37 studies used urine 

NGAL assays and four plasma NGAL assays). NephroCheck was assessed in eight 

studies. Seven studies provided data on more than one assay (6 studies on urine 

NGAL and plasma NGAL assays and 1 study on NephroCheck, urine NGAL and 

plasma NGAL assays). Among the NGAL studies, 24 used the urine NGAL 

ARCHITECT platform, Abbott and 20 the urine NGAL BioPorto Diagnostics assay. 

All 11 plasma NGAL studies used the BioPorto Diagnostics assay. No studies used 

the NGAL Alinity platform, Abbott. 
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Of the 56 included studies, 46 enrolled only adults, 8 only children and 2 both adults 

and children. The total number of pariticipants was 17,967 of which 16,247 were 

adults (average age range from 49 to 77 years) and 1720 were children (average age 

range from 1 day to 5 years). Of the 46 studies that focused only on adults, 12 studies 

assessed patients after cardiac surgery, 4 studies patients requiring non-surgical 

cardiac care, 1 study patients undergoing major abdominal surgery, 1 study patients 

undergoing hepatobiliary surgery,	16 studies patients admitted to ICUs, 5 studies 

patients with liver disease (mainly cirrhosis), 2 studies patients with sepsis, 2 studies 

patients with CKD and 3 studies patients admitted to the emergency department. Of 

the eight studies that focused on children, 6 assessed children (including neonates) 

undergoing cardiac surgery and 2 children admitted to a paediatric ICU or neonatal 

ICU. The two studies that assessed both adults and children included patients 

undergoing cardiac surgery. For the purpose of the clinical and cost-effectiveness 

analyses the participants were grouped into three categories according to the clinical 

setting reported in the included studies: patients undergoing cardiac surgery, patients 

undergoing major non-cardiac surgery, and patients admitted to critical care (mixed 

patient population). The latter includes critically ill patients presenting to the 

emergency department and participants admitted to ICU or considered for critical care 

for various medical conditions or after surgery (but the studies did not specify which 

type of surgery or did not provide separate results for medical and surgical ICU 

particants). 
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Table 3  General characteristics of included studies - adult population 

First author, year of 
publication, country, 

associated publications 
Assay 

Target population 
(setting) 

Mean age 
(range or SD) 

Sample 
size 

AKI 
events 

AKI Definition 
Timeframe for 
AKI diagnosis 

Cummings 201928, USA 
NephroCheck, 
Astute Medical 

Cardiac Surgery 
(Atorvastin for AKI cardiac 

surgery study) 
67 (58, 75) * 400 14 KDIGO stage 2/3 

Within 48 hours 
of surgery 

Oezkur 201729, 
Germany 

NephroCheck, 
Astute Medical 

Cardiac Surgery (CABG, 
valve surgery or surgery of 

the thoracic aorta) 

AKI 65 (59, 73) 
No AKI 71 
(64,76) * 

150 35 KDIGO 
Within 48 hours 

of surgery 

Beitland 201630, Norway 
NephroCheck, 
Astute Medical 

Critical care - mixed 
population  

(out-of-hospital cardiac 
arrest) 

AKI 60 (13) 
No AKI 60 (14) 

195 88 KDIGO 

Within 3 days of 
admission 

Bihorac 201431, USA 
NephroCheck, 
Astute Medical 

Critical care - mixed 
population (ICU/ITU) 

63 (17) 408 71 KDIGO stage 2/3 
Within 12 hours 

of admission 

Di Leo 201832, Italy 
 

 Xie 201933 

NephroCheck, 
Astute Medical 

Critical care - mixed 
population (ICU/ITU) 

68 (51, 78) * 719 234 KDIGO 
Within 24 hours 

of admission 

Gayat 201834, France 
and Belgium 

NephroCheck, 
Astute Medical 

Critical care - mixed 
population (ICU, mainly 

sepsis) 

65 (54, 75) * 200 Unclear KDIGO 

Within 48 hours 
of admission 

 

Hoste 201435, USA 
NephroCheck, 
Astute Medical 

Critical care - mixed 
population (ICU/ITU) 

AKI (stage 2/3) 
64 (54, 75); 

No AKI (stage 
0/1) 

65 (54, 78) * 

153 27 KDIGO stage 2/3 

Within 12 hours 
of admission 

Kashani 201336, North 
America (21 sites) and 
Europe (15 sites) 

NephroCheck, 
Astute Medical 

Critical care - mixed 
population (ICU/ITU) 

64 (53, 73) * 728 101 KDIGO stage 2/3 

Within 12 hours 
of biomarker 
measurement 
(biomarker 
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measurement 
occurred within 
18 hours of ICU 

admission) 

Kimmel 201637, 
Germany 
 

 Kimmel 201638 

NephroCheck, 
Astute Medical 

uNGAL, 
BioPorto & 

pNGAL 
BioPorto 

Critical care - mixed 
population (emergency 

department) 
63 (14) 298 46 

KDIGO 
(modified 

version) stage 2/3 

 
Within 12 hours 

of sample 
collection 

Parikh 201139, North 
America 
 

 Parikh 201340 

 Koyner 201541 

 Coca 201442 

 Brown 201943 

 Coca 201644 

 Zhang 201545 

 Greenberg 
201846 

uNGAL, 
ARCHITECT, 

Abbott 

Cardiac Surgery (CABG or 
valve surgery) 

71 (10) 1200 60 

Acute dialysis or 
doubling of sCr 
(consistent with 

RIFLE stage 1 or 
AKIN stage 2) 

 
 
 

AKI developed at 
a median of 3 

days after surgery 
(IQR 2 to 4 days) 

Albert 201847, Germany 
uNGAL, 

ARCHITECT, 
Abbott 

Cardiac Surgery (open-
heart surgery with CPB) 

70 (61,77) 101 15 RIFLE 
 

NR 
 

Garcia-Alvarez 201548, 
Spain 

uNGAL, 
ARCHITECT, 

Abbott 
Cardiac Surgery 

AKI 74 (68, 80); 
No AKI 69 
(59, 76) * 

288 104 

sCr ≥200% from 
baseline or 

eGFR <50% from 
baseline 

Within 7 days of 
surgery 

Liebetrau 201349, 
Germany 

uNGAL, 
ARCHITECT, 

Abbott 

Cardiac Surgery (CABG 
and/or valve replacement 

with the use of 
extracorporeal circulation) 

AKI 74 (8) 
No AKI 68 (11) 

141 47 KDIGO stage 2/3 

Within 4 days of 
surgery 
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Thanakitcharu 201450, 
Thailand 

uNGAL, 
ARCHITECT, 

Abbott 
Cardiac Surgery 51 (15.6) 130 46 

Increase in sCr 
>0.3mg/dL within 

48 h 

Within 48 hours 
of surgery 

Cullen 201451, UK 
uNGAL, 

ARCHITECT, 
Abbott 

Non-cardiac surgery (major 
abdominal surgery) 

68 (11) 109 16 AKIN 
 

NR 

Asada 201652, Japan 
uNGAL, 

ARCHITECT, 
Abbott 

Critical care - mixed 
population (ICU/ITU) 

AKI 62 (48, 74) 
No AKI 63 

(51,73) 
133 31 KDIGO 

Within 7 days of 
admission 

 

Collins 201253, USA 
uNGAL, 

ARCHITECT, 
Abbott 

Critical care - mixed 
population (acute heart 

failure) 
NR 399 20 

Increase in sCr 
>0.3mg/dL or 

RIFLE 

Worsening renal 
function at 12 to 
24 hours and 72 

to 96 hours 

Dupont 201254, USA 
uNGAL, 

ARCHITECT, 
Abbott 

Critical care - mixed 
population (acute 

decongestive heart failure) 
NR 141 35 

Increase in sCr 
>0.3mg/dL 

Within 48 hours 
of admission 

 

Isshiki 201855, Japan 
uNGAL, 

ARCHITECT, 
Abbott 

Critical care - mixed 
population (ICU/ITU) 

62 (51,73) * 148 33 KDIGO 
Within 7 days of 

admission 

Kokkoris  201256, 
Greece 

uNGAL, 
ARCHITECT, 

Abbott 

Critical care - mixed 
population (ICU/ITU) 

AKI 
63 (50, 81) 

No AKI 
49 (35, 66) * 

100 36 RIFLE 

Within 7 days of 
admission 

Martensson 201557, 
Australia 

uNGAL, 
ARCHITECT, 

Abbott 

Critical care - mixed 
population (ICU/ITU) 

Mild AKI 
69 (59,74) 

Severe AKI 
68 (54,76) 
No AKI 

62 (48,72) * 

102 28 RIFLE 

 
 

NR 

Nickolas 201258, USA 
and Germany 

uNGAL, 
ARCHITECT, 

Abbott 

Critical care - mixed 
population (emergency 

department) 
64 (19) 1635 96 RIFLE 

Within 24 hours 
of admission 
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Park 201759, USA 
uNGAL, 

ARCHITECT, 
Abbott 

Critical care - mixed 
population  

(CKD) 
59 (11) 2466 NR 

Unclear 
 

NR 

Pipili 201460, Greece 
uNGAL, 

ARCHITECT, 
Abbott 

Critical care - mixed 
population (mechanically 

ventilated patients admitted 
to the ICU) 

64 (18) 106 44 RIFLE 

 
NR 

Treeprasertsuk 201561, 
Thailand 

uNGAL, 
ARCHITECT, 

Abbott 

Critical care - mixed 
population (cirrhosis) 

 
57 (15) 121 35 AKIN 

Within 24 hours 
of admission 

Haase 201462, Germany 
 

 Albert 201847 

uNGAL, 
ARCHITECT, 

Abbott & 
pNGAL 
BioPorto 

Cardiac Surgery (open-
heart surgery with CPB) 

72 (65,77) 100 23 RIFLE 

 
NR 

Schley 201563, Germany 

uNGAL, 
BioPorto & 

pNGAL 
BioPorto 

Cardiac Surgery 70 (10) 110 37 AKIN 

Within 72 hours 
of surgery 

Jaques 201964, 
Switzerland 

uNGAL, 
BioPorto & 

pNGAL 
BioPorto 

Critical care - mixed 
population (cirrhosis) 

58 (10) 105 55 AKIN 

Within 7 days of 
admission 

De Loor 201765, 
Belgium 

uNGAL, 
BioPorto 

Cardiac Surgery (CPB) 69 (61, 76) * 203 95 KDIGO 
 

NR 

Tidbury 201966, UK 
uNGAL, 
BioPorto 

Cardiac Surgery 
AKI 73 (54-87); 

No AKI 
75 (59-85) ** 

125 54 RIFLE 
 

NR 

Yang 201767, China 
uNGAL, 
BioPorto 

 

Cardiac Surgery 
(Atorvastin for AKI cardiac 

surgery study) 
46 (15) 398 164 

Acute dialysis or 
doubling of sCr 
consistent with 
KDIGO stage 2 

and 3 criteria 

 
NR 



67 
 

Cho 201468, South 
Korea 

uNGAL, 
BioPorto 

Non-cardiac surgery 
(hepatobiliary surgery) 

57 (12) 131 10 AKIN 
Within 5 days of 

admission 

Ariza 201669, Europe 
uNGAL, 
BioPorto 

Critical care - mixed 
population 

(liver disease) 

Acute-on-
Chronic 

Liver Failure 57 
(11) 

No Acute-on-
Chronic 

Liver Failure 57 
(12) 

716 NR NR 

 
 
 

NR 

Barreto 201470, Spain 
uNGAL, 
BioPorto 

Critical care - mixed 
population (cirrhosis) 

58 (12) 132 65 AKIN 

An increase in 
serum 
creatinine of >0.3 
mg/dl or >50% 
over the baseline 
value obtained in 
the previous 48–
72 hours.

Cho 201371, South 
Korea 

uNGAL, 
BioPorto 

Critical care - mixed 
population  

(ICU medical or surgical) 

AKI 65.4 (14.8) 
No AKI 60.4 

(17.4) 
145 54 AKIN 

Within 24 hours 
of surgery 

Doi 201472, Japan 
 

 Doi 201173 

uNGAL, 
BioPorto 

Critical care - mixed 
population (ICU/ITU) 

AKI 66 (55,73) 
No AKI 65 (53, 

74) * 
339 131 RIFLE 

 
NR 

Hjortrup 201574, 
Denmark 

uNGAL, 
BioPorto & 

pNGAL 
BioPorto 

Critical care - mixed 
population  

(ICU/ITU sepsis) 
66 (57, 75) * 151 91 KDIGO 

Within 48 hours 
of admission 

Matsa 201475, UK 

uNGAL, 
BioPorto & 

pNGAL 
BioPorto 

Critical care - mixed 
population  

(ICU/ITU medical or 
surgical) 

60 (15) 194 59 RIFLE 

Within 72 hours 
of admission 
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Nickolas 200876, USA 
uNGAL, 
BioPorto 

Critical care - mixed 
population (emergency 

department) 
60 (18) 635 30 RIFLE 

 
NR 

Nisula 201577, Finland 
 

 Nisula 201478 

uNGAL, 
BioPorto 

Critical care - mixed 
population (post-operative) 

62 (50,73) * 855 379 KDIGO 
 

NR 

Smith 201379, UK 
uNGAL, 
BioPorto 

Critical care - mixed 
population  

(CKD) 
69 (12) 158 40 KDIGO 

 
NR 

Tecson 201780, USA 

uNGAL, 
BioPorto & 

pNGAL 
BioPorto 

Critical care - mixed 
population (ICU/ITU) 

AKI (stage2/3) 
68 (56, 74); 

No AKI  
(stage 0/1) 

63 (54,73) * 

245 33 KDIGO stage 2/3 

Within 8 days of 
admission 

Verna 201281, USA 
uNGAL, 
BioPorto 

Critical care - mixed 
population (cirrhosis) 

56 (49, 62) 118 52 

Increase in sCr 
>1.5 and 

0.3 mg/dL from 
baseline value 

NR 

Zelt 201882, USA 
pNGAL, 
BioPorto 

Cardiac Surgery (major 
elective cardiac surgery 

requiring CPB) 
67 (61,73) * 178 35 AKIN 

Within 48 hours 
of surgery 

Itenov 201783, Denmark 
pNGAL, 
BioPorto 

Critical care - mixed 
population (ICU/ITU) 

67 (60, 76) * 454 87 KDIGO 
NR 

Lee 201884, South Korea 
pNGAL, 
BioPorto 

Critical care - mixed 
population (comatose 

cardiac arrest survivors 
treated with therapeutic 

hypothermia) 

59 (50, 71) * 279 111 KDIGO stage 3 

Within 7 days of 
return of 

spontaneous 
circulation 

Marino 201585, Italy 
pNGAL, 
BioPorto 

Critical care - mixed 
population  

(sepsis) 
77 (72, 83) * 101 49 RIFLE 

Within 7 days of 
admission 
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AKI= Acute Kidney Injury; NephC= NephroCheck test; uNGAL= urine NGAL, pNGAL= plasma NGAL; KDIGO=Kidney Disease: Improving Global Outcomes; 

AKIN=Acute Kidney Injury Network; RIFLE=Risk, Injury, Failure; Loss, End-Stage Renal Disease; sCr =Serum creatinine; * Median (IQR);  
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Table 4  General characteristics of included studies - child population 

First author, year 
of publication, 
country, linked 

publications 

Assay Population  
(setting) 

Mean age  
(range or SD) 

Sample 
size 

AKI 
events 

AKI  
Definition 

Timeframe for 
AKI diagnosis 

Parikh 201186, North 
America 

 Zappitelli 
201587 

uNGAL, 
ARCHITECT, 

Abbott 

Cardiac Surgery  
(congenital cardiac lesions) 

4 years  
(5) 

311 53 Acute dialysis, or 
doubling of sCr 
from baseline  

During hospital 
stay 

Bojan 201488, France uNGAL, 
ARCHITECT, 

Abbott 

Cardiac Surgery  
(CPB for surgical correction 
or palliation of congenital 

heart lesions) 

<1 year 100 NR AKIN NR 

Bennett 201389, USA uNGAL, 
ARCHITECT, 

Abbott 

Cardiac Surgery  
(CPB for surgical correction 
or palliation of congenital 

heart lesions) 

4 years 196 99 50% or greater 
increase in sCr 
from baseline 

within 72 hours 

NR 

Cantinotti 201290, 
Italy 

uNGAL, 
ARCHITECT, 

Abbott 

Cardiac Surgery  
(cardiac surgery for 

correction/ palliation of 
congenital heart defects) 

6 months  
(1, 49)  

135 52 pRIFLE NR 

Alcaraz 201491, 
Spain 

uNGAL, 
ARCHITECT, 

Abbott 

Cardiac Surgery  
(cardiac surgery, mainly 

CPB, for congenital cardiac 
lesions) 

25 months  
(6.0-72.0)**  

106 36 pRIFLE Early AKI 
defined as renal 
dysfunction in 

the first 
postoperative 72 
hours. Late AKI 

defined as 
occurring after 

the 4th 
postoperative day 
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Seitz 201392, NR uNGAL, 
ARCHITECT, 

Abbott 

Cardiac Surgery  
(CPB for surgical correction 
of congenital heart disease) 

0 years  
(0-8)*  

139 76 pRIFLE NR 

Zwiers 201593, 
Netherlands 

uNGAL, 
ARCHITECT, 

Abbott 

Critical care - mixed 
population 
(ICU/ITU) 

27 days  
(1, 85)*  

100 35 RIFLE Within 48 hours 
of admission 

Dong 201794, USA uNGAL, BioPorto Cardiac Surgery AKI 1.4 years 
(0.2-2.7);  
No AKI 5 

years (4.1-5.9)  

150 50 KDIGO Within 72 hours 
of surgery 

Lagos-Arevalo 
201595, Canada 

uNGAL, BioPorto Critical care - mixed 
population (ICU/ITU) 

AKI 5 years 
(6) 

No AKI 4.0 
years (5)  

160 70 KDIGO NR 

Yang 201767, China uNGAL, BioPorto Cardiac Surgery Children 22  
months (31); 

Adults 46  
years (15) 

Children 
323; Adults 

398 

Children 
126;  

Adults 
164 

Acute dialysis or 
doubling of sCr 
consistent with 
KDIGO stage 2 

and 3 criteria 

NR 

AKI= Acute Kidney Injury; NephC= NephroCheck test; uNGAL= urine NGAL, pNGAL= plasma NGAL; KDIGO=Kidney Disease: Improving Global Outcomes; 

AKIN=Acute Kidney Injury Network; pRIFLE=paediatric modified Risk, Injury, Failure; Loss, End-Stage Renal Disease; sCr =Serum creatinine; * Median (IQR);  
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Study quality  

The risk of bias of studies assessing the accuracy of NephroCheck and NGAL assays 

in identifying people at risk of developing AKI was assessed using the QUADAS-2 

tool. Results are summarised in Figure 2 below and in Table 42 in Appendix 10. 

 

Eleven studies (20%) did not report sufficient information to determine whether a 

selection of patients could have introduced bias and these studies were assessed to be 

at unclear risk of bias.52,51,34,62,74, 35,37,56, 84,57,96 The remaining studies were judged to 

be at low risk of bias for the patient selection domain.      

 

The main potential source of bias across studies relates to blinding. Most studies 

(98%) were assessed at unclear risk of bias for the conduct and interpretation of the 

index test, either due to insufficient information or lack of clarity regarding whether 

the biomarkers results were interpreted without knowledge of the reference standard 

results (see Figure 2 below). The studies that used NephroCheck were judged at low 

risk of bias with regard to the interpretation of the test since all of them used a 

common threshold. However, for NGAL studies the threshold level was judged to be 

unclear as a common hreshold for NGAL has yet to be identified. While some studies 

alluded to the blinding of personnel performing the biomarker measurements to 

patients’ clinical information, it was unclear whether the personnel were indeed 

blinded to sCr measurements (reference standard). With regard to whether the 

reference standard, its conduct or interpretation may have introduced bias, two studies 

(4%) were judged to be at unclear risk of bias because baseline sCr levels were 

determined by reviewing records of previous 12-month measurements.56,58 The 

remaining studies (96%) were judged to be at low risk of bias for the reference 

standard domain. 

 

Two studies (4%) were judged to be at high risk of bias in terms of the patient flow 

(e.g., attrition) because more than 50% of the participants were excluded from the 

analysis64 or because the reporting of the patient selection and flow was poorly 

detailed.52 Four studies (7%) were at unclear risk.94,56,59,66 The remaining studies 

(89%) were considered to be at low risk of bias regarding the patient flow domain. 

Across studies there was not major concern that the patient population and the 

conduct and interpretation of reference standard were not applicable to the review 
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question. We observed an expected variation between studies in terms of 

characteristics of the index tests (biomarker assays) and clinical protocols. In 

particular, applicability of the index test to the review question was judged to be 

unclear in many studies mainly due to the variation with regard to the biomarker 

thresholds and timing of sample collections. 

 

 

  2  Risk of bias assessment of studies assessing the diagnostic performance of the 

biomarkers using the QUADAS-2 tool 

 

The risk of bias of studies assessing the role of NephroCheck and NGAL assays for 

prediction of relevant clinical outcomes (worsening of AKI, mortality and RRT) was 

assessed using the PROBAST tool.22 Results are summarised in Table 5 below.  

 

Twelve prediction studies were assessed for risk of bias and 

applicability.48,89,51,72,77,85,74,61,34,57,55,84 Three studies (25%) reported insufficient 

information to determine whether selection of patients could have introduced bias and 

these studies were judged to be at unclear risk of bias.74,34,57 The remaining studies 

were judged to be at low risk of bias for this domain. No studies were judged to have 

made predictor assessments without the knowledge of outcome data and, therefore, 

the risk of bias for the predictors domain was judged to be unclear for all studies. The 

risk of bias in the outcome domain was unclear for all studies, mainly due to 

inadequate information to assess whether outcomes were determined without 
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knowledge of predictor information. The risk of bias for the analysis domain was 

unclear in 58% of studies and high in 42%. 

 

The overall risk of bias was considered to be unclear for most studies (70%), mainly 

due to these studies being assessed as at high risk of bias in the analysis domain. The 

remaining studies were judged to be at unclear risk of bias.  

 

Most studies were judged to be at low risk for applicability to the review question in 

each of the domain categories. Overall, applicability was judged to be at low risk of 

bias for 75% of the studies and at unclear risk for the remaining studies.  In general, 

there was no major concern that the studies were not applicable to the research 

questions of this assessment. Summaries of the results are presented in Figures 3 and 

4. The individual study level results are summarized in Appendix 8.  
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Figure 3  Risk of bias assessment of studies that assessed the role of biomarkers 

for prediction of relevant clinical outcomes using the PROBAST tool 

 

 

Figure 4  Applicability of prediction studies to the research questions using the 

PROBAST tool 

 

Accuracy of the NephroCheck and NGAL assays for identifying AKI  

We were able to extract or derive 2x2 data from 33 studies that assessed the 

performance of NephroCheck, urine NGAL ARCHITECT and urine and plasma 

BioPorto NGAL assays for identifying AKI in critically ill hospitalised patients. 

These studies are summarised below. 

 

The summary estimates of accuracy and HSROC are provided separately for each 

assay, clinical setting, mode of sampling and type of patient population (adults, 
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children). We also present analyses across all settings. Studies that could not be 

combined in a meta-analysis (less than four) are summarised narratively. 

 

NephroCheck urine assay (Astute Medical) - adult population 

A summary of the diagnostic data for the seven studies that assessed the use of 

NephroCheck (Astute Medical) for detection of AKI in adults is presented in Table 5. 
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Table 5  Summary of diagnostic data for NephroCheck for detection of AKI - adult population 

STUDY ID 

Target 

Population 

(setting) 

Assay Timing of Test Cut off  
Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

AUC 

(95% CI) 

Prevalence 

of AKI 

Oezkur 

201729 
Cardiac Surgery 

NephroCheck, Astute 

Medical 

 

ICU-admission  

 

0.3 ng/mL2/1000 

0.60 0.88 NR 0.19 

Cummings 

201928 
Cardiac Surgery 

NephroCheck, Astute 

Medical 
ICU admission 0.3 ng/mL2/1000 

0.31  

(0.09, 0.61) 

0.78  

(0.74, 0.82) 

0.68  

(0.54, 0.81) 

 

0.035 

 

Kashani 

201336 

Critical care - mixed 

population 

(ICU/ITU) 

NephroCheck, Astute 

Medical 
ICU admission 0.3 ng/mL2/1000 0.89 0.50 0.8 0.14 

Bihorac 

201431 

Critical care - mixed 

population 

(ICU/ITU) 

NephroCheck, Astute 

Medical 

Within 24 h of 

admission to ICU 
0.3 ng/mL2/1000 

0.92  

(0.85, 0.98) 

0.46  

(0.41, 0.52) 

0.82  

(0.76, 0.88) 
0.17 

Hoste 201435 

Critical care - mixed 

population 

(ICU/ITU) 

NephroCheck, Astute 

Medical 
ICU admission 0.3 ng/mL2/1000 0.89 0.53 

0.79  

(0.69, 0.88) 
0.18 

Kimmel 

201638 

Critical care - mixed 

population 

NephroCheck, Astute 

Medical 

Admission to the 

internal medicine 

service 

Between 0.3 and 

2.0 ng/mL2/1000 

0.76  

(0.63, 0.87) 

0.53  

(0.48, 0.57) 

0.74  

(0.66, 0.81) 
0.15 

Di Leo 

201832 

Critical care - mixed 

population 

(ICU/ITU) 

NephroCheck, Astute 

Medical 
ICU admission 0.3 ng/mL2/1000 0.56 0.54 0.63 0.34 
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SEE ERRATUM

Cardiac surgery  

Two studies, Cummings 201928 and Oezkur 2017,29 assessed the use of NephroCheck 

for detection AKI in patients after cardiac surgery (total 584 patients). Both studies 

used the same cut off point (0.3 ng/mL2/1000). The study by Cummings et al. 

assessed a total of 400 cardiac patients soon after ICU admission. The sensitivity and 

specificity values were 0.31 (95% CI 0.09 to 0.61) and 0.78 (95% CI 0.74 to 0.82), 

respectively. The study was in any other ways consistent with other cardiac surgey 

cohorts but showed a low prevalence of AKI (4%).  Only 14 participants developed 

AKI KDIGO stage 2 and 3. The study by Oezkur et al. assessed 184 patients 

immediately after cardiac surgery. The reported sensitivity and specificity values were 

0.60 (95% CI 0.36 to 0.81) and 0.89 (95% CI 0.80 to 0.95), respectively. The 

prevalence of AKI was 19%. Table 5 shows a summary of the diagnostic data for the 

two studies and Figure 5 the forest plots of sensitivity and specificity. 

 

 

Figure 5 Forest plots of sensitivity and specificity for NephroCheck for detection 

of AKI in adults - cardiac surgery setting 

 

No suitable NephroCheck data in other post-surgical settings (major non-cardiac 

surgery) were available from the included studies. 

 

Critical care - mixed population  

Six studies (2279 participants in total) assessed the use of NephroCheck for detection 

of AKI in hospitalised patients admitted to ICU or critical care for various clinical 

reasons. The cut off point used was consistent across studies (0.3 ng/mL2/1000). Table 

5 shows a summary of the diagnostic data for the six studies and Figure 6 the forest 

plots of sensitivity and specificity. Sensitivity values ranged from 0.64 to 0.92; 

specificity values form 0.46 to 0.56. The summary estimate of sensitivity was 0.83 

(95% CI 0.72 to 0.91) and that of specificity 0.51 (95% CI 0.48 to 0.54). Figure 7 

shows the HSROC with 95% confidence region for the summary operating point and 

95% prediction region. The confidence and prediction regions indicate a greater 
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degree of heterogeneity in sensitivity estimates than in specificity estimates between 

studies. Specificty estimates were low but reasonably homogeneous. It is worth noting 

that all the five studies were of moderate to small sample size (see Figure 6).  

 

 

Figure 6 Forest plots of sensitivity and specificity for NephroCheck for detection 

of AKI in adults - critical care setting  

 

 

 

Figure 7  HSROC for NephroCheck studies - critical care setting 

 

Figure 8 shows the forest plots of sensitivity and specificity estimates for all 

NephroCheck studies (2863 patients in total) across clinical settings. Sensitivity 

values ranged from 0.31 to 0.92 and specificity values from 0.46 to 0.89. Summary 

estimates for sensitivity and specificity were 0.75 (95% CI 0.58 to 0.87) and 0.61 

(95% CI 0.49 to 0.72), respectively. Figure 9 shows the HSROC with 95% confidence 

region for the summary operating point and 95% prediction region. The confidence 

SUPERSEDED –

SEE ERRATUM



80 
 

and prediction regions are large indicating considerable heterogeneity between 

studies. Across studies, estimates of specificity were generally low apart from two 

studies that showed higher estimates. Visual inspection of the forest and HSROC 

plots shows that the study by Cummings et al., is an outlier with a very different trend 

compared with the other studies (outlier). 

 

 

Figure 8  Forest plots of sensitivity and specificity for NephroCheck studies - all 

clinical settings 

 

 

 

Figure 9  HSROC for NephroCheck studies - all clinical settings  

 

There were no studies assessing the use of NephroCheck in children as this biomarker 

is recommended for adult use only (people >21 years). 
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Urine NGAL ARCHITECT assay (Abbott) - adult population 

Cardiac surgery  

Two studies, Parikh 201139 and Thanakitcharu 201450, provide test accuracy data on 

the use of uNGAL ARCHITECT for detection of AKI in patients who underwent 

cardiac surgery. The multicentre cohort study by Parikh et al. assessed a total of 1219 

adults after cardiac surgery. The sensitivity and specificity values for the first urine 

sample collected soon after ICU admission were 0.46 (95% CI 0.33 to 0.59) and 0.81 

(95% CI 0.79 to 0.83), respectively. The prevalence of AKI in the study was 5% 

similar to that observed earlier for the Cummings et al., study28 that assessed the role 

of NephroCheck in 400 participants in the same clinical setting. The single centre 

study by Thanakitcharu et al. assessed 130 patients immediately after cardiac surgery. 

The sensitivity and specificity values for the urine sample collected immediately after 

surgery were 0.74 (95% CI 0.49 to 0.91) and 0.6 (95% CI 0.51 to 0.70), respectively. 

The prevalence of AKI in the study was 35%. Table 6 presents a summary of the 

diagnostic data for these two studies and Figure 10 shows the forest plot of sensitivity 

and specificity estimates.  

 

Table 6  Summary of diagnostic accuracy data for urine NGAL ARCHITECT for detection of 

AKI in adults - the cardiac surgery setting  

STUDY ID 

Target 

population 

(setting) 

Assay 
Timing of 

Test 
Cut off  

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

AUC 

(95% CI) 

Prevalence 

of AKI 

Parikh 201139 
Cardiac 

Surgery 

uNGAL, 

ARCHITECT, 

Abbott 

ICU 

admission 
>102 ng/mL 0.46 0.81 0.67 0.05 

Thanakitcharu 

201450 

Cardiac 

Surgery 

uNGAL, 

ARCHITECT, 

Abbott 

Immediately 

after surgery 

>11.3 

ng/mL 
0.74 0.60 

0.69 

(0.52, 0.72) 
0.35 
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Figure 10 Forest plots of sensitivity and specificity for urine NGAL 

ARCHITECT for detection of AKI in adults - cardiac surgery setting 

 

No suitable urine NGAL ARCHITECT data in other post-surgical settings (major 

non-cardiac surgery) were available from the included studies. 

 

Critical care - mixed population  

Four studies (1998 patients in total) assessed the use of uNGAL ARCHITECT for 

detection of AKI in patients admitted to ICU or critical care for various clinical 

reasons. Cut off values varied across studies (see Table 7). In three studies, uNGAL 

levels were reported as ng/mL (per grams of urine) while in one study uNGAL levels 

were normalised by units of urine creatinine (per grams of creatinine). Prevalence of 

AKI ranged from 6% to 36% across studies. Table 7 shows a summary of the 

diagnostic data as reported by the six studies and Figure 11 the forest plots of 

sensitivity and specificity. Sensitivity values ranged from 0.63 to 0.78 and specificity 

values from 0.58 to 0.81. The summary estimate of sensitivity was 0.70 (95% CI 0.63 

to 0.76) and that of specificity 0.72 (95% CI 0.63 to 0.80). Figure 12 shows the 

HSROC with 95% confidence region for the summary operating point and 95% 

prediction region. The confidence and prediction regions are very large indicating 

considerable heterogeneity in estimates of accuracy across studies, especially for 

specificity. The analysis appears to be dominated by the largest Nickolas et al.’s 

study,58 which shows a small number of true positive cases and subsequently low 

sensitivity. 

.



83 
 

Table 7  Summary of diagnostic data for urine NGAL ARCHITECT for AKI in the critical care setting (adult population) 

STUDY ID 
Target Population 

(setting) 
Assay 

Timing of 

Test 
Cut off  

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

AUC 

(95% CI) 

Prevalence 

of AKI 

Dupont 201254 

Critical care - mixed 

population 

(acute decongestive 

heart failure) 

uNGAL, 

ARCHITECT, 

Abbott 

48 h after 

admission 
32 µg/g Cr 0.63 0.58 0.61 0.25 

Kokkoris 

201256 

Critical care - mixed 

population 

(ICU/ITU) 

uNGAL, 

ARCHITECT, 

Abbott 

ICU 

admission 
58.5 ng/mL 

0.78  

(0.61, 0.90) 

0.72  

(0.59, 0.82) 

0.74  

(0.64, 0.82) 
0.36 

Nickolas 

201258 

Critical care - mixed 

population 

(ICU/ITU) 

uNGAL, 

ARCHITECT, 

Abbott 

Admission 

to ED 
104 ng/mL 0.68 0.81 

0.81  

(0.76, 0.86) 
0.059 

Treeprasertsuk 

201561 

Critical care - mixed 

population  

(liver disease) 

uNGAL, 

ARCHITECT, 

Abbott 

Within 72 h 

after 

admission. 

56 ng/mL 0.77 0.73 
0.83  

(0.76, 0.91) 
0.29 
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Figure 11  Forest plots of sensitivity and specificity for urine NGAL 

ARCHITECT for detection of AKI in adults - critical care setting  

 

 

 

Figure 12  HSROC for urine NGAL ARCHITECT studies - clinical care setting 

(adult population)  

 

Figure 13 shows the forest plots of sensitivity and specificity estimates for all uNGAL 

ARCHITECT studies (3347 patients in total) across all clinical settings. Sensitivity 

values ranged from 0.46 to 0.78 and specificity values from 0.58 to 0.81. Summary 

estimates for sensitivity and specificity were 0.67 (95% CI 0.58 to 0.76) and 0.72 

(95% CI 0.64 to 0.79), respectively. Figure 14 shows HSROC with 95% confidence 

region for the summary operating point and 95% prediction region. The confidence 

and prediction regions are large indicating heterogeneity between studies. 

  



85 
 

 

Figure 13  Forest plots of sensitivity and specificity for urine NGAL 

ARCHITECT for detection of AKI in adults across all clinical settings  

 

 

 

Figure 14  HSROC for urine NGAL ARCHITECT studies – all clinical settings 

(adult population)  

 

Urine NGAL assay (BioPorto) - adult population 

Cardiac surgery  

One study, Yang 2017,67 assessed the use of uNGAL (BioPorto) for detection of AKI 

in a total of 398 patients, who underwent cardiac surgery. uNGAL levels were 

normalised by units of urine creatinine (cut off 98 µg/g Cr). The sensitivity and 

specificity values for the urine sample collected 6 hours after surgery were 0.78 (95% 

CI 0.71 to 0.84) and 0.48 (95% CI 0.41 to 0.54), respectively. The prevalence of AKI 

in the study was 41%.	
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Non-cardiac surgery 

One study, Cho 2014,68 assessed the use of uNGAL (BioPorto) for detection of AKI 

in 131 patients undergoing hepatobiliary surgery. uNGAL cut off was 92.85 ng/mL. 

The sensitivity and specificity values for the urine sample collected just before 

surgery were 0.78 (95% CI 0.52 to 1.00) and 0.80 (95% CI 0.73 to 0.87), respectively. 

The prevalence of AKI in the study was 8%. 

 

Critical care - mixed population  

Six studies (1442 patients in total) assessed the use of uNGAL (BioPorto) for 

detection of AKI in patients admitted to ICU or critical care for various clinical 

reasons. Some studies reported absolute levels of uNGAL and others levels 

normalised to urine creatinine. The threshold varied across studies (see Table 9). 

Prevalence of AKI ranged from 5% to 49% across studies. Table 9 shows a summary 

of the diagnostic data for the six studies and Figure 15 the forest plots of sensitivity 

and specificity. Sensitivity values ranged from 0.58 to 0.90 and specificity values 

from 0.70 to 1.00. The summary estimate of sensitivity was 0.72 (95% CI 0.61 to 

0.80) and that of specificity 0.87 (95% CI 0.66 to 0.96). Figure 16 shows the HSROC 

with 95% confidence region for the summary operating point and 95% prediction 

region. The confidence and prediction regions are large indicate heterogeneity 

between studies, especially for specificity. 
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Table 8  Summary of diagnostic data for urine NGAL (BioPorto) for AKI in the critical care setting (adult population) 

STUDY ID 

Target 

Population 

(setting) 

Assay Timing of Test Cut off 
Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

AUC 

(95% CI) 

Prevalence 

of AKI 

Nickolas 200876 

Critical care - 

mixed population 

(ICU/ITU) 

uNGAL, 

BioPorto 
Admission to ED 130 µg/g Cr 

0.90 

(0.73, 0.98) 

1.00  

(0.99, 1.00) 

0.95  

(0.88, 1.00) 
0.047 

Cho 201371 

Critical care - 

mixed population 

(ICU/ITU) 

uNGAL, 

BioPorto 
ICU admission NR 0.74 0.70 

0.77  

(0.69, 0.85) 
0.37 

Matsa 201475 

Critical care - 

mixed population 

(ICU/ITU) 

uNGAL, 

BioPorto 
ICU admission 350 ng/mL 

0.58  

(0.44, 0.70) 

0.84  

(0.75, 0.91) 
0.79 0.38 

Barreto 201470 

Critical care - 

mixed population 

(liver disease) 

uNGAL, 

BioPorto 

When the 

infection was 

detected 

51 µg/g Cr 0.66 0.70 
0.72  

(0.64, 0.81) 
0.49 

Hjortrup 201574 

Critical care - 

mixed population 

(ICU/ITU) 

uNGAL, 

BioPorto 
ICU admission 582 ng/mL 0.75 0.77 

0.71  

(0.59, 0.82) 
0.24 

Tecson 201780 

Critical care - 

mixed population 

(ICU/ITU) 

uNGAL, 

BioPorto 

Within 48 hours 

of ICU admission 
98 ng/mL 

0.64 

(0.45, 0.80) 

0.81  

(0.75, 0.86) 
- 0.13 
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Figure 15  Forest plots of sensitivity and specificity for urine NGAL (BioPorto) 

for detection of AKI adults - critical care setting  

 

 

 

Figure 16 HSROC for urine NGAL (BioPorto) studies - critical care setting  

 

Figure 17 shows the forest plots of sensitivity and specificity estimates for the eight 

studies (1971 patients in total) assessing uNGAL (BioPorto) for detection of AKI in 

adults across all clinical settings. Sensitivity values ranged from 0.58 to 0.90 and 

specificity values from 0.48 to 1.00. Summary estimates for sensitivity and specificity 

were 0.73 (95% CI 0.65 to 0.80) and 0.83 (95% CI 0.64 to 0.93), respectively. The 

HSROC together with the 95% confidence region for the summary operating point 

and the 95% prediction region is shown in Figure 18. The confidence and prediction 

regions are large indicating considerable heterogeneity between studies. 
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Figure 17  Forest plots of sensitivity and specificity for urine NGAL (BioPorto) 

for detection of AKI in adults across all clinical settings  

 

 

Figure 18  HSROC for urine NGAL (BioPorto) studies for detection of AKI in 

adults- all clinical settings  

 

Urine NGAL assays (Abbott and BioPorto) critical care 

Figure 19 shows the forest plots of sensitivity and specificity estimates for the 10 

uNGAL (Abbott and BioPorto) studies (3441 patients in total) that assessed patients 

admitted to critical care. Sensitivity values ranged from 0.58 to 0.90 and specificity 

values from 0.58 to 1.00. Summary estimates for sensitivity and specificity were 0.71 

(95% CI 0.64 to 0.77) and 0.82 (95% CI 0.67 to 0.90), respectively. Figure 20 shows 

the HSROC with 95% confidence region for the summary operating point and 95% 
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prediction region. The prediction region is large, especially for specificity, indicating 

heterogeneity across studies.  

