

A systematic review update of the recent evidence for the safety and efficacy of elective endovascular repair in the management of infrarenal abdominal aortic aneurysms

Duncan Drury, Jonathan Michaels, Lisa Jones, Lynda Ayiku

June 2005

INTERVENTIONAL PROCEDURES PROGRAMME NATIONAL INSTITUTE FOR CLINICAL EXCELLENCE

REVIEW BODY REPORT

Title	A systematic review update of the recent evidence for the safety and
	efficacy of elective endovascular repair in the management of
	infrarenal abdominal aortic aneurysms
Produced by	School of Health and Related Research
	The University of Sheffield
	Regent Court
	30 Regent Street
	Sheffield
	S10 4DA
Review Team	Duncan Drury, Jonathan Michaels, Lisa Jones, Lynda Ayiku
Correspondence to	Duncan Drury
	Research Fellow
	Sheffield Vascular Institute
	Sheffield Teaching Hospitals NHS Trust
	Northern General Hospital
	Herries Rd
	Sheffield S5 7AU
	Tel: +44 (0)114 2434343
Date completed	June 2005

TABLE OF CONTENTS

1	Objecti	ve of the review
2	Backgr	ound1
	2.1 T	he interventional procedure under review1
	2.1.1	Description of the interventional procedure1
	2.1.2	Proposed clinical indications/contraindication and putative impact of the
	procedu	ıre2
	2.1.3	Personnel involved (e.g. surgeons, anaesthetists, nurses) and skill/experience
	require	d2
	2.1.4	Current use in the UK
	2.1.5	Equipment or devices required
	2.2 D	bescription of the underlying health problem
	2.2.1	Epidemiology
	2.2.2	Aetiology and pathology
	2.2.3	Natural history of abdominal aortic aneurysms
	2.3 P	otential complications of aneurysm repair4
	2.3.1	Endoleaks
	2.4 P	opulation
	2.4.1	Suitable candidates and relevant subgroups
	2.5 C	furrent management and alternative procedures
3	Method	Is for reviewing evidence on efficacy and safety
	3.1 U	pdated search strategy
	3.2 Ir	clusion and exclusion criteria
	3.2.1	Types of studies
	3.2.2	Types of participants
	3.2.3	Types of interventions
	3.2.4	Types of outcome
	3.3 Q	uality assessment strategy7
	3.4 D	ata extraction strategy
	3.5 D	ata analysis
	3.5.1	Data synthesis
4	Results	of update searches
	4.1 T	ype and quantity of evidence available
	4.2 N	umber and type of included studies
	4.2.1	Characteristics of the included studies
	4.3 N	fumber and type of excluded studies
	4.4 Q	uality of the available evidence
	4.4.1	Randomised controlled trials

	4.4.2	Non-randomised controlled trials 1	4
	4.4.3	Comparative observational studies1	5
	4.4.4	Case Series 1	6
	4.5	Proportion of population for whom EVAR technically feasible 1	8
5	EVA	R versus open repair1	9
	5.1	Major outcomes	9
	5.1.1	30 day outcomes 1	9
	5.1.2	Longer term outcomes	1
	5.2	Complications	6
	5.2.1	Common technical complications2	7
	5.2.2	Common non-technical complications	2
	5.3	Other peri- and post-operative outcomes	6
	5.3.1	Deployment success rate	6
	5.3.2	Technical success rate	6
6	EVA	R in high risk patients 4	-1
	6.1	Overview of the trial	-1
	6.2	Major outcomes	-1
	6.2.1	Mortality	-1
	6.2.2	Aneurysm rupture4	-2
	6.2.3	Conversion to open repair4	2
	6.2.4	Secondary re-intervention rate4	-2
	6.3	Technical complications	-2
	6.4	Other peri- and postoperative outcomes4	.3
	6.4.1	Deployment success rate4	.3
	6.4.2	Length of Hospital stay4	.3
7	EVA	R data from case series	4
	7.1	Overview of the efficacy findings from non-controlled studies (Case series an	ıd
	compar	ative studies)4	4
	7.1.1	Deployment success rate4	4
	7.1.2	Technical success rate4	4
	7.1.3	Aneurysm rupture following EVAR4	6
	7.1.4	Changes in aneurysm size4	8
	7.1.5	Primary conversion rate4	8
	7.1.6	Delayed conversion rate	0
	7.1.7	Secondary intervention rate5	1
	7.1.8	Procedural blood loss	2
	7.1.9	Length of ITU stay	3
	7.2	Length of hospital stay	3

	7.3	Overview of the Safety findings from non-controlled studies (Case series)
	7.3.1	Common technical complications
	7.3.2	Common non-technical complications
8	Discu	ussion
	8.1	EVAR versus open repair
	8.1.1	Major outcomes
	8.1.2	Complications67
	8.1.3	Other peri- and post-operative outcomes
	8.2	EVAR in high risk patients
	8.3	Assumptions, limitations and uncertainties
	8.3.1	Size of aneurysm treated
	8.3.2	Case mix
	8.3.3	Operator experience and advances in technology
	8.3.4	Primary outcomes
	8.3.5	Long term safety and efficacy
	8.3.6	High risk patients71
9	CON	CLUSIONS
	9.1	Efficacy of EVAR73
	9.2	Safety of EVAR73

APPENDICES

Appendix 1	Characteristics of the included studies	83
Appendix 2	Forest plots	115

LIST OF TABLES

Table 1	Summary of included studies
Table 2	Reasons for exclusion
Table 3	Summary of the quality assessment of the randomised controlled trials14
Table 4	Summary of the quality assessment of the non-randomised controlled trials 15
Table 5	Summary of the quality assessment of the comparative observational studies 16
Table 6	Summary of the quality assessment of the case series17
Table 7	Proportion of participants accepted for EVAR
Table 8	30 day mortality rate for EVAR versus open repair (RCTs)19
Table 9	30 day mortality rate for EVAR versus open repair (NRCTs) 19
Table 10	Early (<30 days) aneurysm rupture rates following EVAR
Table 11	Primary conversion rates following EVAR (RCTs)
Table 12	Primary conversion rates following EVAR (NRCTs)
Table 13	Aneurysm-related mortality for EVAR versus open repair

Table 14	Non-aneurysm related mortality for EVAR versus open repair	
Table 15	All-cause mortality at 1 year for EVAR versus open repair	
Table 16	All-cause mortality at >1 year for EVAR versus open repair	
Table 17	Delayed aneurysm rupture rates for EVAR versus open repair (RCT)	
Table 18	Delayed aneurysm rupture rates for EVAR versus open repair (NRCT)	
Table 19	Change in aneurysm size following EVAR	
Table 20	Delayed conversion rates (RCT)	
Table 21	Delayed conversion rates (NRCTs)	
Table 22	Secondary intervention rates for EVAR versus open repair (RCT)	
Table 23	Secondary intervention rates for EVAR versus open repair (NRCT)	
Table 24	Incidence of common technical complications following EVAR (RCT an	d NRCT)
	28	
Table 25	Common non-technical complications for EVAR versus open repair	
Table 26	Successful endograft deployment rate (RCT)	
Table 27	Successful endograft deployment rate (NRCT)	
Table 28	Primary technical success rate	
Table 29	Thirty day technical success	
Table 30	Procedural blood loss (RCT)	
Table 31	Procedural blood loss (NRCT)	
Table 32	Length of ITU stay (RCT)	
Table 33	Length of ITU stay (NRCT)	
Table 34	Length of hospital stay (RCT)	
Table 35	Length of hospital stay (NRCT)	
Table 36	Aneurysm rupture rates for EVAR verses no intervention	
Table 37	Incidence of common technical complications in EVAR	
Table 38	Successful endograft deployment rate	
Table 39	Primary technical success rate	
Table 40	Thirty day technical success	
Table 41	Delayed aneurysm rupture rates following EVAR	
Table 42	Early (<30 days) aneurysm rupture rates following EVAR	
Table 43	Changes in aneurysm size following EVAR	
Table 44	Primary conversion rates	
Table 45	Delayed conversion rates	
Table 46	Secondary intervention rates	
Table 47	Procedural blood loss	
Table 48	Length of ITU stay	
Table 49	Length of hospital stay	
Table 50	Incidence of common technical complications in EVAR	55

Table 51 Incidence of common non-technical complications (Case Series)
--

LIST OF FIGURES

Figure 1	30 day mortality rate for EVAR versus open repair: Forest plot20
Figure 2	Secondary intervention rates for EVAR versus open repair: Forest plot
Figure 3	Incidence of Incidence of new or persisting endoleak following EVAR 30
Figure 4	Incidence of technical complications - other
Figure 5	Incidence of common non-technical complications: EVAR versus surgery
Figure 6	Cardiac event rate for EVAR versus open repair: Forest plot
Figure 7	Renal impairment rates for EVAR versus open repair: Forest plot115
Figure 8	Blood loss for EVAR versus open repair: Forest plot
Figure 9	ITU stay for EVAR versus open repair: Forest plot

EXECUTIVE SUMMARY

Background

Endovascular aneurysm repair involves positioning of an endograft within the abdominal aorta by a transfemoral or transiliac route with the aim of exclusion of the aneurysm from within the circulation. The technique is being developed as an alternative therapeutic intervention to surgical repair in the treatment of abdominal aortic aneurysms, particularly in high risk surgical candidates in whom open repair is associated with significant levels of morbidity and mortality.

Objective

The purpose of this review was to provided an updated systematic review incorporating the latest evidence on EVAR.

Number and quality of included studies

From the initial reports identified from the updated searches, 52 were identified as being potentially relevant, and of these 31 were identified for inclusion in the review. Including the studies identified in the update, a total of 78 studies were identified for inclusion. There were 4 randomised controlled trials (6 reports), 17 non-randomised controlled trials, 22 comparative observational studies, 28 case series and 6 registry publications. The methodological quality of the included studies were variable. The quality of 3 of the 4 RCTs was very good. Across the other study designs little information was provided on drop outs, level of operator experience and generally analyses were not adjusted for confounding factors.

Summary of evidence

EVAR versus open repair

From a meta-analysis of RCT data, EVAR was associated with a lower 30-day mortality rate than open repair (OR 0.33, 95% CI 0.17 to 0.64). This finding was supported by the results from the NRCT data. Reports from two RCTS at 2 and 4 years follow-up, respectively, indicated that the early survival benefit in the EVAR group had been lost by the end of the first year post-procedure.

From one RCT during the median follow-up period of 35 months (IQR, 23 to 48 months), there was a non-significant difference in the average rupture rate following EVAR compared to open repair, (0.9% versus 0.2%). Following a failed attempt at EVAR, around 1.0% of the study population required conversion to open surgical repair during the perioperative period. One RCT reported that during follow-up an average of 1.9% of patients required a delayed surgical conversion for persistent endoleak, aneurysm expansion (with or without endoleak), or aneurysm rupture. One RCT reported a significantly higher secondary intervention rate following EVAR compared following open repair (OR 2.57, 95% CI 1.70 to 3.87; p<0.00001).

The rate of intervention following EVAR was almost three times the rate after open repair in another RCT, (HR 2.9, 95% CI 1.1 to 6.2; p=0.03).

From the safety data, the most common technical adverse event following EVAR was a type II endoleak (occurring in 18.9% participants at 1 year). Pulmonary complications and the incidence of blood loss and haemorrhagic events were significantly lower in the EVAR group. There was no significant difference in the rates of cardiac events, lower limb ischaemia, renal impairment, graft infection, colonic ischaemia or local wound complications. The results of the RCTs demonstrated that there was a significant reduction in ITU stay post EVAR compared to open repair. In addition, the RCTs showed a clear benefit for EVAR compared to open repair in terms of a significant reduction in total hospital stay.

EVAR in high risk patients

The EVAR 2 trial demonstrated a significantly higher 30-day mortality rate post EVAR in a population who were deemed to be unfit for open repair compared to no intervention. However this rate was reduced if only elective procedures were taken into account. In addition, aneurysm related death was found to be similar between both groups. There was no statistically significant difference in total mortality rates between the EVAR and no-intervention groups during the follow-up period. The rate of complications was significantly higher following EVAR compared to no intervention, and there was a high requirement for secondary intervention in the EVAR group (intervention rate of 11.5 per 100 person years). However, low primary and secondary conversion rates were maintained in this high-risk group.

Conclusions

Until the publication of the DREAM and EVAR trials, there had been a lack of level one evidence comparing the efficacy and safety of EVAR to open repair. From the RCT data it is clear that EVAR is a less invasive technique associated with a reduction in perioperative morbidity and mortality rates, compared to open repair. However these early benefits need to weighed against a need for more intensive follow-up, a significant rate of re-intervention and unknown long term success in preventing aneurysm related mortality. Medium term data from the RCTs has demonstrated no overall survival benefit following EVAR. The EVAR 2 trial is the only RCT to date that has compared EVAR to best medical therapy (BMT) in a group of patients unfit for open repair. Although clearly associated with higher rates of morbidity and mortality, there may still be a place for EVAR in the management of certain high-risk surgical candidates, as the risk of aneurysm related death is likely to be higher than that found in the EVAR 2 trial.

Finally, EVAR is a technique that is still developing and longer-term follow up and further research are required to determine its exact place in the management of abdominal aortic aneurysms.

LIST OF ABBREVIATIONS

AAA	Abdominal aortic aneurysm
CI	Confidence interval
СТ	Computed tomography
EVAR	Endovascular aneurysm repair
HR	Hazard ratio
NR	Not reported
NRCT	Non-randomised comparative trial
NS	Not stated
OR	Odds ratio
RCT	Randomised controlled trial
WMD	Weighted mean difference

1 OBJECTIVE OF THE REVIEW

A systematic review of the evidence for the safety and efficacy of elective endovascular repair in the management of infrarenal abdominal aortic aneurysms was conducted in June 2004.¹ At this time there was a lack of level one (RCT) evidence available and this was being addressed by a number of ongoing RCTs including the EVAR 1 and 2 (UK), DREAM (Netherlands), ACE (France) and OVER (USA) trials. The purpose of this review was to update the previous review incorporating the latest evidence, including a number of publications from these RCTs.

2 BACKGROUND

2.1 The interventional procedure under review

2.1.1 Description of the interventional procedure

Endovascular aneurysm repair involves positioning of an endograft within the abdominal aorta by a transfemoral or transiliac route with the aim of exclusion of the aneurysm from within the circulation. The lower physiological stress of the minimally invasive endovascular approach is associated with lower morbidity and mortality rates, and consequently is a therapeutic option for high risk patients for whom conventional open repair would not be appropriate. Endovascular aneurysm repair has been performed not only as an elective procedure, but also on symptomatic and ruptured aneurysms. However, only the technique of elective aneurysm repair has been considered in this review.

Prior to undertaking endovascular aneurysm repair, the patient must undergo preoperative contrast-enhanced computed tomographic (CT) scanning to accurately determine aneurysm morphology. A full clinical assessment must also be carried out to identify any risk factors for open and endovascular repair. These two processes are required to ensure that the patient fulfils the clinical and anatomical inclusion criteria for endovascular aneurysm repair.

The procedure is carried out in an operating room or endovascular suite under general or regional anaesthesia. Access to the femoral arteries is achieved by surgical cut-down and the prosthesis is inserted via a preloaded delivery catheter system. One lumen of the catheter is used for guide wire access and flushing, whilst the other lumen contains the deployment line. The delivery system usually has a tapered balloon creating an atraumatic tip during insertion. Radio-opaque markers on the catheter and stent graft allow the endoprosthesis to be manoeuvred into position under fluoroscopic guidance. Before insertion of the introducer sheath, patients typically receive 5000 IU of heparin intravenously and a single dose of antibiotic medication is given prophylactically.

The stent-graft of appropriate size and configuration is selected on the basis of diagnostic imaging. The stent graft is usually oversized by 10-20% to decrease the incidence of type I endoleak. Following successful insertion of the stent-graft a completion angiogram is performed

to document exclusion of the aneurysm from the circulation. The femoral arteriotomies are closed according to standard surgical techniques and the patient is transferred to an appropriate after-care setting for observation.

2.1.2 Proposed clinical indications/contraindication and putative impact of the procedure

The use of EVAR in the treatment of infrarenal abdominal aortic aneurysms was established in 1991 by Parodi et al.² Since then, both the technique and devices have been developed so that this procedure may be used in elective, symptomatic and ruptured cases. The technique was initially developed in Europe and subsequently the AneuRx, Ancure and Guidant stent-graft devices were approved by the Food and Drug Administration (FDA) in September 1999.

Early trials have demonstrated lower mortality and early morbidity rates and consequently EVAR has been used with increasing frequency.³⁻⁵ This is particularly true in the case of elderly and high-risk patients for whom traditional open repair carries significant risks.

In order to repair an aneurysm by endovascular methods, certain anatomical and morphological criteria must be met. However there are no fixed criteria and they differ between different centres and different stent-grafts. Typical criteria include: proximal neck length >10mm length, <26mm diameter and <60 degrees angulation; iliac artery diameter <16mm and >7mm. Significant iliac artery tortuosity or calcification, or circumferential thrombus at the proximal neck are usually contraindications.

2.1.3 Personnel involved (e.g. surgeons, anaesthetists, nurses) and skill/experience required

Endovascular aneurysm repair is a consultant led service, with either a vascular interventional radiologist or a vascular surgeon taking the lead role, depending upon the set-up of each centre. A consultant anaesthetist is present throughout the procedure and is responsible for the general or regional anaesthesia. Access to the femoral arteries is provided by a vascular surgeon via a surgical cut-down. Placement of the endovascular stent is carried out by either the radiologist or the surgeon, and a radiology assistant is required for this stage of the procedure. Nursing staff involved include a scrub nurse, and 2 support nurses to act as runners. An operating department assistant (ODA) is present to help the anaesthetist. Finally two radiographers are required to operate the radiology equipment. The surgeon or radiologist will typically have undergone a period of training in vascular interventional radiology.

2.1.4 Current use in the UK

There are currently around 40 centres in the UK undertaking EVAR for abdominal aortic aneurysms (AAA). The majority of these centres are involved in the EVAR trial (randomised

controlled trial comparing EVAR to open repair). Before being considered for participation in the trial, a new centre must submit outcome data on 20 cases.

2.1.5 Equipment or devices required

Commercially-available endovascular stent-grafts are of one of three designs: aortic tube graft, aortic uniiliac graft or aortic biiliac (bifurcated) graft. The stent-graft typically comprises a self-expanding nickel-titanium (nitinol) stent attached to a woven polyester fabric graft. The tube graft is composed of a single structure, whilst the bifurcated grafts are modular and comprise multiple segments. Tube grafts are no longer used in this country. The bifurcated graft consists of a proximal tube, a flow divider, a full-length ipsilateral iliac limb and a short contralateral stump for attachment of the second iliac limb. The stent-grafts are attached to the native aortic wall by a number of metallic wires, hooks and anchors. Additional modular components include aortic and iliac extender cuffs and are used for the treatment of type I endoleaks. The main stent-grafts used in this country are made by Cook (Zenith bifurcated graft, a custom made graft and an aortouniliac device), Medtronic (Talent endograft) and Gore (Excluder).

2.2 Description of the underlying health problem

2.2.1 Epidemiology

An abdominal aortic aneurysm (AAA) is defined as an abnormal dilatation of the artery that is 1.5 times the diameter of the normal segment. A diameter of greater than 3 cm is generally regarded as aneurysmal in the abdominal aorta. Most aneurysms are caused by degenerative disease affecting the vessel and this process is most common in the infrarenal segment of the abdominal aorta, accounting for 90-95% of AAAs. Approximately 75% of aneurysms are asymptomatic and are found incidentally during clinical examination or radiographic investigations. Therefore the exact prevalence is unknown but various screening studies have estimated it to be between 1.7%-6% in the older male population.⁶⁻⁸ The incidence of AAAs is known to increase with age: the incidence rate for males over 50 years is approximately 25/100,000 increasing to 78/100,000 in those over 70 years.⁹ AAAs are more common in men than women with a male: female ratio of 3.5-6: 1.⁹ Furthermore a number of studies have suggested that the incidence of AAA is actually increasing.¹⁰

2.2.2 Aetiology and pathology

Aneurysmal disease is associated with degeneration of the vessel wall with loss of intima and a reduction in the elastin and collagen content of the media. The exact cause of these changes is largely unknown; however the risk factors for atherosclerotic disease (smoking, hypertension, hyperlipidaemia and diabetes mellitus) are thought to be largely responsible.

2.2.3 Natural history of abdominal aortic aneurysms

The natural history of AAA is one of progressive structural deterioration, gradual expansion and eventual rupture. An ectatic abdominal aorta is defined as one that is diffusely and irregularly dilated with a diameter less than 3 cm. One study demonstrated that the median growth rate was 0.65 mm/year with 19% becoming aneurysmal within a 2-year follow-up period.¹¹ Another study demonstrated expansion rates of 0.09 cm/year for aneurysms 2.6-2.9 cm, 0.16 cm/year for aneurysms 3.0-3.4 cm, and 0.32 cm/year for aneurysms 3.5-3.9 cm.¹² Other studies have shown expansion rates of 0.2-0.4 cm/year for aneurysms 4 am diameter, 02-0.5 cm/year for aneurysms 4-5 cm and 0.3-0.7 cm/year for those larger than 5 cm.¹³ The UK Small Aneurysm Trial demonstrated that ultrasound surveillance is a safe management option for patients with small abdominal aortic aneurysms (4.0 - 5.5 cm diameter) with an annual rupture rate of 1%.¹⁴ After 3 years of surveillance, it has been shown that the annual rate of aneurysm rupture is 2.2%.^{15;16}

2.3 Potential complications of aneurysm repair

Traditional open surgical repair of abdominal aortic aneurysms is associated with significant morbidity and mortality risks, particularly as there are significant levels of co-morbidity in the relevant population.

Common complications of open aneurysm repair include haemorrhage, local wound infections, chest infections, the need for post-operative ventilation and clinical cardiac events. Other less common complications include renal impairment (transient and permanent), lower limb ischaemia and trash foot, colonic ischaemia, graft infection and delayed rupture. In assessing the efficacy and safety of alternative therapeutic options, i.e. EVAR, it is important to consider all the above outcome measures. However, endovascular repair is also associated with certain other complications such as endoleak, stent migration and stent wire fracture from metal fatigue.

2.3.1 Endoleaks

Endoleaks are a well recognised complication following aneurysm repair that is specific to endovascular repair. The classification of endoleaks used in this review is that developed by White et al, 1998.

- Type Ia Perigraft leak from poor proximal attachment or seal
- Type 1b Perigraft leak from poor distal attachment or seal
- Type II Collateral backflow / retrograde endoleak
- Type III Mid-graft fabric tear / modular disconnection or poor seal
- Type IV Porosity graft-wall fabric porosity or suture holes

2.4 Population

2.4.1 Suitable candidates and relevant subgroups

Patients with an infrarenal abdominal aortic aneurysm >5.5 cm diameter and larger, or >4.5 cm and has increased in size by >0.5 cm in the preceding 6 months.

2.5 Current management and alternative procedures

Intervention for AAA is designed to prevent the endpoint of rupture, which is associated with an overall mortality rate of approximately 80%, with only half of those undergoing emergency operation surviving. The UK Small Aneurysm Trial demonstrated that there was no long-term survival advantage from elective surgery on small aneurysms (<5.5 cm diameter). Therefore current guidelines recommend a size of 5.5 cm diameter and larger, or >4.5 cm and has increased in size by >0.5 cm in the preceding 6 months before elective treatment (open or endovascular) is undertaken. The only other alternative intervention for abdominal aortic aneurysms is traditional open repair. Elective open repair is associated with a mortality rate of 2-6%.

3 METHODS FOR REVIEWING EVIDENCE ON EFFICACY AND SAFETY

3.1 Updated search strategy

The update searches were undertaken at the end of March 2005 and aimed to identify all references relating to the safety and efficacy of using endovascular stents for the treatment of abdominal aortic aneurysms.

Sources searched

Twelve electronic bibliographic databases were searched, covering biomedical, health-related, science, and social science literature:

- BIOSIS
- Cinahl
- Central Database
- Cochrane Database of Systematic Reviews (CDSR)
- Centre for Reviews and Dissemination (CRD) Databases
- Database of Abstracts of Reviews of Effects (DARE)
- Embase
- Health Technology Assessment (HTA) Database
- Medline
- NHS Economic Evaluations Database (NHS EED)
- Science Citation Index
- Social Sciences Citation Index

Search terms

A combination of free-text and thesaurus terms were used. 'Population' terms (for example, abdominal aortic aneurysm, AAA) were combined with 'intervention' terms (for example, EVAR, endovascular aneurysm repair, endovascular stent). Copies of the search strategies used in the major databases are included in the previous review.¹

Search restrictions

The update searches were restricted to English language articles.

3.2 Inclusion and exclusion criteria

3.2.1 Types of studies

Randomised controlled trials, controlled clinical trials, comparative observational studies, case series studies, and population-based registries assessing the efficacy and/or safety of EVAR were included. Systematic reviews and case reports were excluded from the review. Case series comprising less than fifty patients or containing less than 5 outcome measures of interest were excluded. For studies with multiple publications, those with the greatest number of participants, the longest follow-up, or the latest publications with the most amount of outcome data were included.

3.2.2 Types of participants

Studies including adults with asymptomatic infrarenal abdominal aortic aneurysms undergoing elective intervention were eligible for inclusion. Patients with symptomatic or ruptured aneurysms were excluded from this review.

3.2.3 Types of interventions

Endovascular aneurysm repair of abdominal aortic aneurysms. Thoracic and thoraco-abdominal aortic aneurysms were excluded.

3.2.4 Types of outcome

Efficacy

Main clinical outcomes:

- Successful endograft deployment
- Primary technical success defined as complete exclusion of the aneurysm from the circulation immediately following completion of the procedure
- Thirty day technical success defined as complete aneurysm exclusion at thirty days
- Secondary technical success defined as complete aneurysm exclusion following a secondary intervention
- Aneurysm rupture following successful EVAR
- Changes in size of aneurysm during follow-up

- Primary conversion rate (conversion to open procedure)
- Delayed conversion rate (conversion to open procedure)
- Secondary intervention rate

Other clinical outcomes

- Proportion of population for whom EVAR technically feasible
- Procedural blood loss
- Length of ITU stay
- Total length inpatient stay

Safety

The frequency and type of adverse events were tabulated to assess the safety of EVAR. Safety endpoints were considered in the following categories:

- Technical problems
 - Stent migrations
 - o Stent fracture
 - o Stent wire fracture
 - Graft limb thrombosis
 - o Graft stenosis
 - Graft kinking
 - Endoleak type I, II and III
 - Access artery injury
 - Contrast reaction
- Major morbidity
 - Thirty day mortality rate
 - o Subsequent death from aneurysm and non-aneurysm related causes
 - o Cardiac event
 - o Renal impairment
 - o Graft infection
 - Colonic ischaemia
 - Lower limb ischaemia
 - Minor morbidity
 - Wound infection

3.3 Quality assessment strategy

The methodological quality of all full-text reports was assessed by one reviewer using three separate quality assessment forms. Full details of the quality assessment checklists used are reported in the previous review.¹

3.4 Data extraction strategy

A data extraction form was specifically developed in an Access database to record details of the design of included studies, characteristics of participants, technical aspects of EVAR, and outcome measures of interest. Full details of the data extraction form are reported in the previous review.¹ Data extraction was carried out by one reviewer and checked for accuracy by a second. Reviewers were not blinded to the names of study authors, institutions, or publications.

3.5 Data analysis

The results of the data extraction and quality assessment for each included study are presented in structured tables and as a narrative summary. Data from multiple publications is included in the tables and highlighted, but were omitted from the calculations of overall rates and means where data from a later publication were available.

3.5.1 Data synthesis

For binary outcomes the pooled odds ratio and its 95% confidence interval were calculated using a fixed effects model in Review Manager Version 4.2.7. Where significant heterogeneity was indicated the results were recalculated using a random effects model. For continuous outcomes, a weighted mean difference and its 95% confidence interval were calculated, also in Review Manager Version 4.2.7. Where standard deviations were not reported by the authors they were estimated from the interquartile range (if available) using methods described in the Cochrane Reviewers Handbook (based on the width of the interquartile range being equivalent to approximately 1.35 times the standard deviation), in order to calculate a weighted mean difference (WMD). Such calculations make the assumption that the data follows a normal distribution. If this data was also not available, studies were not combined in the meta-analysis. For studies that did not include a comparison group, an overall mean and its 95% confidence interval was calculated.

4 RESULTS OF UPDATE SEARCHES

4.1 Type and quantity of evidence available

From the updated literature search, a further 52 reports were identified as being potentially relevant and full papers were obtained and assessed in detail for inclusion. In total, an additional 31 full-text papers¹⁷⁻⁴⁷ met the criteria for inclusion.

The mid-term results from the EVAR 1^{45} and 2^{46} trials, although not published at the time, were made available to the reviewers and are included in this report. In addition, two year data from

the DREAM trial⁴⁷ was published during the synthesis of this report and the study was included as it potentially contained significant level one evidence.

4.2 Number and type of included studies

In addition to the studies included in the previous review, a total of 78 studies were identified for inclusion. There were 4 randomised controlled trials (6 reports), 17 non-randomised controlled trials, 22 comparative observational studies, 28 case series and 6 registry publications. A summary of the included studies is shown in Table 1. Full characteristics of these studies are presented in Appendix 1.

The report was primarily concerned with the safety and efficacy of EVAR versus open repair and EVAR versus no intervention in patients unfit for open repair. Therefore, findings from non-controlled studies (i.e. case series and population registry data) are reported in a separate chapter.

4.2.1 Characteristics of the included studies

The number of participants in the included studies ranged from 40 to 7172 (total n=33,426) and the mean age (where reported) ranged from 65 to 85 years. The number of patients receiving EVAR ranged from 20 to 4613 (total n=23,416).

Mean follow-up ranged from 7 to 39 months. Forty-six studies had a mean follow-up of 12 months or more, and 15 had a mean follow-up of at least 24 months. The mean follow-up period was not recorded in 20 of the papers.

Forty-one of the primary studies were set in North-America, two were set in Australia, and the rest were set in Europe (6 UK papers and 3 EUROSTAR database publications). In addition, 22 of the studies were multi-centre studies. The device manufacturer funded eight of the studies and one was funded by the US government. The remaining studies did not declare a source of funding.

There appeared to be overlap in the patient populations in the included studies. Some studies, for example, were single-centre reports of patients, some of whom had been included in larger, multi-centre studies. However, the numbers of patients included in the trials was not always clearly reported in these articles. Where possible these studies have been grouped together. It is therefore not possible to give an accurate representation of the number of patients who have received EVAR in the included studies.

