Chronic kidney disease

Chronic kidney disease (partial update)

Early identification and management of chronic kidney disease in adults in primary and secondary care

Guideline appendices A to R July 2014

This guideline was updated and merged with NICE guidelines on managing hyperphosphateamia (CG157) and managing anaemia in CKD (NG8) in 2021. This document preserves evidence reviews and committee discussions for areas of the guideline that were not updated in 2021.

See the <u>chronic kidney disease guideline on the NICE website</u> for the guideline recommendations.

Final version Commissioned by the National Institute for Health and Care Excellence

Disclaimer

Healthcare professionals are expected to take NICE clinical guidelines fully into account when exercising their clinical judgement. However, the guidance does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of each patient, in consultation with the patient and/or their guardian or carer.

Copyright

National Clinical Guideline Centre 2014

Funding

National Institute for Health and Care Excellence

Chronic kidney disease

Contents

Contents

National Clinical Guideline Centre	1
Appendix A: Scope	5
Appendix B: Declarations of interest	17
Appendix C: Review protocols	41
Appendix D: Clinical article selection (2014)	63
Appendix E: Economic article selection	76
Appendix F: Literature search strategies	77
Appendix G: Clinical evidence tables	110
Appendix H: Economic evidence tables	464
Appendix I: Forest plots	484
Appendix J: Excluded clinical studies	622
Appendix K: Excluded economic studies	637
Appendix L: Cost-effectiveness analysis: cystatin C testing in the diagnosis of CKD	640
Appendix M: Cost-effectiveness analysis: Novel oral anticoagulants for people with CKD and non-valvular atrial fibrillation	657
Appendix N: Research recommendations	
Appendix O: Changes to recommendations from 2008 guideline	685
Appendix P: Deleted content from 2008 guideline	709
Appendix Q: Deleted appendices from 2008 guideline	796
Appendix R: References	1146

Appendix A: Scope

A.1 Scope from 2014 guideline

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE

SCOPE

1 Guideline title

Chronic kidney disease: Early identification and management of chronic kidney disease in adults in primary and secondary care.

1.1 Short title

Chronic kidney disease.

2 The remit

This is a partial update of '<u>Chronic kidney disease</u>' (NICE clinical guideline 73). See section 4.3.1 for details of which sections will be updated. We will also carry out an editorial review of all recommendations to ensure that they comply with NICE's duties under equalities legislation.

This update is being undertaken as part of the guideline review cycle.

3 Clinical need for the guideline

3.1 Epidemiology

The classification of chronic kidney disease (CKD) developed by the Kidney Disease Outcome Quality Initiative (KDOQI) in 2002 provided a research focus for the last decade which has greatly improved understanding of CKD, its complications and the impact of CKD on healthcare resources.

CKD has been defined as evidence of reduced estimated glomerular filtration rate (eGFR) and/or structural or functional abnormalities other than GFR, sustained for at least 3 months. The early detection of CKD in England and Wales has been facilitated by the implementation of routine reporting of eGFR nationally, introduction of CKD indicators in the Quality and Outcomes Framework, increased awareness and education through guideline development and implementation, and local awareness-raising initiatives.

Chronic Kidney Disease Update Scope 2nd August, 2012

The KDOQI classification defines five stages of CKD using a reduction in GFR and the presence of other markers of kidney damage, such as albuminuria or haematuria. Normal kidney function is defined as an eGFR \geq 90 ml/min/1.73 m² with no other evidence of kidney damage. This classification was included in the previous <u>Chronic kidney disease</u> guideline (NICE clinical guideline 73) but stage 3 CKD was subdivided into 3A (GFR 45-59 ml/min/1.73 m²) and 3B (GFR 30-44 ml/min/1.73 m²), which has been now adopted internationally. The suffix 'p' in all stages to denote significant proteinuria was also introduced in the previous version of this guideline (Table 1).

Stage	eGFR (ml/min/1.73 m ²)	Description	Qualifier
1	≥ 90	Kidney damage, normal or increased GFR	Kidney damage (presence of structural abnormalities and/or persistent haematuria, proteinuria or
2	60-89	Kidney damage, mildly reduced GFR	proteindna of microalbuminuria) for ≥ 3 months
3A	45-59	Moderately reduced GFR ±	
3B	30-44	other evidence of kidney damage	GFR < 60 ml/min for
4	15-29	Severely reduced GFR ± other evidence of kidney damage	≥ 3 months ± kidney damage
5	< 15	Established kidney failure	

Table 1: NICE CKD classification

Use the suffix (p) to denote the presence of significant proteinuria when staging CKD (albumin:creatinine ratio (ACR) \geq 30 mg/mmol, or protein:creatinine ratio (PCR) \geq 50 mg/mmol)

CKD is recognised as a global public health problem. Adult (age 18 years and older) prevalence studies from the USA and Norway show a broadly similar prevalence of around 10-13%. In the UK, stage 3-5 CKD, an eGFR less than 60 mL/min/1.73 m², has been widely used in prevalence estimates. The two largest studies, using different methodologies, reported an adult prevalence of CKD stage 3-5 in the general population of between 6.1 to 8.5%. The only study reporting overall adult prevalence of CKD in the UK comes from the Health Survey for England 2009 (a much smaller study in terms of number of participants but a representative population). Male prevalence of CKD was 14% and female 13%. In keeping with other studies the prevalence rose with increasing age, rising to 44% of men and 43% of women aged 75 years and over. Although the prevalence of end-stage renal disease is known to be increased in certain minority ethnic groups, the prevalence of

Chronic Kidney Disease Update Scope 2nd August, 2012

Page 2 of 11

CKD does not differ by ethnicity. Age, hypertension and diabetes are key predictors of new-onset CKD.