 

Figure 19  Forest plots of sensitivity and specificity for all urine NGAL assays 

(Abbott and BioPorto) for detection of AKI in adults admitted to critical care  

 

 

 

Figure 20  HSROC for all urine NGAL assays (Abbott and BioPorto) for 

detection of AKI in adults- critical care setting  

 

Urine NGAL assays (Abbott and BioPorto) across all settings 

Figure 21 shows the forest plots of sensitivity and specificity estimates for all 14 

uNGAL (BioPorto) studies (5319 patients in total) across all clinical settings. 

Sensitivity values ranged from 0.46 to 0.90 and specificity values from 0.48 to 1.00. 

Summary estimates for sensitivity and specificity were 0.71 (95% CI 0.64 to 0.76) 
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and 0.78 (95% CI 0.67 to 0.87), respectively. Figure 22 shows the HSROC with 95% 

confidence region for the summary operating point and 95% prediction region. The 

prediction region is large indicating heterogeneity across studies.  

 

 

Figure 21  Forest plots of sensitivity and specificity for all urine NGAL assays 

(Abbott and BioPorto) for detection of AKI in adults across all clinical settings  

 

 

 

Figure 22  HSROC for all urine NGAL assays (Abbott and BioPorto) for 

detection of AKI in adults- all clinical settings  
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Plasma NGAL assay (BioPorto) – adult population  

No suitable data in any post-surgical setting (cardiac surgery or major non-cardiac 

surgery) were available from the included studies. 

 

Critical care - mixed population  

Four studies (771 patients in total) assessed the use of plasma NGAL (BioPorto) for 

detection of AKI in patients admitted to ICU or critical care for various clinical 

reasons. Cut off varied across studies (see Table 9). Prevalence of AKI ranged from 

13% to 38% across studies. Table 9 shows a summary of the diagnostic data for the 

four studies and Figure 23 the forest plots of sensitivity and specificity. Sensitivity 

values ranged from 0.58 to 0.93 and specificity values from 0.23 to 0.85. The 

summary estimate of sensitivity was 0.76 (95% CI 0.56 to 0.89) and that of specificity 

0.67 (95% CI 0.40 to 0.86). Figure 24 shows the HSROC with 95% confidence region 

for the summary operating point and 95% prediction region. Confidence and 

prediction regions are large and greater for sensitivity than specificity. While this 

indicates the presence of heterogeneity across studies, it is worth noting that all 

studies and the confidence and prediction regions are positioned in the left side of the 

graph, above the diagonal of no effect. It is worth paying attention to the Itenov et 

al.’s  study, which shows a high sensistivity estimate and a very low specificity 

estimate.
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Table 9  Summary of diagnostic accuracy data for plasma NGAL (BioPorto) for AKI in the critical care setting (adult 

population) 

STUDY ID 
Target Population 

(setting) 
Assay Timing of Test Cut off  

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

AUC 

(95% CI) 

Prevalence of 

AKI 

Matsa 201475 

Critical care - 

mixed population 

(ICU/ITU) 

pNGAL, 

BioPorto 
ICU admission 400 ng/mL 

0.60 

(0.47, 0.73) 

0.85  

(0.77, 0.92) 
0.77 0.38 

Hjortrup 201574 

Critical care - 

mixed population 

(sepsis) 

pNGAL, 

BioPorto 
ICU admission 558 ng/mL 0.58 0.76 

0.66  

(0.54, 0.77) 
0.24 

Tecson 201780 

Critical care - 

mixed population 

(ICU/ITU) 

pNGAL, 

BioPorto 

Within 48 hours 

of ICU 

admission 

142 ng/mL 
0.79  

(0.61, 0.91) 

0.73  

(0.67, 0.79) 

0.76  

(0.64, 0.87) 
0.13 

Itenov 201783 

Critical care - 

mixed population 

(ICU/ITU) 

pNGAL, 

BioPorto 
ICU admission 185 ng/mL 0.93 0.23 NR 0.36 
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Figure 23  Forest plots of sensitivity and specificity for plasma NGAL (BioPorto) 

for detection of AKI in adults - the critical care setting 

 

 

 

Figure 24  HSROC for plasma NGAL (BioPorto) studies for detection of AKI in 

adults - critical care setting 

 

Table 10 presents a summary of the diagnostic data for the seven uNGAL studies that 

assessed AKI in children. All but one study assessed children who underwent cardiac 

surgery. Across studies, the age of the peadiatric population ranged from 1 day to 8 

years.
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Table 10  Summary of diagnostic accuracy data for uNGAL assays (Abbott and BioPorto) for detection of AKI - child population  

STUDY ID 
Population 

(setting) 
Assay Timing of Test Cut off 

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

AUC 

(95% CI or 

SE) 

Prevalence of 

AKI 

Parikh 

201186 
Cardiac Surgery 

uNGAL, 

ARCHITECT, 

Abbott 

ICU admission >72 ng/mL 0.42    0.85    0.71    

 

0.17 

Cantinotti 

201290 
Cardiac Surgery 

uNGAL, 

ARCHITECT, 

Abbott 

2 h after surgery 49.9 ng/mL 0.784    0.815    
0.85  

(0.03) 

 

0.27 

Bennett 

201389 
Cardiac Surgery 

uNGAL, 

ARCHITECT, 

Abbott 

2 h after surgery 
>150 

ng/mL 

0.79  

(0.69, 0.86) 

0.92  

(0.84, 0.96) 
0.93    

 

0.50 

Seitz 201392 Cardiac Surgery 

uNGAL, 

ARCHITECT, 

Abbott 

2h after end of 

surgery 
27.6 ng/mL 0.55    0.43     0.56    

 

0.55 

Alcaraz 

201491 
Cardiac Surgery 

uNGAL, 

ARCHITECT, 

Abbott 

ICU admission 100 ng/mL 0.82    0.76    
0.84  

(0.76, 0.92) 

 

0.34 

Yang 201767 

 

Cardiac Surgery 

 

uNGAL, BioPorto 6 h after surgery 186µg/g Cr 0.77    0.47    
0.72  

(0.64, 0.80) 

 

0.39 

Zwiers 

201593 

Critical care - 

mixed population 

(ICU/ITU) 

uNGAL, 

ARCHITECT, 

Abbott 

ICU admission 126 ng/mL 0.76    0.84    
0.81  

(0.68, 0.94) 

 

0.35 
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Urine NGAL ARCHITECT assay (Abbott) - child population 

Cardiac surgery  

Five studies (887 children in total) assessed the use of uNGAL ARCHITECT for 

detection of AKI in children who underwent cardiac surgery. Cut off used to define a 

positive test and timing of biomarkers measurements varied across studies (see Table 

10). Prevalence of AKI ranged from 17% to 55% across studies. Table 10 shows a 

summary of the diagnostic data for the five studies and Figure 25 the forest plots of 

sensitivity and specificity. Sensitivity values ranged from 0.42 to 0.83 and specificity 

values from 0.43 to 0.92. The summary estimate of sensitivity was 0.68 (95% CI 0.53 

to 0.80) and that of specificity 0.79 (95% CI 0.63 to 0.89). Figure 26 shows the 

HSROC with 95% confidence region for the summary operating point and 95% 

prediction region. The confidence and prediction regions are very large indicating 

considerable heterogeneity between studies. 

 

 

Figure 25  Forest plots of sensitivity and specificity for urine NGAL 

ARCHITECT (Abbott) for detection of AKI in children - cardiac surgery setting  
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Figure 26  HSROC for urine NGAL ARCHITECT (Abbott) studies for detection 

of AKI in chidlren - cardiac surgery setting  

 

Critical care - mixed population  

One study, Zwiers 2015,93 assessed the use of uNGAL ARCHITECT for detection of 

AKI in 324 children admitted to ICU or critical care for various clinical reasons. The 

cut off was 126 ng/mL. The prevalence of AKI was 35%. The sensitivity and 

specificity values for the urine sample collected at ICU admission were 0.77 (95% CI 

0.60 to 0.90) and 0.85 (95% CI 0.74 to 0.92), respectively. The prevalence of AKI in 

the study was 35%. 

 

Urine NGAL assay (BioPorto) - child population  

Cardiac surgery 

One study, Yang 2017,67 assessed the use of uNGAL (BioPorto) for detection of AKI 

in 323 children who underwent cardiac surgery. uNGAL was measured using a 

concentration normalised by units of creatinine (see Table 4). The sensitivity and 

specificity values for the urine sample collected 6 hours after surgery were 0.77 (95% 

CI 0.69 to 0.84) and 0.47 (95% CI 0.40 to 0.54), respectively. The prevalence of AKI 

in the study was 39%. 
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Urine NGAL assays (Abbott and BioPorto) in the cardiac surgery setting – child 

population 

Figure 27 shows the forest plots of sensitivity and specificity estimates for the six 

studies (1210 children in total) that assessed uNGAL assays (ARCHITECT by Abbott 

and uNGAL by BioPorto) for detection of AKI in children who underwent cardiac 

surgery. Sensitivity values ranged from 0.42 to 0.83; specificity values from 0.43 to 

0.92. Summary estimates for sensitivity and specificity were 0.70 (95% CI 0.57 to 

0.80) and 0.74 (95% CI 0.57 to 0.86), respectively. Figure 28 shows the HSROC with 

95% confidence region for the summary operating point and 95% prediction region. 

Both the confidence and prediction regions are very large indicating considerable 

heterogeneity between studies. 

 

 

Figure 27  Forest plots of sensitivity and specificity for all urine NGAL assays 

(Abbott and BioPorto) for detection of AKI in children who underwent cardiac 

surgery  

 

 

Figure 28  HSROC for all urine NGAL (Abbott and BioPorto) studies for 

detectionof AKI in children - cardiac surgery setting   
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Urine NGAL assays (Abbott and BioPorto) all clinical settings - child population 

Figure 29 shows the forest plots of sensitivity and specificity estimates for the seven 

studies (1310 children in total) assessing uNGAL assays (ARCHITECT by Abbott 

and uNGAL by BioPorto) for detection of AKI in children across all clinical settings. 

Sensitivity values ranged from 0.42 to 0.83; specificity values from 0.43 to 0.92. 

Summary estimates for sensitivity and specificity were 0.71 (95% CI 0.60 to 0.80) 

and 0.76 (95% CI 0.61 to 0.86), respectively. Figure 30 shows the HSROC with 95% 

confidence region for the summary operating point and 95% prediction region. The 

confidence and prediction regions are very large indicating considerable heterogeneity 

between studies. 

 

 

Figure 29  Forest plots of sensitivity and specificity for all urine NGAL assays (Abbott and 

BioPorto) for detection of AKI in children across all clinical settings  

 

 

Figure 30  HSROC for all urine NGAL studies (Abbott and BioPorto assays) for 

detection of AKI in children - all clinical settings  
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Accuracy of NephroCheck, ARCHITECT NGAL and BioPorto NGAL assays for 

detection of AKI in critically ill patients 

The accuracy of NephroCheck, urine ARCHITECT NGAL, and urine and plasma 

BioPorto NGAL studies for detection of AKI in each clinical setting for both adults 

and children is shown in Table 11 below. The table displays either the AUC estimates 

as reported by individual studie or the AUC summary estimates together with the 

corresponding prediction intervals when pooling of AUC was feasible. Associated 

forest plots of the AUC meta-analyses are presented in Appendix 9. For the adult 

population the AUC summary estimates ranged from 0.62 for uNGAL BioPorto to 

0.74 for pNGAL BioPorto in the cardiac surgery setting; and from 0.72 for urine and 

plasma NGAL BioPorto to 0.76 for uNGAL ARCHITECT in the critical care setting. 

For the children population in the cardiac surgery setting, the AUC summary 

estimates ranged from 0.80 for uNGAL ARCHITECT to 0.88 for uNGAL BioPorto. 

All AUC summary estimates had relatively large 95% prediction intervals indicating 

heterogeneity between studies. The forest plots in Appendix 9 show that variation is 

both between and within studies. 

 

For each biomarker, Table 11 shows the AUC for detection of AKI compared with 

that of sCR or conventional clinical assessment as reported by the individual studies 

that provided this information. AUC values varied across studies. In the majority of 

cases, the reported AUC indicated a slightly better performance of the biomarkers 

compared with that of sCr or conventional clinical assessment for detection of AKI. 

However, in a number of cases sCr or conventional clinical assessment appeared to 

perform better than the biomarkers under assessment.  
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Table 11  AUC and pooled AUC for NephroCheck and NGAL studies for 

detection of AKI  

Population, 

biomarker and 

setting  

No of 

studies 

AUC estimate 

(95% CI) 

AUC summary 

estimate 

(95% CI) 

 

(95% 

prediction 

interval) 

Adults 

NephroCheck 

across all settings 

7 - 0.76 (0.50, 0.91) (0.47, 0.90) 

Adults NephroCheck 

cardiac surgery 

1 0.68 (0.54, 0.81) - - 

Adults NephroCheck 

major non-cardiac 

surgery 

- - - - 

Adults NephroCheck 

critical care 

6 - 0.74 (0.67, 0.81) (0.44, 0.91) 

  

Adults uNGAL 

ARCHITECT 

(Abbott) all settings 

14 - 0.73 (0.68, 0.78) (0.53, 0.87) 

Adults uNGAL 

ARCHITECT 

(Abbott) cardiac 

surgery 

6 - 0.70 (0.65, 0.74) (0.58, 0.79) 

Adults uNGAL 

ARCHITECT 

(Abbott) major non-

cardiac surgery 

1 0.50 (034, 0.66) - - 

Adults uNGAL 

ARCHITECT 

(Abbott) critical care 

7 - 0.76 (0.69, 0.82) (0.50, 0.91) 

  

Adults uNGAL 

(BioPorto) across 

settings 

15 - 0.70 (0.65, 0.74) (0.53, 0.82) 

Adults uNGAL 

(BioPorto) cardiac 

surgery 

4 - 0.62 (0.55, 0.69) 

 

(0.33, 0.84) 



102 
 

Adults uNGAL 

(BioPorto) major 

non-cardiac surgery 

1 0.78 (0.66, 0.90) - - 

Adults uNGAL 

(BioPorto) critical 

care 

10  

 

- 0.72 (0.67, 0.77) (0.54, 0.85) 

  

Adult uNGAL 

(Abbott and 

BioPorto) cardiac 

surgery 

10 - 0.67 (0.62, 0.78) (0.53, 0.78) 

Adult uNGAL 

(Abbott and 

BioPorto) major 

non-cardiac surgery 

2 - 0.65 (0.35, 0.86) - 

Adult uNGAL 

(Abbott and 

BioPorto) critical 

care 

17 - 0.74 (0.70, 0.78) (0.56, 0.86) 

Adult uNGAL 

(Abbott and 

BioPorto) all 

settings 

29 - 0.71 (0.68, 0.74) (0.55, 0.84) 

  

Adults pNGAL 

(BioPorto) across all 

settings 

10 - 0.72 (0.66, 0.77) (0.52, 0.86) 

Adults pNGAL 

(BioPorto) cardiac 

surgery 

3 - 0.74 (0.65, 0.82) (0.06, 0.99) 

Adults pNGAL 

(BioPorto) major 

non-cardiac surgery 

1 0.78 (0.66, 0.90) - - 

Adults pNGAL 

(BioPorto) critical 

care  

7 - 0.72 (0.65, 0.78) (0.47, 0.88) 

  

Child uNGAL 

(Abbott and 

9 - 0.81 (0.71, 0.88) (0.37, 0.97) 
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BioPorto) across 

settings 

Child uNGAL 

ARCHITECT 

(Abbott) cardiac 

surgery 

5 - 0.80 (0.65, 0.90) (0.17, 0.99) 

Child uNGAL 

(BioPorto) cardiac 

surgery 

2 - 0.88 (0.47, 0.98) - 

Child uNGAL 

(Abbott and 

BioPorto) all 

cardiac surgery 

7 - 0.82 (0.71, 0.90) (0.31, 0.98) 

Child uNGAL 

ARCHITECT 

(Abbott) critical care 

1 0.81 (0.69, 0.94) - - 

Child uNGAL 

(BioPorto) critical 

care 

1 0.68 (0.55, 0.81) - - 

Child uNGAL 

(Abbott and 

BioPorto) critical 

care  

2 - 0.73 (0.58, 0.84) - 
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Table 12  AUC forNephroCheck, urine NGAL ARCHITECT, and urine and plasma BioPorto NGAL for detection of AKI  

compared with the AUC for creatinine or conventional clinical assessment 

   AUC (95% CI or SEM) 

Study ID, geographical 

location, patient popualtion 

 

Clinical setting Biomarker and setting Creatinine or clinical model Biomarker 

Bihorac 201431, USA, Adult 

population 

Critical care (mixed 

population) 

Nephrocheck Serum creatinine 0.63 (0.56-0.70) 0.82 (0.76-0.88) 

Kashani 201336, North America 

and Europe, Adult population 

Critical care (mixed 

population) 

Nephrocheck Serum creatinine 0.75 (0.70-0.80) 0.80 (0.75-0.84) 

Kimmel 201638, Germany, 

Adult population 

Critical care (mixed 

population) 

Nephrocheck Serum creatinine 0.60 (0.53-0.66) 0.74 (0.66-0.81) 

  pNGAL, BioPorto Serum creatinine 0.60 (0.53-0.66) 0.55 (0.5-0.66) 

  uNGAL, BioPorto Serum creatinine 0.60 (0.53-0.66) 0.66 (0.58-0.73) 

Haase 201462, Germany, Adult 

population 

Cardiac surgery  uNGAL, ARCHITECT Serum creatinine 0.66 (0.51-0.76) 0.71 (0.6- 0.83) 

  pNGAL BioPorto Serum creatinine 0.66 (0.51-0.76) 0.71 (0.58-0.83) 

Kokkoris 201256, Greece, Adult 

population 

Critical care  

(mixed population) 

uNGAL, ARCHITECT Serum creatinine 0.77 (0.67–0.84) 0.74 (0.64–0.82) 

pNGAL Serum creatinine 0.77 (0.67–0.84) 0.78 (0.68-0.85) 

Liebetrau 201349, Germany, 

Adult population  

Cardiac surgery  uNGAL, ARCHITECT 
 

Serum creatinine 0.74 (0.58-0.91) 0.90 (0.811-0.99) 

Parikh 201139, North America, 

Adult population 

Cardiac surgery  uNGAL, ARCHITECT 
 

Clinical model 0.69 (0.04) 0.67 (0.04) 

Parikh 201197, North America, 

Adult population 

Cardiac surgery  
 

uNGAL, ARCHITECT Serum creatinine 0.46 (0.04) 0.71 (0.04) 
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Nickolas 201258, USA and 

Germany, Adult population 

Critical care  

(mixed population) 

uNGAL, ARCHITECT, Abbot Serum creatinine 0.91 (0.87-0.94) 0.81 (NR) 

Treeprasertsuk 201561, 

Thailand, Adult population 

Critical care  

(mixed population) 

uNGAL, ARCHITECT, Abbot Serum creatinine 0.58 (NR) 0.83 (0.76–0.91) 

De Loor 201765, Belgium, Adult 

population 

Cardiac surgery  uNGAL, BioPorto 
 

Serum creatinine 0.78 (0.72-0.83) 0.65 (0.58-0.72) 

Hjortrup 201574, Denmark, 

Adult population 

Critical care  

(mixed population) 

uNGAL, BioPorto Plasma creatinine 0.66 (0.56–0.77) 0.71 (0.59–0.82) 

pNGAL, BioPorto Plasma creatinine 0.66 (0.56-0.77) 0.66 (0.54-0.77) 

Nickolas 200876, USA, Adult 

population 

Critical care  

(mixed population) 

uNGAL, BioPorto  Serum creatinine 1.4 mg/dL 0.92 (0.87-0.98) 0.95 (0.88-1.00) 

Verna 201481, USA, Adult 

population 

Critical care  

(mixed population) 

uNGAL, BioPorto Serum creatinine 0.89 0.86 (NR) 

Alcaraz 201491, Spain, Child 

population 

Cardiac surgery  uNGAL, ARCHITECT 

 

Clinical model 0.85 (0.78-0.93) 0.84 (0.76-0.92) 
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Role of NephroCheck, ARCHITECT urine NGAL and BioPorto NGAL assays in 

predicting worsening of AKI in critically ill people with AKI and of mortality 

and RRT in critically ill patients at risk of AKI  

Table 13 below displays the AUC and the pooled AUC estimates with corresponding 

95% CI for NephroCheck, urine ARCHITECT NGAL and urine and plasma BioPorto 

NGAL studies for the prediction of worsening of AKI, mortality and RRT in each 

clinical setting for both adults and children. Only limited studies were available for 

AUC meta-analyses. Associated forest plots are presented in Appendix 9. In the 

critical care setting (adult population) the AUC values reported in individual studies 

ranged from 0.66 for pNGAL BioPorto to 0.71 for uNGAL BioPorto for worsening of 

AKI, and from 0.55 for pNGAL BioPorto for prediction of 90-day mortality to 0.75 

for uNGAL ARCHITECT for prediction of 30-day mortaliy. One study reported a 

AUC of 0.70 for pNGAL BioPorot for prediction of RRT. The AUC summary 

estimate (pooling of 2 studies) for worseningof AKI in the critical care setting was 

0.65 (0.43, 0.82) for uNGAL ARCHITECT. AUC summary estimates ranged from 

0.62 for uNGAL BioPorto for 90-day mortality to 0.68 for pNGAL BioPorto for in-

hospital mortality with 95% CI spanning from 0.58 to 0.73. The AUC summary 

estimate (2 studies) for prediction of RRT in critical care for uNGAL BioPorto was 

0.74 (0.49-0.89). In the cardiac surgery setting (adult population) AUC values from 

individual studies ranged from 0.68 for uNGAL ARCHITECT to 0.78 for 

NephroCheck for prediction of RRT with 95% CI ranging from 0.57 to 0.84.  

 

  



107 
 

Table 13  AUC estimates for prediction of worsening of AKI, mortality and RRT 

Population, biomarker 
and setting  

Follow-up No of 
studies 

AUC estimate 
(95% CI) 

AUC summary 
estimate 
(95% CI) 

 
AKI 

Adults uNGAL 

ARCHITECT (Abbott) 

Critical care 

During 

hospital stay 

1 - 0.65 (0.43, 0.82) 

Adults uNGAL BioPorto 

Critical care 

During ICU 

stay 

1 0.71 (0.59, 0.82) - 

Adults pNGAL BioPorto 

Critical care 

During ICU 

stay 

1 0.66 (0.54, 0.77) - 

Mortality 

Adults uNGAL 

ARCHITECT (Abbott) 

cardiac surgery 

During 

hospital stay 

11/288 died 

1 0.70 (0.56, 0.84) - 

Adults uNGAL 

ARCHITECT (Abbott) 

major non-cardiac 

surgery 

30 days 

10/109 died 

1 0.65 (0.45, 0.85) - 

Adults uNGAL 

ARCHITECT (Abbott) 

critical care 

30 days 

17/121 died 

1 0.75 (0.66, 0.85) - 

Adults uNGAL 

(BioPorto) critical care 

90 days 2 - 0.62 (0.58, 0.66) 

Adults pNGAL 

(BioPorto) critical care 

In hospital 2 - 0.68 (0.63, 0.73) 

Adults pNGAL 

(BioPorto) critical care 

30 days 

7/105 died 

1 0.72 (0.49, 0.87) - 

Adults pNGAL 

(BioPorto) critical care 

90 days 1 0.55 (0.47, 0.63) - 

Adults NGAL (Abbott 

and BioPorto) critical 

care 

In hospital 2 - 0.76 (0.64, 0.85) 

Children uNGAL 

ARCHITECT (Abbott) 

cardiac surgery 

 

In hospital 

3/196 died 

1 0.91 (0.55, 0.99) - 
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Need of RRT 

Adults NephroCheck 

(Medical Astute)  

cardiac surgery 

NR 1 0.78 (0.71, 0.84) - 

Adults uNGAL 

ARCHITECT (Abbott) 

cardiac surgery 

Up to 12 

months 

22/288 

received RRT 

1 0.68 (0.57, 0.79) - 

Adults uNGAL 

(BioPorto)  

critical care 

- 2 - 0.74 (0.49, 0.89) 

Adults pNGAL 

(BioPorto)  

critical care 

During ICU 

stay  

40/222 

received RRT 

1 0.70 (0.61, 0.78) - 

Child uNGAL 

ARCHITECT (Abbott) 

cardiac surgery 

During 

hospital stay 

4/196 

1 0.86 (0.57, 0.97) - 

 

Table 14 below presents the AUC with 95% CI or the OR with 95% CI for the 

addition of the biomarkers to existing clinical models for the predicition of AKI, 

mortality and RRT. It is worth noting, that the statistical models differed between 

studies and often were not sufficiently detailed. In particular, although most of the 

adjusting predictors were specified, information on the potential candidate variables 

was missing. In general, the number of events was low given the number of 

prediciting variables, even for AKI outcomes. Overall, the addition of biomarkers to 

the clinical models improved risk prediction of newly developed AKI or worsening of 

AKI, and mortality. However, only a limited amount of data were available for each 

biomarker in each clinical setting restricting any generalisable interpretation.  
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Table 14  Addition of biomarkers to existing clinical models for prediction of development or worsening of AKI, mortality and 

RRT  

Study ID, geographical 
location, biomarker, setting 

 AUC (95% CI or SEM) OR (95% CI) Adjustment of the model 

Diagnosis or 
Prediction 

Clinical 
Model 

Biomarker 
Biomarker + 

Clinical 
Model 

Clinical 
Model 

Biomarke
r 

Biomar
ker + 

Clinical 
Model 

 

 
AKI 

Kashani 201336, North America 
and Europe, NephroCheck 
(Astute Medical) Critical care - 
mixed population 

Diagnosis of 
AKI within 
12h.  
Events=101

0.81 
(0.76-0.85)* 

0.80 
(0.75-0.84) * 

0.87 
(0.84-0.90)* 

NR NR NR 
Age, sCR, APACHE III score, HT, 
nephrotoxic diagnosis, liver disease, 
DM and CKD.   

Bihorac 201431, USA, 
NephroCheck (Astute Medical) 
Critical care - mixed population  

Diagnosis of 
AKI within 
12h. 
Events=71 

0.70 
(0.63-0.76) 
p<0.001 

NR 
0.86 
(0.80-0.90) 
p<0.001 

NR NR NR 

Included clinical variables for which 
a univariate association with AKI at 
p<0.1 was found.  Also included 
sCR and the KDIGO criteria.  They 
also then used univariate sig of p<.1. 
Final model seems to include 
enrolment serum creatinine, APAHE 
III score (non renal), BMI. 

Parikh 201139, North America, 
uNGAL ARCHITECT, Cardiac 
surgery 

Diagnosis of 
AKI within 
72h 
Events=60 

0.69 (0.04) 0.67  (0.04) 
0.73 (0.04) 
(p=0.12) 

NR NR NR 

Variables included in the clinical 
model were: age, gender, white race, 
CPB time > 120 minutes, non-
elective surgery, pre-operative 
eGFR, diabetes, and hypertension. 
The improvement of risk prediction 
with the addition of biomarkers to 
the clinical model,was determined 
using NRI and IDI indices. 

Schley 201563, Germany urine 
and plasma NGAL BioPorto, 
Cardiac surgery 

Diagnosis of 
AKI  within 
72h  from 
surgery. 
Events=37

0.76 
(p<0.001) 

pNGAL 0.81 
(0.73-0.90) 
(p<0.001) 
uNGAL 0.63 
(0.51-0.74)

pNGAL 0.80 
(p<0.001) 
uNGAL 0.76 
(p<0.001) 

NR NR NR 

The clinical model was based on the 
European System for Cardiac 
Operative Risk Evaluation 
(EuroSCORE). A multivariable 
analysis was conducted to analyse 
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(p<0.001)  the combination of biomarkers and 
clinical scores.

Kokkoris 201256, Greece, 
uNGAL, ARCHITECT, Abbott, 
Critical care - mixed population  

AKI detection 
within 7days 
 
Events=36 

0.76 
(0.66–0.83) 

0.78           
(0.68-0.85) 

0.85 
(NR) p=0.03 

NR NR NR 

The most efficient reference clinical 
model for AKI prediction included 
SAP III and INR. Addition of 
pNGAL to the clinical model 
improved the AUC. However, the 
combination of pNGAL + sCR 
showed the best AUC (0.86 p=0.04). 

Isshiki 201755, Japan, uNGAL, 
ARCHITECT, Critical care – 
mixed population 

Worsening 
kidney 
function 
within 7 days 
Events=58  

0.85 
(0.77-0.92) 

   0.74  
(0.65-0.84)     

  0.85 
(0.77-0.92) 

NR NR NR 

Variables included in the clinical 
model for the prediction of newly 
developed AKI were: age, sex, 
APACHE II score, sepsis, baseline 
eGFR, sCR level at ICU admission. 

Lee 201884, South Korea, 
pNGAL BioPorto,  
Critical care - mixed population  

Development  
of AKI 
Events=111 

NR NR NR 
5.31  
(0.67– 11) 

0.6 (0.2–
1.7) p= 
0.314 

1.004 
(1.002–
1.006) 
p= 
0.001 

Adjusting for potential confounders 
as determined by the univariate 
analyses.  
 
The Adjusted model includes age, 
CHF, DM, adrenaline dosage, time 
to ROSC, Glasgow coma score, 
lactate, PaO2.PaCO2, initial 
creatinine, SOFA (cardiac, 
pulmonary, renal, hepatic, 
hematologic), CVI and NGAL.   
Of these only SOFA renal, NGAL 
and CVI were significant but a final 
model was not selected. 

Alcaraz 201491, Spain, Child 
population, uNGAL, 
ARCHITECT, Cardiac surgery 

Prediction of 
AKI 
Events=36 

0.85  
(0.78-0.93) 

0.84  
(0.76-0.92) 

0.91 
(0.84-0.97) 
p=0.057 

NR NR NR 

A multivariable logistic regression 
analysis was used to assess the 
predictors of AKI and the 
performance of the model. The 
clinical model (age, CPB time, total 
circulatory arrest use, and RACHS-1 
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score) was determined using 
backward elimination. 

  
Mortality 

 

Isshiki 201755, Japan, uNGAL, 
ARCHITECT, Critical care – 
mixed population 

In hospital 
mortality  (38 
died) 

0.79 
 (0.71-0.86) 

0.72  
(0.65-0.78) 

0.79  
(0.71-0.86) 

NR NR NR 

Variables included in the clinical 
model for the prediction of mortality 
were: age, sex, APACHE II score, 
sepsis. Variables were derived from 
univariate logistic regression 
analysis. 

Verna 201281, USA, uNGAL, 
BioPorto, Critical care - mixed 
population (cirrhosis) 

In hospital 
mortality (15 
died) 

NR NR NR 
2.95  
(1.68-5.61) 

2.00  
(1.36-
2.94) 

6.05 
(1.35-
27.2)  

Adjusted for age, sCr, MELD>17, 
HRS 
 

* C-Statistics  

AKI = acute kidney injury; APACHE = acute physiology and chronic health evaluation; AUC = area under the (receiver operating characteristic) curve; BMI = body 

mass index; CHF = congestive heart failure; CI = confidence interval; CKD = chronic kidney disease; CPB = cardiopulmonary bypass; CVI = cumulative 

vasopressor index; DM = diabetes mellitus; eGFR = estimated glomerular filtration rate; HRS = hepatorenal syndrome; HT = hypertension; ICU = intensive care 

unit; IDI = integrated discrimination index; INR = international normalised ratio; KDIGO = Kidney Disease Improving Global Outcomes; MELD = model for end 

stage liver disease; NR = not reported; NRI = net classification index; PaCO2 = partial pressures of carbon dioxide; PaO2 = partial pressures of oxygen; pNGAL = 

plasma neutrophil gelatinase-associated lipocalin; RACHS = risk adjustment for congenital heart surgery; ROSC = return of spontaneous circulation; SAP = 

simplified acute physiology score; sCR = serum creatinine; SEM = standard error of the mean; SOFA = sequential organ failure assessment; uNGAL = urine 

neutrophil gelatinase-associated lipocalin 
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Interpretation of clinical effectiveness evidence 

The results of the meta-analyses of sensitivity and specificity estimates suggest that 

the biomarkers under investigation (NephroCheck, urine NGAL ARCHITECT and 

urine and plsma NGAL BioPorto assays) may potentially have a role in the detection 

of AKI in critically ill patients. However, due to the considerable clinical and 

statiatical heterogeneity observed across studies and the limited number of studies 

available for certain clinical settings or/and type of biomarker, these results should be 

interpreted with caution and require further evidence to substantiate them. Further, the 

threshold level for NGAL varied considerably across strudies. However, as a common 

threshold for NGAL has yet to be defined acoordingly to different sample media and 

clinical setting, we took the decision to pool results across studies with similar 

characteristics despite this obvious limitation. For the adult population we were able 

to conduct meta-analyses for studies that assessed patients in the critical care (mixed 

population) setting and for studies across all clinical settings. There were too few 

studies assessing patients after cardiac surgery or major non-cardiac surgery. The 

urine Nephrocheck test had the higher pooled sensitivity (0.83) but the worst pooled 

specificity (0.51) while the uNGAL ARCHITECT and the BioPorto uNGAL tests had 

slightly lower pooled sensitivity estimates (0.70 and 0.72, respectively) but better 

pooled specificity estimates (0.72 and 0.87 respectively). The urine NGAL BioPorto 

pooled sensitivity was similar to that of plasma NGAL BioPorto (0.72 versus 0.76) 

whilst the pooled specificity was better for urine NGAL BioPorto (0.87 versus 0.67). 

The biomarkers had a similar performance across all clinical settings (NephroCheck 

pooled sensitivity and specificity were 0.75 and 0.61, respectively; uNGAL 

ARCHITECT pooled sensitivity and specificity were 0.67 and 0.72, respectively; 

uNGAL BioPorto pooled sensitivity and specificity were 0.73 and 0.83, respectively; 

pNGAL BioPorto pooled sensitivity and specificity were 0.76 and 0.67, respectively) 

with pNGAL BioPorto showing the higher sensitivity (0.76) and uNGAL BioPorto 

the higher specificity (0.83). 

 

With regard to the observed low specificy of the NephroCheck test, we do not know 

with certainty whether this is due to the relative poor performamce of the biomarker 

or to the fact that serum creatinine is an imperfect reference standard for assessing 

kidney injury.   
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We also noted that when the studies had lower number of AKI events (low 

prevalence) the relationship observed between sensitivity and specificity estimates 

became quite different compared to that of studies for which prevalence was higher.  

 

For the child population we were able to conduct meta-anlyses for the five urine 

NGAL ARCHITECT studies that assessed children who underwent cardiac surgery. 

The pooled sensitivity was 0.68 and the pooled specificity 0.79. Too few studies were 

available fort other assays or clinical settings. When we combined all urine NGAL 

studies (Abbott and BioPorto) across all settings (seven studies), we obtained similar 

estimates of accuracy (sensitivity 0.71, specificity 0.76). 

 

For prediction of relevant clinical outcomes, only a limited number of studies were 

available for each biomarker in each clinical setting and this hampered the possibility 

to perform pooled analyses. Furthermore, the details of the methodology used for the 

stastical analyses were insufficient especially for older studies. The more recent 

studies appeared to use some of the PROBAST22 recommendations and terminology 

but they were still far from satisfactory as demonstrated by the results of the 

PROBAST assessment (see Figures 3 and 4 above).  Moreover, while information on 

the adjustment strategies and on the process of variables selection was provided in 

individual studies, the original cohort of potential predictors, prior to the multivariable 

analysis, was never clearly specified leading to potential risk of data mining and, 

hence, methodological bias. 

 

Similarly, while there was an indication that addition of biomarkers to existing 

clinical models might improve the prediction of relevant clinical outcomes, studies 

varied substantially in terms of study characteristics and statistical methods used to 

assess prediction limiting any reliable conclusion.  

 

On the whole, we observed considerable clinical and statistical heterogeneity in all 

analyses, especially with regard to clinical setting, NGAL threshold levels, time of 

sample collection, definition of AKI, time of AKI diagnosis, number of AKI events, 

assay platforms. Therefore, we have limited confidence in the validity and reliability 

of the observed results.
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Chapter 4 Assessment of cost-effectiveness 

 

This chapter assesses the cost-effectiveness of alternative biomarkers (NephroCheck, 

ARCHITECT urine NGAL, BioPorto urine and plasma NGAL assays) used in 

combination with standard clinical assessment (i.e., serum creatinine and urine output) 

compared with standard clinical assessment alone for evaluating critically ill people 

who are at risk of developing AKI and who are being considered for possible critical 

care admission in a UK NHS hospital setting. The specific objectives are to review the 

existing cost-effectiveness evidence base for these tests and to develop a de novo 

economic model to assess cost-effectiveness from a UK NHS and personal social 

services perspective. 

 

Systematic review of existing cost-effectiveness evidence 

Objective 

The aim of the review of economic evaluations was to identify, report and critically 

appraise existing economic evaluations of NephroCheck, ARCHITECT urine NGAL, 

urine and plasma NGAL BioPorto assays for evaluating critically ill people (adults 

and children) at risk of developing AKI.   

 

Search strategies 

Comprehensive electronic searches were conducted to identify economic evaluations 

of the candidate tests. Highly sensitive search strategies were developed, to include 

index terms, free-text words, abbreviations, and synonyms. The electronic databases 

Ovid MEDLINE, Ovid EMBASE, NHS Economic Evaluations Database, HTA 

Database, Research Papers in Economics, and ISPOR Scientific Presentations were 

searched, with no restriction on date, language, or publication type. The searches were 

undertaken 27 May 2019, with additional searches on 11 September 2019.  

 

Inclusion and exclusion criteria 

Studies were deemed appropriate for inclusion in the review of economic evaluations 

if they were A) full economic evaluations, defined as a comparative assessment of 

costs and outcomes in the framework of cost-utility, cost-effectiveness, cost-benefit or 

cost-minimisation analyses and B) assessed the cost-effectiveness of the candidate 
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tests within the population defined in the NICE scope (i.e. critically ill people, adults 

and children, at risk of AKI who are being considered for admission to ICU) and C) 

provided sufficient information to judge the quality of the study and obtain any 

relevant data (i.e. conference abstracts alone were unlikely to meet this criteria).  

Economic evaluations conducted alongside single effectiveness studies (e.g. RCTs) 

and decision analysis models were all deemed relevant for inclusion.  Studies were 

excluded if they were methodological studies, systematic reviews of cost-

effectiveness studies (though these were retained for reference), or cost-of-illness 

studies.  Studies were also excluded if they only assessed tests / biomarkers outside of 

the NICE scope (e.g. Cystatin C) or used the candidate tests for a purpose other than 

determining risk of AKI. 

 

Quality assessment of included studies 

Included studies are appraised against the NICE reference case for the assessment of 

cost-effectiveness of diagnostic tests.98 

 

Evidence synthesis of cost-effectiveness studies 

The main findings are summarised in a narrative review, with key study 

characteristics and findings tabulated for ease of comparison.  

 

Results 

Figure 31 illustrates the PRISMA flow chart for the review of economic evaluations.  