Author, Year	RCT/NRCT/	Mean	Enrolled (all	Nº receiving	Months of
	Case series/	age	interventions)	EVAR	follow-up
	Comparative				(range)
	study				
AbuRahma 2004 ²⁸	Case Series	74	151	151	17 (1-46)
Albertini 200148	Comp study	72	185	185	NR
Allaqaband 2004 ²¹	Comp Study	72	60	60	14
Alric 2002 ⁴⁹	Case Series	73	88	88	21 (6-68)
Anderson 2004 ⁵⁰	NRCT	NR	4769	1706	NR
Becquemin 2004 ²⁷	Case Series	71	250	250	28
Becquemin 2000 ⁵¹	NRCT	70	180^{a}	73	7 (0-40)
Bertrand 2000 ⁵²	NRCT	71	386	193	NR
Biebl 2004 ²³	Comp Study	72	182	182	(0-43)
Blankensteijn 200547	RCT	70	351	173	21 (0-42)
Prinssen 2004 ⁴⁴	RCT	70	351	173	1
Blum 2001 ⁵³	Comp study	70	298	298	(2-50)
Bolke 2001 ⁵⁴	NRCT	72	40	20	NR
Boult 2004 ²⁹	Case Series	75	950	950	NR
	(R)				
Burks 2002 ⁵⁵	Case Series	NR	95	95	25 (6-44)
Carpenter 2004a ⁵⁶	Case Series	NR	227	227	11 (0-41)
Carpenter 2004b ¹⁷	NRCT	73	258	192	NR
Cartes 2002 ⁵⁷	Case Series	74	72	72	22 (1-46)
Cho 2004 ³⁰	Case Series	73	50	50	34
Corriere 2004 ²⁴	Case Series	72	220	220	NR
Cuypers 2001 ⁵⁸	RCT	69	76	57	NR
Dalainas 2004 ³¹	Case Series	71	186	186	26 (9-60)
Espinosa 2005 ³²	Case Series	71	193	193	36
Faries 2002 ⁵⁹	Case Series	65	74	74	13 (6-48)
Flora 2003 ⁶⁰	Comp study	73	108	108	20
Garcia-Madrid	NRCT	NR	83	53	26
2004 ³⁴					
Gilling-Smith 2000 ⁶¹	Case Series	71	55	55	18 (3-36)
Greenhalgh 2005a ^{d45}	RCT	74	1047	531	35 (23-48)
Greenhalgh	RCT	74	1047	531	1
2004 ²²					
Greenhalgh 2005b ^{e 46}	RCT	76	238	166	29 (19-43)
Hansman 2003 ⁶²	NRCT	72	100	50	NR
Haulon 2003 ⁶³	Case Series	68	96	96	27 (3-66)

Table 1Summary of included studies

Author, Year	RCT/NRCT/	Mean	Enrolled (all	N° receiving	Months of
	Case series/	age	interventions)	EVAR	follow-up
	Comparative				(range)
	study				
Hinchliffe 2004 ²⁰	Case Series	74	269	269	12
Jordan 2004 ³⁶	NRCT	73	404	259	28
Kocher 2004 ³⁷	Case Series	71	120	120	21 (2-60)
Lee 2004 ⁴³	NRCT	72	7172	2565	NR
Maldonado 2004 ¹⁹	Case Series	72	311	311	22 (2-72)
May 2000 ⁶⁴	Case Series	72	266	266	>6
Minor 2004 ³⁹	Case series	85	150	150	17 (1-61)
Moore 2003 ⁶⁵	NRCT	73	684	573	(1-60)
Nolthenius 2001 ⁶⁶	Case Series	70	77	77	>12
Ohki 2001 ⁶⁷	Case Series	76 ^b	239	239	15 (<75)
Ouriel 2003 ⁶⁸	Comp study	75 ^b	704	704	NR
Ouriel 2003 ⁶⁹	Comp study	75	700^{a}	700	12
Cao 2004 ¹⁸	NRCT	72	1119	534	33 (13-50) ^c
Parlani 2002 ⁷⁰	Comp study	70	336	336	14 (1-46)
Zannetti 2001 ⁷¹	Comp study	70	266^{a}	266	11 (1-32)
Resch 2002 ⁷²	Case Series	71	164	164	39
Resch 2001 ⁷³	Comp study	71	158^{a}	158	20 (10-36)
Ricco 2003 ⁷⁴	Case Series	72	1012	1012	11
Sampaio 2004 ⁴⁰	Case Series	75	241	241	10 (1-71)
Elkouri 2003 ⁷⁵	Case Series	76	100	100	7 (1-60)
Elkouri 2004 ²⁵	Case Series	74	355	94	NR
Teufersbauer 2003 ⁷⁶	NRCT	72	756	275	NR
Vasquez 2004 ⁴¹	Comp study	75	212	212	NR
Verhoeven 2004 ⁴²	Case Series	70	308	308	36(±22)
Zeebregts 200477	NRCT	72	286	93	19
Ziaja 2003 ²⁶	Case Series	71	52	52	13 (1-39)
EUROSTAR databas	se (n=4613)				
Fransen 2003 ⁷⁸	Case Series	71	4613	4613	21 (1-72)
	(R)				
Laheij 2002 ⁷⁹	Case Series	NR	2863^{a}	2863	NR
	(<i>R</i>)				
Vallabhaneni	Case Series	71	2862 ^a	2862	12 (0-72)
2001 ⁸⁰	(R)				
Talent Clinical Trial	(n=471)				
Criado 2001 ⁸¹	Comp study	NR	471	471	NR
<i>Criado</i> 2003 ⁸²	NRCT	76	366^{a}	240	13
Fairman 2004 ³³	Comp study	NR	237	237	21

Author, Year	RCT/NRCT/	Mean	Enrolled (all	N° receiving	Months of
	Case series/	age	interventions)	EVAR	follow-up
	Comparative				(range)
	study				
AneuRx Clinical Tr	ial (n=1193)				
Arko 2002 ⁸³	NRCT	73	497	200	12 (1-60)
Arko 2003 ⁸⁴	Comp study	73	206^a	206	32 (3-55)
Ayerdi 2003 ⁸⁵	Comp study	73	96	96	12
Howell 2000 ⁸⁶	Case Series	72	215	215	14
Howell 2000 ⁸⁷	Comp study	72	89^a	89	(1-18)
Lee 2002 ⁸⁸	Comp study	74	150	150	NR
Lee 2000 ⁸⁹	Case Series	74	67^a	67	18
Ramaiah 2002 ⁹⁰	Comp study	74	260	260	NR
Shames 2003 ⁹¹	Comp study	73	245	245	11 (1-26)
Wolf 2002 ⁹²	Comp study	75	189	189	13
Zarins 2000 ⁹³	Case Series	NR	149	149	12 (1-39)
Zarins 2003b ⁹⁴	Case Series	NR	1193	1193	<48
Zarins 2003 ⁹⁵	Case Series	73	383 ^a	383	36
Zenith Clinical Tria	nl (n=432)				
Greenberg 2004 ³⁵	NRCT	NR	432	352	NR
Total		72	33664	23582	

^aExcluded from count of enrolled population (all interventions and EVAR) as duplicate series

b Some participants may overlap with the Talent and AneuRx clinical trial populations

^cIQR given for follow-up

^d EVAR 1 Trial

^e EVAR 2 Trial

NR - Not reported

(R) Registry publication

4.3 Number and type of excluded studies

Out of the 52 papers initially assessed as potentially relevant for the updated review, 21 papers were judged as being unsuitable for inclusion in the current review. A summary of the reasons for exclusion is shown in Table 2.

Reason for exclusion	Number of articles
Not a primary study	2
Small case series (n<50)	0
Insufficient outcome data of interest	7
Ruptured AAA	0
More recent/relevant publication available	7
Other	5
Total	21

Table 2Reasons for exclusion

4.4 Quality of the available evidence

4.4.1 Randomised controlled trials

The results of the quality assessment of the four RCTs (six papers) is summarised in Table 3. How patients were assigned to treatment groups was reported and random in all of the included RCTs with the exception of the study by Cuypers et al.⁵⁸ Patients were randomised to EVAR with a 3:1 ratio, but no information is provided as to the method of randomisation. In the two EVAR trials,^{45;46} patients were randomised using a 1:1 ratio in randomly sized permuted blocks. Abdominal aortic aneurysm repair cannot be blinded to the care provider or the patient as it is an invasive procedure, so these checklist items were not applicable. Primary outcome measures were presented as point estimates and measures of variability in all RCTs. In the study by Cuypers et al.⁵⁸ there was no record of losses to follow-up and it was unclear whether the procedure was undertaken by an experienced person. In the remaining studies, the losses to follow-up and level of operator experience were well documented.

Table 3Summary of the quality assessment of the randomised controlledtrials

Criteria	Yes	No	Unclear
Was the assignment to the treatment groups really random?	3	0	1
Was the treatment allocation concealed?	0	N/A	0
Were the groups similar at baseline in terms of prognostic factors?	4	0	0
Were the eligibility criteria specified?	4	0	0
Were the groups treated in the same way apart from the intervention	4	0	0
received?			
Was the outcome assessor blinded to the treatment allocation?	4	0	0
Was the care provider blinded?		N/A	0
Were the patients blinded?		N/A	0
Were the point estimates and measures of variability presented for the	4	0	0
primary outcome measures?			
Was the withdrawal/drop-out rate likely to cause bias?	0	3	1
Did the analyses include an intention-to-treat analysis?	4	0	0
Was the operation undertaken by somebody experienced in performing	3	0	1
the procedure			

4.4.2 Non-randomised controlled trials

These studies compared a group of patients undergoing EVAR against a group of patients undergoing open repair. A summary of the quality assessment of the 17 non-randomised controlled trials is presented in Table 4.

The participants were generally a representative sample, although the inclusion and exclusion criteria for the studies were only moderately-well documented overall and were only clear in nine studies^{52;62;82} Enrolment of patients was reported to be consecutive in seven studies.^{51;52;62;76} and data was collected prospectively in eleven studies.^{50;76} The level of operator experience was not clearly documented in any of the studies.

Valid outcome measures were used in all studies, although only four considered all outcomes considered important.^{65;82} Only two studies provided information on non-respondents or dropouts and in the remaining studies was unclear as whether participants lost to follow-up were likely to introduce bias. Analyses were adjusted for confounding factors in only two of the studies.

Criteria	Yes	No	Unclear
Were participants a representative sample selected from a relevant patient	14	0	3
population?			
Were the inclusion/exclusion criteria of participants clearly described?	9	3	5
Were participants entering the study at a similar point in their disease	4	7	6
progression?			
Was selection of patients consecutive?	7	2	8
Was data collection undertaken prospectively?	11	3	3
Were the groups comparable on demographic characteristics and clinical	5	11	1
features?			
Was the intervention (and comparison) clearly defined?	17	0	0
Was the intervention undertaken by someone experienced at performing the	0	0	17
procedure?			
Were the staff, place, and facilities where the patients were treated	10	0	7
appropriate for performing the procedure? (E.g. access to back-up facilities?			
Were all the important outcomes considered?	4	13	0
Were objective (valid and reliable) outcome measure/s used?	17	0	0
Was the assessment of main outcomes blind?	1	0	16
Was follow-up long enough to detect important effects on outcomes of	9	0	8
interest?			
Was information provided on non-respondents, dropouts?	2	14	1
Were participants lost to follow-up likely to introduce bias? (e.g. high drop-	0	2	15
out rate; differential drop-out; no description of those lost)			
Was length of follow-up similar between comparable groups	7	2	8
Were all the important prognostic factors identified?	12	4	1
Were the analyses adjusted for confounding factors?	2	15	0

Table 4Summary of the quality assessment of the non-randomisedcontrolled trials

4.4.3 Comparative observational studies

These studies compared two or more subgroups of patients undergoing endovascular repair. A summary of the quality assessment of the 22 comparative observational studies is presented in Table 5.

The participants were a representative sample from a relevant population in seventeen of the twenty-two studies. The inclusion and exclusion criteria were only clearly described in half of the studies. The groups were only comparable on demographic features in five of the studies; in three studies, this was not applicable as the groups were set by different demographic or clinical features. Objective outcome measures were used in all studies, although none reported on all important outcome measures of interest. The description of participants lost to follow-up was

poorly reported and consequently it was unclear whether this was likely to introduce bias. Important prognostic factors were reported in ten studies, and in only four studies were the analyses adjusted for confounding factors.

Table 5Summary of the quality assessment of the comparative observationalstudies

Criteria	Yes	No	Unclear
Were participants a representative sample selected from a relevant patient	17	0	5
population?			
Were the inclusion/exclusion criteria of participants clearly described?	10	8	4
Were participants entering the study at a similar point in their disease	8	7	4
progression? ^a			
Was selection of patients consecutive?	8	2	9
Was data collection undertaken prospectively?	10	9	3
Were the groups comparable on demographic characteristics and clinical	5	9	6
features? ^b			
Was the intervention (and comparison) clearly defined?	22	0	0
Was the intervention undertaken by someone experienced at performing the	2	0	20
procedure?			
Were the staff, place, and facilities where the patients were treated	13	0	9
appropriate for performing the procedure? (E.g. access to back-up facilities?			
Were all the important outcomes considered?	0	6	22
Were objective (valid and reliable) outcome measure/s used?	22	0	0
Was the assessment of main outcomes blind?	0	22	0
Was follow-up long enough to detect important effects on outcomes of	16	0	6
interest?			
Was information provided on non-respondents, dropouts?	1	21	0
Were participants lost to follow-up likely to introduce bias? (e.g. high drop-	0	1	21
out rate; differential drop-out; no description of those lost)			
Was length of follow-up similar between comparable groups	13	3	6
Were all the important prognostic factors identified?	10	11	1
Were the analyses adjusted for confounding factors?	4	18	0
^a Not relevant for 3 studies ^b Not relevant for 2 studies			

4.4.4 Case Series

A summary of the quality assessment of the 33 case series studies is presented in Table 6. The patients were a representative sample selected from a relevant population in two-thirds of the studies. The exclusion and inclusion criteria were only clearly described in a third of cases. Data collection was prospective in just over half of the studies, but selection of patients was consecutive in a minority of studies. An attempt to blind the outcomes assessors was only made in one study.

The level of experience of the person performing the procedure was only documented in one of the studies reviewed. Although objective outcomes were used by all of the studies, only five studies reported on all outcomes considered important. Information on losses to follow-up was generally reported poorly and therefore it was unclear whether this was likely to introduce any bias.

Table 6	Summary of the quality assessment of the case series

Criteria	Yes	No	Unclear
Were participants a representative sample selected from a relevant patient	23	1	9
population?			
Are the inclusion/exclusion criteria of patients in the study clearly	10	20	3
described?)			
Were participants entering the study at a similar point in their disease	5	17	11
progression?			
Was selection of patients consecutive?	6	1	26
Were all important prognostic factors identified?	17	16	0
Was data collection undertaken prospectively?	18	5	10
Was the recruitment period clearly stated?	31	2	0
Was the intervention that which is being considered in the review? (or was	32	0	1
it a significant modification?)			
Was an attempt made to blind outcomes assessors?	1	32	0
Was the operation undertaken by someone experienced in performing the	1	0	32
procedure?			
Did the staff, place, and facilities where the patients were treated provide an	21	0	12
appropriate environment for performing the procedure? (e.g. was the			
intervention undertaken in a centre with the necessary back-up facilities?)			
Were objective (valid and reliable) outcome measures used?	33	0	0
Were all the important outcomes considered?	5	28	0
Was follow-up long enough to detect important effects on outcomes of	29	0	4
interest?			
Was information provided on non-respondents, dropouts?	11	22	0
Were participants lost to follow-up likely to introduce bias? (e.g. high drop-	1	9	23
out rate; no description of those lost)			
Were the main findings clearly described? (to allow replication)	32	0	1

4.5 Proportion of population for whom EVAR technically feasible

Eight of the included studies (listed in Table 7) reported on the proportion of participants that they considered to be suitable candidates for EVAR. This ranged from 20% to 72% with an overall rate of 51.5%.

Author	Number referred	Accepted	for EVAR
	for EVAR	No	%
RCT			
Greenhalgh 2004 ²²	3927	2132	54
NRCT			
Cartes 2002 ⁵⁷	159	72	45
Haulon 2003 ⁶³	480	96	20
Becquemin 2000 ⁵¹	438	180	41
Zarins 2000 ⁹³	353	190	54
Wolf 2002 ⁹²	378	194	51
Espinosa 2004 ³²	267	193	72
Kocher 2004 ³⁷	170	120	70
Total	6172	3177	51.5

 Table 7
 Proportion of participants accepted for EVAR

5 EVAR VERSUS OPEN REPAIR

5.1 Major outcomes

5.1.1 30 day outcomes

• Mortality

Thirty-day mortality rates are displayed in Tables 8 and 9, and Figure 1. Data from the $RCTs^{22;44;58}$ showed a significant reduction in 30-day mortality for EVAR compared to open repair, (OR 0.33; 95% CI 0.17 to 0.64). The results from the NRCTs are concordant with the above findings, showing a significant reduction following EVAR compared to open repair (OR 0.31; 95% CI 0.25 to 0.39).

Table 830 day mortality rate for EVAR versus open repair (RCTs)

Study ID	EVAR		Open repair	
	n/N	%	n/N	%
Cuypers 2001 ⁵⁸	1/57	1.8%	1/19	5.3%
Greenhalgh 2004 ²²	9/531	1.7%	24/516	4.7%
Prinssen 2004 ⁴⁴	2/171	1.1%	8/174	4.6%

Table 930 day mortality rate for EVAR versus open repair (NRCTs)

Study ID	EVA	AR	Open re	pair
	n/N	%	n/N	%
Anderson 2003 ⁵⁰	19/1706	1.1%	121/3063	4.0%
Arko 2002 ⁸³	1/200	0.5%	10/297	3.4%
Becquemin 2000 ⁵¹	2/73	2.7%	2/107	1.9%
Bertrand 2001 ⁵²	6/193	3.1%	12/193	6.2%
Bolke 2001 ⁵⁴	0/20	0.0%	1/20	5.0%
Cao 2004 ¹⁸	5/534	0.9%	24/585	4.1%
Carpenter 2004b ¹⁷	2/192	1.0%	4/66	6.1%
Criado 2003 ⁸²	1/240	0.4%	0/126	0.0%
Elkouri 2004 ²⁵	0/94	0%	3/261	1.1%
Garcia-Madrid 2004 ³⁴	2/53	3.8%	2/30	6.7%
Greenberg 2004 ³⁵	1/200	0.5%	2/80	2.5%
Hansman 2003 ⁶²	1/50	2.0%	0/50	0.0%
Jordan 2004 ³⁶	6/259	2.3%	12/145	8.3%
Lee 2004 ⁴³	33/2565	1.3%	176/4607	3.8%
Moore 2003 ⁶⁵	10/573	1.7%	3/101	3.0%
Teufelsbauer 2003 ⁷⁶	7/275	2.5%	23/481	4.8%
Zeebregts 2004 ⁷⁷	1/93	1.1%	15/194	7.7%

Figure 1 30 day mortality rate for EVAR versus open repair: Forest plot

Study or sub-category	EVAR n/N	OPEN REPAIR	OR (fixed) 95% Cl	Weight %	OR (fixed) 95% Cl
or sub-category	IMN	H/N	93% CI	70	9376 01
01 RCT Data					
Cuypers 2001	1/57	1/19		4.43	0.32 [0.02, 5.40]
Greenhalgh 2004	9/531	24/516		71.99	0.35 [0.16, 0.77]
Prinssen 2004	2/171	8/174		23.58	0.25 [0.05, 1.17]
Subtotal (95% CI)	759	709	◆	100.00	0.33 [0.17, 0.64]
Total events: 12 (EVAR), 33 (OPEN REPAIR)		-		
Test for heterogeneity: Chi2 =	0.17, df = 2 (P = 0.92), I ² = 09	%			
Test for overall effect: Z = 3.2	25 (P = 0.001)				
02 NRCT Data					
Anderson 2003	19/1706	121/3063		26.48	0.27 [0.17, 0.45]
Arko 2002	1/200	10/297	_	2.48	0.14 [0.02, 1.14]
Becquemin 2000	2/73	12/107		2.93	0.22 [0.05, 1.03]
Bertrand 2001	6/193	12/193		3.60	0.48 [0.18, 1.32]
Bolke 2001	0/20	1/20		- 0.45	0.32 [0.01, 8.26]
Cao 2004	5/534	24/585	_	7.02	0.22 [0.08, 0.58]
Carpenter 2004	2/192	4/66		1.82	0.16 [0.03, 0.91]
Criado 2003	1/240	0/126		0.20	1.58 [0.06, 39.18]
Elkouri 2004	0/94	3/261		- 0.57	0.39 [0.02, 7.64]
Garcia Madrid 2004	2/53	2/30		0.76	0.55 [0.07, 4.11]
Greenberg 2004	1/200	2/80	_	0.88	0.20 [0.02, 2.19]
Hansman 2003	1/50	0/50		0.15	3.06 [0.12, 76.95]
Jordan 2004	6/259	12/145	_	4.65	0.26 [0.10, 0.72]
Lee 2004	33/2565	176/4607	-	38.44	0.33 [0.23, 0.48]
Moore 2003	10/573	3/101		1.55	0.58 [0.16, 2.15]
Teufelsbauer 2003	7/275	23/481	_ _	5.04	0.52 [0.22, 1.23]
Zeebregts 2004	1/93	15/194	_	2.97	0.13 [0.02, 1.00]
Subtotal (95% CI)	7320	10406	•	100.00	0.31 [0.25, 0.39]
Total events: 97 (EVAR), 420	(OPEN REPAIR)		Ŧ		
Test for heterogeneity: Chi2 =	9.25, df = 16 (P = 0.90), P = (0%			
Test for overall effect: Z = 9.8				· · · · · · ·	
			0.01 0.1 1	10 100	
			Favours EVAR Favou	Irs OPEN REPAIR	

• Aneurysm rupture

The primary objective of EVAR is to prevent subsequent rupture and its associated high morbidity and mortality rates. One NRCT¹⁸ reported on early rupture rates occurring in the first 30 days post procedure (see Table 10). Data from the included case series indicated an overall early rupture rate of 0.3% (95% CI 0.2% to 0.5%).

Table 10Early (<30 days) aneurysm rupture rates following EVAR</th>

Author	Number	Number of patients		
	EVAR	EVAR With rupture		
Cao 2004 ¹⁸	534	1	0.2	

• Primary conversion to open repair

This is defined as the number of patients undergoing conversion to open surgery immediately following a failed attempt at endovascular repair.

From the two RCTs^{44;45} that reported this outcome, the primary conversion rates were 0.8% and 1.8%, respectively (see Table 9). Twelve NRCTs (see Table 12) reported the primary conversion rate and the results are displayed in Table 10. The overall mean conversion rate was 2.4% (95% CI 1.8% to 3.0%). Data from the case series indicated a mean conversion rate of 1.2% (95% CI 1.0% to 1.4%).

Author	Total number of	Primary conver	sion
	EVAR	Number of patients	Rate (%)
Greenhalgh 2005 ⁴⁵	531	4	0.8
Prinssen 2004 ⁴⁴	171	3	1.8

Table 11Primary conversion rates following EVAR (RCTs)

Table 12	Primary	conversion ra	ates following	EVAR (NRCTs)
		•••••••••••		

Author	Total number of	Primary	conversion
	EVAR	Number of patients	Rate, % (95% CI)
Arko 2002 ⁸³	200	2	1
Bertrand 2001 ⁵²	193	6	3.1
Cao 2004 ¹⁸	534	7	1.3
Carpenter 2004b ¹⁷	192	3	1.6
Criado 2003 ⁸²	240	1	0.4
Elkouri 2004 ²⁵	94	1	1.1
Garcia-Madrid 2004 ³⁴	53	0	0
Greenberg 2004 ³⁵	200	0	0
Hansman 2003 ⁶²	50	0	0
Jordan 2004 ³⁶	259	1	0.4
Moore 2003 ⁶⁵	573	42	7.3
Zeebregts 2004 ⁷⁷	93	1	1.1
	2681	64	2.4 (1.8% - 3.0%)

5.1.2 Longer term outcomes

• Aneurysm-related mortality

There were 4 studies^{17;35;45;47} that had documented deaths that were directly attributable to the aneurysm. From the DREAM⁴⁷ and EVAR 1⁴⁵ trials, there was a significant reduction in AAA related deaths in the EVAR group from 30-days post-procedure which was maintained throughout the follow-up period. This difference in aneurysm-related mortality was based entirely on the difference in in-hospital (perioperative) mortality.

Table 13 Aneurysm-related mortality for EVAR versus open repair

Study ID	EV	AR	Open r	epair
	n/N	%	n/N	%
Blankensteijn 2005 ⁴⁷	2/173	1.2%	8/178	4.5%
Greenhalgh 2005 ⁴⁵	19/543	3.5%	34/539	6.3%
Carpenter 2004b ¹⁷	1/192	0.5%	0/66	0%
Greenberg 2004 ³⁵	1/200	0.5%	3/80	3.8%

• Non-aneurysm related mortality

There were three NRCT (see Table 14) that reported a mortality rate that was not AAA related. Overall, there was a significantly increased rate of death in the EVAR group compared to the open repair group (OR 1.42; 95% CI 1.07 to 1.89).

Study ID	EV	AR	Open repair		
	n/N	%	n/N	%	
Cao 2004 ¹⁸	101/534	18.9%	78/585	13.3%	
Carpenter 2004b ¹⁷	19/192	9.9%	9/66	13.6%	
Criado 2003 ⁸²	20/240	8.3%	6/126	4.8%	

 Table 14
 Non-aneurysm related mortality for EVAR versus open repair

• All-cause mortality

Three NRCT (see Table 15) reported total mortality rates at one year, showing no significant difference in mortality in the EVAR group compared to the open repair group (OR 0.81, 95% CI 0.43 to 1.52; p=0.53).

Table 15All-cause mortality at 1 year for EVAR versus open repair

Study ID	EV	AR	Open r	epair
	n/N	%	n/N	%
Becquemin 2000 ⁵¹	5/73	6.8%	3/107	2.8%
Greenberg 2004 ³⁵	7/200	3.5%	3/80	3.8%
Zeebregts 200477	7/93	7.5%	26194	13.4%

During more prolonged follow up the EVAR 1 trial⁴⁵ reported no significant difference in mortality rates between the EVAR and open repair groups. At four years, approximately 28% of the study population had died in the EVAR and open repair groups (hazard ratio 0.9, 95% CI 0.69 to 1.19; p=0.46).

At two years, the DREAM trial⁴⁷ reported cumulative survival rates of 89.6% following open repair and 89.7% following EVAR, a difference of -0.1 percentage points (95% CI -6.8 to 6.7 percentage points; p=0.86).

In both of the RCTs,^{45;47} the initial significant reduction in 30-day mortality rate was lost by one year follow up. The EVAR 1 trial⁴⁵ reported a hazard ratio for EVAR compared to open repair during the first 6 months of 0.55 (95% CI 0.33 to 0.93) and 1.10 (95% CI 0.80 to 1.52) after 6 months.

Study ID	EV	AR	Open repair		
	n/N	%	n/N	%	
Greenhalgh 2005 ⁴⁵	100/543	18.4%	109/539	20.2%	
Carpenter 2004b ¹⁷	20/192	10.4%	9/66	13.6%	
Garcia-Madrid 2004 ³⁴	5/53	9.4%	6/30	20%	
Zeebregts 2004 ⁷⁷	11/93	11.8%	27/194	13.9%	

Table 16All-cause mortality at >1 year for EVAR versus open repair

• Aneurysm rupture rates

The primary objective of EVAR is to prevent subsequent rupture and its associated high morbidity and mortality rates. Two RCTs and six NRCTs (see Tables 17 and 18, respectively) reported data on delayed rupture rates following EVAR.

Data from the RCTs gave a combined odds-ratio of 5.00 (95% CI 0.58 to 42.94; p=0.14). Of the six NRCTs, five studies reported delayed rupture rates of 0%. The study by Cao et al.¹⁸ reported a rate of 1.1%.

Table 17Delayed aneurysm rupture rates for EVAR versus open repair(RCT)

Study ID	EVAR		Open repair		Follow-up, months	
	n/N	%	n/N	%	median (IQR)	
Blankensteijn 200547	0/178	0.0	0/173	0.0	21 (0-42) ^a	
Greenhalgh 2005 ⁴⁵	5/543	0.9	1/539	0.2	35 (23-48)	

^aMean and range

Table 18Delayed aneurysm rupture rates for EVAR versus open repair(NRCT)

Study ID	EV	EVAR		repair	Follow-up, months
	n/N	%	n/N	%	median (IQR)
Becquemin 2000	0/73	0.0	0/107	0.0	7 (0-40)
Cao 2004 ¹⁸	6/529	1.1	0/585	0.0	Not Reported
Carpenter 2004b ¹⁷	0/192	0.0	0/66	0.0	Not Reported
Criado 2003	0/190	0.0	0/240	0.0	Not Reported
Jordan 2004 ³⁶	0/259	0.0	NS	-	Not Reported
Moore 2003	0/684	0.0	NS	-	NR (1-60)

• Changes in aneurysm size

Changes in aneurysm size following endovascular repair were reported in five NRCTs (see Table 19). Arko 2003^{84} defined decrease in size as >10 mm decrease from pre-op size and an

increase as >5mm increase from pre-op size, whereas a change in size of 5mm either way was considered a significant increase or decrease in eight studies.^{59;61;69;75;82;89;95;96} Overall, an increase in aneurysm size occurred in 4.1% of patients (95% CI 3.0% to 5.2%). Data from 17 case series indicated that overall 7.6% (95% CI 6.6% to 8.5%) of the EVAR population experienced an increase in size of their aneurysm.

Author	Number of	Number ofChanges in aneurysm size n (%)				
	cases	Increase	No change	Decrease	(mean)	
Cao 2004 ¹⁸	506	39 (7.7)	NR	282 (55.7)	NR	
Carpenter 2004b ¹⁷	133 ^d	2 (1.5)	NR	NR	22	
Criado 2003 ⁸²	240	2 (0.8)	NR	NR	13	
Elkouri 2004 ²⁵	94	2 (2.1)	28 (29.8)	63 (67)	NR	
Greenberg 2004 ³⁵	200	3 (1.5)	NR	NR	NR	
Total	1173	48 (4.1)	28 (28.9)	345 (57.5)		

Table 19Change in aneurysm size following EVAR

^d n= number of patients who were available for evaluation at 24 months

• Delayed conversion to open repair

Any conversion to an open procedure following an initially successful endovascular repair is considered in this section and the results of the studies that reported this outcome are displayed in Tables 20 and 21. From one RCT^{45} the delayed conversion rate was 1.9% and from six NRCTs the overall mean delayed conversion rate was 2.7% (95% CI 1.8% to 3.6%).

Table 20Delayed conversion rates (RCT)

Author	Ν	Secondary conversions		Follow-up
		n	%	Median (IQR)
Greenhalgh 2005 ⁴⁵	531	10	1.9	35(23-48)

Author	Ν	Secondary conversions		Follow-up
		n	%	Mean (range)
Becquemin 2000 ⁵¹	73	3	4.1	7 (0-40)
Cao 2004 ¹⁸	534	19	3.6	33 (13-50)
Carpenter 2004b ¹⁷	192	3	1.6	NS
Criado 2003 ⁸²	240	5	2.1	13 (NS)
Greenberg 2004 ³⁵	200	4	2	NS
Hansman 2003 ⁶²	50	1	2	NS
	1289	35	2.7%	
			(95% CI 1.8% - 3.6%	6)

Table 21 **Delayed conversion rates (NRCTs)**

Secondary intervention rate

Any procedure (surgical or radiological) that had been carried out to maintain exclusion of the aneurysm sac from the circulation or to maintain graft patency was counted as a secondary procedure and was included in this outcome analysis. The results of the included studies are shown in Tables 22 and 23, and Figure 2.

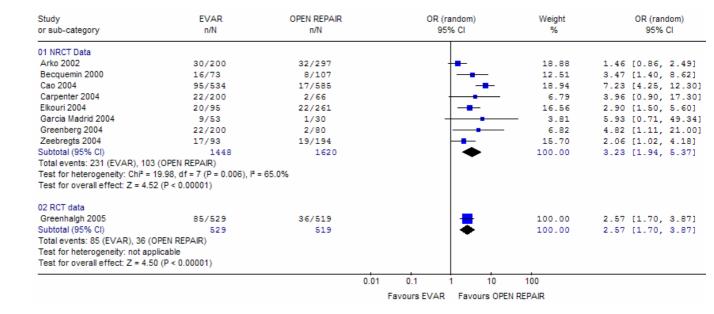

From the EVAR 1 trial⁴⁵ the secondary intervention rate following EVAR was 16.1% compared to 6.9% following open repair (OR 2.57, 95% CI 1.70 to 3.87; p<0.00001). From the DREAM trial⁴⁷ the rate of intervention was almost three times the rate after open repair, (hazard ratio 2.9, 95% CI 1.1 to 6.2; p=0.03). From 11 NRCTs the overall secondary intervention rate following EVAR was 20.2% compared to 6.4% following open repair (OR 3.23, 95% CI 1.94 to 5.37; p<0.00001).

Table 22	Secondary intervention rates for EVAR versus open repair (RCT)
Table 22	Secondary intervention rates for EVAR versus open repair (RC1)

Study ID	EVAR		Open repair		Follow-up, months
	n/N	%	n/N	%	median (IQR)
Greenhalgh 2005 ⁴⁵	85/529	16.1%	36/519	6.9%	35 (23-48)

Study ID	EVA	AR	Open 1	epair	Follow-up, months
	n/N	%	n/N	%	median (IQR)
Arko 2002 ⁸³	30/200	15.0	32/297	10.8	12 (1-60)
Becquemin 2000 ⁵¹	16/73	21.9	8/107	7.5	7 (0-40)
Cao 2004 ¹⁸	95/534	18.7	17/585	2.9	NS
Carpenter 2004b ¹⁷	29/192	15.1	2/66	15.1	22 (NS)
Criado 2003 ⁸²	9/240	3.8	NS	NS	13 (NS)
Elkouri 2004 ²⁵	20/95	21.1	22/261	3.0	NS
Garcia-Madrid 2004 ³⁴	9/53	17	1/30	3.3	26 (NS)
Greenberg 2004 ³⁵	22/200	11	2/80	2.5	NS
Hansman 2003 ⁶²	6/50	12.0	NS	NS	NS
Moore 2003 ⁶⁵	212/573	37.0	NS	NS	NS (1-60)
Zeebregts 2004 ⁷⁷	17/93	18.3	19/194	9.8	19 (NS)

Table 23	Secondary intervention rates for EVAR versus open	repair (NRCT)

Figure 2 Secondary intervention rates for EVAR versus open repair: Forest plot

5.2 Complications

Safety findings are reported according to whether they were endovascular device-related (technical complications) or not (non-technical complications). As outcomes of interest were not

reported *a priori* in the majority of studies, in some cases it was not clear whether there were no cases of a complication, or whether the authors had chosen not to report this outcome.

5.2.1 Common technical complications

The incidence of the common technical complications is shown in Table 24 and the results are described below by complication.

• Stent migration

A total of 5 studies, reported cases of stent-graft migration following EVAR at <1 year and >1 year. Stent-graft migration was defined as >10 mm caudal displacement. At < 1 year the incidence was 1.4%, rising to 2.6% during follow up in the RCT.

• Stent fracture

There was no report of this adverse event in the included studies.

• Stent wire fracture

Only 2 studies reported on the outcome of stent wire fracture. This adverse event was reported from follow-up plain X-rays or CT scans and occurred with an overall incidence of 3.4% during follow-up periods up to 1 year.