The main risk associated with CKD is cardiovascular morbidity and mortality. Other important complications include those related to decreased GFR, acute kidney injury, infection, cognitive impairment, impaired physical function and progression of kidney disease. Complications may occur at any stage, often leading to death without progression to kidney failure. Complications may also arise from adverse effects of interventions to prevent or treat the disease and associated comorbidity. The risk for any adverse outcome increases with lower GFR and is multiplied by co-existent proteinuria.

The goals of early identification and management of CKD are to alleviate the risk of associated adverse outcomes and prevent progression and complications, therefore improving patient outcomes and reducing the impact of CKD on healthcare resources.

3.2 Current practice

Implementation of the evidence-based <u>Chronic kidney disease</u> guideline (NICE clinical guideline 73) has significantly improved identification of CKD, and increased awareness and understanding of the potential associated adverse outcomes. This required the development, implementation and integration of new policies, models and pathways of care. CKD has gone from an under-recognised condition in primary care prior to 2006, to one where those affected are recorded in disease registers and increasingly managed in accordance with evidence-based guidance.

CKD indicators were introduced in the primary care Quality and Outcomes Framework (QOF) in April 2006. These stated a requirement for primary care to produce a register of adults with stage 3-5 CKD, to measure and record blood pressure annually, and to record the percentage of people with CKD, hypertension and proteinuria on treatment with angiotensin-modulating drugs. The CKD indicators have been modified and updated in successive years, and from April 2009, include the percentage of patients on the CKD register with urine albumin:creatinine ratio (ACR) or protein:creatinine ratio (PCR) measures recorded within the previous 15 months (see Appendix, Table 2).

In the QOF Framework report for 2010/11, 8245 general practices in England are included in the published results, covering almost 100% of registered patients in

Chronic Kidney Disease Update Scope 2nd August, 2012

Page 3 of 11

England. Ascertainment of CKD stage 3-5 in adults aged 18 and older has improved from 2.4% of the population, immediately following introduction of CKD indicators, to 4.3% in the latest report. Nevertheless, considerable variation in practice still occurs and ascertainment is not yet reaching the prevalence expected from epidemiological study. Lower socioeconomic status is associated with late referral and more severe CKD at time of presentation.

Definition, and recognition, of progression of CKD are areas of uncertainty. Practitioners will commonly have to decide whether or not a change in GFR is a true change based on a few recent GFR or serum creatinine measurements. Although this may be straightforward in those who follow a linear pattern of progression over time these people are in the minority. In many people with CKD non-linear patterns and extended periods of non-progression are common. Whatever the pattern of progression, there will be time-varying risk factors such as blood pressure control, medical events and medicines management that affect a person's risk of progression. For example, episodes of acute kidney injury are associated with increased likelihood of progression of existing CKD and with subsequent development of new-onset CKD.

Improved recognition of CKD has seen the late referral of patients with end-stage kidney failure fall from over 30% to 19% in the latest UK Renal Registry Report, and in the past 4 years renal replacement therapy acceptance rates have been stable at 109 per million of the population. Nevertheless further improvements can be made.

4 The guideline

The guideline development process is described in detail on the NICE website (see section 6, 'Further information').

This scope defines what the guideline will (and will not) examine, and what the guideline developers will consider. The scope is based on the referral from the Department of Health.

The areas that will be addressed by the guideline are described in the following sections.

Chronic Kidney Disease Update Scope 2nd August, 2012

Page 4 of 11

4.1	Population					
4.1.1	Groups that will be covered					
a)	Adults (18 years and older)					
b)	Consideration will be given to the needs of subgroups:					
	 Older people (75 years and older) Black and minority ethnic people (BME) where these differ from the needs of the general population People at high risk of developing CKD (for example, people with: diabetes, hypertension, cardiovascular disease, or people recovering from acute kidney injury). 					
4.1.2	Groups that will not be covered					
a)	People receiving renal replacement therapy (RRT)					
b)	People with acute kidney injury and rapidly progressive glomerulonephritis					
c)	Children and young people under 18 years					
d)	Pregnant women.					
4.2	Healthcare setting					
a)	Primary and secondary NHS healthcare, including referral to tertiary care.					
4.3	Clinical management					
4.3.1	Key clinical issues that will be covered					
Areas fro	m the original guideline that will be updated					
Investiga	tion of CKD:					
a)	Measurement of kidney function and markers of kidney damage, for example using creatinine-based and cystatin C-based equations.					
b)	Frequency of monitoring.					
Chronic Kid	ney Disease Update Scope 2nd August, 2012 Page 5 of 11					

11

Classification and early identification:

c) Classification of CKD.