The searches identified 125 potentially relevant abstracts.  After abstract screening, 99 

(79.2%) studies were excluded because they did not meet the inclusion criteria. Full 

text articles were sought for the remaining 26 (20.8%) studies for further assessment 

against the inclusion / exclusion criteria. Of those 26 studies, four studies were 

ultimately included in the review97, 99-101. A tabulated summary of the study 

characteristics and results is provided in Table 15 and a quality assessment against the 

NICE reference case provided in Table 16. 
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through other sources 

(n = 0) 

Records screened 

(n = 125) 

Records excluded 

(n = 99) 

Full-text articles excluded  

(n = 22) 

Not Economic Evaluation 

(n=13) 

Not relevant test (N=2) 

Conference abstract of an 

included study (N=1) 

Conference abstract with 

insufficient data to assess 

(N=6) 
Studies included in 

quantitative synthesis 

(meta-analysis) 

(n = 0) 

Full-text articles assessed 

for eligibility 

(n = 26) 

Studies included in 

narrative synthesis 

(n = 4)

Records identified through 

database searching 

(n = 125) 

Records after duplicates removed 

(n = 125) 

Figure 31  PRISMA flow chart for review of cost-effectiveness studies 
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Table 15  Summary of study characteristics and results from the review of economic evaluations 

Author, 
Year 

Hall, 201899 Parikh, 201797 Petrovic, 2015100 Shaw, 2011101 

Population Adults, aged 18+  Adults, aged 18+, without ESRD 
or need for RRT 

Paediatric, age 18 and under Base case: 67 year old male 

Setting Hospital critical care (all-comers) and post cardiac 
surgery subgroup 

hospital (ED) setting, data from 2 
sites 

Post-cardiac surgery, country unclear 
(assume Serbia) 

Post-cardiac surgery 

Objective - To assess the potential cost-effectiveness of 
AKI biomarkers 

 
- To determine the value of future research

- To determine if NGAL can 
reduce hospital costs 

- To determine cost-effectiveness of 
the candidate tests 

To determine cost-effectiveness uNGAL 
for AKI diagnosis 

Country UK  USA  Unclear (assume USA) UK 

Intervention 
(s) 

AKI biomarkers + standard care: 
- NephroCheck 
- Cystatin C (plasma) 
- Cystatin C (urine) 
- Cystatin C (serum) 
- NGAL (plasma) 
- NGAL (urine) 
- NGAL (serum) 

 Serum Creatinine + NGAL 
(urine) 

- CysC (serum) 
- NGAL (urine) 
- uL-FABP 

NGAL (urine) + current practice 
(monitoring	of	
creatinine,	blood	urea	nitrogen,	urine	
output) 

Comparator 
(s) 

Standard care alone (serum creatinine and urine 
output testing) 

 Serum Creatinine alone Serum Creatinine alone Current practice alone 

Source of 
effectiveness 
/ diagnostic 
accuracy 
data 

- No direct effectiveness data 
- Linked evidence approach 
- Diagnostic accuracy data obtained from a 

meta-analysis of diagnostic accuracy studies 

 N/A (cost only) - Linked evidence approach 
- Selected literature 

- Linked evidence approach 
- Selected literature 

Evaluation 
type (DAM / 
RCT) 

Decision tree (diagnostic pathway) + Markov 
cohort model (long term outcomes including CKD, 
ESRD [with or without dialysis], Transplant) 

 Cost-simulation Decision tree (diagnostic pathway) + 
Markov cohort model (long term 
outcomes including CKD, ESRD, 
Transplant and death)

- Decision tree 

Measure of 
benefit 

 QALYs  N/A  QALYs  QALYs 
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Author, 
Year 

Hall, 201899 Parikh, 201797 Petrovic, 2015100 Shaw, 2011101 

Perspective  NHS and PSS  Payer  3rd party payer NHS perspective (though societal 
perspective stated) 

Cost year  2015 prices  Unclear  Unclear  2008 

Time 
horizon 

Decision tree:    90 Days 
Markov model:  Lifetime 

Unclear, assume hospital 
admission duration 

 Lifetime (max age 100)  Life time 

Discount 
rate  

Costs: 3.5% p.a 
QALYs: 3.5% p.a 

NR Costs: 3% p.a 
QALYs: 3% p.a 

 NR 

Sensitivity 
analyses 
conducted? 

Deterministic sensitivity analyses conducted 
around time horizon, test costs, AKI incidence, 
impact of early treatment, costs of AKI 
intervention, ICU utility, diagnostic accuracy, 
additional mortality risk for FP tests results, impact 
of negative test results 
 
PSA conducted: Yes  

Deterministic sensitivity analysis: 
varying hospital cost, LOS, 
proportion with baseline CKD, 
proportion developing UTI, costs 
of further testing. 
 
PSA conducted: cost simulation 

Deterministic sensitivity analysis: 
Incidence of AKI and associated 
mortality, sensitivity and specificity 
 
PSA conducted: Yes 

Deterministic sensitivity analysis: mainly 
different treatment effects, also: baseline 
AKI probability, probability of CKD, 
effect of early intervention on AKI, change 
in hospital costs, change in diagnostic 
accuracy, cost per NGAL test 
 
PSA conducted: Yes

Base case 
results 
(including 
summary of 
incremental 
analyses) 

  
Test 
(ascending 
order of 
cost) 

Inc. 
cost 

Inc. 
QALY 

ICER 
(vs. std 
care) 

ICER 
(incr.) 

Standard 
care

-- -- --  

Cystatin C 
(serum)

+£149 +0.013 £11,476 £11,476 

Cystatin C 
(urine)

+£155 +0.012 £13,449 Dominated

NGAL 
(urine)

+£164 +0.012 £13,742 Dominated

NGAL 
(plasma)

+£164 +0.012 £13,372 Dominated

Cystatin C 
(plasma)

+£166 +0.012 £13,504 Dominated

NGAL 
(serum)

+£215 +0.016 £13,828 £25,492 

  
Test Inc. 

cost 
(site 1) 

Inc. 
cost 
(site 2) 

Standard 
care

-- -- 

NGAL 
(urine)

-$408 -$522 

 

  
Test 
(ascending 
order of 
cost) 

Inc. cost Inc. 
QALY

ICER 
(vs. 
std 
care) 

Standard 
care

-- -- -- 

uL-FABP +$8,522 +1.43 $5,959
sCysC +$9,696 +1.37 $7,077
uNGAL +$12,855 +1.38 $9,315

 

  
Test 
(ascending 
order of 
cost) 

Inc. 
costA

Inc. 
QALYA 

ICER 
(vs. std 
care) 

Standard care -- -- -- 
uNGAL (tx: 
12.5% 
improvement)

-
£173

+0.03 Dominant 

uNGAL (tx: 
25% 
improvement)

-
£428

+0.07 Dominant 

uNGAL (tx: 
50% 
improvement)

-
£937

+0.14 Dominant 

A Calculated from study 
 



119 
 

Author, 
Year 

Hall, 201899 Parikh, 201797 Petrovic, 2015100 Shaw, 2011101 

Nephro-
Check

+£301 +0.016 £19,324 £12.86m 

*note some ICERs may not represent reported inc 
cost / inc. QALY due to rounding errors 

Sensitivity 
analysis 
results 

All test results were sensitive to changes in 
assumptions around test guided changes in patient 
management and associated outcomes resulting 
from tests driven by diagnostic accuracy.  Page 
150 of Hall discusses the full range of sensitivity 
analysis results. 
 
High degree of uncertainty and feasible 
assumptions could change conclusions 

Results were most sensitive to the 
costs in hospital and the 
assumptions about length of stay, 
additional test requirements and 
the baseline proportion of the 
population with CKD. 
 
Urine NGAL remained cost 
saving for all analyses undertaken 

Significant variation in price was not 
found to impact on overall conclusions.  
 

 

 

 

 

 

 Under all conditions, NGAL in addition to 
current practice was the most cost-effective 
strategy when compared with current 
practice alone, even when the treatment 
effect was minimal.  Results were driven 
by the impact of early intervention on 
hospital length of stay. 
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Table 16  Appraisal of included studies against the NICE reference case98 and scope102 

Attribute Reference case and TA Methods guidance Hall, 201899 Parikh, 201797 Petrovic, 2015100 Shaw, 2011101 
Comparator(s)  Therapies routinely used in the NHS, including 

technologies regarded as current best practice 
Yes Yes Yes Yes 

Patient group As per NICE scope (i.e. critically ill pre-icu) No: ICU group of 
patients out-with 
the NICE scope 
which is pre-icu. 

Partially, NICE 
scope includes 
adults as well as 
children 

Partially, however 
NICE scope is 
broader than post 
cardiac surgery only. 

Partially, however 
NICE scope is 
broader than post 
cardiac surgery 
only.

Perspective costs UK NHS & Personal Social Services Yes No No Partially
Perspective benefits  All health effects on individuals Yes No Yes Yes
Form of economic 
evaluation 

Cost-effectiveness analysis (QALYs) Yes No Yes Yes 

Time horizon Sufficient to capture differences in costs and 
outcomes  

Yes No Yes Unclear 

Synthesis of evidence 
on outcomes 

Systematic review Yes No No No 

Outcome measure  Quality adjusted life years Yes N/A Yes Yes
Health states for 
QALY 

Described using a standardised and validated 
instrument (i.e. EQ-5D)

Yes, where 
possible

N/A Unclear Unclear 

Benefit valuation  Time-trade off or standard gamble  Yes, where 
possible

N/A Unclear Unclear 

Source of preference 
data for valuation of 
changes in HRQL 

Representative sample of the public  Yes, where 
possible 

N/A Unclear Unclear 

Discount rate  An annual rate of 3.5% on both costs and health 
effects  

Yes No No No 

Equity  An additional QALY has the same weight 
regardless of the other characteristics of the 
individuals receiving the health benefit 

Yes N/A Yes Yes 

Probabilistic 
modelling 

Probabilistic modelling Yes Yes Yes Yes 

Sensitivity analysis  Deterministic sensitivity analyses conducted Yes Yes Yes Yes
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Relevance of the included studies for the current decision problem 

Of the four studies identified in the review, three conduct cost-effectiveness analyses 

based on decision analysis modelling.  Two of the studies include decision trees to 

capture the diagnostic phase of the model and include Markov cohort modelling to 

capture the long-run sequelae of diagnosis and possible prevention of AKI. Both 

modelling strategies were similar and appropriate for the current decision problem, in 

that they both modelled the progression of AKI to CKD, End Stage Renal Disease 

(ESRD), transplantation and death. However, only one study (Hall et al.)99 was 

conducted in the UK setting and provided results that might be informative for UK 

decision making. Hall et al. was also the only study to assess all the candidate tests 

specified within the NICE scope. Whilst Hall et al provide a comprehensive and high-

quality assessment of the cost-effectiveness of the relevant tests, their setting relates to 

AKI occurring in the context of people already admitted to intensive care units and is 

therefore outside the scope for this assessment. Therefore, substantial revision of the 

Hall et al model is required, particularly for the early acute phase to generate results 

that are appropriate for decision making in critically ill patients who are at risk of AKI 

and are being considered for possible admission to ICU, but are not yet in the ICU 

setting. 

 

Additional literature searches 

Further searches were conducted to help develop the economic model. Broader 

searches were carried out to identify existing economic models in the area of AKI, in 

addition to those identified for the candidate biomarker tests. A separate search was 

also developed for health state utility data relevant to the health states included in the 

economic model. As searches for models and parameters were conducted by Hall et al 

up to 2016, our searches aimed to identify any relevant studies published after this 

date. Supplementary searches were carried out in Medline, Embase, NHS EED, HTA 

database, Research Papers in Economics, and ISPOR Scientific Presentations.  The 

searches were undertaken on 11 September 2019 without any language restrictions. 

The relevant data are discussed in the subsections to follow. 
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Independent assessment of cost-effectiveness 

A two-phase model was developed using TreeAge Pro, 2018 (TreeAge Software, 

Williamstown, MA, 2018)103 to assess the cost-effectiveness of using biomarker tests 

to help detect the risk of AKI development and to help initiate early preventative care.    

 

As described in Chapter 3, there was no direct evidence regarding the clinical 

effectiveness of biomarker guided preventative care versus standard monitoring 

guided preventative care on final health outcomes (e.g. AKI status, mortality, need for 

RRT). Therefore, a linked evidence approach was required to determine the potential 

value of the tests. The model structure was therefore built to reflect hypothesised 

associative benefits of averting AKI or reducing its severity through biomarker guided 

early intervention. The structure was informed by the review of cost-effectiveness 

studies and was based largely on Hall et al. who kindly provided access to their model 

(built in R) under a creative commons licence. The appropriateness of the model 

structure was validated with the External Assessment Group’s (EAG) clinical experts. 

Data sources to populate the model are described in the sections that follow. The 

model was built and analysed following the guidelines stipulated in the NICE 

reference case for diagnostic test evaluation.104 

 

Methods 

Relevant population(s) 

The baseline population and prevalence of CKD in hospital for the model was 

obtained from a Grampian population cohort (described below). The model base case 

analysis is therefore based on a mixed cohort of CKD and non-CKD patients, average 

age 63, 54.3% female. 

 

Diagnostic biomarkers evaluated 

The model aims to assess the cost-effectiveness of the NephroCheck test, NGAL urine 

(i.e. the ARCHITECT Urine NGAL assay and the BioPorto NGAL urine test), and the 

BioPorto NGAL plasma test in combination with standard clinical assessment, 

compared with standard clinical assessment alone (including serum creatinine and 

urine output) for evaluating critically ill people at risk of developing AKI and who are 

being assessed for possible critical care admission.   
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Model structure: Initial decision tree phase 

The systematic review did not identify any randomised trials providing causal 

evidence for the effect of biomarker guided care versus standard monitoring (serum 

creatinine) guided care on patient relevant outcomes such as peak AKI severity, 

admission to ICU, need for renal replacement therapy, CKD or mortality.   

 

In the absence of such data, the initial decision tree phase of the model used a linked 

evidence approach to first capture the potential impact of diagnostic test accuracy 

(sensitivity and specificity) on the probability of averting AKI or reducing its severity 

through earlier adoption of a KDIGO care bundle triggered by a positive biomarker 

test result.  Second, the model then captures possible effects on changes in health 

outcomes through associative links between AKI severity and the relevant outcomes 

(need for ICU care, length of stay, 90 Day mortality, and development of CKD).   

 

These associative links have been built up in the decision tree by re-analysis of 

observational data from Grampian.105 The dataset includes 17,630 adult patients 

admitted to hospital in Grampian in 2003 and is the complete population of all 

patients who had an abnormal kidney function blood test on hospital admission, 

including all patients who developed AKI.  The study methodology is described in 

detail by Sawhney et al,106 but the data derived from the dataset used to populate the 

model are unpublished. These observational, population level data were used to define 

the starting age, sex, and underlying proportion of prevalent CKD cases in the 

modelled cohort. The data were also used to populate the model with respect to the 

distribution of peak AKI severity, as well as length of stay in hospital, probability of 

admission to ICU, and 90-day mortality parameters (by KDIGO AKI stage) for the 

decision tree phase of the model.     

 

In the decision tree, patients who were critically ill in hospital, at risk of developing 

AKI, and who are having their kidney function monitored, are divided into two 

cohorts, those with AKI and those without AKI, depending on the underlying 

prevalence.105, 106  The underlying prevalence of AKI was calculated directly from a 

more recent version of the Grampian dataset, describing all hospital admissions with 

at least one overnight stay in 2012 (for patients having their kidney function 

monitored). The base case prevalence of AKI generated from these data was 9.2%, 
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sampled probabilistically from a beta distribution in the model based on count data.  

Sensitivity analysis uses prevalence data directly from the systematic review studies 

used to generate the diagnostic test accuracy parameters.   

 

AKI is defined in the model as patients who have or are destined to develop AKI 

during their hospital admission and is classified based on the peak severity of AKI.  

There is an assumption in the model that it is possible to avert AKI with early 

biomarker guided treatment in people who would otherwise develop it under standard 

care. However, it should be noted that in some circumstances it may not be possible to 

avoid AKI by earlier detection as AKI may not always be modifiable.3 The 

probability of averting AKI is 0 in the standard care arm.  AKI is split into 4 KDIGO 

defined stages (stage 1-3), with stage 3 split by the proportion of patients receiving 

renal replacement therapy or not.  The initial phase of the model describes the 

associations between peak AKI classification and probability of admission to ICU, 

length of stay in ICU, length of hospital stay, and 90-day mortality. These associative 

effects are all derived from the Grampian population cohort described above.  At the 

end of the 90 days, costs and QALY payoffs are assigned based on the decision tree 

pathway followed, before surviving patients enter the Markov cohort model. 

 

The standard care cohort are assumed to be perfectly identified as having AKI or no 

AKI, based on a combination of serum creatinine levels, other diagnostic workup, and 

clinical expert opinion, which represents clinical practice. The hypothesised 

advantage of the biomarkers is that they may help to detect AKI earlier, but will not 

detect additional cases of AKI compared to current practice. Figure 32 provides an 

illustration of the initial decision tree pathways for the standard care arm of the model.  
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*Note that the AKI 3 pathway in the model is replicated for the proportion of the cohort receiving acute RRT and those not receiving acute RRT 

Figure 32  Simplified decision tree structure up to 90 days for the standard care (Scr) arm of the model  
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The intervention (test) arms of the model are similarly split into AKI and no AKI, 

according to the same prevalence data, but all receive additional testing. It is assumed 

that the background diagnostic work-up is similar for all arms of the model (i.e. all 

patients will continue to have their serum creatinine and urine output monitored). As 

the diagnostic accuracy test data are primarily based on single use of the test, it is 

assumed in the base case model that each test will be administered once only.  It is 

assumed that the test is administered as soon as possible after the patient has been 

determined to be at risk of AKI to enable early detection and preventative measures to 

be implemented. Sensitivity analysis explores the impact of more frequent multiple 

use tests on the results. 

 

The diagnostic accuracy of the candidate tests in addition to serum creatinine, 

compared to serum creatinine alone was obtained from the results of the systematic 

review and meta-analysis described in Chapter 3. Table 17 describes the diagnostic 

accuracy parameters, namely sensitivity and specificity, used in the modelling. All 

diagnostic data are incorporated probabilistically in the model, accounting for the 

joint uncertainty in sensitivity and specificity for each biomarker test. The logit of the 

sensitivity / specificity for each of the biomarker tests was derived from the meta-

analysis of diagnostic accuracy studies.  The model specified the correlation between 

sensitivity and specificity parameters (on the logit scale). These parameters were 

converted to Cholesky decomposition matrices, with the decomposed data referenced 

by multi-normal distributions, sampling from the mean and standard error (on the 

logit scale). The probabilistic draws were back-transformed from the logit scale for 

application in the model.  It should be noted that diagnostic accuracy data obtained 

from the meta-analyses are based on heterogeneous studies with different thresholds. 

This is particularly true for the NGAL assays, and therefore the results of the 

economic model, particularly for comparisons between different NGAL assays should 

be interpreted cautiously. Further details have been provided in Chapter 3. 
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Table 17  Sensitivity and specificity data used in the model. 

Test Parameter 
Mean value  

(95% CI) 

Mean 

(logit 

scale) 

Standard 

error (logit 

scale) 

Correlation 

for MVN 

distribution 

(logit scale) 

Source 

Nephro-check 

Sensitivity 
0.75 

(0.58 to 0.87) 
1.1178 0.3967 

-0.824 
Meta-analysis 

(Chapter 3) 
Specificity 

0.61 

(0.49 to 0.72) 
0.4573 0.2567 

NGAL plasma 

(BioPorto) 

Sensitivity 
0.76 

(0.56 to 0.89) 
1.1563 0.4615 

-1.000 
Meta-analysis 

(Chapter 3) 
Specificity 

0.67 

(0.40 to 0.86) 
0.6863 0.5659 

NGAL urine 

Abbot 

ARCHITECT 

Sensitivity 0.67  

(0.58 to 0.76) 

 

0.7273 0.2047 

-0.5168 
Meta-analysis 

(Chapter 3) 
Specificity 0.72  

(0.64 to 0.79) 
0.9553 0.1909 

NGAL urine 

BioPorto 

Sensitivity 0.73  

(0.65 to 0.80) 
1.017 0.195 

+0.526 
Meta-analysis 

(Chapter 3) Specificity 0.83  

(0.64 to 0.93) 
1.562 0.511 

 

For the respective biomarker test groups, the proportion of true AKI cases that are true 

positive (TP), and false negative (FN) is determined by test sensitivity, whilst the 

proportion of AKI negative cases that are true negative (TN) or false positive (FP) is 

determined by the test specificity.   

 

Based on the External Assessment Group’s (EAG) own clinical expert opinion, it is 

assumed in the base case that patients testing negative would not have any adaptions 

made to their care pathway.  That is because it would be unlikely that care would be 

de-escalated based solely on a negative NephroCheck or NGAL result, as the 

conservative practitioner would wait to ensure no rise in serum creatinine before 

concluding no AKI was present and stepping down care.   

 

The model assumes that all patients will receive the KDIGO care bundle once they are 

defined as AKI positive using current standard practice methods (i.e. monitoring 
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SUPERSEDED –

SEE ERRATUM

serum creatinine and urine output), regardless of their NephroCheck or NGAL test 

result. The potential to benefit from use of the biomarkers therefore lies in early 

adoption of a preventative care bundle.  For patients testing positive, the model 

includes the functionality to reflect uncertainty in clinical decision making, that is the 

probability that a positive test would be acted upon.  This parameter is assumed to 

take a value of 100%, in accordance with best practice guidance where positive 

biomarker tests should have a preventative KDIGO care bundle implemented with the 

associated costs.  Whilst all positive test results will trigger the KDIGO bundle, only 

those who are TP will accrue any potential benefits of having their AKI averted, or 

having reduced severity (i.e. peak KDIGO stage) AKI.  For exploratory scenarios 

where a test might not be acted upon in practice, the cohort would follow standard 

care pathways according to whether they had AKI or not as measured using current 

clinical practice.    

 

There is no direct evidence to describe the impact of the use of the AKI biomarkers on 

important health outcomes (such as need for ICU care, length of hospital stay, risk of 

90-day mortality or development of new / progression of existing chronic kidney 

disease). Therefore, a linked-evidence approach was required, where we have relied 

on observational associations to infer how prevention or mitigation of AKI may affect 

changes in health outcomes. The associative effects are benefits of averting or 

mitigating AKI that lead to better health outcomes (need for ICU care, CKD and 

mortality).   

 

These associations necessitate causal assumptions, but while a causal link between 

AKI and poor outcomes is plausible, the extent of this causal relationship is uncertain 

and controversial.  It cannot necessarily be assumed that by averting or changing the 

severity of AKI, a patient would have the exact same risks (associative effects from 

the Grampain observational data described above) of ICU and mortality as a patient 

who was never going to develop AKI in the first place.   

 

As the true causal relationship between AKI and health outcomes is unknown, the 

model includes the functionality to apply none, all or a proportion of the relative risk 

of health outcomes such as ICU, mortality and CKD (AKI vs. none) to the AKI 
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averted proportion of the cohort.  This is achieved whilst maintaining the 

observational associations in the standard care arm of the model. 

 

The base case analysis assumes that there are no adverse health consequences of a 

false positive test on either NephroCheck or NGAL. Clinical expert opinion indicates 

that there may be a risk to a patient’s health of inappropriate fluid resuscitation, delay 

of access to appropriate imaging due to concerns regarding contrast exposure, or 

removal of the most effective but potentially nephrotoxic treatments for a critically ill 

patient. However, the magnitude of this negative effect is difficult to quantify.  

Sensitivity analysis therefore explores scenarios where an additional mortality risk is 

added for FP tests.   

 

In summary, the early stage, up to 90 days, costs and outcomes depend on a) the 

diagnostic accuracy of the test, b) clinical decision making in the presence of positive 

or negative test results, c) the initiation of a KDIGO care bundle to avert AKI and 

amend the distribution of peak AKI severity and d) the degree to which the 

hypothesised associative effects between AKI and final health outcomes, such as 

length of hospital stay, admission to ICU, need for RRT, 90 day mortality and risk of 

CKD is modifiable simply by amending the AKI distribution. 

 

Model structure: follow up Markov model 

One potential route to patient benefit is that avoiding AKI or reducing its severity may 

reduce the risk of later developing CKD.  As CKD is defined as a minimum of 3 

months of persistent reduced renal function107, 108, progression from AKI to CKD is 

incorporated in the Markov phase of the model. 

 

Figure 33 illustrates the long term follow up model structure. 
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Figure33  Markov chronic model phase structure 

 

After 90 days, the surviving cohort from each of the decision tree pathways enters a 

life-time Markov model.  The model follows a similar structure to Hall et al99 and 

Parikh et al97 with six mutually exclusive health states: outpatient follow up, chronic 

kidney disease (stages 1-4), ESRD not requiring dialysis, ESRD requiring dialysis, 

post-transplant and death. The cohort either enter the model in the outpatient follow 

up state, where they experience an annual baseline risk of developing CKD, or they 

can directly enter in the CKD state, with the starting proportion in the CKD state 

determined by the underlying CKD prevalence, and the severity of AKI from the 

acute (decision tree) phase of the model. The base case model assumes the outpatient 

cohort have an increased risk of CKD in the first cycle that is dependent on their AKI 

experience, but thereafter the transition between the outpatient follow up and CKD 

states is independent of whether a patient had AKI in the hospital period. Sensitivity 

analysis explores the impact of an increased CKD risk applied for the full life-time 

horizon as per Hall et al.99   

 

The cohort are then modelled to transition through the disease pathway, starting with 

CKD stages 1-4 (defined as a single Markov state), to ESRD, with or without the 

requirement for dialysis, the need for transplant, the success or failure of that 
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transplant, and ultimately progression to death with state specific mortality 

probabilities. The proportion of the cohort having a transplant failure are assumed to 

return to the dialysis health state where they have the same probabilities of a second 

transplant as a first. The cohort are exposed to a probability of all-cause mortality 

from each model state and are assigned mortality probabilities based on the higher 

value of age and sex adjusted all-cause mortality (ACM) or the disease state specific 

mortality obtained from the literature.   

 

Model parameters – probabilities and duration of length of stay 

Early phase probabilities and length of stay (LOS): 

The potential associative links between AKI and ICU admission, ICU LOS, hospital 

LOS and 90-day mortality are all sourced from the Grampian dataset. For chance 

nodes in the decision tree with only two possible branches, probabilities are sampled 

from beta distributions. Where there are three or more branches, probabilities are 

incorporated using Dirichlet distributions.   

 

The model assumes, based on expert opinion and consistent with Hall et al99 that RRT 

is provided only in AKI stage 3 and this is deemed reflective of most current clinical 

practice. Assuming no RRT in patients who have a peak AKI of stage 1 or 2 might be 

considered a favourable scenario for biomarker tests that can reduce AKI severity, 

thereby generating reductions in cost.  In the absence of published UK data, the 

proportion of AKI 3 patients requiring RRT is taken from a retrospective analysis of 

N=5242 ICU survivors with AKI, across 23 French intensive care units.109 N=1603 

had KDIGO AKI stage 3, of which 55.2% received RRT. It is assumed that the 

French ICU setting is broadly transferrable to a UK pre-ICU setting for critically ill 

patients and is therefore appropriate for populating the model. Data reported from 

Hall et al are not used because they relate only to a single UK ICU setting with a 

small sample of AKI 3 (N=18). The EAG’s clinical experts validated these data as 

relevant to the UK setting and noted that the probability was lower than that applied in 

Hall et al, which was consistent with clinical experience outside the ICE setting.  

Further, more detailed data on need for RRT in England is currently being collected 

by the UK renal registry but is not yet publicly available. Table 18 describes the early 

phase probability parameters applied in the model.  
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Table 18  Model parameters for acute, decision tree, phase of the model 

 n N % RR Standard 
error 

Distribution Source 

Incidence of AKIA  

No AKI 42,570 46,884 0.908 --  Remainder Grampian data110 

Any AKI 4314 46884 0.092 -- -- Beta Grampian data110 

AKI1  
(given AKI) 

2,965 4,314  0.687 -- -- Dirichlet Grampian data110 

AKI2  
(given AKI) 

836 4,314 0.194 -- -- Dirichlet Grampian data110 

AKI3  
(given AKI) 

513 4,314 0.119 -- -- Dirichlet Grampian data110 

Probability of admission to ICU  

No AKI 197 14,204 0.014 -- 0.0038 Beta Grampian data105 

AKI 1 208 2072 0.100 -- 0.0254 Beta Grampian data105 

AKI 2 116 812 0.143 1.423 0.1082 LN vs. AKI 1 Grampian data105 

AKI 3 105 542 0.194 1.930 0.1096 LN vs. AKI 1 Grampian data105 

Probability of 90 Day mortality  

No AKI 692 14,204 0.049 -- 0.0069 Beta Grampian data105 

AKI 1 446 2,072 0.215 -- 0.0347 Beta Grampian data105 

AKI 2 280 812 0.345 1.602 0.0640 LN vs. AKI 1 Grampian data105 

AKI 3 251 542 0.463 2.151 0.0624 LN vs. AKI 1 Grampian data105 

Probability of requiring renal replacement therapy 

No AKI, 
AKI 1 & 2 

0 -- -- -- -- -- Assumption 

AKI 3 885 1603 0.550  -- Beta Truche et al. 
2018111

A Note that incidence of AKI data are obtained from 2012 Grampian cohort, whereas probabilities of 

ICU admission and 90 day mortality are obtained from an earlier (2003) dataset. 

 

The data described show potentially strong associations between AKI status or 

severity of AKI, and the probability of needing ICU care, and of dying within 90-days 

following hospital admission. However, these data should not be interpreted as 

definitive causative effects and sensitivity analysis explores the application of 

different assumptions around these highly uncertain associations. 

 

Table 19 reports the average LOS in hospital and in ICU.  Data for length of stay in 

hospital are obtained from the Grampian dataset but ICU LOS was unavailable by 

peak AKI status. ICU LOS data were therefore obtained from an alternative source, 

Bastin et al. 2013,112 a large cohort study of N=1881 adults who had cardiac surgery 
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(and therefore deemed critically ill, and sufficiently matching the scope for this 

assessment). Bastin et al reported median los in ICU by AKI stage (according to 

AKIN and KDIGO criteria).  Given the likely skewed distribution of LOS data, a log-

normal distribution, fitted to mean and median days duration is used to generate the 

simulated draws for the probabilistic analysis. As mean LOS in ICU was not available 

to parameterise the LN distribution, it was assumed that the mean was twice the 

median, reflecting the ratio of mean : median days stay reported in the Leeds 

Teaching Hospitals NHS Trust, AKI registry data, for ICU patients, as reported in 

Hall et al.99 

 

As the variable ‘hospital length of stay’ also includes the time spent in ICU, the time 

on hospital ward is obtained by subtracting ICU LOS from total hospital LOS for the 

application of costs and utilities in the model. As the probabilistic analysis samples 

independently from these distributions, an additional correction is added to the model 

to ensure LOS in ICU cannot exceed LOS overall in hospital in any of the sampled 

draws.  The average LOS in hospital / ICU for those with a peak AKI 3 is applied to 

both those requiring / not requiring RRT. The assumption that requirement for RRT 

would not usually extend the hospital admission for this patient cohort has been 

validated by the EAG’s clinical experts.  
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Table 19  Duration parameters used for the acute phase of the model 

 Mean SD Median IQR N Distribution Source 

Hospital LOS 
No AKI 8.1 22.8 3 1 to 8 14204 LN Grampian data 

AKI 1 26.3 38.1 14 7 to 31 2072 LN Grampian data 

AKI 2 32.4 56.5 18 8 to 36 812 LN Grampian data 

AKI 3 28.4 32.5 17 9 to 35 542 LN Grampian data 

ICU LOS A 
No AKI 2 -- 1 1 to 2  LN Bastin et al. 

2013112

AKI 1 4 -- 2 1 to 3  LN Bastin et al. 
2013112

AKI 2 8 -- 4 1 to 8  LN Bastin et al. 
2013112

AKI 3 26 -- 13 6 to 27  LN Bastin et al. 
2013112

AKI: Acute Kidney Injury; ICU: Intensive Care Unit; IQR: Inter-quartile range; LOS: Length of Stay 
A For LOS in ICU, only median LOS information was available.  For the purposes of parameterising 

the LN distribution and to account for the likely skewed nature of the data, it was assumed that the 

mean was twice the median.  This ratio was obtained by dividing the mean LOS reported in Hall et al 

by the median LOS for all AKI patients in the ICU setting. 

 

The relative effects of diagnostic biomarkers on AKI and clinical outcomes: the 

impact of early adoption of a KDIGO care bundle  

The impact of an early KDIGO care bundle on AKI 

National level guidelines16 indicate that a patient defined as being at risk of 

developing AKI, through a positive biomarker result, should have all appropriate 

efforts to ensure that AKI does not develop, and if it does, should be minimised in 

terms of severity (i.e. providing maximum support possible for the kidneys). The 

model therefore assumes that all AKI patients will receive a KDIGO care bundle, and 

the only difference between the testing strategies is the duration for which that bundle 

is implemented, with earlier implementation assumed to incur additional resource use 

in terms of fluid management, nephrologist review and pharmacist review of 

medications as well as the removal of any potentially nephrotoxic agents where 

necessary.15  

 

There are two potential mechanisms by which early adoption of a KDIGO care bundle 

might lead to patient benefit. These are a) to avert AKI in people in whom it would 
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otherwise develop, and b) to shift the distribution of AKI severity (between KDIGO 

AKI stages 1-3) given that it occurs.     

 

Hall et al. conducted a review of the literature to identify studies testing the impact of 

early preventative intervention for AKI.99 Their searches identified 8 studies relevant 

to early intervention in the UK setting (excluding early RRT which was deemed 

contentious). Four studies explored the impact of early nephrologist involvement 

which was deemed to be most reflective proxy for the non-specific care bundles that a 

patient may access as part of the KDIGO care bundle recommendations.15 The largest 

of these 4 studies, with a sample of 1,096 was used in the Hall et al. economic model, 

reporting that early nephrologist consultation reduced AKI incidence, adjusted odds 

ratio (early involvement vs. not): 0.71 (95% CI 0.53 to 0.95).   

 

The EAG have conducted a further supplementary targeted search of trials for the 

post-Hall period to identify any further potentially relevant studies exploring the 

impact of early preventative intervention or application of AKI care bundles on the 

probability of developing AKI and / or the severity of peak AKI. In brief, 39 

additional titles and abstracts were identified from the targeted searches, of which 17 

(44%) were full text assessed.  Based on the NICE scope,102 KDIGO care 

guidelines,15 and clinical expert opinion, it was decided that studies testing the impact 

of a KDIGO care provided the most appropriate source of data to populate the 

economic model. Three trials (18%) assessed the effect of NephroCheck guided 

application of a KDIGO bundle compared to standard care treatment where 

information about the NephroCheck test result was not available to the patient’s 

hospital care team. No studies assessed the impact of NGAL guided treatment.    

 

All three studies reported results in terms of the probability of developing AKI.113-115 

However, only 1 study (Meersch et al)113 described the impact on both the incidence 

and severity of AKI. Meersch et al reported the results of a single centre trial, with 

sample N=276, in a German setting. The population all had positive NephroCheck test 

results, using a 0.3 threshold, consistent with the sources of diagnostic accuracy data 

obtained from the systematic review of diagnostic accuracy studies (see Chapter 3). 

Patients were then randomised to receive a strict implementation of the KDIGO 

guidelines or standard care.  The intervention group included avoidance of 
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nephrotoxic agents, discontinuation of ACEi and ARBs, close monitoring of urine 

output, serum creatinine, avoidance of hyperglycemia (for 72 hours), consideration of 

alternatives to radiocontrast agents, and fluid optimisation. The control (standard care) 

group followed the recommendations of the American College of Cardiology 

Foundation 2011 and included specification to keep mean arterial pressure (MAP) 

>65 mmHg and central venous pressure (CVP) between 8 and 10 mmHg. ACEi and 

ARBs were used only when the hemodynamic situation stabilised and hypertension 

occurred.  Knowledge of the NephroCheck test result was not revealed to the treating 

hospital team for patients in the standard care arm of the study.  The primary outcome 

from Meersch et al was 72-hour AKI, and the study showed an absolute risk reduction 

of 16.6% (95% CI: 5.5% to 27.99%). The Meersch et al study was supported by the 

German Research Foundation, the European Society of Intensive Care Medicine, the 

Innovative Medizinische Forschung, and an unrestricted research grant from Astute 

Medical. 

 

A second (Göcze et al),114 smaller study (N=121), also in a German setting, showed 

that NephroCheck guided care demonstrated a trend towards a lower probability of 

AKI , though results were not statistically significant with OR (95% CI) for standard 

care vs. NephroCheck of 1.96 (0.93 to 4.10). The study did however show a 

significantly greater odds of AKI (defined as stage 2 and 3 combined), in the standard 

care group compared to NephroCheck: OR (95% CI) for standard care vs. 

NephroCheck: 3.43 (1.04 to 11.32). A third study (Schanz et al),115 with only N=100 

participants, compared the effect of a NephroCheck triggered consultation with the 

patient implementing KDIGO recommendations for AKI to standard care alone in an 

emergency department in Germany. AKI outcomes were similar in both groups. The 

probability of AKI 2 or 3 at day 1 and day 3 post admission was intervention: 32.1%; 

control: 33.3% and intervention: 38.9% and control: 39.1% respectively. Neither the 

Gocze et al study nor the Schanz et al study report any funding involvement from the 

test manufacturers.   

 

As the Meersch et al study has a larger sample, and reports data for both the 

probability of AKI and the distribution of AKI severity given that it occurs these data 

were used for the model base case analysis. While the clinical context of the 

immediate post-operative period after cardiac surgery from Meersch et al. is likely to 
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be generalisable between the UK and other countries, the nature of the AKI insult 

(ischaemia/reperfusion, post-operative haemodynamic, oxidative stress, haemolysis, 

in people with cardiac comorbidity) is specific to this context, as is acknowledged by 

the authors. Accordingly, this study may not be generalisable to AKI in the context of 

other acute or critical illness circumstances where biomarker performance and the 

potential for AKI prevention / mitigation may be different. 

 

Table 20 describes the potential impacts of a biomarker guided care bundle on 1) the 

chance that patients may get AKI, and 2) the severity of AKI given that it occurs. The 

assumption is that early biomarker guided implementation of the KDIGO care bundle 

may reduce the proportion who get AKI and help ensure that if they do get AKI, it 

will be of reduced severity. These effects are applied probabilistically as relative risks 

in the model for those with a true positive test results only, using Log Normal 

distributions.   

 

Table 20  The effects of early adoption of A KDIGO care bundle 

Parameter Mean RRB SE, Log RRB Dist. Source 

NephroCheck (and NGAL)A 

Any AKI 0.768 0.094 LN Meersch et al113 

AKI 1  

(given AKI) 

1.232 0.180 LN Meersch et al113 

AKI 2  

(given AKI) 

0.868 0.180 LN Meersch et al113 

AKI 3  

(given AKI) 

0.843 0.356 LN Meersch et al113 

A Base case assumes that the impact of NGAL guided care on AKI is the same as NephroCheck guided 
care.  Sensitivity analysis explores a scenario where NGAL cannot avert AKI. 
B Mean RR and SE log RR calculated by the EAG using data from Meersch et al113. 
 

In the absence of any data on the impact of NGAL guided KDIGO care bundles on 

the probability of developing AKI, or the severity of AKI, the base case model 

assumes that the potential to avert AKI is similar for both biomarkers. However, 

based on clinical expert opinion and the manufacturer described role of the tests, 

NGAL measures injury and can be used to define AKI, whereas NephroCheck can 

identify stress enabling intervention before AKI develops. Therefore, sensitivity 
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analysis explores a scenario where the RR of AKI for NGAL guided care is equal to 

1, whilst retaining the same effect on the AKI distribution given that AKI occurs as 

for NephroCheck. It is acknowledged that these assumptions are uncertain, and the 

sensitivity analysis may present a bias against NGAL if data were to become available 

to suggest an effect on AKI prevention.   

 

It was assumed that there are no negative health effects of early intervention for the 

proportion of the respective test groups with FP results, but the additional costs of the 

bundle were still incurred. The model also includes the functionality to explore the 

impact of an additional mortality risk; for example, due to excessive resuscitation as a 

result of fluid administration or removal of effective but nephrotoxic treatments in 

patients with a false positive test result. 