• Graft-limb thrombosis

During the first 30-days, this was reported to occur in 6.4% of patients by the DREAM trial.⁴⁷ During follow up, incidence rates varied from 0.5% to 11.0% amongst the included studies, but the EVAR trial reported a rate of 2.6%.⁴⁵

• Graft stenosis

Three studies reported this outcome. Within the first year, one NRCT⁵¹ reported the rate as 5.5%, but one of the RCT⁴⁵ reported a rate of 0.8% during their follow-up period.

• Type I endoleak

< 30 days: This adverse event is defined as the occurrence of a type Ia or Ib endoleak in the first 30 days post-EVAR. In five NRCTs, $^{17;34;51;65;82}$ the incidence of this adverse event ranged from 0.8% to 11.0% with an overall rate of 4.6%.

1 year: Three NRCTs^{17;62;82} reported 8 (2.3%) cases of type I endoleak during the first year with a range of 0% to 4.4%.

Beyond 1 year: Four NRCTs^{17;34;65;82} reported 13 (2.4%) cases of type I endoleak during follow-up >1Y with a range of 0% to 4.4%. One RCT⁴⁵ reported a rate of 5.5% during follow-up.

• Type II endoleak

<30 days: This adverse event is defined as the occurrence of a type II endoleak in the first 30 days post-EVAR. In 5 NRCTs, $^{17;34;51;65;82}$ the incidences reported ranged from $8.4\%^{82}$ to 31.2%,⁶⁵ with an overall mean of 19.6\%.

1 year: Three NRCTs^{62;65;82} reported incidences with a range of $5.0\%^{82}$ to $21.8\%^{65}$ with an mean of 12.9% for this adverse event.

Beyond 1 year: There were 3 NRCT^{17;34;65} that reported the incidence of type II endoleak beyond 1Y with a mean rate of 11.7%. One RCT⁴⁵ reported a rate of 18.9% during follow-up.

• Type III endoleak

Two NRCTs^{17;34} reported this outcome, with reported incidences of 0% and 11.3%. The rate reported by one RCT⁴⁵ was 1.9% during follow-up.

• Access artery injury:

One NRCT⁶⁵ reported a rate of 12.9% for arterial injury but did not offer any further definitions for the type of injury sustained. In the case series studies, (Table XXX) types of arterial injury were listed as femoral artery damage⁵³, iliac artery dissection / injury⁸⁸, external iliac artery rupture⁵⁷, femoral or iliac artery dissection⁸⁶, false femoral aneurysm⁷⁴, femoral artery pseudoaneurysm / iliac dissection.⁸⁷ The overall rate of access artery injury was 1.3% from the case series.

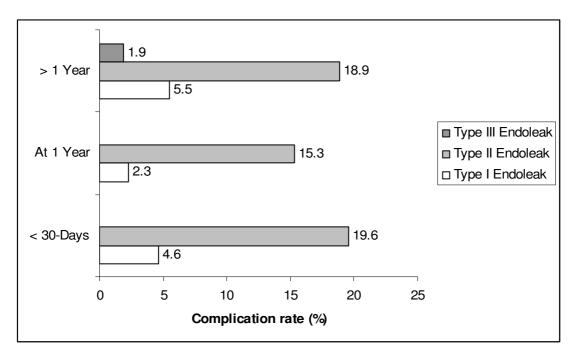
• Contrast reaction

There was no report of this adverse event in the included studies.

• 'Overall complication' rate

This was only reported by the EVAR 1 trial.⁴⁵ This trial was the only study to consider majority of the technical complications listed above. By 4 years, the proportion of patients with at least one complication following AAA repair was 41% in the EVAR group and 9% in the open repair group. Overall complication rates were 17.6 per 100 person years in the EVAR group and 3.3 per 100 person years in the open repair group, hazard ratio 4.9 (95% CI 3.5, 6.8), p<0.001.

Table 24Incidence of common technical complications following EVAR (RCTand NRCT)


Complication	Author	EVAR n/N	% (95% CI)
Stent migration			
< 1 year	Criado 2003 ⁸²	3/240	1.3%
	Hansman 2003 ⁶²	1/50	2.0%
	Total	4/290	1.4%
> 1 year	Greenhalgh 2005 ⁴⁵	14/529	2.6%
	Carpenter 2004b ¹⁷	3/136	2.2%
	Greenberg 2004 ³⁵	4/200	2%
Stent wire fracture	Criado 2003 ⁸²	11/240	4.6%
up to 1 year	Greenberg 2004 ³⁵	4/200	2%
Graft limb thrombosis			
<30 Days	Prinssen 2004 ⁴⁴	11/171	6.4%

	Moore 2003 ^{a65}	17/573	3.0%
<1 year	Arko 2002 ⁸³	1/200	0.5%
	Becquemin 2000 ⁵¹	8/73	11.0%
	Hansman 2003 ⁶²	2/50	4.0%
>1 year	Greenhalgh 2005 ⁴⁵	14/529	2.6%
	Carpenter 2004b ¹⁷	4/188	2.1%
	Moore 2003 ⁶⁵	31/573	5.4%
Graft stenosis <1 year	Becquemin 2000 ⁵¹	4/73	5.5%
(i year			
>1 year	Greenhalgh 2005 ⁴⁵	4/529	0.8%
	Carpenter 2004b ¹⁷	3/188	1.6%
Graft Kinking	Greenhalgh 2005 ⁴⁵	9/529	1.7%
>1 year			
Type I endoleak	Becquemin 2000 ⁵¹	8/73	11.0%
< 30 days	Carpenter 2004b ¹⁷	1/121	0.8%
	Criado 2003 ⁸²	11/190	5.8%
	Garcia-Madrid 2004 ³⁴	2/53	3.8%
	Moore 2003 ⁶⁵	12/308	3.9%
up to 1 year	Carpenter 2004b ¹⁷	0/140	0%
	Criado 2003 ⁸²	7/159	4.4%
	Hansman 2003 ⁶²	1/50	2.0%
>1 year	Greenhalgh 2005 ⁴⁵	29/529	5.5%
	Carpenter 2004b ¹⁷	0/90	0%
	Criado 2003 ⁸²	8/179	4.5%
	Garcia-Madrid 2004 ³⁴	1/53	1.9%
	Moore 2003 ⁶⁵	4/225	1.8%
Type II endoleak	Becquemin 2000 ⁵¹	9/73	12.3%
<30 days	Carpenter 2004b ¹⁷	22/121	18.2%
	Garcia-Madrid 2004 ³⁴	3/53	5.7%
	Criado 2003 ⁸²	16/190	8.4%
	Moore 2003 ⁶⁵	96/308	31.2%

up to 1 year	Criado 2003 ⁸²	8/159	5.0%
	Hansman 2003 ⁶²	7/50	14.0%
	Moore 2003 ⁶⁵	57/262	21.8%
>1 year	Greenhalgh 2005 ⁴⁵	100/529	18.9%
	Carpenter 2004b ¹⁷	3/90	3.3%
	Garcia-Madrid 2004 ³⁴	2/53	3.8%
	Moore 2003 ⁶⁵	38/225	16.9%
Type III endoleak	Greenhalgh 2005 ⁴⁵	10/529	1.9%
>1 year	Carpenter 2004b ¹⁷	0/144	0%
	Garcia-Madrid 2004 ³⁴	6/53	11.3%
Access artery injury	Moore 2003 ⁶⁵	74/573	12.9%

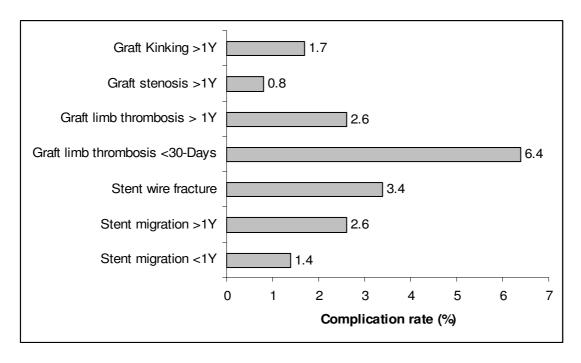

*Results from the RCT trial are stated in bold

Figure 3 Incidence of new or persisting endoleak following EVAR

Results are taken from RCT data where available or from the mean of NRCT if no RCT data available.

5.2.2 Common non-technical complications

The incidence of the non-technical adverse events are displayed in Table 25. Forest plots are available for selected outcomes in Appendix 2.

• Cardiac event rate (<30 days)

From the two $RCTs^{44;58}$ that reported this outcome, there was an slight reduction in cardiac events following EVAR, but this difference was not significant, (OR 0.81, 95% CI 0.35 to 1.86; p=0.52). From the 16 NRCTs, there was a significant reduction in cardiac event rate following EVAR, (OR 0.43, 95% CI 0.36 to 0.50; p<0.00001).

• Renal impairment

Data from the both the RCTs and NRCTs indicated that there was no significant difference in renal impairment between the two groups at 30-days. In addition, one NRCT³⁵ reported renal impairment rates during follow up of > 1 year and again found no significant difference between EVAR and open repair (OR 0.66, 95% CI 0.15 to 2.82; p=0.57).

• Graft infection

From the 2 RCT that reported this outcome, there was no significant difference in graft infection rates between the two groups at either 30-days, or during follow-up.

• Colonic ischaemia

From both the RCT and NRCT data, there was no significant difference in the rates of graft infection post either procedure.

• Lower limb ischaemia:

This outcome included cases of lower limb ischaemia in the perioperative (<30 day) period only. The incidence of this outcome was reported to vary between 0% and 4.2% following EVAR and 0.9% and 4.0% following open repair. There was no significant difference between EVAR and open repair (OR 0.88, 95% CI 0.47 to 1.64; p=0.69).

• Pulmonary complications

From the DREAM trial there was a significant reduction in pulmonary complications following EVAR compared to open repair, (OR 0.25, 95% CI 0.09 to 0.69; p=0.006).

A meta-analysis of the NRCT results also demonstrated a significant reduction in pulmonary complications following EVAR, (OR 0.19, 95% CI 0.14 to 0.24), p<0.00001).

Haemorrhage

From the DREAM trial, there was a non significant reduction in the incidence of haemorrhage following EVAR, (OR 0.5, 95% CI 0.12 to 2.03; p=0.33).

However, a meta-analysis of the NRCT studies demonstrated a significant reduction in haemorrhage following EVAR, (OR 0.24, 95% CI 0.14 to 0.40; p<0.00001).

• Local wound complications:

All local wound complications were considered in this section and included haematoma formation, wound infection, lymph leak / lymphocoele, femoral nerve damage. A meta-analysis

of the nine NRCTs that reported this event demonstrated a slightly higher rate of complications after EVAR, but this did not reach a level of significance (OR 1.34, 95% CI 0.96 to 1.88; p=0.08).

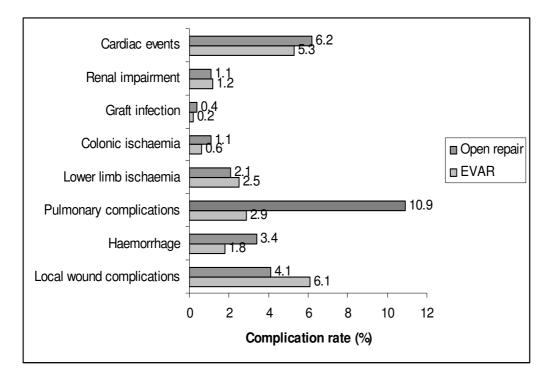

Study ID	EV	AR	Open 1	repair	Р
	n/N	%	n/N	%	
Cardiac event rate (<30	days)				
Cuypers 2001 ⁵⁸	3/57	5.3%	2/19	10.5%	
Prinssen 2004 ⁴⁴	9/171	5.3%	10/174	5.7%	
Anderson 2003 ⁵⁰	52/1706	3.0%	230/3063	7.5%	
Arko 2002 ⁸³	10/200	5.0%	15/297	5.1%	
Becquemin 2000 ⁵¹	2/73	2.7%	7/107	6.5%	
Bertrand 2001 ⁵²	26/193	13.5%	41/193	21.2%	
Bolke 2001 ⁵⁴	1/20	5.0%	5/20	25.0%	
Cao 2004 ¹⁸	9/534	1.7%	25/585	4.3%	
Carpenter 2004b ¹⁷	2/192	1.0%	5/66	7.6%	
Criado 2003 ⁸²	3/240	1.3%	4/126	3.2%	
Elkouri 2004 ²⁵	10/94	10.6%	57/261	21.8%	
Garcia-Madrid 2004 ³⁴	2/53	3.8%	1/30	3.3%	
Greenberg 2004 ³⁵	6/200	3.0%	9/80	11.3%	
Hansman 2003 ⁶²	1/50	2.0%	1/50	2.0%	
Jordan 2004 ³⁶	8/259	3.1%	9/145	6.2%	
Lee 2004 ⁴³	77/2565	3.0%	320/4607	6.9%	
Moore 2003 ⁶⁵	56/573	9.8%	23/111	20.7%	<0.01
Zeebregts 2004 ⁷⁷	4/93	4.3%	12/194	6.2%	
Renal impairment (<30 o	days)				
Prinssen 2004 ⁴⁴	2/171	1.2%	2/174	1.1%	
Arko 2002 ⁸³	1/200	0.5%	1/297	0.3%	
Becquemin 2000 ⁵¹	3/73	4.1%	3/107	2.8%	
Bertrand 2001 ⁵²	10/193	5.2%	21/193	10.9%	< 0.02
Bolke 2001 ⁵⁴	3/20	15.0%	4/20	20.0%	
Cao 2004 ¹⁸	6/534	1.1%	4/585	0.7%	
Criado 2003 ⁸²	3/240	1.3%	4/126	3.2%	
Elkouri 2004 ²⁵	4/94	4.3%	11/261	4.2%	
Greenberg 2004 ³⁵	5/200	2.5%	9/80	11.3%	
Moore 2003 ⁶⁵	31/573	5.4%	2/111	1.8%	
Renal impairment (>1 y	ear)				
Greenberg 2004 ³⁵	5/200	2.5%	3/80	3.8%	

Table 25Common non-technical complications for EVAR versus open repair

Graft infection (< 30 days)				
Prinssen 2004 ⁴⁴	1/171	0.6%	2/174	1.1%	
Graft infection (>1 year) Greenhalgh 2005 ⁴⁵	1/529	0.2%	2/519	0.4%	
Colonic ischaemia (<30 da	nys)				
Prinssen 2004 ⁴⁴	1/171	0.6%	2/174	1.1%	
Cao 2004 ¹⁸	3/534	0.6%	2/585	0.3%	
Hansman 2003 ⁶²	1/50	2.0%	0/50	0.0%	
Lower limb ischaemia (<3	0 days)				
Arko 2002 ⁸³	2/200	1.0%	5/297	1.7%	
Cao 2004 ¹⁸	8/534	1.5%	14/585	2.4%	
Hansman 2003 ⁶²	0/50	0.0%	2/50	4.0%	
Moore 2003 ⁶⁵	24/573	4.2%	1/111	0.9%	
Pulmonary complications	(<30 days)				
Prinssen 2004 ⁴⁴	5/171	2.9%	19/174	10.9%	
Anderson 2003 ⁵⁰	33/1706	1.9%	235/3063	7.7%	
Arko 2002 ⁸³	0/200	0.0%	6/297	2.0%	
Becquemin 2000 ⁵¹	3/73	4.1%	14/107	13.1%	< 0.05
Bertrand 2001 ⁵²	10/193	5.2%	52/193	26.9%	< 0.001
Bolke 2001 ⁵⁴	2/20	10.0%	4/20	20.0%	
Cao 2004 ¹⁸	2/534	0.4%	27/585	4.6%	
Carpenter 2004b ¹⁷	4/192	2.1%	5/66	6.1%	
Criado 2003 ⁸²	2/240	0.8%	5/126	4.0%	
Elkouri 2004 ²⁵	3/94	3.2%	42/261	16.1%	
Greenberg 2004 ³⁵	2/200	1.0%	13/80	16.3%	
Hansman 2003 ⁶²	1/50	2.0%	5/50	10.0%	
Jordan 2004 ³⁶	2/259	0.8%	9/145	6.2%	
Moore 2003 ⁶⁵	30/573	5.2%	25/111	22.5%	< 0.01
Zeebregts 2004 ⁷⁷	2/93	2.2%	42/194	21.6%	
Haemorrhage (<30 days)					
Prinssen 2004 ⁴⁴	3/171	1.8%	6/174	3.4%	
Anderson 2003 ⁵⁰	54/1706	3.2%	321/3063	10.5%	< 0.001
Criado 2003 ⁸²	67/240	27.9%	92/126	73.0%	< 0.001
Moore 2003 ⁶⁵	105/573	18.3%	40/111	36.0%	< 0.01
Zeebregts 2004 ⁷⁷	0/93	0%	23/194	11.9%	
Local wound complication	ns (<30 days)				
Becquemin 2000 ⁵¹	1/73	1.4%	2/107	1.9%	

Bertrand 2001 ⁵²	13/193	6.7%	14/193	7.3%	
Cao 2004 ¹⁸	13/534	2.4%	11/585	1.9%	
Criado 2003 ²²	7/240	2.9%	6/126	4.8%	
Elkouri 2004 ²⁵	6/94	6.4%	15/261	5.7%	
Hansman 2003 ⁶²	3/50	6.0%	5/50	10.0%	
Jordan 2004 ³⁶	6/259	2.3%	1/145	0.7%	
Moore 2003 ⁶⁵	69/573	12.0%	4/111	3.6%	< 0.05
Zeebregts 2004 ⁷⁷	10/93	10.8%	14/194	7.2%	

Figure 5 Incidence of common non-technical complications: EVAR versus surgery

5.3 Other peri- and post-operative outcomes

5.3.1 Deployment success rate

The success of endograft deployment was documented in 7 studies (see Tables 26 and 27). Success is defined as accurate placement of the graft in the correct position without the need for surgical intervention / open conversion. The only RCT to report this outcome reported a rate of 97%.⁴⁵ In six NRCTs, the deployment success rate ranged from $93\%^{82}$ to 100%,³⁵ and overall averaged 96%, (95% CI 95.3% to 97.3%).

Author	Number o	f patients (n)	Deployment success
	Undergoing EVAR	Successful deployment	rate (%)
Greenhalgh 2005 ⁴⁵	543	529	97%
Table 27	Successful endograft deploy	vment rate (NRCT)	
Author		Number of patients (n)	
	Undergoing EVAR	Successful deployment	% (95% CI)
Carpenter 2004b ¹⁷	192	188	98
Criado 2003 ⁸²	240	237	99
Elkouri 2004 ²⁵	94	93	99
Greenberg 2004 ³⁵	200	199	100
Moore 2003 ⁶⁵	573	531	93
Zeebregts 2004 ⁷⁷	93	92	99
	1392	1340	96%
			(95.3% - 97.3%)

Table 26Successful endograft deployment rate (RCT)

5.3.2 Technical success rate

• Primary technical success rate

The primary technical success rate was reported in 3 of the NRCTs and not by any of the RCTs (see Table 28). Studies included in this section had reported success based either on completion angiograms or on pre-discharge angiograms. Primary technical success was defined as successful placement of the endoluminal-stent with complete exclusion of the aneurysm from the circulation. Where no definition was stated or where an alternative definition was used, there was sufficient data to determine the primary technical success rate as defined at the start of this section.

The success rate averaged 74% (95% CI 69.3%, 78%). This success rate was lower than that reported by the case series (83%) because of the variability in definition of this outcome.

Author	Number of p	Technical success rate	
	Undergoing EVAR	Technical success	(%, 95% CI))
Criado 2003 ⁸²	240	168	70
Garcia-Madrid 2004 ³⁴	53	48	91
Elkouri 2004 ²⁵	94	69	73
Total	387	285	74% (69.3% - 78%)

Table 28Primary technical success rate

2.2.2 Thirty day technical success

The thirty day technical success rates are displayed in Table 29. This was defined as successful graft placement resulting in complete aneurysm exclusion, with or without prior secondary intervention. The success rate averaged 87% (95% CI 84.4% to 88.7%). This result was similar to that indicated by data from 10 case series, 90% (95% CI 88.4% to 90.7%).

Author	Number of	Technical success rate	
	Undergoing EVAR	Technical success	(%, 95% CI))
Becquemin 2000 ⁵¹	73	56	77
Cao 2004 ¹⁸	534	479	90
Criado 2003 ⁸²	190	163	86
Greenberg 2004 ³⁵	200	165	83
Total	997	863	87% (84.4% – 88.7%)

Table 29Thirty day technical success

• Blood loss

The results of blood loss following EVAR or open repair are displayed in Tables 30 and 31. Forest plots are available in Appendix 2.

Blood loss was reported by one RCT.⁴⁴ The median blood loss was 250 ml following EVAR and 1500 ml following open repair (WMD -1260 ml, 95% CI -1420 to -1099; p<0.00001). Data from six NRCT (see Table 31) also indicated that there was a significant reduction in blood loss following EVAR (WMD -967 ml, 95% CI -1401.58 to -534.01; p<0.00001).

Author	Number of participants	Blood loss in ml Median (IQR)	WMD (CI)
Prinssen 2004 ⁴⁴			
EVAR	171	250 (100-500)	-1260 (-1420 to -1099)
Open	174	1500 (900-2100)	

Table 30Procedural blood loss (RCT)

Author	Number of	participants	Blood loss (ml) EVAR Mean (SD)	Blood loss (ml) Open repair Mean (SD)	
	EVAR	OPEN			
Bertrand 2001 ⁵²	193	193	650 (1100)	1800 (1600)	
Carpenter 2004b ¹⁷	192	66	341	1583	
Criado 2003 ⁸²	240	126	345.5 (337.2)	1541.6 (1218.5)	
Hansman 2003 ⁶²	50	50	451 (363)	783 (514)	
Moore 2003 ⁶⁵	573	101	400	800	
Cao 2004 ¹⁸	534	585	200 (100-300)	1400 (1000-2100)	

Table 31Procedural blood loss (NRCT)

^bValues are median and IQR

• Length of ITU stay

The results of length of stay on ITU, where reported, are displayed in Tables 32 and 33. From three RCTs (see Table 32), there was a significant reduction in ITU stay post EVAR compared to open repair (WMD -1.50 days, 95% CI -2.29 to -1.11; p<00001). From eight NRCTs (see Table 33) there was also a significant reduction in ITU stay post EVAR compared to open repair (WMD -0.89 days, 95% CI -1.45 to -0.33; p=0.002).

Table 32Length of ITU stay (RCT)

Author			ITU st	ay, days
	Number o	f participants	Mean (SD)	
	EVAR	Open repair	EVAR	Open repair
Cuypers 2001 ⁵⁸	57	19	$0.8 (0.84)^{a}$	0.9 (3.58) ^a
Greenhalgh 2005 ⁴⁵	543	539	0.7 (3.8)	2.4 (5.9)
Prinssen 2004 ⁴⁴	171	174	1.5 (0.61)	3 (0.80)

^aValue is median

Author			ITU st	tay days
	Number of participants		Mean (SD)	
	EVAR	Open repair	EVAR	Open repair
Bertrand 2001 ⁵²	193	193	0.9 (1.46)	1.1 (1.47)
Bolke 2001 ⁵⁴	20	20	1.2^{b}	3.4
Carpenter 2004b ¹⁷	192	66	0.78	4.1
Criado 2003 ⁸²	240	126	0.6 ^b (8.67)	2.3 (4.25)
Elkouri 2004 ²⁵	94	261	1 (3.75)	2 (22.25)
Garcia-Madrid 2004 ³⁴	53	30	0.1 (0.06)	1 (0.96)
Hansman 2003 ⁶²	50	50	0.0 (0.3)	1.2 (0.5)
Moore 2003 ⁶⁵	573	101	1.0 ^a	1.1

Table 33Length of ITU stay (NRCT)

^aMedian

^b Statistically significant difference

^cCalculation excludes medians

• Length of hospital stay

The results of length of hospital stay are displayed in Tables 34 and 35. All three of the RCTs reported a significant reduction in length of hospital stay following EVAR compared to open repair (WMD -6.76 days, 95% CI -7.53 to -5.99; p<0.00001). From a meta-analysis of 13 NRCTs, there was also a significant reduction in total hospital stay in the EVAR group compared to the open repair group (WMD -4.65 days, 95% CI -5.27 to -4.04; p<0.00001).

Table 34Length of hospital stay (RCT)

Author	Number of participants		Hospital stay, days		Р
			Mean (SD)		
	EVAR	Open	EVAR	Open	
Cuypers 2001 ⁵⁸	57	19	5 (2-21) ^a	11 (8-50) ^a	p<0.01
Greenhalgh 2005 ⁴⁵	531	516	10.3 (17.8)	15.7 (16.9)	< 0.00001
Prinssen 2004 ⁴⁴	171	174	6 (3-6) ^b	13 (8-15) ^b	p<0.01

^a Median and range

^b IQR

Author	Number of	participants	Mean leng	th stay, days	Р
			Mean (SD)		
	EVAR	Open	EVAR	Open	
Anderson 2003 ^{c50}	1706	3063	4	10	p<0.001
Arko 2002 ⁸³	200	297	2.8 (2.8)	8.3 (4.5)	
Becquemin 2000 ⁵¹	73	107	7 (2)	13 (7)	p<0.01
Bertrand 2001 ⁵²	193	193	10 (6)	14 (11)	p<0.01
Bolke 2001 ⁵⁴	20	20	10	14	p<0.01
Cao 2004 ¹⁸	534	585	$2(2-3)^{a}$	$6(5-7)^{a}$	
Carpenter 2004b ¹⁷	192	66	3	10	
Hansman 2003 ⁶²	50	50	2.3 (1.9)	5.9 (2.2)	p<0.0001
Garcia-Madrid 2004 ³⁴	53	30	$2(2-2)^{a}$	$6(5-7)^{a}$	
Jordan 2004 ³⁶	259	145	4	12	
Lee 2004 ⁴³	4607	2565	3.6 (5.9)	8.8 (7.8)	
Moore 2003 ⁶⁵	564	108	2	6	p<0.0001
Zeebregts 200477	93	81	9.2 (14)	19.2 (18.2)	
^a Median and IQR					

Table 35Length of hospital stay (NRCT)

6 EVAR IN HIGH RISK PATIENTS

6.1 Overview of the trial

The EVAR 2 trial⁴⁶ was designed to assess whether EVAR would have an impact on survival in a group of patients deemed unfit for open repair. Therefore, 338 patients were entered into the trial, with 166 participants randomised to EVAR, and 172 to no intervention. However, in the EVAR arm of the trial, 14 patients died before surgery, 1 patient refused, 1 patient was unsuitable for EVAR and 4 patients underwent open repair, leaving 146 patients undergoing EVAR. In the no intervention arm of the trial, 47 of the 172 patients underwent AAA repair (35 by EVAR and 12 by open repair). The results provided below are, therefore displayed by intention to treat where available, but otherwise are stated as by intervention received (per protocol), depending upon what information was provided in the actual paper.

6.2 Major outcomes

6.2.1 Mortality

• 30-day mortality

Using an intention to treat analysis, the 30-day mortality rate was 8.7% (13/150), but if only elective procedures are taken into account, the operative mortality reduced to 6.8% (10/147). Based upon analysis by intervention received, the 30 day mortality rate was 7.9% (14/178).

• Mortality AAA related

Aneurysm-related death based upon all-cause mortality by randomised group, was found to be 12% (20/166) in the EVAR group and 12.8% (22/172) in the no-intervention group, (adjusted hazard ratio 1.00, 95% CI 0.54 to 1.84). The authors undertook a *post hoc* analysis, dividing follow-up into the first 6 months after randomisation and the period after 6 months. The hazard ratios for AAA related mortality comparing EVAR and non intervention groups were 1.67 (95% CI 0.72 to 3.86) for the first 6 months and 0.53 (95% CI 0.20 to 1.39) for the period after 6 months.

• All-cause mortality

The total mortality rates were 44.6% (74/166) for the EVAR group and 39.5% (68/172) for the no-intervention group during the follow-up period. The difference was not statistically significant.

6.2.2 Aneurysm rupture

Based upon an intention to treat analysis, there was a 3.6% rupture rate pre-EVAR, the median time from randomisation to aneurysm exclusion was 163 days (IQR 78-477). In the perioperative period (<30 days), there was a 2.0% rupture rate and post-EVAR, there were no documented aneurysm ruptures. In the no-intervention group there were 21 ruptures in 172 participants giving a rupture rate of 12.2%. Results are shown in Table 36.

Time period	EV	AR	No inter	vention
	n/N	%	n/N	%
Pre-operation	6/166	3.6	21/172	12.2
<30-days post op ^a	3/150	2.0	-	-
<30-days post op ^b	1/178	0.6	0/47	0
>30-days post op	0/137	0	-	-

Table 36	Aneurysm rupture rates for EVAR verses no intervention
----------	--

^a intention to treat analysis

^b analysis by treatment received

6.2.3 Conversion to open repair

Based upon analysis by treatment received, during the primary procedure there was just one primary conversion giving a primary conversion rate of 0.6% (1/178). During follow-up there were 2 further conversions equating to a delayed conversion rate of 1.2% (2/178).

6.2.4 Secondary re-intervention rate

According to the paper, the overall intention rate was 11.5 per 100 person years in the EVAR group and 1.8 per 100 person years in the no intervention group. At 4 years 26% of the EVAR group had required at least one intervention compared to only 4% in the no intervention group, (hazard ratio 5.8, 95% CI 2.4 to 14.0; p<0.001). However if the significant number of crossovers are considered as secondary interventions in the no-intervention group then the secondary intervention rate in this group becomes considerably greater, (approximately 30%).

6.3 Technical complications

The incidence of technical complications associated with EVAR are displayed in Table 37.

Complication	Number of	Number of	%
	participants	cases	
Graft infection	178	1	0.6%
Stent migration	178	2	1.1%
Type I endoleak	178	11	6.2%
Type II endoleak	178	23	12.9%
Type III endoleak	178	6	3.4%
Graft thrombosis	178	8	4.5%
Graft stenosis	178	0	0%

Table 37Incidence of common technical complications in EVAR

Analysis by intention to treat revealed that 58/178 patients developed a complication following an initially successful EVAR equating to a total complication rate of 32.6% in this group during follow-up.

6.4 Other peri- and postoperative outcomes

6.4.1 Deployment success rate

From analysis by intention to treat, successful endograft deployment occurred in 89% (143/160) of participants. Analysis by treatment received (per protocol) gives a success rate of 97% (176/181).

6.4.2 Length of Hospital stay

The mean length of hospital stay was 12 days (versus 10 days in fit patients in EVAR group of EVAR 1 trial).

7 EVAR DATA FROM NON-CONTROLLED STUDIES

7.1 Overview of the efficacy findings from non-controlled studies (Case series and comparative studies)

7.1.1 Deployment success rate

The results from the case series are displayed in Table 38. The results were similar to the controlled studies with a success rate of 98%, (95% CI 97.6% to 98.3%)

Author	Number o	f patients (n)	Deployment success
	Undergoing EVAR	Successful deployment	rate %, (95% CI)
AbuRahma 2004 ²⁸	151	148	98
Allaqaband 2004 ²¹	60	59	98
Alric 2002 ⁴⁹	88	86	98
Carpenter 2004a ⁵⁶	227	224	99
Cartes 2002 ⁵⁷	72	71	99
Criado 2001 ⁸¹	471	456	93
Dalainas 2004 ³¹	186	182	98
Elkouri 200375	100	97	97
Espinosa 2004 ³²	193	191	99
Howell 2000 ⁸⁶	215	214	100
<i>Howell</i> 2000 ⁸⁷	56^a	56	100
Lee 2002 ⁸⁸	150	148	99
May 2000 ⁶⁴	266	249	94
Minor 2004 ³⁹	150	145	97
Nolthenius 2001 ⁶⁶	77	74	96
Ramaiah 2002 ⁹⁰	230	230	100
Vallabhaneni 2001 ⁸⁰	2862	2812	98
Zarins 2000 ⁹³	149	147	99
Total	5647	5533	98% (97.6% - 98.3%)

Table 38Successful endograft deployment rate

^a n=56 patients who received an AneuRx stent

7.1.2 Technical success rate

• Primary technical success rate

Correct stent placement and complete aneurysm exclusion at completion or discharge angiogram was the definition in the majority of the studies.^{53;57;81;82;93} No definition was provided by 4 studies.^{56;61;80;86;87} Four studies stated an alternative definition of technical

success. Successful endograft deployment was used by Lee 2002.^{88;89} Successful endograft deployment without the need for surgical conversion or death; lack of a persistent (>48 hours) type I or type III endoleak; and a patent graft was used by Okhi 2001.⁶⁷ The definition used by Ramaiah 2002⁹⁰ was that defined by the Society for Vascular Surgery / International Society for Cardiovascular reporting standards. The success rate averaged 83%, (95% CI 81.7% to 83.5%).

