# National Institute for Health and Care Excellence 

Final

# Abdominal aortic aneurysm: diagnosis and management 

Evidence review A: Risk factors for predicting presence of an abdominal aortic aneurysm

NICE guideline NG156
Methods, evidence and recommendations
March 2020

## Disclaimer

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian.

Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.

NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the Welsh Government, Scottish Government, and Northern Ireland Executive. All NICE guidance is subject to regular review and may be updated or withdrawn.

## Copyright

© NICE 2020. All rights reserved. Subject to Notice of rights.
ISBN: 978-1-4731-3452-2

## Contents

Risk factors for predicting the presence of an abdominal aortic aneurysm ..... 6
Review question ..... 6
Introduction ..... 6
PICO table ..... 6
Methods and process ..... 7
Clinical evidence ..... 7
Summary of clinical studies included in the evidence review ..... 7
Quality assessment of clinical studies included in the evidence review ..... 11
Economic evidence ..... 11
Economic model ..... 11
Resource impact ..... 11
Evidence statements ..... 11
The committee's discussion of the evidence ..... 13
Appendices ..... 16
Appendix A - Review protocols ..... 16
Review protocol for risk factors for predicting presence of an abdominal aortic aneurysm ..... 16
Appendix B - Literature search strategies ..... 18
Clinical search literature search strategy ..... 18
Health Economics literature search strategy ..... 19
Appendix C - Clinical evidence study selection ..... 21
Appendix D - Clinical evidence tables ..... 22
Appendix E-GRADE tables ..... 51
Age ..... 51
Sex ..... 53
BMI/Weight/Obesity ..... 54
Smoking ..... 55
Palpable aorta on abdominal examination ..... 57
Cardiovascular disease ..... 58
Peripheral arterial disease ..... 59
Atherosclerosis ..... 60
Claudication ..... 60
Cerebrovascular disease ..... 61
Diabetes ..... 62
COPD 63
Hypertension ..... 64
Blood pressure thresholds ..... 65
Dyslipidaemia (including hyperlipidaemia, hypercholesterolemia, and cholesterol thresholds) ..... 66
Family history of AAA ..... 67
Ethnicity68
Appendix F - Economic evidence study selection ..... 69
Appendix G - Excluded studies ..... 70
Clinical studies ..... 70
Economic studies ..... 77
Appendix H - Expert testimony from National Abdominal Aortic Aneurysm Screening Programme ..... 78
Appendix I - Glossary ..... 96

## Risk factors for predicting the presence of an abdominal aortic aneurysm

## Review question

Which signs, symptoms and risk factors (or combinations of these) are most accurate in predicting the presence of an abdominal aortic aneurysm? What is the effectiveness of available risk assessment tools?

## Introduction

National population-based screening programmes target and invite individuals from particular risk groups in communities for screening whilst opportunistic screening strategies are restricted to patients who consult healthcare practitioners for some other purpose. As a result, a different set of criteria may be necessary to guide clinicians on when it is appropriate to perform diagnostic imaging. This review question aims to determine which signs, symptoms, risk factors or assessment tools are accurate in predicting the presence of an abdominal aortic aneurysm (AAA) and could be used by clinicians in the course of opportunistic screening as a prompt to initiate diagnostic imaging.

## PICO table

Table 1: Inclusion criteria

| Parameter | Inclusion criteria |
| :---: | :---: |
| Population | - People at risk from AAA <br> - Subgroups of interest: by age, sex, comorbidity |
| Index test / factors of interest | - Abdominal pain <br> - Back pain <br> - Abdominal palpation <br> - Pulsatile abdominal mass/pulsation <br> - Age <br> - Sex <br> - Other cardiovascular disease (existing or previous) - other aneurysms, atherosclerotic disease, intermittent claudication <br> - Inflammatory disease <br> - Smoking <br> - Blood pressure/hypertension <br> - Dislipidaemia <br> - Hypercholesterolaemia <br> - Family history of abdominal AAA, collagen disorders <br> - Ethnicity <br> - Diabetes <br> - Chronic Obstructive Pulmonary Disease (COPD) <br> - BMI/weight/obesity |
| Endpoints | - Radiological diagnosis of AAA |

## Methods and process

This evidence review was developed using the methods and process described in Developing NICE guidelines: the manual. Methods specific to this review question are described in the review protocol in Appendix A.

Declarations of interest were recorded according to NICE's 2014 conflicts of interest policy.
A single broad search was used to identify all studies that examine the diagnosis, surveillance or monitoring of AAA. This was a 'bulk' search that covered multiple review questions. The database was sifted to identify all studies that met the criteria detailed in Table 1. The relevant review protocol can be found in Appendix A.

Initially the review protocol outlined that prospective observational studies that use multivariate logistic regression or Cox regression to explore the association between risk factors and the development of AAA should be considered for inclusion. Following further discussion with the committee, the study design was changed, retrospectively, to include cross-sectional studies because this design was considered more likely to indicate the presence (as opposed of development) of aneurysms in people at risk of AAA. It was agreed that the amendment was needed to ensure that any identified evidence would fall in line with the objectives of this review question. As a result, cross-sectional studies, with sample sizes of more than 500 participants, exploring the association between potential risk factors and the presence of AAA were included.

Studies were excluded if they:

- were cohort studies, case-controls, or case series
- were not in English
- were not full reports of the study (for example, published only as an abstract)
- were not peer-reviewed.


## Clinical evidence

## Included studies

From a database of 16,274 abstracts, 76 were identified as being potentially relevant to this review question. Following full-text review of these articles, 15 studies (reported in 19 publications) were included.

An update literature search was performed and provided by Cochrane, in December 2017. The search found a total of 2,180 abstracts; of which, 16 full manuscripts were ordered. Upon review of the full manuscripts, 6 studies met inclusion criteria for this review question, and were added.

## Excluded studies

The list of papers excluded at full-text review, with reasons, is given in Appendix G.

## Summary of clinical studies included in the evidence review

A summary of the included studies is included in the table below.
Table 2: Summary of included studies

| Study | Details |
| :--- | :--- |
| Barba A, Vega de Ceniga M, Estallo <br> L, et al. (2013) Prevalence of <br> abdominal aortic aneurysm is still | Study design: cross-sectional study <br> Location(s): Spain <br> Population: 65-year old men (all born in 1943) |

## Study

high in certain areas of southern Europe. Annals of vascular surgery 27(8), 1068-73

Berger J S, Hochman J, Lobach I, et al. (2013) Modifiable risk factor burden and the prevalence of peripheral artery disease in different vascular territories. Journal of vascular surgery 58(3), 673-81.e1

Bonamigo TP, and Siqueira I (2003) Screening for abdominal aortic aneurysms. Revista do Hospital das Clinicas 58(2), 63-8

Chun KC, Teng KY, Chavez LA, et al. (2014) Risk factors associated with the diagnosis of abdominal aortic aneurysm in patients screened at a regional Veterans Affairs health care system. Annals of vascular surgery 28(1), 87-92

## Corrado Giovanni, Durante

 Alessandro, Genchi Vincenzo, et al (2016) Prevalence of previously undiagnosed abdominal aortic aneurysms in the area of Como: the ComoCuore "looking for AAA" ultrasonography screening. The international journal of cardiovascular imaging 32(8), 1213-7de Carvalho ATY, Santos AJ, Gomes CAP, et al. (2012) Infrarenal abdominal aortic aneurysm: Significance of screening in patients of public hospitals in the metropolitan region of salvador - bahia, Brazil. Jornal Vascular Brasileiro 11(4), 289300

Derubertis BG, Trocciola SM, Ryer EJ, et al. (2007) Abdominal aortic aneurysm in women: prevalence, risk

## Details

Sample size: 781
Risk factors: smoking status, diabetes, hypertension, family history of AAA, peripheral artery disease, coronary insufficiency, and cerebrovascular disease
Study design: cross-sectional study
Location(s): USA
Population: self-referred patients who paid for vascular screening tests
Sample size: 3.3 million people; $62.5 \%$ ( $2.06 \mathrm{mil} / 3.3 \mathrm{mil}$ ) female
Risk factors: smoking status, hypertension, hyperlipidaemia and diabetes.
Study design: cross-sectional study
Location(s): Brazil
Population: men, over 54 years old, who attended
cardiology clinics
Sample size: 768
Risk factors: age, smoking status, diabetes, hypertension, myocardial disease, peripheral artery disease
Study design: cross-sectional study
Location(s): USA
Population: people who underwent AAA screening in a regional (Californian) screening programme
Sample size: 6,142; 99.6 \% $(6,118 / 6,142)$ male
Risk factors: age, smoking status, myocardial infarction, hypercholesterolemia, hypertension, diabetes, coronary artery disease, COPD, statin use, peripheral vascular disease
Study design: cross-sectional study
Location(s): Italy
Population: people between 60 and 85 years from a region in Italy
Sample size: 1,$555 ; 51.4 \%(801 / 1,555)$ female
Risk factors: age, sex, and smoking status;

Study design: cross-sectional study Location(s): Brazil
Population: patients, 50 years or older , who presented at hospitals with one or more of the following clinical conditions or risk factors were eligible for screening: diabetes systemic arterial hypertension, smoking, COPD, peripheral arterial disease, coronary insufficiency, nonischemic congestive heart failure, dyslipidaemia, carotid stenosis, obesity, chronic kidney disease and a family history of AAA, Marfan syndrome or Ehlers-Danlos syndrome
Sample size: 1,350; $66.7 \%(901 / 1,350)$ female
Risk factors: age, sex, smoking status, COPD, peripheral artery disease, family history of AAA, Marfan syndrome or Ehlers-Danlos syndrome
Study design: cross-sectional study
Location(s): USA

## Study

factors, and implications for screening. Journal of vascular surgery 46(4), 630-635

Hager J, LT, Carlsson P, and Lundgren F (2013) Lower prevalence than expected when screening 70-year-old men for abdominal aortic aneurysm. European Journal of Vascular and Endovascular Surgery 46(4), 453-459
Johnsen SH, Forsdahl SH, Singh K, et al. (2010) Atherosclerosis in abdominal aortic aneurysms: a causal event or a process running in parallel? The Tromso study. Arteriosclerosis, thrombosis, and vascular biology 30(6), 1263-8
Kent KC, Zwolak RM, Egorova NN, Greco G, et al. (2010) Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. Journal of vascular surgery 52(3), 539-48
Note: other publications evaluating the same population were produced by the same study group. See evidence tables in Appendix D for further details.
Le MTQ, Jamrozik K, Davis TME et al. (2007) Negative association between infra-renal aortic diameter and glycaemia: the Health in Men Study. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery 33(5), 599-604
Note: other publications evaluating the same population were produced by the same study group. See evidence tables in Appendix D for further details.
Lederle FA, Johnson GR, Wilson SE, et al. (2000) The Aneurysm Detection and Management study screening program: Validation cohort and final results. Archives of Internal Medicine 160(10), 1425-1430
Note: a second older publication of the same study was produced by the same authors. See evidence tables in Appendix D for further details.

## Details

Population: women, over 65 years old, with at least one of the following factors were eligible for screening:
hypertension, history of smoking, cardiovascular disease,
or a family history of AAA
Sample size: 10,012
Risk factors: age, ethnicity, smoking status, family history of AAA, and cardiovascular disease
Study design: cross-sectional study
Location(s): Sweden
Population: 70 year-old men
Sample size: 5,623
Risk factors: smoking status, COPD, cerebrovascular disease, claudication, coronary artery, and hyperlipidaemia
Study design: cross-sectional study
Location(s): Norway
Population: people between 25 and 74 years old
Sample size: 6,446; 50.9\% (3282/6446) female
Risk factors: atherosclerosis (measured by total plaque areas)
Study design: cross-sectional study
Location(s): USA
Population: self-referred patients who paid for vascular screening tests
Sample size: $3,056,455$ people; sex-specific proportions were not reported
Risk factors: age, sex, smoking status, BMI, ethnicity, hypertension, coronary artery disease, family history of AAA, hypercholesterolemia, diabetes, peripheral artery disease, carotid disease, and cerebrovascular disease

Study design: cross-sectional study
Location(s): Australia
Population: men between 65 and 83 years old
Sample size: 12,203
Risk factors: age, BMI, smoking status, history of cardiovascular disease, hypertension, dyslipidaemia diabetes, blood pressure and family history of AAA

Study design: cross-sectional study
Location(s): USA
Population: people who were 50 to 79 years old and had no history of AAA
Sample size: 126,196-97.3\% (122,788/126,196) male
Risk factors: age, sex, ethnicity, family history of AAA, smoking status, hypertension, hypercholesterolemia, coronary artery disease, claudication, cerebral vascular disease, atherosclerosis, diabetes, COPD

## Study

Makrygiannis G, Labalue P, Erpicum M et al. (2016) Extending Abdominal Aortic Aneurysm Detection to Older Age Groups: Preliminary Results from the Liege Screening Programme. Annals of vascular surgery 36, 55-63

Mark-Christensen A, Lindholt J S, Diederichsen A, et al. (2017) Association Between Diverticular Disease and Abdominal Aortic Aneurysms: Pooled Analysis of Two Population Based Screening Cohorts. European Journal of Vascular and Endovascular Surgery 54(6), 772-777

Pleumeekers JCM, Hoes AW, Hofman A, et al. (1999) Selecting subjects for ultrasonographic screening for aneurysms of the abdominal aorta: Four different strategies. International Journal of Epidemiology 28(4), 682-686

Salvador-Gonzalez B, MartinBaranera M, Borque-Ortega A, et al. (2016) Prevalence of Abdominal Aortic Aneurysm in Men Aged 65-74 Years in a Metropolitan Area in NorthEast Spain. European Journal of vascular and endovascular surgery: the official journal of the European Society for Vascular Surgery 52(1), 75-81
Singh K, Bonaa KH, Jacobsen BK, et al. (2001) Prevalence of and risk factors for abdominal aortic aneurysms in a population-based study: The Tromso Study. American Journal of Epidemiology 154(3), 23644

Vardulaki KA, Walker NM, Day NE, et al. (2000) Quantifying the risks of hypertension, age, sex and smoking in patients with abdominal aortic aneurysm. British Journal of Surgery 87(2), 195-200

## Details

Study design: cross-sectional study
Location(s): Belgium
Population: men aged 65-85 years and women aged 74-85 years from a region in Belgium
Sample size: 1,$101 ; 65.6 \%$ (722/379) male
Risk factors: age, smoking status, hypercholesterolemia, peripheral artery disease, and coronary artery disease
Study design: cross-sectional study combining data from 2 screening programmes
Location(s): Denmark
Population: people between 65 and 74 years of age from 2 regions in Denmark
Sample size: 24,632
Risk factors: age, sex, smoking status, BMI, hypertension, smoking, and family history of AAA
Study design: cross-sectional study
Location(s): Netherlands
Population: people 55 years or older living in a suburb in the Netherlands
Sample size: 5,$328 ; 58 \%(3,090 / 5,328)$ male
Risk factors: Risk factors: age, sex, smoking status, hypertension (antihypertensive drug use), angina pectoris, intermittent claudication, myocardial infarction, hypercholesterolemia, peripheral arterial disease (indicated by an ankle arm index $\leq 0.9$ ), and enlarged aorta on palpation
Study design: cross-sectional study
Location(s): Spain
Population: men between 65 and 74 years old registered at healthcare facilities in Barcelona
Sample size: 651
Risk factors: smoking status and myocardial infarction

Study design: cross-sectional study Location(s): Norway
Population: people between 25 and 74 years old Sample size: 6,$386 ; 53.6 \%(3424 / 6,386)$ female
Risk factors: age, BMI, smoking status, hypertension (antihypertensive drug use), blood pressure, hyperlipidaemia, and hypercholesterolemia
Study design: cross-sectional study Location(s): UK
Population: people between 65 and 79 years old
Sample size: 5,356 ; $(3,035 / 5,356)$ female
Risk factors: age, sex, smoking status, blood pressure and antihypertensive medication use

See Appendix D for full evidence tables.

## Quality assessment of clinical studies included in the evidence review

See Appendix E for full GRADE tables, highlighting the quality of evidence from the included studies.

## Economic evidence

## Included studies

A literature search was conducted jointly for all review questions by applying standard health economic filters to a clinical search for AAA. This search returned a total of 5,173 citations. Following review of all titles and abstracts, no studies were identified as being potentially relevant to risk factors associated with aneurysm expansion or rupture. No full texts were retrieved, and so no studies were included as economic evidence.

An update search was conducted in December 2017, to identify any relevant health economic analyses published during guideline development. The search found 814 abstracts; all of which were not considered relevant to this review question. As a result no additional studies were included.

## Excluded studies

No studies were retrieved for full-text review.

## Economic model

This review question does not lend itself to economic evaluation, and was not prioritised by the committee for economic modelling. As such, no economic model was developed for this review question.

## Resource impact

Not applicable

## Evidence statements

## Age

- Low- to moderate-quality evidence from 9 studies, including up to 3,083,743 people enrolled in AAA screening programmes, highlighted that odds of AAA increases with increasing age. Similar trends were found in men ( 3 studies including up to 12,971 men) and women ( 2 studies including up to 10,012 women).


## Sex

- Low-quality evidence from 7 studies, including $3,217,464$ people, indicated that men were more likely to have an AAA than women.


## BMI/Weight/Obesity

- Very low- to low-quality evidence from 4 studies, including 3,081,087 people, indicated contradictory associations between increasing BMI and the presence of AAA. In relation to sex-specific associations, low-quality evidence from 1, including 6,386 people, could not identify any association between $4 \mathrm{~kg} / \mathrm{m}^{2}$ incremental increases in BMI and the presence of $A A A$ in men or women.


## Smoking

- Low-quality evidence from 7 studies, including 3,341,733 people, indicated that current smokers were more likely have an AAA than people who have never smoked (never smokers). Additionally, moderate-quality evidence from 4 studies, including 3,351,536 people, indicated that ex-smokers were more likely to have an AAA than never smokers. Low-quality evidence from 4 studies, including 10,134 men highlighted similar relationships between current smokers, ex-smokers and never smokers. In women, moderate-quality evidence from 1 study, including 3,424 women, highlighted that current smokers were more likely to have an AAA than people who had never smoked whereas the evidence could not differentiate between AAA rates between ex-smokers and never smokers.


## Palpable aorta on abdominal examination

- Low-quality evidence from 1 study, including 5,328 people, indicated that people with palpable aorta on abdominal examination were more likely to have an AAA than people who did not.


## Cardiovascular disease

- Low-quality evidence from 5 studies, including up to 3,186,486 people, indicated that people with coronary artery disease or coronary insufficiency were more likely to have an AAA than people who did not have any of these conditions. Moderate-quality evidence from 2 studies, including up to 12,203 men, indicated that men with a history of myocardial infarction or cardiovascular disease (not specified) were more likely to have an AAA than men without a history of these conditions. Low-quality evidence from 1 study, including 10,012 women, indicated that women with a history of myocardial infarction or coronary revascularisation were more likely to have an AAA than men without a history of these conditions.