 

Whilst the model describes the impact of biomarker guided early intervention on the 

distribution of AKI, it is unclear whether these effects translate into final clinical and 

patient relevant health outcomes like requirement for ICU care, need for RRT, 

mortality or the development of CKD. The limited evidence that exists from Meersch 

et al. suggests that whilst there is a significant reduction in the primary study outcome 

of AKI within 72 hours for NephroCheck guided implementation of a care bundle 

compared to standard critical care, OR (95% CI): 0.483 (0.293, 0.796), this ability to 

avert AKI was not demonstrated to translate into improvements in a range of clinical 

and patient relevant outcomes, including: requirement for RRT therapy in hospital, 

OR (95% CI): 1.618 (0.676, 3.874), 90 day all-cause mortality, OR (95% CI): 1.213 

(0.486, 3.028), ICU LOS, median difference (95% CI): 0(-1,0) or hospital LOS, 

median difference (95% CI): 0(-1,1). While the study was not powered to detect 

differences in these outcomes, there are no trends in the data that are suggestive of an 

effect size. Furthermore, the uncertainty regarding the link between increased 

resource use and clinical outcomes is emphasised by Wilson et al.116 who show in 

their RCT of an electronic alert system for AKI that an early warning system increase 

resource utilisation (e.g. renal consultation), but with no evidence that this translates 

into measurable clinical or patient benefit in terms of mortality, or length of stay.  

Indeed, for a subgroup on a surgical ward, the mortality rate was significantly higher 

in the electronic alert group. As these causal links between AKI and changes in health 

outcomes are all highly uncertain and are hypothesised based on observational data in 
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the model, extensive sensitivity analyses are conducted to test the impact of a range of 

plausible assumptions on cost-effectiveness.  

 

Follow-up phase probabilities 

Starting proportions applied in Markov cohorts 

One plausible route to patient benefit from averting or reducing the severity of AKI is 

through the prevention of new CKD and the indirectly associated longer-term 

progression to ESRD and transplant.  It should be noted that the model does not 

assume a direct effect of peak AKI on ESRD at 90 days, therefore patients can only 

enter the Markov model in either the outpatient follow-up, or CKD (stage 1-4) health 

state.  A re-analysis of 2012 data from the Grampian cohort indicate that only a very 

small proportion 13/4314 (~0.03%) of patients with AKI, almost all of whom had 

underlying CKD, progressed directly to ESRD at 90 days. Therefore, we assumed no 

direct transition from the decision tree to the ESRD state in the Markov model.  The 

starting proportions (after 90 days) for each health state are dependent on the decision 

tree pathway through which the cohort have come, and what peak AKI severity they 

had.  The baseline prevalence of CKD in the UK general population has been 

estimated from Kerr 2017 at 6.1%.117 However, in a group of critically ill, hospitalised 

patients, this prevalence may be substantially higher.  For the base case analysis, we 

use the underlying prevalence of CKD in the Grampian dataset, calculated as the 

prevalence of CKD in all hospitalised patients having their kidney function 

monitored.  Multiplying through by the sampling fraction for no CKD (20%) and 

taking the proportion of CKD / full sample gives the baseline prevalence in this group, 

calculated as 5,935 / 53,691 (11.05%).   

 

Health state transition probabilities 

The baseline incidence of new onset CKD for the Markov model uses the same source 

as Hall et al. with an annual probability of progressing from the outpatient to CKD 

state of 0.0044 95% CI: (0.0039 to 0.0049) for patients in the no AKI cohort.118 The 

data are obtained from a large cohort study of 97,782 ICU patients enrolled on the 

Swedish intensive care register. The parameter value 0.0044 reflects the CKD 

incidence at 1-year post ICU admission for the proportion of patients with no AKI. 

The same baseline proportion of CKD was applied for those without AKI, and for 
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those modelled to have AKI averted due to early preventative treatment.  The 

proportion of the ‘no AKI’ cohorts starting in the CKD state at day 90 was calculated 

as the underlying prevalence + the new annual incidence adjusted to the 90-day time 

horizon of the decision tree component of the model. 

 

Hazard ratios for AKI1, AKI2 and AKI3 on the development of CKD (defined as 

CKD stage 3 or above) were obtained from a systematic review by See et al.119 The 

review included a total of 82 studies quantifying the association between AKI and 

longer-term renal outcomes (including CKD) and mortality.  However, only 3 studies 

reported the impact of each KDIGO stage of AKI on CKD development.  One study 

(N=104,764) in a US setting generated slightly counter intuitive results with point 

estimates of the HR reducing as AKI stage increases. However, two other Asian 

studies (N=77 and N=1363) illustrated an increasing HR for more severe AKI stages.  

The systematic review has meta-analysed these three studies and the summary effects 

by AKI stage on CKD, defined as CKD stage 3, are used in the base case analysis.  

The advantage of these studies is that they allow a demonstration of the impact of 

adapting the distribution of AKI severity on longer term development of CKD.  

However, they are not conducted in a UK setting and may lack relevance.  Therefore, 

as a sensitivity analysis we apply a HR for the association between AKI and CKD that 

is constant across all AKI stages, as reported by Sawhney, 2017 for N=9004 

hospitalised patients with AKI in Grampian. The HR for development of stage 4 CKD 

(AKI vs. no AKI) was 2.55 (1.41 to 4.64).  This study has the advantage of relevance 

to the setting but does not include risks by AKI severity. However, it should be noted 

that the definition of CKD is stage 4 in Sawhney et al compared to Stage 3 in the 

meta-analysed studies which may limit comparability of the reported HRs.   

 

The HRs of CKD by AKI stage are applied to the new incidence over the first 90 days 

and to the first annual transition in the model. Thereafter, the transition probabilities 

from outpatient follow up to CKD follow the baseline 0.0044 per year. This approach 

is based on expert opinion that any longer-term effect of AKI on CKD development 

will become attenuated over time, particularly if it has not occurred in the first year 

following hospital discharge. Sensitivity analysis explores a scenario where the HR of 

CKD is applied for the full duration of the model, reflecting the assumption applied in 

Hall et al.99 
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Prevalence of CKD and incidence of new onset CKD are parameterised in the model 

using beta distributions and the hazard ratios for the effect of peak AKI severity on 

CKD incidence (i.e. transition probabilities to CKD state) are parameterised using log 

normal distributions. Table 21 describes the relevant parameters. 

 

Table 21  Parameters to link AKI and CKD 

Parameter n N 
 

% HR 
Standard 
error 

Distribution Source 

Prevalence of 
CKD (starting 
proportion) 

5,935 53,691 
 

0.1105 -- -- 
Beta 
 

Grampian 
data 

Baseline incidence 
of CKD 

-- -- 
 

0.0044 -- 0.0003 Beta 
Rimes-
Stigare et 
al118.

Hazard Ratio of 
CKD given AKI1 

  
 

 
2.32 Ln SE: 

0.0363 
LN See et al119 

Hazard Ratio of 
CKD given AKI2 

  
 

 4.00 
LN SE: 
0.5656 

LN See et al119 

Hazard Ratio of 
CKD given AKI3 

  
 

 7.98 
LN SE: 
0.9675 

LN See et al119 

 

Progression from CKD 

The transition probability from outpatient follow-up to CKD is 0.0044 as described 

above. The model cohort can then subsequently progress from CKD to ESRD, with or 

without dialysis and from ESRD to transplant according to the modelled transition 

probabilities. It is assumed that AKI can only influence the number of people who get 

CKD, and then has no further direct effect on how fast they progress through the CKD 

stages to ESRD, dialysis or transplant. The cohort are also exposed to an increasing 

mortality risk as they progress through more severe disease states from CKD (1-4) to 

ESRD without dialysis, and ESRD with dialysis. Transitions from CKD (1-4) to 

ESRD, from ESRD (no dialysis) to ESRD (with dialysis) and from CKD (1-4) / 

ESRD to death are obtained from Kent et al. who reported data on progression of 

kidney disease from the large (N=7246), international (Europe, North America and 

Australasia) Study of Heart and Renal Protection (SHARP) RCT.120 The median study 

follow-up was 4.9 years, with a mean age of 63 and 64% male.  
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For those with ESRD on dialysis, the proportion transiting to kidney transplant and 

mortality were obtained from 5-year data published in the 2018 UK Renal Registry 

report (Table 1.17) which provided information on transition from incident RRT in 

2012, to transplant and mortality 1, 3 and 5 years later.1.21 The 3- and 5-year 

probabilities were annualised; the year 3 probability was applied to year 2 and 3, 

while the 5-year probability was applied to years 4 onwards. These probabilities were 

converted to the relevant annual cycle specific probabilities and applied in the model 

using tunnel states to track time from entering a given health state. The UK renal 

registry also provided data on the probability of transition back to dialysis for failed 

transplants and the probability of death over 5 years following transplant.  After 5 

years post-transplant, mortality is assumed to revert to the general population all-

cause mortality probability and the annual probability of transplant failure remains at 

that reported from years 3-5 in the UK renal registry. It is further assumed that the 

proportion of the cohort with a transplant failure return to dialysis where their 

probability of progressing from ESRD on dialysis to a second transplant is the same 

as progression to the first transplant. 

 

In the first 5 years of the follow-up phase of the model, mortality in all Markov states 

is modelled as the average mortality risk for patients discharged from hospital and 

ICU, unless health-state specific (ESRD, dialysis or transplant) mortality was higher, 

in which case the latter is applied. If at any point mortality falls below all-cause 

mortality, all-cause mortality is applied in the model. The 5-year post-discharge 

mortality data were based on Lone et al., a matched UK cohort study (mean age of 60) 

using national registries; the Scottish Intensive Care Society Audit Group (SIGSAG), 

the Scottish Morbidity Record of acute hospital admissions (SMR01) and the Scottish 

death records. The model base case used an average of the ICU and non-ICU cohorts.  

Beyond 5 years, patients in the outpatient follow-up health state were applied the age 

and sex adjusted all-cause mortality probability122, and those with CKD, ESRD, 

chronic dialysis or a transplant would be assigned the health state specific mortality 

probability, unless age and sex adjusted all-cause mortality was higher than the health 

state specific mortality. Sensitivity analysis explores the impact of assigning long-

term mortality risks that are dependent on whether the cohort had been admitted to 

ICU or not during their index hospitalisation (as described in Table 22).   
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Transition probabilities are incorporated into the model probabilistically using beta 

distributions.  As the cycle lengths for the model in Hall et al are the same as the 

current assessment (annual), it was not necessary to provide any further adjustment of 

the published transition probabilities. 
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Table 22  Transition probabilities used in the Markov model 

Parameter Value SD Alpha Beta Dist. Source 

From outpatient state 

Outpatient to CKD 
0.0044 0.0003 -- -- Beta 

Rimes-Stigare et 
al118 

Outpatient to 
death B 

No ICU: 
Yr 1: 0.075 
Yr 2-5A: 0.164 
 
ICU: 
Yr 1: 0.108    
Yr 2-5A: 0.225  

 

No ICU: 
Year 1: 391 
Years 2-5A: 748 
 
ICU: 
Year 1: 564 
Year 2-5: 964

No ICU: 
Year 1: 4,824 
Years 2-5A: 3,810 
 
ICU: 
Year 1: 4,651 
Year 2-5: 3,322 

Beta Lone et al123. 

Remain outpatient    -- Remainder  

From CKD 

CKD to death 0.03 0.002 -- -- Beta Kent et al120 

CKD (survivors) 
to ESRD 

0.01 0.001 -- -- Beta Kent et al120 

CKD (survivors) 
to ESRD + 
dialysis 

0.04 0.002 -- -- Beta Kent et al120 

Remain with CKD     Remainder  

From ESRD (no dialysis) 

ESRD to death 0.12 0.005 -- -- Beta Kent et al120 

ESRD (survivors) 
to ESRD + 
dialysis 

0.18 0.006 -- -- Beta Kent et al120 

ESRD (survivors) 
to transplant 

0.09 0.004 -- -- Beta Kent et al120 

Remain ESRD, no 
dialysis 

    Remainder  

From ESRD (on dialysis) 

ESRD + dialysis 
to Death 

-- -- 
Year 1: 951 
Year 3: 2116 
Year 5: 2990

Year 1: 5178 
Year 3: 3988 
Year 5: 3254

Beta 
UK Renal Registry 
report (Table 
1.17)121 ESRD + dialysis 

to Transplant 
-- -- 

Year 1: 417 
Year 3: 1056 
Year 5: 1305

Year 1: 5712 
Year 3: 5048 
Year 5: 4939

Beta 

Remain in ESRD 
+ dialysis  

    Remainder  

From Transplant 

Transplant to 
ESRD + dialysis 

-- -- 
Year 1: 4 
Year 3: 16 
Year 5: 26

Year 1: 487  
Year 3: 475 
Year 5: 431

Beta 
UK Renal Registry 
report (Table 
1.17)121 Transplant to 

Death 
-- -- 

Year 1: 8 
Year 3: 16 
Year 5: 31

Year 1: 483 
Year 3: 475 
Year 5: 426

Beta 

Transplant 
successful 

    Remainder  

A Converted to annual cycle specific probabilities for application in the model. 
B Average of ICU and hospitalised (non-icu) mortality applied in the model base case analysis. 

  



145 
 

SUPERSEDED –

SEE ERRATUM

Model parameters – costs  

The health care costs included are: 1) the costs of conducting the tests, including 

equipment and staff resource use; 2) acute care within the first 90 days post hospital 

admission, including the additional cost of early application of a KDIGO care bundle, 

the cost of hospital/ICU length of stay, and acute renal replacement therapy; and 3) 

the annual, cycle-specific costs associated with Markov health states (CKD,  ESRD, 

dialysis and transplant) over the longer term follow-up phase.  All costs are included 

from a UK NHS perspective and are reported in 2017/18-GBP values.  Where 

possible, resource use has been costed directly using 2017/18 UK national unit cost 

sources (PSSRU for staff time, NHS reference costs for secondary care procedures 

and the BNF for drugs).  Where this has not been possible, for example if total costs 

are reported in the literature without enough data regarding the underlying resource 

use to enable re-costing, these costs are inflated from their base year to 2017-18 

values using the Cochrane and Campbell economic methods group online inflation 

calculation tool124. 

 

Diagnostic test costs 

NephroCheck testing is usually conducted on an Astute 140 Meter, costing £3000 and 

an additional meter would need to be purchased. This cost was converted to an 

annuity, assuming the platform’s lifetime is 5 years, and an annual depreciation rate of 

3.5%. The test could also be conducted on a VITROS 3600 Immunodiagnostic 

System; however, UK hospitals rarely have this system in laboratories (Hall et al. 

2016), confirmed at NICE scoping workshop by clinical expert opinion. The NGAL 

tests would not require a new platform for NGAL only, because it would be 

performed on platforms already available at the hospital labs. The capital costs of the 

lab analyser apportioned to each NGAL test are assumed to be negligible. Sensitivity 

analysis excludes capital and training costs to explore the impact on cost-effectiveness 

of scenarios where a hospital might already have the required analyser in place and all 

staff are fully trained in their use. 

 

The process of taking the sample for analysis, sending samples to the lab, processing 

at the lab and interpretation of test results would require the involvement of several 

members of the hospital team. Firstly, a urine sample is collected by a nurse, which is 

thereafter picked up by a porter who takes it to the laboratory. It is assumed that 



146 
 

because the tests are classified as urgent samples, a porter would generally prioritise 

single test collection for the lab. A biomedical scientist conducts the diagnostic test in 

the laboratory. After completion of the test, the results from the lab would be 

authorised by a biochemist and released for review on the hospital information 

management system where it can be interpreted by either a nephrologist, intensive 

care specialist or a junior doctor. The base case analysis assumes an average of the 

three healthcare professional costs for interpretation. Under some criteria (such as 

very abnormal results) a laboratory team might directly contact the care provider, but 

we assume this would not be the approach used routinely. For the purposes of test cost 

calculation, it is assumed that, on average, the role of interpreting the tests is equally 

split across the three specialist team members. The unit costs for each of the staff 

resources involved in the testing process are obtained from PSSRU and are provided 

in Table 23 below and the resource use assumptions are described in Table 24.  

 

Table 23  Staff unit cost 

Staff Unit cost 

(per hour) 

Source 

Prepare urine sample: nurse band 5 £37.00 PSSRU 2018125 

Porter brings urine sample to laboratory: health care assistant £27.26 PSSRU 2018125 

Conduct test: Scientific and professional staff, Band 6 

(biomedical scientist)  

£44.00 PSSRU 2018 
125 

Interpret testA 

Intensive care specialist: Hospital-based doctor, medical 

consultant  

£108.00 PSSRU 2018125 

Nephrologist: Hospital-based doctor, medical consultant £108.00 PSSRU 2018125 

Junior doctor: Foundation doctor FY2  £32.00 PSSRU 2018125 
A Base case assumes an average of hospital doctor, Nephrologist and junior doctor to interpret 
results. 

 

The duration of resource use for each member of the team is based on a combination 

of information provided by manufacturer and clinical expert opinion regarding the 

flow from obtaining the test sample to result interpretation. The staff time to process 

the test in the lab was based on the NICE request for information documents to the 

different test manufacturers and the Final scope. Estimates of the time taken to 
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prepare the urine sample and interpret the test was based on the EAGs clinical expert 

opinion. 

 

Four test strategies were compared in the economic model and costed according to 

Table 24 below (NephroCheck, NGAL urine (BioPorto), NGAL ARCHITECT 

(Abbott) and NGAL plasma (BioPorto). The NGAL test manufacturer (BioPorto) 

have not identified costs separately by sample type (plasma or urine). It is therefore 

assumed that these tests incur equal costs. The cost of the Alinity NGAL urine test 

(Abbott) was not considered in the base case economic evaluation because the review 

identified no diagnostic accuracy data for the test. However, the Alinity test costs are 

also provided in Table 24 for information. Further details regarding the calculation of 

maintenance and consumables costs is provided in Appendix 12, Table 45 .  
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Table 24  Test costs 
 

Astute medical
NephroCheck

BioPorto 
(urine and 

plasma)

Abbott 
ARCHITECT 

Abbott 
(Alinity)F 

Platform (Astute 140 Meter), NephroCheck only 
Cost £3000 -- -- -- 

Expected service life 5 -- -- -- 
Equivalent annual cost (EAC) £664.44G -- -- -- 

Subtotal: Platform (cost per test) £0.53A -- -- -- 
Subtotal: Equipment (cost per test) £49.80B £20.00C £25.71D £28.29E 

Subtotal: Maintenance/consumables (cost per test)H £4.23 £1.90 £3.51 £3.51 
Staff resource use 

Time to conduct test (sample preparation + time to get result) (minutes) 20 20 20 20 
Time to interpret test (minutes) 5 5 5 5 

Prepare urine sample: nurse band 5 (minutes) 15 15 15 15 
Bring urine sample to laboratory: porter (minutes) 15 15 15 15 

Staff time for testing (per test) £14.67 £14.67 £14.67 £14.67 
Staff for interpreting (per test) £6.89 £6.89 £6.89 £6.89 

Staff to prepare urine sample (per test) £9.25 £9.25 £9.25 £9.25 
Delivery to lab (per test) £6.82 £6.82 £6.82 £6.82 

Subtotal: staff costs (per test) £37.62 £37.62 £37.62 £37.62 
Staff training I

Assumed average turnover (years) 5 5 5 5 
Time for training (minutes) 90 30 30 30  

Total training costs £438.00 £146.00 £146.00 £146.00 
EAC of total training £97.01 £32.34 £32.34 £32.34 

EAC of total training per test £0.08 £0.03 £0.03 £0.03 
TOTAL COST £92.26 £59.55 £66.87 £69.44 
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A Assuming the number of tests performed annually is 1253 (Hall et al. 201899), based on throughput at the ICU department of St James teaching hospital, Leeds.  
This is likely a conservative estimate of throughput that might be observed outside the ICU department and likely reflect the maximum bound of the allocated 
platform cost per test. 
B NephroCheck single use test cartridge;  
C BioPorto NGAL test,  
D ARCHITECT Urine NGAL Test Reagent 100-test kit (produces 80 tests) (Source: Company submitted request for information to NICE) 
E Alinity Urine NGAL Test Reagent 100-test kit (produces 80 tests) (Source: Company submitted request for information to NICE) 
F The cost of Alinity is not included in the model because none of the studies in the clinical effectiveness review evaluated Alinity Urine NGAL.  
G £644.44=£3000/((1-(1.035)^-5)/0.035),  where 3.5% is the discount rate applied to the platform cost.  
H The detailed calculations on the maintenance and consumables costs are provided in Appendix 12.   
I Staff training time for all tests was based on information provided by the manufacturers where possible. For NephroCheck, training takes 1-2 hours, therefore, we 
assumed that on average training would take 1.5 hours (NICE’s request for information document). Training was assumed 30 minutes for all NGAL tests because the 
manufactures stated that only “limited training” (BioPorto) or time “to read the instructions for use” (Abbott) would be required.  The total training cost was based 
on the total cost of training staff that would be conducting and interpreting the test results.   
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Cost of early treatment 

The additional cost of early treatment with the KDIGO care bundle was calculated as 

£106.36 per patient treated, assuming an additional three days application of the care 

bundle in test positive patients. An additional three days of treatment was assumed in 

line with the primary outcome from Meersch et al113 (i.e. AKI at 72 hours) and based 

on clinical expert opinion that a care bundle could potentially be implemented for up 

to an extra three days. The care bundle cost is based on the NICE guidelines for 

preventing AKI,16 which state that measures to prevent AKI are: avoidance of 

nephrotoxic agents, discontinuation of medication (angiotensin-converting-enzyme 

(ACE) inhibitors and Angiotensin II receptor blockers (ARBs)), close monitoring of 

serum creatinine and urine output, avoidance of hyperglycaemia, alternatives to radio 

contrast and close hemodynamic monitoring. The NICE recommendations for 

preventing AKI include seeking advice from nephrology team and pharmacist with 

regards to giving “iodinated contrast agent to adults with contraindications to 

intravenous fluids” and medications (ACE inhibitors, ARBs), respectively. Therefore, 

both a nephrologist and pharmacist time are included in the cost of the care bundle. 

The costs are listed in Table 25. The additional cost of early adoption of the care 

bundle was applied to the proportion of the cohort with a positive biomarker test 

result, reflecting an assumption that care would be delivered for an additional three 

days over and above the cohort monitored using serum creatinine alone. The cost was 

applied using a gamma distribution with a standard deviation of 10% of the mean. 
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Table 25  Care bundle costs 

Resource use Assumptions Care bundle 

cost  

Source 

Intravenous fluids 

Intravenous sodium chloride 

0.9% infusion 2litre bags 

(Terumo BCT Ltd) 

1L per hour for 3 hours, 

thereafter 2L per day for 3 

days (5 2 litre bags) 

£22.14 Clinical expert opinion, BNF 

2019126 

Band 6 nurse Initial fluid: 10 minutes £5.33 Clinical expert opinion, PSSRU 

2018125 

Band 6 nurse Fluid replacement: 5 

minutes 

£10.67 Clinical expert opinion, PSSRU 

2018125 

Nephrologist review 

 Hospital-based doctor, 

medical consultant  

30 minutes £54.00 Clinical expert opinion, PSSRU 

2018125 

Pharmacist review 

Pharmacist, band 6 AfC 20 minutes £15 Clinical expert opinion, PSSRU 

2018125 

Stop blood pressure medication   

 Stop blood pressure 

medication for 3 days 

-£0.78 Clinical expert opinion, BNF 

2019126. Based on the annual 

cost of blood pressure 

medication (See Appendix 12, 

Table 47), and calculated over 3 

days. 

Total cost for 3 additional 

days of the KDIGO care 

bundle 

   £106.36  

 

Acute phase costs 

The base case total cost in the acute phase (90 days) of the model depends on the 

number of days spent in hospital and ICU (See Table 26). It also depends on the 

duration of acute RRT delivered to the proportion of AKI stage 3 patients receiving 

RRT.  For the base case analysis, data from the Adding Insult to Injury report show 

that 52 % of RRT patients receive continuous RRT (daily) and 48% receive 

intermittent dialysis (an average of 3 sessions per week)3.   The duration of RRT 

delivery is obtained from a randomised trial conducted in a US critical care setting127 
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comparing intensive, six days per week (N=563) vs. less intensive three days per 

week (N=561) RRT strategies.  The mean (SD) N duration, in days, of RRT per 

patient was similar in both groups: intensive: 13.4 (9.6) 563; less intensive: 12.8 (9.3) 

561. The base case model conservatively assumes the less intensive duration for the 

application of costs in the economic model. To incorporate the uncertainty and to 

reflect the likely skewed nature of the distribution, duration of RRT is incorporated 

probabilistically into the model using a log normal distribution.  Data available from 

an alternative source (Bagshaw, 2009),128 as used in NICE guidance for the 

comparison of early vs. late renal replacement therapy was not considered because 

median rather than mean durations were reported, and the data were assessed as low 

quality in the NICE guidance.16 An additional daily excess cost of AKI was applied in 

a sensitivity analysis to capture the potential excess cost per day in hospital or ICU of 

an AKI patient. This excess cost was not applied in the base case scenarios because it 

was assumed that the cost of having AKI is captured in the cost of being in hospital or 

ICU. All other acute costs and follow-up costs are applied a gamma distribution.  
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Table 26  Acute phase costs applied in the model 

  
Daily 

cost 

Lower 

quartile 

Upper 

quartile 
SE Source 

Hospital ward 

setting – daily 

cost 

£313 £207 £357 £38.27 
NHS reference costs 

2017/18129 

ICU setting – 

daily cost 
£1,395 £1,223 £1,562 £251.38 

NHS reference costs 

2017/18129. Quartiles 

are sourced from 

2015/16 and inflated to 

2018 costs. A 

Excess daily 

cost of AKI 

(applied in 

sensitivity 

analysis only) C 

£298 £232.36 £319.28 £65.65 

NHS reference costs 

2017/18129. Quartiles 

are sourced from 

2016/17 and inflated to 

2018 costs. A 

Additional cost of acute, in hospital RRT 

Cost of HD per 

session 
£271 £137 £339 £149 

NHS reference costs 

2017/18129. 

% on 

intermittent HD 
48%    

Adding insult to injury 

report 20093. Applied 

deterministically in the 

model 

Estimated daily 

cost B 
£197    

Assumed 3 sessions 

per week for 

intermittent HD and 1 

session per day for 

continuous HD.  
A Note that it has been necessary to obtain standard errors from older data as variability in costs are not 

reported in the 17/18 NHS reference costs; Standard errors calculated as SD / sqrt (N); B Per day cost 

calculated as (cost per session x proportion on intermittent HD x 3 days per week) + (cost per session x 

proportion on continuous HD x daily) = (£271 x 0.48 x 3/7) + (£271 x 0.52 x 1)  = £196.67 per day on 

average. C Applied in sensitivity analysis as an additional cost over and above the ward / ICU daily cost 
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Long term follow-up costs 

There are four ways in which long term follow up costs may be driven by the 

proportion of the cohort that progress through different pathways from the initial 

decision tree.  These are: 1) whether or not long-term follow up costs depend on 

whether the patient received ICU care in the initial decision tree; 2) whether there are 

additional follow up costs beyond 5 years post index hospitalisation discharge; 3) 

whether an excess long term cost is applied for the proportion of the cohort coming 

through AKI arms of the decision tree; and 4) health state specific costs incurred as 

the cohort progress through CKD stages to dialysis or transplant. 

 

The out-patient follow-up costs in the Markov model post index hospitalisation 

discharge were obtained from Lone et al,123 who reported 5 years of follow-up costs 

post index ICU and hospital discharge, using a matched cohort obtained from 

registries in Scotland (Scottish Intensive Care Society Audit Group (SICSAG), 

Scottish Morbidity Record of acute hospital admissions (SMR01), and Scottish 

mortality data). The base case analysis assumes that the average of post-ICU and post-

non-ICU admissions are applied in the Markov model. This is because the cohort for 

this assessment are already deemed to be critically ill and at risk of needing ICU care, 

so might all be expected to have significant resource use post discharge. Sensitivity 

analysis allows the application of differential long-term costs that depend on the 

whether the patient had received ICU care in the first 90 days or not. 

 

The annual costs beyond 5 years are unknown. Therefore, the base case analysis 

assumes no additional costs beyond year five. Sensitivity analysis explores the impact 

of these assumptions by applying further costs between years 6 to 11 that reduce 

annually following a logarithmic function (see Table 27 below) with year 11 costs 

applied for the remaining duration of the model. 
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Table 27  Long term follow-up costs stratified by admission to ICU or not during 

index hospitalisation 

  Mean (£) 95% CI (£) SE (£) Source 

For those not admitted to ICU during their initial hospitalisation 

Year 1 3,954 3,644 4,264 158 Lone et 

al123  Year 2 2,864 2,592 3,138 139 

Year 3 2,547 2,272 2,822 140 

Year 4 2,277 2,023 2,530 129 

Year 5 2,090 1,846 2,334 125 

Year 6 (Sensitivity analysis) 1,794     Assumed: £125 

  

  

  

  

  

Calculation 

based on 

Lone et 

al123 

Year 7 (Sensitivity analysis) 1,618     

Year 8 (Sensitivity analysis) 1,465     

Year 9 (Sensitivity analysis) 1,331     

Year 10 (Sensitivity analysis) 1,210     

Year 11+ (Sensitivity analysis) 1,102     

For those admitted to ICU during their initial hospitalization 

Year 1 6,500 6,110 6,888 198 Lone et 

al123 Year 2 4,183 3,864 4,501 163 

Year 3 3,975 3,629 4,321 176 

Year 4 3,774 3,402 4,145 190 

Year 5 3,315 2,978 3,654 172 

Year 6 (Sensitivity analysis) 2,806     Assumed £125 

  

  

  

  

Calculation 

based on 

Lone et 

al123 

Year 7 (Sensitivity analysis) 2,521     

Year 8 (Sensitivity analysis) 2,274     

Year 9 (Sensitivity analysis) 2,056     

Year 10 (Sensitivity analysis) 1,861     

Year 11+ (Sensitivity analysis) 1,685     

*All data incorporated probabilistically in the model using gamma distributions; Note that the base 

case analysis applies the average of ICU and hospital, with differential costs applied as a sensitivity 

analysis to the proportion who require ICU care and hospital care in the initial 90-day phase  

 

The base case analysis assumes that there are no long-term excess follow-up costs as a 

result of having had AKI in the initial 90-days post hospitalisation. However, 

sensitivity analysis explores a scenario where patients entering the Markov model 

having had AKI in hospital incur an additional 15% of the non-AKI cohort costs for 
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the first 5 years. The additional AKI cost factor was based on a proxy using the RR 

reported in Lone et al. on the number of admissions patients on RRT had over five 

years compared to those who were not on RRT. These additional costs are applied in 

the model as sensitivity analysis, with a mean ratio of 1.15, log SE: 0.074 sampling 

from a log normal distribution.  

 

Annual cycle-specific health-state costs were applied to the proportion of the cohort 

transiting through the CKD, ESRD, ESRD on dialysis and transplant health states. 

Costs were obtained from Kent et al., using data from the SHARP trial reporting 

outpatient, day case and inpatient admissions. The CKD (stage 1-4) health state cost 

applied in the model was calculated as the weighted average of CKD stage 1-3 and 

CKD stage 4 as reported in Kent et al. 120 The average weighted cost applied was 

therefore £445.98 per cycle. The cost of medications (immunosuppressant for 

transplant patient, ESA for dialysis patients and blood pressure medications for 

dialysis patients) were not captured in the study, therefore, these costs were added to 

the costs observed in Kent et al.120 The added transplant costs (immunosuppressants) 

were based on the approach applied in Scotland et al. 2018130 for calculating the 

annual cost of immunosuppressants, using 2018 prices. The added costs to dialysis 

patients due to medications for blood pressure and ESA are also based on the 

approach applied in Scotland et al. 2018, with 2018 prices.  
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Table 28  CKD, dialysis and transplant costs 

Health state B Mean (£) 95% CI (£) 
Standard 

error (£) 

Additional 

medication 

costs 

Total Sources 

CKD 1-3 453 388 519 33.53  453 
Kent et al. 

2015120 

CKD 4 441 441 499 14.61  441 
Kent et al. 

2015120 

Weighted average 

(CKD 1-4)  
446       

ESRD (no 

dialysis) A 
590 504 676 43.84  590 

Kent et al. 

2015120 

ESRD year 1 

(with dialysis) 
21,328 20,917 21,739 209.77 2,601C 23,929 

Kent et al. 

2015120 

ESRD year 2 

onwards (with 

dialysis) 

26,203 26,096 26,310 54.45 2,601C 28,804 
Kent et al. 

2015120 

Functioning 

transplant year 1 
27,636 26,991 28,284 329.84 10,623 38,260 

Kent et al. 

2015120, 

NICE 

Guidance 

2015131 and 

BNF 

2019126 

Transplant follow 

up 
1,290 1,099 1,481 97.43 9,063 10,352 

Kent et al. 

2015120, 

NICE 

Guidance 

2015131 and 

BNF 

2019126 
A ESRD reported as CKD stage 5 in Kent et al. 
B All costs incorporated probabilistically using gamma distributions. 
C This cost is based on the total annual cost of both ESA medication and BP medication. See 

calculation in Table 46 and 47 in the Appendix 12. 
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Health measurement and valuation 

Acute (decision tree) phase of the model 

We have updated the searches from Hall et al. to identify studies that report utilities 

for the initial decision tree phase of the model. Our post-Hall et al. review identified 

four further potentially relevant studies.  However, the only utilities that meet the 

NICE reference case are those proposed by Hall et al. All other studies identified from 

the literature review use non-UK value sets and so are not appropriate for UK 

decision making. Given that there are no appropriate utility studies for AKI stage, the 

analysis uses the utilities identified in Hall et al. applied to the model based on length 

of stay in hospital, length of stay in ICU and duration discharged prior to 90 days 

following hospital admission. Due to a lack of appropriate data, and to avoid double 

counting the utility impact of time in hospital / ICU, we have not attempted to apply 

any additional utility decrements by AKI stage (other than to those on acute RRT).  

The application of utilities is consistent with that used by Hall et al99 The utilities used 

in the model, together with age and sex adjustment are described in Table 30 

alongside the parameters of the normal and beta distributions used to incorporate the 

data probabilistically within the model. It is difficult to find utility values for patients 

in ICU. Two systematic reviews were consulted, one by Dritsaki et al. 2017132 and 

one by Gerth et al. 2019.133 Both reviews focused on a population admitted to ICU, 

however, no studies identified in the reviews were deemed suitable. Therefore, the 

utility value of an unconscious patient, has been applied for the duration of ICU stay, 

using data sourced from Kind et al134 and following the same approach as Hall et al.99 

As a sensitivity analysis we consider an alternative approach to calculate ICU utility 

to explore the substantial uncertainty in this parameter. The alternative value takes the 

average of the unconscious state (-0.402 from Kind et al) and the average post ICU 

discharge from Hernández et al135 from the PRACTICAL study (0.44) that followed 

up a cohort of ICU survivors reporting their quality of life using the EQ-5D 

instrument. The calculated utility value applied in sensitivity analysis was (-0.402 + 

0.44)/2) = +0.019. 

 

 



159 
 

Table 29  Utility studies for acute kidney injury (AKI) that were considered for economic modelling 

Author 
Yea
r Population Country 

Utility 
measure

Value 
set N Age

Male 
(%)

Utility values 
reported Mean Median SD IQR low IQR high

Ethgen1

36  2015

AKI, 
intensive 
care USA 

DAM: 
Unclear 
(sourced 
from lit) Unclear NR NR NR

CCRT (ICU) 
CCRT (DI) 
CCRT (DD) 
IRRT (ICU) 
IRRT(DI) 
IRRT (DD)

0.13 
0.84 
0.62 
0.13 
0.84 
0.62 NR

Hall99 2018

AKI, 
intensive 
care UK Mix various Mix

ICU 
Ward (post ICU) 
Discharged (post 
ICU) 
DD decrement

-0.402 
0.44 
0.62 
0.11

0.20 
0.31 
0.32 
0.02

Kaier137 2016

Surgical 
aortic value 
replacemen
t Germany 

EQ-5D-
3L German 

Baseline: 169
Follow up: 
2294 82.15 (5.16) NR

Baseline 
Follow up 
AKIN 1 
AKIN 2 
AKIN 3  

0.78 
0.77 
+.0659 
-0.158 
-0.177

0.23 
0.25 
NR 
NR 
NR

Oeyen1

38 2015

Critically 
ill after 
AKI, need 
RRT Belgium 

EQ-5D-
3L None 141 57 66% None NR NR

Solima
n139 2016

AKI 
patients 
mixed ICU Netherlands 

EQ-5D-
3L Dutch

All: 2420 
No AKI: 
1588 
Risk: 456 
Injury: 253 
Failure: 123

Median (IQR)
59; (47-69) 
59; (47-69) 
59; (47-69) 
59; (47-69) 
59; (47-69)

58.7%
58.3%
57.0%
61.7%
63.4%

All:  
No AKI:  
Risk:  
Injury:  
Failure:  

0.806 
0.810 
0.778 
0.772 
0.666

0.590 
0.640 
0.570 
0.470 
0.370

0.940 
1.000 
0.890 
0.870 
0.850

DI: Dialysis Independence; DD: dialysis dependence 
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Table 30  Health state utilities applied for the acute phase of the model 

Decision 

tree 

branch 

Mean 

utility 
SE SD Age 

Male 

(%) 

Age 

related 

pop. 

norm 

Age 

adjusted 

multiplier 

applied to 

model 

Utility 

value 

applied in 

model 

Dist. Source 

ICU A -0.402 0.02  -- -- -- -- -0.402 Normal 

Kind et al. 

(Appendix 

B)134 

Ward 0.44 0.0259 0.31 60 60 0.8285 0.5311 0.432 Beta 
Hernández 

et al135.  

Discharge 0.62 0.0268 0.32 60 60 0.8285 0.7483 0.608 Beta 
Hernández 

et al135.. 

Acute 

dialysis 

decrement 
B 

0.11 0.02  -- -- -- -- (0.11) Beta 
Wyld et 

al140 

Death 0 -- -- -- -- -- -- 0 --  

A assumed standard error equal to 5% of the mean utility for an unconscious patient. 
B decrement applied to utility in ward only. 

 

Utility values for the chronic phase of the model 

First, the Hall et al. HTA assessment and economic model for long-term follow-up 

post AKI and the Scotland et al. assessment of Multiple frequency bioimpedance 

devices to guide fluid management in people with chronic kidney disease having 

dialysis (DG29) for NICE130 were consulted to obtain appropriate health state utility 

values for application in the model.  The Hall report conducted a thorough review of 

the literature prior to 2016 for utility parameters.  They identified two systematic 

reviews of utility data that provided data that could be used in the economic model.  

The first, a systematic review and meta-regression published by Wyld et al140 

predicted utility according to treatment (transplant, dialysis, pre-treatment, 

conservative management).  This model predicted an EQ-5D utility value for patients 

on dialysis of 0.64, and an EQ-5D utility for transplant patients of 0.75. The utilities 

from Wyld et al. were used in the Hall et al. model.   
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However, a limitation of Wyld et al. was that some of the EQ-5D scores were 

calculated from mapping algorithms, and the age to which the mean utility estimates 

applied was not reported. The earlier systematic review by Liem et al restricted a 

meta-analysis to those studies using the EQ-5D index directly for each modality of 

chronic RRT, and reported the pooled mean age and sex distribution for the 

corresponding pooled EQ-5D values.141 

 

In addition to the two reviews identified by Hall et al, a further structured literature 

search was conducted to obtain any more recent utility studies that match the NICE 

DAP reference case (i.e. studies that included EQ-5D-3L data for UK patients, valued 

using UK general population tariffs). A range of databases were searched for English 

language, full text publications, published between 2016 (end data of Hall et al. 

searches) and 2019. N=7 were identified that were deemed appropriate to meet the 

NICE reference case for the DAP, specifically, they reported EQ-5D based utilities 

valued according to the UK general population preference-based value sets. Studies 

where EQ-5D was administered to non-uk population but valued according to the UK 

tariff were also included. These relevant studies are summarised in Table 31. 