Author	Number of J	patients (n)	Technical success rate (%
	Undergoing EVAR	Technical success	95% CI)
AbuRahma 2004 ²⁸	151	130	86
Blum 2001 ⁵³	298	269	90
Boult 2004 ²⁹	950	853	90
Carpenter 2004a ^{56;56}	227	183	81
Cartes 2002 ⁵⁷	72	57	79
Criado 2001 ⁸¹	471	383	81
Fairman 2004 ³³	109	61	56
Espinosa 2004 ³²	193	178	92
Gilling-Smith 2000 ⁶¹	55	44	80
Hinchliffe 2004 ²⁰	269	240	89
Howell 2000 ⁸⁶	215	132	61
<i>Howell</i> 2000 ⁸⁷	89	57	64
Lee 2002 ⁸⁸	150	93	62
Lee 2000 ⁸⁹	67	36	54
Kocher 2004 ³⁷	120	109	91
Ohki 2001 ⁶⁷	239	212	89
Ramaiah 2002 ⁹⁰	260	220	85
Vallabhaneni 2001 ⁸⁰	2862	2322	81
Zarins 2000 ⁹³	149	94	63
Total	6681	5519	83% (81.7% - 83.5%)

Table 39Primary technical success rate

• Thirty day technical success

The results of the 10 included case series are displayed in Table 40. The success rate was 90% (95% CI 88.4% to 90.7%).

Author	Number of	patients (n)	Technical success rate,
	Undergoing EVAR	Technical success	% (95% CI)
Biebl 2004 ²³	182	158	87
Boult 2004 ²⁹	950	825	87
Carpenter 2004a ⁵⁶	205	179	87
Cartes 2002 ⁵⁷	71	62	87
Criado 2001 ⁸¹	355 ^a	342	96
Elkouri 200375	100	86	86
Howell 2000 ⁸⁶	215	200	93
Howell 2000 ⁸⁷	56^b	53	95
Lee 2000 ⁸⁹	67	52	78
Ramaiah 2002 ⁹⁰	260	260	100
Zarins 2000 ⁹³	147	121	82
Total	2552	2285	90% (88.4% - 90.7%)

Table 40Thirty day technical success

a n=355 patients who were available for evaluation

b n=56 patients who received an AneuRx stent

7.1.3 Aneurysm rupture following EVAR

There were 23 case series that had reported the delayed AAA rupture rate following over a mean of 18 months follow up, Table 28. Overall the mean rupture rate was 0.6% (95% CI 0.4%, 0.8%).

Author	Number	of patients	Rupture Rate, %	Follow-	up (months)
	Undergoing	With rupture	(95% CI)		
	EVAR			Mean	Range
Alric 2002 ⁴⁹	88	2	2.2	21	6-68
Biebl 2004 ²³	182	0	0	16	0-43
Blum 2001 ⁵³	298	4	1.3	35	2-50
Burks 2002 ⁵⁵	95	0	0	25	6-44
Cartes 2002 ⁵⁷	72	0	0	22	1-46
Corriere 2004 ²⁴	220	0	0	NR	Not reported
Elkouri 200375	100	1	1	7	1-60
Faries 2002 ⁵⁹	74	0	0	13	6-48
Flora 2003 ⁶⁰	108	0	0	20	Not reported
Gilling-Smith 2000 ⁶¹	55	1	1.8	18	3-36
Hinchliffe 2004 ²⁰	255	2	0.8	12	Not reported

Table 41Delayed aneurysm rupture rates following EVAR

Total	8054	50	0.6 (0.4%-0.8%)	18	-
Zarins 2003 ⁹⁴	1193	15	1.3	NR	<48
Zarins 2003 ⁹⁵	383	3	0.8	36	Not reported
Zarins 2000 ⁹³	149	1	0.7	12	1-39
Verhoeven 2004 ⁴²	306	1	0.3	36	Not reported
Ramaiah 2002 ⁹⁰	230	0	0	NR	Not reported
Parlani 2002 ⁷⁰	336	2	0.6	14	1-46
Ouriel 2003 ⁶⁸	704	3	0.4	NR	Not reported
Ohki 2001 ⁶⁷	239	2	0.8	16	<75 months
Nolthenius 2001 ⁶⁶	77	0	0	12	>12 months
Lee 2002 ⁸⁸	150	0	0	1	Not reported
Lee 2000 ⁸⁹	67	0	0	18	Not reported
Laheij 2002 ⁷⁹	2863	16	0.6	NR	Not reported
Cho 2004 ³⁰	45	0	0	34	Not reported
<i>Howell</i> 2000 ⁸⁷	89	0	0	13	1-18
Howell 2000 ⁸⁶	215	0	0	14	Not reported

NR – Not reported

Seven studies reported the early AAA rupture rate with a mean of 0.3%, (95% CI 0.2%, 0.5%).

Author	Number	Rupture Rate, %	
	Undergoing	With rupture	(95%CI)
	EVAR		
Albertini 2001 ⁴⁸	185	3	1.6
Blum 2001 ⁵³	298	1	0.3
Carpenter 2004a ⁵⁶	227	2	0.9
Ouriel 2003 ⁶⁸	704	1	0.1
Ricco 2003 ⁷⁴	1012	2	0.1
Zannetti 200171	240	1	0.4
Zarins 2003 ⁹⁴	1193	3	0.3
Total	3859	13	0.3 (0.2%-0.5%)

Table 42Early (<30 days) aneurysm rupture rates following EVAR</th>

NR - Not reported

7.1.4 Changes in aneurysm size

From the 17 case series, 7.6% (95% CI 6.6, 8.5%) of the EVAR population increased in size (Table 43).

Author	Number of	Change	es in aneurysm siz	ze n (%)	Follow-up
	cases	Increase	No change	Decrease	(mean)
Allaqaband 2004 ²¹	60	0 (0)	NR	NR	14
Arko 2003 ⁸⁴	206	11 (5.3)	25 (12)	170 (82.5)	32
Biebl 2004 ²³	182	5 (2.7)	NR	NR	16
Carpenter 2004a ⁵⁶	48 ^b	4 (8) ^a	28 (58)	16 (33)	11
Cartes 2002 ⁵⁷	72	$0(0)^{a}$	NR	NR	22
Elkouri 2003 ⁷⁵	97	2 (0.2)	32 (33)	63 (65)	7
Fairman 2004 ³³	16	4 (25)	NR	NR	21
Faries 2002 ⁵⁹	65	8 (12.3)	NR	NR	13
Faries 2003 ⁹⁶	70	3 (4.2)	27 (38.5)	40 (57.1)	25
Gilling-Smith 2000 ⁶¹	55	15 (27)	18 (33)	22 (40)	18
Haulon 2003 ⁶³	96	1 (1) ^a	48 (50)	47 (49)	27
Howell 2000 ⁸⁶	84	2 (0.9) ^a	59 (27)	23 (11)	14
Cho 2004 ³⁰	45	7 (15)	4 (9)	8 (18)	34
Kocher 2004 ³⁷	120	7 (5.8)	NR	NR	21
Lee 2000 ⁸⁹	67	8 (12)	NR	NR	18
Minor 2004 ³⁹	140	6 (4.3)	NR	NR	17
Ouriel 2003 ⁶⁹	700	70 (10)	419 (60)	211 (30)	12
Parlani 2002 ⁷⁰	326 ^c	21 (6.4) ^a	182 (56)	127 (39)	14
Zarins 200395	383	46 (12)	138 (36)	199 (52)	36
Total	2832	214 (7.6)	948 (33.5)	863 (30.5)	20

Table 43Changes in aneurysm size following EVAR

^a No definition provided

^b n=48 patients who were available for evaluation at 12 months

^c n=326 patients with a successfully implanted stent-graft

NR - Not reported

7.1.5 Primary conversion rate

This was reported by 30 studies, (Table 44). The largest single publication is a multicentre study from the EUROSTAR database⁸⁰ that reported a primary conversion rate of 1.6%. Overall the mean conversion rate was 1.2% (95% CI 1.0%, 1.4%).

Author	Total number of	Primary conversion		
	EVAR	Number of patients	Rate, % (95% CI)	
Allaqaband 2004 ²¹	60	1	1.7	
Albertini 2001 ⁴⁸	185	2	1.1	
Alric 2002 ⁴⁹	88	1	1.1	
Ayerdi 2003 ⁸⁵	96	0	0	
Blum 2001 ⁵³	298	5	0.8	
Boult 2004 ²⁹	950	9	0.9	
Carpenter 2004a ⁵⁶	227	3	1.3	
Dalainas 2004 ³¹	186	4	2.2	
Elkouri 2003 ⁷⁵	100	3	3	
Espinosa 2004 ³²	193	1	0.5	
Fairman 2004 ³³	237	0	0	
Flora 2003 ^{a60}	108	11	10	
Early group	26	7	27	
Late group	82	4	4.5	
Hinchliffe 2004 ²⁰	269	0	0	
Howell 2000 ⁸⁶	215	0	0	
<i>Howell</i> 2000 ⁸⁷	89	0	0	
Cho 2004 ³⁰	50	1	2	
Kocher 2004 ³⁷	120	2	1.7	
Lee 2002 ⁸⁸	150	2	1.3	
Maldonado 2004 ¹⁹	311	6	1.9	
May 2002 ⁶⁴	266	17	6.4	
Minor 2004 ³⁹	150	3	2.0	
Nolthenius 2001 ⁶⁶	77	2	2.6	
Ouriel 2003 ⁶⁹	700	3	0.4	
Parlani 2002 ⁷⁰	336	6	1.8	
Ramaiah 2002 ⁹⁰	260	0	0	
Resch 2001 ⁷²	164	8	4.9	
Early group	90 ^a	8	8.9	
Late group	68 ^a	0	0	
Ricco 2003 ⁷⁴	1012	11	1.1	
Shames 2003 ^{a91}	245	7	2.9	
Males	203	1	0.5	
Females	42	6	14	
Vallabhaneni 2001 ⁸⁰	2862	47	1.6	
Zannetti 2001 ⁷¹	266	6	2.3	

Table 44Primary conversion rates

Total 13806	166	1.2 (1.0% - 1.4%)
Zamis 2005 1175		
Zarins 2003 ⁹⁴ 1193	11	0.9
Zarins 2000 ⁹³ 149	2	1.3
Verhoeven 2004 ⁴² 308	1	0.3

^a Data extracted from Resch 2001⁷³

7.1.6 Delayed conversion rate

The results of the 28 case series are displayed in Table 45. The overall mean was 2.0% (95% CI 1.7%, 2.3%). The single largest study from the EUROSTAR database⁸⁰ reported a rate of 1.4%. The study with the longest follow-up,⁷² which stated a period of 39 months, reported a delayed conversion rate of 9.1%.

Table 45	Delayed conversion ra	ates
----------	-----------------------	------

Author	Total	Seconda	ary conversions	Foll	ow-up
	number of	Number	%, (95% CI)	Mean	Range
	EVAR				
Allaqaband 2004 ²¹	60	0	0	14	Not reported
Alric 2002 ⁴⁹	88	3	3.4	21	6-68
Arko 2003 ⁸⁴	206	3	1.5	32	3-55
Ayerdi 2003 ⁸⁵	96	0	0	12	Not reported
Becquemin 2004 ²⁷	250	11	4.4	28	Not reported
Biebl 2004 ²³	182	3	1.6	Not reported	0-43
Blum 2001 ⁵³	298	8	2.7	35	2-50
Parlani 2002 ⁷⁰	336	4	1.2	14	1-46
Carpenter 2004a ⁵⁶	227	2	0.9	11	0-41
Dalainas 2004 ³¹	186	1	0.5	26	9-60
Elkouri 200375	100	1	1	7	1-60
Fairman 2004 ³³	237	6	2.5	21	Not reported
Faries 2002 ⁵⁹	65	2	3.1	13	6-48
Flora 2003 ⁶⁰	108	3	2.8	20	Not reported
Gilling-Smith 2000 ⁶¹	55	1	1.8	18	3-36
<i>Howell</i> 2000 ⁸⁷	89	2	2.2	13	1-18
Howell 2000 ⁸⁶	215	4	1.9	14	Not reported
Cho 2004 ³⁰	50	1	2	34	Not reported
Jordan 2004 ³⁶	259	4	1.5	28	Not reported
Lee 2000 ⁸⁹	67	1	1.5	18	Not reported
Minor 2004 ³⁹	150	1	0.7	17	1-61
Moore 2003 ⁶⁵	573	2	0.3	Not reported	1-60

Total	10099	203	2.0 (1.7% - 2.3%)	21	
Zarins 2003 ⁹⁴	1193	42	3.5	Not reported	Not reported
Zarins 2003 ⁹⁵	383	18	4.7	36	Not reported
Zarins 2000 ⁹³	149	1	0.7	12	1-39
Verhoeven 2004 ⁴²	308	9	2.9	36	Not reported
Vallabhaneni 200180	2862	41	1.4	12	0-72
Ricco 2003 ⁷⁴	1012	4	0.4	11	Not reported
Resch 2001 ⁷³	158	15	9.4	20	10-36
Resch 2001 ⁷²	164	15	9.1	39	Not reported
Ouriel 2003 ⁶⁹	700	29	4.1	12	Not reported
Ohki 2001 ⁶⁷	239	5	2.1	16	<75 months

7.1.7 Secondary intervention rate

Overall the mean secondary intervention rate from the 32 included case series was 17.5 (95% CI 16.8%, 18.2%). Again, the largest single publication was from the EUROSTAR registry (Lahej 2002^{79}), which reported a secondary intervention rate of 14%. The highest secondary intervention rate of 55% was documented from the study with the longest recorded follow-up with a mean of 39 months (Resch 2001^{72}).

Author	Total number	Secondary interventions		Folle	ow-up
	of EVAR	Number	% (95% CI)	Mean	Range
Alric 2002 ⁴⁹	88	6	6.8	21	6-68
Arko 2003 ⁸⁴	206	19	9.2	32	3-55
Ayerdi 2003 ⁸⁵	96	10	10.4	12	Not reported
Becquemin 2004	250	112	44.8	28	Not reported
Biebl 2004 ²³	182	27	14.8	16	0-43
Blum 2001 ⁵³	298	24	8.1	35	2-50
Bould 2004	950	23	2.4	Not reported	Not reported
Parlani 2002 ⁷⁰	336	19	5.7	14	1-46
Carpenter 2004a ⁵⁶	227	17	7.5	11	0-41
Cartes 2002 ⁵⁷	72	10	13.9	22	1-46
Dalainas 2004 ³¹	186	19	10.2	26	9-60
Faries 2002 ⁵⁹	65	17	26	13	6-48
Flora 2003 ⁶⁰	108	28	26.2	20	Not reported
Gilling-Smith 2000 ⁶¹	55	11	20.0	18	3-36
Haulon 2003 ⁶³	96	38	39.6	27	3-66
Hincliffe 2004	269	21	7.8	12	Not reported

Table 46Secondary intervention rates

Total	10652	1862	17.5 (16.8% - 18.2%)	19	
Zarins 2003 ⁹⁵	383	67	17.5	36	Not reported
Zarins 2000 ⁹³	149	21	14.1	12	1-39
Wolf 2002 ⁹²	189	31	16.4	13	Not reported
Verhoeven 2004 ⁴²	308	72	23.4	36	Not reported
Shames 2003 ⁹¹	245	36	14.7	11	1-26
Elkouri 2003 ⁷⁵	100	29	29.0	7	1-60
Sampaio 2004 ⁴⁰	241	66	27	10	1-71
Ricco 2003 ⁷⁴	1021	67	6.6	11	Not reported
Resch 2001 ⁷³	158	71	44.9	20	10-36
Resch 2001 ⁷²	164	91	55.5	39	Not reported
Ramaiah 2002 ⁹⁰	230	41	17.8	Not reported	Not reported
Ouriel 2003 ⁶⁹	700	173	24.7	12	Not reported
Ohki 2001 ⁶⁷	239	23	9.6	16	<75 months
Nolthenius 2001 ⁶⁶	77	22	28.6	12	>12 months
Minor 2004 ³⁹	150	24	16	17	1-61
May 2002 ⁶⁴	266	43	16.2	6	> 6 months
Lee 2002 ⁸⁸	150	7	4.7	Not reported	Not reported
Lee 2000 ⁸⁹	67	17	24.5	18	Not reported
Laheij 2002 ⁷⁹	2863	410	14.3	Not reported	Not reported
Kocher 2004 ³⁷	120	20	16.7	21	2-60
<i>Howell</i> 2000 ⁸⁷	89	11	12.4	13	1-18
Howell 2001 ⁸⁶	215	22	10.2	14	Not reported

7.1.8 Procedural blood loss

Studies that reported blood loss following EVAR are displayed in Table 47. The 13 studies were case series with a range of blood loss of 255 ml to 779 ml.

Table 47	Procedural blood loss

Author	Number of participants	Mean Blood loss (ml)
AbuRahma 2004 ²⁸	151	263
Alric 2002 ⁴⁹	88	779
Biebl 2004 ²³	182	470
Carpenter 2004a ⁵⁶	227	350
Fairman 2004 ³³		
Complicated neck	153	320
Uncomplicated neck	66	351
Dalainas 2004 ³¹	186	370

Elkouri 200375	100	400
Howell 2001 ⁸⁶	215	352
Howell 2000 ⁸⁷	56 ^b	428
Hinchliffe 2004 ²⁰	269	400
Minor 2004 ³⁹	150	369
Ohki 2001 ⁶⁷	239	468
Parlani 2002 ⁷⁰		
EVAR	277	293
AAA and IAA ^a	59	445
Ramaiah 2002 ⁹⁰		
Early	30	400
Late	230	294
Vasquez 2004 ⁴¹		
EVAR	129	255
Renal impairment	83	278
Ziaja 2003 ²⁶ 2004	52	320
Total		

Total

^a Combined abdominal and iliac artery aneurysms

^b results from late endovascular experience

7.1.9 Length of ITU stay

The results of the ITU length of stay are displayed in Table 48. EVAR was associated with a mean stay of 1.2 days.

Table 48Length of ITU stay

Author	Number of participants	ITU stay (days)
AbuRahma 2004 ²⁸	151	2
Cartes 2002 ⁵⁷	72	0.3
Elkouri 200397	100	1.0 ^a
Kocher 2004 ³⁷	120	2
Minor 2004 ³⁹	150	0.1
Ziaja 2003 ²⁶	52	2
Total	645	1.2

^aMedian

7.2 Length of hospital stay

Sixteen case series reported outcome data on length of hospital stay following EVAR, (Table 49). Overall from the 16 studies the average length of stay following EVAR was 5.5 days.

Author	Number of participants	Mean length stay, days
AbuRahma 2004 ²⁸	151	5
Alric 2002 ⁴⁹	88	9
Ayerdi 2003 ⁸⁵	96 ^a	
Early EVAR	42	3 ^b
Late EVAR	54	2 ^b
Biebl 2004 ²³		
EVAR	139	4
High-risk EVAR	49	4
Parlani 2002 ⁷⁰	336	
EVAR	277	2
AAA + IAA	59	2
Zannetti 2001 ⁷¹	266	
EVAR	240	3
High risk EVAR	26	8
Carpenter 2004a ⁵⁶	227	4
Cartes 2002 ⁵⁷	72	6
Dalainas 2004 ³¹	186	5
Kocher 2004 ³⁷	120	6
Howell 2001 ⁸⁶	215	2
Howell 2000 ⁸⁷	89	
Early EVAR	33	4
Late EVAR	56	2
Minor 2004 ³⁹	150	3
Nolthenius 2001 ⁶⁶	77	3
Ohki 2001 ⁶⁷	239	4
Ramaiah 2002 ⁹⁰	260	
Early EVAR	30	4
Late EVAR	230	4
Ricco 2003 ⁷⁴	1012	9
Samapaio 2004 ⁴⁰		
Male	212	3
Female	29	4
Elkouri 2003 ⁷⁵	100	3
Shames 2003 ⁹¹	245	
Male	203	3
Female	42	3

Table 49Length of hospital stay

Total	3518	5.5

^aTotal number of EVAR participants

^b Median

7.3 Overview of the Safety findings from non-controlled studies (Case series)

7.3.1 Common technical complications

The incidence of the common technical complications is shown in Table 50.

Table 50 Incidence of common technical complications in EVAR

Complication	Author	Number of	Number of	%
		participants	cases	
Stent migration				
<30 days	Vallabhaneni 2001 ⁸⁰	2862	39	1.4%
> 1 year	Becquemin 2004 ²⁷	250	4	1.6%
	Biebl 2004 ²³	181	7	3.9%
	Blum 2001 ⁵³	298	5	1.7%
	Flora 2003 ⁶⁰	108	2	1.9%
	Fransen 2003 ⁷⁸	4613	156	3.4%
	Hinchliffe 2004 ²⁰	255	6	2.4%
	Cho 2004 ³⁰	45	0	0%
	Nolthenius 2001 ⁶⁶	77	6	8.2%
	Ouriel 2003 ⁶⁸	704	51	7.2%
	Resch 2001 ⁷²	164	31	18.9%
	Zarins 2003 ⁹⁵	383	24	6.3%
	Zarins 2003 ⁹⁴	137	13	9.5%
	Total	6832	281	4.1%
Stent wire fracture	Carpenter 2004a ⁵⁶	227	6	2.6%
up to 1 year				
Graft limb thrombosis	Burks 2002 ⁵⁵	95	6	6.3%
<30 days	Howell 2000 ⁸⁶	215	5	2.3%
	Kocher 2004 ³⁷	118	4	3.4%
	Lee 2002 ⁸⁸	150	1	0.7%
	Minor 2004 ³⁹	145	3	2.1
	Parlani 2002 ⁷⁰	336	4	1.2%
	Total	1059	23	2.2%

<1 year	Allaqaband 2004 ²¹	58	2	3.4%
	Albertini 2001 ⁴⁸	135	2	1.5%
	Alric 2002 ⁴⁹	88	3	3.4%
	Ayerdi 2003 ⁸⁵	96	2	2.1%
	Blum 2001 ⁵³	298	4	1.3%
	Carpenter 2004a ⁵⁶	227	0	0.0%
	Elkouri 200375	100	4	4.0%
	Shames 2003 ⁹¹	241	10	4.1%
	Zarins 2000 ⁹³	149	1	0.7%
	Total	1392	28	2.0%
>1 year	Becquemin 2004	250	15	6.0%
	Biebl 2004 ²³	181	5	2.8%
	Espinosa 2004 ³²	191	0	0%
	Flora 2003 ⁶⁰	108	2	1.9%
	Fransen 2003 ⁷⁸	4613	152	3.3%
	Haulon 2003 ⁶³	96	8	8.3%
	Kocher 2004 ³⁷	118	3	2.5%
	Maldonado 2004 ¹⁹	287	14	4.9%
	Nolthenius 2001 ⁶⁶	77	3	2.3%
	Ohki 2001 ⁶⁷	239	7	2.9%
	Ouriel 2003 ⁶⁸	704	43	6.1%
	Verhoeven 2004 ⁴²	306	15	4.9%
	Ziaja 2003 ²⁶	52	5	9.6%
	Total	7222	272	3.8%
Graft stenosis	Vallabhaneni 2001 ⁸⁰	2862	10	0.3%
30 days				
<1 year	Elkouri 2003 ⁷⁵	100	3	3.0%
>1 year	Becquemin 2004 ²⁷	250	8	3.2%
	Carpenter 2004a ⁵⁶	188	3	1.6%
	Fransen 2003 ⁷⁸	4613	66	1.4%
	Total	5051	77	1.5%
Type I endoleak	AbuRahma 2004 ²⁸	148	10	6.8%
< 30 days	Boult 2004 ²⁹	950	25	2.6%
	Gilling-Smith 2000 ⁶¹	55	6	10.9%
	Hinchliffe 2004 ²⁰	255	2	0.8%

	Howell 2000 ⁸⁶	215	2	0.9%
	<i>Howell</i> 2000 ⁸⁷	56	2	3.6%
	Kocher 2004 ³⁷	120	10	8.5%
	Lee 2002 ⁸⁸	150	5	3.3%
	Minor 2004 ³⁹	145	4	2.8%
	Parlani 2002 ⁷⁰	336	3	1.2%
	Ziaja 2003 ²⁶	52	5	9.6%
	Total	2426	72	3.0%
up to 1 year	Albertini 2001 ⁴⁸	185	16	8.6%
	Blum 2001 ⁵³	298	6	2.0%
	Carpenter 2004a ⁵⁶	227	7	3.1%
	Cartes 2002 ⁵⁷	72	3	4.2%
	Haulon 2003 ⁶³	91	13	14.3%
	Hinchliffe 2004 ²⁰	255	2	0.8%
	Howell 2000 ⁸⁶	84	2	2.4%
	Moore 2003 ⁶⁵	262	9	3.4%
	Nolthenius 2001 ⁶⁶	128	4	3.1%
	Ouriel 2003 ⁶⁸	704	18	2.6%
	Total	2306	80	3.5%
>1 year	Allaqaband 2004 ²¹	58	1	1.7%
	Alric 2002 ⁴⁹	88	3	3.4%
	Becquemin 2004	250	36	14.4%
	Burks 2002 ⁵⁵	95	0	0.0%
	Dalainas 2004 ³¹	186	12	6.5%
	Faries 2002 ⁵⁹	65	14	21.5%
	Flora 2003 ⁶⁰	108	12	11.1%
	Fransen 2003 ⁷⁸	4613	375	8.1%
	Haulon 2003 ⁶³	77	2	2.6%
	Howell 2000 ⁸⁶	132	6	4.5%
	Cho 2004 ³⁰	45	0	0%
	May 2000 ⁶⁴	266	21	7.9%
	Minor 2004 ³⁹	140	6	4.3%
	Nolthenius 2001 ⁶⁶	128	2	1.6%
	Ohki 2001 ⁶⁷	239	7	2.9%
	Ouriel 2003 ⁶⁹	700	25	3.6%
	Resch 2001 ⁷²	164	20	12.2%
	Resch 2001 ⁷³	158	20	12.7%
	Sampaio 2004 ⁴⁰	212	9	4.2%

	Wolf 2002 ⁹²	189	13	6.9%
	Zarins 2003 ⁹⁵	383	10	2.6%
	Total	8138	574	7.1%
	41 D 1 200 / ²⁸	140	<i>c</i>	4.1.01
Type II endoleak	AbuRahma 2004^{28}	148	6	4.1%
<30 days	Boult 2004 ²⁹	950	44	4.6%
	Burks 2002 ⁵⁵	95 102	19	20.0%
	Espinosa 2004^{32}	193	7	3.8%
	Gilling-Smith 2000 ⁶¹ Hinchliffe 2004 ²⁰	55	5	9.1%
	Howell 2000 ⁸⁶	269	13	4.8%
	Lee 2002 ⁸⁸	215	3 29	1.4%
	Minor 2004 ³⁹	150 145	29 30	19.3%
	Parlani 2002 ⁷⁰	145		20.7%
		336	22	6.5%
	Ziaza 2004	52	4	7.7%
	Total	2608	182	7.0%
up to 1 year	Albertini 2001 ⁴⁸	185	10	5.4%
	Blum 2001 ⁵³	298	9	3.0%
	Carpenter 2004a ⁵⁶	227	18	7.9%
	Cartes 2002 ⁵⁷	30	1	3.3%
	Haulon 2003 ⁶³	91	9	9.9%
	Hinchliffe 2004 ²⁰	269	17	6.3%
	Howell 2000 ⁸⁶	84	8	9.5%
	Ouriel 2003 ⁶⁸	704	173	24.6%
	Zarins 200395	383	55	14.4%
	Total	2271	300	13.2%
>1 year	Alric 2002 ⁴⁹	88	5	5.7%
e e	Arko 2003 ⁸⁴	206	40	19.4%
	Becquemin 2004	250	33	13.2%
	Dalainas 2004 ³¹	186	5	2.7%
	Espinosa 2004 ³²	191	6	3.1%
	Faries 2002 ⁵⁹	65	3	4.6%
	Flora 2003 ⁶⁰	108	9	8.3%
	Fransen 2003 ⁷⁸	4613	485	10.5%
	Haulon 2003 ⁶³	77	16	20.8%
	Cho 2004 ³⁰	45	8	17.8%
	May 2000 ⁶⁴	383	4	1.0%
	Minor 2004 ³⁹	140	11	7.9%

	Nolthenius 2001 ⁶⁶	128	8	6.3%
	Ohki 2001 ⁶⁷	239	13	5.4%
	Resch 2001 ⁷²	164	23	14.0%
	Resch 2001 ⁷³	158	23	14.6%
	Verhoeven 2004 ⁴²	306	26	8.5%
	Zarins 2003 ⁹⁵	573	61	10.6%
	Total	7762	756	9.7%
Type III endoleak	AbuRahma 2004 ²⁸	148	0	0%
<30 days				
Type III endoleak	Alric 2002 ⁴⁹	88	1	1.1%
>1 year	Becquemin 2004	250	12	4.8%
	Blum 2001 ⁵³	298	5	1.7%
	Fransen 200378	4613	225	4.9%
	Cho 2004 ³⁰	45	0	0%
	Minor 2004 ³⁹	54	1	1.9%
	Nolthenius 2001 ⁶⁶	77	4	2.3%
	Ohki 2001 ⁶⁷	239	1	0.4%
	Ouriel 2003 ⁶⁸	704	23	3.3%
	Zarins 2003 ⁹⁵	383	8	2.1%
	Total	6751	280	4.1%
Access artery injury	Allaqaband 2004 ²¹	60	2	3.3%
	Blum 2001 ⁵³	298	5	1.7%
	Cartes 2002 ⁵⁷	72	1	1.4%
	Espinosa 2004 ³²	193	4	2.1%
	Howell 2000 ⁸⁶	215	4	1.9%
	<i>Howell</i> 2000 ⁸⁷	89	8 ^a	9.0%
	Lee 2002 ⁸⁸	150	8	5.3%
	Minor 2004 ³⁹	145	2	1.4%
	Ricco 2003 ⁷⁴	1012	19	1.9%
	Shames 2003 ⁹¹	241	11	4.6%
	Total	2386	32	1.3%
9				

^a 6 out of 8 injuries occurred during initial experience

7.3.2 Common non-technical complications

The incidence of the common technical complications is shown in Table 51.