## Peripheral arterial disease, atherosclerosis, and claudication

- Low-quality evidence from 6 studies, including up to 3,095,008 people, indicated that people with peripheral arterial disease, atherosclerosis, or claudication were more likely to have an AAA than people who did not have any of these conditions. Low-quality evidence from 2 studies, including 1,549 men, also indicated that men with peripheral arterial disease were more likely to have an AAA than men without peripheral arterial disease. With regards to claudication as a risk factor in men, low-quality evidence from 1 study, including 5,623 men could not differentiate rates of AAA between men with claudication and those without claudication.


## Cerebrovascular disease

- Low-quality evidence from 2 studies, including 3,179,243 people, indicated that people with cerebrovascular disease were more likely to have an AAA than those without cerebrovascular disease. A similar relationship was found in low-quality evidence from 2 studies that included 6,404 men. No evidence was identified specific to women.


## Diabetes

- Low-quality evidence from 4 studies, including 6,505,378 people, indicated that people with diabetes were less likely to have an AAA than those without diabetes. A similar relationship was found in low-quality evidence from 3 studies that included 13,752 men; however, the results across the studies were inconsistent.


## Chronic obstructive pulmonary disease (COPD)

- Low-quality evidence from 3 studies, including 130,280 people, indicated that people with COPD were more likely to have an AAA than those who did not have COPD. A similar
relationship was found in low-quality evidence from 1 study that included 5,623 men. No evidence was identified specific to women.


## Hypertension

- Low-quality evidence from 7 studies, including 6,540,694 people, indicated that people with hypertension were more likely to have an AAA than those who did not have hypertension. A similar relationship was found in low-quality evidence from 4 studies, including 16,714 men, and moderate-quality evidence from 1 study including 3,424 women.


## Blood pressure thresholds

- Low-quality evidence from 1 study, including 5,363 people, could not differentiate AAA rates between people with systolic blood pressures equal to or above 200 mmHg and those with pressures below 200 mmHg . The same study could not differentiate AAA rates between people with diastolic blood pressures equal to or above 100 mmHg and those with pressures below 100 mmHg .


## Dyslipidaemia (including hyperlipidaemia, hypercholesterolemia, and cholesterol thresholds)

- Low- to moderate-quality evidence from 5 studies, including up to 3,319,993 people, indicated that people with hyperlipidaemia or hypercholesterolemia were more likely to have an AAA than those who did not have any dyslipidaemia. Moderate-quality evidence from 1 study, including 12,203 men, indicated that men with dyslipidaemia were more likely to have an AAA than men who did not have dyslipidaemia. No evidence relating to dyslipidaemia was found for women.


## Family history of AAA

- Low-quality evidence from 3 studies, including 3,203,875 people, indicated that people with a family history of AAA were more likely to have an AAA than those who did not. Additionally, moderate-quality evidence from 1 study, including 1,350 people, indicated that people with a family history of AAA, Marfan's syndrome or Ehlers-Danlos syndrome were more likely to have an AAA than those who did not. Low-quality evidence from 2 studies, including 12,984 men, indicated that people with a family history of AAA were more likely to have an AAA than those who did not. Conversely, very low-quality evidence from 1 study, including 10,012 women, could not differentiate rates of AAA between women who had a family history of AAA and women who did not.


## Ethnicity

Low-quality evidence from 2 studies, including up to $3,056,455$ people, highlighted that Hispanic, black and Asian ethnic groups were individually less likely to have an AAA than white people. In relation to women, very-low quality evidence from 1 study, including 10,012 women, could not differentiate AAA rates between native-American people and white people. No evidence was identified specific to men.

## The committee's discussion of the evidence

## Interpreting the evidence

## The outcomes that matter most

The committee agreed that the outcomes that matter most were common risk factors for asymptomatic AAAs which could be used in community settings (outside specialist vascular services) to highlight the need for aortic ultrasound imaging.

## The quality of the evidence

Since cross-sectional studies were considered the best study design to answer this review question, each cross-sectional study was initially graded as high in quality and was subsequently downgraded if there were any concerns about bias, indirectness, inconsistency, and imprecision. The committee agreed that the quality of evidence ranged from very low to high. Risk of bias was the main reason why some of the identified evidence was downgraded. In these studies the presence of risk factors was not ascertained by clinical examination, laboratory testing or review of medical records. Instead, patients were asked to complete self-administered questionnaires asking whether they had been diagnosed or were receiving medication for clinical risk factors of interest. Another potential bias was related to the way that the data was analysed. In some studies a stepwise approach was not used to input predictor variables into logistic regression models. Instead, investigators only input variables that were found to be significant in univariate analyses into logistic regression models. Although some of the evidence was considered low in quality, the committee agreed that the evidence reflected their clinical experience. Thus, the committee decided that "offer" recommendations were warranted.

It was noted that all but 1 study reported risk factors associated with the presence of an AAA. Pleumeekers et al. (1999) was the only study that assessed a physical sign indicative of the presence of an AAA. This study highlighted that people with a palpable aorta on abdominal examination were more likely to have an AAA than people without a palpable aorta on examination. The committee agreed that a palpable aorta was an important indicator that an aneurysm is present. However, it needed to be explicitly stated that there has to be some suspicion of an aneurysm to prompt abdominal examination.

The committee agreed that there was strong evidence that the risk of AAA increased with age. However, it was noted that various age cut-offs were used across included studies. Expert testimony from the national AAA screening programme (see Appendix H ), highlighted that screening strategies focuses on 65-year-old men but there is a chance that older men with AAA are being missed. As a result, the committee agreed that it was important to specifically mention men aged 66 years and older in the recommendations. In relation to women, the committee noted that moderate-quality evidence showed that women aged 70 years or over had an increased risk of AAA when compared with women aged below 70 years. As a result, this age cut-off was used in the recommendations.

In relation to other risk factors associated with AAA, the committee considered that the majority of studies reported similar effect sizes, making it difficult to establish a hierarchy of association. As a result, the remaining risk factors associated with AAA presence were listed as bullet points in the recommendations. The committee agreed that it was more useful to use general terms such as "coronary, cerebrovascular or peripheral vascular disease" than to specify particular diseases.

Although the evidence on diabetes highlighted that the condition was a protective factor, the committee decided not to make any recommendations. This was because the main aim of the review question was to identify factors that would facilitate opportunistic screening (and increase the chances of people receiving abdominal ultrasound imaging to confirm or dismiss the suspicion of an AAA). The committee also decided not to make any recommendation on BMI as a risk factor because they considered that the studies that assessed BMI reported contradictory results.

## Benefits and harms

The committee recognised that the national AAA screening programme has the ability to screen and identify a large number of people with AAA in the UK; however, there will always be some people who are missed by the programme. Furthermore, the committee noted that men who do not take up screening often have the highest risk of an AAA. As a result, the committee agreed that focusing recommendations on risk factors that could be used for
opportunistic screening would improve detection rates. This would increase the chances that AAAs are identified early (before rupture) and reduce overall AAA-related morbidity and mortality.

The committee noted that there is a small risk of harm (such as unnecessary intervention) associated with population-based screening: evidence from the national screening programme highlighted that approximately 1 in 10,000 men die following intervention indicated by screening. The committee recognised that there may be also be small harms associated with targeted case-finding in men and women. However, it was agreed that the benefits of identifying AAAs early outweighed the risks of intervention-related or rupturerelated mortality.

## Cost effectiveness and resource use

The committee noted that expert testimony from the national AAA screening programme highlighted that population-based screening of 65 -year-old men is cost-effective down to the prevalence of $0.35 \%$. The committee took the view that opportunistic case finding of men 66 years and over as well as women aged 70 years and over was likely to be cost effective, as the recommendations allow for more people with AAAs to be identified early, before complications or rupture arise.

## Other factors the committee took into account

The committee considered that the recommendations were primarily intended for general practitioners in order to facilitate diagnosis of AAA in individuals who attend primary care facilities seeking treatment for other conditions. The committee acknowledged that similar considerations could be made in secondary care settings. As a result, no healthcare setting was specified in the guideline recommendations.

The committee noted the significant advances made by the national AAA screening programme and recognised that population-based screening yields some advantages over opportunistic aortic ultrasound. Notably, invitation to and subsequent attendance at screening reduced all-cause and AAA-related mortality.

## Appendices

## Appendix A - Review protocols

## Review protocol for risk factors for predicting presence of an abdominal aortic aneurysm

| Review question 1 | Which signs, symptoms and risk factors (or combinations of these) are most accurate in predicting the presence of an abdominal aortic aneurysm? What is the effectiveness of available risk assessment tools? |
| :---: | :---: |
| Objectives | To determine which signs, symptoms, risk factors or assessment tools are accurate in predicting the presence of an AAA and could be used by clinicians in the course of opportunistic screening as a prompt to initiate diagnostic imaging |
| Type of review | Prognostic |
| Language | English |
| Study design | Initially, the following studies designs were included in the review protocol: <br> - Prospective observational studies using multivariate analysis; $n>500$ <br> - Prospective observational studies using smaller populations ( $n>200$ ) will be considered if insufficient evidence is identified <br> Following committee discussion, the study design was retrospectively changed to include the following study designs to match the objectives of this review question <br> - Cross-sectional studies using multivariate analysis; $\mathrm{n}>500$ <br> - Cross-sectional studies using smaller populations ( $n>200$ ) will be considered if insufficient evidence is identified |
| Status | i) Published papers only (full text) <br> No date restrictions <br> ii) Expert witness to present findings from UK registry data |
| Population | People at risk from abdominal aortic aneurysms Subgroups of interest: by age, sex, comorbidity |
| Index test / factors of interest | Abdominal pain <br> Back pain <br> Abdominal palpation <br> Pulsatile abdominal mass/pulsation <br> Age <br> Sex <br> Other cardiovascular disease (existing or previous) - other aneurysms, atherosclerotic disease, vascular claudication <br> Inflammatory disease <br> Smoking <br> Blood pressure/hypertension <br> Dislipidaemia <br> Hypercholesterolaemia <br> Family history of abdominal aortic aneurysms, other aneurysms, collagen disorders <br> Ethnicity <br> Diabetes <br> COPD <br> BMI/weight/obesity |


| Review question 1 | Which signs, symptoms and risk factors (or combinations of these) are <br> most accurate in predicting the presence of an abdominal aortic <br> aneurysm? What is the effectiveness of available risk assessment tools? |
| :--- | :--- |
| Endpoint | Radiological diagnosis of abdominal aortic aneurysm |
| Other criteria for <br> inclusion / exclusion of <br> studies | Exclusion: <br> Non-English language <br> Abstract/non-published <br> Minimum population size of 500 |
| Baseline <br> characteristics to be <br> extracted in evidence <br> tables | Age <br> Sex <br> Comorbidities |
| Search strategies | See Appendix B |
| Review strategies | Double-sifting of randomly selected 20\%. <br> Appropriate NICE Methodology Checklists, depending on study designs, will be <br> used as a guide to appraise the quality of individual studies. 20\% will be <br> appraised by a second reviewer. <br> Data on all included studies will be extracted into evidence tables. Where <br> statistically possible, a meta-analytic approach will be used to give an overall <br> summary effect. <br> All key findings from evidence will be presented in GRADE profiles and further <br> summarised in evidence statements. |
| Key papers | Beede SD, Ballard DJ, James EM, Ilstrup DM, Hallet JW Jr. Positive predictive <br> value of clinical suspicion of abdominal aortic aneurysm. Implications for efficient <br> use of abdominal ultrasonography. Arch Intern Med. 1990 Mar;150(3):549-51 |
|  | Fink HA, Lederle FA, Roth CS, Bowles CA, Nelson DB, Haas MA. The accuracy <br> of physical examination to detect abdominal aortic aneurysm. Arch Intern Med. <br> 2000 Mar 27;160(6):833-6 <br> Lederle FA, Simel DL. The rational clinical examination. Does this patient have <br> abdominal aortic aneurysm? JAMA. 1999 Jan 6;281(1):77-82 |
| Pleumeekers HJ, Hoes AW, Hofman A, van Urk H, van der Does E, Grobbee |  |
| DE. Selecting subjects for ultrasonographic screening for aneurysms of the |  |
| abdominal aorta: four different strategies. Int J Epidemiol. 1999 Aug;28(4):682-6 |  |

## Appendix B - Literature search strategies

## Clinical search literature search strategy

## Main searches

Bibliographic databases searched for the guideline

- Cumulative Index to Nursing and Allied Health Literature - CINAHL (EBSCO)
- Cochrane Database of Systematic Reviews - CDSR (Wiley)
- Cochrane Central Register of Controlled Trials - CENTRAL (Wiley)
- Database of Abstracts of Reviews of Effects - DARE (Wiley)
- Health Technology Assessment Database - HTA (Wiley)
- EMBASE (Ovid)
- MEDLINE (Ovid)
- MEDLINE Epub Ahead of Print (Ovid)
- MEDLINE In-Process (Ovid)


## Identification of evidence for review questions

The searches were conducted between November 2015 and October 2017 for 31 review questions (RQ). In collaboration with Cochrane, the evidence for several review questions was identified by an update of an existing Cochrane review. Review questions in this category are indicated below. Where review questions had a broader scope, supplement searches were undertaken by NICE.

Searches were re-run in December 2017.
Where appropriate, study design filters (either designed in-house or by McMaster) were used to limit the retrieval to, for example, randomised controlled trials. Details of the study design filters used can be found in section 4.

## Search strategy review question 1

Medline Strategy, searched 29th September 2016
Database: 1946 to September Week 32016

## Search Strategy:

1 Aortic Aneurysm, Abdominal/
2 Aortic Rupture/
3 (aneurysm* adj4 (abdom* or thoracoabdom* or thoraco-abdom* or aort* or spontan* or juxtarenal* or juxta-renal* or juxta renal* or paraerenal* or para-renal* or para renal* or suprarenal* or supra renal* or supra-renal* or short neck* or short-neck* or shortneck* or visceral aortic segment*)).tw.
4 or/1-3
5 prognosis.sh.
6 diagnosed.tw.
7 cohort.mp.
8 predictor:.tw.
9 death.tw.
10 exp models, statistical/
11 or/5-10
12 (sensitiv: or predictive value:).mp. or accurac:.tw.

```
Medline Strategy, searched 29th September 2016
Database: }1946\mathrm{ to September Week 3 }201
Search Strategy:
13 11 or 12
14 "signs and symptoms"/
15 ((sign or signs) adj5 symptom*).tw.
16 Risk Factors/
17 factor*.tw.
1 8 \text { predict*.tw.}
19 or/14-18
20 13 or 19
21 4 and 20
22 animals/ not humans/
23 21 not 22 (12444)
24 limit 23 to english language
```


## Health Economics literature search strategy

## Sources searched to identify economic evaluations

- NHS Economic Evaluation Database - NHS EED (Wiley) last updated Dec 2014
- Health Technology Assessment Database - HTA (Wiley) last updated Oct 2016
- Embase (Ovid)
- MEDLINE (Ovid)
- MEDLINE In-Process (Ovid)

Search filters to retrieve economic evaluations and quality of life papers were appended to the population and intervention terms to identify relevant evidence. Searches were not undertaken for qualitative RQs. For social care topic questions additional terms were added. Searches were re-run in September 2017 where the filters were added to the population terms.

## Health economics search strategy

## Medline Strategy

Economic evaluations
1 Economics/
2 exp "Costs and Cost Analysis"/
3 Economics, Dental/
4 exp Economics, Hospital/
5 exp Economics, Medical/
6 Economics, Nursing/
7 Economics, Pharmaceutical/
8 Budgets/
9 exp Models, Economic/
10 Markov Chains/
11 Monte Carlo Method/
12 Decision Trees/
13 econom*.tw.
14 cba.tw.
15 cea.tw.

```
Medline Strategy
16 cua.tw.
17 markov*.tw.
18 (monte adj carlo).tw.
19 (decision adj3 (tree* or analys*)).tw.
20 (cost or costs or costing* or costly or costed).tw.
21 (price* or pricing*).tw.
22 budget*.tw.
23 expenditure*.tw.
24 (value adj3 (money or monetary)).tw.
25 (pharmacoeconomic* or (pharmaco adj economic*)).tw.
26 or/1-25
Quality of life
1 "Quality of Life"/
2 quality of life.tw.
3 "Value of Life"/
4 Quality-Adjusted Life Years/
5 quality adjusted life.tw.
6 (qaly* or qald* or qale* or qtime*).tw.
7 disability adjusted life.tw.
daly*.tw.
9 Health Status Indicators/
10 (sf36 or sf 36 or short form 36 or shortform 36 or sf thirtysix or sf thirty six or shortform thirtysix
or shortform thirty six or short form thirtysix or short form thirty six).tw.
11 (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sfsix or shortform six or short form six).tw.
12 (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve or sftwelve or shortform twelve or
short form twelve).tw.
13 (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sfsixteen or shortform sixteen or
short form sixteen).tw.
14 (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty or sftwenty or shortform twenty or
short form twenty).tw.
15 (euroqol or euro qol or eq5d or eq 5d).tw.
16 (qol or hql or hqol or hrqol).tw.
17 (hye or hyes).tw.
18 health* year* equivalent*.tw.
utilit*.tw.
20 (hui or hui1 or hui2 or hui3).tw.
21 disutili*.tw.
22 rosser.tw.
23 quality of wellbeing.tw.
24 quality of well-being.tw.
25 qwb.tw.
26 willingness to pay.tw.
27 standard gamble*.tw.
28 time trade off.tw.
29 time tradeoff.tw.
30 tto.tw.
31 or/1-30
```