 

The age and sex matched EQ-5D UK population norms were calculated using an 

equation published by Ara and Brazier142 and used to derive age/sex adjusted utility 

multipliers from the raw pooled estimates, based on the age and sex distribution of the 

source studies.143 The final set of utility data used to populate the base case economic 

model are summarised in Table 32. The utility of the proportion of the cohort having a 

successful transplant is assumed to revert to that of the outpatient follow up state. All 

utility data were incorporated into the model probabilistically using beta distributions.
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Table 31  Summary of post-Hall utility studies considered for the economic modelling 

Author Yr Population Country 
Utility 
measure 

Valuati
on set N Age 

Proportion 
male 

Utility 
values 
reported Mean Median SE SD CI low CI high 

IQR 
low 

IQR 
high 

Chang144 2016
ESRD with 
PD and HD Taiwan EQ-5D-3L UK 

Total: 1687  
HD: 1403 
PD: 284

Total: NR 
HD: 57.1 (13.6) 
PD: 46.7 (13.2)

HD: 49.9% 
PD: 51.1%

HD 
PD

0.83 
0.90

 0.19 
0.16     

Jesky145 2016

pre-dialysis 
CKD (as per 
NICE 
guidance, 
CKD, 2008) UK EQ-5D-3L UK

All CKD: 745
G1/2: 29 
G3a: 45 
G3b: 173 
G4: 423 
G5: 75

Median (IQR) 
All CKD 64; (50-76)
G1/2 41; (34.5-55.5)
G3a 55; (45-66.5) 
G3b 61.5; (48.3-73.8)
G4: 69; (54-75.5) 
G5: 64; (53.5-75.5)

All CKD: 
60.80% 
G1/2: 65.52% 
G3a: 71.11% 
G3b: 66.86% 
G4: 59.00% 
G5: 49.35%

All CKD 
G1/2 
G3a 
G3b 
G4 
G5

0.74 
0.85 
0.80 
0.80 
0.74 
0.73

0.66 
0.70 
0.69 
0.68 
0.62 
0.62 

0.88 
1 
1 
1 
0.85 
1 

Kularatna146 2019 CKD Sri Lanka EQ-5D-3L UK 

Early Stage: 
254 
Stage 4: 614 
Stage 5: 151 
Dialysis: 38 Median approx age 41 56.10%

Early: 
Stage 4:  
Stage 5:  
Dialysis: 

0.588 
0.566 
0.467 
0.126

0.30 
0.42 
0.42 
0.39     

Li147 2017

Kidney 
transplant 
recipients and 
waiting list UK EQ-5D-5L UK

Transplant 
recipients: 512
Waiting list: 
1704

Median ~ 50 
Median ~ 50

60% 
58% 

waiting list 
transplant 
(inc)

0.773 
 
+0.054

0.005
 
0.011     

Nguyen148 2018
CKD and 
ESRD UK EQ-5D-3L UK

CKD1: 56 
CKD2: 106 
CKD3a: 155 
CKD3b: 35 
CKD 4/5: 5

44.6 (18.2) 
60 (17.4) 
65.3 (14.8) 
74.1 (13.4) 
72.2 (10.3)

33.9% 
50.0% 
46.5% 
60.0% 
40.0% 

S1 
S2 
S3a 
S3b 
S4/5

base 
NR 
-0.112
-0.062
-0.185
-0.284

base 
NR 
-0.189
-0.128
-0.299
-0.408

base NR  
-0.034 
+0.005 
-0.071 
-0.160     

Schlackow14

9 2017

Moderate to 
advanced 
CKD UK EQ-5D-3L UK 6356 62 (12) 63%

Regression 
Mean 
(intercept) 
Male 
Age +10y 
PFKT 
dialysis 

0.86 
+0.06 
-0.05 
-0.07 
-0.06

0.84 
+0.05 
-0.05 
-0.11 
-0.07

0.88 
+0.07 
-0.04 
-0.03 
-0.04     
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Author Yr Population Country 
Utility 
measure 

Valuati
on set N Age 

Proportion 
male 

Utility 
values 
reported Mean Median SE SD CI low CI high 

IQR 
low 

IQR 
high 

Snowsill150 2017

Kidney 
transplant 
recipients UK EQ-5D-3L UK N/A N/A N/A 

Regression 
Mean 
(intercept) 
Age 
Age sq 
Male 
FG 
HD 
PD 
PTDM

0.968 
-0.002
-0.000
+0.023
-0.053
-0.277
-0.264
-0.060 NR     

PFKT: Previous Failed Kidney Transplant; CM: Conservative Management 
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Table 32  Health state utilities for chronic phase of the model 

Health state 

Study 

mean 

utility 

SE SD 
Mean 

Age 

Male  

(%) 

Age related 

pop. norm 

Age 

adjusted 

multiplier 

applied to 

model 

Adjusted 

SE 

HSUV 

applied 

in 

model  

Dist. Source 

Post discharge 

(year 1)  
0.666 0.016 0.280 60.5 0.590 0.8262 0.806 -- 0.655 Beta 

Cuthbertson et al.  

2010151 

Post discharge 

(years 2-4) 
0.701 0.016 0.281 60.5 0.590 0.8262 0.849 -- 0.689 Beta 

Cuthbertson et al. 

2010151 

Post discharge 

(year 5 onwards) 
0.677 0.017 0.301 60.5 0.590 0.8262 0.819 -- 0.665 Beta 

Cuthbertson et al. 

2010151 

CKD (1-4) A, C -- -- -- 

CKD 2: 60.0 

CKD 3A: 

65.3 

CKD 3B: 

74.1 

CKD 4: 72.2 

CKD 2: 0.50 

CKD 3A: 

0.465 

CKD 3B: 

0.600 

CKD 4: 

0.400 

CKD 2: 

0.826 

CKD 3A: 

0.802 

CKD 3B: 

0.762 

CKD 4: 

0.768 

0.708 0.031 0.575 Beta 
Nguyen et al. 

2018148 

ESRD C -- -- -- 72.2 0.400 0.768 0.488 0.053 0.396 Beta 
Nguyen et al. 

2018148 

ESRD: HDB 0.560 0.033 - 60.4 0.580 0.826 0.678 0.040 0.551 Beta 
Liem et al. 

2008141;  
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Ara and Brazier, 

2010143 

ESRD: PDB 0.580 0.043 - 57.9 0.550 0.836 0.694 0.052 0.564 Beta 

Liem et al. 

2008141;  

Ara and Brazier, 

2010143 

A A weighted average utility value (with proportions based on Nguyen et al. 2018148) across the CKD stages 1-4. B For application in the model, the ESRD (dialysis) 
utility is applied as the weighted average utility based on the proportion of long-term dialysis delivered as HD and PD, obtained from the UK renal registry report, 
2018 C The study reports utility decrements only and the mean utilty applied in the model is back calculated using the utility decrement from Nguyen et al. applied to 
age and sex-adjusted UK general population norms.  
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Time horizon and discounting 

The model was run over a life time horizon, up to age 100 (for a cohort with a starting 

age of 63 in the model). The life-time horizon was chosen to ensure that all the long-

term costs and consequences of AKI induced CKD were captured, including the long-

term health effects of ultimate progression to ESRD, transplant and death. The cycle 

length for the model was annual and half cycle corrections have been applied to costs 

and utilities. All costs and outcomes accruing beyond the first yearly cycle of the 

model were discounted at a rate of 3.5% per annum in line with the NICE reference 

case. The discount rate was varied between 0% and 6% in deterministic sensitivity 

analyses. 

 

Analyses 

The model calculated the expected costs and expected QALYs over the lifetime of the 

respective cohorts. This includes the costs and QALYs incurred in the first 90-day 

acute phase of the model, based on diagnostic test accuracy, preventative action to 

avert AKI, resultant peak AKI status and requirement for admission to ICU. It also 

includes the longer-term extrapolations from the Markov cohort model, simulating the 

long-term transitions between progressive stages of CKD for those that develop it.   

 

The model is fully probabilistic to simultaneously describe the impact of all parameter 

uncertainty on the model results. All model parameter estimates are sampled from 

their assigned distributions as described in the preceding sections, using 1000 

simulations. Where it was not possible to derive a distribution, for example when 

insufficient information existed to determine the SD of the distribution, it was 

assumed that the SD of a parameter was equal to 10% of its mean unless otherwise 

stated.  

 

Results are reported as cost-utility analyses, in terms of incremental cost per QALY 

expressed as the incremental cost-effectiveness ratio (ICER). Test strategies are 

plotted on the cost-effectiveness frontier. Tests are ranked in ascending order of 

benefit (QALYs), with results reported for all tests incrementally against each other to 

enable the exclusion of strictly dominated (less beneficial and more costly) 

alternatives from the ICER calculations. ICERs vs. standard care are also reported.  

Results from the probabilistic analysis simulations are plotted using cost-effectiveness 
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acceptability curves based on the net benefit calculation to identify the optimal 

diagnostic testing strategy at different threshold values of willingness to pay (WTP) 

for a QALY. 

 

Model validation 

The economic model was checked for errors using the approach suggested by 

Tappenden and Chilcott152 that specified verification tests. Components of the model 

tested were the estimation of the costs and QALYs, distributions of model parameters 

and other general tests for accuracy of the implementation of input parameters. No 

specific issues were identified through the verification tests. 

 

Results 

The model was developed and configured to assess the cost-effectiveness of the 

NephroCheck test, Urine NGAL (i.e. the ARCHITECT Urine NGAL assay and the 

BioPorto NGAL urine test), and BioPorto plasma NGAL in combination with 

standard clinical assessment, compared with standard clinical assessment alone.   

 

There is no direct evidence to describe the impact of the use of the AKI biomarkers on 

important health outcomes (such as need for ICU care, length of hospital stay, risk of 

90-day mortality or development of new / progression of existing chronic kidney 

disease). Accordingly, the cost-effectiveness results are based on a linked-evidence 

approach where we have relied on observational associations to infer how prevention 

or mitigation of AKI may affect changes in health outcomes. These associations 

necessitate causal assumptions, but while a causal link between AKI and poor 

outcomes is plausible, the extent of this causal relationship is uncertain and 

controversial. The cost-effectiveness results are therefore presented for a range of 

alternative, but potentially plausible, scenario analyses ranging from a set of 

optimistic assumptions where biomarker-guided care bundles may lead to substantial 

improvements in health outcomes (need for ICU, CKD, mortality) to a set of more 

conservative assumptions where changing of AKI status has no effects on health 

outcomes. It is likely that the true estimate of cost-effectiveness lies somewhere 

between these two extremes. 
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Furthermore, the model includes the following key assumptions: 

 The model base case analysis is run for a mixed cohort of CKD and non-CKD 

patients, average age 63, 54.3% female, based on the characteristics of 

hospitalised patients in Grampian, Scotland who have at least one night 

hospital stay and are having their kidney function monitored and so are 

deemed to be at risk of AKI. 

 It is assumed that NephroCheck and NGAL can rise at similar time-points and 

in the absence of any evidence to suggest otherwise, it is assumed that the time 

gain, relative to serum creatinine, in terms of early implementation of a care 

KDIGO bundle is equal for both. 

 The base case analyses assume that there are no adverse consequences in 

terms of health effects of false positive or false negative test results compared 

to standard care.  False positive results would incur the additional futile 

application of the care bundle costs, whilst clinical expert opinion indicates 

that false negatives will be monitored until the negative test result is confirmed 

and would represent current practice without biomarkers. However, there is 

some concern that a false positive test may lead to unnecessary fluid 

resuscitation, especially if encountered by inexperienced clinicians, which 

could lead to an increased mortality risk, though the magnitude of that risk is 

unknown. Sensitivity analysis explores this.  

 For the Markov models, it is assumed that a patient can only develop CKD 

linked to the index AKI event for the first cycle of the model, reflecting a total 

time exposure to increased CKD risk of 1 year + 90 days. Thereafter, the 

background risk of developing CKD in the population is applied. 

 It is assumed that the proportion of the cohort who have graft failure post-

transplant return to the ‘ESRD on dialysis’ health state, where they are 

exposed to the same risks of transition to transplant / death as when they first 

entered the dialysis state. 

 For the proportion of the cohort who don’t develop long-term CKD, the base 

case models assume that the longer-term follow up costs and mortality risks 

are not dependent on events in the acute phase of the model (i.e. AKI severity 

and associated ICU admission).  Sensitivity analysis explores the impact of 
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applying additional costs and mortality risks for those admitted to ICU in the 

acute phase of the model.  

 The model is run for a lifetime horizon, or 100 years whichever comes first, 

with costs and QALYs discounted at an annual rate of 3.5% per annum. 

 

Evidence from Meersch et al. shows that NephroCheck guided early implementation 

of a KDIGO care bundle can avert AKI. However, the impact of NGAL guided 

implementation of a care bundle is unknown. Therefore, two alternative base case 

assumptions are considered.  The first assumes that NGAL and NephroCheck have the 

same potential to avert AKI (based on Meersch et al).113 The second assumes that 

NGAL can only reduce the severity of AKI (also from Meersch et al113 but cannot 

prevent it from occurring. The rationale for the latter analysis is that NGAL detects 

injury to the kidneys, whereas NephroCheck can potentially detect stresses on the 

kidneys and may offer an earlier warning of impending AKI. The two base case 

models and a range of scenario analyses conducted around important model 

assumptions are described in Table 33. A total of 15 scenario analyses are reported on 

each of these two plausible base case configurations to illustrate the significant 

uncertainty in the cost-effectiveness findings. Table 34 reports the results for 

scenarios where NGAL can avert AKI and Table 35 reports results of scenarios where 

NGAL cannot avert AKI.
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Table 33  Base case model configuration and scenario analyses 

Parameter / assumptions Value Base case justification / source 
Sensitivity / scenario 
analyses 

Scenario analysis reference 

Alternative base case assumptions 

Potential for biomarker tests to avert 
AKI (vs. standard care) 

RR AKI = 0.77  Based on Meersch et al.113 

Base case 1: Applied to 
all tests 
 
Base case 2: Applied to 
NephroCheck only  

Base case 1: NGAL and 
NephroCheck can both avert 
AKI 
 
Base case 2:  
Only NephroCheck can avert 
AKI.

Scenario analyses applied to base case 1 and base case 2 

Proportion of the RR of ICU admission 
(AKI vs. none) that can be achieved by 
averting AKI

0.5 Based on clinical expert opinion Varied between 0 and 1 Scenario B: Averting AKI 
leads to no improvement in 
health outcomes 
 
Reducing AKI severity leads 
to full associative effects on 
health outcomes 
 
Scenario C: Averting or 
reducing severity of AKI 
leads to no improvement in 
health outcomes 
 
Scenario D: Averting or 
reducing severity of AKI 
leads to full improvement in 
health outcomes 

Proportion of the HR of CKD (AKI vs. 
none) that can be achieved by averting 
AKI 

1 
Based on clinical expert opinion 
/ See et al119 

Varied between 0 and 1 

Proportion of the RR of 90-day 
mortality (Aki vs. none) that can be 
achieved by averting AKI 

0 

Based on Meersch et al113, who 
show effects on AKI, but not on 
mortality.  Similar data from 
Wilson et al116

Varied between 0 and 1 

Proportion of the difference in hospital 
and ICU length of stay (AKI vs. none) 
that can be achieved by averting AKI

0.5 Based on clinical expert opinion Varied between 0 and 1 

Impact of AKI stage on hospital and 
ICU length of stay 

Duration applied 
by AKI stage 

Based on observational data 
from Grampian105 

Duration assumed not to 
vary by stage, with same 
durations applied to all 
AKI stages based on 
average from Grampian 
observational data105
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Parameter / assumptions Value Base case justification / source 
Sensitivity / scenario 
analyses 

Scenario analysis reference 

Impact of AKI stage on the probability 
of ICU admission 

Probability 
applied by AKI 
stage 

Based on observational data 
from Grampian105 

Probability assumed not 
to vary by stage, with 
same probability applied 
to all AKI stages based on 
average from Grampian 
observational data105

Impact of AKI stage on the probability 
of developing CKD. 

HR applied by 
AKI stage 

Based on systematic review and 
meta-analysis from See et al119 

HR assumed not to vary 
by stage, with same HR 
applied to all AKI stages 
based on Sawhney 
2017105

Impact of AKI stage on the probability 
of 90-day mortality 

Average 
probability 
applied for all 
AKI stages

Based on a lack of evidence that 
changing AKI severity can 
impact directly on mortality, as 
per Meersch et al113

Probabilities applied by 
AKI stage to explore 
uncertainty in this 
assumption

AKI excess cost per day in hospital / 
ICU 

No excess cost 
applied 

Conservative approach to ensure 
avoidance of double counting 

Additional hospital excess 
bed day cost applied as 
per Hall et al99 to all 
patients (ICU / ward)

Scenario E: as per Scenario D 
with additional AKI costs. 

The following analyses are applied to the base case configuration (Scenario A above) 

Additional costs associated per day on 
RRT 

Yes Based on HRG costs 
No additional costs of 
RRT

Scenario F 

Impact of AKI on long term follow up 
costs beyond 90 days 

None (ratio =1) Conservative assumption 
All long-term Markov 
model costs multiplied by 
1.15 as per Hall et al105 Scenario G 

 
Differential long term 
outpatient cost and mortality 
applied according to whether 
patient entered ICU or not. 

Long term outpatient follow-up costs, up 
to 5 years 

Average of 
hospitalised and 
ICU patients 

Based on average of two cohorts 
from Lone et al123 

Differential cost streams 
applied for 5 years 
according to whether 
cohort admitted to ICU in 
first 90 days, based on 
Lone et al123
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Parameter / assumptions Value Base case justification / source 
Sensitivity / scenario 
analyses 

Scenario analysis reference 

Long term outpatient follow-up costs, 
after 5 years 

No additional 
costs applied 

Assumption that patients 
surviving post icu to 5 years will 
incur no further excess costs 

Additional annual costs 
applied for full life-time 
based on extrapolation of 
Lone et al123 data, applied 
separately to those who 
had ICU / no ICU 
admission at index 
hospitalisation.

Impact of ICU admission on Long term 
mortality 

Average of 
hospitalised and 
ICU patients 

Lone et al123 

Differential mortality 
applied according to 
whether cohort admitted 
to ICU

Duration by which AKI event can 
impact on excess CKD risk 

90 days + 1 year Assumption 
Assume additional risk of 
CKD development over 
full life-time horizon

Scenario H 

Discount rate (Cost) 3.5% NICE guidelines Varied 0% - 6% Scenario I (0%) 
Scenario J (6%) Discount rate (QALY) 3.5% NICE guidelines Varied 0% - 6% 

Source of AKI prevalence data 9.2% 
Grampian data for hospitalised 
patients at risk of AKI 

Alternative source: 
obtained directly from 
systematic review studies

Scenario K 

Number of times test is used 1 Based on NICE scope All tests conducted twice Scenario L 

RR of 90-day mortality for FP test 
results 

1 
Assumes no additional risk of 
unnecessary fluid resuscitation 

Apply an additional 
RR=1.5 to explore impact 
on results.

Scenario M 

Test capital and training costs in test 
cost 

Included As per company advice 

Exclude in sensitivity 
analysis, assuming all 
capital equipment 
required is available for 
all tests ( including 
NephroCheck)

Scenario N 



173 
 

Parameter / assumptions Value Base case justification / source 
Sensitivity / scenario 
analyses 

Scenario analysis reference 

Source of ICU utility data -0.402 Kind et al (unconscious patient) 

Average of unconscious  
(-0.402) and utility at 
discharge from ICU 
reported in the Practical 
trial (Hernandez et al135)

Scenario O 

Long term outpatient utility Varies by year 
Long term utility implication of 
hospitalisation / ICU, based on 
Hall et al. 105

General population 
norms, assuming quicker 
recovery.

Scenario P 

Source of diagnostic accuracy data All comers All 

Exploratory analysis 
applying available test 
accuracy data for children 
to the adult model.

Scenario Q 
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Table 34  Scenario analyses assuming that the NGAL tests can avert AKI 

Scenario Cost Inc. Cost QALY Inc. 

QALY 

ICER (inc) ICER vs. 

SC 

p (C/E) 

@ 20k 

p (C/E) 

@ 20k 

vs. SC 

Scenario 1A: Preferred base case assuming an associative effect of averting and mitigating AKI 

Test 3 (NGAL urine - BioPorto) £22,887 -- 6.07332 -- -- Dominant 43.5% 54.6% 

Test 2 (NGAL plasma - BioPorto) £22,900 £14 6.07332 0.00001 £2,694,918 Dominant 11.1% 47.6% 

Standard care (Scr) £22,901 Dominated 6.07296 Dominated Dominated -- 45.1% -- 

Test 4 (NGAL urine - ARCHITECT) £22,912 Dominated 6.07328 Dominated Dominated £32,131 0.1% 41.4% 

Test 1 (Nephrocheck) £22,938 Dominated 6.07332 Dominated Dominated £101,456 0.2% 31.9% 

Scenario 1B: Apply the full associative effect on the redistributed cohort only and assuming that the test impacts on the probability of 

dying at 90 days.   

Standard care (Scr) £22,829 -- 6.08377 -- -- -- 57.5% -- 

Test 3 (NGAL urine - BioPorto) £22,937 £108 6.08602 0.00226 £47,877 £47,877 30.4% 42.5% 

Test 4 (NGAL urine - ARCHITECT) £22,951 Dominated 6.08584 Dominated Dominated £58,813 0.0% 37.3% 

Test 2 (NGAL plasma - BioPorto) £22,951 £14 6.08608 0.00006 £228,616 £52,816 11.9% 39.5% 

Test 1 (Nephrocheck) £22,988 Dominated 6.08604 Dominated Dominated £70,141 0.2% 31.0% 

Scenario 1C: No associative effect 

Standard care (Scr) £23,340 -- 6.07257 -- -- -- 100.0% -- 

Test 3 (NGAL urine - BioPorto) £23,420 Dominated 6.07257 Dominated Dominated Dominated 0.0% 0.0% 

Test 2 (NGAL plasma - BioPorto) £23,436 Dominated 6.07257 Dominated Dominated Dominated 0.0% 0.0% 

Test 4 (NGAL urine - ARCHITECT) £23,437 Dominated 6.07257 Dominated Dominated Dominated 0.0% 0.0% 
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Test 1 (Nephrocheck) £23,473 Dominated 6.07257 Dominated Dominated Dominated 0.0% 0.0% 

Scenario 1D: Full associative effect 

Standard care (Scr) £22,959 -- 6.08383 -- -- -- 0.7% -- 

Test 3 (NGAL urine - BioPorto) £23,013 £54 6.11006 0.02623 £2,052 £2,052 40.7% 99.3% 

Test 2 (NGAL plasma - BioPorto) £23,028 £15 6.11091 0.00084 £17,702 £2,538 47.5% 99.1% 

Test 4 (NGAL urine - ARCHITECT) £23,031 Dominated 6.10799 Dominated Dominated £2,981 1.1% 98.8% 

Test 1 (Nephrocheck) £23,065 Dominated 6.11064 Dominated Dominated £3,955 10.0% 97.7% 

Scenario 1E: As per Scenario 1D but apply a daily excess AKI costs to patients in hospital/ICU  

Test 3 (NGAL urine - BioPorto) £23,638 -- 6.11049 -- -- Dominant 38.6% 99.2% 

Test 2 (NGAL plasma - BioPorto) £23,650 £12 6.11104 0.00055 £21,968 Dominant 43.8% 98.9% 

Test 4 (NGAL urine - ARCHITECT) £23,664 Dominated 6.10823 Dominated Dominated Dominant 2.0% 98.9% 

Standard care (Scr) £23,681 Dominated 6.08377 Dominated Dominated -- 0.8% -- 

Test 1 (Nephrocheck) £23,687 Dominated 6.11102 Dominated Dominated £210 14.8% 98.7% 

Scenario 1F: Exclude RRT cost 

Test 3 (NGAL urine - BioPorto) £23,258 -- 6.07092 -- -- Dominant 39.5% 49.9% 

Standard care (Scr) £23,266 Dominated 6.07060 Dominated Dominated -- 49.8% -- 

Test 2 (NGAL plasma - BioPorto) £23,271 £14 6.07093 0.00001 £1,403,330 £17,694 10.0% 44.9% 

Test 4 (NGAL urine - ARCHITECT) £23,282 Dominated 6.07089 Dominated Dominated £54,497 0.3% 39.0% 

Test 1 (Nephrocheck) £23,309 Dominated 6.07092 Dominated Dominated £132,748 0.4% 29.5% 

Scenario 1G: A Apply the differential long-term follow-up costs and mortality according to whether patient entered ICU or not 

Test 3 (NGAL urine - BioPorto) £30,290 -- 6.56602 -- -- Dominant 50.2% 99.5% 

Test 2 (NGAL plasma - BioPorto) £30,296 £7 6.56605 0.00003 £227,069 Dominant 39.7% 99.1% 

Test 1 (Nephrocheck) £30,335 Dominated 6.56605 Dominated Dominated Dominant 8.1% 97.2% 
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SUPERSEDED –

SEE ERRATUM

Test 4 (NGAL urine - ARCHITECT) £30,337 Dominated 6.56591 Dominated Dominated Dominant 1.4% 98.6% 

Standard care (Scr) £30,606 Dominated 6.56457 Dominated Dominated -- 0.5% -- 

Scenario 1H: Apply an excess CKD risk for those who experienced an AKI event over the full lifetime horizon  

Test 3 (NGAL urine - BioPorto) £23,201 -- 6.07247 -- -- Dominant 54.8% 76.5% 

Test 2 (NGAL plasma - BioPorto) £23,212 £12 6.07251 0.00005 £254,012 Dominant 20.3% 73.0% 

Test 4 (NGAL urine - ARCHITECT) £23,228 Dominated 6.07234 Dominated Dominated Dominant 0.6% 68.4% 

Test 1 (Nephrocheck) £23,251 Dominated 6.07250 Dominated Dominated Dominant 1.0% 58.2% 

Standard care (Scr) £23,254 Dominated 6.07086 Dominated Dominated -- 23.3% -- 

Scenario 1I A 0% discount rate applied to both costs and QALYs 

Test 3 (NGAL urine - BioPorto) £27,644 -- 8.20147 -- -- Dominant 44.3% 57.9% 

Test 2 (NGAL plasma - BioPorto) £27,657 £13 8.20149 0.00001 £996,593 Dominant 13.5% 51.4% 

Standard care (Scr) £27,664 Dominated 8.20095 Dominated Dominated -- 41.6% -- 

Test 4 (NGAL urine - ARCHITECT) £27,668 Dominated 8.20143 Dominated Dominated £9,262 0.2% 47.4% 

Test 1 (Nephrocheck) £27,694 £37 8.20149 0.00000 £48,020,759 £56,351 0.3% 37.4% 

Scenario 1J A 6% discount rate applied to both costs and QALYs 

Test 3 (NGAL urine - BioPorto) £20,961 -- 5.11682 -- -- Dominant 39.7% 49.9% 

Standard care (Scr) £20,969 Dominated 5.11654 Dominated Dominated -- 49.4% -- 

Test 2 (NGAL plasma - BioPorto) £20,974 £13 5.11683 0.00001 £1,295,058 £16,259 10.4% 44.2% 

Test 4 (NGAL urine - ARCHITECT) £20,984 Dominated 5.11680 Dominated Dominated £55,509 0.3% 39.5% 

Test 1 (Nephrocheck) £21,011 Dominated 5.11683 Dominated Dominated £145,369 0.1% 30.6% 

Scenario 1K A Apply alternative source for AKI prevalence (average prevalence of 0.2332 across systematic review studies) 

Test 3 (NGAL urine - BioPorto) £23,050 -- 5.85835 -- -- £1,073 42.3% 79.0% 

Test 2 (NGAL plasma - BioPorto) £23,055 £5 5.85837 0.00002 £256,153 £1,050 30.7% 77.3% 
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SUPERSEDED –

SEE ERRATUM

Test 4 (NGAL urine - ARCHITECT) £23,084 Dominated 5.85827 Dominated Dominated £1,164 1.2% 75.2% 

Test 1 (Nephrocheck) £23,093 £39 5.85837 0.00000 £20,956,862 £1,049 5.0% 69.3% 

Standard care (Scr) £23,225 Dominated 5.85742 Dominated Dominated -- 20.7% -- 

Scenario 1L Increase the number of times test is conducted to 2 

Standard care (Scr) £22,811 -- 6.07532 -- -- -- 70.3% -- 

Test 3 (NGAL urine - BioPorto) £22,853 £41 6.07567 0.00035 £118,796 £118,796 19.9% 28.9% 

Test 2 (NGAL plasma - BioPorto) £22,865 £13 6.07567 0.00001 £2,201,973 £152,384 9.7% 25.4% 

Test 4 (NGAL urine - ARCHITECT) £22,884 Dominated 6.07564 Dominated Dominated £227,155 0.1% 19.2% 

Test 1 (Nephrocheck) £22,936 £71 6.07567 0.00000 £69,489,954 £350,812 0.0% 12.4% 

Scenario 1M Apply an additional risk of mortality to those with a false positive test (RR=1.5) 

Test 3 (NGAL urine - BioPorto) £23,039 -- 6.07593 -- -- Dominant 36.5% 48.8% 

Standard care (Scr) £23,044 Dominated 6.07560 Dominated Dominated -- 50.8% -- 

Test 2 (NGAL plasma - BioPorto) £23,052 £13 6.07594 0.00001 £2,250,040 £22,656 11.9% 42.2% 

Test 4 (NGAL urine - ARCHITECT) £23,062 Dominated 6.07591 Dominated Dominated £56,514 0.2% 37.7% 

Test 1 (Nephrocheck) £23,089 £37 6.07594 0.00000 £19,767,388 £128,239 0.6% 28.9% 

Scenario 1N Exclude capital and training costs in test costs 

Test 3 (NGAL urine - BioPorto) £22,952 -- 6.07161 -- -- Dominant 39.6% 51.7% 

Standard care (Scr) £22,964 Dominated 6.07126 Dominated Dominated -- 47.9% -- 

Test 2 (NGAL plasma - BioPorto) £22,965 £13 6.07163 0.00001 £999,957 £2,229 12.2% 45.6% 

Test 4 (NGAL urine - ARCHITECT) £22,975 Dominated 6.07159 Dominated Dominated £35,302 0.0% 40.5% 

Test 1 (Nephrocheck) £23,002 Dominated 6.07162 Dominated Dominated £105,799 0.3% 31.4% 

Scenario 1O Apply alternative ICU utility value (average of -0.402 and 0.44) 

Test 3 (NGAL urine - BioPorto) £23,020 -- 6.07328 -- -- Dominant 42.4% 53.9% 
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Standard care (Scr) £23,032 Dominated 6.07296 Dominated Dominated -- 45.9% -- 

Test 2 (NGAL plasma - BioPorto) £23,033 £13 6.07329 0.00001 £1,565,836 £1,487 11.0% 47.4% 

Test 4 (NGAL urine - ARCHITECT) £23,044 Dominated 6.07326 Dominated Dominated £39,666 0.2% 41.3% 

Test 1 (Nephrocheck) £23,071 Dominated 6.07329 Dominated Dominated £118,201 0.5% 30.2% 

Scenario 1P A Alternative outpatient utility source in the long term (apply general population norms)  

Test 3 (NGAL urine - BioPorto) £23,149 -- 7.05770 -- -- Dominant 41.8% 53.5% 

Standard care (Scr) £23,161 Dominated 7.05712 Dominated Dominated -- 45.8% -- 

Test 2 (NGAL plasma - BioPorto) £23,161 £12 7.05771 0.00002 £779,444 £1,133 11.3% 47.1% 

Test 4 (NGAL urine - ARCHITECT) £23,172 Dominated 7.05765 Dominated Dominated £22,019 0.4% 41.1% 

Test 1 (Nephrocheck) £23,199 Dominated 7.05771 Dominated Dominated £65,271 0.5% 33.6% 

Scenario 1Q  Applying diagnostic test accuracy data for children to the adult AKI model (exploratory only) 

Standard care (Scr) £22,952   6.07678       55.1%   

Test 4 (NGAL urine - ARCHITECT) £22,957 £5 6.07709 0.00031 £15,835 £15,835 24.2% 43.3% 

Test 3 (NGAL urine - BioPorto) £22,968 £11 6.07713 0.00004 £260,525 £45,510 20.6% 40.4% 

A Probability of indifference < 0.002 at a threshold of cost indifference < £0.01 
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Table 35  Scenario analyses assuming that the NGAL tests cannot avert AKI 

Scenario Cost Inc. Cost QALY Inc. QALY ICER (inc) ICER vs. SC p (C/E) 

@ 20k 

p (C/E) 

@ 20k vs. 

SC 

Scenario 2A: Alternative base case assuming NephroCheck is the only test that can lead to averted AKI 

Standard care (Scr) £22,978 -- 6.07277 -- -- -- 64.5% -- 

Test 1 (Nephrocheck) £23,016 £38 6.07313 0.00036 £105,965 £105,965 29.7% 32.0% 

Test 3 (NGAL urine - BioPorto) £23,049 Dominate

d 

6.07290 Dominated Dominated £539,041 5.3% 11.0% 

Test 2 (NGAL plasma - BioPorto) £23,064 Dominate

d 

6.07290 Dominated Dominated £633,846 0.3% 7.3% 

Test 4 (NGAL urine - 

ARCHITECT) 

£23,065 Dominate

d 

6.07289 Dominated Dominated £725,061 0.0% 6.3% 

Scenario 2B: Apply the full associative effect on the redistributed cohort only and assuming that the test impacts on the probability of 

dying at 90 days 

Standard care (Scr) £22,947 -- 6.08411 -- -- -- 36.8% -- 

Test 3 (NGAL urine - BioPorto) £23,033 £87 6.08912 0.00502 £17,290 £17,290 34.4% 53.7% 

Test 4 (NGAL urine - 

ARCHITECT) 

£23,049 Dominate

d 

6.08875 Dominated Dominated £22,071 0.4% 43.7% 

Test 2 (NGAL plasma - BioPorto) £23,050 £17 6.08934 0.00022 £75,026 £19,717 11.1% 48.9% 

Test 1 (Nephrocheck) £23,101 Dominate

d 

6.08615 Dominated Dominated £75,634 17.3% 31.4% 

Scenario 2C: No associative effect 
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Scenario Cost Inc. Cost QALY Inc. QALY ICER (inc) ICER vs. SC p (C/E) 

@ 20k 

p (C/E) 

@ 20k vs. 

SC 

Standard care (Scr) £23,012 -- 6.07534 -- -- -- 100.0% -- 

Test 3 (NGAL urine - BioPorto) £23,094 £82 6.07534 Dominated Dominated Dominated 0.0% 0.0% 

Test 2 (NGAL plasma - BioPorto) £23,110 £16 6.07534 Dominated Dominated Dominated 0.0% 0.0% 

Test 4 (NGAL urine - 

ARCHITECT) 

£23,110 Dominate

d 

6.07534 Dominated Dominated Dominated 0.0% 0.0% 

Test 1 (Nephrocheck) £23,145 Dominate

d 

6.07534 Dominated Dominated Dominated 0.0% 0.0% 

Scenario 2D: Full associative effect 

Standard care (Scr) £23,114 -- 6.08592 -- -- -- 0.7% -- 

Test 3 (NGAL urine - BioPorto) £23,199 Ext Dom 6.09125 Ext Dom Ext Dom £15,974 0.5% 55.8% 

Test 2 (NGAL plasma - BioPorto) £23,214 Ext Dom 6.09137 Ext Dom Ext Dom £18,364 0.3% 50.3% 

Test 4 (NGAL urine - 

ARCHITECT) 

£23,215 Dominate

d 

6.09080 Dominated Dominated £20,721 0.0% 46.0% 

Test 1 (Nephrocheck) £23,223 £109 6.11360 0.02768 £3,941 £3,941 98.5% 99.1% 

Scenario 2E: As per Scenario 2D but apply a daily excess AKI costs to patients in hospital/ICU 

Standard care (Scr) £23,729 -- 6.08549 -- -- -- 0.7% -- 

Test 1 (Nephrocheck) £23,730 £1 6.11261 0.02712 £29 £29 98.8% 99.1% 

Test 3 (NGAL urine - BioPorto) £23,815 Dominate

d 

6.09063 Dominated Dominated £16,615 0.5% 54.0% 
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Scenario Cost Inc. Cost QALY Inc. QALY ICER (inc) ICER vs. SC p (C/E) 

@ 20k 

p (C/E) 

@ 20k vs. 

SC 

Test 4 (NGAL urine - 

ARCHITECT) 

£23,830 Dominate

d 

6.09020 Dominated Dominated £21,436 0.0% 45.1% 

Test 2 (NGAL plasma - BioPorto) £23,831 Dominate

d 

6.09079 Dominated Dominated £19,153 0.0% 49.9% 

Scenario 2F: Exclude RRT cost 

Standard care (Scr) £22,779 -- 6.07846 -- -- -- 68.1% -- 

Test 1 (Nephrocheck) £22,823 £43 6.07882 0.00036 £119,317 £119,317 27.7% 29.6% 

Test 3 (NGAL urine - BioPorto) £22,850 Dominate

d 

6.07859 Dominated Dominated £533,230 3.8% 9.0% 

Test 2 (NGAL plasma - BioPorto) £22,865 Dominate

d 

6.07859 Dominated Dominated £633,002 0.4% 6.8% 

Test 4 (NGAL urine - 

ARCHITECT) 

£22,867 Dominate

d 

6.07858 Dominated Dominated £730,093 0.0% 5.6% 

Scenario 2G: Apply the differential long-term follow-up costs and mortality according to whether patient entered ICU or not 

Test 1 (Nephrocheck) £30,438 -- 6.55843 -- -- Dominant 97.2% 97.2% 

Standard care (Scr) £30,712 Dominate

d 

6.55697 Dominated Dominated -- 2.8% -- 

Test 3 (NGAL urine - BioPorto) £30,776 Dominate

d 

6.55733 Dominated Dominated £181,324 0.0% 15.4% 
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Scenario Cost Inc. Cost QALY Inc. QALY ICER (inc) ICER vs. SC p (C/E) 

@ 20k 

p (C/E) 

@ 20k vs. 

SC 

Test 2 (NGAL plasma - BioPorto) £30,790 Dominate

d 

6.55733 Dominated Dominated £217,350 0.0% 11.8% 

Test 4 (NGAL urine - 

ARCHITECT) 

£30,793 Dominate

d 

6.55730 Dominated Dominated £249,264 0.0% 9.3% 

Scenario 2H: Apply an excess CKD risk for those who experienced an AKI event over the full lifetime horizon 

Test 1 (Nephrocheck) £23,172 -- 6.07060 -- -- Dominant 55.5% 57.7% 

Standard care (Scr) £23,174 Dominate

d 

6.06893 Dominated Dominated -- 39.9% -- 

Test 3 (NGAL urine - BioPorto) £23,231 Dominate

d 

6.06947 Dominated Dominated £106,920 3.6% 21.2% 

Test 2 (NGAL plasma - BioPorto) £23,246 Dominate

d 

6.06948 Dominated Dominated £132,282 1.0% 16.6% 

Test 4 (NGAL urine - 

ARCHITECT) 

£23,250 Dominate

d 

6.06942 Dominated Dominated £154,900 0.0% 12.7% 

Scenario 2I: 0% discount rate applied to both costs and QALYs 

Standard care (Scr) £27,689 -- 8.20138 -- -- -- 60.5% -- 

Test 1 (Nephrocheck) £27,717 £28 8.20191 0.00053 £52,565 £52,565 34.1% 36.6% 

Test 3 (NGAL urine - BioPorto) £27,757 Dominate

d 

8.20157 Dominated Dominated £371,108 4.9% 12.7% 
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Scenario Cost Inc. Cost QALY Inc. QALY ICER (inc) ICER vs. SC p (C/E) 

@ 20k 

p (C/E) 

@ 20k vs. 

SC 

Test 2 (NGAL plasma - BioPorto) £27,771 Dominate

d 

8.20157 Dominated Dominated £439,959 0.4% 9.5% 

Test 4 (NGAL urine - 

ARCHITECT) 

£27,774 Dominate

d 

8.20155 Dominated Dominated £500,966 0.1% 7.0% 

Scenario 2J: 6% discount rate applied to both costs and QALYs 

Standard care (Scr) £21,153 -- 5.11027 -- -- -- 67.1% -- 

Test 1 (Nephrocheck) £21,192 £40 5.11055 0.00028 £140,771 £140,771 27.4% 30.7% 

Test 3 (NGAL urine - BioPorto) £21,221 Dominate

d 

5.11037 Dominated Dominated £686,941 4.7% 10.8% 

Test 2 (NGAL plasma - BioPorto) £21,235 Dominate

d 

5.11038 Dominated Dominated £808,828 0.8% 8.0% 

Test 4 (NGAL urine - 

ARCHITECT) 

£21,238 Dominate

d 

5.11036 Dominated Dominated £937,507 0.0% 6.3% 

Scenario 2K: Apply alternative source for AKI prevalence (average prevalence 0.2332 across systematic review studies) 

Test 1 (Nephrocheck) £23,014 -- 5.85682 -- -- Dominant 63.1% 67.0% 

Standard care (Scr) £23,122 Dominate

d 

5.85589 Dominated Dominated -- 28.4% -- 

Test 3 (NGAL urine - BioPorto) £23,171 Dominate

d 

5.85623 Dominated Dominated £142,617 6.7% 33.2% 
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SUPERSEDED –

SEE ERRATUM

Scenario Cost Inc. Cost QALY Inc. QALY ICER (inc) ICER vs. SC p (C/E) 

@ 20k 

p (C/E) 

@ 20k vs. 