Study ID	Number of	Number	r of events
	participants	Number	%
Mortality rate (<30 days)			
AbuRahma 2004 ²⁸	151	1	0.7%
Albertini 2001 ⁴⁸	185	12	6.5%
Allaqaband 2004 ²¹	60	2	3.3%
Alric 2002 ⁴⁹	88	3	3.4%
Ayerdi 2003 ⁸⁵	96	0	0.0%
Becquemin 2004 ²⁷	250	5	2.0%
Biebl 2004 ²³	182	1	0.5%
Blum 2001 ⁵³	270	1	0.4%
Boult 2004 ²⁹	950	16	1.7%
Burks 2002 ⁵⁵	95	2	2.1%
Parlani 2002 ⁷⁰	336	4	1.2%
Zannetti 2001 ⁷¹	266	3	1.1%
Carpenter 2004a ⁵⁶	227	3	1.3%
Cartes 2002 ⁵⁷	72	1	1.4%
Criado 2001 ⁸¹	152	5	3.3%
Dalainas 2004 ³¹	186	2	1.1%
Espinosa 2004 ³²	193	7	3.6%
Faries 2002 ⁵⁹	65	0	0.0%
Haulon 2003 ⁶³	96	2	2.1%
Hinchliffe 2004 ²⁰	269	11	4.1%
Howell 2000 ⁸⁶	215	0	0.0%
Howell 2000 ⁸⁷	89	0	0.0%
Cho 2004 ³⁰	50	0	0%
Kocher 2004 ³⁷	120	4	3.3%
Laheij 2002 ⁷⁹	2863	85	3.0%
Vallabhaneni 2001 ⁸⁰	2862	85	3.0%
Lee 2002 ⁸⁸	150	2	1.3%
Lee 2000 ⁸⁹	67	2	3.0%
Minor 2004 ³⁹	150	5	3.3%
Nolthenius 2001 ⁶⁶	77	4	5.2%
Ohki 2001 ⁶⁷	239	20	8.4%
Ouriel 2003 ⁶⁸	704	11	1.6%

Table 51 Incidence of common non-technical complications (Case Series)

Ramaiah 2002 ⁹⁰	260	2	0.8%
Resch 2001 ⁷²	164	7	4.3%
Resch 2001 ⁷³	158	7	4.4%
Ricco 2003 ⁷⁴	891	27	3.0%
Sampaio 2004 ⁴⁰	241	4	1.7%
Elkouri 2003 ⁷⁵	100	0	0.0%
Shames 2003 ⁹¹	245	4	1.6%
Vasquez 2004 ⁴¹	213	7	3.3%
Verhoeven 2004 ⁴²	308	2	0.6%
Wolf 2002 ⁹²	189	2	1.1%
Zarins 2000 ⁹³	149	2	1.3%
Zarins 200394	1193	22	1.8%
Ziaja 2003 ²⁶	52	0	0%
Total	11908	279	2.3%
Mortality - AAA related (ra	inge 21-36 months)		
Alric 2002 ⁴⁹	88	6	6.8%
Espinosa 2004 ³²	57	1	1.8%
Ouriel 2003 ⁶⁹	700	24	3.4%
Zarins 2003 ⁹⁵	383	5	1.3%
Total	1228	36	2.9%
Mortality Non-AAA related	(range 12-36 months)		
Allaqaband 2004 ²¹	58	1	1.7%
Ayerdi 2003 ⁸⁵	96	1	1.0%
Espinosa 2004 ³²	193	12	6.2%
Faries 2002 ⁵⁹	65	8	12.3%
Haulon 2003 ⁶³	96	11	11.5%
Howell 2001 ⁸⁶	215	12	5.6%
Cho 2004 ³⁰	45	7	15.6%
Kocher 2004 ³⁷	118	13	11.0%
Minor 2004 ³⁹	150	40	26.7%
Nolthenius 2001 ⁶⁶	77	10	7.8%
Ohki 2001 ⁶⁷	239	53	22.2%
Zarins 2000 ⁹³	149	15	10.1%
Ziaja 2003 ²⁶	52	2	3.8%
Total	1553	185	11.9%
Mortality – Total (up to 1 y	ear)		
Becquemin 2004 ²⁷	250	15	6.0%

Carpenter 2004a ⁵⁶	227	15	6.6%
Elkouri 2003 ⁷⁵	100	3	3.0%
Ouriel 2003 ⁶⁹	700	83	11.9%
Shames 2003 ⁹¹	241	14	5.8%
Wolf 2002 ⁹²	189	27	14.3%
Zannetti 2001 ⁷¹	266	10	3.8%
Total	1973	167	8.5%
Totai	1973	107	0.5 %
Mortality – Total (>1 year)			
Alric 2002 ⁴⁹	88	24	27.3%
Becquemin 2004	250	43	17.2%
Flora 2003 ⁶⁰	108	9	8.3%
Gilling-Smith 2000 ⁶¹	55	8	14.5%
Lee 2000 ⁸⁹	67	15	22.4%
Ouriel 2003 ⁶⁸	704	143	20.3%
Ricco 2003 ⁷⁴	891	47	4.6%
Vallabhaneni 2001 ⁸⁰	2862	655	22.9%
Zarins 2003 ⁹⁴	1193	250	21.0%
Zarins 2003 ⁹⁵	383	55	14.4%
Total	6218	1194	19.2%
	0-10		1,02,0
Cardiac event rate (<30 days)			
AbuRahma 2004 ²⁸	151	6	4.0%
Albertini 2001 ⁴⁸	185	5	2.7%
Biebl 2004 ²³	182	2	1.1%
Boult 2004 ²⁹	950	69	7.3%
Burks 2002 ⁵⁵	95	2	2.1%
Parlani 2002 ⁷⁰	336	4	1.2%
Dalainas 2004 ³¹	182	3	1.6%
Elkouri 200375	100	12	12.0%
Faries 2003 ⁹⁶	70	2	2.9%
Haulon 2003 ⁶³	96	3	3.1%
Kocher 2004 ³⁷	118	6	5.1%
Lee 2002 ⁸⁸	150	11	7.3%
Ramaiah 2002 ⁹⁰	230	6	2.6%
Ricco 2003 ⁷⁴	1012	8	0.8%
Vasquez 2004 ⁴¹	212	15	7.1%
Zarins 2000 ⁹³	149	5	3.4%
Ziaja 2003 ²⁶	52	2	3.8%
Total	3934	157	4.0%

Renal impairment (<30 days)

Renar impairment (<30 days)			
AbuRahma 2004 ²⁸	151	5	3.3%
Allaqaband 2004 ²¹	58	0	0%
Albertini 2001 ⁴⁸	185	13	7.0%
Biebl 2004 ²³	182	29	15.9%
Burks 2002 ⁵⁵	95	3	3.2%
Carpenter 2004	192	2	1.0%
Dalainas 2004 ³¹	182	7	3.8%
Elkouri 2003 ⁷⁵	100	3	3.0%
Haulon 2003 ⁶³	96	5	5.2%
Kocher 2004 ³⁷	120	0	0%
Lee 2002 ⁸⁸	150	2	1.3%
Minor 2004 ³⁹	145	2	1.4%
Ramaiah 2002 ⁹⁰	230	3	1.3%
Ricco 2003 ⁷⁴	1012	11	1.1%
Vasquez 2004 ⁴¹	212	6	2.8%
Zarins 2000 ⁹³	149	1	0.7%
Ziaja 2003 ²⁶	52	1	1.9%
Total	3211	90	2.8%
Renal impairment (>1 year)			
Alric 2002 ⁴⁹	88	8	9.1%
Graft infection (< 30 days)			
Parlani 2002 ⁷⁰	336	1	0.3%
Graft infection (up to 1 year)			
Blum 2001 ⁵³	298	1	0.3%
Criado 2003 ⁸²	240	1	0.4%
Gilling-Smith 2000 ⁶¹	55	1	1.8%
Total	593	3	0.5%
Graft infection (>1 year)			
Biebl 2004 ²³	182	0	0%
Flora 2003 ⁶⁰	108	1	0.9%
Howell 2001 ⁸⁶	215	1	0.5%
Total	505	2	0.4%

Colonic ischaemia (<30 days)

AbuRahma 2004 ²⁸	151	3	2.0%	
Alric 2002 ⁴⁹	88	3	3.4%	
Carpenter 2004a ⁵⁶	227	1	0.4%	
Kocher 2004 ³⁷	118	0	0%	
Ricco 2003 ⁷⁴	891	3	0.3%	
Vasquez 2004 ⁴¹	212	3	1.4%	
Zarins 2000 ⁹³	149	1	0.7%	
Total	1836	14	0.8%	
Lower limb ischaemia (<30 d	ays)			
Blum 2001 ⁵³	298	6	2.0%	
Ricco 2003 ⁷⁴	891	16	1.6%	
Vallabhaneni 200180	2862	15	0.5%	
Total	4051	37	0.9%	
Pulmonary complications (<3	30 davs)			
Albertini 2001 ⁴⁸	185	2	1.1%	
Carpenter 2004a ⁵⁶	227	6	2.6%	
Elkouri 2003 ⁷⁵	100	5	5.0%	
Haulon 2003 ⁶³	96	0	0.0%	
Lee 2002 ⁸⁸	150	4	2.7%	
Ramaiah 2002 ⁹⁰	230	3	1.3%	
Ricco 2003 ⁷⁴	891	6	0.7%	
Vasquez 2004 ⁴¹	212	9	4.2%	
Total	1991	30	1.5%	
Haemorrhage (<30 days)				
AbuRahma 2004 ²⁸	151	4	2.6%	
Local wound complications (< 30 davs)			
AbuRahma 2004 ²⁸	151	2	1.3%	
Albertini 2001 ⁴⁸	185	16	8.6%	
Ayerdi 2003 ⁸⁵	96	1	1.0%	
Biebl 2004 ²³	182	12	6.6%	
Blum 2001 ⁵³	298	9	3.0%	
Burks 2002 ⁵⁵	95	4	4.2%	
Carpenter 2004a ⁵⁶	227	27	11.9%	
Cartes 2002 ⁵⁷	72	2	2.8%	
Dalainas 2004 ³¹	182	27	14.8%	
Elkouri 2003 ⁷⁵	100	10	10.0%	

Espinosa 2004 ³²	193	6	3.1%
Howell 2000 ⁸⁶	215	6	2.8%
Howell 2000 ⁸⁷	56	3	5.4%
Kocher 2004 ³⁷	118	5	4.2%
Minor 2004 ³⁹	145	7	4.8%
Nolthenius 2001 ⁶⁶	77	1	1.3%
Ramaiah 2002 ⁹⁰	230	12	5.2%
Vasquez 2004 ⁴¹	212	8	3.8%
Ziaja 2003 ²⁶	52	6	11.5%
Total	2730	151	5.5%
Local wound complications	(>1 year)		
Faries 2002 ⁵⁹	65	3	4.6%

8 DISCUSSION

8.1 EVAR versus open repair

Until the publication of the DREAM and EVAR trials, there had been a lack of level one evidence comparing the efficacy and safety of EVAR to open repair. Early publications from population registries (RETA and EUROSTAR) and case series had suggested a lower operative mortality, lower perioperative complications and reduced requirement for hospital beds and critical care for EVAR compared to open repair. In addition, questions had been raised with regards to the long term durability of EVAR. The current trials included in this updated review provide high quality evidence comparing the perioperative and medium-term safety and efficacy of EVAR to open repair.

8.1.1 Major outcomes

From a meta-analysis of the RCT data EVAR was associated with a 30-day mortality rate of 1.6% compared to 4.7% for open repair, (OR 0.33, 95% CI 0.17 to 0.64). This finding was supported by the results from the NRCT data, (OR 0.31, 95% CI 0.25 to 0.39). The EVAR 1 and DREAM trials both found a reduction in AAA-related mortality of approximately 3% in the EVAR group. This reduction in mortality was evident throughout the follow-up period and was found to be entirely attributable to the difference in perioperative mortality.

The EVAR 1 trial reported no significant difference in total mortality rates during follow up. At 4 years, approximately 28% of the study population had died in each group, (HR 0.9, 95% CI 0.69 to 1.19; p=0.46). During a shorter period of follow up (2 years), the DREAM trial reported cumulative survival rates of 89.6% following open repair and 89.7% following EVAR, a difference of -0.1 percentage point (95% CI -6.8 to 6.7 percentage points; p=0.86). In fact the early benefit in survival in the EVAR group was found to be lost by the end of the first year post procedure.

During the first thirty days, one NRCT studies reported a 0.3% rupture rate (this includes any intraoperative ruptures) following EVAR. From the EVAR 1 trial,⁴⁵ during the median follow-up period of 35 months (IQR, 23 to 48 months), there was an average rupture rate of 0.9% following EVAR and 0.2% following open repair, (p=ns). There was an increase in aneurysm size in 4.1% of the included study population, whilst 28.9% and 57.5% stayed the same size or decreased in size, respectively.

Following a failed attempt at EVAR, 1.0% (RCT data) and (2.4%, NRCT data) of the study population required conversion to open surgical repair during the perioperative period. From the EVAR 1 trial,⁴⁵ during the subsequent median follow-up period of 35 months (IQR, 23 to

48 months), an average of 1.9% required a delayed surgical conversion for persistent endoleak, aneurysm expansion (with or without endoleak), or aneurysm rupture.

From the EVAR 1 trial⁴⁵ the secondary intervention rate following EVAR was 16.1% compared to 6.9% following open repair (OR 2.57, 95% CI 1.70 to 3.87; p<0.00001). From the DREAM trial⁴⁷ the rate of intervention was almost three times the rate after open repair, (HR 2.9, 95% CI 1.1 to 6.2; p=0.03). From the NRCTs the secondary intervention rate following EVAR was 20.2% compared to 6.4% following open repair, (OR 3.23, 1.94 to 5.37; p<0.00001).

8.1.2 Complications

From the safety data, the most common technical adverse event following EVAR was a type II endoleak occurring in 20.7% participants by 1 month and occurring in 18.9% participants at 1 year. Other technical adverse events included stent migration (2.6% at >1 year), graft limb thrombosis (6.4% at <30-days and 2.6% at >1 year), type I endoleak (5.5% at >1 year), type III endoleak (1.9% at >1 year), and access artery injury occurring in 4.8%.

The RCTs demonstrated no significant difference in cardiac event rate post EVAR or surgery, but the NRCT studies revealed a significant reduction in cardiac rate post EVAR, (OR 0.43, 95% CI 0.36 to 0.50; p<0.00001). In addition, there was also a significant reduction in pulmonary complications following EVAR compared to open repair, (OR 0.25, 95% CI 0.09 to 0.69; p=0.006), from the DREAM trial and (OR 0.19, 95% CI 0.14 to 0.24; p<0.00001) from the EVAR 1 trial. There was also a significant reduction in the incidence of blood loss and haemorrhagic events in the EVAR group. There was no significant difference in the rates of lower limb ischaemia, renal impairment, graft infection, colonic ischaemia or local wound complications between the two groups.

8.1.3 Other peri- and post-operative outcomes

Efficacy data extracted from RCTs and NRCTs revealed that the endograft was accurately deployed in 97% and 96% of the study population respectively. Using a definition of complete aneurysm exclusion following accurate graft placement, the technical success of EVAR was just 74% at the time of primary intervention, rising to 87% at 30 days after secondary interventions and spontaneous resolution of some endoleaks had occurred.

The results of the RCTs demonstrated that there was a significant reduction in ITU stay post EVAR compared to open repair, (WMD -1.50 days, 95% CI -2.29 to -1.11; p<00001). This finding was also supported by the results from the NRCTs, (WMD -0.89 days, 95% CI -1.45 to -0.33; p=0.002). In addition, the RCTs showed a clear benefit for EVAR compared to open

repair in terms of a significant reduction in total hospital stay, (WMD -6.76 days, 95% CI - 7.53 to -5.99; p<0.00001).

8.2 EVAR in high risk patients

The EVAR 2 trial is the only RCT to date that has compared EVAR to 'no intervention' in a group of patients unfit for open repair. Furthermore, there are no other known trials planned comparing EVAR to 'no intervention' in this population. This trial, therefore, provides crucial information with regards to the efficacy and safety of EVAR in very high-risk patients, the group for which EVAR was originally conceived.

The EVAR 2 trial demonstrated a significantly higher 30-day mortality rate post EVAR in a population who were deemed to be unfit for open repair (8.7%, vs. 1.7% for fit patients in EVAR 1). However this rate was reduced to 6.8% if only elective procedures were taken into account. In addition, with a rate of approximately 12 %, aneurysm related death was found to be similar between both groups. The total mortality rates were 44.6% (74/166) for the EVAR group and 39.5% (68/172) for the no-intervention group during the follow-up period, a difference that was not statistically significant.

There was a significant rate of complications following EVAR in the EVAR 2 trial (58/178), equating to a complication rate of 32.6%. Accordingly there was a high requirement for secondary intervention in the EVAR group with an intervention rate of 11.5 per 100 person years. However, the low primary and secondary conversion rates were maintained in this high-risk group, both <1.5%.

The mean total hospital stay was slightly longer in unfit EVAR group, 12 days, compared to 10 days in patients who were deemed fit for open repair.

8.3 Assumptions, limitations and uncertainties

This review considers the use of EVAR for asymptomatic abdominal aortic aneurysm. In this situation treatment is carried out in asymptomatic patients to reduce the risk of complications, particularly rupture of the aneurysm, which is associated with high mortality. The efficacy and safety of the procedure needs to be considered in the context of the natural history of the condition and outcome of conventional treatment. A major limitation of the review relates to the heterogeneity of the study population and unknown criteria for patient selection for EVAR, amongst the NRCT and case series studies. There are two major issues in this respect, the size of aneurysm treated, which determines the risk of rupture in the untreated condition and the case mix of patients regarding age and comorbidity, which affects the risks associated with open surgical treatment.

8.3.1 Size of aneurysm treated

Current evidence from the UK Small Aneurysm Trial suggests that surgical intervention is worthwhile if the aneurysm is at least 5.5 cm diameter or greater than 4.5 cm and has increased by 0.5 cm in the 6 months prior to intervention. In many of the reported studies, the inclusion criteria included aneurysms of less than 5.5 cm in diameter. Furthermore, in studies where inclusion criteria are not defined, there is either no documentation of baseline aneurysm size, or the range of aneurysm size extends below 5.5 cm. The expected rupture rate of aneurysms of less than 5.5 cm is in the order of 0.5% per year so that the risks and success rate that would be acceptable are very different from those for patients with larger aneurysms. The data presented do not allow adequate subgroup analysis to determine whether safety and efficacy are related to aneurysm size.

8.3.2 Case mix

There are also other differences between study populations, with some studies including a significant proportion of patients in whom surgical treatment would be expected to carry high mortality. In those patients with a large aneurysm, co-morbidity or previous abdominal surgery that would add significantly to the risks of conventional treatment, the acceptable risks for EVAR may be considerably higher.

The EVAR 1 and DREAM studies are randomised controlled trials that have addressed a number of these issues. The problem of heterogeneity of the study population was minimised by randomly allocating patients to EVAR or open repair. This resulted in two groups that were well matched, therefore allowing more accurate comparisons between the two groups, as they only differ in terms of treatment received. All patients in these trials were deemed sufficiently medically fit and anatomically suitable to undergo either procedure. Furthermore, patients were only included in the study if the baseline aneurysm size was 5.0 cm or greater (DREAM) or 5.5 cm or greater (EVAR 1).

8.3.3 Operator experience and advances in technology

Another important consideration in interpreting these results is the issue of operator experience and advances in device technology. Studies included in this review were restricted to papers published from the year 2000 onwards, but the recruitment period in some papers precedes this date by five or more years. Consequently the participants included in this review are undergoing a procedure that may have been carried out by an operator with limited experience in a relatively new technique (EVAR was first introduced in 1991). Furthermore, the level of operator experienced was poorly documented in virtually all of the included studies and the effect of a learning curve for EVAR has been well reported. The level of operator experience was again addressed in the RCTs, as only experienced surgeons and

interventional radiologists were included. For the EVAR trials, before being considered for participation in the trial, a new centre must submit outcome data on 20 cases to an independent register (RETA).

There have been substantial improvements in endovascular device technology in recent years. The 'first-generation' stents were home-made tube devices constructed using ePTFE graft material and standard endovascular stents. These are no longer used due to the high level of complications associated with these devices. Further improvements of endovascular prostheses have led to the development of modular bifurcated and aorto-uniiliac devices. These developments coupled with advances in device-delivery systems, have led to a lower incidence of procedural and post-procedural complications. As a consequence, some of the long-term safety and efficacy data relates to devices that are no longer used, whilst there is little medium to long term data on devices in current usage.

8.3.4 Primary outcomes

There are differences in the primary outcome measure used for the reported studies and this raises questions about the most appropriate outcome measure for the assessment of efficacy. Primary technical success is a commonly used outcome, but as already described there is considerable variation in the definition and consequent variation in results. Furthermore it is clear that accurate stent-graft deployment and complete aneurysm exclusion at completion of the procedure does not equate to 'success' and prevention of long term aneurysm related mortality as subsequent delayed aneurysm rupture is a well documented event.

8.3.5 Long term safety and efficacy

From the RCTs there is a clear reduction in 30-day mortality rate with a mean mortality rate of 4.6% after open repair and 1.7% after EVAR, (OR 0.33, 95% CI 0.17 to 0.64). This result is supported from the findings of the NRCT studies and the low mortality rate from EVAR is in agreement with that reported from previous case series. In addition there are other significant early benefits from EVAR, namely a reduction in pulmonary complications, blood loss and haemorrhagic effects. However, both the EVAR 1 and DREAM studies have demonstrated that by one year, there is no difference in total mortality between EVAR and open repair, and the reduction in aneurysm-related mortality that persists following EVAR is accounted for by the initial lower perioperative mortality rate.

This would suggest that although initially superior at 30-days, long term there is no survival advantage of EVAR over open repair and in fact the longevity of the EVAR technique remains to be proven. There are several possible explanations to account for the overall higher mortality rate during the first year following EVAR. Open repair may have precipitated the

death of frail patients who would have died during the coming year. However it is possible that EVAR is associated with a higher rate of late mortality by failing to prevent late ruptures or by causing complications related to the significantly higher secondary intervention rate.

It is clear that there is a need for careful follow-up after this procedure. During the follow-up of participants in the studies reported in this review, there was a significantly higher complication rate following EVAR, compared to open repair; [overall complication rates were 17.6 per 100 person years in the EVAR group and 3.3 per 100 person years in the open repair group, (HR 4.9, 95% CI 3.5 to 6.8; p<0.001)]. In turn, this increased complication rate translated to significantly higher number of secondary interventions being required to maintain complete aneurysm exclusion, (OR 2.57, 95% CI 1.70 to 3.87; p<0.00001) in the EVAR group compared to the open repair group.

Not only are there additional costs involved in long-term follow-up of these patients (outpatient attendances, regular CT scans etc), but the patient themselves have to be willing to undergo such follow-up and regular radiological investigation and consequential intervention. The issue of unknown long-term results is particularly important as this is a prophylactic procedure in asymptomatic patients. Informed consent of a patient undergoing EVAR must therefore not only include the early survival advantage and decreased incidence of perioperative morbidity (particularly haemorrhagic and respiratory) but also the need for ongoing surveillance and secondary intervention, with no evidence of medium-term survival benefit, coupled with unknown and potentially inferior results in the long-term.

8.3.6 High risk patients

The technique of EVAR was initially established to treat high-risk surgical candidates for whom open repair would be associated with very significant mortality and morbidity. The EVAR 2 trial addressed this issue by comparing EVAR to best medical therapy in a group of unfit patients. The 30 day mortality result of EVAR in unfit patients was 7.9%, (compared to 1.7% in fit patients). However the rate of aneurysm-related mortality in the no intervention group was found to be significantly lower than the 25% suggested from unpublished data from the UK Small Aneurysm Study.

This significantly lower aneurysm-related mortality in the no-intervention group coupled with a higher 30-day mortality post EVAR and high rates of complications, (43% by 4 years) and secondary intervention, (11.5 per 100 person years) negated any potential benefit of EVAR over no intervention in unfit patients. Analysis by intention to treat demonstrated no significant difference in either aneurysm related mortality or total mortality during the follow-up period. However there are a number of considerations to be made when interpreting these results. It is possible that there may be an element of confounding due to the high rate of

crossover of patients on best medical therapy to exclusion by EVAR or surgery. Over twice as many patients underwent late aneurysm repair as died of aneurysm related causes and many of these patients had symptomatic or enlarging aneurysms that would have increased the aneurysm related mortality had such crossovers not occurred.

From the point of view of service provision, it should be noted that the results of this review demonstrated that EVAR is associated with a significant reduction in the requirement for hospital beds and critical care when compared to surgical repair. When undertaking surgical aneurysm repair in a high-risk patient, it can be difficult to organise the required critical care services, and consequently EVAR with its reduced requirements may have some advantages. However, there is also a clear need for a specialist team with appropriate equipment, training and facilities, which may not be easily provided in every unit currently undertaking aortic aneurysm repair. The widespread introduction of this technique may, therefore, require careful consideration of the organisation of specialist vascular services.

8.4 Ongoing research

In addition to the EVAR 1 and DREAM trials, there are other RCTs with similar protocols being conducted in France (ACE) and the United States (OVER). These trials are at a less advanced stage but their results are eagerly awaited. More importantly, there is still no long-term efficacy or safety data available for EVAR, and long-term follow-up data from the EVAR 1 and DREAM trials is of paramount importance.

9 CONCLUSIONS

EVAR is considered to be an alternative therapeutic intervention for the treatment of infrarenal abdominal aortic aneurysms and is being used with increased frequency worldwide. Three RCTs have published outcome data within the last year to allow more accurate assessment of EVAR. From such trials it is clear that EVAR is a less invasive technique associated with an attractive reduction in perioperative morbidity and mortality rates and shorter ITU and hospital lengths of stay. However these early benefits need to weighed against a need for more intensive follow-up, a significant rate of re-intervention and unknown long term success in preventing aneurysm related mortality. Medium term data from the RCTs has demonstrated no overall survival benefit following EVAR. However technology is developing rapidly and one can envisage many further developments over the next few years, which have the potential to reduce the rates of complications and secondary interventions.

Although clearly associated with higher rates of morbidity and mortality, there may still be a place for EVAR in the management of certain high-risk surgical candidates, as the risk of aneurysm related death is likely to be higher than that found in the EVAR 2 trial. Finally EVAR is a technique that is still developing and longer-term follow up and further research are required to determine its exact place in the management of abdominal aortic aneurysms.

9.1 Efficacy of EVAR

Results of the included studies have demonstrated that EVAR is a technique applicable to just over 50% of patients with infrarenal abdominal aortic aneurysms. There was a high 30-day technical success rate (87%), coupled with low primary (1.1%) and delayed (1.9%) conversion rates. In addition EVAR was associated with a significantly shorter length of stay in ITU and a reduced hospital length of stay when compared to surgical repair. Importantly EVAR was associated with very low early and delayed aneurysm rupture rates (0.2% and 0.9% respectively). However, EVAR was associated with a significantly greater secondary intervention rate during the follow-up period compared to open repair, (OR 2.57, 95% CI 1.70 to 3.87; p<0.00001).

9.2 Safety of EVAR

EVAR was associated with a significantly reduced 30-day mortality rate of 1.6% compared to 4.7% for open surgical repair. It was also associated with a reduction in post-operative complications, particularly respiratory and haemorrhagic events. However EVAR was still associated with all the adverse outcomes that accompany surgical repair (graft infection,

lower limb ischaemia, renal impairment, colonic ischaemia and local wound complications). There is no medium-term survival advantage of EVAR over open repair, but there is a significantly higher rate of complications associated with EVAR.

Reference List

- (1) Drury D, Michaels J, Jones L, Ayiku L. A systematic review of the recent evidence for the safety and efficacy of elective endovascular repair in the mangement of infrarenal abdominal aortic aneurysms. National Institute of Health and Clinical Excellence 2004Available from: URL: <u>http://www.nice.org.uk/page.aspx?o=234301</u>
- (2) Parodi JC, Palmaz JC, Barone HD. Transfemoral intraluminal graft implantations for abdominal aortic aneurysms. Ann Vasc Surg 1991;5:491-9.
- (3) Parodi JC. Endovascular repair of abdominal aortic aneurysms and other arterial lesions. J Vasc Surg 1995;21:549-57.
- (4) Mialhe C, Amicabile C, Becquemin JP, for the Stentor retrospective study group. Endovascular treatment of infra-renal abdominal aortic aneurysms by the Stentor system: preliminary results of 79 cases. J Vasc Surg 1997;26:199-209.
- (5) May J, Woodburn K, White GH. Endovascular treatment of infrarenal abdominal aortic aneurysms. Ann Vasc Surg 1998;12:391-5.
- (6) Bonamigo TP, Siqueira I. Screening for abdominal aortic aneurysms. Rev Hosp Clin Fac Med Sao Paulo 2003;58(2):63-8.
- (7) Crawford CM, Hurtgen-Grace K, Talarico E, Marley J. Abdominal aortic aneurysm: an illustrated narrative review. J Manipulative Physiol Ther 2003;26(3):184-95.
- (8) Kim LG, Thompson SG, Marteau TM, Scott RA. Multicentre aneurysm screening study group. Screening for abdominal aortic aneurysms: the effects of age and social deprivation on screening uptake, prevalence and attendance at follow-up in the MASS trial. J Med Screen 2004;11(1):50-3.
- (9) Yii MK. Epidemiology of abdominal aortic aneurysm in an Asian population. Anz J Surg 2003;73(6):393-5.
- (10) Best VA, Price JF, Fowkes FG. Persistent increase in the incidence of abdominal aortic aneurysm in Scotland, 1981-2000. Br J Surg 2003;90(12):1510-5.
- (11) Baysnat PS, Aiono S, Warsi AA, Magee TR, Galland RB, Lewis MH. Natural history of the ectatic aorta. Cardiovasc Surg 2003;11(4):273-6.
- (12) McCarthy RJ, Shaw E, Whyman MR, Earnshaw JJ, Poskitt KR, Heather BP. Recommendations for screening intervals for small aortic aneurysms. Br J Surg 2003;90(7):821-6.
- (13) Hallin A, Bergqvist D, Holmberg L. Literature review of surgical management of abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 2001;22(3):197-204.

- (14) Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. The UK Small Aneurysm Trial Participants. Lancet 1998;352(9141):1649-55.
- (15) Brown LC, Powell JT. Risk factors for aneurysm rupture in patients kept under surveillance. UK Small Aneurysm Trial participants. Ann Surg 1999;230(3):289-96.
- (16) Powell JT, Brown LC. The natural history of abdominal aortic aneurysms and their risk of rupture. Adv Surg 2001;35:173-85.
- (17) Carpenter JP, Endologix I. Midterm results of the multicenter trial of the powerlink bifurcated system for endovascular aortic aneurysm repair. Journal of Vascular Surgery 2004 Nov;40(5):849-59.
- (18) Cao P, Verzini F, Parlani G, Romano L, De Rango P, Pagliuca V, et al. Clinical effect of abdominal aortic aneurysm endografting: 7-year concurrent comparison with open repair. Journal of Vascular Surgery 2004 Nov;40(5):841-8.
- (19) Maldonado TS, Rockman CB, Riles E, Douglas D, Adelman MA, Jacobowitz GR, et al. Ischemic complications after endovascular abdominal aortic aneurysm repair. Journal of Vascular Surgery 2004 Oct;40(4):703-9.
- (20) Hinchliffe RJ, Goldberg J, MacSweeney ST, Zenith Users Group. A UK multicentre experience with a second-generation endovascular stent-graft: results from the Zenith Users Group. European Journal of Vascular & Endovascular Surgery 2004 Jan;27(1):51-5.
- (21) Allaqaband S, Mortada ME, Tumuluri R, Kumar A, Bajwa TK. Endovascular stent graft repair of abdominal aortic aneurysms in high-risk patients: a single center experience. J INTERVENT CARDIOL 2004;2004 Apr; 17(2):71-9.
- (22) The EVAR Trial Participants. Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: randomised controlled trial.[see comment]. Lancet 2004;364(9437):843-8.
- (23) Biebl M, Lau LL, Hakaim AG, Oldenburg WA, Klocker J, Neuhauser B, et al. Midterm outcome of endovascular abdominal aortic aneurysm repair in octogenarians: A single institution's experience. Journal of Vascular Surgery 2004;40(3):435-42.
- (24) Corriere MA, Feurer ID, Becker SY, Dattilo JB, Passman MA, Guzman RJ, et al. Endoleak following endovascular abdominal aortic aneurysm repair: Implications for duration of screening. Annals of Surgery 2004;239(6):800-7.
- (25) Elkouri S, Gloviczki P, McKusick MA, Panneton JM, Andrews J, Bower TC, et al. Perioperative complications and early outcome after endovascular and open surgical repair of abdominal aortic aneurysms. Journal of Vascular Surgery 2004;39(3):497-505.
- (26) Ziaja K, Kuczmik W, Ziaja D, Kostyra J, Szaniewski K. Endovascular treatment of infrarenal aortic aneurysm - Three years of experience. Chirurgia Polska 2003;5(3):129-43.

- (27) Becquemin JP, Kelley L, Zubilewicz T, Desgranges P, Lapeyre M, Kobeiter H, et al. Outcomes of secondary interventions after abdominal aortic aneurysm endovascular repair. Journal of Vascular Surgery 2004;39(2):298-305.
- (28) AbuRahma AF, Stone PA, Bates MC, Khan TN, Prigozen JM, Welch CA. Endovascular repair of abdominal aortic aneurysms using 3 commercially available devices: Midterm results. Journal of Endovascular Therapy 2004;11(6):641-8.
- (29) Boult M, Babidge W, Maddern G, Fitridge R. Endoluminal repair of abdominal aortic aneurysm - Contemporary Australian experience. European Journal of Vascular and Endovascular Surgery 2004;28(1):36-40.
- (30) Cho JS, Dillavou ED, Rhee RY, Makaroun MS. Late abdominal aortic aneurysm enlargement after endovascular repair with the excluder device. Journal of Vascular Surgery 2004;39(6):1236-41.
- (31) Dalainas I, Nano G, Casana R, Tealdi DG. Mid-term results after endovascular repair of abdominal aortic aneurysms: A four-year experience. European Journal of Vascular and Endovascular Surgery 2004;27(3):319-23.
- (32) Espinosa G, Ribeiro M, Riguetti C, Caramalho MF, Mendes WD, Santos SR. Sixyear experience with talent stent-graft repair of abdominal aortic aneurysms. J ENDOVASC THER 2005 Feb;12(1):35-45.
- (33) Fairman RM, Velazquez OC, Carpenter JP, Woo E, Baum RA, Golden MA, et al. Midterm pivotal trial results of the Talent Low Profile System for repair of abdominal aortic aneurysm: analysis of complicated versus uncomplicated aortic necks. Journal of Vascular Surgery 2004 Dec;40(6):1074-82.
- (34) Garcia-Madrid C, Josa M, Riambau V, Mestres CA, Muntana J, Mulet J. Endovascular versus open surgical repair of abdominal aortic aneurysm: a comparison of early and intermediate results in patients suitable for both techniques. European Journal of Vascular & Endovascular Surgery 2004 Oct;28(4):365-72.
- (35) Greenberg RK, Chuter TAM, Sternbergh C, Fearnot NE. Zenith AAA endovascular graft: Intermediateterm results of the US multicenter trial. Journal of Vascular Surgery 2004;39(6):1209-18.
- (36) Jordan WD, Alcocer F, Wirthlin DJ, Westfall AO, Whitley D, Smith-III RB, et al. Abdominal Aortic Aneurysms in "High-Risk" Surgical Patients: Comparison of Open and Endovascular Repair. Annals of Surgery 2003;237(5):623-30.
- (37) Kocher M, Utikal P, Koutna J, Bachleda P, Buriankova E, Herman M, et al. Endovascular treatment of abdominal aortic aneurysms - 6 Years of experience with Ella stent-graft system. European Journal of Radiology 2004;51(2):181-8.
- (38) Leurs LJ, Hobo R, Buth J, EUROSTAR C. The multicenter experience with a third-generation endovascular device for abdominal aortic aneurysm repair. A report from the EUROSTAR database. Journal of Cardiovascular Surgery 2004 Aug;45(4):293-300.