## Appendix C-Clinical evidence study selection



## Appendix D - Clinical evidence tables

| Full citation | Barba A, Vega de Ceniga M, Estallo L, et al. (2013) Prevalence of abdominal aortic aneurysm is still high in certain areas of southern Europe. Annals of vascular surgery 27(8), 1068-73 |
| :---: | :---: |
| Study details | Study design: cross-sectional study <br> Location(s): Spain <br> Aim of the study: to report the results of a systematic AAA screening programme in 65-year old men in a defined rural area in northern Spain <br> Study dates: January 2008 to December 2009 <br> Sources of funding: the study was supported by research grants from the Spanish Society of Angiology and Vascular Surgery Foundation and the Research Unit from the Galdakao-Usansolo Hospital |
| Participants | Sample size: 781 men Inclusion criteria: 65-year old men (born in 1943) who responded to an invitation to participate were included Exclusion criteria: not reported <br> Baseline characteristics: <br> - Mean age: not reported <br> - Sex: 100\% male <br> - Diabetes: $52.1 \%$ <br> - Hypertension: 25.7\% <br> - Dyslipidaemia: 76.9\% |
| Methods | Data collection: Ultrasound imaging was used to establish the presence of AAA (defined as an infrarenal aortic diameter of 3 cm or larger). To ascertain the presence of risk factors investigators assessed participants' medical records, performed physical examinations and obtained blood samples after a minimum of 8 hours of overnight fasting. Hypertension was defined as systolic blood pressure greater than 140 mmHg or diastolic pressure less than 90 mm Hg measured, or the participant was already taking hypotensive medication. A patient was considered diabetic if they were receiving medication or if investigators found basal glycaemia greater than $120 \mathrm{mg} / \mathrm{dL}$ or haemoglobin A1c higher than $6.5 \%$. Hyperlipidaemia was defined as the participant receiving treatment (a supervised diet or lipid lowering medication) or if they had total cholesterol levels greater than $200 \mathrm{mg} / \mathrm{dL}$, triglycerides greater than $150 \mathrm{mg} / \mathrm{dL}$ or low-density lipoprotein cholesterol greater than $130 \mathrm{mg} / \mathrm{dL}$. Cardiac disease included coronary heart disease, vascular disease, cardiomyopathy, and arrhythmia. <br> Analysis: multivariate logistic regression. It is unclear what factors were adjusted for in the analysis. |
| Outcomes | Risk factors: smoking status, diabetes, hypertension, family history of AAA, peripheral artery disease, coronary insufficiency, and cerebrovascular disease |


| Full citation | Barba A, Vega de Ceniga M, Estallo L, et al. (2013) Prevalence of abdominal aortic aneurysm is still high in certain areas of southern <br> Europe. Annals of vascular surgery 27(8), 1068-73 |
| :--- | :--- |
| Study | 1. Were the criteria for inclusion in the sample clearly defined? Yes |
| Appraisal | 2. Were the study subjects and the setting described in detail? Yes |
| using the | 3. Was the exposure measured in a valid and reliable way? Yes |
| Joanna | 4. Were objective, standard criteria used for measurement of the condition? Yes |
| Briggs | 5. Were confounding factors identified? Unclear |
| Institute | 6. Were strategies to deal with confounding factors stated? Unclear |
| checklist | 7. Were the outcomes measured in a valid and reliable way? Yes |
|  | 8. Was appropriate statistical analysis used? No - stepwise regression was not performed. Instead, only variables with p-values <0.2 in |
|  | multivariate analyses were explored in the multivariate logistic regression model. |
|  | Overall risk of bias: moderate |
| Directness: directly applicable |  |

## Berger J S, Hochman J, Lobach I, et al. (2013) Modifiable risk factor burden and the prevalence of peripheral artery disease in

 different vascular territories. Journal of vascular surgery 58(3), 673-81.e1Study design: cross-sectional study
Location(s): USA
Aim of the study: to investigate the association of modifiable risk factors with peripheral vascular disease, coronary artery stenosis and AAA among 3.3 million people enrolled in a population screening programme
Study dates: 2004 to 2008
Sources of funding: the study was partially funded by the an American Heart Association Fellow to Faculty Award and a Doris Duke Clinical Scientist Development Award
Participants Sample size: 3,319,993 people;
Inclusion criteria: self-referred patients who paid for vascular screening tests. No further details were provided.
Exclusion criteria: patients with records that did not report abdominal aortic ultrasound results and patients with missing data were excluded. When multiple screening was performed on the same individual only the first record with complete information was included
Baseline characteristics:

- Mean age: 64.1 years
- Sex: 62.5\% female
- Diabetes: $10.8 \%$
- Hypertension: $47.0 \%$


| Full citation | Bonamigo TP, and Siqueira I (2003) Screening for abdominal aortic aneurysms. Revista do Hospital das Clinicas 58(2), 63-8 |
| :---: | :---: |
| Study details | Study design: cross-sectional study <br> Location(s): Brazil <br> Aim of the study: to assess the prevalence of AAA in southern Brazil and define risk factors associated with high prevalence of the condition <br> Study dates: 1987 to 1993 <br> Sources of funding: not reported |
| Participants | Sample size: 768 men Inclusion criteria: patients attending cardiology clinics at participating hospitals were included. All participants were male and older than 54 years of age. <br> Exclusion criteria: Women and men younger than 54 years old were excluded <br> Baseline characteristics: <br> - Mean age: not reported <br> - Sex: $100 \%$ male <br> - Comorbidities: not reported |
| Methods | Data collection: Ultrasound imaging was used to establish the presence of AAA. An AAA was defined as an infrarenal aortic diameter of 3 cm or larger, or if the infrarenal aortic diameter was more than 0.5 cm greater than the supra-renal aortic diameter. The presence of risk factors was determined by examination of medical records, medical interview and physical examination. All interviews were performed by the same clinician. Hypertension and ischemic heart disease were defined as proven history of these conditions or use of drugs to treat the conditions. Analysis: multivariate logistic regression. It is unclear what factors were adjusted for in the analysis |
| Outcomes | Risk factors: age, smoking status, diabetes, hypertension, myocardial disease, peripheral artery disease |
| Study <br> Appraisal using the Joanna Briggs Institute checklist | 1. Were the criteria for inclusion in the sample clearly defined? Yes <br> 2. Were the study subjects and the setting described in detail? Yes <br> 3. Was the exposure measured in a valid and reliable way? Yes <br> 4. Were objective, standard criteria used for measurement of the condition? Yes <br> 5. Were confounding factors identified? Unclear <br> 6. Were strategies to deal with confounding factors stated? Unclear <br> 7. Were the outcomes measured in a valid and reliable way? Yes <br> 8. Was appropriate statistical analysis used? Unclear - Investigators did not report whether a stepwise approach was used to perform the multivariate logistic regression. <br> Overall risk of bias: low <br> Directness: directly applicable |


| Full citation | Chun KC, Teng KY, Chavez LA, et al. (2014) Risk factors associated with the diagnosis of abdominal aortic aneurysm in patients screened at a regional Veterans Affairs health care system. Annals of vascular surgery 28(1), 87-92 |
| :---: | :---: |
| Study details | Study design: cross-sectional study <br> Location(s): USA <br> Aim of the study: to evaluate risk factors associated with AAA in people undergoing AAA screening <br> Study dates: January 2007 to December 2009 <br> Sources of funding: not reported |
| Participants | Sample size: 6,142; <br> Inclusion criteria: individuals who underwent AAA screening in a regional (Californian) screening programme <br> Exclusion criteria: people with ultrasound measurements that were deemed inconclusive or those who had incomplete risk factor data were excluded <br> Baseline characteristics: <br> - >75 years: 29.7\% <br> - Sex: $99.6 \%$ male <br> - Hypertension: 68.8\% <br> - Diabetes: 26.7\% <br> - Coronary artery disease: 29.6\% <br> - COPD: 12.5\% <br> - Peripheral Vascular disease: $10 \%$ |
| Methods | Data collection: Ultrasound imaging was used to establish the presence of AAA (defined as an infrarenal aortic diameter of 3 cm or larger). The presence of risk factors was determined by assessment of participants' electronic medical records. Analysis: multivariate logistic regression. It is unclear what factors were adjusted for in the analysis. |
| Outcomes | Risk factors: age, smoking status, myocardial infarction, hypercholesterolemia, hypertension, diabetes, coronary artery disease, COPD, statin use, peripheral vascular disease. Investigators also assessed estimated glomerular filtration rate thresholds as risk factors; however, these are not listed for inclusion in the review protocol. |
| Study <br> Appraisal using the Joanna Briggs | 1. Were the criteria for inclusion in the sample clearly defined? No - it was unclear what people were eligible for screening and subsequent inclusion in this study <br> 2. Were the study subjects and the setting described in detail? No <br> 3. Was the exposure measured in a valid and reliable way? Yes <br> 4. Were objective, standard criteria used for measurement of the condition? Yes <br> 5. Were confounding factors identified? Unclear <br> 6. Were strategies to deal with confounding factors stated? Unclear |

Full citation
Institute
checklist

Chun KC, Teng KY, Chavez LA, et al. (2014) Risk factors associated with the diagnosis of abdominal aortic aneurysm in patients screened at a regional Veterans Affairs health care system. Annals of vascular surgery 28(1), 87-92
7. Were the outcomes measured in a valid and reliable way? Yes
8. Was appropriate statistical analysis used? Unclear - Investigators did not report whether a stepwise approach was used to perform the multivariate logistic regression.
Overall risk of bias: moderate
Directness: directly applicable

Corrado Giovanni, Durante Alessandro, Genchi Vincenzo, Trabattoni Loris, Beretta Sandro, Rovelli Enza, Foglia-Manzillo Giovanni, and Ferrari Giovanni (2016) Prevalence of previously undiagnosed abdominal aortic aneurysms in the area of Como: the ComoCuore
Full citation
Study details
Study design: cross-sectional study
Location(s): Italy
Aim of the study: to report the results of a AAA screening programme in people 60-85 years old from the North-West region of Italy
Study dates: September 2010 to November 2013
Sources of funding: not reported
Participants
Inclusion criteria: people between 60 and 85 years from the Lombardy region of Italy were included
Exclusion criteria: people with known AAA or a history of AAA surgery were excluded
Baseline characteristics:

- Mean age: 68.8 years
- Sex: 51.4\% female
- Hypertension: 49.1\%
- Dyslipidaemia: 29.5\%
- Diabetes: 6.7\%
- Coronary artery disease: $11.4 \%$
- Peripheral artery disease: $1.0 \%$
- Previous cerebrovascular accident: $1.1 \%$

Methods
Data collection: Ultrasound imaging was used to establish the presence of AAA (defined as an infrarenal aortic diameter of 3 cm or larger). Investigators ascertained the presence of risk factors by asking participants to complete a self-reported questionnaire.
Analysis: multivariate logistic regression. It is unclear what factors were adjusted for in the analysis.

| Full citation | Corrado Giovanni, Durante Alessandro, Genchi Vincenzo, Trabattoni Loris, Beretta Sandro, Rovelli Enza, Foglia-Manzillo Giovanni, and Ferrari Giovanni (2016) Prevalence of previously undiagnosed abdominal aortic aneurysms in the area of Como: the ComoCuore "looking for AAA" ultrasonography screening. The international journal of cardiovascular imaging 32(8), 1213-7 |
| :---: | :---: |
| Outcomes | Risk factors: age, sex, and smoking status |
| Study <br> Appraisal using the Joanna Briggs Institute checklist | 1. Were the criteria for inclusion in the sample clearly defined? Yes |
|  | 2. Were the study subjects and the setting described in detail? Yes |
|  | 3. Was the exposure measured in a valid and reliable way? No - the presence of risk factors was ascertained by participants completing a self-administered questionnaire. |
|  | 4. Were objective, standard criteria used for measurement of the condition? Yes |
|  | 5. Were confounding factors identified? Unclear |
|  | 6. Were strategies to deal with confounding factors stated? Unclear |
|  | 7. Were the outcomes measured in a valid and reliable way? Yes |
|  | 8. Was appropriate statistical analysis used? No - stepwise regression was not performed. Instead, the variables that were statistically significant in univariate analysis or clinically associated with AAA were entered into the multivariate regression model |
|  | Overall risk of bias: High |
|  | Directness: directly applicable |


| Full citation | de Carvalho ATY, Santos AJ, Gomes CAP, et al. (2012) Infrarenal abdominal aortic aneurysm: Significance of screening in patients of public hospitals in the metropolitan region of salvador - bahia, Brazil. Jornal Vascular Brasileiro 11(4), 289-300 |
| :---: | :---: |
| Study details | Study design: cross-sectional study <br> Location(s): Brazil <br> Aim of the study: to determine the prevalence of infrarenal AAA in people from a region in northeast Brazil (Salvador) and to identify risk factors in this population <br> Study dates: September 2008 to October 2009 <br> Sources of funding: authors stated that no financial support was received |
| Participants | Sample size: 1,350; <br> Inclusion criteria: patients, 50 years or older ,who presented at hospitals with one or more of the following clinical conditions or risk factors were eligible for screening: diabetes systemic arterial hypertension, smoking, COPD, peripheral arterial disease, coronary insufficiency, nonischemic congestive heart failure, dyslipidaemia, carotid stenosis, obesity, chronic kidney disease and a family history of AAA, Marfan syndrome or Ehlers-Danlos syndrome <br> Exclusion criteria: patients with a previous diagnosis of AAA were excluded <br> Baseline characteristics: <br> - Mean age: 72.4 years <br> - Sex: 66.7\% female <br> - Hypertension: 59.9\% <br> - Peripheral arterial disease: 7.6\% <br> - Coronary insufficiency: $3.9 \%$ <br> - COPD: 3.1\% <br> - Diabetes: $46.8 \%$ <br> - Chronic Kidney disease: 2.8\% <br> - Chronic heart failure: 3.6\% <br> - Dyslipidaemia: 15.4\% |
| Methods | Data collection: Ultrasound imaging was used to establish the presence of AAA (defined as an infrarenal aortic diameter of 3 cm or larger). The presence of risk factors was determined by asking participants to complete a questionnaire. Analysis: multivariate logistic regression. It is unclear what factors were adjusted for in the analysis. |
| Outcomes | Risk factors: age, sex, smoking status, COPD, peripheral artery disease, family history of AAA, Marfan syndrome or Ehlers-Danlos syndrome |
| Study Appraisal using the | 1. Were the criteria for inclusion in the sample clearly defined? Yes <br> 2. Were the study subjects and the setting described in detail? Yes |


| Full citation | de Carvalho ATY, Santos AJ, Gomes CAP, et al. (2012) Infrarenal abdominal aortic aneurysm: Significance of screening in patients <br> of public hospitals in the metropolitan region of salvador - bahia, Brazil. Jornal Vascular Brasileiro 11(4), 289-300 |
| :--- | :--- |
| Joanna | 3. Was the exposure measured in a valid and reliable way? No - the presence of risk factors was ascertained by participants completing a <br> Briggs <br> self-administered questionnaire. |
| Institute | 4. Were objective, standard criteria used for measurement of the condition? Yes |
| checklist | 5. Were confounding factors identified? Unclear |
|  | 6. Were strategies to deal with confounding factors stated? Unclear |
|  | 7. Were the outcomes measured in a valid and reliable way? Yes |
|  | 8. Was appropriate statistical analysis used? Unclear |
|  | Overall risk of bias: moderate |
| Directness: directly applicable |  |


| Full citation | Derubertis BG, Trocciola SM, Ryer EJ, et al. (2007) Abdominal aortic aneurysm in women: prevalence, risk factors, and implications <br> for screening. Journal of vascular surgery 46(4), 630-635 |
| :--- | :--- |
| Study details | Study design: cross-sectional study <br> Location(s): USA |
|  | Aim of the study: to define the prevalence and risk factors associated with the development of AAA in women <br> Study dates: May 2004 to December 2006 <br> Sources of funding: not reported |
| Participants | Sample size: 10,012 women <br> Inclusion criteria: women, over 65 years old, with at least one of the following factors were eligible for screening: hypertension, history of |
|  | smoking, cardiovascular disease, or a family history of AAA. <br> Exclusion criteria: women with a previously known AAA were excluded. Additionally, women with incomplete risk factor information were <br> excluded. <br> Baseline characteristics: |
|  | - Mean age: 69.6 years <br> - Sex: $100 \%$ female <br> - Hypertension: $63.7 \%$ <br> - Hypercholesterolemia: $63.5 \%$ <br> - Diabetes: $13.9 \%$ |

$\left.\begin{array}{|l|l|}\hline \text { Full citation } & \begin{array}{l}\text { Derubertis BG, Trocciola SM, Ryer EJ, et al. (2007) Abdominal aortic aneurysm in women: prevalence, risk factors, and implications } \\ \text { for screening. Journal of vascular surgery 46(4), 630-635 }\end{array} \\ \hline & \begin{array}{l}\text { - Family history of AAA: 10.7\% } \\ \text { - Heart disease (myocardial infarction, coronary revascularisation or history of other cardiac surgery: } 12.0 \%\end{array} \\ \hline \text { Methods } & \begin{array}{l}\text { Data collection: Ultrasound imaging was used to determine the presence of AAA (defined as an infrarenal aortic diameter of } 3 \text { cm or larger). } \\ \text { The presence of risk factors was determined by asking participants to complete a questionnaire. Patients were considered to have } \\ \text { hypertension, hypercholesterolemia, or diabetes if they reported that they had been given these diagnoses by a physician or were receiving } \\ \text { treatment for these conditions. Cardiovascular disease was defined a history of myocardial infarction, a history of percutaneous or surgical } \\ \text { coronary revascularization, or other unspecified cardiac surgery. Tobacco use was defined as greater than or equal to 100 cigarettes in a } \\ \text { lifetime. A family history of AAA was defined as a first degree relative who was diagnosed with an AAA. }\end{array} \\ \hline & \text { Analysis: multivariate logistic regression adjusting for age, smoking history, family history, and ethnicity }\end{array}\right\}$

## Full citation

Hager J, LT, Carlsson P, and Lundgren F (2013) Lower prevalence than expected when screening 70-year-old men for abdominal
Study details

## Study design: cross-sectional study

Location(s): Sweden
Aim of the study: to determine the contemporary screening-detected prevalence among 70-year-old men
Study dates: 2008 to 2010
Sources of funding: authors stated that no financial support was received

| Full citation | Hager J, LT, Carlsson P, and Lundgren F (2013) Lower prevalence than expected when screening 70-year-old men for abdominal aortic aneurysm. European Journal of Vascular and Endovascular Surgery 46(4), 453-459 |
| :---: | :---: |
| Participants | Sample size: 4715 men <br> Inclusion criteria: 70 year-old men were eligible for screening <br> Exclusion criteria: men who had been previously been identified as having AAA were excluded <br> Baseline characteristics: <br> - Mean age: not reported <br> - Sex: $100 \%$ male <br> - Hypertension: 44.7\% <br> - Hyperlipidaemia: 31.3\% <br> - Diabetes: 15.5\% <br> - Coronary heart disease: 13.9\% <br> - COPD: 6.8\% <br> - Renal disease: 1.6\% <br> - Cerebrovascular disease: $7.5 \%$ <br> - Claudication 1.6\% |
| Methods | Data collection: Ultrasound imaging was used to establish the presence of AAA (defined as an infrarenal aortic diameter of 3 cm or larger). The presence of risk factors was determined by asking participants to complete a questionnaire that collected demographic information and contained questions relating to familial history of AAA, smoking habits, current medication, and the presence or absence of the following diseases: hypertension, hyperlipidaemia, diabetes, COPD, renal disease, cerebrovascular disease, claudication, coronary heart disease (angina pectoris and/or myocardial infarction), rheumatic disease, and cancer. <br> Analysis: multivariate logistic regression. It is unclear what factors were adjusted for in the analysis. |
| Outcomes | Risk factors: smoking status, COPD, cerebrovascular disease, claudication, coronary artery, and hyperlipidaemia. Investigators also assessed as a risk factor; however, it is not listed for inclusion in the review protocol. |
| Study Appraisal using the Joanna Briggs Institute checklist | 1. Were the criteria for inclusion in the sample clearly defined? Yes <br> 2. Were the study subjects and the setting described in detail? No <br> 3. Was the exposure measured in a valid and reliable way? No - the presence of risk factors was ascertained by participants completing a self-administered questionnaire. <br> 4. Were objective, standard criteria used for measurement of the condition? Yes <br> 5. Were confounding factors identified? Unclear <br> 6. Were strategies to deal with confounding factors stated? Unclear <br> 7. Were the outcomes measured in a valid and reliable way? Yes |