SC 

Test 2 (NGAL plasma - BioPorto) £23,183 Dominate

d 

5.85624 Dominated Dominated £174,191 1.8% 30.1% 

Test 4 (NGAL urine - 

ARCHITECT) 

£23,188 Dominate

d 

5.85620 Dominated Dominated £211,691 0.0% 26.1% 

Scenario 2L: Increase the number of times test is conducted to 2 

Standard care (Scr) £22,746 -- 6.07904 -- -- -- 88.8% -- 

Test 3 (NGAL urine - BioPorto) £22,873 Ext Dom 6.07916 Ext Dom Ext Dom £1,053,861 1.9% 2.6% 

Test 1 (Nephrocheck) £22,875 £129 6.07939 0.00035 £369,737 £369,737 9.0% 9.4% 

Test 2 (NGAL plasma - BioPorto) £22,888 Dominate

d 

6.07916 Dominated Dominated £1,167,690 0.3% 1.5% 

Test 4 (NGAL urine - 

ARCHITECT) 

£22,898 Dominate

d 

6.07915 Dominated Dominated £1,370,281 0.0% 0.7% 

Scenario 2M: Apply an additional risk of mortality to those with a false positive test (RR=1.5) 

Standard care (Scr) £23,246 -- 6.06815 -- -- -- 66.8% -- 

Test 1 (Nephrocheck) £23,286 £40 6.06849 0.00034 £115,982 £115,982 28.0% 30.3% 

Test 3 (NGAL urine - BioPorto) £23,315 Dominate

d 

6.06827 Dominated Dominated £565,245 4.9% 11.2% 

Test 2 (NGAL plasma - BioPorto) £23,330 Dominate

d 

6.06827 Dominated Dominated £679,219 0.3% 8.2% 
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Scenario Cost Inc. Cost QALY Inc. QALY ICER (inc) ICER vs. SC p (C/E) 

@ 20k 

p (C/E) 

@ 20k vs. 

SC 

Test 4 (NGAL urine - 

ARCHITECT) 

£23,332 Dominate

d 

6.06826 Dominated Dominated £776,790 0.0% 6.5% 

Scenario 2N: Exclude capital and training costs in test costs 

Standard care (Scr) £22,987 -- 6.08128 -- -- -- 65.1% -- 

Test 1 (Nephrocheck) £23,025 £39 6.08162 0.00035 £111,620 £111,620 29.4% 32.2% 

Test 3 (NGAL urine - BioPorto) £23,051 Dominate

d 

6.08139 Dominated Dominated £546,618 4.5% 12.6% 

Test 2 (NGAL plasma - BioPorto) £23,066 Dominate

d 

6.08140 Dominated Dominated £663,328 1.0% 9.3% 

Test 4 (NGAL urine - 

ARCHITECT) 

£23,069 Dominate

d 

6.08138 Dominated Dominated £766,927 0.0% 6.1% 

Scenario 2O: Apply alternative ICU utility value (average of -0.402 and 0.44) 

Standard care (Scr) £23,234 -- 6.07749 -- -- -- 67.2% -- 

Test 1 (Nephrocheck) £23,274 £41 6.07783 0.00034 £120,580 £120,580 28.0% 29.9% 

Test 3 (NGAL urine - BioPorto) £23,302 Dominate

d 

6.07761 Dominated Dominated £586,840 4.4% 11.0% 

Test 2 (NGAL plasma - BioPorto) £23,317 Dominate

d 

6.07761 Dominated Dominated £696,184 0.4% 8.1% 

Test 4 (NGAL urine - 

ARCHITECT) 

£23,319 Dominate

d 

6.07760 Dominated Dominated £796,431 0.0% 6.2% 
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Scenario Cost Inc. Cost QALY Inc. QALY ICER (inc) ICER vs. SC p (C/E) 

@ 20k 

p (C/E) 

@ 20k vs. 

SC 

Scenario 2P: Alternative outpatient utility source in the long term (apply general population norms) 

Standard care (Scr) £22,867 -- 7.05869 -- -- -- 63.5% -- 

Test 1 (Nephrocheck) £22,904 £36 7.05928 0.00059 £61,809 £61,809 32.0% 34.1% 

Test 3 (NGAL urine - BioPorto) £22,938 Dominate

d 

7.05889 Dominated Dominated £360,613 4.3% 9.9% 

Test 2 (NGAL plasma - BioPorto) £22,954 Dominate

d 

7.05889 Dominated Dominated £431,098 0.2% 7.8% 

Test 4 (NGAL urine - 

ARCHITECT) 

£22,955 Dominate

d 

7.05887 Dominated Dominated £483,707 0.0% 5.7% 

Scenario 2Q  Applying diagnostic test accuracy data for children to the adult AKI model (exploratory only) 

Standard care (Scr) £23,012   6.07121       91.0%   

Test 4 (NGAL urine - 

ARCHITECT) £23,093 £80 6.07132 0.00011 £713,879 £713,879 6.5% 8.8% 

Test 3 (NGAL urine - BioPorto) £23,114 £21 6.07134 0.00001 £1,477,906 £801,274 2.5% 7.0% 
A Probability of indifference < 0.002 at a threshold of cost indifference < £0.01 
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Scenarios 1A and 2A describe two potential base-case analyses on which all the 

sensitivity analyses are conducted. These scenarios assume that there is a potential 

benefit of averting or having less severe AKI, in terms of improved outcomes (need 

for ICU care, risk of CKD and length of stay), but the magnitude of that benefit may 

be less than that observed in observational data. Given the lack of direct evidence 

demonstrating the impact of biomarker tests on mortality, the base case assumes there 

is no impact of averting AKI on 90-day mortality. 

 

Scenarios B to E illustrate the impact of assumptions around the magnitude of the 

associative benefits of averting/having less severe AKI on health outcomes. Scenarios 

F to P explore the impact of applying alternative follow-up costs and mortality, CKD 

projection, discount rate, alternative source data for AKI prevalence, test costs, excess 

mortality risk due to a false positive result, and alternative utility sources.  

 

The results are highly uncertain, with no clear optimal biomarker strategy. The 

findings are highly sensitive to each of the associative links applied between AKI and 

health outcomes; i.e. probability of ICU admission, LOS in hospital, probability of 

dying at 90 days, and the risk of developing CKD.  

 

In scenarios where NGAL tests are assumed to be equally effective as NephroCheck 

at averting AKI, the BioPorto urine test generally has the greatest probability of cost-

effectiveness. That is because the main drivers of the relative cost-effectiveness of 

each of the biomarker tests against each other are the cost of the test and the 

diagnostic accuracy. The BioPorto urine NGAL test is slightly cheaper and comes out 

of the meta-analysis as having slightly better diagnostic accuracy in the all-comers 

cohort. However, these findings should be interpreted cautiously due to the 

heterogeneity in the diagnostic test accuracy studies, which lead to further uncertainty 

in the cost-effectiveness results. 

 

Conversely, NephroCheck and Abbott ARCHITECT NGAL urine are never the most 

cost-effective strategy when assuming all tests are equally efficacious in averting 

AKI, because they are more costly tests, with comparatively poorer diagnostic 

accuracy. NephroCheck is estimated to have poorer specificity compared to the 

NGAL urine tests, thereby generating additional costs of treating false positive test 
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cases unnecessarily with a KDIGO care bundle. However, under the alternative base 

case assumptions, where the NGAL tests are assumed to have no effect on averting 

AKI, the probability of NephroCheck being the most cost-effective test rises 

considerably. In the most optimistic scenario, NephroCheck is 100% cost-effective. In 

the most pessimistic scenario, standard care is the most cost-effective strategy. 

 

Applying a daily excess cost of AKI in hospital or ICU, i.e. if the cost incurred by 

patients with AKI is not fully captured in the hospital/ICU daily cost, results in the 

tests being even more favorable compared to base case because more costs are offset 

by averting AKI or having less severe AKI in the test arms. This results in the NGAL 

tests being dominant and NephroCheck cost-effective (ICER <£20,000) compared to 

standard care. 

 

ARCHITECT is generally less likely to be cost-effective in all scenarios because of 

the test accuracy and test cost. ARCHITECT is estimated to have lower sensitivity 

and specificity compared to the other tests, and costs more than the other NGAL tests.  

 

In general, the results are also sensitive to the assumption on having hospital/ICU 

specific follow-up costs and mortality (instead of an average of the two), increased 

long term cost of AKI, including the linked effect between AKI and probability of 

CKD for the whole duration of the model (instead of for one cycle as in the base-case) 

and using an alternative source of AKI prevalence data (with higher prevalence), with 

all scenarios favouring the test strategies, making them increasingly more cost-

effective compared with standard care. In most of these cases, NGAL urine 

(BioPorto) is the most cost-effective test strategy, however, in the most optimistic 

scenario, NGAL plasma is the most cost-effective choice of test. On the other hand, 

assuming that a false positive test result can lead to an increased risk of mortality at 

90 days (i.e. RR = 1.5), favours standard care, which becomes the strategy with the 

highest probability of cost-effectiveness.  

 

We have included an exploratory analysis where the limited available diagnostic 

accuracy data for children are applied in the adult model. Diagnostic accuracy data 

were only available for two biomarkers (NGAL urine ARCHITECT and NGAL urine 

BioPorto).  The following diagnostic accuracy estimates were included in this run of 
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the model:  NGAL urine BioPorto: Sensitivity 0.77 (0.70 to 0.84); Specificity: 0.47 

(0.40 to 0.54) and for the NGAL urine ARCHITECT test: Sensitivity 0.68 (0.53 to 

0.80) and Specificity: 0.79 (0.63 to 0.89) 

 

This analysis should be considered as speculative only as to ensure a robust 

assessment of cost-effectiveness in children would require the reconfiguration of the 

model for a pediatric cohort, with appropriate care pathways and age specific risks of 

transition between health states.  

 

In summary, the results are highly uncertain, and it is impossible to ascertain the most 

likely ICER given the available evidence. The range of ICERs across different 

plausible sets of assumptions is substantial and the probabilistic analyses indicate 

substantial uncertainties regarding the optimal test strategy. Any of the scenarios 

explored might be feasible and so it is important to consider these findings in light of 

the substantial uncertainty underlying the impact of the tests on AKI and the causative 

links between AKI and changes in health outcomes. The substantial heterogeneity in 

the study populations for the diagnostic accuracy data for the candidate tests raises 

further concerns about the relative cost-effectiveness of the comparators in the 

absence of head to head trial comparisons across multiple candidate tests. 

 

Cohort traces from the base case Markov models 

Figure 34 shows the Markov traces for the standard care arm of the model under base-

case 1 assumptions. In the standard care arm, at 10 years, the mortality for the 63-year 

old cohort was 45% for the no AKI cohort and 59% for the average of AKI 1,2 and 

3cohorts. The mortality for the no AKI group is consistent with the observed 10-year 

mortality in the Grampian data1.05 However, the mortality observed for the AKI 

cohorts at 10 years is lower than in the observational data from Grampian. This is 

because we did not apply an additional AKI specific excess mortality risk beyond the 

first year of follow-up in the model as to assume such an additional risk is directly 

caused by AKI is questionable, based on existing evidence (e.g. Meersch et al).113 
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Figure 34  Markov cohort traces for base case model configuration 
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Cost-effectiveness acceptability curves  

Figure 35 and Figure 36 report cost-effectiveness acceptability curves for the two 

potential base case scenarios. 

 

 

Figure 35 Cost-effectiveness acceptability curves: Base case 1 

 

 

Figure 36  Cost-effectiveness acceptability curves: Base case 2



192 
 

Subgroup analyses 

Three subgroup analyses have been carried out on the two EAG suggested base case 

strategies (based on whether NGAL is assumed to be capable of averting AKI or not).  

The subgroups considered are adult critical care and adult post cardiac surgery.  As 

there was not sufficient data to populate a robust model for a children subgroup, this 

was only considered as an exploratory analysis (as per Tables 34 and 35 above.   

 

Critical care subgroup 

For the critical care subgroup, the same parameter values as the all-comers are used 

for the downstream model probabilities, costs and utilities. This subgroup may be 

useful for decision making as it could be considered as an alternative, potentially 

more seriously ill, definition of the population in the NICE scope. Whilst the group 

are defined as “critical care”, the populations described in the source diagnostic 

accuracy studies are often more reflective of a seriously ill patient group who would 

not yet be in ICU in the UK setting. The diagnostic accuracy data used for this 

subgroup are described in Table 36 below. 

 

Table 36 Diagnostic accuracy data used for Critical Care subgroup analysis 

Test measure 

Mean  
(95 % CI) Mean  

logit 
SE  
logit 

Correlation  
for MVN  
analysis 

Source 

NephroCheck 
  

Sensitivity 
0.83 

(0.72 to 0.91)
1.615 0.336

-1.000  
Meta 

analysis 
(Chapter 3)Specificity 

0.51 
(0.48 to 0.54)

0.040 0.064

NGAL urine 
(BioPorto) 
  

Sensitivity 
0.72 

(0.61 to 0.80)
0.926 0.247

+0.905  
Meta 

analysis 
(Chapter 3)Specificity 

0.87 
(0.66 to 0.96)

1.876 0.617

NGAL urine 
(ARCHITECT) 
  

Sensitivity 
0.70 

(0.63 to 0.76)
0.855 0.165

+1.000  
Meta 

analysis 
(Chapter 3)Specificity 

0.72 
(0.63 to 0.80)

0.958 0.226

NGAL plasma 
(BioPorto) 
  

Sensitivity 
0.76 

(0.56 to 0.89)
1.156 0.462

-1.000  
Meta 

analysis 
(Chapter 3)Specificity 

0.67 
(0.40 to 0.86)

0.686 0.566

 

The results of the critical care subgroup analysis are provided in Table 37 
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Table 37  Results of the critical care subgroup analysis 

Scenario Cost Inc. Cost QALY Inc. QALY ICER (inc) 
ICER vs. 
SC 

p (C/E) 
@ 20k 

p (C/E) 
@ 20k 
vs. SC 

Critical care subgroup, applied to base case 1 

Test 3 (NGAL urine - BioPorto) £23,008 -- 6.07439 -- -- Dominant 37.0% 51.5% 

Test 2 (NGAL plasma - BioPorto) £23,022 £14 6.07440 0.00002 £900,179 Dominant 12.1% 45.7% 

Standard care (Scr) £23,024 Dominated 6.07406 Dominated Dominated -- 47.9% -- 

Test 4 (NGAL urine - ARCHITECT) £23,029 Dominated 6.07438 Dominated Dominated £15,046 1.8% 42.3% 

Test 1 (Nephrocheck) £23,057 £36 6.07444 0.00004 £905,334 £87,368 1.2% 34.2% 

Critical care subgroup, applied to base case 2 

Standard care (Scr) £22,904 6.07716 65.0% -- 

Test 1 (Nephrocheck) £22,937 £32 6.07755 0.00039 £82,079 £82,079 31.4% 32.8% 

Test 3 (NGAL urine - BioPorto) £22,971 Dominated 6.07728 Dominated Dominated £555,173 3.0% 11.1% 

Test 2 (NGAL plasma - BioPorto) £22,991 Dominated 6.07729 Dominated Dominated £676,218 0.5% 8.3% 

Test 4 (NGAL urine - ARCHITECT) £22,991 Dominated 6.07728 Dominated Dominated £732,572 0.1% 7.9% 
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Cardiac Surgery subgroup 

Diagnostic accuracy data were not available from the systematic review for all 

biomarker strategies for this group and were only available from single studies for 

some tests. Where data were not available from the review, we have taken pooled 

estimates from Hall et al., but note that this analysis should be considered with 

caution as it includes test manufacturers out with the scope of the NICE assessment. 

The diagnostic accuracy data for the cardiac surgery subgroup are provided in Table 

38 and are included probabilistically in the model where possible. 

 

We caution again that these results should be interpreted cautiously because of the 

lack of / limitations with the diagnostic accuracy data, and the questionable relevance 

of the downstream parameters / model structure for a cohort of post-cardiac patients 

only.   

 

Table 38  Diagnostic accuracy data used for cardiac surgery subgroup 

Test measure 
Mean  
(95 % CI) 

Mean  
logit 

SE  
logit 

Correlation  
for MVN  
analysis A 

Source 

Nephro-Check 

Sensitivity 
0.31 

(0.09 to 0.61)
-0.800 0.704

-0.824 
Cummings, 

201928

Specificity 
0.78 

(0.74 to 0.82)
1.266 0.120

NGAL urine 
(BioPorto) 

Sensitivity 
0.78 

(0.72 to 0.84)
1.266 0.182

+0.526 
Yang, 
201767

Specificity 
0.48 

(0.42 to 0.54)
-0.080 0.123

NGAL urine 
(ARCHITECT) 

Sensitivity 
0.46 

(0.33 to 0.59)
-0.160 0.274

-0.517 
Parikh, 
201797

Specificity 
0.81 

(0.79 to 0.83)
1.450 0.067

NGAL plasma 
(BioPorto) 

Sensitivity 
0.62 

(0.49 to 0.74)
0.490 0.277

-1.000 
Hall, 

201899

Specificity 
0.78 

(0.75 to 0.81)
1.266 0.090

A Note that in the absence of meta-analysed studies for this subgroup, all correlations are assumed 

equal to the all-comers, base case analysis. 

 

The results of the post cardiac surgery subgroup analysis are provided in Table 39 
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Table 39  Results of the post cardiac surgery subgroup analysis 

Scenario Cost
Inc. 

Cost QALY
Inc.  

QALY 
ICER 

(inc)
ICER 
vs. SC

p (C/E) 
@ 20k

p (C/E)  
@ 20k  
vs. SC 

Post cardiac surgery subgroup (applied to scenario 1) 

Standard care (Scr) £22,912 6.07358   54.2%   

Test 2 (NGAL plasma - BioPorto) £22,914 £2 6.07387 0.00029 £7,822 £7,822 17.8% 45.5% 

Test 3 (NGAL urine - BioPorto) £22,922 £8 6.07394 0.00007 £112,645 £29,127 28.0% 41.9% 

Test 4 (NGAL urine - ARCHITECT) £22,938 Dominated 6.07380 Dominated Dominated £120,552 0.0% 30.1% 

Test 1 (Nephrocheck) £22,984 Dominated 6.07373 Dominated Dominated £484,944 0.0% 9.6% 

Post cardiac surgery subgroup (applied to scenario 6) 

Standard care (Scr) £22,983 6.07043   85.6%   

Test 2 (NGAL plasma - BioPorto) £23,055 Ext Dom 6.07054 Ext Dom Ext Dom £679,042 3.8% 8.4% 

Test 1 (Nephrocheck) £23,057 £74 6.07059 0.00016 £465,544 £465,544 6.5% 8.1% 

Test 4 (NGAL urine - ARCHITECT) £23,062 Dominated 6.07051 Dominated Dominated £996,121 0.1% 4.0% 

Test 3 (NGAL urine - BioPorto) £23,082 Dominated 6.07056 Dominated Dominated £737,663 4.0% 7.5% 
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Interpretation of the results 

Published data show that NephroCheck-guided implementation of a KDIGO care 

bundle has potential to avert AKI. However, no such data exist for the NGAL tests. 

Therefore, two base case analyses are considered. Base case 1 can be considered an 

optimistic scenario for the NGAL assays and assumes that all NGAL tests are equally 

effective as NephroCheck in terms of the potential to avert AKI. Base case 2 can be 

considered a more conservative approach, in the absence of evidence and assumes that 

only NephroCheck can avert AKI, but that all tests have the potential to reduce AKI 

severity if it occurs.   

 

Fifteen scenario analyses are provided for each potential base case, ranging from a set 

of optimistic assumptions where biomarker-guided care bundles may lead to 

substantial improvements in health outcomes (need for ICU, hospital length of stay, 

CKD, mortality) to a set of more conservative assumptions where changing of AKI 

status has no effects on health outcomes. 

 

ICERs are highly uncertain, and subject to wide variation depending on the set of 

scenarios chosen. The probability of cost-effectiveness at an ICER < £20,000 per 

QALY gained for scenarios where NGAL is assumed equally effective as 

NephroCheck in preventing AKI ranged from 0% to 15% (NephroCheck); 0-55% 

(NGAL Urine BioPorto); 0-2% (NGAL ARCHITECT Abbott) and 0-48% (NGAL 

BioPorto Plasma). NGAL urine (BioPorto) was generally the test associated with the 

greatest probability of cost-effectiveness, albeit highly uncertain, when compared to 

standard care only. This is because NGAL urine (BioPorto) had slightly better 

diagnostic test accuracy data and slightly lower test costs compared to the comparator 

tests. However, there is substantial uncertainty in the diagnostic test accuracy, driven 

by study heterogeneity, therefore results should be interpreted cautiously.   

 

When it is assumed NGAL cannot avert AKI, but can only reduce its severity, the 

cost-effectiveness case for NephroCheck improves substantially, but remains highly 

uncertain with a probability of cost-effectiveness ranging from 0% to 99% across the 

explored scenarios.   
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Given the significant uncertainties across the range of scenario analyses undertaken, it 

is not possible to draw robust conclusions on the cost-effectiveness of the respective 

biomarkers. 
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5 Discussion 

 

Statement of principal findings 

In current clinical practice, identification of patients at risk of developing AKI poses a 

significant challenge to clinicians. Markers of kidney stress and/or injury are hoped to 

be a useful adjunct to current clinical care as they may facilitate patient management 

and informed decisions about treatment. Nevertheless, pathways of presentation and 

care in AKI are complex and the potential for modifiability and clinical benefit is 

uncertain. This assessment looked at the performance of NephroCheck, ARCHITECT 

and Alinity urine NGAL and BioPorto urine and plasma NGAL to assess the risk of 

AKI in critically ill patients considered for admission to critical care. We included 56 

studies with a total of 17,967 patients. 

 

Clinical effectiveness 

The main clinical effectiveness findings suggest that these biomarkers may have a 

potential role in the AKI risk assessment in patients admitted to critical care. Evidence 

for other clinical settings (cardiac surgery, major non-cardiac surgery) was limited. 

 

Meta-analyses results indicate that the use of biomarkers may be useful for identifying 

AKI. However, because of substantial clinical and statistical heterogeneity between 

studies and large 95% confidence and prediction regions there is considerable 

uncertainty surrounding the validity and reliability of these findings. Moreover, the 

overall performance of the biomarkers for detection of AKI as seen by the meta-

analyses of AUC estimates appear to be modest with large boundaries of uncertainty 

rather than excellent. For example, for the adult population the highest AUC value for 

detection of AKI was 0.76 but prediction intervals ranged from 0.33 up to 0.99. 

 

For prediction of relevant clinical outcomes, only a small number of studies were 

available for each biomarker in each clinical setting and this limited the possibility to 

perform pooled analyses.  

 

Similarly, while there was an indication that addition of biomarkers to existing 

clinical models might improve the prediction of relevant clinical outcomes, studies 
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varied considerably in terms of study characteristics and statistical methods used to 

assess prediction limiting any reliable conclusion.  

 

Overall, as studies varied considerably in terms of clinical setting, timing of sample 

collection, optimal threshold level, assay platforms, definition of AKI, number of AKI 

events, time of AKI diagnosis, inclusion /exclusion criteria the reliability and 

generalizability of the observed findings is highly uncertain. 

 

We did not find any study that used the Alinity test (Abbott) or assessed the 

performance of the biomarkers for prediction of CKD. Similarly, we did not identify 

any study that assessed the impact of the routine use of the biomarkers on specific 

clinical outcomes in critically ill patients over current standard care.  

 

Cost-effectiveness 

A probabilistic decision tree and Markov model were developed (adapted from the 

model used by Hall et al.)99 to describe the care pathway for a mixed prevalence 

cohort of CKD / no CKD patients in a hospital setting for patients at risk of 

developing AKI.  The decision tree part of the model captured the acute phase, up to 

the first 90 days and modelled the risk of AKI, the potential for the use of biomarkers 

to prevent AKI or reduce its severity. We used a linked evidence approach to derive 

hypothesised links between the presence / absence of AKI and AKI severity on 

changes in health outcomes (need for ICU care, length of stay in hospital, need for 

acute RRT, 90-day mortality and development of CKD). In the absence of robust trial 

data, we derived these associations from an existing large observational dataset.105 

The Markov model describes the progression of 4 cohorts (no AKI, AKI1, AKI2 and 

AKI3) through a set of mutually exclusive health states capturing CKD, ESRD, long 

term dialysis, kidney transplant and mortality. Progression through these states 

depends on an individual’s AKI status in hospital, which influences the starting 

proportions in the Markov model CKD state. 

 

The model includes health service perspective costs of biomarkers, early application 

of a KDIGO care bundle, hospitalisation (including ICU and ward costs), acute and 

long-term dialysis costs, long-term outpatient follow up costs, and transplant and 

immunosuppressant costs. Health state utility values and modelled mortality risk were 
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combined to generate estimates of QALYs gained for each test. The model included 

the functionality to apply additional follow up costs and mortality risk over the longer 

term for patients admitted into ICU in their index admission. 

 

The cumulative expected value of costs and QALYs were simulated over a lifetime 

horizon for each cohort under the standard care and each of the biomarker strategies 

and all results were reported as probabilistic ICERs. We found no trial data that could 

provide effect estimates for the extent to which biomarkers could both mitigate AKI 

and improve outcomes. Therefore, the model was built around a series of plausible 

proportional effects of averting / reducing the severity of AKI on changes in health 

outcomes. These ranged from optimistic scenarios where patients who had AKI 

averted as result of a biomarker-guided early implementation of a care bundle, 

experienced the same risk of ICU, mortality and CKD as if they were in the no AKI 

cohort; to more pessimistic scenarios where the prevention of AKI or reduction of its 

severity had no impact on health outcomes.   

 

The costs and QALYs for standard care and each biomarker test strategy were ranked 

in ascending order of costs, where strategies that were more costly and less effective 

than an alternative were dominated and excluded from the calculation of the ICERs. 

In this scenario, the highest ICER value under the threshold represents the best value 

for money strategy. All scenarios were also compared directly with standard care. In 

all cases, the probability of cost-effectiveness from the probabilistic simulation was 

reported.  

 

Cost-effectiveness results were highly uncertain, and ICERs were subject to wide 

variation depending on the set of scenarios chosen.  The probability of cost-

effectiveness at an ICER < £20,000 per QALY gained for scenarios where NGAL is 

assumed equally effective as NephroCheck in preventing AKI ranged from 0% to 

15% (NephroCheck); 0-55% (NGAL Urine BioPorto); 0-2% (NGAL ARCHITECT 

Abbott) and 0-48% (NGAL BioPorto Plasma).  NGAL urine (BioPorto) was generally 

the test associated with the greatest probability of cost-effectiveness, albeit highly 

uncertain, when compared to standard care only. This is because NGAL urine 

(BioPorto) had slightly better diagnostic test accuracy data and slightly lower test 

costs compared to the comparator tests. However, there is substantial uncertainty in 
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the diagnostic test accuracy, driven by study heterogeneity, therefore results should be 

interpreted cautiously.   

 

When it is assumed NGAL cannot avert AKI, but can only reduce its severity, the 

cost-effectiveness case for NephroCheck improves substantially, but remains highly 

uncertain with a probability of cost-effectiveness ranging from 0% to 99% across the 

explored scenarios. 

 

In general, our model results generate a less favourable assessment of cost-

effectiveness for the biomarker tests compared to that of Hall et al99. There are five 

reasons why this is the case. First, the prevalence of AKI in the Hall et al. study was 

much higher (31.7%) compared to our prevalent AKI population (9.2%). The higher 

prevalence might be explained by AKI being more common in the ICU setting 

(starting cohort in Hall et al.) than in a hospital ward (the starting cohort in our 

economic model).  

 

Secondly, the settings are different.  Hall et al. evaluated the cost-effectiveness of 

biomarkers for detecting AKI in a critical care setting while our assessment evaluated 

the cost-effectiveness of AKI biomarkers in a critically ill, hospitalised, cohort 

considered for admission to critical care. The data sources used to populate the acute 

phase of the model are different. Hall et al. relied on daily transitions between ICU, 

hospital and discharge up to 90 days, whereas we have relied on a large observational 

dataset to populate the potential link between changes in AKI status and health 

outcomes. Therefore, the costs and utilities applied in the acute phase of the base case 

models differ between the two analyses.    

 

Thirdly, both models produce estimates of cost-effectiveness that are sensitive to the 

data used for the diagnostic accuracy of the tests. The diagnostic accuracy data 

applied in Hall et al. are different from those obtained from our meta-analyses, likely 

due to new studies becoming available since the Hall et al. publication and the wider 

setting for our model. For example, the sensitivity of NephroCheck was 0.90 in Hall 

et al. and 0.75 in our meta-analysis. Consequently, NephroCheck identified more true 

positive cases, which generated greater QALY gains in Hall et al, compared to our 

model. 
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Fourthly, we take a more conservative approach to the estimation of long term follow 

up costs for the base case analysis and have not applied excess lifetime costs beyond 

the 5-year data reported in Lone et al123.  

 

Fifthly, we further assume that there is no impact of AKI on follow up costs beyond 

the 90 days, while Hall et al. assume excess costs applied for the full life-time 

horizon. We also assume that the causal impact of AKI on CKD development ceases 

beyond the first cycle of the Markov model (i.e. 1.25 years after the AKI event), 

whereas Hall et al. assume additional risk of CKD for the full lifetime horizon of the 

model.   

 

Overall, both models conclude that there is substantial uncertainty in the results, albeit 

predicting different base case ICERs. The results are highly sensitive to key 

parameters in the model, and any combination of the presented scenarios may be 

plausible.  

 

Strength and limitations of the assessment 

The methods used to conduct this assessment were detailed and thorough. We 

conducted comprehensive literature searches of major electronic databases and 

relevant websites and assessed more than 1000 full text studies for eligibility. The 

large number of screened and extracted articles was necessary because key 

information (e.g., information on biomarker assays) was not available from the 

abstract. This resulted in a need for significant literature screening resources and for 

considering strict inclusion criteria in order to ensure the assessment remained 

feasible and timely. We restricted inclusion to studies that enrolled at least 100 

participants and excluded studies on low-weight and pre-term babies. It is possible 

that inclusion of all existing studies, irrespective of the sample size, might produce 

relevant findings. However, we reached a consensus that small and niche studies 

would not provide clinically generalisable evidence for pooling and would be 

underpowered to provide reliable evidence in isolation. Low-weight and pre-term 

babies were considered a category of patients with specific care needs, not 

generalisable to the population included in this assessment.  
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The primary weakness of the systematic review of clinical effectiveness evidence was 

the substantial clinical heterogeneity observed between studies. There was 

considerable heterogeneity especially with regard to NGAL threshold levels, time of 

sample collection, definition of AKI and prevalence of AKI, time of AKI diagnosis, 

assays platforms. Consequently, the diagnostic accuracy of individual tests varied 

considerably and the confidence and prediction regions in the pooled analyses were 

notably large. Moreover, when the studies had lower number of AKI events (low 

prevalence) the relationship observed between sensitivity and specificity estimates 

became quite different compared to that of studies for which prevalence was higher.  

Indeed, the shape and size of the prediction regions in the HSROC plots was 

influenced by studies that showed a different relationship between sensitivity and 

specificity compared with other studies. Hence, we do not have much confidence in 

the pooled estimates.  

 

In particular, the intrinsic complexity of this assessment (multiple research questions, 

multiple biomarkers and sample media, multiple clinical settings, broad patient 

population, differences in assay platforms, definition of AKI) means that the findings 

reported here are also complex, particularly given the absence of robust trial evidence 

to support economic model development. While the original scope of this assessment 

was the assessment of hospitalised patients considered to be at risk of admission to 

critical care, no studies focused on this specific group of patients (pre-admission to 

critical care). Most studies were conducted outside the UK and assessed patients 

already admitted to intensive or critical care after different surgical procedures or with 

different (or multiple) clinical conditions. Furthermore, the provision of Intensive 

Care resources across the world are heterogeneous, so many studies will not be 

representative of how intensive care is utilised in the UK. This means that it is unclear 

how well findings of studies that are predominantly based in intensive care, non-UK 

and heterogenous, can be applied to a UK clinical scenario of people not currently 

receiving critical care but at risk of it.  

 

Criteria used for the definition of AKI were consistent with current KDIGO 

recommendations but differ slightly across studies with respect to operationalisation. 

This means that the extent of bidirectional misclassification of AKI and CKD may 

vary between studies and setting, which may affect biomarker performance153. In 
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some studies, it was unclear whether the reported associations between biomarkers 

and AKI were indeed attributed to kidney injury. The current definition of AKI is 

based on elevations in serum creatinine concentration, which poses the conundrum of 

using an imperfect standard to assess the biomarkers’ performance. Serum creatinine 

is not always measured at the same frequency as the biomarkers and to ascertain the 

exact time of creatinine rise it is problematic. As a result, the “ground truth” of AKI 

existence could not be established with a gold standard reference in any of the studies. 

In addition, no studies considered alternative methods for early or incipient AKI 

detection, such as the use of machine learning algorithms154. 

 

In some studies, we observed a very small number of AKI events compared with other 

included studies. Interestingly, two studies both conducted in the cardiac surgery 

setting [a medium size single centre study (Cummings et al28., 400 participants) and a 

large multicenter study (Parikh et al40., the TRIBE trial, 1219 participants)] showed 

similar prevalence rates (4% and 5%, respectively) and a similar pattern of accuracy  

(poor sensitivity estimates and good specificity estimates). The number of AKI events 

are known to vary depending on both AKI definition and clinical setting, which 

underlies the heterogeneity of existing studies.  

 

An unavoidable limitation of this evaluation is the variation in use of NGAL tests. 

Threshold cut points to classify patients with and without AKI in each clinical setting 

were not consistent across studies. This means that differences between studies could 

relate to chosen threshold rather than NGAL performance. We selected one threshold 

per study according to our inclusion criteria and estimated the underlying summary 

ROC curve using a hierarchical model, which takes into account the within and 

between studies variability. NGAL studies also varied with respect to analytic 

methods of measurement Some studies used absolute urine concentrations, while 

others used NGAL concentrations normalised for urine creatinine concentrations. 

There was insufficient data available per type of biomarker and clinical setting to 

further investigate this source of variability and determine the extent to which analytic 

methods influence estimates of diagnostic accuracy and whether it was sensible to 

pool results across studies. Nevertheless, we note that in the multicentre TRIBE 

(Translational Research Involving Biomarkers and Endpoints) prospective study 

assessing 1219 adults undergoing cardiac surgery, the authors repeated the analyses 
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using NGAL urine-creatinine corrected values and did not observe improvements in 

the AUCs compared with uncorrected results.40 

 

Several studies did not provide sensitivity, specificity and AUC for the biomarkers for 

the diagnostic or prognostic accuracy of AKI. In future studies, accuracy measures 

such as sensitivity and specificity must be considered and defined rigorously at 

transparent cut points for predictive biomarkers as they may need to vary according to 

clinical setting.155 

 

Notwithstanding analytic and threshold heterogeneity, the number of available studies 

for each type of assay in each clinical setting limited our ability to assess the role of 

the biomarkers for the prediction of relevant clinical outcomes. Furthermore, the 

number of events was small in many studies and the duration of follow up was not 

consistent across studies so mortality and RRT could not be assessed, reliably, at the 

same time points. Furthermore, details of the methods used for prediction analyses 

were insufficient in many studies. While information on adjustment strategies and on 

the process of variables selection were usually provided, the original cohort of 

potential predictors, prior to the multivariable analysis, was never clearly specified 

leading to potential risk of bias. 

 

Finally, introduction of a biomarker would require evidence not just that it performs 

well as a predictor of modifiable and intervenable AKI, but also that there is 

incremental improvement of existing or alternative approaches to clinical care. There 

was insufficient information to determine with certainty whether the biomarkers had 

an incremental advantage over the traditional marker of serum creatinine and urine 

output or available information for clinical assessment. Only a limited number of 

studies compared the AUC of the biomarkers under investigation with that of serum 

creatinine for the detection of AKI and fewer studies compared the performance of the 

biomarkers with that of clinical models for prediction of AKI or of relevant patient 

outcomes. 
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Uncertainties 

Clinical effectiveness evidence 

There is considerable uncertainty surrounding the generalisability of the studies to the 

UK population. Most of the studies were conducted outside the UK and assessed 

patients already admitted to critical care. Because no studies were identified for 

inclusion, we were not able to assess the impact that the routine use of these 

biomarkers may have on clinical outcomes of critically ill people considered for 

admission to critical care compared to standard clinical assessment.  

 

At present, in the literature there is limited information on the benefits of 

incorporating biomarkers results with that of current clinical criteria (serum creatinine 

and urine output) to improve the clinical management of patients with AKI. Recently, 

Zarbock et al.,156 in the ELAIN RCT of critically ill surgical patients with AKI 

assessed the use of early versus delayed RRT. Plasma NGAL >150 ng/mL was one of 

the inclusion criteria together with the KDIGO criteria. The trial results showed that 

early RRT compared with delayed RRT reduced mortality, duration of RRT and 

hospital stay and that the combination of the KDIGO classification system in 

combination with plasma NGAL was effective in identifying patients with 

deteriorating AKI. Subsequent negative results from the AKIKI RCT for critically 

medical patients suggests that these findings may only apply to targeted circumstances 

(and if reproduced in other studies).157 More recently, the Zarbock group conducted a 

biomarker guided RCT of patients who underwent cardiac surgery.113 They used a 

biomarker-based approach (NephroCheck test) to identify high-risk patients and 

implement a bundle of supportive measures recommended by the KDIGO guidelines 

to reduce the occurrence of AKI as well as that of mortality and RRT. Their results 

showed that implementation of the KDIGO guidelines compared to standard care 

reduced the frequency of AKI within 72 hours after cardiac surgery. However, the 

trial did not show a reduction in the need of RRT nor an improvement in mortality, or 

a positive effect measure on any hard clinical outcome. The authors concluded that 

future, adequately powered, multicentre trials are required. Similarly, Gocze et al.114 

in a study of major non-cardiac surgery patients showed that the early adoption of a 

bundle of supportive measures according to the KDIGO guidelines in patients with 

NephroCheck concentrations higher than 0.3 (ng/mL)²/1000 resulted in a reduced 
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SUPERSEDED –

SEE ERRATUM

occurrence of AKI, decreased hospital and ICU stay, and reduced costs, but again 

there was no evidence of improvement of hard outcomes (RRT, mortality, or major 

kidney events). 

 

Overall, despite some evidence suggesting possible improvement of care processes 

and health care utilisation when biomarker guided care bundles are used alongside 

KDIGO criteria, there is still considerable uncertainty and confusion about how and 

when to use them in clinical practice, and no evidence of benefit to hard outcomes. In 

addition, the optimal threshold for NGAL, and how this changes according to 

different clinical settings, has yet to be established. Future studies should evaluate the 

targeted use of the biomarkers within specific clinical populations and circumstances 

were there is potential for benefit with a plausible and feasible intervention. In 

particular, they should focus on the assessment of the impact of routine biomarker use 

on a reduction in mortality, major clinical adverse events, modification of clinical 

care, and resource utilization. In other words, future research should evaluate the use 

of these biomarkers to improve patients’ clinical outcomes and management.  

 

Discrete urine and plasma NGAL cut offs for differentiating between AKI and non-

AKI patients in each clinical setting need to be identified and the timing of collection 

of biomarker concentrations should be set out more clearly according to each setting. 