Self management:

- d) Dietary interventions such as a low protein diet in people with CKD.
- e) Effectiveness of self-management support systems for people with CKD including relevant information and support.

Blood pressure control:

f) The choice of renin-angiotensin-aldosterone system antagonists including aldosterone antagonists in people with CKD.

Reducing cardiovascular disease:

g) Efficacy and safety of antiplatelet and antithrombotic therapy (for example, aspirin, ticagrelor, clopidogrel, dabigatran and warfarin) in people with CKD.

Asymptomatic hyperuricaemia:

b) Uric acid lowering therapy in people with CKD.

Specific complications of CKD - renal bone disease:

 Vitamin D supplementation in the management of renal bone disease in people with CKD.

Areas not in the original guideline that will be included in the update

- The risk of developing CKD after an episode of acute kidney injury.
- The management of acidosis with bicarbonate supplementation in people with CKD.

4.3.2 Clinical issues that will not be covered

Areas from the original guideline that will be not be updated

No new evidence has been identified to directly change the 2008 recommendations on:

a) Investigation of CKD: indications for renal ultrasound.

Chronic Kidney Disease Update Scope 2nd August, 2012

Page 6 of 11

b)	Defining progression of CKD and the risk factors associated with progression.
c)	Blood pressure control: practicalities of treatment with ACE inhibitors/ARBs.
d)	Managing isolated microscopic haematuria.
e)	Specific complications of CKD: anaemia.
f)	Information and support for people and their carers (except for that relating to self-management support systems).
Areas not	covered by the original guideline or the update
a)	The treatment of each of the specific causes of CKD, such as glomerular and tubulointerstitial disease, or nephrotic syndrome.
b)	Management of pregnancy in women with CKD.
c)	Management of anaemia in people with CKD.
d)	Management of acute kidney injury in people with CKD.
4.4	Main outcomes
a)	Mortality (all cause and cardiovascular).
b)	Hospitalisation.
c)	Cardiovascular disease.
d)	Progression of CKD.
e)	Complications of CKD.
f)	Patient safety (serious adverse events).
g)	Health-related quality of life.
4.5	Economic aspects
Developers	will take into account both clinical and cost effectiveness when making

Developers will take into account both clinical and cost effectiveness when making recommendations involving a choice between alternative interventions. A review of

Chronic Kidney Disease Update Scope 2nd August, 2012 Page 7 of 11

Chronic kidney disease

Scope

the economic evidence will be conducted and analyses will be carried out as appropriate. The preferred unit of effectiveness is the quality-adjusted life year (QALY), and the costs considered will usually be only from an NHS and personal social services (PSS) perspective. Further detail on the methods can be found in 'The guidelines manual' (see 'Further information').

4.6 Status

4.6.1 Scope

This is the final scope.

4.6.2 Timing

The development of the guideline recommendations will begin in September 2012.

5 Related NICE guidance

5.1 Published guidance

5.1.1 NICE guidance to be updated

This guideline will update and replace the following NICE guidance:

<u>Chronic kidney disease</u>. NICE clinical guideline 73 (2008).

5.1.2 NICE guidance to be incorporated

None.

5.1.3 Other related NICE guidance

- Patient experience in adult NHS services. NICE quality standard (2012).
- Patient experience in adult NHS services. NICE clinical guideline 138 (2012).
- <u>Early identification and management of chronic kidney disease in adults</u>. NICE commissioning guideline 37 (2012).
- End of life care for adults. NICE quality standard (2012).
- <u>Chronic kidney disease</u>. NICE review decision (2011).
- Hypertension. NICE clinical guideline 127 (2011).
- Peritoneal dialysis. NICE clinical guideline 125 (2011).
- Chronic kidney disease. NICE quality standard (2011).
- Diabetes in adults. NICE quality standard (2011).

Chronic Kidney Disease Update Scope 2nd August, 2012 Page 8 of 11

- <u>Anaemia management in people with chronic kidney disease</u>. NICE clinical guideline 114 (2011).
- Chronic heart failure. NICE clinical guideline 108 (2010).
- Prevention of cardiovascular disease. NICE public health guidance 25 (2010).
- Medicines adherence. NICE clinical guideline 76 (2009).
- <u>Depression in adults with a chronic physical health problem</u>. NICE clinical guideline 91 (2009).
- <u>Febuxostat for the management of hyperuricaemia in people with gout</u>. NICE technology appraisal 164 (2008).
- Type 2 diabetes. NICE clinical guideline 66, partially updated by CG87 (2008).
- Lipid modification. NICE clinical guideline 67 (2008).
- <u>Cinacalcet hydrochloride for the treatment of secondary hyperparathyroidism in</u> patients with end stage renal disease on maintenance dialysis therapy. NICE technology appraisal 117 (2007).
- <u>Brief interventions and referral for smoking cessation</u>. NICE public health guidance 1 (2006).
- Type 1 diabetes. NICE clinical guideline 15 (2004).
- <u>Guidance on home compared with hospital haemodialysis for patients with end-</u> stage renal failure. NICE technology appraisal 48 (2002).