- (39) Minor ME, Ellozy S, Carroccio A, Oak J, Chae K, Agarwal G, et al. Endovascular aortic aneurysm repair in the octogenarian: is it worthwhile? Archives of Surgery 2004 Mar;139(3):308-14.
- (40) Sampaio SM, Panneton JM, Mozes GI, Andrews JC, Noel AA, Karla M, et al. Endovascular abdominal aortic aneurysm repair: does gender matter? Annals of Vascular Surgery 2004 Nov;18(6):653-60.
- (41) Vasquez J, Rahmani O, Lorenzo AC, Wolpert L, Podolski J, Gruenbaum S, et al. Morbidity and mortality associated with renal insufficiency and endovascular repair of abdominal aortic aneurysms: a 5-year experience. Vascular & Endovascular Surgery 2004 Mar;38(2):143-8.
- (42) Verhoeven EL, Tielliu IF, Prins TR, Zeebregts CJ, van Andringa de Kempenaer MG, Cina CS, et al. Frequency and outcome of re-interventions after endovascular repair for abdominal aortic aneurysm: a prospective cohort study. European Journal of Vascular & Endovascular Surgery 2004 Oct;28(4):357-64.
- (43) Lee WA, Carter JW, Upchurch G, Seeger JM, Huber TS. Perioperative outcomes after open and endovascular repair of intact abdominal aortic aneurysms in the United States during 2001. Journal of Vascular Surgery 2004;39:491-6.
- (44) Prinssen M, Verhoeven ELG, Buth J, Cuypers PWM, van Sambeek MRHM, Balm R, et al. A randomized trial comparing conventional and endovascular repair of abdominal aortic aneurysms. New England Journal of Medicine 2004;351(16):1607-18.
- (45) The EVAR Trial Participants. Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), mid-term survival, graft durability, quality of life and costs: randomised controlled trial. Lancet 2005.
- (46) The EVAR Trial Participants. Endovascular aneurysm repair and outcome in patients unfit for open repair of abdominal aortic aneurysm (EVAR trial 2): randomised controlled trial. Lancet 2005.
- (47) Blankensteijn JD, de Jong SECA, Prinssen M, van der Ham AC, Buth J, van Sterkenburg SMM, et al. Two-year outcomes after conventional or endovascular repair of abdominal aortic aneurysms. New England Journal of Medicine 2005;352(23):2398-405.
- (48) Albertini JN, Branchereau A, Hopkinson B, Magnan PE, Bartoli JM, Whitaker -SC, et al. Mortality and morbidity following endovascular repair of abdominal aortic aneurysm: Analysis of two single centre experiences. European Journal of Vascular and Endovascular Surgery 2001;22(5):429-35.
- (49) Alric P, Hinchliffe RJ, MacSweeney ST, Wenham PW, Whitaker SC, Hopkinson BR. The Zenith aortic stent-graft: a 5-year single-center experience. J ENDOVASC THER 2002 Dec;9(6):719-28.
- (50) Anderson PL, Arons RR., Moskowitz AJ., Gelijns A, Magnell C, Faries PL, et al. A statewide experience with endovascular abdominal aortic aneurysm repair: rapid diffusion with excellent early results. Journal of Vascular Surgery 2004 Jan;39(1):10-9.

- (51) Becquemin JP, Bourriez A, d'Audiffret A, Zubilewicz T, Kobeiter H, Allaire E, et al. Mid-term results of endovascular versus open repair for abdominal aortic aneurysm in patients anatomically suitable for endovascular repair. European Journal of Vascular and Endovascular Surgery 2000;19(6):656-61.
- (52) Bertrand M, Godet G, Koskas F, Cluzel P, Fleron MH, Kieffer E, et al. Endovascular treatment of abdominal aortic aneurysms: Is there a benefit regarding postoperative outcome? European Journal of Anaesthesiology 2001;18(4):245-50.
- (53) Blum U, Hauer M, Pfammatter T, Voshage G. Percutaneous endoprosthesis for treatment of aortic aneurysms. World Journal of Surgery 2001 Mar;25(3):347-52.
- (54) Bolke E, Jehle PM, Storck M, Braun C, Schams S, Steinbach G, et al. Endovascular stent-graft placement versus conventional open surgery in infrarenal aortic aneurysm: a prospective study on acute phase response and clinical outcome. Clinica Chimica Acta 2001 Dec;314(1-2):203-7.
- (55) Burks JA, Jr., Faries PL, Gravereaux EC, Hollier LH, Marin ML. Endovascular repair of abdominal aortic aneurysms: stent-graft fixation across the visceral arteries. Journal of Vascular Surgery 2002 Jan;35(1):109-13.
- (56) Carpenter J.P., Anderson W.N., Brewster DC, Kwolek C, Makaroun M, Martin J, et al. Multicenter pivotal trial results of the Lifepath System for endovascular aortic aneurysm repair. Journal of Vascular Surgery 2004 Jan;39(1):34-43.
- (57) Cartes-Zumelzu F, Lammer J, Hoelzenbein T, Cejna M, Schoder M, Thurnher S, et al. Endovascular placement of a nitinol-ePTFE stent-graft for abdominal aortic aneurysms: initial and midterm results. Journal of Vascular & Interventional Radiology 2002 May;13(5):465-73.
- (58) Cuypers PWM, Gardien M, Buth J, Peels CH, Charbon JA, Hop WCJ. Randomized study comparing cardiac response in endovascular and open abdominal aortic aneurysm repair. British Journal of Surgery 2001;88(8):1059-65.
- (59) Faries PL, Briggs VL, Rhee JY, Burks JA, Jr., Gravereaux EC, Carroccio A, et al. Failure of endovascular aortoaortic tube grafts: a plea for preferential use of bifurcated grafts. Journal of Vascular Surgery 2002 May;35(5):868-73.
- (60) Flora HS, Chaloner EJ, Sweeney A, Brookes J, Raphael MJ, Adiseshiah M. Secondary intervention following endovascular repair of abdominal aortic aneurysm: a single centre experience. European Journal of Vascular & Endovascular Surgery 2003 Sep;26(3):287-92.
- (61) Gilling-Smith GL, Martin J, Sudhindran S, Gould DA, McWilliams RG, Bakran -A, et al. Freedom from endoleak after endovascular aneurysm repair does not equal treatment success. European Journal of Vascular and Endovascular Surgery 2000;19(4):421-5.
- (62) Hansman MF, Neuzil D, Quigley TM, Hauptmann E, Fotoohi M, Robinson D, et al. A comparison of 50 initial endoluminal endograft repairs for abdominal aortic aneurysm with 50 concurrent open repairs. American Journal of Surgery 2003 May;185(5):441-4.

- (63) Haulon S, Devos P, Willoteaux S, Mounier-Vehier C, Sokoloff A, Halna P, et al. Risk factors of early and late complications in patients undergoing endovascular aneurysm repair. European Journal of Vascular & Endovascular Surgery 2003 Feb;25(2):118-24.
- (64) May J, White GH, Waugh R, Petrasek P, Chaufour X, Arulchelvam M, et al. Life-table analysis of primary and assisted success following endoluminal repair of abdominal aortic aneurysms: The role of supplementary endovascular intervention in improving outcome. European Journal of Vascular and Endovascular Surgery 2000;19(6):648-55.
- (65) Moore WS, Matsumura JS, Makaroun MS, Katzen BT, Deaton DH, Decker M, et al. Five-year interim comparison of the Guidant bifurcated endograft with open repair of abdominal aortic aneurysm. Journal of Vascular Surgery 2003;38(1):46-55.
- (66) Tutein-Nolthenius RP, van Herwaarden JA, van den Berg JC, van Marrewijk C, Teijink JAW, Moll FL. Three year single centre experience with the AneuRx aortic stent graft. European Journal of Vascular and Endovascular Surgery 2001;22(3):257-64.
- (67) Ohki T, Veith FJ, Shaw P, Lipsitz E, Suggs WD, Wain RA, et al. Increasing incidence of midterm and long-term complications after endovascular graft repair of abdominal aortic aneurysms: a note of caution based on a 9-year experience. Annals of Surgery 2001 Sep;234(3):323-34.
- (68) Ouriel K, Greenberg RK, Clair DG, O'hara PJ, Srivastava SD, Lyden SP, et al. Endovascular aneurysm repair: gender-specific results. Journal of Vascular Surgery 2003 Jul;38(1):93-8.
- (69) Ouriel K, Srivastava SD, Sarac TP, O'hara PJ, Lyden SP, Greenberg RK, et al. Disparate outcome after endovascular treatment of small versus large abdominal aortic aneurysm. Journal of Vascular Surgery 2003 Jun;37(6):1206-12.
- (70) Parlani G, Zannetti S, Verzini F, De Rango P, Carlini G, Lenti M, et al. Does the presence of an iliac aneurysm affect outcome of endoluminal AAA repair? An analysis of 336 cases. European Journal of Vascular and Endovascular Surgery 2002;24(2):134-8.
- (71) Zannetti S, De Rango P, Parlani G, Verzini F, Maselli A, Cao P. Endovascular abdominal aortic aneurysm repair in high-risk patients: A single centre experience. European Journal of Vascular and Endovascular Surgery 2001;21(4):334-8.
- (72) Resch T, Malina M, Lindblad B, Ivancev K. The evolution of z stent-based stentgrafts for endovascular aneurysm repair: A life-table analysis of 7.5-Year followup. Journal of the American College of Surgeons 2002;194(1 SUPPL.):S74-S78.
- (73) Resch T, Malina M, Lindblad B, Ivancev K. The impact of stent-graft development on outcome of AAA repair - A 7-year experience. European Journal of Vascular and Endovascular Surgery 2001;22(1):57-61.

- (74) Ricco JB, Goeau-Brissonniere O, Rodde-Dunet MH, Marty M, Fender P, Allemand H, et al. Use of abdominal aortic endovascular prostheses in France from 1999 to 2001. Journal of Vascular Surgery 2003;38(6):1273-81.
- (75) Elkouri S, Gloviczki P, McKusick MA, Panneton JM, Andrews JC, Bower TC, et al. Endovascular repair of abdominal aortic aneurysms: initial experience with 100 consecutive patients. Mayo Clinic Proceedings 2003 Oct;78(10):1234-42.
- (76) Teufelsbauer H, Prusa AM, Wolff K, Sahal M, Polterauer P, Lammer J, et al. The impact of endovascular stent grafting on reducing mortality rates after surgical treatment of abdominal aortic aneurysms. European Journal of Vascular and Endovascular Surgery 2003;26(5):494-500.
- (77) Zeebregts CJ, Geelkerken RH, van der PJ, Huisman AB, de Smit P, van Det RJ. Outcome of abdominal aortic aneurysm repair in the era of endovascular treatment. British Journal of Surgery 2004 May;91(5):563-8.
- (78) Fransen GAD. Frequency, Predictive Factors, and Consequences of Stent-Graft Kink Following Endovascular AAA Repair. J ENDOVASC THER 2003 Sep;10(5):913-8.
- (79) Laheij RJ, Van Marrewijk CJ, Buth J, Harris PL, EUROSTAR C. The influence of team experience on outcomes of endovascular stenting of abdominal aortic aneurysms. European Journal of Vascular & Endovascular Surgery 2002 Aug;24(2):128-33.
- (80) Vallabhaneni SR, Harris PL. Lessons learnt from the EUROSTAR registry on endovascular repair of abdominal aortic aneurysm repair. European Journal of Radiology 2001;39(1):34-41.
- (81) Criado FJ, Wilson EP, Fairman RM, Abul-Khoudoud O, Wellons E. Update on the Talent aortic stent-graft: a preliminary report from United States phase I and II trials. Journal of Vascular Surgery 2001 Feb;33(2 Suppl):S146-S149.
- (82) Criado FJ, Fairman RM, Becker GJ, Talent LPS Pivotal Clinical Trial investigators. Talent LPS AAA stent graft: results of a pivotal clinical trial. Journal of Vascular Surgery 2003 Apr;37(4):709-15.
- (83) Arko FR, Hill BB, Olcott C, IV, Harris EJ, Jr., Fogarty TJ, Zarins CK. Endovascular repair reduces early and late morbidity compared to open surgery for abdominal aortic aneurysm. J ENDOVASC THER 2002 Dec;9(6):711-8.
- (84) Arko FR, Filis KA, Hill BB, Fogarty TJ, Zarins CK. Morphologic changes and outcome following endovascular abdominal aortic aneurysm repair as a function of aneurysm size. Archives of Surgery 2003 Jun;138(6):651-5.
- (85) Ayerdi J, McLafferty RB, Markwell SJ, Solis MM, Parra JR, Gruneiro LA, et al. Indications and outcomes of AneuRx phase III trial versus use of commercial AneuRx stent graft. Journal of Vascular Surgery 2003 Apr 1;37(4):739-43.
- (86) Howell MH, Strickman N, Mortazavi A, Hallman CH, Krajcer Z. Preliminary results of endovascular abdominal aortic aneurysm exclusion with the AneuRx stent-graft.[comment]. Journal of the American College of Cardiology 2001 Oct;38(4):1040-6.

- (87) Howell MH, Zaqqa M, Villareal RP, Strickman NE, Krajcer. Endovascular exclusion of abdominal aortic aneurysms: Initial experience. Texas-Heart-Institute-Journal [print] 2000;2000;@27:136-45.
- (88) Lee WA, Wolf YG, Hill BB, Cipriano P, Fogarty TJ, Zarins CK. The first 150 endovascular AAA repairs at a single institution: how steep is the learning curve? J ENDOVASC THER 2002 Jun;9(3):269-76.
- (89) Lee WA, Wolf YG, Fogarty TJ, Zarins CK. Does complete aneurysm exclusion ensure long-term success after endovascular repair? J ENDOVASC THER 2000 Dec;7(6):494-500.
- (90) Ramaiah VG, Westerband A, Thompson C, Ravi R, Rodriguez JA, DiMugno L, et al. The AneuRx stent-graft since FDA approval: single-center experience of 230 cases.[comment]. J ENDOVASC THER 2002 Aug;9(4):464-9.
- (91) Shames ML, Sanchez LA, Rubin BG, Choi ET, Geraghty PJ, Flye MW, et al. Delayed complications after endovascular AAA repair in women. J ENDOVASC THER 2003 Feb;10(1):10-5.
- (92) Wolf YG, Arko FR, Hill BB, Olcott C, Harris EJ, Jr., Fogarty TJ, et al. Gender differences in endovascular abdominal aortic aneurysm repair with the AneuRx stent graft. Journal of Vascular Surgery 2002 May;35(5):882-6.
- (93) Zarins CK, Wolf YG, Lee WA, Hill BB, Olcott C, IV, Harris EJ, et al. Will endovascular repair replace open surgery for abdominal aortic aneurysm repair? Annals of Surgery 2000 Oct;232(4):501-7.
- (94) Zarins CK. The US AneuRx Clinical Trial: 6-year clinical update 2002. Journal of Vascular Surgery 2003 Apr 1;37(4):904-8.
- (95) Zarins CK, Bloch DA, Crabtree T, Matsumoto AH, White RA, Fogarty TJ. Aneurysm enlargement following endovascular aneurysm repair: AneuRx clinical trial. Journal of Vascular Surgery 2004 Jan;39(1):109-17.
- (96) Faries PL, Cadot H, Agarwal G, Kent KC, Hollier LH, Marin ML. Management of endoleak after endovascular aneurysm repair: cuffs, coils, and conversion. Journal of Vascular Surgery 2003 Jun;37(6):1155-61.
- (97) Walsh PW, Chin-Quee S, Moore JE, Jr. Flow changes in the aorta associated with the deployment of a AAA stent graft. Medical Engineering & Physics 2003 May;25(4):299-307.

Appendix 1	Characteristics of the included studies
------------	---

Author(s)	Participant characteristics		Intervention details	Results					
AbuRahma 2004 ²⁸	Inclusion criteria: Not stated		Total number of EVAR:	Clinical outcomes	EVAR				
			151	Total number:	151				
Design: Case series	Exclusion criteria: Not stated			Deploy success:	148				
			Stent make	Technical success:	130				
Type: EVAR	Patient population		Ancure: 88	Duration:	NS				
		EVAR	AneuRx: 46	30-day mortality rate:	1				
Country: North America	No of participants:	151	Excluder: 17	Blood loss (ml):	263				
	No of males:	137 (91%)	C C	Days in ITU:	2				
Setting: Single centre	Average age (range):	74 (54-88)	Graft type Not stated	Days in hospital:	5				
Recruitment period: Autumn 1999	Max AAA diameter (cm):	NS	Not stated						
onwards	No referred for EVAR:	NS	Comparator(s): None	Change in aneurysm size					
onwards	No for whom EVAR is appropriate:	NS	Comparator(s): None		NS				
Funding: Not stated	~				NS				
i ununig. Het Stated	Co-morbidities:				NS				
	EVAR			No change in size:	NS				
	Hypertension 73%								
	Diabetes mellitus 23%			Other outcomes					
	Smoking 77%			Primary conversion:	NS				
	COPD 48%			Delayed conversion:	NS				
	CAD 72%			Secondary intervention EVA	AR: NS				
	Length of follow-up (range): 17	months (1-46		Adverse events	Follow-up		EVAR		
	months)				•	n	Ν	%	
				Local wound complication	<30 days	2	151	1.3	
	Losses to follow-up: Not stated			Cardiac event	<30 days	6	151	4.0	
				Haemorrhage	<30 days	4	151	2.6	
				Colonic ischaemia	<30 days	3	151	2.0	
				Renal impairment	<30 days	5	151	3.3	
				Type I endoleak	<30 days	10	151	6.6	
				Type II endoleak	<30 days	6	151	4.0	
				Type III endoleak	<30 days	0	151	0	
				Type IV endoleak	<30 days	2	151	1.3	

Author(s)	Participant characteristics	Intervention details	Results			
Allaqaband 2004 ²¹	Inclusion criteria: AAA >5.0 cm or >4.0cm and increased by 0.5 cm in 6 months. AAA neck > 15 mm	Total number of EVAR: 60	Clinical outcomes	EVAR	High risk EVAR	
Design: Comparative observational	length and 18-26 mm diameter.	Stent make	Total number:	15	45	
study		AneuRx: 57	Deploy success:	15	44	
	Exclusion criteria: Ruptured AAA	Ancure: 3	Technical success:	NS	NS	
Type: EVAR vs. EVAR (Normal vs.			Duration:	NS	NS	
High risk)	Patient population	Graft type	30-day mortality rate:	0	2	
	EVAR	Not stated	Blood loss (ml):	NS	NS	
Country: North America	No of participants: 60		Days in ITU:	NS	NS	
Setting: Single centre	No of males: 58 (97%)	Comparator(s): None	Days in hospital:	NS	NS	
Setting: Single centre	Average age (range):72 (54-88)					
Recruitment period: February 2000	Max AAA diameter (cm): 6		Change in aneurysm size			
to July 2002	No referred for EVAR: NS		Average post-AAA size:	NS		
to valy 2002	No for whom EVAR is appropriate: NS		Increase size:	0		
Funding: Not stated	Co-morbidities:		Decrease size:	NS		
C	EVAR		No change in size:	NS		
	Hypertension62%Smoking50%		Other outcomes			
	COPD 25%		Primary conversion:		1	
	Cordiac event 43%		Delayed conversion:		0	
	Cardiac event 43%		Secondary intervention E		NS	
	All patients were high risk and unsuitable for open		Secondary intervention H	ligh risk EVAR	R NS	
	repair. Classified according to the Society for Vascular				****	
	Surgery/International Society for Cardiovascular		Adverse events	Follow-up	EVAR	~
	Society (level I to level III).			20.1	n N	<u>%</u>
			Access artery injury	<30 days		3.3
	Length of follow-up (range): 14 (NS)		Type I endoleak	NS		1.7
			Graft limb thrombosis	<3 months		3.4
	Losses to follow-up: Not stated		Mortality non AAA	6 months		1.7
			Renal impairment	<30 days	0 58	0

Author(s)	Participant characteristics		Intervention details	Results		
Becquemin 2004 ²⁷	Inclusion criteria: Nonruptured abdominal aneurysms	atherosclerotic	Total number of EVAR: 250	Clinical outcomes	EVAR I (without secondary	EVAR II (with secondary
Design: Comparative observational					intervention)	intervention)
study	Exclusion criteria: Ruptured and iliac a	aneurysms	Stent make	Total number:	182	68
			Stentor: 8	Deploy success:	NS	NS
Type: EVAR vs. EVAR	Patient population	DYAD	Vanguard: 58 EVT: 13	Technical success:	NS	NS
Country: France	Nf	EVAR	Talent: 6	Duration:	NS	NS
Country: France	No of participants:	250	Stenway: 10	30-day mortality rate:	4	1
Setting: Single centre	No of males:	234 (94%)	Cook: 111	Blood loss (ml):	NS	NS
Setting. Single centre	Average age (range):	71 (NS)	AneuRx: 21	Days in ITU:	NS	NS
Recruitment period: January 1995 to	Max AAA diameter (cm):	5 NS	Excluder: 22	Days in hospital:	NS	NS
December 2002	No referred for EVAR:		Excluder. 22			
	No for whom EVAR is appropriate:	NS	Graft type	Change in aneurysm size		
Funding: Not stated	Co-morbidities:		Not stated	Average post-AAA size:		
8	Co-morbidities:			Increase size:	NS	
			Comparator(s): None	Decrease size:	NS	
	71			No change in size:	NS	
	SmokingNSCOPDNS					
	COPD NS Cardiac event NS			Other outcomes		
	ASA III/IV 149			Primary conversion:	NS	
	ASA 111/1V 149			Delayed conversion:	11	
	Length of follow-up (range): 28 month	20		Secondary intervention I		
	Length of follow-up (range): 28 month	15		Secondary intervention I	EVAR II: 112	
	Losses to follow-up: Not stated					V/ D
	Losses to rono " up. rior stated			Adverse events	· ·	VAR
				True Londoloolo	n NG 26	<u>N %</u>
				Type I endoleak		250 14.4
				Type II endoleak		250 13.2
				Stent migration		250 1.6
				Graft limb thrombosis		250 6.0
				Mortality Total	~	250 6.0
				Mortality Total		250 17.2
				Type III endoleak		250 4.8
	<u> </u>			Graft stenosis	NS 8	250 3.2

Author(s)	Participant characteristics		Intervention details	Results					
Biebl 2004 ²³	Inclusion criteria: Not stated		Total number of EVAR:	Clinical outcomes	<80 yrs	>80 yr	s		
			182	Total number:	133	49			
Design: Comparative observational	Exclusion criteria: Iliac diameter <7	,		Deploy success:	NS	NS			
study (retrospective)	neck with mural thrombus, angulation	>60 degrees	Stent make	Technical success:	130	47			
			AneuRx: 87	Duration (min):	182	179			
Type: EVAR vs. EVAR	Patient population		Zenith: 40 Talent: 18	30-day mortality rate:	1	0			
Country North America				Blood loss (ml):	470	470			
Country: North America	No of participants: 182		Creaft tring	Days in ITU:	NS	NS			
Setting: Single centre	No of males:	169 (93%)	Graft type Not stated	Days in hospital:	4	4			
Setting: Single centre	Average age (range):	72	Not stated						
Recruitment period: June 1999 to	Max AAA diameter (cm):	6	Comparator(s):	Change in aneurysm size					
September 2003	No referred for EVAR:	NS	Comparator(3).	Average post-AAA size:	NS				
September 2000	No for whom EVAR is appropriate:	NS		Increase size:	5				
Funding: Not stated					NS				
	Co-morbidities:	. 00		No change in size:	NS				
	<80 yrsHypertension68%	>80 yrs 63%							
	Hypertension68%Diabetes mellitus14%	03% 10%		Other outcomes					
	Smoking 47%	29%			NS				
	COPD 47%	29% 55%		, , , , , , , , , , , , , , , , , , ,	3				
	CAD 60%	65%		Secondary intervention:	27				
	ASA IV 16%	14%			n				
	ASA IV 10%	14%		Adverse events	Follow-up		EVAR	~	
	Length of follow-up (range): 16 m	on the (0 to 13)				n	N	%	
	month)	ionuis (0 to 45		Local wound complication*	,	12	182	6.6	
	hiohui)			Stent migration	NS	7	182	3.9	
	Losses to follow-up:			Graft infection	NS	0	182	0	
	·····			Cardiac event	<30 days	2	182	1.1	
				Graft limb thrombosis	NS	5	182	2.8	
				AAA rupture	NS	0	182	0	
				Renal impairment	<30 days	29	182	15.9	
				Mortality Total	1 year	12	182	6.6	
				Graft migration	NS	7	182	3.8	
				Endoleak (type unspecified		22	182	12.1	
				Type I endoleak	NS	6	182	3.3	
				Type II endoleak	NS	31	182	17.0	
				Type III endoleak	NS		182	0.5	
				*included wound infection	and groin lympho	oceles			

Author(s)	Participant characteristics	Intervention details	Results							
Blankensteijn 2005	See Prinssen 2004 ⁴⁴	Total number of EVAR:	Clinical outcomes	EVAR	EVAR Open repair					
		173	Total number:							
Design: RCT	Length of follow-up (range)		Deploy success:							
	Open repair: mean 21 months (0-39)	Stent make	Technical success:		See Prinssen 2004 ⁴⁴					
Type: EVAR versus open repair	EVAR: mean 22 months (1-42)	See Prinssen 2004 ⁴⁴	Duration (min):	C D						
			30-day mortality rate:	See Fri	nssen 20	004				
Country: Netherlands & Belgium	Losses to follow-up: 19	Graft type	Blood loss (ml):							
		See Prinssen 2004 ⁴⁴	Days in ITU:							
Setting: Multicentre			Days in hospital:							
Description Normalian		Comparator(s)	· · · ·							
Recruitment period: November 2000 to December 2003		Open repair: 178								
2000 to December 2003			Cumulative survival rate	e at 2 years: 8	9.6% op	oen repair	vs. 89	9.7% EV	/AR (di	fference
Funding: Netherlands National			of -0.1 percentage points, 9	95% CI -6.8 to	6.7 per	centage p	oints; p	p=0.86)		
Health Insurance Council										
Health Insurance Coulen			Cumulative rate of aneu							
			EVAR (difference of 3.7	percentage p	oints, 9	5% CI -	0.5 to	7.9 per	rcentage	points;
			p=0.05)							
				e			0.00			02.10
			Rates of survival free o EVAR (difference of -2.5							
			p=0.39)	percentage p	onnis, 9	5% CI -1	0.9 10	5.9 pe	rcemage	points;
			p=0.39)							
			Rate of re-intervention a	at 9 months. I	VAR 1	vs open i	renair	HR 29	95% C	'I 1 1 to
			6.2; p=0.03	it > montilis. I		of open i	opun	III(2.)	, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	1 1.1 10
			, F							
			Event	Follow-		EVAR		0	pen rep	air
				up	n	Ν	%	n	N	%
			All cause mortality	NS	20	173	11.6	18	178	10.1
			Cardiovascular deaths	NS	7	173	4.0	5	178	2.8
			Aneurysm-related	NS	2	173	1.2	8	178	4.5
							-			

Author(s)	Participant characteristics	Intervention details	Results				
Boult 2004 ²⁹	Inclusion criteria: Not stated	Total number of EVAR:	Clinical outcomes EVAR				
		950	Total number: 950				
Design: Population-based registry	Exclusion criteria: Not stated		Deploy success: NS				
		Stent make	Technical success: 853				
Type: EVAR	Patient population	Zenith: 785	Duration: NS				
	EVAR	Ancure: 14	30-day mortality rate: 16				
Country: Australia	No of participants: 950	AneuRx: 62	Blood loss (ml): NS				
Catting on Martin and an	No of males: 816	Excluder: 41 Talent: 35	Days in ITU: NS				
Setting: Multicentre	(86%)	Vanguard: 7	Days in hospital: 7.4				
Recruitment period: November	Average age (range): 75 (NS)	valiguard: 7					
1999 to May 2001	Max AAA diameter (cm): 6	Graft type	Change in aneurysm size				
1999 to Way 2001	No referred for EVAR: NS	Bifurcated: 865	Average post-AAA size: NS				
Funding: Not stated	No for whom EVAR is NS	Bildicated. 005	Increase size: NS				
i unung. Hot stated	appropriate:	Comparator(s): None	Decrease size: NS				
		•••• •	No change in size: NS				
	Co-morbidities:						
	EVAR		Other outcomes				
	Hypertension NS		Primary conversion: 9				
	Smoking NS		Delayed conversion: NS				
	COPD NS		Secondary intervention EVAR: 223				
	Cardiac event NS						
	ASA III 59%		Adverse events	Follow-up]	EVAR	
	I an ath affallan an (name). Not stated				n	Ν	%
	Length of follow-up (range): Not stated		Type I endoleak	<30 days			2.6
	Lagger to follow up Not stated		Type II endoleak	<30 days	44	950	4.6
	Losses to follow-up: Not stated		Cardiac event	<30 days	69	950	7.3
			Graft related complications*	NS	131	950	13.7
			*included failed access, access vessel	complications,	failed an	nd mispl	aced
			deployment of endografts, imperfec	t seal, twist/l	kink/obst	ruction	and
			embolisation.				
			Patients unsuitable for open repair				
			410 patients were unsuitable for open repa	2	2		· //
			17% had graft related complications (7	0/410) and 26	.6% (10	9/410) ł	nad systemic
			complications.				