Hager J, LT, Carlsson P, and Lundgren F (2013) Lower prevalence than expected when screening 70-year-old men for abdominal
Full citation
aortic aneurysm. European Journal of Vascular and Endovascular Surgery 46(4), 453-459
8. Was appropriate statistical analysis used? No - stepwise regression was not performed. Instead, only variables with p-values $<0.1$ from univariate chi-square tests were entered into the logistic regression model.
Overall risk of bias: high
Directness: directly applicable

| Full citation | Johnsen SH, Forsdahl SH, Singh K, et al. (2010) Atherosclerosis in abdominal aortic aneurysms: a causal event or a process running <br> in parallel? The Tromso study. Arteriosclerosis, thrombosis, and and vascular biology 30(6), 1263-8 |
| :--- | :--- |
| Study details | Study design: cross-sectional study <br> Location(s): Norway <br> Aim of the study: to investigate the relationship between carotid, femoral, and coronary atherosclerosis and abdominal aortic diameter, and <br> whether atherosclerosis was a risk marker for AAA <br> Study dates: <br> Sources of funding: |
| Participants | Sample size: 6,446 people <br> Inclusion criteria: people between 55 and 74 years were eligible for screening. Additionally, a random sample of people over 25 years were <br> included to make up 5\% to 10\% of the total study population. <br> Exclusion criteria: not reported |
|  | Baseline characteristics: <br> - Mean age: men, 59.5 years; women, 60.7 years <br> - Sex: 50.9\% female <br> - Coronary heart disease: men, 15.3\%; women, 9.0\% |
| Methods | Data collection: Ultrasound imaging was used to establish the presence of AAA (defined as an infrarenal aortic diameter of 3 cm or larger). <br> Carotid ultrasonography was performed to ascertain the extent of atherosclerosis. A plaque was defined as a localised protrusion of the vessel <br> wall into the lumen of at least $50 \%$, compared with the adjacent intima-media thickness. In people with more than 1 plaque, the areas of all <br> plaques were summarised to give the total plaque area. Investigators also measured blood pressure, non-fasting serum cholesterol and <br> triglyceride levels, as well as serum high-density lipoprotein cholesterol levels. Information relating to smoking habits, angina pectoris, <br> myocardial infarction and use of antihypertensive and lipid lowering drugs was ascertained via self-administered questionnaires. |
| Analysis: multivariate logistic regression adjusting for age, sex, BMI, smoking, systolic blood pressure, total cholesterol and use of |  |
| lipid-lowering and antihypertensive medication |  |


| Full citation | Johnsen SH, Forsdahl SH, Singh K, et al. (2010) Atherosclerosis in abdominal aortic aneurysms: a causal event or a process running in parallel? The Tromso study. Arteriosclerosis, thrombosis, and and vascular biology 30(6), 1263-8 |
| :---: | :---: |
|  | 8. Was appropriate statistical analysis used? Unclear - Investigators did not report whether a stepwise approach was used to perform the multivariate logistic regression. <br> Overall risk of bias: low <br> Directness: directly applicable |
| Full citation | Kent KC, Zwolak RM, Egorova NN, Greco G, et al. (2010) Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. Journal of vascular surgery 52(3), 539-48 <br> NB - a second publication evaluating the same population was produced by the same study group: <br> Greco G, Egorova NN, Gelijns AC, et al. (2010) Development of a novel scoring tool for the identification of large $>5 \mathrm{~cm}$ abdominal aortic aneurysms. Annals of surgery 252(4), 675-82 |
| Study details | Study design: cross-sectional study <br> Location(s): USA <br> Aim of the study: to identify risk factors associated with AAA in people who underwent ultrasound screening <br> Study dates: 2003 to 2008 <br> Sources of funding: this study was funded by a grant to the Society for Vascular Surgery from Life Line Screening (a private screening company) |
| Participants | Sample size: $3,056,455$ people; sex-specific proportions were not reported <br> Inclusion criteria: self-referred patients who paid for vascular screening tests. In people with multiple screenings, only the most recent record with complete information was included. <br> Exclusion criteria: individuals with records where gender, age and smoking states were messing, were excluded. Furthermore, people with a history of AAA repair, and people over 85 years were excluded. <br> Baseline characteristics: <br> - Mean age: not reported <br> - Sex: 64.7\% female <br> - Hypertension: 65.1\% <br> - Hyperlipidaemia: 54\% <br> - Coronary heart disease: 6.8\% <br> - Carotid disease: 2.5\% <br> - History of cerebrovascular disease: 5.5\% |


|  | Kent KC, Zwolak RM, Egorova NN, Greco G, et al. (2010) Analysis of risk factors for abdominal aortic aneurysm in a cohort of more <br> than 3 million individuals. Journal of vascular surgery $52(3)$ ), $539-48$ |
| :--- | :--- |
|  | NB - a second publication evaluating the same population was produced by the same study group: |
| Greco G, Egorova NN, Gelijns AC, et al. (2010) Development of a novel scoring tool for the identification of large $>5 \mathrm{~cm}$ abdominal |  |
| aortic aneurysms. Annals of surgery $252(4), 675-82$ |  |


|  | Le MTQ, Jamrozik K, Davis TME et al. (2007) Negative association between infra-renal aortic diameter and glycaemia: the Health in <br> Men Study. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular <br> Surgery 33(5), 599-604 <br> NB - other publications evaluating the same population were produced by the same study group: <br> Golledge J, Clancy P, Jamrozik K, et al. (2007) Obesity, adipokines, and abdominal aortic aneurysm: Health in Men study. Circulation <br> 116(20), 2275-9 <br> Jamrozik K, Norman PE, Spencer CA et al. (2000) Screening for abdominal aortic aneurysm: lessons from a population-based study. <br> The Medical journal of Australia 173(7), 345-50 |
| :--- | :--- |
| Full citation |  |


|  | Le MTQ, Jamrozik K, Davis TME et al. (2007) Negative association between infra-renal aortic diameter and glycaemia: the Health in |
| :--- | :--- |
| Men Study. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular |  |
| Surgery 33(5), 599-604 |  |


|  | Lederle FA, Johnson GR, Wilson SE, et al. (2000) The Aneurysm Detection and Management study screening program: Validation <br> cohort and final results. Archives of Internal Medicine 160(10), 1425-1430 <br> NB - A second older publication of the same study was produced by the same authors: <br> Lederle FA, Johnson GR, Wilson SE, et al. (1997) Prevalence and associations of abdominal aortic aneurysm detected through <br> Full citation <br> screening. Annals of Internal Medicine 126(6), 441-449 |
| :--- | :--- |
| Study details | Study design: cross-sectional study <br> Location(s): USA |
|  | Aim of the study: to assess the prevalence of positive and negative risk factors for AAA <br> Study dates: October 1992 to July 1997 |
|  | Sources of funding: not reported |


| Full citation | Lederle FA, Johnson GR, Wilson SE, et al. (2000) The Aneurysm Detection and Management study screening program: Validation cohort and final results. Archives of Internal Medicine 160(10), 1425-1430 <br> NB - A second older publication of the same study was produced by the same authors: <br> Lederle FA, Johnson GR, Wilson SE, et al. (1997) Prevalence and associations of abdominal aortic aneurysm detected through screening. Annals of Internal Medicine 126(6), 441-449 |
| :---: | :---: |
|  | demographic information and possible risk factors. The questionnaire asked whether they were told by a clinician that they had any of the risk factors under investigation. <br> Analysis: Analysis: multivariate logistic regression. It is unclear what factors were adjusted for in the analysis. |
| Outcomes | Risk factors: age, sex, ethnicity, family history of AAA, smoking status, hypertension, hypercholesterolemia, coronary artery disease, claudication, cerebral vascular disease, atherosclerosis, diabetes, COPD. Investigators also assessed height, weight, waist circumference, deep vein thrombosis, cancer and history of abdominal imaging as risk factors; however, these factors were not listed for inclusion in the review protocol. |
| Study Appraisal using the Joanna Briggs Institute checklist | 1. Were the criteria for inclusion in the sample clearly defined? Yes <br> 2. Were the study subjects and the setting described in detail? Yes <br> 3. Was the exposure measured in a valid and reliable way? No - the presence of risk factors was ascertained by participants completing a self-administered questionnaire. <br> 4. Were objective, standard criteria used for measurement of the condition? Yes <br> 5. Were confounding factors identified? Unclear <br> 6. Were strategies to deal with confounding factors stated? Unclear <br> 7. Were the outcomes measured in a valid and reliable way? Yes <br> 8. Was appropriate statistical analysis used? No- the multivariate analysis included all variables that were considered in the self-administered questionnaire <br> Overall risk of bias: high <br> Directness: directly applicable |


| Full citation | Makrygiannis G, Labalue P, Erpicum M, et al. (2016) Extending Abdominal Aortic Aneurysm Detection to Older Age Groups: Preliminary Results from the Liege Screening Programme. Annals of vascular surgery 36, 55-63 |
| :---: | :---: |
| Study details | Study design: cross-sectional study <br> Location(s): Belgium <br> Aim of the study: to report the results of a AAA screening programme in people 65-85 years old from the County of Chaudfontaine in Belgium <br> Study dates: May to November 2014 <br> Sources of funding: This study was funded by the Aneurysmal Pathology Foundation (APF), |
| Participants | Sample size: 1,101 people <br> Inclusion criteria: men aged 65-85 years and women aged 74 to 85 years from the county of Chaudfontaine in Belgium were included <br> Exclusion criteria: not reported <br> Baseline characteristics: <br> - Mean age: men, 73.6 years; women, 78.8 years <br> - Sex: 65.6\% male <br> - Hypertension: men, 67.9\%; women, $72.3 \%$ <br> - Hyperlipidaemia: men, 62.6\%; women, 62.5 \% <br> - Diabetes: men, 19.1\%; women, 14.0\% <br> - Coronary artery disease: men, 17.3\%; women, $7.4 \%$ <br> - Peripheral arterial disease: men, 6.8\%; women, $3.7 \%$ <br> - COPD: men, $5.1 \%$; women, $3.7 \%$ <br> - Stroke: men, 7.9\%; women, 8.2\% <br> - Renal insufficiency: men, $1.5 \%$; women, $3.2 \%$ |
| Methods | Data collection: Ultrasound imaging was used to establish the presence of AAA (defined as an infrarenal aortic diameter of 3 cm or larger). Investigators ascertained the presence of risk factors by asking participants to complete a self-reported questionnaire. Participants were asked to report self-reported use of drugs, smoking status (current, former, and never), and history of hypercholesterolemia, diabetes mellitus, hypertension, coronary artery disease (bypass surgery and angioplasty with or without stenting), peripheral arterial occlusive disease, stroke and transient ischemic attack, chronic obstructive pulmonary disease, renal insufficiency, cancer, and inguinal hernia. <br> Analysis: multivariate logistic regression. It is unclear what factors were adjusted for in the analysis. |
| Outcomes | Risk factors: age, smoking status, hypercholesterolemia, peripheral artery disease, and coronary artery disease |
| Study <br> Appraisal using the Joanna | 1. Were the criteria for inclusion in the sample clearly defined? Yes <br> 2. Were the study subjects and the setting described in detail? Yes <br> 3. Was the exposure measured in a valid and reliable way? No - the presence of risk factors was ascertained by participants completing a self-administered questionnaire. |


| Full citation | Makrygiannis G, Labalue P, Erpicum M, et al. (2016) Extending Abdominal Aortic Aneurysm Detection to Older Age Groups: Preliminary Results from the Liege Screening Programme. Annals of vascular surgery 36, 55-63 |
| :---: | :---: |
| Briggs Institute checklist | 4. Were objective, standard criteria used for measurement of the condition? Yes <br> 5. Were confounding factors identified? Unclear <br> 6. Were strategies to deal with confounding factors stated? Unclear <br> 7. Were the outcomes measured in a valid and reliable way? Yes <br> 8. Was appropriate statistical analysis used? Unclear - Investigators did not report whether a stepwise approach was used to perform the multivariate logistic regression. <br> Overall risk of bias: Moderate <br> Directness: directly applicable |
| Full citation | Mark-Christensen A, Lindholt J S, Diederichsen A, et al. (2017) Association Between Diverticular Disease and Abdominal Aortic Aneurysms: Pooled Analysis of Two Population Based Screening Cohorts. European Journal of Vascular and Endovascular Surgery 54(6), 772-777 |
| Study details | Study design: cross-sectional study combining data from 2 Danish screening programmes Location(s): Denmark <br> Aim of the study: to assess risk factors associated with AAA Study dates: first screening cohort, 2008 to 2010; second cohort, from 2015 onwards Sources of funding: authors state that no funding was received |
| Participants | Sample size: 24,632 people <br> Inclusion criteria: people aged 65-74 from 2 different regions in Denmark were eligible for screening Exclusion criteria: authors state that no exclusion criteria were applied <br> Baseline characteristics: <br> - Age >70 years old: $43 \%$ <br> - Sex: 97\% male <br> - Hypertension: 52\% <br> - Peripheral arterial disease: 10\% <br> - Diabetes: 11\% <br> - Family history of AAA: 3\% |
| Methods | Data collection: Either ultrasound imaging or non-contrast computed-tomography were used to establish the presence of AAA (defined as an infrarenal aortic diameter of 3 cm or larger). Investigators ascertained the presence of risk factors (AAA, hypertension, peripheral arterial |


| Full citation | Mark-Christensen A, Lindholt J S, Diederichsen A, et al. (2017) Association Between Diverticular Disease and Abdominal Aortic Aneurysms: Pooled Analysis of Two Population Based Screening Cohorts. European Journal of Vascular and Endovascular Surgery 54(6), 772-777 |
| :---: | :---: |
|  | disease, diabetes, current smoking status, smoking status and use of oral corticosteroids) via clinical examination, medical records or patient interview. <br> Analysis: multivariate logistic regression |
| Outcomes | Risk factors: age, sex, smoking status, BMI, hypertension, smoking, and family history of AAA |
| Study Appraisal using the Joanna Briggs Institute checklist | 1. Were the criteria for inclusion in the sample clearly defined? Yes |
|  | 2. Were the study subjects and the setting described in detail? Yes |
|  | 3. Was the exposure measured in a valid and reliable way? Yes |
|  | 4. Were objective, standard criteria used for measurement of the condition? Yes |
|  | 5. Were confounding factors identified? Yes |
|  | 6. Were strategies to deal with confounding factors stated? Yes |
|  | 7. Were the outcomes measured in a valid and reliable way? Yes |
|  | 8. Was appropriate statistical analysis used? No - Only covariates significantly associated with AAA on multivariate analysis were included in the multivariate models |
|  | Overall risk of bias: Moderate <br> Directness: directly applicable |


| Full citation | Pleumeekers JCM, Hoes AW, Hofman A, et al. (1999) Selecting subjects for ultrasonographic screening for aneurysms of the abdominal aorta: Four different strategies. International Journal of Epidemiology 28(4), 682-686 |
| :---: | :---: |
| Study details | Study design: cross-sectional study <br> Location(s): Netherlands <br> Aim of the study: to evaluate whether the effectiveness of ultrasound screening for AAA could be increased by preselecting people who were at high risk of AAA <br> Study dates: not reported <br> Sources of funding: not reported |
| Participants | Sample size: 5,328 ; <br> Inclusion criteria: people 55 years or older living in a suburb in the Netherlands were eligible for ultrasound screening <br> Exclusion criteria: people with a history of AAA repair or people in whom it was technically impossible to visualise the abdominal aorta were excluded. Furthermore, people living in nursing homes were excluded due to limitations in transporting ultrasound equipment. <br> Baseline characteristics: <br> - Mean age: men, 67.7 years <br> - Sex: 58\% female <br> - Angina: 6.8\% <br> - Intermittent claudication: 1.5\% <br> - History of myocardial infarction: 22\% <br> - History of stroke: 3.1\% <br> - Hypertension: 21.1\% |
| Methods | Data collection: Ultrasound imaging was used to establish the presence of AAA. An AAA was defined as a distal aortic diameter of 3.5 cm or larger, or when the ratio between the distal and proximal aorta was greater than 1.5. The presence of risk factors was determined by performing physical examinations, taking blood samples and asking participants to complete a self-administered questionnaire. Claudication was defined as a history of angina. A history of myocardial infarction was considered positive if the patient reported having been hospitalised for the conditions. Hypertension was defined as use of blood pressure lowering drugs. <br> Analysis: multivariate logistic regression adjusting for age and sex |
| Outcomes | Risk factors: age, sex, smoking status, hypertension (antihypertensive drug use), angina pectoris, intermittent claudication, myocardial infarction, hypercholesterolemia, peripheral arterial disease (indicated by an ankle arm index $\leq 0.9$ ), and enlarged aorta on palpation. Investigators also assessed bruit over abdominal aorta as risk factors; however, this not listed for inclusion in the review protocol. |
| Study <br> Appraisal using the Joanna | 1. Were the criteria for inclusion in the sample clearly defined? Yes <br> 2. Were the study subjects and the setting described in detail? Yes |

## Pleumeekers JCM, Hoes AW, Hofman A, et al. (1999) Selecting subjects for ultrasonographic screening for aneurysms of the

``` abdominal aorta: Four different strategies. International Journal of Epidemiology 28(4), 682-686
```