5.2 Guidance under development

NICE is currently developing the following related guidance (details available from the NICE website):

- Osteoporosis fragility fracture risk. NICE clinical guideline 146. Publication expected August 2012.
- Acute kidney injury. NICE clinical guideline. Publication expected August 2013.
- Type 1 diabetes (update). NICE clinical guideline. Publication expected July 2014.
- Type 2 diabetes (update). NICE clinical guideline. Publication date to be confirmed.
- Lipid modification (update). NICE clinical guideline. Publication date to be confirmed.
- Management of hyperphosphataemia. NICE clinical guideline. Publication date to be confirmed.

Chronic Kidney Disease Update Scope 2nd August, 2012 Page 9 of 11

6 Further information

Information on the guideline development process is provided in the following documents, available from the NICE website:

- '<u>How NICE clinical guidelines are developed: an overview for stakeholders the</u> public and the NHS'.
- 'The guidelines manual'.

Information on the progress of the guideline will also be available from the <u>NICE</u> website.

Chronic Kidney Disease Update Scope 2nd August, 2012

Page 10 of 11

Appendix

Table 2: Quality and Outcomes Framework CKD Indicators, Points Available and Practice Underlying Achievement 2008-2011 (reproduced from: Stevens et al. NDT 2012)

Indicator	Points	Underlying Achievement (All Pract			
mulcator	Available	2008/2009	2009/2010	2010/2011	
CKD 1: The practice can produce a register of patients aged 18 years and over with CKD (US National Kidney Foundation: Stage 3 to 5 CKD). (R)	6	(Ascertained CKD prevalence 4.1%)	(Ascertained CKD prevalence 4.3%)	(Ascertained CKD prevalence 4.3%)	
CKD 2: The percentage of patients on the CKD register whose notes have a record of blood pressure in the previous 15 months. (P)	6	97.5%	97.6%	97.5%	
CKD 3: The percentage of patients on the CKD register in whom the last blood pressure reading, measured in the previous 15 months, is 140/85 or less. (IO)	11	73.3%	73.9%	74.2%	
CKD 5: The percentage of patients on the CKD register with hypertension and proteinuria who are treated with an angiotensin converting enzyme inhibitor (ACE-I) or angiotensin receptor blocker (ARB) (unless a contraindication or side effects are recorded). (P- T-O)	9*	87.3%	91.8%	90.5%	
CKD 6: The percentage of patients on the CKD register whose notes have a record of a urine albumin: creatinine ratio (or protein: creatinine ratio) test in the previous 15 months. (P)	6†	-	77.7%	82.2%	

*increased from 4 points to 9 points in 2009; †introduced in 2009

R = register, P = process, IO = intermediate outcome, P-T-O = process linked to outcome

Chronic Kidney Disease Update Scope 2nd August, 2012

Page 11 of 11

Chronic kidney disease

Scope

Appendix B: Declarations of interest

National clinical c Guideline development group members (2014)

G G B.1.1 Paula D'Souza

Item declared	Date	Expiry	Classification	Action taken
Registration, travel and parking to attend BRS from Boehringher-Ingelheim.	May 2012	April 2013	Personal specific pecuniary	Declare and participate – standard, reasonable expenses
Talk by spouse at 'Diabetes and CKD', sponsored by Boeringer Ingelheim. Fee received.	12 September 2012 (declared 04-03- 2013)	11 September 2013	Personal family specific pecuniary	Declare and withdraw from: Q10 (RAAS) GDG7 May 2013 and Q11 (AP/AC) GDG9 July 2013
Talk by spouse at 'CKD and its management in Primary Care'. Sponsored by Astra Zeneca. Fee received.	19 December 2012 (declared 04-03- 2013)	18 December 2013	Personal family specific pecuniary	Declare and withdraw from: Q10 (RAAS) GDG7 May 2013 and Q11 GDG9 (AP / AC) July 2013
Attended a sponsored (Amgen) educational evening and dinner with spouse. No financial contribution to participants.	17 January 2013 (declared 04-03- 2013)	16 January 2014	Personal specific and personal family specific	Declare and participate (Cinacalcet excluded from Q13)
Gave presentation to HCPs on CKD and its management in primary care, sponsored by Astra Zeneca; petrol expenses received.	03 April 2013	02 April 2014	Personal specific pecuniary	Declare and participate – standard, reasonable expenses
Will be attending the ERA (Istanbul) 18-21 May 2013; registration, economy flights and standard accommodation funded by Boeringer Ingelheim	18-21 May 2013	20 May 2014	Personal specific pecuniary	Declare and participate – standard, reasonable expenses

/T

פוווופ כפוונו פ 2014

Item declared	Date	Expiry	Classification	Action taken
Attended a sponsored educational evening on CKD - ABD on June the 24th 2013. The event was ponsored by Amgen and Fresenius, however no inancial reimbursement or meal was received.	24 June 2013	23 June 2014	Personal specific non- pecuniary	Declare and participate.
Attended an educational evening sponsored by Boeringer Ingelheim. This involved an educational talk followed by a meal (no alcohol). Event attended in October 2013.	28 April 2014	-	Personal specific pecuniary	Declare and participate – standard, reasonable expenses
Hugh Gallagher				
Item declared	Date	Fxniry	Classification	Action taken