In line with the recommendations from the 10th Acute Dialysis Quality Initiative 

Consensus Conference,158 there is also a need to harmonise the methods and platforms 

for collection, handling and storage of urine and plasma samples. Furthermore, it 

would be useful to harmonise the reporting of biomarkers concentrations (e.g., 

absolute concentrations, ratio to urine creatinine) and corroborate techniques for 

normalising urine biomarker concentrations to urine creatinine concentrations. 

 

Finally, it is well recognised that AKI encompasses a range of clinical aetiologies, 

phenotypes and patterns of renal recovery. In addition, current measures of AKI may 

be insufficient to disentangle AKI that is predominantly functional without kidney 

damage, from people with incipient subclinical damage, to people with both AKI and 

kidney damage. Within this context, it remains unclear how phenotypic information 

on people with AKI should most usefully be combined to help target those most likely 
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to benefit from earlier recognition and timely intervention, nor how such intervention 

may differ between clinical phenotypes.158 

 

Cost-effectiveness evidence 

There are three key areas of uncertainty in the economic evaluation modelling that 

limit the robustness of the cost-effectiveness results: i) the lack of evidence on the 

impact of the biomarkers on health outcomes; ii) the heterogeneity in the diagnostic 

accuracy data (including uncertainty in the prevalence of AKI in a broad, poorly 

defined population); iii) the uncertainty around the impact of a NGAL-guided 

implementation of a KDIGO care bundle on the frequency and severity of AKI. Given 

these uncertainties, the choice of a preferred base case scenario is challenging, and the 

observed results should be considered cautiously. These are speculative analyses 

ranging from a set of pessimistic to a set of optimistic scenarios for the use of the 

biomarkers under assessment. 

 

Specifically, there is no evidence to describe the impact of the use of the AKI 

biomarkers on important health outcomes (such as need for ICU care, length of 

hospital stay, risk of 90-day mortality or development of new / progression of existing 

chronic kidney disease). Accordingly, the cost-effectiveness results are based on a 

linked-evidence approach where we have relied on observational associations to infer 

how prevention or mitigation of AKI may affect changes in health outcomes. These 

associations necessitate causal assumptions, but while a causal link between AKI and 

poor outcomes is plausible, the extent of this causal relationship is uncertain and 

controversial.159, 160 The cost-effectiveness results are therefore presented for a range 

of alternative, but potentially plausible, scenario analyses ranging from a set of 

optimistic assumptions where biomarker-guided care bundles may lead to substantial 

improvements in health outcomes (need for ICU, CKD, mortality) to a set of more 

conservative assumptions where changing of AKI status has no effects on health 

outcomes. It is likely that the true estimate of cost-effectiveness lies somewhere 

between these two extremes. 

 

Furthermore, the diagnostic accuracy data used in the economic model are obtained 

from studies that are considerably heterogeneous in terms of baseline AKI prevalence, 

timing of sample collection, threshold values, and definition of AKI. Given the 
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difficulty in defining the population that fits within the scope of this assessment, it is 

unclear how generalisable the diagnostic accuracy data are to the UK population in 

which the biomarkers could be used. 

 

Also of note are additional uncertainties in the model that make conclusions about the 

relative cost-effectiveness of each biomarkers difficult. For example, whilst there is 

some evidence in the literature from Meersch et al. that early NephroCheck guided 

implementation of a KDIGO care bundle may improve AKI status at 72 hours,113 the 

potential for similar improvements using NGAL is unknown. Therefore, we have 

considered two scenarios for the cost-effectiveness analyses. The first assumes, 

optimistically, that all NGAL tests are equally as effective at preventing AKI or 

reducing its severity as NephroCheck; the second based on the available data from 

Meersch et al assumes that NGAL can only reduce the severity of AKI once occurs 

but cannot prevent its occurrence. 

 

Because of these uncertainties, the results of the cost-effectiveness modelling are 

largely speculative and should be interpreted with caution. Whilst extensive 

probabilistic analyses are carried out for scenario analyses, these may still not fully 

capture the uncertainty faced in the implementation of these biomarkers in clinical 

practice.   
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6 Conclusions 

 

Overall clinical message and future research requirements 

In summary, the current evidence base is insufficient to make a full appraisal of the 

economic value of the biomarkers under investigation to provide cost effective 

improvements in clinical outcomes of AKI. As such, we have provided a range of 

scenarios that cannot answer the full remit of this evaluation. We believe the scenarios 

illustrate what might be required for the biomarkers to be cost effective, highlighting 

through the assumptions involved the current gaps where further research is required: 

 

We found that novel biomarkers have the ability to predict the presence or onset of 

AKI, but additional research is required to understand whether such biomarkers can 

do so incrementally above existing standard care. In addition, research that considers 

the utility of biomarkers on top of other novel approaches such as machine learning 

approaches to recognise incipient AKI in different clinical environments would be 

valuable. 

 

There was limited trial evidence that the course of AKI in critical care circumstances 

may be potentially modifiable, or avoidable with early biomarker-guided care bundle 

approaches. Future research is needed to understand whether this is dependent on a 

well-performing timely biomarker, a care bundle appropriate for clinical context, or 

both. Research is also required to further evaluate such approaches outside of a 

critical care setting. 

 

Current literature is inadequate to determine whether biomarker-guided intervention 

can lead to hard clinical and economic outcomes in addition to amelioration of AKI 

severity. The specific clinical circumstances where benefit exists, and whether such 

benefit is dependent on reduction of AKI severity or is mediated through other means 

would also be informative for future evaluations. 

 

Uncertainty remains around the process of renal recovery and non-recovery after AKI. 

Mechanistic work exploring the nature, timing and extent of the recovery process 

could inform the nature and circumstance where a biomarker-guided intervention 
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might be effective. Similarly, clinical research on the timing and extent of renal 

recovery with different AKI phenotypes would enhance the ability to model cost 

effectiveness of biomarker-guided therapies within different subsets of AKI. 
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8 Appendices 

 

Appendix 1 Literature search strategies 

 

NephroCheck/NGAL clinical effectiveness search strategies 

 
Ovid Embase <1974 to 2019 May 14>, Ovid MEDLINE(R) and Epub Ahead of 
Print, In-Process & Other Non-Indexed Citations, Daily and Versions(R) <1946 to 
May 14, 2019> 
Date of search: 27 May 2019 
-------------------------------------------------------------------------------- 
1     Acute Disease/ and exp Kidney Diseases/ use ppezv (8605) 
2     exp acute disease/ and exp *kidney disease/ use oemezd (2443) 
3     exp *acute kidney failure/ use oemezd (31083) 
4     acute kidney injury/ use ppezv (41584) 
5     exp *kidney injury/ use oemezd (12360) 
6     kidney tubular necrosis, acute/ use ppezv (2352) 
7     exp *kidney tubule necrosis/ use oemezd (1519) 
8     (Acute adj3 (kidney disease* or kidney injury or kidney failure or kidney 
dysfunction)).tw. (50969) 
9     (Acute adj3 (renal disease* or renal injury or renal failure or renal 
dysfunction)).tw. (58624) 
10     ((Acute adj3 (Tubular Necrosis or nephrotoxic*)) or "nephrotoxic injur*").tw. 
(9425) 
11     aki.tw. (27925) 
12     exp *contrast induced nephropathy/ use oemezd (2540) 
13     "contrast induced nephropathy".tw. (5028) 
14     or/1-13 (159431) 
15     *reperfusion injury/ (47279) 
16     reperfusion/ use ppezv (4705) 
17     (reperfusion adj5 (injur* or isch?emi*)).tw. (129126) 
18     exp *Delayed Graft Function/ (1612) 
19     "delayed graft function*".tw. (9243) 
20     or/15-19 (144655) 
21     (renal or kidney* or nephr* or "tubular necrosis" or aki).tw. (2045747) 
22     (or/1-7) or 21 (2056977) 
23     20 and 22 (25897) 
24     14 or 23 [All AKI] (177838) 
25     lipocalins/ or lipocalin-2/ use ppezv (6282) 
26     neutrophil gelatinase associated lipocalin/ or lipocalin/ use oemezd (12442) 
27     (NGAL or uNGAL or sNGAL).tw,kw. (7409) 
28     ("Neutrophil gelatinase-associated lipocalin" or "neutrophil gelatinase lipocalin" 
or "lipocalin 2" or lcn2 or Oncogene 24p3 or siderocalin).tw,kw,nm. use ppezv (4262) 
29     ("Neutrophil gelatinase-associated lipocalin" or "neutrophil gelatinase lipocalin" 
or "lipocalin 2" or lcn2 or Oncogene 24p3 or siderocalin).tw,kw,tn. use oemezd 
(5997) 
30     or/25-29 [NGAL] (16697) 
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31     "Tissue Inhibitor of Metalloproteinase-2"/ use ppezv (3445) 
32     "tissue inhibitor of metalloproteinase 2"/ use oemezd (6871) 
33     Metalloproteinase inhibitor 2.tw,nm,kw. use ppezv (15) 
34     Metalloproteinase inhibitor 2.tw,kw. use oemezd (28) 
35     tissue inhibitor of metalloproteinase-2.tw,nm,kw. use ppezv (3699) 
36     tissue inhibitor of metalloproteinase-2.tw,kw. use oemezd (883) 
37     TIMP metallopeptidase inhibitor 2.tw,nm,kw. use ppezv (10) 
38     TIMP metallopeptidase inhibitor 2.tw,kw. use oemezd (11) 
39     (TIMP 2 or TIMP2 or DDC8 or CSC-21K).tw,nm,kw. use ppezv (4818) 
40     (TIMP 2 or TIMP2 or DDC8 or CSC-21K).tw,kw. use oemezd (6114) 
41     or/31-40 [TIMP2] (14536) 
42     (IGFBP7 or IBP-7 or IGFBP-rP1).tw,nm,kw. use ppezv (410) 
43     (IGFBP7 or IBP-7 or IGFBP-rP1).tw,kw. use oemezd (614) 
44     IGF-binding protein 7.tw,nm,kw. use ppezv (16) 
45     IGF-binding protein 7.tw,kw. use oemezd (23) 
46     Insulin-like growth factor-binding protein 7.tw,nm,kw. use ppezv (220) 
47     Insulin-like growth factor-binding protein 7.tw,kw. use oemezd (326) 
48     MAC25 protein.tw,nm,kw. use ppezv (5) 
49     MAC25 protein.tw,kw. use oemezd (5) 
50     PGI2-stimulating factor.tw,nm,kw. use ppezv (6) 
51     PGI2-stimulating factor.tw,kw. use oemezd (9) 
52     “Prostacyclin-stimulating factor”.tw,nm,kw. use ppezv (29) 
53     Prostacyclin-stimulating factor.tw,kw. use oemezd (31) 
54     #32 or #33 or #34 or #35 or #36 or #37.tw,nm,kw. use ppezv (15) 
55     Tumor-derived adhesion factor.tw,kw. use oemezd (7) 
56     or/42-55 [IGFBP7] (1273) 
57     41 and 56 [TIMP2 AND IGFBP7] (278) 
58     nephrocheck.tw,kw. use ppezv (24) 
59     nephrocheck.tw,dv,kw. use oemezd (55) 
60     58 or 59 (79) 
61     30 or 57 or 60 (16915) 
62     24 and 61 (5763) 
63     remove duplicates from 62 (4053) 
 
CINAHL (via EBSCOHost) 
Date of search: 17 May 2019 
 
S1 (MH "Kidney Diseases") AND (MH "Acute Disease") 257 
S2 (MM "Kidney Failure, Acute") 5,995 
S3 (MH "Kidney Tubular Necrosis, Acute") 190 
S4 TX Acute N3 (kidney disease* or kidney injury or kidney failure or kidney 
dysfunction) 10,442 
S5 TX Acute N3 (renal disease* or renal injury or renal failure or renal 
dysfunction) 3,651 
S6 TX (Acute N3 (Tubular Necrosis or nephrotoxic*)) OR TX "nephrotoxic 
injur*" 447 
S7 TX aki 3,496 
S8 TX "contrast induced nephropathy". 677 
S9 S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8 13,805 
S10 (MM "Reperfusion Injury") 1,816 
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S11 (MH "Reperfusion") 947 
S12 TX "delayed graft function*". 213 
S13 TX reperfusion N5 (injur* or isch?emi*) 4,919 
S14 S10 OR S11 OR S12 OR S13 5,890 
S15 TX renal or kidney* or nephr* or "tubular necrosis" or aki 157,197 
S16 S1 OR S2 OR S3 OR S15 157,197 
S17 S14 AND S16 1,057 
S18 S9 OR S17 14,436 
S19 TX (NGAL or uNGAL or sNGAL). 558 
S20 TX "Neutrophil gelatinase-associated lipocalin" or "neutrophil gelatinase 
lipocalin" or "lipocalin 2" or lcn2 or Oncogene 24p3 or siderocalin 762 
S21 TX "Metalloproteinase inhibitor 2" OR TX "tissue inhibitor of 
metalloproteinase-2" OR TX "TIMP metallopeptidase inhibitor 2" OR TX ("TIMP 2 
or TIMP2 or DDC8 or CSC-21K") 
S22 TX ((IGFBP7 or IBP-7 or IGFBP-rP1)) OR TX "IGF-binding protein 7" OR 
TX "Insulin-like growth factor-binding protein 7" 63 
S23 TX "MAC25 protein" OR TX "PGI2-stimulating factor" OR TX 
"Prostacyclin-stimulating factor" 0 
S24 S22 OR S23 63 
S25 S21 AND S24 12 
S26 S19 OR S20 OR S25 853 
S27 S18 AND S26 473 
 
Cochrane Central Register of Controlled Trials (via Wiley Online Library) 
Date of search: 17 May 2019 
 
#1  MeSH descriptor: [Acute Kidney Injury] explode all trees 1214 
#2  MeSH descriptor: [Kidney Tubular Necrosis, Acute] explode all trees  37 
#3  (Acute NEAR/3 (kidney disease* or kidney injury or kidney failure or kidney 
dysfunction)):ti,ab,kw  23064 
#4  (Acute NEAR/3 (renal disease* or renal injury or renal failure or renal 
dysfunction)):ti,ab,kw  23415 
#5  (Acute NEAR/3 (Tubular Necrosis or nephrotoxic*)):ti,ab,kw  312 
#6  ("nephrotoxic injur*"):ti,ab,kw  0 
#7  (aki):ti,ab,kw  1209 
#8  ("contrast induced nephropathy"):ti,ab,kw  822 
#9  MeSH descriptor: [Acute Disease] explode all trees 9276 
#10 MeSH descriptor: [Kidney Diseases] explode all trees  14389 
#11 #9 and #10  193 
#12 #1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #11 24407 
#13 MeSH descriptor: [Reperfusion Injury] explode all trees 1006 
#14 (reperfusion NEAR/5 (injur* or ischemi* or ischaemi*)):ti,ab,kw  2932 
#15 MeSH descriptor: [Delayed Graft Function] explode all trees  89 
#16 ("delayed graft function*"):ti,ab,kw  597 
#17 #13 or #14 or #15 or #16 3470 
#18 (renal or kidney* or nephr* or "tubular necrosis" or aki):ti,ab,kw  79148 
#19 #1 or #2 or #11 or #18  79196 
#20 #17 and #19 997 
#21 MeSH descriptor: [Lipocalins] explode all trees  199 
#22 MeSH descriptor: [Lipocalin-2] explode all trees 93 
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#23 (NGAL or uNGAL or sNGAL):ti,ab,kw 550 
#24 ("Neutrophil gelatinase-associated lipocalin" or "neutrophil gelatinase lipocalin" 
or "lipocalin 2" or lcn2 or Oncogene 24p3 or siderocalin):ti,ab,kw  533 
#25  #21 or #22 or #23 or #24 816 
#26  ("Metalloproteinase inhibitor 2"):ti,ab,kw 0 
#27  ("tissue inhibitor of metalloproteinase-2"):ti,ab,kw  70 
#28  ("TIMP metallopeptidase inhibitor 2"):ti,ab,kw 0 
#29  (TIMP 2 or TIMP2 or DDC8 or CSC-21K):ti,ab,kw  303 
#30  MeSH descriptor: [Tissue Inhibitor of Metalloproteinase-2] explode all trees  42 
#31  #26 or #27 or #28 or #29 or #30  315 
#32  (IGFBP7 or IBP-7 or IGFBP-rP1):ti,ab,kw  26 
#33  ("IGF-binding protein 7"):ti,ab,kw  1 
#34  ("Insulin-like growth factor-binding protein 7"):ti,ab,kw  22 
#35  (MAC25 protein):ti,ab,kw  0 
#36  ("PGI2-stimulating factor"):ti,ab,kw  0 
#37  ("Prostacyclin-stimulating factor"):ti,ab,kw  1 
#38  ("Tumor-derived adhesion factor"):ti,ab,kw  0 
#39  #32 or #33 or #34 or #35 or #36 or #37  33 
#40  #31 and #39  21 
#41  (nephrocheck):ti,ab,kw 4 
#42  #25 or #40 or #41  832 
#43  #12 or #20  25125 
#44  #42 and #43  292 
 
Clarivate Analytics Web of Science 
Indexes=SCI-EXPANDED, CPCI-S, CPCI-SSH Timespan=All years 
Date of search: 22 May 2019 
 
# 1  24,763  TOPIC: ("acute kidney injury" OR "acute kidney failure") 
# 2  715  TOPIC: (kidney NEAR/2 necrosis) 
# 3  25,532  TOPIC: (Acute NEAR/3 ("kidney disease*" or "kidney injury" or "kidney 
failure" or "kidney dysfunction")) 
# 4  32,865  TOPIC: (Acute NEAR/3 ("renal disease*" or "renal injury" or "renal 
failure" or "renal dysfunction")) 
# 5  3,029  TOPIC: ("contrast induced nephropathy") 
# 6  54,254  #5 OR #4 OR #3 OR #2 OR #1 
# 7  3,258  TOPIC: (NGAL or sNGAL or uNGAL) 
# 8  3,078  TOPIC: (neutrophil NEAR/2 lipocalin) 
# 9  4,099  #8 OR #7 
# 10  10,021  TOPIC: (Inhibitor NEAR/2 Metalloproteinase) 
# 11  12,633  TOPIC: (TIMP) 
# 12  18,219  #11 OR #10 
# 13  470  TOPIC: (IGFBP7 or IBP-7 or IGFBP-rP1) 
# 14  242  TOPIC: ("Insulin-like growth factor-binding protein 7") 
# 15  539  #14 OR #13 
# 16  108  #15 AND #12 
# 17  29  TOPIC: (nephrocheck) 
# 18  4,192  #17 OR #16 OR #9 
# 19  1,943  #18 AND #6 
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# 20  3,841,039  TOPIC: (rat or rats or mouse or mice or murine or dog or dogs or 
canine or pig or pigs or porcine) 
# 21  428 #20 AND #19 
# 22  1,543 #19 not #21 
 
The following resources were searched using appropriate text terms, in combination 
where allowed by the search interface. 
  
HTA database (http://www.crd.york.ac.uk/PanHTA/)   
 
WHO Global Index Medicus 
(http://www.globalhealthlibrary.net/php/index.php?lang=en) 
 
EU Clinical Trials Register (https://www.clinicaltrialsregister.eu/) 
 
International Clinical Trials Registry Platform (http://www.isrctn.com/) 
 
ClinicalTrials.gov (via the US National Institutes of Health; Advanced Search 
Interface) 
 
Search terms used: 
Acute kidney/renal injury  
Acute kidney/renal failure 
Kidney Tubular Necrosis  
contrast induced nephropathy 
Nephrocheck  
TIMP-2  
Metalloproteinase  
IGFBP7  
Insulin-like growth factor-binding protein 7  
NGAL or uNGAL or sNGAL  
Neutrophil gelatinase-associated lipocalin  
 
Results retrieved: 86 
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Appendix 2 Screening tool 

 

Figure 37  Screening tool 
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Appendix 3 Data extraction form 

 

 REF ID  
o Study 1st Author 
o Year 
o Project study name 

 Reviewer 
 

BASELINE CHARACTERISTICS 

 Population (adults/child/both) 
 Taret population (surgery – cardiac/surgery – other/ICU/ITU mixed pop/other mixed 

pop (A&E, general hosp)/Sepsis/CKD/Liver disease/Organ transplant (except 
kidney)/Hip replacement/Trauma/Cardiac non-surgical) 

 Recruitment period 
 Study Centre( number of centres and names)  
 Country  
 Funding  
 Index Test1 (uNGAL, pNGAL or Nephrocheck) and Index Test kit 1 (e.g. 

ARCHITECT or ALINITY from ABBOTT, or ELISA BIOPORTO) 
 Age for all the sample 
 Sex 
 sCr 
 eGFR 
 SOFA Score 
 CKD 
 Time point of measurement (Non-surgical: Closest to admission, Surgical: Immediate 

after surgery, truly prognosis record different time points) 
 Threshold reported 
 Report cut-off for NephroCheck or NGAL 
 TP, FN, FP, TN 
 N with AKI present (TP + FN) confirmed by RefStd 
 N with AKI absent (FP+ TN) confirmed by RefStd 
 N with AKI present (TP + FP) confirmed by TEST 
 N with AKI absent (FN +TP) confirmed by TEST 

 
FOR EACH OUTCOME (AKI DIAGNOSIS, MORTALITY PROGNOSIS, RRT 
PROGNOSIS and AKI PROGNOSIS)  

 SENSITIVITY (Lower-Upper 95% CI) 
 SPECIFICITY (Lower-Upper 95% CI) 
 Area Under the Curve (Lower -Upper 95% CI) 
 PPV (Lower -Upper 95% CI) 
 NPV (Lower -Upper 95% CI) 
 PLR (Lower-Upper 95% CI) 
 NLR (Lower-Upper 95% CI) 
 Comment 
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Appendix 4 QUADAS 2 form 

 

 Selection of participants (e.g. prospective, consecutive, recruited ALL patients, 
random sample) 

 1A Could the selection of patients have introduced bias? (Low/ Unclear/High) 
o 1A(a) Was a consecutive or random sample of patients enrolled? (Low/ 

Unclear/High) 
o 1A(b) Was a case-control design avoided? (Yes/ Unclear/No) 
o 1A(c) Did the study avoid inappropriate exclusions? (Yes/ Unclear/No) 

 Inclusion criteria 
 Exclusion criteria 
 Included patients: Describe any concerns/specifics regarding included patients (prior 

testing, presentation, intended use of index test and setting) 
 1B Is there concern that the included patients do not match the review question? 

(Low/ Unclear/High) 
 Test method 
 Test timing 
 Test How Work: Describe the index test and how it was conducted and interpreted 
 2A Could the conduct or interpretation of the index test have introduced bias? 

(Low/ Unclear/High) 
o 2A(a) Were the index test results interpreted without knowledge of the results 

of the reference standard? (Yes/ Unclear/No) 
o 2A(b) If a threshold was used, was it pre-specified? (Yes/ Unclear/No) 

 2B Is there concern that the index test, its conduct, or interpretation differ from 
the review question? (Low/ Unclear/High) 

 Reference standard (e.g. AKIN, KDIGO, RIFLE, sCr) 
 3A Could the reference standard, its conduct, or its interpretation have 

introduced bias? (Low/ Unclear/High) 
o 3A (a) Is the reference standard likely to correctly classify the target 

condition? (Yes/ Unclear/No) 
o 3 (b) Were the reference standard results interpreted without knowledge of 

the results of the index test? (Yes/ Unclear/No) 
 3B Is there concern that the target condition as defined by the reference 

standard does not match the review question? (Low/ Unclear/High) 
 Number enrolled 
 Number analysed: Sample size  
 Attrition: Number excluded with reason 
 Time Interval: Describe the time interval and any interventions between index test(s) 

and reference standard (Low/ Unclear/High) 
 4A Could the patient flow have introduced bias? (Low/ Unclear/High) 

o 4A (a) Was there an appropriate interval between index test(s) and reference 
standard? (Yes/ Unclear/No) 

o 4A(b) Did all patients receive a reference standard? (Yes/ Unclear/No) 
o 4A(c) Did patients receive the same reference standard? (Yes/ Unclear/No) 
o 4A(d) Were all patients included in the analysis? (Yes/ Unclear/No) 
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Appendix 5 PROBAST form 

 

 ID Study  
 

 Year 
 

 Participants 
o 1.1Were appropriate data sources used, e.g., cohort, RCT, or nested case–

control study dat  
o 1.2Were all inclusions and exclusions of participants appropriate? 
o Risk of bias introduced by selection of participants (low/high/unclear) 
o Concern that the included participants do not match the review question 

(low/high/unclear) 
 

 Predictors 
o 2.1. Were predictors defined and assessed in a similar way for all 

participants?  
o 2.2. Were predictor assessments made without knowledge of outcome data?

  
o 2.3. Are all predictors available at the time the model is intended to be used?

  
o Risk of bias introduced by predictors or their assessment (low/high/unclear)

  
o Concern that the definition, assessment or timing of predictors in the model 

do not match the review question (low/high/unclear) 
 

 3 Outcomes 
o 3.1. Was the outcome determined appropriately?  
o 3.2. Was a prespecified or standard outcome definition used?  
o 3.3. Were predictors excluded from the outcome definition?  
o 3.4. Was the outcome defined and determined in a similar way for all 

participants?  
o 3.5. Was the outcome determined without knowledge of predictor 

information? 
o 3.6. Was the time interval between predictor assessment and outcome 

determination appropriate 
o Risk of bias introduced by the outcome or its determination 
o Concern that the outcome, its definition, timing or determination do not 

match the review question (low/high/unclear) 
 

 Analysis 
o 4.1. Were there a reasonable number of participants with the outcome?  
o 4.2. Were continuous and categorical predictors handled appropriately? 
o 4.3. Were all enrolled participants included in the analysis?  
o 4.4. Were participants with missing data handled appropriately?  
o 4.5. Was selection of predictors based on univariable analysis avoided?†  
o 4.6. Were complexities in the data (e.g., censoring, competing risks, sampling 

of control participants) accounted for appropriately?  
o 4.7. Were relevant model performance measures evaluated appropriately? 
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o 4.8. Were model overfitting, underfitting, and optimism in model 
performance accounted for?†  

o 4.9. Do predictors and their assigned weights in the final model correspond to 
the results from the reported multivariable analysis?† 
 

 Risk of bias introduced by the analysis (low/high/unclear) 
 

 Risk of bias (low/high/unclear) 
 

 Applicability (low/high/unclear 
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Appendix 8  Characteristics of included studies 

Table 41  Characteristics of included studies 

Study 
ID 

Assay Age 
(Range 
or SD) 

Sample
size 

AKI 
events 

AKI  
Definition 

Sex  
(% of  
male) 

sC
r 

 

eG
F

R
 

S
O

F
A

 
M

ea
n

 S
co

re
 

C
K

D
 (

%
) 

Inclusion 
Criteria 

Exclusion 
Criteria 

Cummings 
2019,  
USA 

NephC, 
Astute 
Medical 

67  
(58, 75)* 

400 14  KDIGO 67% NR NR NR 6 Patients who were 
originally enrolled in the 
AKI Cardiac Surgery 
RCT 

Acute coronary 
syndrome, liver 
dysfunction, use of 
cyclosporine, current 
RRT, history of kidney 
transplant, pregnancy 

Oezkur 
2017, 
Germany 

NephC, 
Astute 
Medical 

AKI  
65 
(59, 73); 
No AKI 
71 
(64,76)*   

150 35 KDIGO 72% 0.89** 
(IQR 0.75 
to 1.02) 

NR NR NR Adult patients were 
eligible if they were 
undergoing elective 
cardiac surgery (coronary 
artery bypass graft 
[CABG] with or without 
mammary artery bypass, 
valve surgery with or 
without removal of the 
atrial auricle, combined 
CABG and valve surgery, 
or surgery of the thoracic 
aorta) involving 
cardiopulmonary bypass 
(CPB)

Patients with advanced 
stages of chronic kidney 
disease; signs of active 
infection; on medication 
with COMT inhibitors, 
MAO inhibitors or with 
immunosuppressive 
therapy and women 
during pregnancy and 
lactation. 

Beitland 
2016, 
Norway 

NephC, 
Astute 
Medical 

60 
(13) 

195 88 KDIGO AKI:  
83.0% 
No AKI: 
86.0%;  

NR NR NR AKI 
22 
No 
AKI 
9 

Adult (≥18 years) 
comatose out-of-hospital 
cardiac arrest patients 
with return of 
spontaneous circulation 

Patients with known 
chronic kidney disease, 
or who died within 24 h 
of ICU stay, or for some 
reason did not receive 
active treatment, were 
excluded

Kashani 
2013, 21 
sites in 
North 
America, 15 

NephC, 
Astute 
Medical 

64  
(53, 73) 

728 101 KDIGO 62% NR NR NR NR Critically ill patients who 
were at least 21 years of 
age, admitted to the ICU 
within 24 hours of 
enrolment, expected to 

Patients with known 
existing moderate or 
severe AKI 
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sites in 
Europe 

remain in the ICU with a 
urinary catheter for at 
least 48 hours and were 
critically ill 

Bihorac 
2014, USA 

NephC, 
Astute 
Medical 

63 
(17) 

408 71 KDIGO 54% NR NR NR NR All enrolled patients were 
considered critically ill 
because of significant 
respiratory or 
cardiovascular 
dysfunction. The presence 
of an indwelling urinary 
catheter was also a 
prerequisite for inclusion.

Patients with 
documented moderate to 
severe AKI (KDIGO 
stage 2 to 3) at the time 
of enrolment 

Hoste  2014, 
USA 

NephC, 
Astute 
Medical 

AKI 
stage 2/3 
64 
(54, 75); 
AKI  
stage 0/1  
65 
(54, 78) 

153 27 KDIGO AKI  
stage 2/3 
44%;  
AKI  
stage 0/1 
60% 

NR NR NR 20 Patients at least 21 years 
of age, admitted to ICU 
within 24 h of enrolment 
and expected to remain in 
the ICU with a urinary 
catheter for at least 48 h 
after enrolment 

NR 

Di Leo 
2018, Italy 

NephC, 
Astute 
Medical 

68  
(51, 78) 

719 234 KDIGO NC(+) 
63%  
NC(–)  
59% 

NR NR NR AKI  
Stage 
2/3: 
33 

All patients ≥18 years old 
were included in the study 

Patients on chronic 
dialysis and with a life 
expectancy less than 24 
h were excluded 

Kimmel  
2016, 
Germany 

NephC, 
Astute 
Medical, 
uNGAL, 
BioPorto & 
pNGAL 
BioPorto 

63 (14) 298 46 KDIGO 
(modified 
version) 

72% NR NR NR NR Age ≥18 years, 
willingness to sign an 
informed consent form, 
admission to the internal 
medicine service of the 
hospital, and haemoglobin 
level ≥9.5 g/dl (women) 
or ≥10.5 g/dl (men)

Dialysis requirement, 
pregnancy, or failure to 
meet any of the 
inclusion criteria 

Gayat 2018, 
France  

NephC, 
Astute 
Medical  

65  
(54, 75) 

200 Unclear KDIGO 78% NR NR NR NR NR NR 
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Zelt 2018, 
USA 

pNGAL, 
BioPorto 

67   
(61, 73) 

178 35 AKIN NR NR NR NR NR All patients having 
elective cardiac surgery 
requiring CPB 

End stage renal disease; 
renal transplantation; 
solitary kidney, 
emergent operative 
status, off-pump 
procedures, procedures 
involving circulatory 
arrest, heart 
transplantation and left 
ventricular assist divide 
implantation 

Lee 2018, 
Republic of 
Korea 

pNGAL, 
BioPorto 

59  
(50, 71) 

279 111 KDIGO 66% NR NR NR 25 Nontraumatic CA 
survivors over 18 years of 
age who were treated with 
TH and obtained plasma 
NGAL level results were 
enrolled 

Transferred to another 
facility or died during 
TH, they had a pre-
arrest cognitive 
impairment on the CPC 
scale greater than 3, they 
had pre-arrest end-stage 
renal disease with RRT, 
they had CA as a result 
of AKI, extracorporeal 
membrane oxygenation 
was applied during the 
post-CA care, or there 
were missing data 
regarding their NGAL 
level

Itenov 2017, 
Denmark 

pNGAL, 
BioPorto 

67  
(60, 76) 

454 87 KDIGO 
or MDRD 
(in patients 
without  
sCr 
samples 
before 
admission) 

60% NR NR NR 21 Patients (18 years old or 
older) enrolled within 24 
h of ICU admission and 
expected to stay in ICU at 
least 24 h. For the present 
cohort study, the authors 
included patients without 
CKD who survived >24 h 
after admission and with 
plasma samples from 
admission available for 
biomarker analysis

Patients with high 
plasma concentrations of 
bilirubin (40 mg/dL), 
and/or triglycerides 
(1,000 mg/dL) or 
patients at an increased 
risk from blood 
sampling were not 
eligible 
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Marino 
2015, Italy 

pNGAL, 
BioPorto 

77  
(72, 83) 

101 49 RIFLE 60% NR NR NR NR Patients arriving in the 
ED with the diagnosis of 
sepsis, severe sepsis or 
septic shock between 
December 2011 and April 
2012

Exclusion criteria were 
age <18 years and the 
patient’s inability to 
give informed consent 

Parikh  
2011, North 
America 

uNGAL, 
ARCHITECT, 
Abbott 

71 (10) 1200 60 Acute dialysis 
or doubling 
of sCr at a 
median of 
3 days after 
surgery 
(IQR 2 to 4)  

68% 1.0** 
(IQR 0.9 
to 1.20) 

NR NR 20 High risk for AKI was 
defined by the presence of 
one or more of the 
following: emergency 
surgery, preoperative 
serum creatinine > 2 
mg/dl (>177 μmol/L), 
ejection fraction < 35% or 
grade 3 or 4 left 
ventricular dysfunction, 
age > 70 years, diabetes 
mellitus, concomitant 
CABG and valve surgery, 
or repeat revascularization 
surgery.

Patients with evidence 
of AKI before surgery, 
prior kidney 
transplantation, 
preoperative serum 
creatinine level > 4.5 
mg/dl (>398 μmol/L), or 
end-stage renal disease. 
Participants with 
multiple surgeries could 
only be enrolled in the 
study once. 

Albert 2018, 
Germany 

uNGAL, 
ARCHITECT, 
Abbott 

70 
(61,77) 

101 15 RIFLE 72% NR NR NR NR Nonemergency open-
heart surgery with 
cardiopulmonary bypass 

Emergency operation or 
off-pump surgery, CKD 
or kidney transplant; pts 
<18 y and pts on 
immunosuppression 

Haase 2014, 
Germany 

uNGAL, 
ARCHITECT, 
Abbott & 
pNGAL 
BioPorto 

72 
(65,77) 

100 23 RIFLE 75% NR NR NR NR Age above 70 y, pre-
existing renal impairment 
(pre-operative creatinine 
>120 µmol/l, left 
ventricular ejection 
fraction <35%, insulin-
dependent Type 2 
diabetes, valvular surgery 
or valvular and coronary 
artery bypass surgery, 
redo cardiac surgery 

Patients with chronic 
renal impairment 
(preoperative creatinine 
>300 µmol/L), those 
undergoing an 
emergency cardiac 
surgery procedure, 
patients on 
immunosuppression 
therapy, and those 
enrolled in a conflicting 
research study). 

De Loor 
2017, 
Belgium 

uNGAL, 
BioPorto 

69  
(61, 76) 

203 95 KDIGO 66% NR NR NR NR Elective cardiac surgery AKI stage ≥1, CKD 
stage 5; recent kidney 
transplant; surgery Sat 
and Sun. 
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Garcia-
Alvarez 
2015, Spain 

uNGAL, 
ARCHITECT, 
Abbott 

AKI  
74 
(68, 80);  
No AKI  
69 
(59, 76) 

288 104 sCr ≥200% 
or eGFR 
<50% from 
baseline 

AKI:  
54%;  
No AKI: 
46% 

NR NR NR NR All patients admitted to 
ICU after cardiac surgery 
and provided informed 
consent 

If patients required 
preoperative chronic or 
acute haemodialysis; 
previously undergone 
renal transplant or had 
coronary angiography in 
7 days before surgery 

Thanakitcha
ru 2014, 
Thailand 

uNGAL, 
ARCHITECT, 
Abbott 

51 
(15.6) 

130 46 sCr >0.3mg/dL 
within 48 h 

59% 1.0 *mg/dl  
(SD 0.3) 

74.1  
(25.9) 

NR NR All patients who 
underwent cardiac surgery 
with CPB 

Pre-existing renal 
dysfunction with 
baseline sCr>3mg/dl; 
Kidney transplant 
patients; Hx of using 
nephrotoxic agents such 
as aminoglycoside, 
NSAIDs, radiocontrast 
agent within 2 weeks 
before Sx; Patients with 
sepsis; Patients 
undergoing emergency 
operation <24 hrs after 
admission 

Tidbury 
2019, UK 

uNGAL, 
BioPorto 

AKI  
73 
(54-87);  
No AKI  
75 
(59-85) 

125 54 RIFLE AKI:  
63%;  
No AKI: 
47% 

NR NR NR NR High risk patients 
undergoing elective 
surgery for on-pump such 
as valve replacement, 
CABG or combined valve 
and CABG. All had 
impaired renal function 
pre-op established by an 
eGFR <60ml/min. 

Excluded if they were 
scheduled to undergo 
surgery with anticipated 
CPB time less than 60 
min; undergoing surgery 
on great vessels such as 
aortic surgery; had 
impaired liver function; 
renal failure or were on 
dialysis; malignancy; 
being pregnant. 

Schley 
2015, 
Germany 

uNGAL, 
BioPorto & 
pNGAL 
BioPorto 

70 
(10) 

110 37 AKIN 76% 1.2* mg/dl 
(SD 0.5) 

NR NR NR All patients undergoing 
cardiac surgery using 
CPB 

Pre-existing 
haemodialysis-
dependent end stage 
renal disease, previous 
kidney transplantation, 
immunosuppressive 
medication and 
pregnancy 
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Collins 
2012, USA 

uNGAL, 
ARCHITECT, 
Abbott 

NR 399 20 sCr >0.3mg/dL 
or RIFLE 

65%  NR NR NR NR Modified Framingham 
criteria for AHF; enrolled 
within 3 h of first 
physician contact; 
received vasodilators or 
diuretics in the ED for 
treatment of AHF.

NR 

Dupont 
2012, USA 

uNGAL, 
ARCHITECT, 
Abbott 

NR 141 35 sCr increase 
>0.3mg/dL 

58%  NR NR NR NR >18 years of age, clinical 
evidence of congestion, 
planned strategy for 
treatment with 
intravenous furosemide 

Acute coronary 
syndrome; end-stage 
renal disease or RRT; 
exposure to nephrotoxic 
agents; planned surgery 
at the time of enrolment; 
haemoglobin <9 mg/dL 
or active bleeding. 

Cullen 
2014, UK 

uNGAL, 
ARCHITECT, 
Abbott 

68 
(11)  

109 16 AKIN NR NR NR NR NR Patients admitted to 
critical care following 
major abdominal surgery 

Refusal of consent, 
concurrent lithium 
therapy, acute 
myocardial ischemia, 
acute arrhythmias, 
pregnancy, patients 
receiving palliative 
treatment only and 
weight less than 40 kg. 

Nisula 
2015, 
Finland 

uNGAL, 
BioPorto 

62 
(50,73) 

855 379 KDIGO 64% NR NR NR NR Emergency ICU 
admissions and postop 
patients admitted for more 
than 24 h 

Patients <18 years of 
age, readmitted patients 
who received RRT 
during their previous 
admission, patients 
electively admitted with 
an ICU length of stay of 
<24 h if discharged 
alive, patients on 
chronic dialysis, organ 
donors, patients without 
permanent residency in 
Finland or without 
sufficient language 
skills, patients 
transferred between 
study ICUs if included 
in the study for 5 days 
already, and patients 
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receiving intermediate 
care.  