## Full citation

Briggs Institute checklist

```
3. Was the exposure measured in a valid and reliable way? No - Although the presence of some risk factors was determined by performing physical examinations, the presence of other risk factors was determined by asking participants to complete a questionnaire.
4. Were objective, standard criteria used for measurement of the condition? Yes
5. Were confounding factors identified? Yes
6. Were strategies to deal with confounding factors stated? Yes
7. Were the outcomes measured in a valid and reliable way? Yes
8. Was appropriate statistical analysis used? No - stepwise regression was not performed. Instead, only variables with p-values \(<0.2\) in multivariate analyses were explored in the multivariate logistic regression model.
Overall risk of bias: high
Directness: directly applicable
```

| Full citation | Salvador-Gonzalez B, Martin-Baranera M, Borque-Ortega A, et al. (2016) Prevalence of Abdominal Aortic Aneurysm in Men Aged 6574 Years in a Metropolitan Area in North-East Spain. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery 52(1), 75-81 |
| :---: | :---: |
| Study details | Study design: cross-sectional study <br> Location(s): Spain <br> Aim of the study: to estimate the current screening prevalence of AAA in men aged 65 to 74 years in a metropolitan area in north-east Spain and to identify associated risk factors <br> Study dates: September 2007 to June 2010 <br> Sources of funding: the study was part funded by a grant from the Jordi Gol Institute for Primary Care Research |
| Participants | Sample size: 651 men <br> Inclusion criteria: men between 65 and 74 years old registered at healthcare facilities in Barcelona were included. <br> Exclusion criteria: people with a life expectancy less than 2 year, limited quality of life (receiving home care, living in a care home, or with a Barthel index <90), previous diagnosis of AAA, a history of aorto-femoral surgery, and people of non-Caucasian ethnicity were excluded. <br> Baseline characteristics: <br> - Mean age: men, 70.2 years <br> - Sex: $100 \%$ male <br> - Hypertension: 53.3\% <br> - Diabetes: 24.5\% <br> - Hypercholesterolemia: 45.2\% <br> - Cardiovascular disease: 22.7\% <br> - Angor pectoris: 9.7\% <br> - Myocardial infarction: 6.9\% <br> - Cerebrovascular disease: 9.2\% <br> - Intermittent claudication: 4.8\% |
| Methods | Data collection: Ultrasound imaging was used to establish the presence of AAA (defined as an infrarenal aortic diameter of 3 cm or larger). The presence of hypertension, diabetes, hypercholesterolemia, abdominal obesity (waist circumference $>102 \mathrm{~cm}$ ), and metabolic syndrome was determined by reviewing patient's medical records. Data on cardiovascular diseases (angor pectoris, myocardial infarction, intermittent claudication, or cerebral vascular disease) were obtained from clinical histories, and family history of AAA was ascertained from a clinical interview. <br> Analysis: multivariate logistic regression. It is unclear what factors were adjusted for in the analysis. |
| Outcomes | Risk factors: smoking status and myocardial infarction |


| Full citation | Salvador-Gonzalez B, Martin-Baranera M, Borque-Ortega A, et al. (2016) Prevalence of Abdominal Aortic Aneurysm in Men Aged 6574 Years in a Metropolitan Area in North-East Spain. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery 52(1), 75-81 |
| :---: | :---: |
| Study | 1. Were the criteria for inclusion in the sample clearly defined? Yes |
| Appraisal | 2. Were the study subjects and the setting described in detail? Yes |
| using the | 3. Was the exposure measured in a valid and reliable way? Yes |
| Joanna | 4. Were objective, standard criteria used for measurement of the condition? Yes |
| Institute | 5. Were confounding factors identified? Unclear |
| checklist | 6. Were strategies to deal with confounding factors stated? Unclear |
|  | 7. Were the outcomes measured in a valid and reliable way? Yes |
|  | 8. Was appropriate statistical analysis used? No - stepwise regression was not performed. Instead, only variables with p-values $\leq 0.1$ in multivariate analyses were explored in the multivariate logistic regression model. |
|  | Overall risk of bias: moderate |
|  | Directness: directly applicable |

## Full citation

Study details
Singh K, Bonaa KH, Jacobsen BK, et al. (2001) Prevalence of and risk factors for abdominal aortic aneurysms in a population-based

Study design: cross-sectional study
Location(s): Norway
Aim of the study: to study the prevalence of and risk factors for abdominal aortic aneurysm, as well as the distribution of infrarenal aortic diameter, in both men and women in a general population
Study dates: September 1994 to October 1995
Sources of funding: the study was supported by grants from the Norwegian Research Council and the Norwegian Council on Cardiovascular Diseases
Participants Sample size: 6,386
Inclusion criteria: people between 55 and 74 years were eligible for screening. Additionally, a random sample of people over 25 years were included to make up $5 \%$ to $10 \%$ of the total study population.
Exclusion criteria: not reported
Baseline characteristics:

- Mean age: not reported
- Sex: 53.6\% female

| Full citation | Singh K, Bonaa KH, Jacobsen BK, et al. (2001) Prevalence of and risk factors for abdominal aortic aneurysms in a population-based <br> study : The Tromso Study. American journal of epidemiology 154(3), 236-44 |
| :--- | :--- |
| - Comorbidities: not reported |  |


| Full citation | Vardulaki KA, Walker NM, Day NE, et al. (2000) Quantifying the risks of hypertension, age, sex and smoking in patients with <br> abdominal aortic aneurysm. British Journal of Surgery 87(2), 195-200 |
| :--- | :--- |
| Study details | Study design: cross-sectional study <br> Location(s): UK <br> Aim of the study: to assess the prevalence of AAA among patients with hypertension and those taking antihypertensive medication <br> (normotensives and current hypertensives), relative to normotensive untreated subjects in a community-based sample of men and women <br> aged between 65 and 79 years <br> Study dates: 1988 to 1995 <br> Sources of funding: not reported |
| Participants | Sample size: 5,356; (3,035/5,356) female <br> Inclusion criteria: people between 65 and 79 years old were included. No further details were provided. <br> Exclusion criteria: not reported |
|  | Baseline characteristics: <br> - Mean age: not reported <br> - Sex: 56.7\% male |
| Comorbidities: not reported |  |

Vardulaki KA, Walker NM, Day NE, et al. (2000) Quantifying the risks of hypertension, age, sex and smoking in patients with
Full citation abdominal aortic aneurysm. British Journal of Surgery 87(2), 195-200
Directness: directly applicable

## Appendix E-GRADE tables

| Age |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| Men and women |  |  |  |  |  |  |  |  |  |
| Age: 55-59 <br> 60-64 <br> 65-69 <br> 70-74 <br> 75-79 <br> 80-84 <br> All vs. < 55 <br> (reference) | $\begin{aligned} & 1 \text { Kent } \\ & \text { (2010) } \end{aligned}$ | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Not serious | 3,056,455 | ORa $2.76(2.55,3.00)$ ORa $5.35(4.97,5.76)$ ORa 9.41 (8.76. 10.12) OR ${ }^{\mathrm{a}} 14.46$ (13.45. 15.55) OR 20.46 (18.99. 21.99) $\mathrm{OR}^{\mathrm{a}} 28.37$ (26.31. 30.59) | Low |
| Age: 70-74 <br> 75-79 <br> All vs. 65-69 (reference) | 1 Vardulaki (2000) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 5,356 | $\begin{aligned} & \text { ORa } 1.4(0.98,2.1) \\ & \text { ORa}^{\text {a }} 1.8(1.2,2.7) \end{aligned}$ | Modera te |
| Age: 66-75 <br> $>75$ <br> All vs. 55-65 <br> (reference) | $\begin{aligned} & 1 \\ & \text { Pleumeekers } \\ & (1999) \end{aligned}$ | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 5,328 | $\begin{aligned} & \text { ORa }^{1.4}(1.1,1.9) \\ & \text { ORa}^{\mathrm{a}} 2.7(1.8,4.1) \end{aligned}$ | Low |
| $\begin{aligned} & \text { Age: }>75 \text { vs. } \\ & \leq 75 \end{aligned}$ | $\begin{aligned} & 1 \text { Chun } \\ & (2014) \end{aligned}$ | Crosssectional | Serious ${ }^{3}$ | N/A | Not serious | Not serious | 6,142 | OR ${ }^{\text {a }} 1.62$ (1.33, 1.96) | Modera te |
| $\begin{aligned} & \text { Age: >70 vs. } \\ & \leq 75 \end{aligned}$ | 1 MarkChristensen (2017) | Crosssectional | Serious ${ }^{2}$ | N/A | Not serious | Not serious | 24,632 | ORa 1.41 (1.22, 1.63) | Modera te |
| Age: per 7 year increase | 1 Lederle (2000) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 122,788 | ORa 1.58 (1.52, 1.64) | Low |


| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age: per year increase | 3 (De Carvalho, 2012 <br> Corrado 2016, Makrygiannis 2016) | Crosssectional | Serious ${ }^{1}$ | Not serious | Not serious | Serious ${ }^{4}$ | 4,006 | ORa 1.1 (1.0, 1.2) <br> ORa 1.14 (1.06, 1.22) <br> OR 1.07 (Not significant; <br> 95\% CI not reported) | Low |
| Men only |  |  |  |  |  |  |  |  |  |
| Age: 65-69 <br> 70-74 <br> 75-84 <br> All vs. 60-64 <br> (reference) | $\begin{aligned} & 1 \text { Singh } \\ & (2001) \end{aligned}$ | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 2,962 | ORa 2.18 (1.44, 3.29) <br> OR 2.29 (1.49, 3.52) <br> OR 3.31 (1.62, 6.73) | Modera te |
| Age: per year increase | $\begin{aligned} & 2 \text { (Le 2007, } \\ & \text { Bonamigo } \\ & 2003 \text { ) } \end{aligned}$ | Crosssectional | Serious ${ }^{1}$ | Not serious | Not serious | Not serious | 12,971 | $\begin{aligned} & \text { ORa }^{\text {O }} 1.09(1.07,1.11) \\ & \text { ORa}^{a} 1.08(1.022,1.139) \end{aligned}$ | Modera te |
| Women only |  |  |  |  |  |  |  |  |  |
| Age: per year increase | 1 Derubertis (2007) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 10,012 | ORa 1.10 (1.06, 1.14) | Low |
| Age: 65-69 <br> 70-74 <br> 75-84 <br> All vs. 60-64 <br> (reference) | 1 Singh (2001) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 3,424 | $\begin{aligned} & \text { ORa }^{\text {O }} .94(0.81,4.65) \\ & \text { ORa }^{\mathrm{a}} 4.81(2.14,10.84) \\ & \text { OR }^{\mathrm{a}} 4.98(1.45,17.07) \end{aligned}$ | Modera te |
| a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors. <br> 1. The presence of risk factors, and covariates adjusted for, was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level. <br> 2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level. <br> 3. It was unclear what people were eligible for screening, downgrade 1 level. <br> 4. $95 \% \mathrm{Cl}$ crosses the line of no effect (1) in studies with greater weighting (larger populations), downgrade 1 level. |  |  |  |  |  |  |  |  |  |

## Sex

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Sex: men vs. women | 6 (Kent 2010, <br> Lederle 2000, <br> Vardulaki 2000, <br> Pleumeekers 1999, <br> De Carvalho 2012, <br> Corrado <br> 2016, 1 <br> Mark- <br> Christensen <br> 2017)) | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Not serious | 3,217464 | ORa 5.71 ( $5.57,5.85$ ) <br> ORa $2.13(1.45,3.12)$ <br> ORa $5.6(3.7,8.4)$ <br> ORa $6.5(3.8,11.2)$ <br> ORa 9.9 (2.0, 50.0) <br> ORa 8.2 (1.79, 37.91) <br> ORa 21.9 (3.07, 156.26) | Low |

a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors.

1. The presence of risk factors was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level.
2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level.

## BMI/Weight/Obesity

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| BMI: $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$ vs. <br> $<25 \mathrm{~kg} / \mathrm{m}^{2}$ | 1 Kent (2010) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 3,056,455 | ORa 1.20 (1.17, 1.22) | Low |
| BMI: $\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$ vs. <br> $<30 \mathrm{~kg} / \mathrm{m}^{2}$ | 2 (Chun <br>  <br> Mark- <br> Christens <br> en 2017) | Crosssectional | Very serious ${ }^{2}{ }^{3}$ | Serious ${ }^{4}$ | Not serious | Not serious | 30,744 | $\begin{aligned} & \text { ORa } 0.94(0.77,1.15) \\ & \text { ORa }^{\text {a }} 1.26(1.06,1.49) \end{aligned}$ | Very low |
| Weight: per 16 kg | 1 Lederle (2000) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Serious ${ }^{5}$ | 122,788 | ORa 1.00 (0.93, 1.07) | Very low |
| Men only |  |  |  |  |  |  |  |  |  |
| BMI: per kg/m² | $\begin{aligned} & 1 \mathrm{Le} \\ & (2007) \end{aligned}$ | Crosssectional | Serious ${ }^{2}$ | N/A | Not serious | Not serious | 12,203 | ORa 1.03 (1.01, 1.05) | Moderate |
| BMI: per 4kg/m² | 1 Singh (2001) | Crosssectional | Serious ${ }^{2}$ | N/A | Not serious | Serious ${ }^{5}$ | 2,962 | ORa 1.14 (0.94, 1.39) | Low |
| Women only |  |  |  |  |  |  |  |  |  |
| BMI: per 4kg/m² | 1 Singh (2001) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Serious ${ }^{5}$ | 3,424 | ORa 0.85 (0.65, 1.11) | Low |

a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors

1. The presence of risk factors was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level.
2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level.
3. It was unclear what people were eligible for screening, downgrade 1 level.
4. Reported findings from included studies highlight inconsistent directions of effect, downgrade 1 level
5. $95 \% \mathrm{Cl}$ crosses the line of no effect ( 1 ), downgrade 1 level.

## Smoking

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Current smokers vs. never smokers | 7 (Berger 2013, <br> Chun 2014, <br> Vardulaki 2000, <br> Pleumeekers 1999, <br> De Carvalho 2012, Corrado 2016, <br> Makrygiannis 2016, MarkChristensen 2017) | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Not serious | 3,341,7335 | ORa 1.98 (1.86, 2.03) <br> ORa 1.67 (1.33, 2.10) <br> ORa 2.7 (1.7, 4.4) <br> ORa $3.1(1.7,5.1)$ <br> ORa 6.8 (1.6, 29.4) <br> OR 4.73 (Significant; <br> (95\% CI not reported) <br> OR ${ }^{\mathrm{a}} 7.61$ (5.76, 10.05) | Low |
| Ex-smokers vs. never smokers | 4 (Berger 2013, <br> Vardulaki 2000, Corrado 2016, MarkChristensen 2017) | Crosssectional | Serious ${ }^{1}$ | Not serious | Not serious | Not serious | 3,326,904 | OR $2.75(2.68,2.82)$ <br> ORa 1.5 (1.0, 2.3) <br> OR $2.76(1.12,8.94)$ <br> ORa $3.76(2.88,4.93)$ | Moderate |
| Ever smoked vs. never smoked | 1 Lederle (2000) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 122,788 | ORa 2.97 (2.65, 3.32) | Low |
| Men only |  |  |  |  |  |  |  |  |  |
| Current smokers vs. never smokers | $\begin{aligned} & 4 \text { (Singh } \\ & \text { 2001, } \\ & \text { Hager 2013, } \\ & \text { Barba 2013, } \end{aligned}$ | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Not serious | 10,134 | $\begin{aligned} & \text { OR }^{\mathrm{a}} 7.37(3.70,14.69) \\ & \text { OR }^{\mathrm{a}} 8.90(4.2,18.6) \\ & \text { OR }^{\mathrm{a}} 3.47(1.67,7.22) \\ & \text { OR }^{\mathrm{a}} 6.42(2.18,18.89) \end{aligned}$ | Low |


| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bonamigo 2003) |  |  |  |  |  |  |  |  |
| Ex-smokers vs. never smokers | $\begin{aligned} & 2 \text { (Singh } \\ & \text { 2001, } \\ & \text { Hager 2013) } \end{aligned}$ | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Not serious | 8,585 | $\begin{aligned} & \text { ORa } 3.60(1.85,7.03) \\ & \text { ORa }^{\text {a }} 3.30(1.70,6.60) \end{aligned}$ | Low |
| Ever smoked vs. never smoked | 1 Le (2007) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 12,203 | ORa 2.04 (1.84, 2.26) | Moderate |
| Smoking frequency: $10-20$ <br> cigarettes/day <br> >20 cigarettes/day <br> All compared with $0-20$ <br> cigarettes/day (reference) | 1 SalvadorGonzalez (2016) | Crosssectional | Serious ${ }^{2}$ | Not serious | Not serious | Not serious | 651 | $\begin{aligned} & \text { ORa }^{\mathrm{a}} 20.4(2.6,162.2) \\ & \text { ORa }^{\mathrm{a}} 15.8(1.7,146.4) \end{aligned}$ | Moderate |
| Women only |  |  |  |  |  |  |  |  |  |
| Current smokers vs never smokers | 1 Singh (2001) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 3,424 | ORa 5.82 (2.92, 11.58) | Moderate |
| Ex-smokers vs never smokers | 1 Singh (2001) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Serious ${ }^{3}$ | 3,424 | ORa 1.64 (0.75, 3.58) | Low |
| Tobacco use (greater than or equal to 100 cigarettes in a lifetime) | 1 Derubertis (2007) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 10,012 | ORa 4.02 (2.17, 7.44) | Low |


| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level. $3.95 \% \mathrm{Cl}$ crosses the line of no effect (1), downgrade 1 level. |  |  |  |  |  |  |  |  |  |

Palpable aorta on abdominal examination

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% $\mathrm{Cl})$ | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Present vs. absent | 1 Pleumeekers (1999) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 5,328 | $\begin{aligned} & \text { ORa } 7.0 \text { (3.7, } \\ & 13.2) \end{aligned}$ | Low |

a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors.

1. The presence of risk factors was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level.
2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level.