Item declared	Date	Expiry	Classification	Action taken
Honoraria from Astra Zeneca for 2 GP lectures on the management of diabetes and renal disease.	24 November 2011 12 January 2012	11 January 2013	Personal specific pecuniary	None – conflict expired (Q10 / Q11 May and July 2013)
Participation in market research activities commissioned by unknown pharma company. Fee received.	4 February 2013	3 February 2014	Personal non-specific pecuniary	Declare and participate
Publication: Creatinine Fluctuation Has a Greater Effect than the Formula to Estimate Glomerular Filtration Rate on the Prevalence of Chronic Kidney Disease. de Lusignan S, Tomson C, Harris K, van Vlymen J, Gallagher H. Nephron Clin Pract. 2010 Aug 31;117(3):c213-c224.	2010	-	Personal non-pecuniary	Declare and participate
Publication: Telling the Truth: why disclosure matters in chronic kidney disease (editorial). Abdi Z, Gallagher	2012	-	Personal non-pecuniary	Declare and participate

Item declared	Date	Expiry	Classification	Action taken
H, O'Donoghue D. Br J Gen Pract. 2012				
Apr;62(597):172-3.				

Item declared H, O'Donoghue D. Apr;62(597):172-3 B.1.3 Kathryn Griffith Item declared Involved in a proje care developed by Attended the ESC a

Item declared	Date	Expiry	Classification	Action taken
Involved in a project on Commissioning in Primary care developed by Virgo Health but funded by Roche	27-28 August 2011	26 August 2012	Personal specific pecuniary	None – conflict expired
Attended the ESC as a guest of MSD who paid for standard Euro-star ticket and 2 nights of accommodation.	14 September 2011	14 September 2012	Personal pecuniary	None – conflict expired
Spoke at educational meetings for primary care on advances in AF management & received an honorarium from Boehringer Ingelheim.	26 September 2011 and 13 October 2011	12 October 2012	Personal specific pecuniary	None – conflict expired
Chaired an advisory Board on AF for Boehringer Ingelheim & received travel expenses and an honorarium.	18 January 2012	17 January 2013	Personal specific pecuniary	None – conflict will have expired by GDG 4 (01-02-2013) when relevant Q11 (AP / AC) addressed
Involved in an educational session on AF for Pfizer & received an honorarium.	10 February 2012	9 February 2013	Personal specific pecuniary	Declare and withdraw from: Q11 (AP / AC) GDG 4 on 01-02- 2013. Conflict expired by GDG 11 when Q11 readdressed
Attended a session on the AF Lifelines project for Pfizer & received an honorarium.	12 July 2012	11 July 2013	Personal specific pecuniary	Declare and withdraw from Q10 (RAAS) GDG 7 on 17-05-2013

Item declared	Date	Expiry	Classification	Action taken
Member of the Renal Association and British Renal Society CKD forum.	On-going		Personal non-pecuniary	Declare and participate Will not contribute to sending in RA or BRS stakeholder comments when the guideline consults (as will participate in answering these with the GDG)
Speaker at Meeting of the BMJ Masterclass on CKD in Primary Care. Fee and travel expenses paid by the BMJ.	13 September 2013	12 September 2014	Personal pecuniary non- specific (non- pharma)	Declare and participate
Senior Clinical Tutor for Bradford University PwSI Programme. Teaching on the CHD module on 14 September 2012, the Hypertension and Arrhythmia Management module on 15 February 2013 as well as examiner 21-22 February 2013. Fee, travel and accommodation paid.	September 2012 – February 2013	21 February 2013	Personal pecuniary non- specific (non- pharma)	Declare and participate
Speaker for Mediconf at Meeting on AF. Fee and travel expenses paid.	15 September 2012	14 September 2013	Personal pecuniary non- specific (non- pharma)	Declare and participate
Speaker for Pulse Medical Journal at meeting on AF. Fee and expenses paid.	26 September 2012	25 September 2013	Personal pecuniary non- specific (non- pharma)	Declare and participate
Speaker at meeting on AF in Leeds. Fee paid by Dr Adil Suleman.	13 October 2012	12 October 2013	Personal pecuniary non- specific (non- pharma)	Declare and participate
Speaker at Anaemia Nurse Specialist Association (ANSA) Meeting on Iron Deficiency in Primary Care. Fee and travel expenses paid.	9 November 2012	8 November 2013	Personal pecuniary non- specific (non- pharma)	Declare and participate
Speaker at meeting on Management of AF for the	5 December 2012	4 December 2013	Personal pecuniary non-	Declare and participate