Doi 2014, 
Japan 

uNGAL, 
BioPorto 

AKI  
65 
(53, 74);  
No AKI 
66 
(55,73) 

339 131 RIFLE AKI: 
70% 
No AKI: 
64%;  

NR NR NR NR patients >20 years who 
had been admitted to the 
mixed ICU 

Patients with end-stage 
renal disease or renal 
transplant were excluded 

Cho 2013, 
Korea 

uNGAL, 
BioPorto 

AKI 65.4 
(14.8);  
No AKI 
60.4 
(17.4)  

145 54 AKIN AKI: 
61%;  
No AKI: 
57% 

NR NR NR NR adult patients older than 
18 years who were 
admitted to the medical or 
surgical ICU 

end-stage renal disease 
or kidney transplantation 
and those with life 
expectancy of < 48 hr 

Pipili 2014, 
Greece 

uNGAL, 
ARCHITECT, 
Abbott 

64 
(18)  

106 44 RIFLE 64% 1.0 mg/dL 
(SD 1.3) 

NR 9  
(3) 

NR All consecutive, 
mechanically ventilated 
patients admitted to the 
ICU were considered 
eligible for inclusion 

Age <18 years, BMI 
more than 35 kg/m2, 
end-stage renal disease 
on chronic 
haemodialysis, 
pregnancy, brain death, 
metastatic cancer and 
readmission to ICU or 
missing baseline 
creatinine within 6 
months before 
admission 

Martensson 
2015, 
Australia 

uNGAL, 
ARCHITECT, 
Abbott 

Mild 
AKI  
69 
(59,74) 
Severe  
AKI 
68 
(54,76) 
No AKI 
62 
(48,72) 

102 28 RIFLE Mild  
AKI: 
69%  
Severe 
AKI: 64% 
No AKI: 
42% 

NR NR NR NR >18 years, the presence of 
two or more systemic 
inflammatory response 
criteria, the presence of 
oliguria for ≥2 
consecutive hours and/or 
a 25 μmol/L increase in 
creatinine from baseline. 

NR 
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Isshiki 
2018, Japan 

uNGAL, 
ARCHITECT, 
Abbott 

62 
(51,73) 

148 33 KDIGO 60% NR NR NR NR >18 years who were 
admitted to the ICU 

Anuria patients at ICU 
admission, those 
deceased within 24 h of 
ICU admission and end 
stage renal disease 

Tecson 
2017, USA 

uNGAL, 
BioPorto & 
pNGAL 
BioPorto 

AKI  
Stage 2/3 
68 
(56, 74) 
No AKI 
stage 0/1 
63 
(54,73) 

245 33 KDIGO AKI  
Stage 2/3 
67% 
AKI 
Stage 0/1 
64% 

NR NR NR NR NR NR 

Matsa 2014, 
UK 

uNGAL, 
BioPorto & 
pNGAL 
BioPorto 

60 
(15) 

194 59 RIFLE 66% 80.8 mol/L 
(29.1) 

NR NR NR Consecutive adult (>18 
years) patients admitted to 
the ICU were screened for 
inclusion 

Refused consent, end-
stage renal disease, 
previous renal 
transplant, patients 
already on RRT, patients 
referred to the ICU for 
RRT and patients with 
AKI as defined by 
RIFLE criteria for risk, 
injury or failure. 

Kokkoris  
2012, 
Greece 

uNGAL, 
ARCHITECT, 
Abbott 

AKI  
63 
(50, 81); 
No AKI 
49 
(35, 66)  

100 36 RIFLE 57% NR NR NR 0 All consecutive patients 
admitted to the ICU were 
screened for eligibility 

end-stage renal disease, 
chronic kidney disease 
or nephrectomy or renal 
transplantation, 
Expected ICA stay or 
imminent death in less 
than 48 h, transfer from 
another ICA to high-
dependency unit, Brain 
death, Age < 18 years, 
Inability to draw blood 
or urine

Asada 2016, 
Japan 

uNGAL, 
ARCHITECT, 
Abbott 

AKI  
62 
(48, 74); 
No AKI  
63 
(51,73)  

133 31 KDIGO AKI 
68%; 
No AKI 
58% 

NR NR NR 0 Patients aged 18 years or 
older who were admitted 
to the ICU 

Presence of end-stage 
renal disease 
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Nickolas 
2012, USA 
and 
Germany 

uNGAL, 
ARCHITECT, 
Abbott 

64 
(19) 

1635 96 RIFLE 52% 0.9 
(0.4) mg/dL 

70.5 
(33.2) 

NR 0 Patients older than 18 
years of age irrespective 
of their condition who 
were in the process of 
admission to the hospital 
from the ED

Patients who had 24 h of 
follow-up or were on 
long-term renal 
replacement therapy 

Hjortrup 
2015, 
Denmark 

uNGAL, 
BioPorto & 
pNGAL 
BioPorto 

66  
(57, 75) 

151 91 KDIGO 57% NR NR NR 0 Need of fluid 
resuscitation in the ICU, 
the fulfilment of severe 
sepsis criteria within the 
previous 24 h and the 
consent from patient or 
proxy 

< 18 years; allergy 
towards HES or malic 
acid; any form of RRT; 
acute burn injury > 10% 
of body surface area; 
severe hyperkalaemia 
within the last 6 hrs; 
liver or kidney 
transplantation or 
intracranial bleeding 
during current hospital 
admission;  enrolment 
into another ICU trial of 
drugs with potential 
action on circulation, 
renal function or 
coagulation. 

Park 2017, 
USA 

uNGAL, 
ARCHITECT, 
Abbott 

59 
(11) 

2466 NR sCr (criteria not 
clearly defined) 

54% NR 43  
(18) 

NR 0 Adults with an eGFR of 
20–70 ml/ min per 1.73 
m2 were enrolled 

Polycystic kidney 
disease, multiple 
myeloma, or GN on 
active 
immunosuppression 

Smith 2013, 
UK 

uNGAL, 
BioPorto 

69 
(12) 

158 40 KDIGO 75% NR 31  
(11) 

NR 0 NR NR 

Ariza 2016, 
European 
Countries 

uNGAL, 
BioPorto 

ACLF  
57  
(11);  
No ACLF 
57 
(12)  

716 NR sCr levels 
between 
 ≥1.5 and 
<2 mg/dL 

ACLF  
66% 
No ACLF 
65%,  

NR NR NR 0 NR Urinary tract infection at 
the time of urine 
collection were excluded 
because the urine levels 
of NGAL may be 
increased due to high 
leukocyte concentration 
in urine
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Treepraserts
uk 2015, 
Thailand 

uNGAL, 
ARCHITECT, 
Abbott 

57 
(15) 

121 35 AKIN 62% NR NR NR 0 Cirrhotic patients who 
were admitted with AKI-
prone conditions. All 
patients had normal 
baseline serum creatinine 
within 3 months prior to 
admission with cirrhosis, 
aged >18 years 

Exclusion criteria were 
chronic kidney disease, 
or previous liver or 
kidney transplantation. 
The diagnosis of 
cirrhosis was based on a 
combination of clinical, 
biochemical and 
imaging assessments or 
liver biopsy 

Barreto 
2014, Spain 

uNGAL, 
BioPorto 

58 
(12) 

132 65 AKIN 70% 1.5 
(1.0) mg/dL 

NR NR 0 Cirrhotic patients with a 
bacterial infection 

Chronic haemodialysis 
before admission; 
previous liver and/or 
kidney transplantation; 
hepatocellular 
carcinoma outside the 
Milan criteria or any 
other advanced 
malignancy; lack of 
informed consent; and 
patients with urinary 
tract infection; these 
latter patients were 
excluded because 
uNGAL levels are 
increased in these 
patients and may 
therefore not reflect any 
impairment of kidney 
function.

Jaques 
2019, 
Switzerland 

uNGAL, 
BioPorto & 
pNGAL 
BioPorto 

58 
(10) 

105 55 AKIN 71% NR NR NR 0 Inclusion criteria were 
age ≥ 18 years and known 
or suspected cirrhosis 
with ascites confirmed by 
ultrasonography. 

Exclusion criteria were 
proven multifocal 
hepatocellular 
carcinoma, known CKD 
stage V or dialysis 
before admission, prior 
kidney or liver 
transplantation, recent 
upper gastrointestinal 
bleeding, or more than 
24 h delay between the 
admission and inclusion. 
Informed consent was 
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sought from all eligible 
patients, or from a 
surrogate decision 
maker if the patient was 
unable to provide 
consent.

Cho 2014, 
Korea 

uNGAL, 
BioPorto 

57 
(12) 

135 54 AKIN 63% NR NR NR 0 Patients who planned to 
undergo elective 
hepatobiliary surgery 

Patients <18 years 
of age, with baseline 
estimated glomerular 
filtration rate 
 of <60 ml/min/1.73 m2, 
on maintenance RRT,  
developed AKI 
preoperatively 

Nickolas 
2008, USA 

uNGAL, 
BioPorto 

60 
(18) 

635 30 RIFLE 51% 1.4 
(1.8) mg/dL 

NR NR 0 >18 years admitted to 
emergency department 

Patients who were 
receiving hemodialysis 
and patients without 
subsequent creatinine 
measurements 

Verna 2012, 
USA 

uNGAL, 
BioPorto 

56 
(49, 62) 

118 52 Scr to >1.5  
and 0.3 mg/dL 
above baseline, 
not responding 
with 48 h of 
volume 
resuscitation 
and not meeting 
the criteria for 
hepatorenal 
syndrome

61% NR NR NR 0 Adults with cirrhosis Patients on chronic 
haemodialysis, anuria 
for the first 24 h, urinary 
tract infection, 
proteinuria>500 mg/day, 
or urinary obstruction 

Liebetrau 
2013, 
Germany 

uNGAL, 
ARCHITECT, 
Abbott 

AKI  
74 
(8);  
No AKI  
68 
(11)  

141 47 KDIGO AKI  
60% 
Non-AKI 
73%,  

NR NR NR 0 Consecutive patients 
scheduled to undergo 
elective major cardiac 
surgery (coronary artery 
bypass grafting and/or 
valve replacement) with 
the use of extracorporeal 
circulation

Patients with a 
preoperative estimated 
glomerular filtration rate 
(eGFR) of <30 
ml/min/1.73 m2 body 
surface 

Parikh 
2011, North 
America 

uNGAL, 
ARCHITECT, 
Abbott 

4 
(5) years 

311 53 Receipt of  
acute dialysis,  
or doubling  

55% NR 90  
(26) 

NR 0 All paediatric patients 
ages 1 month to 18 years 
undergoing 
cardiopulmonary bypass 

Prior renal 
transplantation or 
dialysis 
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of sCr from 
baseline to 
ostoperative 
value  
consistent with 
RIFLE stage 1 
or AKIN stage 2

Dong 2017, 
USA 

uNGAL, 
BioPorto 

AKI 
1.4 years 
(0.2-2.7);  
No AKI  
5 years  
(4.1-5.9)  

150 50 KDIGO AKI: 
40%;  
No AKI: 
57% 

NR NR NR 0 All patients receiving 
CPB as long as the 
baseline SCr is normal for 
age 

Pre-existing CKD 

Bojan 2014, 
France 

uNGAL, 
ARCHITECT, 
Abbott 

<1 year 100 NR AKIN NR NR NR NR 0 Surgery with CPB NR 

Bennett 
2013, USA 

uNGAL, 
ARCHITECT, 
Abbott 

4 years 196 99 50% or greater 
increase in sCr 
from baseline 
within 72 hours 

54% NR NR NR 0 Elective CPB surgery Pre-existing renal 
insufficiency, diabetes 
mellitus, peripheral 
vascular disease and use 
of nephrotoxic drugs 
before and during the 
study.

Cantinotti 
2012, Italy 

uNGAL, 
ARCHITECT, 
Abbott 

6 months  
(1, 49) 

135 52 RIFLE 58% NR NR NR 0 All patients undergoing 
cardiac surgery for 
correction/ palliation of 
congenital heart defects 

History of prior renal 
transplantation or 
dialysis requirements 

Alcaraz 
2014, Spain 

uNGAL, 
ARCHITECT, 
Abbott 

25 months 
(6.0-72.0) 

106 36 Paediatric 
RIFLE criteria 

59% NR NR NR 0 Cardiac surgery for 
congenital lesions 

Pre-existing renal 
dysfunction and heart 
transplantation 

Lagos-
Arevalo 
2015, 
Canada 

uNGAL, 
BioPorto 

SCr-AKI 
4.0 years 
(5);  
No SCr-
AKI 
5.0 years 
(6)  

160 70 KDIGO NR NR NR NR 0 Children between 1 
month and 18 years old 
who were not 
immediately post-
operative from cardiac 
surgery admitted to PICU 

Known end-stage renal 
disease, having received 
a renal transplant, a high 
likelihood of death in 
the following 48 h 
(determined by the 
PICU attending staff) 
and presence of <25% 
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of PICU days with both 
a CysC and a SCr value 
available (determined by 
dividing number of 
available daily values by 
PICU admission days) 

Zwiers 
2015, 
Netherlands 

uNGAL, 
ARCHITECT, 
Abbott 

27 
(1, 85) days 

100 35 RIFLE 66% N NR NR 0 Children (born later than 
37 weeks of gestational 
age) between the ages of 
1 day and 1 year admitted 
to the ICU and requiring 
endotracheal intubation 
and mechanical 
ventilation. 

Congenital 
abnormalities of the 
kidney or urinary tract, 
death was anticipated 
within 24 hours or they 
received mechanical 
ventilation for other 
reasons. Patients were 
excluded when 
treatment with 
extracorporeal 
membrane oxygenation 
was required within the 
study period. 

Yang 2017, 
China 

uNGAL, 
BioPorto 

C: 
22 months 
(31);  
A: 
46 years 
(15)  

C: 323;  
A: 398 

C: 126; 
A: 164 

Acute dialysis 
or doubling  
of sCr 
consistent  
with KDIGO 
stage 2 and 3 
criteria

C: 62%; 
A: 43% 

C: 
29.3µmol/L 
(SD 9.8); 
A: 
76.6 µmol/L 
(SD 24.2) 

C:  
101.6  
(35); 
A:  
93.5  
(23.7) 

NR 0 Patients receiving elective 
cardiac surgery (cardio 
pulmonary bypass). 

Exposure to nephrotoxin 
within 4 weeks before 
surgery, pre-existing 
advanced and urinary 
tract infection or 
obstruction 

Seitz 2013, 
NR 

uNGAL, 
ARCHITECT, 
Abbott 

0 years 
(0-8)  

139 76 RIFLE 55% 0.38*mg/dl 
(SD NR) 

NR NR 0 Patients undergoing CPB 
for surgical correction or 
palliation of congenital 
heart disease. 

Patients with pre-
existing renal 
insufficiency, patients 
with history of 
nephrotoxin use during 
pre-op days. 

 

C: Children, A: Adults, *Mean, **Median.
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Appendix 9  Forest plots of AUC meta-analyses 

 

Forest plots of AUC meta-analyses for detection of AKI 

 

Figure 38 Adults NephroCheck across all settings 

 

Figure 39 Adults NephroCheck critical care 

 

 

Figure 40 Adults uNGAL ARCHITECT (Abbott) all settings 
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Figure 41 Adults uNGAL ARCHITECT (Abbott) cardiac surgery 

 

 

Figure 42 Adults uNGAL ARCHITECT (Abbott) critical care 

 

 

Figure 43 Adults uNGAL BioPorto across settings 
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Figure 44 Adults uNGAL BioPorto cardiac surgery 

 

 

Figure 45 Adults uNGAL BioPorto critical care 

 

 

Figure 46 Adult uNGAL (Abbott and BioPorto) cardiac surgery 
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Figure 47 Adult uNGAL (Abbott and BioPorto) critical care 

 

 

Figure 48 Adult uNGAL (Abbott and BioPorto) all settings 

 

Figure 49 Adults pNGAL BioPorto across all settings 
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Figure 50 Adults pNGAL BioPorto cardiac surgery 

 

 

Figure 51 Adults pNGAL BioPorto critical care 

 

Figure 52 Child uNGAL (Abbott and BioPorto) across settings 
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Figure 53 Child uNGAL ARCHITECT (Abbott) cardiac surgery 

 

 

Figure 54 Child uNGAL (Abbott and BioPorto) all cardiac surgery 
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Forest plots of AUC meta-analyses for prediction of worsening of AKI, mortality 

and renal replacement therapy 

 

Figure 55  Prediction of AKI Adults uNGAL ARCHITECT (Abbott) Critical care 

 

 

 

 

Figure 56  Prediction of mortality Adults uNGAL BioPorto critical care  
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Figure 57  Prediction of mortality Adults pNGAL BioPorto critical care 

 

 

Figure 58  Prediction of mortality Adults uNGAL (Abbott and BioPorto) critical 

care 

 

 

Figure 59  Prediction of RRT Adults uNGAL BioPorto critical care 
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Appendix 10  QUADAS2 risk of bias and applicability assessment 

 

Table 42  QUADAS2 risk of bias and applicability assessment 

Study ID Assay 

Risk of bias Applicability 

Patient 
selection 

Index 
test 

Reference 
standard 

Flow 
and 

timing 

Patient 
selection 

Index 
test 

Reference 
standard 

Albert 2018 uNGAL  Low Unclear Low Low Low Unclear Low 

Alcaraz 2014 uNGAL  Low Unclear Low Low Low Unclear Low 

Ariza 2016 uNGAL  Low Unclear Low Low Low Unclear Low 

Asada 2016 uNGAL  Unclear Unclear Low High Unclear Unclear Low 

Barreto 2014 uNGAL  Low Unclear Low Low Low Unclear Low 

Beitland 2016 NephC  Low Unclear Low Low Low Low Low 

Bennett 2013 uNGAL  Low Unclear Low Low Low Unclear Low 

Bihorac 2014 NephC  Low Unclear Low Low Low Low Low 

Bojan 2014 uNGAL  Low Unclear Low Low Low Unclear Low 

Cantinotti 
2012 

uNGAL  Low Unclear Low Low Low Unclear Low 

Cho 2013 uNGAL  Low Unclear Low Low Low Unclear Low 

Cho 2014 uNGAL  Low Unclear Low Low Low Unclear Low 

Collins 2012 uNGAL  Low Unclear Low Low Low Unclear Low 

Cullen 2014 uNGAL  Unclear Unclear Low Low Low Unclear Low 

Cummings 
2019 

NephC  Low Unclear Low Low Low Low Low 

De Loor 2017 uNGAL  Low Unclear Low Low Low Unclear Low 

Di Leo 2018 NephC  Low Unclear Low Low Low Low Low 

Doi 2014 uNGAL  Low Unclear Low Low Low Unclear Low 

Dong 2017 uNGAL  Low Unclear Low Unclear Low Unclear Low 

Dupont 2012 uNGAL  Low Unclear Low Low Low Unclear Low 

Garcia-
Alvarez 2015 

uNGAL  Low Unclear Low Low Low Unclear Low 

Gayat 2018 NephC  Unclear Unclear Low Low Low Low Low 

Haase 2014 
uNGAL, 
pNGAL 

Unclear Unclear Low Low Low Unclear Low 

Hjortrup 2015 
uNGAL, 
pNGAL 

Unclear Unclear Low Low Low Unclear Low 

Hoste 2014 NephC  Unclear Unclear Low Low Low Low Low 

Isshiki 2018 uNGAL  Low Unclear Low Low Low Unclear Low 

Itenov 2017 pNGAL  Low Unclear Low Low Low Unclear Low 

Jaques 2019 
uNGAL, 
pNGAL 

Low Unclear Low High Unclear Unclear Low 

Kashani 2013 NephC  Low Unclear Low Low Low Low Low 

Kimmel 2016 
NephC, 
uNGAL, 
pNGAL 

Unclear Unclear Low Low Low Unclear Low 
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Study ID Assay 

Risk of bias Applicability 

Patient 
selection 

Index 
test 

Reference 
standard 

Flow 
and 

timing 

Patient 
selection 

Index 
test 

Reference 
standard 

Kokkoris 2012 
uNGAL, 
pNGAL 

Unclear Unclear Unclear Unclear Low Unclear Unclear 

Lagos-
Arevalo 2015 

uNGAL  Low Unclear Low Low Low Unclear Low 

Lee 2018 pNGAL  Unclear Unclear Low Low Low Unclear Low 

Liebetrau 
2013 

uNGAL  Low Unclear Low Low Low Unclear Low 

Marino 2015 pNGAL  Low Unclear Low Low Low Unclear Low 

Martensson 
2015 

uNGAL  Unclear Unclear Low Low Low Unclear Low 

Matsa 2014 
uNGAL, 
pNGAL 

Low Unclear Low Low Low Unclear Low 

Nickolas 2008 uNGAL  Low Unclear Low Low Low Unclear Low 

Nickolas 2012 uNGAL  Low Unclear Unclear Low Low Unclear Unclear 

Nisula 2015 uNGAL  Low Unclear Low Low Low Unclear Low 

Oezkur 2017 NephC  Low Unclear Low Low Low Low Low 

Parikh 2011 uNGAL  Low Unclear Low Low Low Unclear Low 

Parikh 2011 uNGAL  Low Unclear Low Low Low Unclear Low 

Park 2017 uNGAL  Unclear Unclear Low Unclear Low Unclear Low 

Pipili 2014 uNGAL  Low Unclear Low Low Low Unclear Low 

Schley 2015 
uNGAL, 
pNGAL 

Low Unclear Low Low Low Unclear Low 

Seitz 2013 uNGAL  Low Low Low Low Low Unclear Low 

Smith 2013 uNGAL  Low Unclear Low Low Low Unclear Low 

Tecson 2017 
uNGAL, 
pNGAL 

Low Unclear Low Low Low Unclear Low 

Thanakitcharu 
2014 

uNGAL  Low Unclear Low Low Low Unclear Low 

Tidbury 2019 uNGAL  Low Unclear Low Unclear Low Unclear Low 

Treeprasertsuk 
2015 

uNGAL  Low Unclear Low Low Low Unclear Low 

Verna 2012 uNGAL  Low Unclear Low Low Low Unclear Low 

Yang 2017 uNGAL  Low Unclear Low Low Low Unclear Low 

Zelt 2018 pNGAL  Low Unclear Low Low Low Unclear Low 

Zwiers 2015 uNGAL  Low Unclear Low Low Low Unclear Low 

         

LOW  45 (80%) 1 (2%) 54 (96%) 50 (89%) 54 (96%) 8 (14%) 54 (96%) 

UNCLEAR  11 (20%) 55 (98%) 2 (4%) 4 (7%) 2 (4%) 48 (86%) 2 (4%) 

HIGH  0 (0%) 0 (0%) 0 (0%) 2 (4%) 0 (0%) 0 (0%) 0 (0%) 

NephC = NephroCheck; uNGAL = urine NGAL; pNGAL = plasma NGAL 
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Appendix 11 PROBAST risk of bias and applicability assessment 

 

Table 43  PROBAST risk of bias and applicability assessment  

Study Test Risk of bias Applicability 

    Participants Predictors Outcome Analysis 
Overall 

judgement 
Participants Predictors Outcome 

Overall 
judgement 

Garcia-Alvarez 
2015 uNGAL Low Unclear Unclear High High Low Low Low Low
Bennett 2013 uNGAL Low Unclear Unclear High High Low Low Low Low
Cullen 2014  uNGAL Low Unclear Unclear High High Low Low Low Low
Doi 2014 uNGAL Low Unclear Unclear Unclear Unclear Low Low Low Low
Nisula 2015 uNGAL Low Unclear Unclear High High Low Low Low Low
Marino 2015  pNGAL Low Unclear Unclear Unclear Unclear Low Low Low Low

Hjortrup 2015 
uNGAL, 
pNGAL Unclear Unclear Unclear Unclear Unclear Unclear Low Low Unclear 

Treeprasertsuk 
2015 uNGAL Low Unclear Unclear Unclear Unclear Low Low Low Low
Gayat 2018 NephC Unclear Unclear Unclear High High Unclear Low Low Unclear 
Martensson 2015 uNGAL Unclear Unclear Unclear Unclear Unclear Unclear Low Low Unclear 
Isshiki 2018 uNGAL Low Unclear Unclear Unclear Unclear Low Low Low Low
Lee 2018 pNGAL Low Unclear Unclear Unclear Unclear Low Low Low Low
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Appendix 12 Health economics appendices 

 

Table 44  Summary of studies identified from supplementary searches of the literature post-Hall 

Author Year Population Country Utility 
measure 

Valuation 
set 

N Age Proportion 
male 

Utility values 
reported 

Mean Median SE SD CI  
low 

CI  
high 

IQR 
low 

IQR 
high 

Afiatin 2017 ESRD with 
PD and HD 

Indonesia EQ-5D-3L Thailand  68 18+ 55.9% PD (no comp) 
HD (no compl) 
PD (+comp)  
HD (+comp) 

0.82 
0.70 
0.31 
0.37 

  0.03
0.04
0.09
0.11 

          

Chang 2016 ESRD with 
PD and HD 

Taiwan EQ-5D-3L UK  Total: 1687  
HD: 1403 
PD: 284 

Total: NR 
HD: 57.1 (13.6) 
PD: 46.7 (13.2) 

HD: 49.9%
PD: 51.1% 

HD 
PD 

0.83 
0.90 

  0.19
0.16 

          

Cho 2018 CKD 
requiring 
dialysis 

South Korea EQ-5D-3L Korean  50 NR NR CKD receiving 
dialysis 

0.63   0.04           

Eriksson 2016 CKD patients 
(anemic and 
non-anemic) 
with / without 
dialysis 

France, 
Germany, 
Italy, Spain, 
UK 

EQ-5D-3L Unclear, 
presume 
UK 

Total: 1177 
Non 
Anaemic: 
313 (27%) 
Anaemic: 
864 (73%) 

63.7 (15.1) 60% Non- 
anaemic: 
(27%) 
 
CKD 3 
CKD 4 
Dialysis 
Total 
 
Anaemic: 
(73%) 
 
CKD 3 
CKD 4 
Dialysis 
Total

Non-an 
(27%):
 
0.85 
0.81 
0.74 
0.83 
 
Anaemic 
(73%):
 
0.78 
0.71 
0.70 
0.72 

    Non-
anaemic 
(27%):
 
0.21 
0.22 
0.29 
0.23 
 
Anaemic 
(73%):
 
0.29 
0.28 
0.32 
0.31

        

Filali 2017 Chronic HD 
patients 

Morocco EQ-5D-3L Unclear 103 49.7 (14.7) 45.60% HD 0.41     0.36         

Hishii 2018 Chronic HD 
patients 

Japan EQ-5D-3L Unclear 60 71.1 (12) 51.67% HD 0.688     0.233         
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Author Year Population Country Utility 
measure 

Valuation 
set 

N Age Proportion 
male 

Utility values 
reported 

Mean Median SE SD CI  
low 

CI  
high 

IQR 
low 

IQR 
high 

Jardine 2017 Maintenance 
HD 

Australia 
(28%), 
canada 
(6%), china 
(62%), new 
zealand 
(4%) 

EQ-5D-3L Unclear 200 51.8 (12.1) 69.50% HD 0.78     0.24         

Jesky 2016 pre-dialysis 
CKD (as per 
NICE 
guidance, 
CKD, 2008) 

UK EQ-5D-3L UK All CKD: 
745 
G1/2: 29 
G3a: 45 
G3b: 173 
G4: 423 
G5: 75 

Median (IQR) 
All CKD 64; (50-76)
G1/2 41; (34.5-55.5) 
G3a 55; (45-66.5) 
G3b 61.5; (48.3-73.8)
G4: 69; (54-75.5) 
G5: 64; (53.5-75.5) 

All CKD: 
60.80% 
G1/2: 
65.52% 
G3a: 71.11%
G3b: 66.86%
G4: 59.00%
G5: 49.35%

All CKD 
G1/2 
G3a 
G3b 
G4 
G5 

  0.74 
0.85 
0.80 
0.80 
0.74 
0.73 

        0.66 
0.70 
0.69 
0.68 
0.62 
0.62 

0.88 
1 
1 
1 
0.85 
1 

Katayama 2016 Chronic HD 
patients 

Japan EQ-5D-3L unclear Baseline: 71 
1 year follow 
up: 43 

70.9 (10.6) 
69.1 (10.8) 

58% 
60% 

HD (BL) 
HD (1yr) 

0.720 
0.790 

    0.224 
0.181 

        

Kilshow 2016 ESRD (CM) UK EQ-5D-5L None 41 82.7 (5.7) 56% NR NR NR NR NR NR NR NR NR 

Kularatna 2019 CKD Sri Lanka EQ-5D-3L UK  Early Stage: 
254 
Stage 4: 614 
Stage 5: 151 
Dialysis: 38 

Median approx age 41 56.10% Early: 
Stage 4:  
Stage 5:  
Dialysis:  

0.588 
0.566 
0.467 
0.126 

    0.30 
0.42 
0.42 
0.39 

        

Lee 2016 early to mid 
stage CKD 

Korea EQ-5D-3L Korea CKD 3/4: 75 
CAPD: 75 

61.4 (9.9) 
59.1 (12.9) 

41% 
41% 

CKD (3/4) 
CAPD 

0.87 
0.90 

    0.19 
0.15 

        

Li 2017 Kidney 
transplant 
recipients and 
waiting list 

UK EQ-5D-5L UK value 
set 

Transplant 
recipients: 
512 
Waiting list: 
1704 

Median ~ 50 
Median ~ 50 

60% 
58% 

waiting list 
transplant (inc) 

0.773 
 
+0.054 

  0.005
 
0.011

          

McNoe 2019 ESRD with or 
without 
dialysis 

New 
Zealand 

EQ-5D-3L Vas only No dialysis: 
56 
HD: 109 
PD: 60 

65+ 66.1% 
57.8% 
73.3% 

No dialysis 
HD 
PD 

  70 
70 
67.5 

        50 
60 
70 

80 
80 
80 

nagasawa 2018 Patients 
receiving 
dialysis 

Japan EQ-5D-3L Japan 51 67.7 (12.1) 70.60% Dialysis patients 
with CKD or 
ESRD 

0.779     0.193         
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Author Year Population Country Utility 
measure 

Valuation 
set 

N Age Proportion 
male 

Utility values 
reported 

Mean Median SE SD CI  
low 

CI  
high 

IQR 
low 

IQR 
high 

Nguyen 2018 CKD and 
ESRD 

UK EQ-5D-3L UK CKD1: 56 
CKD2: 106 
CKD3a: 155 
CKD3b: 35 
CKD 4/5: 5 

44.6 (18.2) 
60 (17.4) 
65.3 (14.8) 
74.1 (13.4) 
72.2 (10.3) 

33.9% 
50.0% 
46.5% 
60.0% 
40.0% 

S1 
S2 
S3a 
S3b 
S4/5 

base NR
-0.112 
-0.062 
-0.185 
-0.284 

      base 
NR 
-0.189
-0.128
-0.299
-0.408

base NR  
-0.034 
+0.005 
-0.071 
-0.160 

    

Schlackow 2017 Moderate to 
advanced 
CKD 

UK EQ-5D-3L UK 6356 62 (12) 63% Regression 
Mean (intercept)
Male 
Age +10y 
PFKT 
dialysis  

0.86 
+0.06 
-0.05 
-0.07 
-0.06 

      0.84 
+0.05
-0.05 
-0.11 
-0.07 

0.88 
+0.07 
-0.04 
-0.03 
-0.04 

    

Sekercioglu 2017 CKD Canada SF-6D Canada All: 303 
Dialysis: 101 
Non dialysis: 
202 

62.7 (14.5) 
60.6 (14.4) 
63.8 (14.4) 

58.8% 
57.0% 
61.0% 

All CKD 
Dialysis 
no dialysis 

0.720 
0.670 
0.740 

    0.110 
0.110 
0.100 

        

Senanayake 2019 pre-dialysis 
patients 

Sri Lanka EQ-5D-3L Sri Lanka 1036 Median approx 60 62.40% pre-dialysis CKD0.52     0.33         

Shah 2019 ESRD 
(dialysis or 
conservative 
management) 

UK and 
Australia 

SF-6D UK Total: 129 
Dialysis: 83 
conservative: 
46 

75+ 69% 
59% 
65% 

Total  
Dialysis  
CM 

0.62 
0.61 
0.65 

    0.14 
0.13 
0.15 

        

Shimizu 2018 HD patients Japan EQ-5D-5L Japan All: 717 
age 60-69: 
278 
age 70-79: 
311 
age 80+: 118 

72.9 (6.5) 62.50% All HD 
age 60-69:  
age 70-79:  
age 80+:  

0.738 
0.784 
0.744 
0.616 

    0.207 
0.179 
0.202 
0.231 
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Author Year Population Country Utility 
measure 

Valuation 
set 

N Age Proportion 
male 

Utility values 
reported 

Mean Median SE SD CI  
low 

CI  
high 

IQR 
low 

IQR 
high 

Snowsill 2017 Kidney 
transplant 
recipients 

UK EQ-5D-3L UK N/A N/A N/A Regression 
Mean (intercept)
Age 
Age sq 
Male 
FG 
HD 
PD 
PTDM 

0.968 
-0.002 
-0.000 
+0.023 
-0.053 
-0.277 
-0.264 
-0.060 

  NR           

Tang 2017 ESRD Taiwan EQ-5D-5L Japan APD: 117 
CAPD: 129 

NR NR APD 
CAPD 

0.82 
0.82 

    0.19 
0.21 

        

Thaweet-
hamcharoen 

2019 Patients 
receiving PD  

Thailand EQ-5D-5L Thailand  64 63.44 (16.57) 68.75% PD 0.801     0.228         

Van Loon 2019 ESRD Netherlands EQ-5D-3L Dutch  CM: 89 
Dialysis 
(23% PD): 
192 

82 (6) 
75 (7) 

NR CM 
Dialysis 

0.77 
0.82 

    0.21 
0.18 

        

Wee 2016 pre-dialysis, 
stage 3-5 
CKD 

Singapore EQ-5D-3L USA 309 62.6 (11.06) 58.20% CKD 3-5, pre-
dialysis 

0.8     0.24         

Wolfgram 2017 Hypertensive 
CKD and non-
CKD patients 

USA EQ-5D-3L USA All: 2620 
Non-CKD: 
1459 
CKD: 1161 
GFR 60+ 
(CKD s2 or 
better): 372 
GFR 44-60  
(CKD 3a): 
781 
GFR < 44 
(CKD 3b or 
worse): 1449 
 
  

79.85 (3.99) 
79.39 (3.73) 
80.42 (4.23) 
NR 
NR 
NR 

62.1% 
62% 
62.3% 
NR 
NR 
NR 

All:  
Non-CKD:  
CKD:  
GFR 60+  
GFR 44-60   
GFR < 44  

0.85 
0.85 
0.84 
0.85 
0.85 
0.82 

  0.00
0.01
0.01 

0.13 
0.13 
0.13  

        

Wong 2019 ESRD on 
dialysis 

China SF-6D China / 
Hong Kong 

All: 397 
PD: 103 

57.3 (12.7) 
63.1 (12.7)

61.9% 
61.2%

All dialysis 
PD:

0.766 
0.778

    0.111 
0.110
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Author Year Population Country Utility 
measure 

Valuation 
set 

N Age Proportion 
male 

Utility values 
reported 

Mean Median SE SD CI  
low 

CI  
high 

IQR 
low 

IQR 
high 

Hosp. HD: 
135 
Home HD: 
41 
Comm. HD: 
118 

56.4 (12.6) 
47.9 (8.5) 
56.8 (11.6) 

57.0% 
67.4% 
66.1% 

Hospital HD:  
Home HD:  
Comm. HD:  

0.731 
0.778 
0.790 

0.114 
0.091 
0.107 

Yang 2019 ESRD on 
dialysis 

Singapore SF-12 
mapped to 
EQ-5D-3L 

unclear Total: 266 
CAPD: 145 
APD: 121 

59.3 (12.5) 
60.8 (11.4) 
57.4 (13.6) 

45.5% 
45.5% 
45.5% 

Total 
CAPD 
APD 

0.59 
0.58 
0.60 

    0.21 
0.21 
0.22 

        

Yang 2018 Dialysis France, 
Germany, 
Italy, Spain 
Singapore 

EQ-5D-3L 
EQ-5D-5L 

Country 
specific 
value sets 

France: 299 
Germany: 
413 
Italy: 278 
Spain: 225 
Singapore 
(5L): 163 

66.6 (14.1) 
61.8 (14.4) 
60.8 (13.4) 
60.6 (16.4) 
60.5 (11.5) 

62.5% 
57.1% 
54.7% 
60.0% 
52.2% 

France:  
Germany:  
Italy:  
Spain:  
Singapore 

0.622 
0.796 
0.864 
0.746 
0.621 

    0.383 
0.224 
0.185 
0.292 
0.447 

        

Zyoud 2016 ESRD on HD Palestine EQ-5D-5L unclear Age 60+ : 97 Mean NR 52.1% ESRD 0.17     0.4         

Park 2016 CKD Korea EQ-5D-3L Korean 
value set 

All: 46,676 
No CKD: 
44,108 
Stage 1 
CKD: 793 
Stage 2 
CKD: 444 
Stage 3a 
CKD: 1030 
Stage 3b 
CKD: 211 
Stage 4/5 
CKD 
(ESRD): 90 

45.4 (SE:0.1) 
44.6 (SE:0.2) 
38.7 (SE:2.8) 
54.9 (SE:3.3) 
72.8 (SE:0.5) 
73.2 (SE:1.1) 
64.0 (SE:1.8) 

49.5% 
49.9% 
42.8% 
56.6% 
42.6% 
44.9% 
44% 

All: 
No CKD:  
Stage 1:  
Stage 2:  
Stage 3a:  
Stage 3b:  
Stage 4/5:  

0.943 
0.946 
0.955 
0.901 
0.826 
0.787 
0.793 

  0.001
0.001
0.011
0.017
0.005
0.011
0.018

          

PFKT: Previous Failed Kidney Transplant; CM: Conservative Management 
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Table 45  Maintenance cost and consumables for the different tests 

Maintenance/consumables Price Cost per test Formula 

Nephrocheck  

Paper roll  £2.50 £0.10 £2.5 / number of tests in kit (=25 tests) 

Liquid quality control (one per kit) £100.00 £4.00 £100 / number of tests in kit (=25 tests) 

Electronic quality control (every 6 months) £80.00 £0.13 £80*2 / number of tests performed per year in hospital laboratory (=1253, in St. 

James's University Hospital, Leeds, source: Hall et al. 2018) 

BioPorto 

NGAL Calibrator £385.00 £1.28 £385 / number of tests in kit (=300) 

NGAL Control kit £185.00 £0.62 £185 / number of tests in kit (=300) 

Abbott 

ARCHITECT Urine Calibrator kit  £165 £2.06 £165 / number of tests a kit can produce (=80) 

ARCHITECT Urine Control kit  £115 £1.44 £115 / number of tests a kit can produce (=80) 

Reaction vessels and bulk solutions   0.01  Manufacturer estimation (sourced from NICE’s Request for Information 

document) 

Alinity 

Alinity Urine Calibrator kit  £165 £2.06 £165 / number of tests a kit can produce (=80) 
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Maintenance/consumables Price Cost per test Formula 

Alinity Urine Control kit  £115 £1.44 £115 / number of tests a kit can produce (=80) 

Reaction vessels and bulk solutions   £0.01  Manufacturer estimation (sourced from NICE’s Request for Information 

document) 
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Table 46  ESA medication 

  NeoRecormon Aranesp  Source 

Price per IU £0.007 £0.007 BNF 2019 

 HD PD  

Proportion taking ESAs (%)  92.6%  78.6% UK Renal Registry 

(2019) 

Dose (IU) per week 8000 4000 UK Renal Registry 

(2019) 

Cost per year £2,765  £1,174  

Proportion on HD 87.5% 12.5%  

Total cost per year (based on the 

proportion on HD and PD) 

£2566  

 

Table 47  Blood pressure medication 

  Unit cost 

per year 

(£) 

Proportion of 

patients on each 

type of medication 

Total 

average 

cost (£) 

Source 

ACE inhibitor 35.74 0.211 7.54 Tan et al., 2016, 

BNF 2019 

ARBs 43.04 0.156 6.70 Tan et al., 2016, 

BNF 2019 

Calcium-

channel 

blockers 

28.80 0.219 6.31 Tan et al., 2016, 

BNF 2019 

Diuretics 21.92 0.487 10.66 Tan et al., 2016, 

BNF 2019 

Beta-blockers 15.52 0.248 3.85 Tan et al., 2016, 

BNF 2019 

Alpha-blockers 7.83 0.172 1.35 Tan et al., 2016, 

BNF 2019 

Total average 

cost per year 

    36.41 Tan et al., 2016, 

BNF 2019 

 