## Cardiovascular disease

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participa nts | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Coronary artery disease | 4 (Kent 2010, <br> Lederle 2000, <br> Chun 2014, Makrygiannis 2016) | Crosssectional | Very serious ${ }^{1,2,}$ | Not serious | Not serious | Not serious | 3,186,486 | ORa 1.72 (1.69, 1.76) <br> OR 1.44 (1.34, 1.55) <br> OR 1.89 (1.59, 2.29) <br> OR 2.15 (not significant; $95 \% \mathrm{Cl}$ not reported) | Low |
| History of myocardial infarction | 1 <br> Pleumeekers <br> (1999) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Serious ${ }^{3}$ | 5,328 | OR 1.5 ${ }^{\text {a }}$ (0.9, 2.6) | Very low |
| Coronary insufficiency | 1 De Carvalho (2012) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 1,350 | OR 166.7 ${ }^{\text {a }}$ (25.6, >1,000) | Moderate |
| Men only |  |  |  |  |  |  |  |  |  |
| Coronary artery disease | $\begin{aligned} & 1 \text { Hager } \\ & (2013) \end{aligned}$ | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Serious ${ }^{3}$ | 5,623 | OR 1.7 ${ }^{\text {a }}$ (1.0, 3.0) | Very low |
| History of myocardial infarction | 1 SalvadorGonzalez (2016) | Crosssectional | Serious ${ }^{2}$ | N/A | Not serious | Not serious | 651 | OR $5.1^{\text {a }}$ (1.4, 18.4) | Moderate |
| History of cardiovascular disease | 1 Le (2007) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 12,203 | OR 1.83 ${ }^{\text {a }}$ (1.58, 2.12) | Moderate |
| Myocardial disease | $\begin{aligned} & 1 \text { Bonamigo } \\ & \text { (2003) } \end{aligned}$ | Crosssectional | Not serious | N/A | Not serious | Serious ${ }^{3}$ | 768 | OR 1.66 ${ }^{\text {a }}$ (0.745, 3.691) | Moderate |
| Women only |  |  |  |  |  |  |  |  |  |
| Cardiovascular disease (myocardial infarction or | 1 Derubertis (2007) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 10,012 | OR 3.62 ${ }^{\text {a }}$ (2.08, 6.29) | Low |


| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participa nts | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| coronary revascularization) |  |  |  |  |  |  |  |  |  |
| a. As multivariate analy <br> 1. The presence of risk <br> 2. Stepwise regression <br> 3. $95 \% \mathrm{Cl}$ crosses the | were perf actors was a as not perfo of no effec | hazard and ed by askin stead, varia wngrade 1 | ratios were ticipants to found to be | ed adjusting for con ete a self-administer icant in univariate an | unders or other fac questionnaire, do yses were input in | rs. <br> ngrade 1 level. <br> logistic regressi | odels, dow | de 1 level. |  |

## Peripheral arterial disease

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participant s | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Present vs. absent | 6 (Kent 2010, Chun 2014, Pleumeekers 1999, De Carvalho 2012, Makrygiannis 2016 Mark-Christensen 2017) | Crosssectional | Very serious ${ }^{1,}$ 2,3 | Not serious | Not serious | Not serious | 3,095,008 | ORa 1.59 (1.54, 1.65) <br> ORa 2.28 (1.74, 2.97) <br> ORa $2.1(1.3,3.3)$ <br> OR $27.0(5.8,125.0)$ <br> ORa 3.29 (Significant; <br> 95\% CI not reported) <br> ORa 1.81 (1.51, 2.16) | Low |
| Men only |  |  |  |  |  |  |  |  |  |
| Present vs. absent | 2 (Barba 2013, <br> Bonamigo 2003) | Crosssectional | Serious ${ }^{2}$ | Serious ${ }^{4}$ | Not serious | Not serious | 1,549 | $\begin{aligned} & \text { ORa }^{3.00}(1.16,7.80) \\ & \text { ORa }^{\mathrm{a}} 0.843(0.281,2.528) \end{aligned}$ | Low |
| a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors. |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level. |  |  |  |  |  |  |  |  |  |
| 3. It was unclear what people were eligible for screening, downgrade 1 level. 4. Visual inspection of point estimates and $95 \%$ Cls across studies indicates inconsistent findings, downgrade 1 level. <br> 4. Reported findings from included studies highlight inconsistent directions of effect, downgrade 1 level. |  |  |  |  |  |  |  |  |  |

## Atherosclerosis

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Atherosclerosis | 1 Lederle (2000) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 122,788 | ORa 1.64 (1.52, 1.78) | Low |
| Atherosclerotic plaque diameter: <br> $1.5-7.7 \mathrm{~mm}^{2}$ <br> $7.8-12.3 \mathrm{~mm}^{2}$ <br> $12.4-18.9 \mathrm{~mm}^{2}$ <br> $19.0-31.1 \mathrm{~mm}^{2}$ <br> 31.2 - $246.4 \mathrm{~mm}^{2}$ <br> All vs. no plaque | $\begin{aligned} & 1 \text { Johnsen } \\ & \text { (2010) } \end{aligned}$ | Crosssectional | Not serious | N/A | Not serious | Not serious | 6,142 | ORa $0.6(0.3,1.2)$ <br> ORa $1.3(0.8,2.2)$ <br> OR 1.9 (1.2, 2.9) <br> ORa $1.6(1.0,2.5)$ <br> OR 1.7 (1.1, 2.6) | High |
| a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors. <br> 1. The presence of risk factors was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level. <br> 2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level. <br> 3. It was unclear what people were eligible for screening, downgrade 1 level. |  |  |  |  |  |  |  |  |  |

## Claudication

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Present vs. absent | 2 (Lederle 2000, <br> Pleumeekers 1999) | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Not serious | 128,116 | $\begin{aligned} & \text { ORa }^{\text {a }} 1.35(1.18,1.53) \\ & \text { ORa } 1.9(0.7,5.0) \end{aligned}$ | Low |
| Men only |  |  |  |  |  |  |  |  |  |
| Present vs. absent | $\begin{aligned} & 1 \text { Hager } \\ & (2013) \end{aligned}$ | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 5,623 | ORa 2.0 (0.7, 5.6) | Low |

[^0]1. The presence of risk factors was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level.

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

2. Stepwise regression was not performed. Instead, variables found to be significant univariate analyses were input into logistic regression models, downgrade 1 level.

## Cerebrovascular disease

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Present vs. absent | 2 (Kent 2010, <br> Lederle 2000) | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Not serious | 3,179,243 | ORa 1.18 (1.14, 1.21) <br> OR 1.28 (1.17, 1.41) | Low |
| Men only |  |  |  |  |  |  |  |  |  |
| Present vs. absent | $\begin{aligned} & 2 \text { (Hager } \\ & \text { 2013, Barba } \\ & \text { 2013) } \end{aligned}$ | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Not serious | 6,404 | $\begin{aligned} & \text { OR }^{\mathrm{a}} 2.0(1.1,3.6) \\ & \text { OR }^{\mathrm{a}} 2.37(0.61,9.25) \end{aligned}$ | Low |
| a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors. <br> 1. The presence of risk factors was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level. <br> 2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level. |  |  |  |  |  |  |  |  |  |

## Diabetes

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Present vs absent | 4 (Berger 2013, <br> Kent 2010, <br> Lederle 2000, <br> Chun 2014) | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Not serious | 6,505,378 | $\begin{aligned} & \text { ORa }^{\text {a }} 1.00(1.00,1.00) \\ & \text { OR }^{\mathrm{a}} 0.75(0.73,0.77) \\ & \text { ORa }^{\mathrm{a}} 0.65(0.59,0.72) \\ & \text { OR }^{\mathrm{a}} 0.60(0.47,0.77) \end{aligned}$ | Low |
| Men only |  |  |  |  |  |  |  |  |  |
| Present vs absent | 3 (Le 2007, <br> Barba 2013, <br> Bonamigo 2003) | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Serious ${ }^{3}$ | 13,752 | $\begin{aligned} & \text { ORa }^{\text {a }} 0.79(0.63,0.98) \\ & \text { ORa }^{\mathrm{a}} 0.38(0.11,1.06) \\ & \text { OR }^{\mathrm{a}} 0.135(0.002,1.15) \end{aligned}$ | Very low |
| a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors. |  |  |  |  |  |  |  |  |  |
| 1. The presence of risk factors was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level. |  |  |  |  |  |  |  |  |  |
| 2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level. $3.95 \% \mathrm{Cl}$ crosses the line of no effect (1) in studies with greater weighting (larger populations), downgrade 1 level. |  |  |  |  |  |  |  |  |  |

## COPD

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Present vs. absent | 3 (Lederle 2000, <br> Chun 2014, <br> De Carvalho 2012) | Crosssectional | Very serious ${ }^{1,2,}$ | Not serious | Not serious | Not serious | 130,280 | ORa 1.06 (0.97, 1.17) <br> ORa $1.75(1.41,2.18)$ <br> OR 35.7 (6.3, 200.0) | Low |
| Men only |  |  |  |  |  |  |  |  |  |
| Present vs. absent | $\begin{aligned} & 1 \text { Hager } \\ & (2013) \end{aligned}$ | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 5,623 | ORa 2.1 (1.1, 3.9) | Low |

a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors

1. The presence of risk factors was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level.
2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level.

## Hypertension

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Hypertension (defined as blood pressure measurements or use of antihypertensive drugs) | 7 (Berger 2013, <br> Kent 2010, Lederle 2000, Chun 2014, <br> Vardulaki 2000, <br> Pleumeekers 1999, MarkChristensen 2017) | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Not serious | 6,540,694 | ORa 1.24 (1.21, 1.28) <br> ORa $1.25(1.21,1.28)$ <br> ORa 1.23 (1.14, 1.32) <br> ORa $0.92(0.75,1.12)$ <br> OR $1.7(1.3,2.1)$ <br> ORa $1.8(1.1,3.0)$ <br> ORa 1.66 (1.43, 1.94) | Low |
| Men only |  |  |  |  |  |  |  |  |  |
| Hypertension (defined as blood pressure measurements or use of antihypertensive drugs) | 4 (Le 2007, <br> Singh 2001, <br> Bonamigo 2003, <br> Barba 2013) | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Not serious | 16,714 | $\begin{aligned} & \text { ORa }^{\mathrm{a}} 1.47(1.27,1.71) \\ & \text { OR }^{\mathrm{a}} 1.61(1.16,2.24) \\ & \text { ORa}^{\mathrm{a}} 0.71(0.35,1.47) \\ & \text { OR }^{\mathrm{a}} 2.43(1.08,5.45) \end{aligned}$ | Low |
| Women only |  |  |  |  |  |  |  |  |  |
| Hypertension (defined by taking antihypertension meds) | $\begin{aligned} & 1 \text { Singh } \\ & (2001) \end{aligned}$ | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 3,424 | OR $2.02(1.14,3.57)$ | Moderate |

[^1]1. The presence of risk factors was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level.
2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level.

## Blood pressure thresholds

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Systolic blood pressure: <br> $\geq 200 \mathrm{mmHg}$ vs. <br> $<200 \mathrm{mmHg}$ | $\begin{aligned} & 1 \text { Vardulaki } \\ & (2000) \end{aligned}$ | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Serious ${ }^{2}$ | 5,356 | ORa 1.1 (0.7, 1.8) | Low |
| Diastolic blood pressure: <br> $\geq 100 \mathrm{mmHg}$ vs. <br> $<100 \mathrm{mmHg}$ | $\begin{aligned} & 1 \text { Vardulaki } \\ & \text { (2000) } \end{aligned}$ | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Serious ${ }^{2}$ | 5,356 | ORa 1.3 (0.8, 2.2) | Low |
| Men only |  |  |  |  |  |  |  |  |  |
| Systolic blood pressure: per 1 mmHg | 1 Le (2007) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 12,203 | OR ${ }^{\text {a }} 0.99$ (0.98, 0.99) | Moderate |
| Systolic blood pressure: per 20 mmHg | 1 Singh (2001) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Serious ${ }^{2}$ | 2,962 | ORa 0.97 (0.85, 1.12) | Low |
| Diastolic blood pressure: per 1 mmHg | 1 Le (2007) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 12,203 | OR 1.03 (1.02, 1.04) | Moderate |
| Women only |  |  |  |  |  |  |  |  |  |
| Systolic blood pressure: per 20 mmHg | $\begin{aligned} & 1 \text { Singh } \\ & \text { (2001) } \end{aligned}$ | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 3,424 | ORa 1.39 (1.11, 1.73) | Moderate |
| a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors. <br> 1. The presence of risk factors was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level. <br> 2. $95 \% \mathrm{CI}$ crosses the line of no effect ( 1 ), downgrade 1 level. |  |  |  |  |  |  |  |  |  |

## Dyslipidaemia (including hyperlipidaemia, hypercholesterolemia, and cholesterol thresholds)

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Hyperlipidaemia (diagnosis or use of medication) | $\begin{aligned} & 1 \text { Berger } \\ & \text { (2013) } \end{aligned}$ | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 3,319,993 | ORa 1.45 (1.41, 1.49) | Moderate |
| Hypercholesterole mia (present vs. absent) | 3 (Kent 2010, <br> Lederle 2000, Makrygiannis 2016) | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Not serious | 3,180,344 | ORa 1.34 (1.31, 1.37) OR 1.40 (1.29, 1.52) OR 4.89 (Significant: 95\% CI not reported) | Low |
| Cholesterol levels: $\geq 200 \mathrm{mg} / \mathrm{dL}$ vs. $<200 \mathrm{mg} / \mathrm{dL}$ | 1 Chun (2014) | Crosssectional | Serious ${ }^{3}$ | N/A | Not serious | Not serious | 6,142 | ORa 0.66 (0.49, 0.90) | Moderate |
| Cholesterol levels: $\geq 6.5 \mathrm{mmol} / \mathrm{L}$ vs. $<6.5 \mathrm{mmol} / \mathrm{L}$ | $\begin{aligned} & 1 \\ & \text { Pleumeekers } \\ & (1999) \end{aligned}$ | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 5,328 | ORa 1.8 (1.2, 2.7) | Low |
| Men only |  |  |  |  |  |  |  |  |  |
| Dyslipidaemia (present vs. absent) | 1 Le (2007) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 12,203 | ORa $1.42(1.22,1.65)$ | Moderate |
| Hyperlipidaemia (not defined) | 1 Hager (2013) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Serious ${ }^{4}$ | 5,623 | ORa 1.2 (0.8, 2.0) | Very low |
| Serum total cholesterol: per $1 \mathrm{mmol} / \mathrm{L}$ increase | 1 Singh (2001) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 2,962 | ORa 1.19 (1.04, 1.35) | Moderate |
| Women only |  |  |  |  |  |  |  |  |  |
| Serum total cholesterol: per $1 \mathrm{mmol} / \mathrm{L}$ increase | 1 Singh (2001) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Serious ${ }^{4}$ | 3,424 | ORa 1.18 (0.96, 1.44) | Low |
| a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors. <br> 1. The presence of risk factors was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level. <br> 2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level. |  |  |  |  |  |  |  |  |  |


| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

3. It was unclear what people were eligible for screening, downgrade 1 level. $4.95 \% \mathrm{Cl}$ crosses the line of no effect (1), downgrade 1 level.

## Family history of AAA

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Family history of AAA | $\begin{aligned} & 3 \text { (Kent 2010, } \\ & \text { Lederle 2000, } \\ & \text { Mark- } \\ & \text { Christensen } \\ & \text { 2017) } \end{aligned}$ | Crosssectional | Very serious ${ }^{1,2}$ | Not serious | Not serious | Not serious | 3,203,875 | $\begin{aligned} & \text { ORa }^{\text {a }} 3.80(3.66,3.95) \\ & \text { RRa }^{\mathrm{a}} 1.93(1.71,2.18) \\ & \text { OR }^{\mathrm{a}} 2.17(1.62,2.90) \end{aligned}$ | Low |
| Family history of AAA, Marfan syndrome or Ehlers-Danlos syndrome | 1 De Carvalho (2012) | Crosssectional | Serious ${ }^{1}$ | N/A | Not serious | Not serious | 1,350 | ORa 500.0 (6.5, >1000) | Moderate |
| Men only |  |  |  |  |  |  |  |  |  |
| Family history of AAA | $\begin{aligned} & 2 \text { (Le 2007, } \\ & \text { Barba 2013) } \end{aligned}$ | Crosssectional | Very serious ${ }^{1,1}$ | N/A | Not serious | Not serious | 12,984 | ORa 1.88 (1.17, 2.89) ORa 3.17 ( $0.82,12.24$ ) | Low |
| Women only |  |  |  |  |  |  |  |  |  |
| Family history of AAA | 1 Derubertis (2007) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Serious ${ }^{3}$ | 10,012 | ORa 1.95 (0.90, 4.22) | Very low |

a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors

1. The presence of risk factors was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level.
2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level.
3. $95 \% \mathrm{Cl}$ crosses the line of no effect (1), downgrade 1 level

## Ethnicity

| Predictor | No of studies | Design | Risk of bias | Inconsistency | Indirectness | Imprecision | No. of participants | Effect size (95\% CI) | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Men and women |  |  |  |  |  |  |  |  |  |
| Ethnicity: <br> Hispanic <br> African <br> American <br> Asian <br> All vs. white (reference) | 1 Kent (2010) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 3,056,455 | $\begin{aligned} & \text { ORa }^{\text {a }} 0.69(0.62,0.77) \\ & \text { ORa }^{\text {o }} 0.72(0.66,0.78) \\ & \text { OR }^{\mathrm{a}} 0.72(0.59,0.75) \end{aligned}$ | Low |
| Ethnicity: <br> Black vs. white | 1 Lederle (2000) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Not serious | 122,788 | OR ${ }^{\text {a }} 0.62(0.53,0.73)$ | Low |
| Women only |  |  |  |  |  |  |  |  |  |
| Ethnicity: Native American vs. white | 1 Derubertis (2007) | Crosssectional | Very serious ${ }^{1,2}$ | N/A | Not serious | Serious ${ }^{3}$ | 10,012 | ORa 1.41 (0.43, 4.63) | Very low |
| a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors. <br> 1. The presence of risk factors was ascertained by asking participants to complete a self-administered questionnaire, downgrade 1 level. <br> 2. Stepwise regression was not performed. Instead, variables found to be significant in univariate analyses were input into logistic regression models, downgrade 1 level. $395 \% \mathrm{Cl}$ crosses the line of no effect (1), downgrade 1 level. |  |  |  |  |  |  |  |  |  |

## Appendix F - Economic evidence study selection



## Appendix G - Excluded studies

## Clinical studies

| No. | Study |
| :---: | :---: |
| 1 | Xiong Jiang, Wu Zhongyin, Chen Chen, Wei Yingqi, and Guo Wei (2016) Association between diabetes and prevalence and growth rate of abdominal aortic aneurysms: A metaanalysis. International journal of cardiology 221, 484-95 |
| 2 | Alcorn H G, Wolfson Jr, S K, Sutton-Tyrrell K, et al. (1996) Risk factors for abdominal aortic aneurysms in older adults enrolled in the Cardiovascular Health Study. <br> Arteriosclerosis, Thrombosis, and and Vascular Biology 16(8), 963-970 |
| 3 | Baumgartner I, Hirsch AT, Abola B, et al. (2008) Cardiovascular risk profile and outcome of patients with abdominal aortic aneurysm in out-patients with atherothrombosis: data from the Reduction of Atherothrombosis for Continued Health (REACH) Registry. Journal of vascular surgery 48(4), 808-14 |
| 4 | Beede S D, Ballard D J, James E M, et al. (1990) Positive predictive value of clinical suspicion of abdominal aortic aneurysm. Implications for efficient use of abdominal ultrasonography. Archives of internal medicine 150(3), 549-51 |
| 5 | Cao H, Hu X, Zhang Q et al. (2014) Homocysteine level and risk of abdominal aortic aneurysm: a meta-analysis. PloS one 9(1), e85831 |
| 6 | Chabok M, Nicolaides A, Aslam M, Farahmandfar M, Humphries K, Kermani N Z, Coltart J, and Standfield N (2016) Risk factors associated with increased prevalence of abdominal aortic aneurysm in women. The British journal of surgery 103(9), 1132-8 |
| 7 | Chiu HY, Lo PC, Huang WF et al. (2016) Increased risk of aortic aneurysm (AA) in relation to the severity of psoriasis: A national population-based matched-cohort study. Journal of the American Academy of Dermatology 75(4), 747-54 |
| 8 | Cho IJ, Jang SY, Chang HJ et al. (2014) Aortic aneurysm screening in a high-risk population: a non-contrast computed tomography study in korean males with hypertension. Korean circulation journal 44(3), 162-9 |
| 9 | Cornuz J, Pinto C S, Tevaearai H, and Egger M (2004) Risk factors for asymptomatic abdominal aortic aneurysm: Sytematic review |

## Reason for exclusion

Systematic review which included studies that employed multiple study designs. Individual studies were assessed to establish if they met criteria for inclusion in this NICE review.