Item declared	Date	Expiry	Classification	Action taken
RCGP. Fee and expenses paid.			specific (non- pharma)	
Participation in Round Table Meeting 12 November 2012 to develop Supplement for British Journal of Cardiology on Management of Hypertension published in March 2013. Fee paid into practice (Unity Health). Standard travel expenses paid by Takeda.	12 November 2012	11 November 2013	Non-personal specific pecuniary and Personal specific pecuniary (standard, reasonable expenses)	Declare and participate
Speaker fee for meeting on Venous Thromboembolism arranged by Bayer. Fee paid into practice (Unity Health).	5 December 2012	4 December 2013	Non-personal pecuniary	Declare and participate
Speaker fee from WP Event Management for meeting on CKD, CVD and Diabetes. Fee paid into practice (Unity Health).	26 February 2013	25 February 2014	Non-personal pecuniary	Declare and participate
Member of the KDIGO CKD Guideline Update Group 2011-2012 with travel expenses paid by KDIGO and no other payment made.	2011-2012		Personal pecuniary	Declare and participate – standard, reasonable expenses
Attended the Renal Advisory Group meeting at the Department of Health. Travel and locum expenses paid.	8 October 2012	7 October 2013	Personal pecuniary	Declare and participate – standard, reasonable expenses
Attended the Primary Care Stroke Research Group meeting. Travel and locum expenses paid.	9 October 2012	8 October 2013	Personal pecuniary	Declare and participate – standard, reasonable expenses
Chair and Speaker at Meeting of Primary Care Cardiovascular Journal on CKD. Travel expenses and accommodation provided, no fee paid.	16-17 November 2012	16 November 2013	Personal pecuniary	Declare and participate – standard, reasonable expenses
Primary Care Clinical Lead for the WY Cardiovascular	January-February	19 February 2014	Personal non-pecuniary	Declare and participate

Item declared	Date	Expiry	Classification	Action taken
and Stroke Network. Talks on AF and Anticoagulation on 30 January, 5 February, 12 February and 20 February 2013. No fee.	2013			
Participation in the American College of Cardiology meeting (iACC) 9-11 March 2013. Travel, hotel and delegate registration paid by Boehringer Ingelheim (standard expenses only).	11 March 2013	10 March 2014	Personal pecuniary	Declare and participate – standard, reasonable expenses
Speaker at Meeting on Atrial Fibrillation arranged by EH Medical Meetings. But sponsored by Bayer. Fee paid to CVGP the Society for GP with an interest in Cardiovascular disease.	7 September 2013	6 September 2014	Non-personal pecuniary	Declare and participate
Speaker at CVGP meeting in Cambridge sponsored by CVGP and accommodation provided by CVGP	14 September 2013	13 September 2014	Personal non-pecuniary	Declare and participate
Speaker at meeting in Birmingham on Atrial Fibrillation. Fee and travel expenses paid by Omnium Medical Meetings.	25 September 2013	24 September 2014	Personal pecuniary	Declare and participate – standard, reasonable expenses
Speaker at BMJ Masterclass in Manchester with fee and travel paid by BMJ Education.	26 September 2013	25 September 2014	Personal pecuniary	Declare and participate – standard, reasonable expenses
Speaker at Meeting in Bradford on Anticoagulation Choices for AF. Travel and fee paid by Leeds University Pharmacy Course.	2 October 2013	1 October 2014	Personal pecuniary	Declare and participate – standard, reasonable expenses
Speaker at primary care meeting on Atrial Fibrillation. Fee paid to Unity Health by Boehringer Ingelheim.	8 October 2013	7 October 2014	Non-personal pecuniary	Declare and participate
Attended Northern Lights Meeting of CVGP which was sponsored by Pfizer but I paid for my own	14 October 2013	13 October 2014	Personal non-pecuniary	Declare and participate

Item declared	Date	Expiry	Classification	Action taken
refreshments and travel.				
Attended ACC in March 2014 with travel and accommodation sponsored by Boehringer Ingelheim.	28 April 2014	-	Personal pecuniary	Declare and participate – standard, reasonable expenses

Item declared refreshments an Attended ACC in accommodation B.1.4 Karen Jenkins Item declared Consultancy wold Participated in a

Item declared	Date	Expiry	Classification	Action taken
Consultancy work for TAKEDA - completed June 2012	Sept 2011 – June 2012	June 2013	Personal specific pecuniary	Declare and withdraw from Q10 (RAAS) GDG 7 on 17-05-2013
Participated in a training workshop for dieticians sponsored by Sanofi on pharmaceuticals. Reasonable travel expenses only.	5 December 2012	4 December 2013	Personal specific pecuniary	Declare and participate – standard, reasonable expenses
Attending annual ANSA conference; travel, registration and accommodation paid by ANSA	19 April 2013	18 April 2014	Personal pecuniary	Declare and participate – standard, reasonable expenses
Chairing a session at British Renal Society (BRS) Conference; subject 'How CKD contributes to cardiovascular risk and improving patient outcomes. Attending the British Renal Society Conference as a member of the BRS council and CKD Strategy Group Chair. Travel, registration and accommodation paid by the BRS	13-15 May 2013	14 May 2014	Personal pecuniary	Declare and participate – standard, reasonable expenses
Co-authored editorial for Journal of Renal Nursing entitled 'Patient self-care: are we getting the balance right?'; personal payment as a Consultant Editor for JRN.	04 April 2013	03 April 2014	Personal pecuniary	Declare and participate (non- healthcare industry related)

National Clinical Guide Paul Kendrew Item declared Attended a talk at the British Trans Gave a talk at the but not from a s Gave a talk for the ducation (CPPE)