Author(s)	Participant characteristics			Intervention details	Results							
Cao 2004 ¹⁸	Inclusion criteria: Not stated			Total number of EVAR:	Clinical outcomes	EVAR	Op	en repai	r			
				534	Total number:	534		585				
Design: Non-randomised controlled	Exclusion criteria: Re	peat aortic	surgery,		Deploy success:	NS		-				
trial	thoracoabdominal or suprare	nal aneurysms,	, Ruptured	Stent make	Technical success:	NS		-				
	AAA.			AneuRx: 239	Duration (min):	120		180				
Type: EVAR vs. Open repair				Zenith: 109	30-day mortality rate:	5		24				
	Patient population	-		Excluder: 71	Blood loss (ml):	200		1400				
Country: Italy		EVAR	Open	Talent: 69	Days in ITU:	NS		NS				
			repair	Quantum/Fortron: 31	Days in hospital:	2		6				
Setting: Single centre	No of participants:	534	585	Anaconda: 11								
	No of males:	502	527	Endologix: 3	Change in aneurysm size							
Recruitment period: January 1997 to		(94%)	(90%)	Endofit: 1	Average post-AAA size:	NS						
December 2003	Average age (range):	73 (NS)	72		Increase size:	39						
			(NS)	Graft type	Decrease size:	282						
Funding: Not stated	Median AAA diameter	5.2	5.6	Tube: 4	No change in size:	NS						
	(cm):			Bifurcated: 520 Uniiliac: 10	i to change in size.	110						
	No referred for EVAR:	NS	NS	Unifiac: 10	Other outcomes							
	No for whom EVAR is	appropriate:		Componenter(a)	Primary conversion:		7					
	appropriate:			Comparator(s) Open repair: 585	Delayed conversion:		19					
	-		Open repair. 585	Secondary intervention E		84						
	Co-morbidities:				Secondary intervention D		17					
	E		pen		Secondary intervention of	pen repair.	17					
	repair			Adverse events	Follow-	EVAR			Open repair		air	
			6%		Auverse events	up	n	N	%	n	N	m %
			7%		Local wound	<30 days	13	534	2.4	13	585	2.2
			NS		complications	<50 days	15	554	2.4	15	565	2.2
			8%		Type I endoleak	NS	1	529	0.2		-	
			7%		Type II endoleak	NS	31	529	5.9	-	-	-
	ASA IV 1	6% 6	5%		Cardiac event	<30 days	9	534	1.7	25	585	4.3
					Colonic ischaemia	<30 days	3	534	0.6	23	585	0.3
	Length of follow-up (range)	Not stated			Lower limb ischaemia	<30 days	8	534	1.5	14	585	2.4
					AAA rupture	<30 days	0	534	0.2	-	-	-
	Losses to follow-up: 1					NS	1	529	1.1			
					AAA rupture		6			-	- 585	- 0.7
					Renal impairment	<30 days	6	534	1.1	4	383	0.7
					Pulmonary complications	<30 days	2	534	0.4	-	-	-
					1	NC	2	524	0.4	27	E05	16
					Respiratory	NS	2	534	0.4	27	585	4.6
					complications*	NG	101	524	10.0	70	505	12.2
					Mortality non AAA-	NS	101	534	18.9	78	585	13.3
					related		L	<u> </u>				
					*included pneumonia, res	piratory faliur	e and p	neunoth	orax			

Author(s)	Participant characteristics	5		Intervention details	Results						
Carpenter 2004 ¹⁷				Clinical outcomes	EVAR		Open rep	air			
	degree angle, 18-26 mm dia				Total number:	192 66					
Design: Non-randomised controlled	or rapidly growing. Dispensable inferior mesenteric			Deploy success:	188 -						
trial	artery. Infrarenal AAA. Fit	for open	repair	Stent make	Technical success:	167 -					
			~	Powerlink: 192	Duration:	136		222			
Type: EVAR vs. Open repair	Exclusion criteria: Pres				30-day mortality rate:	2		4			
Countrie North America	disorder. Life expectancy le	ss than t	wo years. Ruptures.	Graft type Tube: 0	Blood loss (ml):	341		1583			
Country: North America	Patient population			Bifurcated: 192	Days in ITU:	1		4			
Setting: Multicentre	Patient population	IZ	VAR Open	Uniiliac: 0	Days in hospital:	3		10			
Setting. Wulleende		E	repair	Olimiae. 0							
Recruitment period: July 2000 to	No of participants:		192 66	Comparator(s)	Change in aneurysm size						
March 2003	No of males:		170 57	Open repair: 66	Average post-AAA size:	4					
	ivo or males.		88%) (86%)	- F F	Increase size:	2					
Funding: Not stated	Average age (range):	,	3 (52- 69 (56-	4	Decrease size:	NS					
5	riverage age (range).		88) 83)		No change in size:	NS					
	Max AAA diameter (cm):		5.1 5.8								
	No referred for EVAR:		NS -		Other outcomes						
	No for whom EVAR		NS -	1	Primary conversion:		3				
	appropriate:				Delayed conversion:		3				
				-	Secondary intervention E		29				
	Co-morbidities:				Secondary intervention C	pen repair:	NS				
]	EVAR	Open							~	
			repair		Adverse events	Follow-		EVAR	~	Open 1	
	Hypertension	64%	70%			up	n			n N	%
	Diabetes mellitus	13%	18%		Type I endoleak	<30 days	1				-
	Smoking	83%	86%		Type I endoleak	1 year	0		0		-
	COPD	32%	24%		Type I endoleak	2 years	0		0		-
	Cardiac event	46%	59%		Type II endoleak	<30 days	22		8.2		-
					Type II endoleak	1 year	16				-
	Length of follow-up (range	e): 22 m	onths (NS)		Type II endoleak	2 years NS	3				
					Stent migration		3				-
	Losses to follow-up:				Cardiac event	<30 days	2			5 66	7.6
					Mortality AAA related Graft limb thrombosis	NS NS	1		0.5 1		+
					Mortality total	NS	4			 9 66	- 12.6
						NS	-			,	13.6
					AAA rupture	NS	0			0 66	
					Type III endoleak Graft stenosis	NS	0		.6		-
					Renal impairment	<30 days	2			 6 66	9.1
					Pulmonary	<30 days	4			6 66 5 66	
					complications	< 50 days	4	192 2		5 00	7.0
					complications		1				

Author(s)	Participant characteristics	Intervention details	Results
Cho 2004 ³⁰	Inclusion criteria: Not stated	Total number of EVAR: 50	Clinical outcomes EVAR
			Total number: 50
Design: Case series	Exclusion criteria: Not stated	Stent make	Deploy success: NS
The Star	Defending later	Excluder: 50	Technical success: NS
Type: EVAR	Patient population	Graft type	Duration: NS
Country: North America	EVAR No of participants: 50	Not stated	30-day mortality rate: 0
Country: North America	No of participants:50No of males:NS	Not stated	Blood loss (ml): NS
Setting: Single centre	No of males:NSAverage age (range):73 (NS)		Days in ITU: NS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Max AAA diameter (cm): 5	Comparator(s): None	Days in hospital: NS
Recruitment period: May 1999 to	No referred for EVAR: 0		GL
July 2002	No for whom EVAR is appropriate: 0		Change in aneurysm size           Average post-AAA size:         5
			Average post-AAA size: 5 Increase size: 7
Funding: Not stated	Co-morbidities:		Decrease size: 4
	EVAR		No change in size: 8
	Hypertension NS		No change in size.
	Smoking NS		Other outcomes
	COPD NS		Primary conversion: 1
	Cardiac event NS		Delayed conversion: 1
			Secondary intervention EVAR: 0
	Length of follow-up (range): 34 (NS)		
			Adverse events Follow-up EVAR
	Losses to follow-up: 5		n N %
			Mortality non AAA 6 months 3 49 6.1
			AAA rupture NS 0 45 0
			Stent migration NS 0 45 0
			Mortality non AAA NS 7 45 15.6
			Type II endoleakNS84517.8
			Type I endoleak NS 0 45 0
			Type III endoleak NS 0 45 0
			Comments
			Post AAA size 4.7 at 2 years, but 4.9 cm at 3 years. Changes in size documented at last follow-up
			Changes in size documented at last follow-up

Author(s)	Participant characteristics	Intervention details	Results	
Corriere 2004 ²⁴	Inclusion criteria: Not stated	Total number of EVAR:	Clinical outcomes EVAF	1
<b>Design:</b> Case series (retrospective)	Exclusion criteria: Not stated	220	Total number:NSDeploy success:NS	
		Stent make	Technical success: NS	
Type: EVAR	Patient population	Ancure: 158	Duration: NS	
Country: North America	EVAR	Excluder: 51 AneuRx: 11	30-day mortality rate: NS	
Country: North America	No of participants:220No of males:194 (88%)	AlleuKx. 11	Blood loss (ml): NS	
Setting: Single centre	No of males. $194 (88\%)$ Average age (range): $72 (43-92)$		Days in ITU: NS	
	Mean AAA diameter (cm): 6	Graft type	Days in hospital: NS	
Recruitment period: 1993 to 2002	No referred for EVAR: NS	Tube: 11	Change in aneurysm size	
Funding: Not stated	No for whom EVAR is appropriate: NS	Bifurcated: 205 Uniiliac: 4	Average post-AAA size: NS	
Funding. Not stated		ommae. 4	Increase size: NS	
	Co-morbidities:	Comparator(s): None	Decrease size: NS	
	EVAR Hypertension NS		No change in size: NS	
	Smoking NS			
	COPD NS		Other outcomes Primary conversion:	NS
	Cardiac event NS		Delayed conversion:	NS
			Secondary intervention EVAR:	NS
	Length of follow-up (range): Not stated		Secondary intervention High risk E	
	Y A CH NYA A I			
	Losses to follow-up: Not stated		Adverse events Follow-	
				n N %
			Type I endoleak NS	13 220 5.9
			Type II endoleak NS	35 220 15.9
			Type III endoleakNSEndoleak (undefined)NS	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
			Endoleak (undefined)NSAAA ruptureNS	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
				0 220 0

Author(s)	Participant characteristics	Intervention details	Results
Dalainas 2004 ³¹	<b>Inclusion criteria</b> : AAA $\geq$ 5 cm males, $\geq$ 4cm females, >4 cm and increased in size by 0.5cm in 6 months.	<b>Total number of EVAR:</b> 186	Clinical outcomes         EVAR           Total number:         186
<b>Design:</b> Case series (retrospective)	Short life expectancy, anatomical criteria (proximal aneurysm neck length and diameter, the angulation	Stent make	Deploy success: 182 Technical success: NS
Type: EVAR	between the longitudinal axis of the proximal neck and the longitudinal axis of the aneurysm, the diameter and	Excluder: 89 Lifepath:33	Duration (min):     182       30-day mortality rate:     2
Country: Italy	status of the iliac arteries).	Endologix: 31 Vanguard: 23	Blood loss (ml): 370
Setting: Single centre	Exclusion criteria: Not stated	Anaconda: 9 Talent: 1	Days in ITU:NSDays in hospital:5
<b>Recruitment period:</b> October 1998 to January 2003	Patient population EVAR	<b>Graft type</b> Tube: 7	Change in aneurysm size Average post-AAA size: NS
Funding: Not stated	No of participants:         186           No of males:         140 (75%)           Average age (range):         71 (61-88)	Bifurcated: 166 Uniiliac: 13	Increase size:     NS       Decrease size:     NS       No change in size:     NS
	Max AAA diameter (cm):       6         No referred for EVAR:       NS         No for whom EVAR is appropriate:       NS	Comparator(s): None	Other outcomes       Primary conversion:
	Co-morbidities: EVAR		Delayed conversion:4Secondary intervention EVAR:19
	Hypertension62%Diabetes mellitus6%		Adverse events Follow-up EVAR
	Smoking85%COPD9%		nN%Localwound<30 days2718214.8complications
	CAD 37%		Type I endoleak NS 12 182 6.6
	<b>Length of follow-up (range)</b> : mean 26 months (9 to 60)		Type II endoleak         NS         5         182         2.7           Cardiac event         <30 days
	,		Renal impairment<30 days71823.8
	Losses to follow-up: Not stated		

Author(s)	Participant characteristics I			Intervention details	Results							
Elkouri 2004 ²⁵	Inclusion criteria: Asymptomatic, elective AAA To		<b>Total number of EVAR: </b> 94	Clinical outcomes	EVAF	2 (	Open re	epair				
				Total number:	94		261					
Design: Non-randomised controlled			Stent make	Deploy success:	93		-					
trial (retrospective)	aneurysms, dissected or rupture	ed aneurysms	5	Ancure: 38	Technical success:	69		-				
				AneuRx: 53	Duration:	NS		NS				
Type: EVAR vs. Open repair	Patient population			Endologix: 3	30-day mortality rate	: 0		3				
		EVAR	Open	C C	Blood loss (ml):	NS		NS				
Country: North America			repair	Graft type	Days in ITU:	1		2				
Catting Cingle contra	No of participants:	94	261	Not stated	Days in hospital:	3		8				
Setting: Single centre	No of males:	85 (90%)	229	Componetar(a)		-						
Recruitment period: December 1999		<b>7</b> 2 ( <b>7</b> 2	(88%)	Comparator(s) Open repair: 261	Change in aneurysm s	size						
to December 2001	Average age (range):	73 (52-	77	Open repair. 201	Average post-AAA s	ize: NS						
to December 2001		90)	(61-		Increase size:	2						
Funding:		(	98)		Decrease size:	28						
r unung.	Max AAA diameter (cm):	6 NG	6		No change in size:	63						
	No referred for EVAR:	NS	-			· ·						
	No for whom EVAR is	NS	-		Other outcomes							
	appropriate:				Primary conversion:		1					
	Co-morbidities:				Delayed conversion:		NS	1				
	EV				Secondary intervention	on EVAR:	20	1				
	EV	-	Open		Secondary intervention	on Open repair	r: 21	1				
	Hypertension 81		epair 69%					-				
	Smoking (current) 12		18%		Adverse events	Follow-	Follow-			Open repair		air
	COPD 30		25%			up	n	Ν	%	n	N	%
	COPD 50 CAD 61		59%		Local wound	<30 days	6	94	6.4	15	261	5.7
	CAD 61	%	<b>69%</b>		complications	-						
	Length of follow-up (range):	Not stated			Cardiac event	<30 days	10	94	10.6	57	261	21.8
	Length of follow-up (range):	Not stated			Renal impairment	<30 days	4	94	4.3	11	261	4.2
	Losses to follow-up: 44				Pulmonary	<30 days	3	94	3.2	42	261	16.1
	Losses to follow-up. 44				complications	5						
					Graft related	<30 days	12	94	12.8	10	261	3.8
					complications	-						
					Endoleak (not	NS	26	94	27.7	-	-	-
					specified)							

Author(s)	Participant characteristics	Intervention details	Results	
Espinosa 2005 ³²	<b>Inclusion criteria</b> : AAA >4.5 cm or >0.5cm increase	Total number of EVAR:	Clinical outcomes EVAR	
	in 6 months.	193	Total number: 193	
Design: Case series			Deploy success: 191	
	Exclusion criteria: AAA <4.0 cm, Prox neck <0.5	Stent make	Technical success: 178	
Type: EVAR	cm, rupture, suprarenal AAA, Bilateral iliac occlusion	Talent: 193	Duration: NS	
			30-day mortality rate: 7	
Country: Brazil	Patient population	Graft type	Blood loss (ml): NS	
	EVAR	Tube: 2	Days in ITU: NS	
Setting: Single centre	No of participants: 193	Bifurcated: 177	Days in hospital: NS	
<b>D</b>	No of males: 171 (89%)	Uniiliac: 12		-
<b>Recruitment period:</b> June 1997 to	Average age (range): 71 (52-89)		Change in aneurysm size	
June 2003	Max AAA diameter (cm): 6	Comparator(s): None	Average post-AAA size: NS	
E	No referred for EVAR: 267		Increase size: NS	
Funding:	No for whom EVAR is appropriate: 193		Decrease size: NS	
			No change in size: NS	
	Co-morbidities:			
	EVAR		Other outcomes	
	ASA I 13.5%		Primary conversion: 1	
	ASA II 43.5%		Delayed conversion: NS	
	ASA III 38.9%		Secondary intervention EVAR: NS	
	ASA IV 3.6%			1
			Adverse events Follow-up	EVAR
	Length of follow-up (range): 36 months			n N %
	Losses to follow-up: 26		Access artery injury NS	4 193 2.1
	Losses to follow-up: 20		Local wound NS	6 193 3.1
			complications	
			Type II endoleak <30 days	7 193 3.8
			Type II endoleak NS	6 191 3.1
			Mortality AAA related 3 years	1 57
			Graft limb thrombosis NS	0 191 0
			Mortality non AAA 1 year	6 159 3.8
			Mortality non AAA 5 years	25 193 13.0
			AAA rupture NS	1 193 0.5
			Spinal cord ischaemia NS	1 193 0.5

Author(s)	Participant characteristics		Intervention details		Results							
Fairman 2004 ³³	Inclusion criteria: Not stated. Comp		Total number of H	EVAR:	Clinical outcomes	Complicated	d Unco	omplicat	ed			
	criteria included short <15 mm, an		237		Total number:	153		66				
<b>Design:</b> Comparative observational	degrees, calcified, thrombus lined, dilat	ed >28 mm.			Deploy success:							
study (retrospective)			Stent make		Technical success:							
	Exclusion criteria: Neck angulation >6	65 degrees	,	profile	Duration:	177		160				
Type: EVAR vs. EVAR			system):237		30-day mortality rate:							
(Complicated vs. uncomplicated	Patient population				Blood loss (ml):	321		351				
aortic necks)		EVAR	Graft type		Days in ITU:							
	No of participants:	237	Tube: 0		Days in hospital:							
Country: North America	No of males:	NS	Bifurcated: 237		Duys in nospital.							
	Average age (range):	NS	Uniiliac: 0		Change in aneurysm size							
Setting: Multicentre	Max AAA diameter (cm):	NS			Change in aneur ysin size	1 year	2 years	3 year	6			
	No referred for EVAR:	NS	-				(n=16)	(n=14				
Recruitment period: Not stated	No for whom EVAR is	NS	Comparator(s):		Average post-AAA size:	NS	NS	NS	,			
Funding: Not stated	appropriate:				Increase size:	0	4	1				
runung. Not stated					Decrease size:	29	8	7				
	Co-morbidities:				No change in size:	90	4	6				
	EVAR											
	Hypertension NS				Other outcomes							
	Smoking NS				Primary conversion:		0					
	COPD NS				Delayed conversion:		6					
	Cardiac event NS				Secondary intervention Co	omplicated:	NS					
		h -			Secondary intervention Un	ncomplicated	: NS					
	Length of follow-up (range): 21 month	115				_						
	Losses to follow-up: Not stated				Adverse events	Follow-	Co	mplicate		Unc	omplica	
	Losses to Tonow-up. Not stated					up	n	Ν	%	n	Ν	%
					Type I endoleak	NS	16		10.5	10	66	15.2
					Type II endoleak	NS	18		11.8	8	66	12.1
					Endoleak (type	NS	12	153	7.8	12	66	18.2
					unknown)							
					Renal complications	<30 days	23		15.0	6	66	9.1
					Renal complications	NS	42	153	27.5	9	66	13.6

Author(s)	Participant characteristics			Intervention details	Results							
Garcia-Madrid 2004 ³⁴	Inclusion criteria: AAA >5.0cm, patient suitable for			Total number of EVAR:	Clinical outcomes	en repai	r					
	EVAR or open repair. 53		53	Total number:	53		30					
Design: Non-randomised controlled					Deploy success:	NS		NS				
trial	Exclusion criteria: Rupt	ured, juxtar	enal, iliac	Stent make	Technical success:	48		30				
	aneurysms.			Not stated	Duration (min):	125		180				
Type: EVAR vs. Open repair					30-day mortality rate:	2		2				
~ . ~ .	Patient population	1	1 - 1	Graft type	Blood loss (ml):	NS		NS				
Country: Spain		EVAR	Open	Tube: 1	Days in ITU:	2 hours	1'	7 hours				
			repair	Bifurcated: 47	Days in hospital:	2		6				
Setting: Single centre	No of participants:	53	30	Uniiliac: 5	<b>J</b> 1		1					
<b>D</b>	No of males:	51	28		Change in aneurysm size	9						
Recruitment period: March 1997		(96%)	(93%)	Compared ()	Average post-AAA size:							
to August 2000	Median age (range):	73 (52-	70	Comparator(s) Open repair: 30	Increase size:	NS						
Funding: Fellowship grant from the		85)	(50-	Open repair: 50	Decrease size:	NS						
Funding: Fenowship grant from the Foundation Clinic			90)		No change in size:	NS						
Foundation Chine	Mean AAA diameter	6.2	6.4									
	(cm):				Other outcomes							
	No referred for EVAR:	NS	-		Primary conversion:		0					
	No for whom EVAR is	NS	-		Delayed conversion:		NS					
	appropriate:				Secondary intervention I		1					
	Co-morbidities:				Secondary intervention		9					
		VAR	Open			T.U.	1	EVAD				
			repair		Adverse events	Follow-up		EVAR		-	oen rep	
	71	35%	60%		<b>T I I I I</b>	-20 1	n	N	%	n	Ν	%
	Diabetes mellitus	24%	7%		Type I endoleak	<30 days	2	53	3.8	-	-	-
	Smoking 8	37%	65%		Type I endoleak	NS	1	53	1.9	-	-	-
	COPD	70%	50%		Type II endoleak	<30 days	3	53	5.7	-	-	-
	Cardiac event	54%	54%		Type II endoleak	NS	2	53	3.8	-	-	-
	· · · ·				Cardiac event	<30 days	2	53	3.8	1	30	3.3
	Length of follow-up (range): 26 months				Mortality total	3 years	6	53	11.0	8	30	27.0
					Type III endoleak	NS	6	53	11.3	-	-	-
	Losses to follow-up: Not sta	ted										

Author(s)	Participant characteri	stics			Intervention details	Results							
Greenberg 2004 ³⁵	Inclusion criteria: Not	stated			Total number of EVAR:	Clinical outcomes	EVAR	Ор	en repai	r			
					352	Total number:	200		80				
Design: Non-randomised controlled	Exclusion criteria: Not	t stated			Standard risk: 200	Deploy success:	199		79				
trial					High risk: 100	Technical success*:	165		-				
	Patient population				Roll-in group*: 52	Duration:	NS		NS				
Type: EVAR vs. Open surgery		EV	'AR	Open		30-day mortality rate:	1		2				
				repair	Stent make	Blood loss (ml):	NS		NS				
Country: North America	No of participants:		52	80	Zenith: 352	Days in ITU:	NS		NS				
	No of males:		1S	NS		Days in hospital:	NS		NS				
Setting: Multicentre	Average age (range):		IS	NS	Graft type	*Defined as no Type I or	· III endoleak a	t 30 day	vs				
<b>D</b>	Max AAA diameter (d		IS	NS	Not stated	51							
<b>Recruitment period:</b> January 2000 to June 2001	No referred for EVAR		1S	NS		Change in aneurysm size							
to June 2001	No for whom EVA	R is N	1S	NS	Componenter(a)	Average post-AAA size:							
Funding: Cook Inc.z	appropriate:				<b>Comparator(s)</b> Open repair: 80	Increase size:	3*						
Funding: Cook Inc.z					Open repair: 80	Decrease size:	NS						
	Co-morbidities:				*received treatment at	No change in size:	NS						
		EVAR		Open	centres that were achieving	*at 1 year							
				epair	familiarity with the device.	<u> </u>							
	Hypertension	NS		NS	familiarity with the device.	Other outcomes							
	Smoking	NS		NS		Primary conversion:		0					
	COPD	NS		NS		Delayed conversion:		4					
	Cardiac event	NS	]	NS		Secondary intervention E	EVAR:	22					
						Secondary intervention (		2					
	Length of follow-up (r	ange): Not s	tated										
						Adverse events	Follow-up		EVAR		O	pen rep	air
	Losses to follow-up: N	ot stated					<b>- F</b>	n	N	%	n	N	%
						Stent migration	1 year	4	200	2.0	-	-	-
						Graft infection	NS	2	200	1.0	-	-	-
						Cardiac event	<30 days	6	200	3.0	9	80	11.3
						Mortality AAA related	1 year	1	200	0.5	3	80	3.8
						Mortality Total	1 year	7	200	3.5	3	80	3.8
						Wire fracture	1 year	4	200	2.0	-	-	-
						Renal impairment	<30 days	5	200	2.5	9	80	11.3
						Renal impairment	1 year	5	200	2.5	3	80	3.8
						Pulmonary	<30days	2	200	1.0	13	80	16.3
						complications	100 <b>u</b> ujb	_				00	10.0
						F	1			1	1	1	1
1													

Author(s)	Participant characteristics			Intervention details	Results			
Greenhalgh 2004 ²²	Inclusion criteria: Aged >60			Total number of EVAR:	Clinical outcomes	EVAR	Open repair	
	Anatomically suitable for EVA	AR. Medica	lly suitable	531	Total number:	531	516	
Design: Randomised controlled trial	for OR.				Deploy success:	NS	NS	
				Stent make	Technical success:	NS	NS	
Type: EVAR vs. Open repair (EVAR	Exclusion criteria: Not stated			Zenith: 271	Duration:	180	200	
I)				Talent: 175	30-day mortality rate:	9	24	
	Patient population	1		Excluder: 37	Blood loss (ml):	NS	NS	
Country: United Kingdom		EVAR	Open	AneuRx: 21	Days in ITU:	NS	NS	
			repair	Quantum/Teramed: 11	Days in hospital:	7	12	
Setting: Multicentre	No of participants:	543	539		I			
<b>D</b>	No of males:	494	489	Graft type	Change in aneurysm size	e		
<b>Recruitment period:</b> September 1999 to December 2003		(91%)	(91%)	Tube: 0 Bifurcated: 478	Average post-AAA size			
to December 2005	Average age (range):	74.2	74.0	Uniiliac: 53	Increase size:	NS		
Funding: National Health Service		(NS)	(NS)	Unimac: 55	Decrease size:	NS		
Research and Development Health	AAA diameter (cm):	6.5	6.5		No change in size:	NS		
Technology Assessment Programme.	No referred for EVAR:	NS	-	Comparator(s)				
reemology Assessment Programme.	No for whom EVAR is	NS	-	Open repair: 516	Other outcomes			
	appropriate:			openrepairero	Primary conversion:		10	
	a				Delayed conversion:		NS	
	Co-morbidities:				Secondary intervention	EVAR:	52	
	EVA		Open		Secondary intervention	High risk EVA		
			epair			<u> </u>		
	Diabetes 99		12%		Adverse events	Follow-up	EVAR	
	Smoking 899		92%			· · · <b>· · ·</b>	n N %	
	Cardiac disease 449	% 2	43%		1	None reported		
	Length of follow-up (range): 3	30 days				<u>k</u>		
	Losses to follow-up: 24							

Author(s)	Results											
Greenhalgh 2005a ⁴⁵	Outcome	EVAR	Open	Haza	rd ratio (H	R) from Cox re	gressior	n model				
	by intention to treat		repair	Crud	e		Prima	ry Adjusted ^b		Secon	dary Adjusted ^c	
Design: RCT				HR	95% CI	р	HR	95% CI	р	HR	95% CI	р
	Aneurysm-related deaths ^a	19/543	34/539	0.55	[0.31-0.9	06] (0.04)	0.55	[0.31-0.96]	(0.04)	0.51	[0.29-0.92]	(0.02)
Type: EVAR versus open repair	Deaths from all causes	100/543	109/539	0.90	[0.69-1.]		0.90	[0.69-1.19]	(0.46)	0.88	[0.67-1.16]	(0.36)
Country: UK	^a Defined as deaths occurring I713-I719.	-			-			-	-	ng caus	e given as ICD	10 codes
Setting: Multicentre		Adjusted for age, sex, forced expiratory volume in 1 second (FEV ₁ ), AAA diameter, log[creatinine] and statin use. Adjusted for already included variables in the primary adjustment plus body mass index, smoking, systolic blood pressure and serum cholesterol.										
Recruitment period: September 1999 to December 2003	Complications - <30 days aft	er primary	AAA repair	r	EVAR n=543	Open repair n=539						
Funding: National Health Service Research and Development Health Technology Assessment Programme.	Procedure related AAA (elec AAA rupture => emergency Died of rupture after elective Other cardiovascular	repair AAA repa			7 1 1	23 1 0						
Length of follow-up (range): median 2.9 years (IQR 1.9-4.0)	Total no. of deaths (total no.	$\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 9(532) & 25(518) \end{array}$										
Losses to follow-up: 6	Complications - >30 days aft	er primary	AAA repair	ſ	EVAR n=543	Open repair n=539						
For Participant Characteristics and Intervention Details see Greenhalgh 2004 ²²	Procedure related AAA (elecc Late in-hospital death after A Died of rupture after elective Coronary heart disease	AA rupture			1 1 5	1 0 1						
	Stroke				22	16						
	Other cardiovascular				9	6						
	Cancer, lung				6	3						
	Cancer, other				10	10						
	Respiratory				11	17						
	Renal				4	13						
	Other				4	1						
	Total no. of deaths (total no.	of patients)	)		8	3						
					81(523)	71(493)						

Greenhalgh	2005a45	continued

Post operative complication	EVA	ARs	Open repair					
Fotal number of complications)* raft rupture (9) raft infection (3) Graft migration (14) ‡ Endoleak type I (29) ‡ Endoleak type II (10) Graft kinking (9) # Endotension (6) ‡ Endoleak type II (100) Technical deployment problems (2) Unspecified endoleak (4) raft thrombosis (14) raft stenosis (4) istal embolisation from graft (2) enal infarction (3) nastomotic aneurysm (2) iac dilatation (6) e-exploration of open repair (16) ther surgery required (29) otals	n=52	29 †	n=5	<b>19</b> †				
	Complication N	Re-intervention N	Complication N	<b>Re-intervention</b> N				
Graft rupture (9)	9	3	0	0				
Graft infection (3)	1	1	2	0				
Graft migration (14)	12	7						
‡ Endoleak type I (29)	27	17						
‡ Endoleak type III (10)	8	4						
Graft kinking (9)	6	2						
# Endotension (6)	6	0	1	0				
‡ Endoleak type II (100)	79	17	1	0				
Technical deployment problems (2)	2	2						
Unspecified endoleak (4)	4	4						
Graft thrombosis (14)	12	10	1	1				
Graft stenosis (4)	2	0	1	0				
Distal embolisation from graft (2)	1	0	0	0				
Renal infarction (3)	3	0	0	0				
Anastomotic aneurysm (2)	0	0	1	1				
Iliac dilatation (6)	1	1	5	2				
Re-exploration of open repair (16)	-	-	16	16				
Other surgery required (29)	13 (13)	13	16	16				
Totals	186/529 = 35%	81/529=15%	44/519 = 8%	36/519=7%				
(262 complications in 230 patients)	[95% CI 31-39]	[95% CI 12-19]	[95% CI 6-11]	[95% CI 5-9]				

Author(s)	Participant characteris	tics		Intervention details	Results				
Greenhalgh 2005b ⁴⁶	Inclusion criteria: Ana	atomic suitab	ility for EVAR,	Total number of EVAR:	Clinical outcomes	H	EVAR		
	aneurysm diameter 5.5 d	em or greater,	judged unfit for	150	Total number:		166	7	
Design: RCT	open repaor.				Deploy success:		-	7	
				Stent make	Technical success:		-	7	
Type: EVAR versus no intervention	Exclusion criteria: Rep	orted elsewhe	re	Zenith: 60%	Duration:		-	7	
~				Talent: 22%	30-day mortality rate	e: 13/1	50 (9%)	7	
Country: UK	Patient population			Excluder: 7%	Elective cases:	10/	147 (7%)	7	
S. M. W. W. W.		EVAR	No		Blood loss (ml):		-	7	
Setting: Multicentre			intervention	Graft type	Days in ITU:		-	7	
Berneiterent meniede Sentember 1000	No of participants:	166	172	Bifurcated: 87%	Days in hospital:		12	7	
<b>Recruitment period:</b> September 1999 to December 2003	No of males:	141 (85%)	147 (85%)	Comparator(s)	· · ·			-	
to December 2005	Average age	76.8 (NS)	76.0 (NS)	No intervention: 172	Other outcomes				
Funding: National Health Service	(range):			No intervention. 172	Primary conversion:			2	
Research and Development Health	Max AAA diameter	6.7	6.6		Delayed conversion:	:		1	
Technology Assessment Programme.	(cm):	NG	NG		Secondary intervent	ion EVAR	:	11.5 per 100 person years	
reemology resessment rogramme.	No referred for EVAR:	NS	NS		Secondary intervent			1.8 per 100 person years	
	EVAR: No for whom EVAR	NS	NS						_
	is appropriate:	113	110		Death	EVAR	No	Hazard Ratio [95	% CI] (p)
	is appropriate.						interven	ntion Crude	
	Co-morbidities:				Aneurysm related	20/166	22/17	1.01 [0.55-1.84]	(0.98)
	Co-morbiuntes.	EVAR	No		1 st 6 months	-	-	1.67 [0.72-3.	.86]
		LVAN	intervention		2 nd 6 months	-	-	0.53 [0.20-1]	.39]
	Diabetes	15%	13%		All-cause	74/166	68/17	1.21 (0.87-1.69)	(0.25)
	Smoking	94%	93%		1 st 6 months	-	-	1.31 [0.70-2.	.45]
	Cardiac disease	65%	73%		2 nd 6 months	-	-	1.18 [0.80-1.	.73]
	Cardiae disease	0570	1570		All-cause*			1.07 [0.75-1.52]	(0.70)
	Length of follow-up (ra	ange): media	n 2.4 vears (IOR		Aneurysm related*			0.77 [0.41-1.45]	(0.43)
	1.6 to 3.6)	inge). meuta			*per protocol				
	1.0 10 2.0)								
	Losses to follow-up:								

Author(s)	Participant characteristics	Intervention details	Results	
Hinchliffe 2004 ²⁰	Inclusion criteria: Not stated	Total number of EVAR:	Clinical outcomes EVAR	
		269	Total number: 269	
<b>Design:</b> Case series	Exclusion criteria: Not stated		Deploy success: 0	
		Stent make	Technical success: 240	
Type: EVAR	Patient population	Zenith: 269	Duration: 150	
	EVAR		30-day mortality rate: 11	
Country: UK	No of participants: 269	Graft type	Blood loss (ml): Median 400	
Setting on Mariting and ma	No of males: 241 (90%)	Tube: 0	Days in ITU: 0	
Setting: Multicentre	Average age (range): 74 (NS)	Bifurcated: 249	Days in hospital: 0	
Recruitment period: April 1998 to	Max AAA diameter (cm): 6	Uniiliac: 20		-
November 2002	No referred for EVAR: 0		Change in aneurysm size	
November 2002	No for whom EVAR is appropriate: 0	<b>Comparator</b> (s): None	Average post-AAA size: NS	
Funding: Not stated		Comparator (3): Pone	Increase size: NS	
runung. Not stated	Co-morbidities:		Decrease size: NS	
	EVAR		No change in size: NS	
	Hypertension 42.8%			
	Diabetes 13.8%		Other outcomes	
	Smoking (current) 24.5%		Primary conversion: 0	
	COPD 19.7%		Delayed conversion: 0	
	CAD 10.9%		Secondary intervention EVAR: 21	
	*21 symptomatic aneurysms.			
			Adverse events Follow-up	EVAR
	Length of follow-up (range): 12 (NS)			n N %
			Type I endoleak <30 days	2 255 0.8
	Losses to follow-up: 0		Type II endoleak <30 days	13 255 5.1
			Type I endoleak NS	2 255 0.8
			Type II endoleak NS	17 255 6.7
			AAA rupture NS	2 255 0.8
			Stent migration 2 years	1 255 0.4
			Cardiac event NS	5 255 2.0
			Mortality Total NS	28 255 11.0
			Comments	
			6/11 deaths occurred in the symptomatic	group

Author(s)	Participant characteristics		Intervention details	Results							
Jordan 2004 ³⁶	Inclusion criteria: Not stated		Total number of EVAR:	Clinical outcomes	EVAR	Oper	n repair				
			259 (n=130 high risk)	Total number:	259		145				
Design: Non-randomised controlled	Exclusion criteria: Not stated			Deploy success:	NS		NS				
trial			Stent make	Technical success:	NS		NS				
	Patient population		AneuRx: 129	Duration:	NS		NS				
Type: EVAR vs. Open repair		All	Ancure: 124	30-day mortality rate:	6		12				
		patients	Unspecified: 6	Blood loss (ml):	NS		NS				
Country: North America	No of participants:	404	~ ~	Days in ITU:	NS		NS				
	No of males:	347	Graft type	Days in hospital:	4		12				
Setting: Single centre		(86%)	Not stated								
<b>D</b>	Average age (range):	73 (24-		Change in aneurysm size							
<b>Recruitment period:</b> January 2000 to June 2002		93)	Comparator(s): None	Average post-AAA size:	NS						
to June 2002	Max AAA diameter (cm):	6	Open repair: 145 (n=87 high	Increase size:	NS						
Funding: Not stated	No referred for EVAR:	0	risk)	Decrease size:	NS						
Funding: Not stated	No for whom EVAR is	0	115K)	No change in size:	NS						
	appropriate:			6							
	~			Other outcomes							
	Co-morbidities: Not stated			Primary conversion:	1						
				Delayed conversion:	4						
	Patients were classified as low or hi			Secondary intervention E	VAR: 0						
	risk criteria included: Age >80Y, se			Secondary intervention O							
	pulmonary, renal or hepatic dysfun	iction, hostile			Ferrer 1 -						
	abdomen, re-do aortic surgery.			Adverse events	Follow-		EVAR		Op	oen repa	air
	Length of follow-up (range): 28 mont	ths (NS)			up	n	Ν	%	n	N	%
		(- (-)		Respiratory complication	s NS	2	259	0.8	9	145	6.2
	Losses to follow-up: 0			Cardiac event	NS	8	259	3.1	9	145	6.2
	*			Renal impairment	NS	4	259	1.5	3	145	2.1
				Local wound complication	ns NS	6	259	2.3	1	145	0.7
				AAA rupture	NS	0	259	0	-	-	-
				Comments							
				Includes 19 emergency pro							
				All deaths occurred in high	risk patients, n	one in l	ow risk	group.			