Authors reported percentages with adjusted and unadjusted $p$ values. No relative risks, odds ratios or hazard ratios were reported.

Wrong study design: case-control. Furthermore, primary aortic imaging was not performed: investigators ascertained the presence of AAA by reviewing documentation by the treating physician.

Sample size of less than 500 participants. Furthermore, multivariate analysis was not performed.

Systematic review and meta-analysis of case controls.

Conference abstract

Not specific to AAA: study included a mixed population of people with AAA and thoracic aortic aneurysms.

Not specific to AAA: study included a mixed population of people with AAA and thoracic aortic aneurysms.

Systematic review including studies which employed various study designs (including case-controls, screening studies and cohort

## No.

Study
and meta-analysis of population-based screening studies. European Journal of Public Health 14(4), 343-349

10 De Rango , P , Farchioni L, Fiorucci B, and Lenti M (2014) Diabetes and abdominal aortic aneurysms. European Journal of Vascular and Endovascular Surgery 47(3), 243-261

11 Duncan JL, Harrild KA, Iversen L et al. (2012) Long term outcomes in men screened for abdominal aortic aneurysm: prospective cohort study. BMJ (Clinical research ed.) 344, e2958
12 Durieux R, Van Damme, H, Labropoulos N et al. (2014) High Prevalence of abdominal aortic aneurysm in patients with three-vessel coronary artery disease. European Journal of Vascular and Endovascular Surgery 47(3), 273-278

13 Elkalioubie A, Haulon S, Duhamel A et al (2015) Meta-Analysis of Abdominal Aortic Aneurysm in Patients With Coronary Artery Disease. The American journal of cardiology 116(9), 1451-6
14 Fernandez-Garcia C E, Burillo E, Lindholt J S, Martinez-Lopez D, Pilely K, Mazzeo C, Michel J B, Egido J, Garred P, Blanco-Colio L M, and Martin-Ventura J L (2017) Association of ficolin-3 with abdominal aortic aneurysm presence and progression. Journal of thrombosis and haemostasis : JTH 15(3), 575-585
Fink H A, Lederle F A, Roth C S et al. (2000) The accuracy of physical examination to detect abdominal aortic aneurysm. Archives of Internal Medicine 160(6), 833-836

16 Forsdahl SH, Singh K, Solberg S et al. (2009) Risk factors for abdominal aortic aneurysms: a 7-year prospective study: the Tromso Study, 1994-2001. Circulation 119(16), 22028

17 Flessenkaemper I H, Loddenkemper R, Roll S, et al. (2015) Screening of COPD patients for abdominal aortic aneurysm. International Journal of COPD 10, 1085-1091
18 Goessens B, Visseren FL, Algra A, et al. (2006) Screening for asymptomatic cardiovascular disease with noninvasive imaging in patients at high-risk and low-risk according to the European Guidelines on Cardiovascular Disease Prevention: the SMART study. Journal of vascular surgery 43(3), 525-32

## Reason for exclusion

studies). Individual studies were assessed to determine if they met inclusion criteria for this review question.

Systematic review including studies which employed various study designs (including case-controls, screening studies and cohort studies). Individual studies were assessed to determine if they met inclusion criteria for this review question.

Wrong study design: cohort study

Population screening study in which patients undergoing coronary angiography were assessed for the presence of AAA. Authors stated that patients with known AAA or with a history of previous AAA surgery were intentionally included for screening.

Systematic review of prospective and retrospective observational studies. These study designs were not specified in the review protocol.

Out of scope: study assesses the use of a genetic biomarker for indicating the presence/absence of AAA

Wrong study design: case-control. Additionally, investigators did not assess which risk factors were associated with the presence of aneurysms. Finally, the sample size was less than 500 participants.
Wrong study design: cohort study

Multivariate analysis was not performed.

Multivariate analysis was not performed: the prevalence of atherosclerotic risk factors were reported as percentages.

## No. Study

19 Golledge J, Mallat Z, Tedgui A et al. (2011) Serum secreted phospholipase A2 is associated with abdominal aortic aneurysm presence but not progression. Atherosclerosis 216(2), 458-60
20 Golledge J, Clancy P, Yeap BB, et al. (2013) Increased serum angiopoietin-2 is associated with abdominal aortic aneurysm prevalence and cardiovascular mortality in older men. International journal of cardiology 167(4), 1159-63

21 Hafez H, Druce P S, and Ashton H A (2008) Abdominal Aortic Aneurysm Development in Men Following a "normal" Aortic Ultrasound Scan. European Journal of Vascular and Endovascular Surgery 36(5), 553-558

22 Harrison Seamus C, Holmes Michael V, Burgess Stephen, Asselbergs Folkert W, Jones Gregory T, Baas Annette F, van 't Hof, F N, de Bakker, Paul I W, Blankensteijn Jan D, Powell Janet T, Saratzis Athanasios, de Borst, Gert J, Swerdlow Daniel I, van der Graaf, Yolanda , van Rij, Andre M, Carey David J, Elmore James R, Tromp Gerard, Kuivaniemi Helena, Sayers Robert D, Samani Nilesh J, Bown Matthew J, and Humphries Steve E (2017) Genetic Association of Lipids and Lipid Drug Targets With Abdominal Aortic Aneurysm: A Metaanalysis. JAMA cardiology

23 Henriksen N A, Sorensen L T, Jorgensen L N, and Lindholt J S (2013) Lack of association between inguinal hernia and abdominal aortic aneurysm in a populationbased male cohort. The British journal of surgery 100(11), 1478-82
24 Hernesniemi JA, Vanni V, and Hakala T (2015) The prevalence of abdominal aortic aneurysm is consistently high among patients with coronary artery disease. Journal of vascular surgery 62(1), 232-240.e3

Jahangir E, Lipworth L, Edwards T L, Kabagambe E K, Mumma M T, Mensah G A, Fazio S, Blot W J, and Sampson U K (2015) Smoking, sex, risk factors and abdominal aortic aneurysms: a prospective study of 18 782 persons aged above 65 years in the Southern Community Cohort Study. Journal of epidemiology and community health 69(5), 481-488
26 Iribarren C, Darbinian J A, Go A S, et al. (2007) Traditional and novel risk factors for clinically diagnosed abdominal aortic aneurysm: the Kaiser multiphasic health

## Reason for exclusion

Wrong study design: case control. Men with AAA were identified and their serum secretory phospholipase A levels were compared with those of randomly selected healthy controls.
Wrong study design: case control. Men with AAA were identified and their serum angiopoietin-2 levels were compared with those of randomly selected healthy controls.

Multivariate analysis/regression was not performed.

Out of scope:Genome wide association study assessing the use of a genetic biomarker for indicating the presence/absence of AAA

Systematic review including studies which employed various study designs (including case-controls, screening studies and cohort studies). Individual studies were assessed to determine if they met inclusion criteria for this review question.
Wrong study design: cohort study

Wrong study design: cohort study

No. Study
checkup cohort study. Annals of epidemiology 17(9), 669-78
27 Joergensen T M. M, Houlind K, Green A, and Lindholt J S (2014) Abdominal aortic diameter is increased in males with a family history of abdominal aortic aneurysms:
Results from the Danish viva-trial. European Journal of Vascular and Endovascular Surgery 48(6), 669-675
28 Lederle F A, and Simel D L (1999) Does this patient have abdominal aortic aneurysm?. Journal of the American Medical Association 281(1), 77-82

29 Lederle F A, Johnson G R, Wilson S E, Aneurysm Detection, Management Veterans Affairs Cooperative, and Study (2001) Abdominal aortic aneurysm in women. Journal of vascular surgery 34(1), 122-6
30 Lederle F A, Nelson D B, and Joseph A M (2003) Smokers' relative risk for aortic aneurysm compared with other smokingrelated diseases: a systematic review. Journal of vascular surgery 38(2), 329-34
31 Lederle F A, Larson J C, Margolis K L, et al. J D (2008) Abdominal aortic aneurysm events in the women's health initiative: Cohort study. BMJ 337(7677), 1037-1040
lede A J, Fowkes F G. R, Carson M N, Leng G C, and Allan P L (1997) Smoking, atherosclerosis and risk of abdominal aortic aneurysm. European Heart Journal 18(4), 671-676
Lindblad B, Borner G, and Gottsater A (2005) Factors associated with development of large abdominal aortic aneurysm in middle-aged men. European Journal of Vascular and Endovascular Surgery 30(4), 346-352
34 Long A, Bui H T, Barbe C, et al. (2010) Prevalence of abdominal aortic aneurysm and large infrarenal aorta in patients with acute coronary syndrome and proven coronary stenosis: a prospective monocenter study. Annals of vascular surgery 24(5), 6028

35 Majeed K, Hamer A W, White S C, et al. (2015) Prevalence of abdominal aortic aneurysm in patients referred for transthoracic echocardiography. Internal medicine journal 45(1), 32-9

36 Mattes E, Davis T M. E, Yang D, et al. (1997) Prevalence of abdominal aortic aneurysms in

## Reason for exclusion

Multivariate analysis was not performed association between risk factors and AAA diagnosis. Instead univariate was performed to assess associations. Linear regression was performed estimate the mean aneurysm diameters in various subgroups of people.

Systematic review assessing the sensitivity, negative predictive value and positive predictive value of abdominal palpation for detecting abdominal aortic aneurysms. None of the included studies had sample sizes of 500 participants or larger.
Multivariate analysis/regression was not performed: The number of AAAs in women was not large enough to generate valid multivariate models for AAAs in women with all variables included in the questionnaire.
Not specific to AAA.

Wrong study design: cohort study

Wrong study design: nested case-control.

Wrong study design: nested case-control.

Sample size of less than 500 participants.

Investigators included patients with known AAA for screening. Additionally, risk factors (echocardiographic parameters) assessed in this study are not listed in the review protocol.
Sample size of less than 500 participants.

## No. Study

men with diabetes. Medical Journal of Australia 166(12), 630-633
37 Moxon J V, Jones R E, Norman P E, et al. (2016) Plasma ferritin concentrations are not associated with abdominal aortic aneurysm diagnosis, size or growth. Atherosclerosis 251, 19-24
38 Ogata T, MacKean G L, Cole C W, et al. (2005) The lifetime prevalence of abdominal aortic aneurysms among siblings of aneurysm patients is eightfold higher than among siblings of spouses: an analysis of 187 aneurysm families in Nova Scotia, Canada. Journal of vascular surgery 42(5), 891-7

39 Robson J C, Kiran A, Maskell J, et al. (2013) The relative risk of aortic aneurysm in patients with giant cell arteritis compared with the general population of the UK. Annals of the Rheumatic Diseases, no pagination
40 Rodin M B, Daviglus M L, Wong G C, et al. (2003) Middle age cardiovascular risk factors and abdominal aortic aneurysm in older age. Hypertension (Dallas, and Tex. : 1979) 42(1), 61-8
41 Ruff A L, Teng K, Hu B, et al. (2015) Screening for abdominal aortic aneurysms in outpatient primary care clinics. The American journal of medicine 128(3), 283-8

42 Sakalihasan N, Defraigne J, Kerstenne MA, et al. (2014) Family members of patients with abdominal aortic aneurysms are at increased risk for aneurysms: analysis of 618 probands and their families from the Liege AAA Family Study. Annals of vascular surgery 28(4), 78797

43 Shantikumar S, Ajjan R, Porter K E, et al (2010) Diabetes and the Abdominal Aortic Aneurysm. European Journal of Vascular and Endovascular Surgery 39(2), 200-207

44 Sidloff D A, Stather P W, Choke E, et al (2014) A systematic review and metaanalysis of the association between markers of hemostasis and abdominal aortic aneurysm presence and size. Journal of vascular surgery 59(2), 528-535.e4
45 Solberg S, Forsdahl S H, Singh K et al. (2010) Diameter of the infrarenal aorta as a risk factor for abdominal aortic aneurysm: the Tromso Study, 1994-2001. European journal

## Reason for exclusion

The risk factor (body iron levels) assessed in this study is not listed in the review protocol.

Sample size of less than 500 participants. Furthermore, multivariate analysis/regression was not performed.

Wrong study design: cohort study

Wrong study design: cohort study

Study did not assess risk factors associated with AAA. Instead, investigators assessed risk factors associated with the decisions to perform ultrasound or computed-tomography imaging.
The study employed multiple methodological designs. Initially, a case-control design was employed to establish whether people diagnosed with AAA had a family history of AAA. A cross-sectional design was then used to explore the prevalence of aneurysms in family members $(\mathrm{n}<500)$ of people diagnosed with AAA. Finally, multivariate analysis was not performed.
Systematic review including studies which employed various study designs (including case-controls, screening studies and cohort studies). Individual studies were assessed to determine if they met inclusion criteria for this review question.
Systematic review of case-controls

Wrong study design: cohort study

## No. Study

of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery 39(3), 280-4
46 Stackelberg O, Bjorck M, Sadr-Azodi O, et al. (2013) Obesity and abdominal aortic aneurysm. The British journal of surgery 100(3), 360-6
47 Stackelberg O, Bjorck M, Larsson S C, Orsini N, and Wolk A (2014) Sex differences in the association between smoking and abdominal aortic aneurysm. The British journal of surgery 101(10), 1230-7
48 Stackelberg O, Bjorck M, Larsson S C, et al. (2013) Fruit and vegetable consumption with risk of abdominal aortic aneurysm. Circulation 128(8), 795-802
49 Stackelberg Otto, Wolk Alicja, Eliasson Ken, Hellberg Anders, Bersztel Adam, Larsson Susanna C, Orsini Nicola, Wanhainen Anders, and Bjorck Martin (2017) Lifestyle and Risk of Screening-Detected Abdominal Aortic Aneurysm in Men. Journal of the American Heart Association 6(5),
50 Svensjo S, Bjorck M, Gurtelschmid M et al. (2011) Low prevalence of abdominal aortic aneurysm among 65-year-old Swedish men indicates a change in the epidemiology of the disease. Circulation 124(10), 1118-23

51 Svensjo S, Bjorck M, and Wanhainen A (2014) Editor's choice: five-year outcomes in men screened for abdominal aortic aneurysm at 65 years of age: a population-based cohort study. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery 47(1), 37-44
52 Takagi H, Umemoto T, and Group Alice (2015) A meta-analysis of circulating homocysteine levels in subjects with versus without abdominal aortic aneurysm. International angiology : a journal of the International Union of Angiology 34(3), 22937
53 Takagi H, and Umemoto T (2015) A metaanalysis of the association of obesity with abdominal aortic aneurysm presence. International Angiology 34(4), 383-391

54 Takagi H, and Umemoto T (2015) A metaanalysis of the association of primary abdominal wall hernia with abdominal aortic

## Reason for exclusion

Wrong study design: cohort study

Population screening study in which people identified from a national registry were screened for AAAs. Authors stated that people with previously known AAA or a history of AAA surgery were included in the analysis.
Wrong study design: cohort study

Systematic review of case-controls.

Systematic review including studies which employed various study designs (including case-controls, screening studies and cohort studies). Individual studies were assessed to determine if they met inclusion criteria for this review question.
Systematic review including studies which employed various study designs (including case-controls, screening studies and cohort

No. Study
aneurysm. International angiology : a journal of the International Union of Angiology 34(3), 219-28

55 Takagi H, and Umemoto T (2015) A contemporary meta-analysis of the association of diabetes with abdominal aortic aneurysm. International Angiology 34(4), 375-382

56 Takeuchi Hidemi, Okuyama Michihiro, Uchida Haruhito A, Kakio Yuki, Umebayashi Ryoko, Okuyama Yuka, Fujii Yasuhiro, Ozawa Susumu, Yoshida Masashi, Oshima Yu, Sano Shunji, and Wada Jun (2016) Chronic Kidney Disease Is Positively and Diabetes Mellitus Is Negatively Associated with Abdominal Aortic Aneurysm. PloS one 11(10), e0164015
57 Thompson A R, Golledge J, Cooper J A, et al. (2009) Sequence variant on $9 p 21$ is associated with the presence of abdominal aortic aneurysm disease but does not have an impact on aneurysmal expansion. European Journal of Human Genetics 17(3), 391-394

58 Tornwall M E, Virtamo J, Haukka J K, et al. (2001) Life-style factors and risk for abdominal aortic aneurysm in a cohort of Finnish male smokers. Epidemiology 12(1), 94-100
59 Ulug P, Powell J T, Sweeting M J, Bown M J, Thompson S G, and Group Swan Collaborative (2016) Meta-analysis of the current prevalence of screen-detected abdominal aortic aneurysm in women. The British journal of surgery 103(9), 1097-104
60 van Laarhoven C J, Borstlap A C, van Berge Henegouwen, D P, et al. (1993) Chronic obstructive pulmonary disease and abdominal aortic aneurysms. European journal of vascular surgery 7(4), 386-90
61 van de Luijtgaarden, Koen M, Rouwet Ellen V, Hoeks Sanne E, Stolker Robert J, Verhagen Hence Jm, and Majoor-Krakauer Danielle (2017) Risk of abdominal aortic aneurysm (AAA) among male and female relatives of AAA patients. Vascular medicine (London, and England) 22(2), 112-118
62 Van Vlijmen-Van Keulen, C J, Pals G, et al. (2002) Familial abdominal aortic aneurysm: A systematic review of a genetic background. European Journal of Vascular and Endovascular Surgery 24(2), 105-116

## Reason for exclusion

studies). Individual studies were assessed to determine if they met inclusion criteria for this review question.

Systematic review including studies which employed various study designs (including case-controls, screening studies and cohort studies). Individual studies were assessed to determine if they met inclusion criteria for this review question.

Wrong study design: retrospective casecontrol

Wrong study design: case-control

Wrong study design: cohort study

Conference abstract

Sample size less than 500 participants

Study employed multiple study designs. First a case-control study design was used to assess risk factors of people with confirmed AAA. Subsequently, first degree relatives of people with AAA were asked how many relatives they had with AAA.

Systematic review including studies which employed various study designs (including case-controls, screening studies and cohort studies). Individual studies were assessed to determine if they met inclusion criteria for this review question.