Item declared	Date	Expiry	Classification	Action taken
Attended a talk and a dinner sponsored by Takeda at the British Transplant Society.	March 2013	Feb 2014	Personal specific pecuniary (dinner)	Declare and withdraw from Q10 (RAAS) GDG7 on 17-05-2013
Gave a talk at the Pharmacy Congress. Fee received, but not from a specific pharmaceutical company.	April 2013	March 2014	Personal non-specific pecuniary	Declare and participate
Gave a talk for the centre for postgraduate pharmacy education (CPPE) on chronic kidney disease.	May 2013	April 2014	Personal non-specific pecuniary	Declare and participate (non- pharma funding)

B.1.6 Ed Lamb

Item declared	Date	Expiry	Classification	Action taken
Papers:			Personal non-pecuniary	Declare and participate
Carter JL, Stevens PE, Irving J, Lamb EJ. Estimating glomerular filtration rate: comparison of the CKD-EPI and MDRD equations in a large UK cohort with particular emphasis on the effect of age. QJM 2011;104:839-847, doi: 10.1093/qjmed/hcr077 PMID: 21652537				
Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K. Estimating equations for GFR in the era of creatinine standardization: a systematic review. Ann Int Med				

Date	Expiry	Classification	Action taken

Chronic kidney disease Declarations of interest

Item declared	Date	Expiry	Classification	Action taken
(Modification of Diet in Renal Disease) Study and				
CKD-EPI (CKD Epidemiology Collaboration) equations				
for estimation of GFR in the elderly. Am J Kidney Dis				
2013;61:57-66				
Lamb EJ, McTaggart MP, Stevens PE. Counterpoint.				
Why ACR should replace PCR: it is not just about				
nephrologists. Annals Clinical Biochemistry. 2013,				
accepted for publication 7th November 2012				
Lamb EJ, Levey AS, Stevens PE. Perspective. The				
Kidney Disease Improving Global Outcomes Guideline				
Update for Chronic Kidney Disease: evolution not				
revolution. Clin Chem 2013, Accepted for publication				
Guideline Development group member:				
Kidney Disease: Improving Global Outcomes (KDIGO)				
CKD Work Group. KDIGO 2012 Clinical Practice				
Guideline for the Evaluation and Management of				
Chronic Kidney Disease. Kidney Int Suppl. 2013;3:1–				
150				
Speaker invitations:				
Lamb EJ. Assessment of GFR and proteinuria: what	May 2012	April 2013	Personal non-specific	Declare and participate – (non-
have KDIGO changed? Oral presentation (invited			pecuniary	pharma funding)
speaker) at Focus 2012, National Meeting of the				
Association for Clinical Biochemistry, Liverpool, UK,				

Item declared	Date	Expiry	Classification	Action taken
May 2012. Ann Clin Biochem 2012;49(suppl.1):8-9 Funded by Association for Clinical Biochemistry and Laboratory Medicine (accommodation and travel).				
Lamb EJ. KDIGO guideline for CKD: implications for the laboratory. Oral presentation (invited speaker) at Pathpoint 2012, congress of the Federation of South African Societies of Pathology and the Association of Pathologists of East, Central and Southern Africa, Cape Town, South Africa, September 2012. Funded by South African Societies of Pathology (accommodation) and Association Association for Clinical Biochemistry and Laboratory Medicine (travel reimbursement only).	September 2012	August 2013	Personal non-specific pecuniary	Declare and participate – (non- pharma funding)
Lamb EJ. Managing CKD-MBD using PTH: is it useful? Oral presentation (invited speaker) at Pathpoint 2012, congress of the Federation of South African Societies of Pathology and the Association of Pathologists of East, Central and Southern Africa, Cape Town, South Africa, September 2012. Funded by South African Societies of Pathology (accommodation) and Association Association for Clinical Biochemistry and Laboratory Medicine (travel reimbursement only).	September 2012	August 2013	Personal non-specific pecuniary	Declare and participate – (non- pharma funding)
Lamb EJ. Managing CKD-MBD using PTH: can we do better? Oral presentation (invited speaker) at joint meeting of the Scottish Renal Association and Scottish	November 2012	October 2013	Personal non-specific pecuniary	Declare and participate – (non- pharma funding)

Item declared	Date	Expiry	Classification	Action taken
Region of the Association for Clinical Biochemistry, Aberdeen, November 2012.				
Funded by Scottish Renal Association (travel and accommodation).				
Lamb EJ. Biomarkers of AKI – horizons. Oral presentation (invited speaker) at AKI Consensus Conference, Royal College of Physicians of Edinburgh, Edinburgh, UK, November 2012. Funded by Royal College of Physicians of Edinburgh (travel and accommodation).	November 2012	October 2013	Personal non-specific pecuniary	Declare and participate – (non- pharma funding)
Member of the original 2008 NICE CKD GDG and have defended the recommendations of that guideline at many public scientific and clinical meetings since.	2008		Personal non-pecuniary	Declare and participate
Lead applicant on: HTA Project: 11/103/01 - Accuracy of glomerular filtration rate (GFR) estimation using creatinine and cystatin C and albuminuria for monitoring disease progression in patients with stage 3 chronic kidney disease: an observational study in a multiethnic population.	Funding confirmed 25 February 2013		Non-personal, non- industry, pecuniary	Declare and participate
Invited to write an educational article for the BMJ on rational use of eGFR. No financial reimbursement.	Due to submit July 2013		Personal non-pecuniary	Declare and participate
Part of kidney research UK expert group working with 'Roche' to discuss opportunities to set up cohort studies to identify new biomarkers for CKD	21.06.13	20.06.14	Personal non-pecuniary specific	Declare and participate