Author(s)	Participant characteristics	Intervention details	Results					
Kocher 2004 ³⁷	Inclusion criteria: Not stated	Total number of EVAR:	Clinical outcomes EV	AR				
		120	Total number: 1	20				
Design: Case series	Exclusion criteria: Not stated		Deploy success:	0				
		Stent make	Technical success: 1	09				
Type: EVAR	Patient population	Ella: 120	Duration (min):	98				
Country Court	EVAR	C C		4				
Country: Czech	No of participants: 120	Graft type Tube: 4	Blood loss (ml):	0				
Setting: Single centre	No of males: 102 (85%)	Bifurcated: 97	, , , , , , , , , , , , , , , , , , ,	2				
Setting. Single centre	Average age (range): 71 (49-89)	Uniiliac: 19	Days in hospital:	6				
Recruitment period: April 1996	Max AAA diameter (cm): 0	emmae. 19						
onwards	No referred for EVAR:170No for whom EVAR is appropriate:120		Change in aneurysm size	-				
	No for whom EVAR is appropriate: 120	Comparator(s): None	Average post-AAA size: NS	_				
Funding: Not stated	Co-morbidities:	• • • •	Increase size: 7	_				
_	EVAR		Decrease size: 44					
	Hypertension 82%		No change in size: 24					
	Diabetes 41%							
	COPD 30%		Other outcomes		-			
	CAD 94%		Primary conversion:	2				
	ASA III/IV 102		Delayed conversion: Secondary intervention EVAR:	20				
	102		Secondary intervention EVAR: Secondary intervention High ris		·			
	Length of follow-up (range): 21 months (2-60		Secondary intervention Fightis	KEVAK U				
	months)		Adverse events	Follow-up		EVAR		
			Auverse events	ronow-up	n	N	%	
	Losses to follow-up: 2 patients		Type I endoleak	<30 days	10	120	8.3	
			Cardiac event	<30 days	6	120	5.0	
			Local wound complications*	<30 days	5	120	4.2	
			Colonic ischaemia	<30 days	0	120	0.0	
			Renal complications	<30 days	0	120	0.0	
			Spinal cord ischaemia	<30 days	0	120	0.0	
			Graft limb thrombosis	<30 days	4	120	3.3	
			Type II endoleak	NS	9	120	7.5	
			Graft limb thrombosis	NS	3	120	2.5	
			Mortality non AAA	NS	13	120	10.8	
			*including wound haematoma a	nd lymphatic f	istula		ı	
				<b>J</b> 1				
			Comments					
			20 additional procedures were un	dertaken - 11 w	vere at ti	me of or	riginal procedu	ıre

Author(s)	Participant characteristics	1		Intervention details	Results						
Lee 2004 ⁴³	Inclusion criteria: Age gre	ater than 49	years	<b>Total number of EVAR:</b> 2565	Clinical outcomes	EVAR		pen pair			
Design: Non-randomised	Exclusion criteria: Rupture	d AAA, diss	ected AAA,		Total number:	2565		507			
controlled trial	coarctation, Marfans, Turner	rs, PAN.		Stent make	Deploy success:	NS	N	٧S			
				Not stated	Technical success:	NS	N	NS			
Type: EVAR vs. Open repair	Patient population				Duration:	NS		NS			
		EVAR	Open	Graft type	30-day mortality rate:	33	1	76			
Country: North America	N. C. di i	2565	repair	Not stated	Blood loss (ml):	NS	Ν	NS .			
Setting: Multicentre	No of participants:	2565	4607		Days in ITU:	NS	Ν	NS			
Setting. Wulleentre	No of males:	2164 (84%)	1007 (22%)	Comparator(s)	Days in hospital:	4		9			
Recruitment period: 2001	Average age (range):	73	72	Open repair: 4607							
	Average age (range).	(NS)	(NS)	open repair (00)	Change in aneurysm size						
Funding: Not stated	Max AAA diameter (cm):	NS	NS		Average post-AAA size:						
	No referred for EVAR:	NS	-		Increase size:	NS					
	No for whom EVAR is		-		Decrease size:	NS					
	appropriate:	110			No change in size:	NS					
	offection		L]		Other outcomes						
	Co-morbidities:				Primary conversion:		NS	7			
	E	VAR	Open		Delayed conversion:		NS				
			repair		Secondary intervention I	EVAD.	NS				
	Hypertension	57%	53%		Secondary intervention I						
	Diabetes	11%	11%		Secondary Intervention I	ingli lisk EvA	K NS				
	COPD	25%	29%		Adverse events	Follow-up		EVAR		Open repa	air
	IHD	20%	14%		Auverse events	ronow-up	n	N	% n	N N	an %
	Length of follow-up (range	e): Not stated			Cardiac event	<30 days	77		<b>3</b> .0 <b>3</b> 20		6.9
	Losses to follow-up: Not sta	ated			Comments						
	_				None						

Author(s)	Participant characteristics	Intervention details	Results							
Maldonado 2004 ¹⁹	Inclusion criteria: Asymptomatic AAA	Total number of EVAR:	Clinical outcomes	EVAR						
		311	Total number:	311						
<b>Design:</b> Case series (retrospective)	Exclusion criteria: Not stated		Deploy success:	NS						
		Stent make	Technical success:	NS						
Type: EVAR	Patient population	Ancure: 238	Duration:	NS						
~	EVAR	Excluder: 30	30-day mortality rate:	2						
Country: North America	No of participants: 311	AneuRx: 28	Blood loss (ml):	NS						
	No of males: 267 (86%)	Zenith: 15	Days in ITU:	NS						
Setting: Single centre	Average age (range): 72 (58-93)		Days in hospital:	NS						
<b>D</b>	Max AAA diameter (cm): 6	Graft type								
<b>Recruitment period:</b> 1994 to 2003	No referred for EVAR: NS	Tube: 14	Change in aneurysm size							
Funding: Not stated	No for whom EVAR is appropriate: NS	Bifurcated: 297 Uniiliac: 0		NS						
Funding: Not stated		Unimac: 0		NS						
	Co-morbidities:		Decrease size:	NS						
	EVAR	Comparator(s): None		NS						
	Hypertension NS	Comparator(s). None								
	Smoking NS		Other outcomes							
	COPD NS		Primary conversion:							
	Cardiac event NS		Delayed conversion:		0					
			Secondary intervention EV	AR:	0					
	Length of follow-up (range): 22 months (2-72)		Secondary intervention Hig		0					
	Losses to follow-up: 24				1	-				
			Adverse events	Follow-up		EVAR				
			<b>X</b> 1 · · · · · ·	NG	n	N	%			
			Ischaemic complications	NS	28	311	9.0			
			Lower limb ischaemia	NS	21	28	75.0			
			Pelvic ischaemia	NS	7*	28	25.0			
			Colonic ischaemia	NS	4	28	14.3			
			Buttock ischaemia	NS	2	28	7.1			
			Spinal cord ischaemia	NS	2	28	7.1			
			Graft limb thrombosis	NS	14	28	4.9			
			*2 patients died perioperati	vely						
			Comments							
			None							
			TONC							

Author(s)	Participant characteristics	Intervention details	Results					
Minor 2004 ³⁹	Inclusion criteria: Age ≥80 years	Total number of EVAR:	Clinical outcomes	EVAR				
		150	Total number:	150				
Design: Case series	Exclusion criteria: Not stated		Deploy success:	145				
		Stent make	Technical success:	143				
Type: EVAR	Patient population	Talent: 95	Duration (min):	217				
~	EVAR	AneuRx: 6	30-day mortality rate:	5				
Country: North America	No of participants: 150	Ancure: 5	Blood loss (ml):	369				
<b>G</b> _44*	No of males: 119 (79%)	Custom-made: 28	Days in ITU:	0				
Setting: Single centre	Average age (range): 85 (80-95)	Excluder: 4	Days in hospital:	3				
<b>D</b>	Mean AAA diameter (cm): 7	Vanguard: 5 Teramed: 2						
<b>Recruitment period:</b> January 1997 to August 2002	No referred for EVAR: NS	Teramed: 2	Change in aneurysm size					
August 2002	No for whom EVAR is appropriate: NS	Graft type	Average post-AAA size:	6.1				
Funding: Not stated		Tube: 16	Increase size: 6	(4.3%)				
Funding. Not stated	Co-morbidities:	Bifurcated: 87	Decrease size:	NS				
	EVAR	Uniiliac: 42	No change in size:	NS				
	Hypertension 74%	Chinade. 42						
	Diabetes 16%		Other outcomes					
	Smoking 30%	Comparator(s): None	Primary conversion: 3					
	COPD 19%	<b>F</b>	Delayed conversion: 1					
	CAD 75%		Secondary intervention: 21	1				
			· · · ·					
	Length of follow-up (range): 17 months (1-61)		Adverse events	Follow-up		EVAR		
					n	Ν	%	
	Losses to follow-up: Not stated		Access artery injury	<30 days	2	145	1.4	
			Type I endoleak	<30 days	4	145	2.8	
			Graft limb thrombosis	<30 days	3	145	2.1	
			Local wound complications	<30 days	7	145	4.8	
			Cardiac event	<30 days	7	145	4.8	
			Renal impairment	<30 days	2	145	1.4	
			Type II endoleak	<30 days	30	145	20.7	
			Type II enoleak	NS	11	140	7.9	
			Type I endoleak	NS	6	140	4.3	
			Type III endoleak	2 years	1	54	1.9	
			Mortality non AAA	NS	40	150	26.7	
			· ····································					
			Comments					
			6/140 aneurysms increased in s	ize during follo	w 110			

Author(s)	Participant characteri	stics			Intervention details	Results							
Prinssen 2004 ⁴⁴	Inclusion criteria: Not	stated			Total number of EVAR:	Clinical outcomes	EVAR	Ope	en repai	r			
					171	Total number:	171		174				
Design: Randomised controlled trial	Exclusion criteria:		Emergency	repairs,		Deploy success:	NS		NS				
	inflammatory AAAs, C	TDs, li	fe expectar	ncy <2Y	Stent make	Technical success:	NS		NS				
Type: EVAR vs. Open repair					Talent: 46	Duration:	135		151				
(DREAM)	Patient population		-		Zenith: 57	30-day mortality rate:	2		8				
			EVAR	Open	Excluder: 37	Blood loss (ml):	394		1654				
Country: Netherlands				repair		Days in ITU:	2		3				
	No of participants:		171	174	Graft type	Days in hospital:	6		13				
Setting: Multicentre	No of males:		159	157	Tube: 3								
			(93%)	(90%)	Bifurcated: 162	Change in aneurysm size							
Recruitment period: November	Average age (range):		71 (NS)	70 (NS)	Uniiliac: 6	Average post-AAA size:							
2000 to December 2003	Max AAA diameter (c	/	6	6		Increase size:	NS						
	No referred for EVAR		NS	-	<b>G</b>	Decrease size:	NS						
Funding:	No for whom EVA	R is	NS	-	Comparator(s)	No change in size:	NS						
	appropriate:				Open repair: 174	i to chunge in size.	110						
						Other outcomes							
	Co-morbidities:					Primary conversion:		NS					
		EV	AR	Open		Delayed conversion:		NS					
				repair		Secondary intervention E		NS					
	Hypertension	58	%	54%		Secondary intervention F							
	Diabetes	10	%	10%		Secondary intervention 1							
	Smoking	65	%	54%		Adverse events	Follow-up		EVAR		0	pen repa	in
	COPD	28	%	18%		Auverse events	ronow-up	n	EVAR N	%		N N	m %
	Cardiac disease	41	%	47%		Renal impairment	<30 days	2	171	1.2	<b>n</b> 2	174	1.1
						Pulmonary	<30 days	5	171	2.9	19	174	10.9
	Length of follow-up (ra	ange):	1 month (N	NS)		complications	<50 days	5	1/1	2.9	19	1/4	10.9
						Cardiac event	<30 days	9	171	5.3	10	174	5.7
	Losses to follow-up: 6					CV/Spinal cord	,	9	171	0.6	2	174	1.1
						complications	< 50 days	1	1/1	0.0	2	1/4	1.1
						Colonic ischaemia	<30 days	1	171	0.6	2	174	1.1
						Haemorrhage	<30 days	3	171	1.8	6	174	3.4
						Graft infection	<30 days	1	171	0.6	2	174	1.1
						Local wound	<30 days	6	171	3.5	6	174	3.4
						complications	< 50 days	0	1/1	5.5	0	1/4	3.4
							<20 days	6	171	2.5	0	174	0.0
						Graft complications	<30 days	6		3.5	0		
						Graft limb thrombosis	<30 days	11	171	6.4	5	174	2.9
						C							
						Comments							
						None							

Author(s)	Participant characteristics		Intervention details	Results							
Sampaio 2004 ⁴⁰	Inclusion criteria: Not stated		Total number of EVAR:	Clinical outcomes	EVAR male	EVA	AR fem	ale			
			241	Total number:	212		29				
Design: Comparative observational	Exclusion criteria: Patient ref	usal, anastomotic		Deploy success:	NS		NS				
study (retrospective)	aneurysms		Stent make	Technical success:	NS		NS				
			AneuRx: 175	Duration:	NS		NS				
Type: EVAR vs. EVAR	Patient population		Ancure: 42	30-day mortality rate:	2		2				
		EVAR	Excluder: 6	Blood loss (ml):	NS		NS				
Country: North America	No of participants:	241	Talent: 1	Days in ITU:	NS		NS				
	No of males:	212 (88%)	Vanguard: 5	Days in hospital:	3		4				
Setting: Single centre	Average age (range):	75 (47-98)	Endologix: 6								
	Max AAA diameter (cm):	6	EVT: 6	Change in aneurysm size	e						
Recruitment period: December	No referred for EVAR:	0		Average post-AAA size							
1996 to May 2003	No for whom EVAR is	0	Graft type	Increase size:	NS						
	appropriate:		Not stated	Decrease size:	7						
Funding: Not stated				No change in size:	NS						
	Co-morbidities:			Tto enange in size.	110						
	Male	Female	Comparator(s): None	Other outcomes							
	Hypertension 73%	90%		Primary conversion:	[	0					
	Diabetes 19%	4%		Delayed conversion:		0					
	Smoking 84%	48%		Secondary intervention	EVAR male	59					
	COPD 29%	38%		Secondary intervention		7					
	Cardiac event 34%	21%		Secondary intervention	Evrux remaie.	/					
	Renal disease 13%	17%		Adverse events	Follow-up	FV	'AR ma	ما	FV	AR fen	ale
	· · · · ·	<u> </u>		Auverse events	ronow-up	n	N	к %	n	N	%
	Length of follow-up (range): 10	months (1-71)		Type I endoleak	2 years	11	212	5.2	1	29	3.4
				Type II endoleak	2 years	45	212	21.2	11	29	37.9
	Losses to follow-up: Not stated			Prox neck inc	1 year	34	212	16.0	14	29	48.3
				TTOX neek me	i yeai	54	212	10.0	14	2)	<del>4</del> 0.5
				Comments							
				Female							
				F/u 11.7 months (range 1-	-61)						
				Mean Age 79.9 Y (66-89)	/						
				AAA Neck shorter and w		n male	(p<0.00	01)			
				EIA diameter narrower in			·r .0.00				
				More intra-operative man	<u>u</u>	/	de grou	0			

Author(s)	Participant characte	ristics		Intervention details	Results					
Vasquez 2004 ⁴¹	Inclusion criteria: N	ot stated		Total number of EVAR:	Clinical outcomes	EVAR 1	Renal EV	'AR		
				212	Total number:	129	83			
Design: Comparative observational	Exclusion criteria: A	AA rupture, h	aemodialysis		Deploy success:	NS	NS			
study				Stent make	Technical success:	NS	NS			
	Patient population			AneuRx: 138	Duration:	NS	NS			
Type: EVAR vs. EVAR			EVAR	Talent: 59	30-day mortality rate:	2	5			
	No of participants:		212	Excluder: 14	Blood loss (cc):	255	278			
Country: North America	No of males:		187 (88%)	Ancure: 2	Days in ITU:	NS	NS			
	Average age (range)		75 (NS)		Days in hospital:	NS	NS			
Setting: Single centre	Max AAA diameter		6	Graft type						
<b>D</b>	No referred for EVA	AR:	0	Not stated	Change in aneurysm size					
<b>Recruitment period:</b> August 1998 to December 2003	No for whom EVAR	R is appropriate	e: 0		Average post-AAA size:	NS				
December 2005				Comparator(s): None	Increase size:	NS				
Funding: Not stated	Co-morbidities:			Comparator (s): None	Decrease size:	NS				
Funding. Not stated		EVAR	Renal EVAR		No change in size:	NS				
	Smoking	89%	89%							
	Diabetes	13%	16%		Other outcomes					
	Cardiac event	23%	47%		Primary conversion:		NS			
					Delayed conversion:		NS			
	Length of follow-up	(range): Not s	tated		Secondary intervention EV	AR:	NS			
	T	NT / / / 1			Secondary intervention Hi	gh risk EVAR	NS			
	Losses to follow-up:	Not stated								
					Adverse events	Follow-up		EVAR		
							n	Ν	%	
					Renal impairment	<30 days	6*	212	2.8	
					Cardiac event	<30 days	15	212	7.1	
					Pulmonary complications	<30 days	9	212	4.2	
					Local wound complication		8	212	3.8	
					Neurologic event	<30 days	5	212	2.4	
					Colonic ischaemia	<30 days	3	212	1.4	
					*5/6 renal impairments occ	curred in renal gr	oup.			
					Comments					
					None					

Author(s)	Participant characteristics		Intervention details	Results				
Verhoeven 2004 ⁴²	<b>Inclusion criteria</b> : AAA > 5.0 cm or s	sacular AAA >	Total number of EVAR:	Clinical outcomes	EVAR			
	4.0  cm, or assoc with IAA > $3.5  cm$ .		308	Total number:	308			
Design: Case series				Deploy success:	NS			
	Exclusion criteria: Not stated		Stent make	Technical success:	NS	1		
Type: EVAR			Zenith: 120	Duration:	NS	1		
~	Patient population		Vanguard: 68	30-day mortality rate:	1			
Country: Netherlands		EVAR	Excluder: 56	Blood loss (ml):	NS			
	No of participants:	308	Talent: 52	Days in ITU:	NS			
Setting: Single centre	No of males:	290 (94%)	Quantum: 12	Days in hospital:	NS			
Bernithment menied, Sentember 1000	Average age (range):	70 (NS)	C C			3		
Recruitment period: September 1996	Mean AAA diameter (cm):	6	Graft type Tube: 5	Change in aneurysm size	•			
to May 2003	No referred for EVAR:	NS	Bifurcated: 298	Average post-AAA size:	NS			
Funding: Not stated	No for whom EVAR is appropriate:	NS	Uniiliac: 5	Increase size:	NS			
Funding. Not stated			Ollinae. 5	Decrease size:	NS			
	Co-morbidities:			No change in size:	NS			
	EVAR		<b>Comparator</b> (s): None					
	Hypertension 54%		Comparator(3): None	Other outcomes				
	Diabetes 8%			Primary conversion:	1			
	Smoking 56%			Delayed conversion:	9			
	COPD 32%			Secondary intervention :	72*			
	Cardiac event 53%			*in 47 patients				
	Renal disease 13%			1				
				Adverse events	Follow-up	E	VAR	
	Length of follow-up (range): 36 month	ns (NS)			-	n	N %	
	<b>x</b>			Stent migration	NS	25 3	806 8.2	
	Losses to follow-up: Not stated			Graft limb thrombosis	NS	15 3	306 4.9	)
				Type II endoleak	NS	26 3	306 8.5	
				AAA rupture	NS	1 3	306 0.3	
				Comments Secondary technical succe Secondary intervention su			endovasc	ular techniques and
				96% after open techniques				

Author(s)	Participant characteristics		Intervention details	Results							
Zeebregts 2004 ⁷⁷	Inclusion criteria: Infrarenal AAA. A	AAA >5.0 cm	Total number of EVAR:	Clinical outcomes	EVAR	Ope	en repai	r			
	for pre-EVAR then >5.5 cm.		93	Total number:	93		194				
Design: Non-randomised controlled				Deploy success:	92		-				
trial	Exclusion criteria: Emergency rup			Technical success:	NS		NS				
	false aneurysms. For EVAR - neck le		AneuRx: 71	Duration:	148		NS				
Type: EVAR vs. Open repair	or neck diam > 35 mm. Severe neck c	alcification or	Talent: 15	30-day mortality rate:	1		15				
	thrombus or iliac tortuosity.		Zenith: 6	Blood loss (ml):	NS		NS				
Country: Netherlands	Defendence lefter		C C	Days in ITU:	NS		NS				
Cotting of Circula control	Patient population	EX/A D	Graft type	Days in hospital:	9		18				
Setting: Single centre		EVAR	Tube: 1 Bifurcated: 82								
Recruitment period: April 1998 to	No of participants:	286	Uniiliac: 9	Change in aneurysm size							
January 2003	No of males:	260	Unimac: 9	Average post-AAA size:	NS						
January 2005		(91%)		Increase size:	NS						
Funding: Not stated	Average age (range):	70 (47-	Comparator(s)	Decrease size:	NS						
Funding. Not stated		92)	Open repair: 194	No change in size:	NS						
	Max AAA diameter (cm):	6	open repair. 194	C							
	No referred for EVAR:	NS		Other outcomes							
	No for whom EVAR is	NS		Primary conversion:		1					
	appropriate:			Delayed conversion:		0					
	G 1114			Secondary intervention I	EVAR:	17					
	Co-morbidities:			Secondary intervention (	Open repair:	0					
	EVAR			¥							
	Hypertension NS			Adverse events	Follow-up		EVAR		Op	en repa	ir
	Smoking NS					n	Ν	%	nÎ	N	%
	COPD NS			Local wound	<30 days	10	0		14		
	Cardiac event NS			complications	5						
				Cardiac event	<30 days	4	0		12		
	Length of follow-up (range): 19 mont	ns(NS)		Pulmonary	<30 days	2	0		42		
	Losses to follow-up: Not stated			complications	5						
	Losses to tonow-up: Not stated			Haemorrhage	<30 days	0	0		23		
				Mortality total	1 year	7	0		26		
				Mortality total	2 years	11	0		27		
							•	•			
				Comments	( 112)						
				3 groups (open pre-EVAR	(n=113), open	post EV	/AR (n=	=82) and	EVAR	(n=93))	

Author(s)	Participant characteristics	Intervention details	Results					
Ziaja 2003 ²⁶	Inclusion criteria: Not stated	Total number of EVAR: 52	Clinical outcomes E	VAR				
			Total number:	52				
<b>Design:</b> Case series	Exclusion criteria: Not stated	Stent make	1.2	NS				
		Zenith: 28		NS				
Type: EVAR	Patient population	Powerlink: 23	× ,	122				
Country: Poland	EVAR	Excluder: 1	30-day mortality rate:	0				
Country: Poland	No of participants: 52	Graft type		320				
Setting: Single centre	No of males: NS	Not stated	Days in ITU:	2				
Setting. Single centre	Average age (range):71 (53-80)Max AAA diameter (cm):NS	Not stated	Days in hospital:	NS				
Recruitment period: July 2000 to	Max AAA diameter (cm):         NS           No referred for EVAR:         NS							
June 2003	No for whom EVAR is appropriate: NS	Comparator(s): None	Change in aneurysm size					
	No for whom EVAR is appropriate.	• • • •	Average post-AAA size: NS					
Funding: Not stated	Co-morbidities:		Increase size: NS					
	EVAR		Decrease size: NS					
	Hypertension 85%		No change in size: NS	)				
	Diabetes 10%		Other outcomes					
	Smoking 50%		Primary conversion:	0				
	COPD 8%		Delayed conversion:	NS				
	Cardiac event 94%		Secondary intervention EVAR					
	$\mathbf{I} = -4 + 5 5 5 1 = -5 5 5 1 + 5 5 5 5 5 5 5 5$				-			
	Length of follow-up (range): 13 months (1-39)		Adverse events	Follow-up		EVAR		
	Losses to follow-up: Not stated				n	N	%	
	Losses to follow-up. Not stated		Mortality non AAA	<1 year	2	52	3.8	
			Graft limb thrombosis	NS	5	52	9.6	
			Type I endoleak	<30 days	5	52	9.6	
			Type II endoleak	<30 days	4	52	7.7	
			Stent migration	NS 20.1	2	52	3.8	
			Local wound complications	<30 days	6	52	11.5	
			Renal impairment	<30 days	1	52	1.9	
			Cardiac event	<30 days	2	52	3.8	
			Comments					
			2 Cases were symptomatic AAA					
			2 cuses were symptomatic AAA					

## Appendix 2 Forest plots

### **2.1 Complications**

## Figure 6 Cardiac event rate for EVAR versus open repair: Forest plot

Study	EVAR	Open Repair	OR (fixed)	Weight	OR (fixed)
or sub-category	n/N	n/N	95% CI	%	95% CI
01 RCT Data					
Cuypers 2001	3/57	2/19	<b>_</b>	23.23	0.47 [0.07, 3.07]
Prinssen 2004	9/171	10/174	<b></b>	76.77	0.91 [0.36, 2.30]
Subtotal (95% CI)	228	193		100.00	0.81 [0.35, 1.86]
Total events: 12 (EVAR), 12	(Open Repair)		-		
Test for heterogeneity: Chi ² =	0.38, df = 1 (P = 0.54), I ² = 0	%			
Test for overall effect: Z = 0.	50 (P = 0.62)				
02 NRCT Data					
Anderson 2003	52/1706	230/3063	-	28.00	0.39 [0.28, 0.53]
Arko 2002	10/200	15/297	<b>+</b>	2.01	0.99 [0.44, 2.25]
Becquemin 2000	2/73	7/107		0.97	0.40 [0.08, 1.99]
Bertrand 2001	26/193	41/193		6.23	0.58 [0.34, 0.99]
Bolke 2001	1/20	5/20	<b>_</b>	0.83	0.16 [0.02, 1.50]
Cao 2004	9/534	25/585	<b>_</b> _	4.12	0.38 [0.18, 0.83]
Carpenter 2004	2/192	5/66	<b>_</b>	1.29	0.13 [0.02, 0.68]
Criado 2003	3/240	4/126	<b>_</b>	0.91	0.39 [0.09, 1.75]
Elkouri 2004	10/94	57/261	_ <b>_</b>	4.73	0.43 [0.21, 0.87]
Garcia Madrid 2004	2/53	1/30		0.22	1.14 [0.10, 13.09
Greenberg 2004	6/200	9/80	<b>_</b>	2.19	0.24 [0.08, 0.71]
Hansman 2003	1/50	1/50		0.17	1.00 [0.06, 16.44
Jordan 2004	8/259	9/145		1.96	0.48 [0.18, 1.28]
Lee 2004	77/2565	320/4607	-	38.96	0.41 [0.32, 0.53]
Moore 2003	56/573	23/111	<b></b>	6.10	0.41 [0.24, 0.71]
Zeebregts 2004	4/93	12/194		1.31	0.68 [0.21, 2.17]
Subtotal (95% CI)	7045	9935	•	100.00	0.43 [0.36, 0.50]
Total events: 269 (EVAR), 76	4 (Open Repair)		•		
	11.24, df = 15 (P = 0.74), I ² =	0%			
Test for overall effect: Z = 10					
		0.0	0.1 1 10	100	
			Favours EVAR Favours OF	PEN REPAIR	

Figure 7

### Renal impairment rates for EVAR versus open repair: Forest plot

Study or sub-category	EVAR n/N	OPEN REPAIR		OR (fixed) 95% Cl	Weight %	OR (fixed) 95% Cl
or sub-category	1013	1014		5576 61	70	5576 61
02 NRCT Data						
Arko 2002	1/200	1/297	← ←		1.37	1.49 [0.09, 23.92]
Becquemin 2000	3/73	3/107			3.98	1.49 [0.29, 7.57]
Bertrand 2001	10/193	21/193		<b></b>	33.95	0.45 [0.20, 0.98]
Bolke 2001	3/20	4/20			5.80	0.71 [0.14, 3.66]
Cao 2004	6/534	4/585			- 6.44	1.65 [0.46, 5.88]
Criado 2003	3/240	4/126	← ←		8.83	0.39 [0.09, 1.75]
Elkouri 2004	4/94	11/261		<b>_</b>	9.51	1.01 [0.31, 3.25]
Greenberg 2004	5/200	9/80	← -		21.38	0.20 [0.07, 0.62]
Moore 2003	31/573	2/111			5.40	3.12 [0.74, 13.22]
Subtotal (95% CI)	2127	1780		-	96.66	0.75 [0.50, 1.11]
Total events: 66 (EVAR), 59 (C	PEN REPAIR)			-		
Test for heterogeneity: Chi ² = 1	13.98, df = 8 (P = 0.08), I ² = 4	2.8%				
Test for overall effect: Z = 1.46	6 (P = 0.14)					
Total (95% CI)	2298	1954		-	100.00	0.75 [0.51, 1.11]
Total events: 68 (EVAR), 61 (C	PEN REPAIR)			-		
Test for heterogeneity: Chi ² = 1		6.2%				
Test for overall effect: Z = 1.43	3 (P = 0.15)					
			0.1 0.2	0.5 1 2	5 10	
			Favo	urs EVAR Favours O	PEN REPAIR	

### **2.2 Other peri- and postoperative outcomes**

# Figure 8Blood loss for EVAR versus open repair: Forest plot

Study or sub-category	N	EVAR Mean (SD)	Ν	OPEN REPAIR Mean (SD)		WMD (random) 95% Cl	Weight %	WMD (random) 95% Cl
01 NRCT Data								
Becquemin 2000	73	96.00(300.00)	107	985.00(2450.00)		_	15.58	-889.00 [-1358.29, -419.71]
Bertrand 2001	193	650.00(1100.00)	193	1800.00(1600.00)	←		19.69	-1150.00 [-1423.93, -876.07]
Cao 2004	534	200.00(148.00)	585	1400.00(814.80)	•		22.58	-1200.00 [-1267.21, -1132.79]
Criado 2003	240	345.50(337.20)	126	1541.60(1218.50)	•		20.74	-1196.10 [-1413.09, -979.11]
Hansman 2003	50	451.00(363.00)	50	783.00(514.00)		_ <b></b>	21.42	-332.00 [-506.42, -157.58]
Subtotal (95% CI)	1090		1061				100.00	-954.64 [-1338.86, -570.42]
Test for heterogeneity: Chi ² Test for overall effect: Z = 4		· · · · · · · · · · · · · · · · · · ·						
02 RCT Data								
Prinssen 2004	171	394.00(296.00)	174	1654.00(1037.00)	•		100.00	-1260.00 [-1420.34, -1099.66]
Subtotal (95% CI)	171		174		•		100.00	-1260.00 [-1420.34, -1099.66]
Test for heterogeneity: not a	pplicable							
Test for overall effect: Z = 1	5.40 (P < 0.000	101)						
		-						

Favours EVAR Favours OPEN REPAIR



ITU stay for EVAR versus open repair: Forest plot

Study or sub-category	Ν	EVAR Mean (SD)	Ν	OPEN REPAIR Mean (SD)	WMD (random) 95% Cl	Weight %	WMD (random) 95% Cl
01 RCT Data							
Cuypers 2001	57	0.80(0.84)	19	0.90(3.58)		12.61	-0.10 [-1.72, 1.52]
Greenhalgh 2005	543	0.70(3.80)	539	2.40(5.90)	_ <b>_</b>	36.75	-1.70 [-2.29, -1.11]
Prinssen 2004	171	1.50(0.61)	174	3.00(0.80)	=	50.64	-1.50 [-1.65, -1.35]
Subtotal (95% CI)	771		732		◆	100.00	-1.48 [-1.87, -1.08]
Test for heterogeneity: Chi ² =	3.29, df = 2 (P	= 0.19), I ² = 39.2%					
Test for overall effect: Z = 7.3	32 (P < 0.00001	)					
02 NRCT Data							
Bertrand 2001	193	0.90(1.46)	193	1.10(1.47)		28.58	-0.20 [-0.49, 0.09]
Criado 2003	240	0.60(8.67)	126	2.30(4.25)	<b>_</b>	10.23	-1.70 [-3.02, -0.38]
Elkouri 2004	94	1.00(3.75)	261	2.00(22.25)	<b>_</b>	3.05	-1.00 [-3.80, 1.80]
Garcia Madrid 2004	53	0.10(0.06)	30	1.00(0.96)	-	27.61	-0.90 [-1.24, -0.56]
Hansman 2003	50	0.00(0.30)	50	1.20(0.50)	-	30.53	-1.20 [-1.36, -1.04]
Subtotal (95% CI)	630		660		◆	100.00	-0.89 [-1.45, -0.33]
Test for heterogeneity: Chi ² =	35.75, df = 4 (F				-		
Test for overall effect: Z = 3.	10 (P = 0.002)						
					-4 -2 0 2	4	
					Favours EVAR Favours O	PEN REPAIR	