## No. Study

63 Wang Lu, Djousse Luc, Song Yiqing, Akinkuolie Akintunde O, Matsumoto Chisa, Manson JoAnn E, Gaziano J Michael, and Sesso Howard D (2017) Associations of Diabetes and Obesity with Risk of Abdominal Aortic Aneurysm in Men. Journal of obesity 2017, 3521649
64 Wang Yunpeng, Shen Guanghui, Wang Haiyang, Yao Ye, Sun Qingfeng, Jing Bao, Liu Gaoyan, Wu Jia, Yuan Chao, Liu Siqi, Liu Xinyu, Li Shiyong, and Li Haocheng (2017) Association of high sensitivity C-reactive protein and abdominal aortic aneurysm: a meta-analysis and systematic review. Current medical research and opinion 33(12), 21452152
65 Wilmink Antonius B. M, Vardulaki Katerina A, Hubbard Catherine S. F, et al. Scott Alan P, and Quick Clive R. G (2002) Are antihypertensive drugs associated with abdominal aortic aneurysms?. Journal of vascular surgery 36(4), 751-7
66 Wong DR, Willett WC, and Rimm Eric B (2007) Smoking, hypertension, alcohol consumption, and risk of abdominal aortic aneurysm in men. American journal of epidemiology 165(7), 838-45
67 Wong YYE, Flicker L, Yeap BB, McCaul KA, (2013) Is hypovitaminosis D associated with abdominal aortic aneurysm, and is there a dose-response relationship?. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery 45(6), 657-64
68 Xiong Jiang, Wu Zhongyin, Chen Chen, Wei Yingqi, and Guo Wei (2016) Association between diabetes and prevalence and growth rate of abdominal aortic aneurysms: A metaanalysis. International journal of cardiology 221, 484-95
69 Zarrouk M, Keshavarz K, Lindblad B, et al. (2013) APC-PCI complex levels for screening of AAA in patients with peripheral atherosclerosis. Journal of thrombosis and thrombolysis 36(4), 495-500

## Reason for exclusion

Wrong study design: cohort study in which participants were not screened. Instead investigators ascertained the presence or absence of AAA by asking patients to complete a self-reported questionnaire.

Systematic review of case-control studies

Wrong study design: nested case-control

Wrong study design: cohort study

Sample size less than 500 participants. Additionally, the risk factor (vitamin D levels) assessed in this study is not listed in the review protocol.

Systematic review which included studies that employed multiple study designs. Individual studies were assessed to establish if they met criteria for inclusion in this NICE review.

Multivariate or Cox regression was not performed. Instead, investigators performed linear regression to assess the relationship between activated protein C (APC) - protein C inhibitor ( PCI ) complex levels and aortic diameter

## Economic studies

No full text papers were retrieved. All studies were excluded at review of titles and abstracts.

## Appendix H - Expert testimony from National Abdominal Aortic Aneurysm Screening Programme

The Clinical Lead of the UK NHS AAA screening programme provided expert testimony to the committee in the form of a presentation. The presentation covered developments since the inception of the screening programme, advantages and disadvantages of screening, challenges faced, and plans for the future. The presentation slides can be found below:

# AAA screening: from evidence through implementation to optimisation 

Jonothan J Eamshaw<br>Clinical Lead, NHS AAA Screening Programme



## NHS

## Screening Programmes

## Abdominal aortic aneurysm

Still a major killer in elderly people
4000 deaths in England in 2007
Ultrasound screening 65 year old men reduces AAA-fatality rate by almost 50\% after 10 years (MASS Trial)


## Meta-analysis of RCTs out to 10 years <br> Takagi et al. Angiology 2017

- Invitation to screening reduced AAA-related mortality: hazard ratio 0.66 , 0.47 to 0.93
- Invitation to screening reduced all cause mortality: $0.98,0.097$ to 0.99
- Attendance at screening reduced AAA-related mortality: $0.4,0.31$ to 0.51
- Attendance at screening reduced all cause mortality: $0.6,0.47$ to 0.75
- Non attendance did not increase AAA-related mortality: 1.19, 0.82 to 1.72
- Non attendance increased all cause mortality: 1.41, 1.23 to 1.63


# Gloucestershire Aneurysm Screening Programme 



WHS

## NHS AAA Screening Programme

Working party formed to advise NSC 2003

## NSC recommended Programme to Department of Health 2007

Funding agreed 2008

## WHS

## Implementation

Lecal AAA Severning Moogamme
2009-2013
41 Local Programmes
Population $\sim 1$ million men





- comau nolas.
-Copbir I Merewtr
- Conten slawask
- Devplatior
- lown

PNrer

- Oocurnurnir Is sivas
- Gowitr Nowhem
themphar
*Henshitr
- Nerineover

tilimentior
- Horfote we Werven


+Morn tuat ieven geve -Howh Wertiveton aviv - Horringenutis thancyuna


NHS
Screening Programmes

## NHS AAA Screening Programme

Mobile screening team, portable ultrasound scanners
Trained screeners, quality assurance
Outcomes:
$<3 \mathrm{~cm}$ reassured and discharged
3-4.4 offered annual surveillance
$4.5-5.4 \mathrm{~cm}$ offered 3 -monthly surveillance
$>5.4 \mathrm{~cm}$ referred for intervention
Bespoke IT (AAA SMaRT)


## Headline results for England sceering rogegnmes

 August 2017- 1,588, 036 men invited
- 1,254, 187 men screened (uptake 78.9\%)
- Over 15,850 AAA (>3cm) detected
- Prevalence 1.26\%
-Almost 13,000 men in surveillance
- Some 3653 men referred for surgery

- Over 2500 men treated ( $1.8 \%$ mortality)
results available https://www.gov.uk/topic/population-screening-programmes/abdominal-aortic-aneurysm


## A 4 nations approach



## Reducing AAA-related mortality




## Screening Programmes

## Reducing prevalence

| Screvaing pear | Tested | Ancaryam | * ansuryam |
| :---: | :---: | :---: | :---: |
| 200910 | 17. 133 | 249 | 1.45 |
| 201011 | 30.549 | 400 | 1.60 |
| 201112 | 94529 | 1378 | 1.40 |
| 201213 | 293,034 | 2453 | 1.35 |
| 201314 | 235.409 | 2941 | 1.25 |
| 201415 | 224,517 | 2674 | 1.12 |
| 201515 | 227,543 | 2849 | 1.12 |
| 201017 | 223,371 | 2385 | 1.07 |



## Cost effectiveness of AAA screening

Cost-effectiveness of the National Health Service abdominal aortic aneurysm screening programme in England

 On¢ U- i2mernicu



 Telthe dicet.



BJS, 2015
AAA screening of 65 year old men remains cost effective to a prevalence of $0.35 \%$

WHS
Screening Programmes
Death from AAA rupture in surveillance
*

|  | Number of men | Ruptures (N) | Follow-up (person-years) | Incidence rate per 100 person-years ( $95 \% \mathrm{Cl}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| Overall | 12,738 | 16 | 23,818 | 0.07 (0.04, 0.11) |
| Last known aortic measurement |  |  |  |  |
| Grouping 1 |  |  |  |  |
| $<3.0 \mathrm{~cm}$ | * | 0 | 916 |  |
| $3.0-4.4 \mathrm{~cm}$ | * | 6 | 20,140 | 0.03 (0.01, 0.07) |
| 4.5 .5 .4 cm | * | 10 | 2,766 | 0.36 0.19, 0.67) |
| Grouping ? $5.5 \mathrm{~cm}+$ | * | 0 | 3 |  |
| 3.0 .4 .9 cm | * | 10 | 21,774 | 0.05 (0.02, 0.09) |
| 5.0 .5 .4 cm | * | 6 | 1,132 | 2.53) $(0.24,1.18)$ |
| $5.5 \mathrm{~cm}+$ | * | 0 | 3 |  |

Risk of death from AAA rupture in 11,133 men in surveillance in NAAASP

## Other benefits: remodelling of vascular services in England



Networking - several smaller hospitals collaborating with a single intervention centre Preimplementation quality assurance


WHS
Screening Programmes

## Effect of vascular remodelling



Vascunet report 2008
Elective AAA mortality 7.4\%
$\hat{s}=-4$ onco
Matown vascuat masem
wosAreal Arpot


NVR 2016 Elective AAA mortality
Open ( $n=1316$ ) 3\%
EVAR ( $\mathrm{n}=2882$ ) 0.4\%

## Other benefits: secondary prevention in men in surveillance

Improved 5-year survival in patients with AAA with regular prescription for aspirin, statins and antihypertensive drugs

Cardiovascular risk prevention and all-cause mortality in
primary care patients with an abdominal aortic aneurysm





EBtornow

Hin

BJS 2016; 103: 1626


# NHS <br> Screening Programmes 

Turn down rates by local programme


## Procedures by local programme



## Other benefits: research

- AAA growth rates
- Optimal management of men in surveillance
- Referral thresholds
- Epidemiology of AAA


## Disbenefits of AAA screening

- Every $10,000^{\text {th }}$ man invited will die after elective AAA repair, who would not have suffered a ruptured AAA.
- Men with small and medium AAA are inconvenienced and medicalised
- Non fatal consequences of AAA treatment
- Men who do not attend are high risk
- Screening does not abolish rupture


UK National Screening Committee

## NHS

## After implementation completed whole programme review 2015



## Programme optimisation

- Reduce surveillance intervals
- Improve uptake
- ?introduce surveillance for men with subaneurysmal aorta


## Surveillance intervals

(RESCAN Collaborators), JAMA, 2013

Maintaining risk of rupture less than $1 \%$, the following surveillance intervals are acceptable:

3-4cm - several years
4-4.9cm - annual
$5-5.4 \mathrm{~cm} \quad-$ six months


## Surveillance intervals: proposal

- Change 3 to 4.4 cm from annual to biennial (saves 10,000 scans/annum)
- Leave 4.5 to 5.4 cm at 3 months, until more data on safety
- Discuss with IT suppliers, and Advisory Board
- Final decision after NICE guidelines approved (2018)

Screening Programmes

## Uptake of screening and aneurysms

 detected by decile of deprivation

## Equality, fairness and inclusion programme: proposal

- Annual local programme reports
- Toolkit for local programmes
- Local learning to update toolkit
- Aim to improve uptake by $10 \%$


## NHS

## Screening Programmes

## Subaneurysmal aorta $2.6-2.9 \mathrm{~cm}$



## Subaneurysmal aorta in Glos:

risk of developing a 5.5 cm AAA


## Subaneurysmal aorta (2.6-2.9cm) at age 65 years

$66 \%$ reach 3 cm by age 70
$10 \%$ reach 5.5 cm after 10 years
$25 \%$ reach 5.5 cm after 15 years
Number who rupture?
Number who reach 5.5 cm that have treatment?
Number that survive treatment?

## Subaneurysmal aorta (2.6-2.9cm) at age 65 years

$66 \%$ reach 3 cm by age 70
$10 \%$ reach 5.5 cm after 10 years
$25 \%$ reach 5.5 cm after 15 years

Canadian rapid review 2016:
not enough evidence to recommend surveillance for men age 65 with a subaneurysmal aorta

Number who rupture?
Number who reach 5.5 cm that have treatment?
Number that survive treatment?

## Subaneurysmal aorta: proposal endorsed by NSC 23.6.17

- Approve research within programme into harms of being in surveillance - quality of life studies using AAA SMaRT
- Modelling and retrospective review of outcomes of men with subaneurysmal aorta at 65 years who develop a 5.5 cm AAA during surveillance
- Cost benefit analysis


## Horizon scanning

- RCT of metformin for AAA growth
- Targetted screening for women?
- Debate about referral thresholds
- Programme enhancement ?

ABPIs/cholesterol/ECG (triple vascular screening: VIVA trial)

- When to stop surveillance


## VIVA trial 2017



## Conclusion

NHS AAA Screening Programme is feasible and cost effective.

Referral threshold safe
Still room for optimisation
On target to reduce deaths by up to $50 \%$


## Appendix I-Glossary

## Abdominal Aortic Aneurysm (AAA)

A localised bulge in the abdominal aorta (the major blood vessel that supplies blood to the lower half of the body including the abdomen, pelvis and lower limbs) caused by weakening of the aortic wall. It is defined as an aortic diameter greater than 3 cm or a diameter more than $50 \%$ larger than the normal width of a healthy aorta. The clinical relevance of AAA is that the condition may lead to a life-threatening rupture of the affected artery. Abdominal aortic aneurysms are generally characterised by their shape, size and cause:

- Infrarenal AAA: an aneurysm located in the lower segment of the abdominal aorta below the kidneys.
- Juxtarenal AAA: a type of infrarenal aneurysm that extends to, and sometimes, includes the lower margin of renal artery origins.
- Suprarenal AAA: an aneurysm involving the aorta below the diaphragm and above the renal arteries involving some or all of the visceral aortic segment and hence the origins of the renal, superior mesenteric, and celiac arteries, it may extend down to the aortic bifurcation.


## Abdominal compartment syndrome

Abdominal compartment syndrome occurs when the pressure within the abdominal cavity increases above 20 mm Hg (intra-abdominal hypertension). In the context of a ruptured AAA this is due to the mass effect of a volume of blood within or behind the abdominal cavity. The increased abdominal pressure reduces blood flow to abdominal organs and impairs pulmonary, cardiovascular, renal, and gastro-intestinal function. This can cause multiple organ dysfunction and eventually lead to death.

## Cardiopulmonary exercise testing

Cardiopulmonary Exercise Testing (CPET, sometimes also called CPX testing) is a noninvasive approach used to assess how the body performs before and during exercise. During CPET, the patient performs exercise on a stationary bicycle while breathing through a mouthpiece. Each breath is measured to assess the performance of the lungs and cardiovascular system. A heart tracing device (Electrocardiogram) will also record the hearts electrical activity before, during and after exercise.

## Device migration

Migration can occur after device implantation when there is any movement or displacement of a stent-graft from its original position relative to the aorta or renal arteries. The risk of migration increases with time and can result in the loss of device fixation. Device migration may not need further treatment but should be monitored as it can lead to complications such as aneurysm rupture or endoleak.

## Endoleak

An endoleak is the persistence of blood flow outside an endovascular stent - graft but within the aneurysm sac in which the graft is placed.

- Type I - Perigraft (at the proximal or distal seal zones): This form of endoleak is caused by blood flowing into the aneurysm because of an incomplete or ineffective seal at either end of an endograft. The blood flow creates pressure within the sac and significantly increases the risk of sac enlargement and rupture. As a result, Type I endoleaks typically require urgent attention.
- Type II - Retrograde or collateral (mesenteric, lumbar, renal accessory): These endoleaks are the most common type of endoleak. They occur when blood bleeds into the sac from small side branches of the aorta. They are generally considered benign because they are usually at low pressure and tend to resolve spontaneously over time without any need for intervention. Treatment of the endoleak is indicated if the aneurysm sac continues to expand.
- Type III - Midgraft (fabric tear, graft dislocation, graft disintegration): These endoleaks occur when blood flows into the aneurysm sac through defects in the endograft (such as graft fractures, misaligned graft joints and holes in the graft fabric). Similarly to Type I endoleak, a Type III endoleak results in systemic blood pressure within the aneurysm sac that increases the risk of rupture. Therefore, Type III endoleaks typically require urgent attention.
- Type IV- Graft porosity: These endoleaks often occur soon after AAA repair and are associated with the porosity of certain graft materials. They are caused by blood flowing through the graft fabric into the aneurysm sac. They do not usually require treatment and tend to resolve within a few days of graft placement.
- Type V - Endotension: A Type V endoleak is a phenomenon in which there is continued sac expansion without radiographic evidence of a leak site. It is a poorly understood abnormality. One theory that it is caused by pulsation of the graft wall, with transmission of the pulse wave through the aneurysm sac to the native aneurysm wall. Alternatively it may be due to intermittent leaks which are not apparent at imaging. It can be difficult to identify and treat any cause.


## Endovascular aneurysm repair

Endovascular aneurysm repair (EVAR) is a technique that involves placing a stent -graft prosthesis within an aneurysm. The stent-graft is inserted through a small incision in the femoral artery in the groin, then delivered to the site of the aneurysm using catheters and guidewires and placed in position under X-ray guidance.

- Conventional EVAR refers to placement of an endovascular stent graft in an AAA where the anatomy of the aneurysm is such that the 'instructions for use' of that particular device are adhered to. Instructions for use define tolerances for AAA anatomy that the device manufacturer considers appropriate for that device. Common limitations on AAA anatomy are infrarenal neck length (usually >10mm), diameter (usually $\leq 30 \mathrm{~mm}$ ) and neck angle relative to the main body of the AAA
- Complex EVAR refers to a number of endovascular strategies that have been developed to address the challenges of aortic proximal neck fixation associated with complicated aneurysm anatomies like those seen in juxtarenal and suprarenal AAAs. These strategies include using conventional infrarenal aortic stent grafts outside their 'instructions for use', using physician-modified endografts, utilisation of customised fenestrated endografts, and employing snorkel or chimney approaches with parallel covered stents.


## Goal directed therapy

Goal directed therapy refers to a method of fluid administration that relies on minimally invasive cardiac output monitoring to tailor fluid administration to a maximal cardiac output or other reliable markers of cardiac function such as stroke volume variation or pulse pressure variation.

## Post processing technique

For the purpose of this review, a post-processing technique refers to a software package that is used to augment imaging obtained from CT scans, (which are conventionally presented as axial images), to provide additional 2 - or 3-dimensional imaging and data relating to an aneurysm's, size, position and anatomy.

## Permissive hypotension

Permissive hypotension (also known as hypotensive resuscitation and restrictive volume resuscitation) is a method of fluid administration commonly used in people with haemorrhage after trauma. The basic principle of the technique is to maintain haemostasis (the stopping of blood flow) by keeping a person's blood pressure within a lower than normal range. In theory, a lower blood pressure means that blood loss will be slower, and more easily controlled by the pressure of internal self-tamponade and clot formation.

## Remote ischemic preconditioning

Remote ischemic preconditioning is a procedure that aims to reduce damage (ischaemic injury) that may occur from a restriction in the blood supply to tissues during surgery. The technique aims to trigger the body's natural protective functions. It is sometimes performed before surgery and involves repeated, temporary cessation of blood flow to a limb to create ischemia (lack of oxygen and glucose) in the tissue. In theory, this "conditioning" activates physiological pathways that render the heart muscle resistant to subsequent prolonged periods of ischaemia.

## Tranexamic acid

Tranexamic acid is an antifibrinolytic agent (medication that promotes blood clotting) that can be used to prevent, stop or reduce unwanted bleeding. It is often used to reduce the need for blood transfusion in adults having surgery, in trauma and in massive obstetric haemorrhage.


[^0]:    a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors.

[^1]:    a. As multivariate analyses were performed, hazard and odds ratios were reported adjusting for confounders or other factors

