Economic plan This plan identifies the areas prioritised for economic modelling. The final analysis may differ from those described below. The rationale for any differences will be explained in the guideline. ## 1 Guideline Full title of guideline: Diabetes Suite ## 2 List of modelling questions | Review
questions by
scope area | In adults with type 1 diabetes, what are the most effective long-acting insulins (detemir versus degludec versus glargine versus Neutral Protamine Hagedorn (NPH)) and frequency of administration for optimal diabetic control? | |--|---| | Population | Adults (aged 18 years and older) with type 1 diabetes. | | Interventions and comparators considered for inclusion | Long-acting insulins (once per day and twice per day regimens will be included): Detemir (Levemir) Degludec U100 (Tresiba) Degludec U200 (Tresiba) Glargine U100 (Lantus) Glargine U300 (Toujeo) NPH/ isophane/other intermediate (Humulin I, Insulatard, Insuman basal)) Biosimilar insulins, including but not limited to: LY2963016 (Abasaglar) MYL-1501D (Semglee) | | Perspective | NHS and personal social services | | Outcomes | Cost and QALYs (health outcomes including severe and non-
severe hypoglycaemic events (stratified by daytime and
nocturnal), and HbA1c levels (which dictate a range of diabetes
related long-term complications) | | Type of analysis | CUA | | Issues to note | The IQVIA Core Diabetes Model version 9.5 is used for the analysis. A standard simulation of 1000 patients x 1000 bootstraps takes approximately 2.5 hours. A simulation will be put on hold if it exceeds 5,000,000 iterations (iterations = no. of patients x no. of bootstraps). |