ועמנוטחמו כווחוכמו סטומפווחפ כפחורפ בטדק

≥B.1.7 Robert Lewis

Expiry Classification Item declared Date **Action taken** Declare and participate – standard Flight, accommodation and registration at 23-26 March 2012 25 March 2013 Personal pecuniary 'Nephrology at the Edge', Cape Town. Financed by a reasonable expenses cooperative of pharmaceutical companies. Flight, accommodation and registration at American Personal pecuniary, Declare and participate -31 Oct- 5 Nov 2012 4 November 2013 Society of Nephrology, San Diego, sponsored by standard, reasonable expenses Jansen Cilag Ltd. Author of a book "Chronic Kidney Disease – a Guide September 2013 Personal non-pecuniary Declare and participate October 2012 for the Non-Specialist" published by MK publishing in October 2012 Author of future article on CKD for the Primary care Personal pecuniary Declare and participate Declared 28 27 November 2013 Journal of cardiovascular disease. November 2012 Personal non-pecuniary Author of a series of future articles for Pulse Declared 28 27 November 2013 Declare and participate magazine on CKD November 2012 Attend European Renal Association 17th May 2013. 17 May 2013 16 May 2014 Personal non-pecuniary Declare and participate - standard, Sponsorship from Jansen-Cilag includes standard reasonable expenses expenses for travel, registration, accommodation and food. 3rd October 2014 3rd October 2013 Travel and accommodation costs to speak at the Personal pecuniary Declare and participate Home Dialysis Symposium, Manchester October 3rd 2013. Honorarium may be paid, from a hospital endowment fund.

נוסחמו כווחוכמו שמומפווחפ

רהווווה

ZUT4

≥B.1.8 Fiona Loud

Expiry Classification Item declared Date **Action taken** Declare and participate - non-NIHR funded CKM (Conservative Kidney On-going Personal pecuniary Management) OPPS - patient advisor (fee and travel healthcare industry funding. expenses). Health Foundation funded Closing the Gap (Patient **Ends September** Personal pecuniary Declare and participate - noneducation CKD in Primary Care) - patient and service healthcare industry funding. 2012 team leader (fee and travel expenses). City University Kidney Research Education Initiative Personal pecuniary Declare and participate - non-On-going funded by British Kidney Patients Association (fee and healthcare industry funding. travel expenses). Attended a meeting with the Kidney Health for Life 24 May 2012 23 May 2013 Personal pecuniary Declare and participate -Coalition in Paris, discussing prevention and standard, reasonable expenses treatment of early CKD. Sponsored by Abbott, and fare paid by them (no fee received). Received a fee for project management work for Personal pecuniary March 2012 February 2013 Declare and participate – non-World Kidney Day from the Kidney Alliance, set in healthcare industry funding June 2011 and not related to the amount raised. Nonpharma funding. Received a fee from Novartis for speaking to a group None - conflict will have expired October 2011 October 2012 Personal specific of transplant surgeons about immunosuppression pecuniary from a patient viewpoint. The Kidney Alliance received funding for its World Declare and participate March 2012 February 2013 Non-personal specific Kidney day activity in March 2012 from the following: pecuniary Abbott, Amgen, Fresenius, Shire, NxStage, Takeda, Pfizer

נוסחמו כווחוכמו שעומפווחפ

רהווווה

ZUT4

Item declared	Date	Expiry	Classification	Action taken
Interview in March 2012 to a media company working for Shire, reflecting experiences as a kidney patient with regard to diet and medication. Personal fee and a donation to a local charity.	Fee 31 January 2013	30 January 2014	Personal specific pecuniary	Declare and withdraw from Q13 (Vit D) - Review debated at GDG3 in December 2012 (before COI declared). Withdraw from any further discussions of vitamin D from Jan 2013
Chairing conference run by 'SBK Healthcare' called Renal Service Change Management. Fee received.	3 December 2012	2 December 2013	Personal pecuniary non specific	Declare and participate
A fee from the Welsh CKD framework for training CKD and practice nurses in how to enable self-care. Reasonable expenses only paid.	28 September 2012	27 September 2013	Personal non-pecuniary	Declare and participate
Participation in a day's training in 'healthcare social marketing' in September 2012 from Roche Pharmaceuticals. Group event for health charities, event free to attend. Normal travel expenses only paid.	September 2012	October 2013	Personal pecuniary	Declare and participate – standard, reasonable expenses
The Kidney Alliance received funding for its 2013- 2014 review of the National Service Framework from Takeda, Fresenius	October 2012	September 2013	Non-personal pecuniary	Declare and participate
Participation in 2 events funded by Abbott Healthcare towards the Kidney Health 2032 project (think-tank).	October 2012	September 2013	Personal non-pecuniary	Declare and participate
The Kidney Alliance received funding for its World Kidney day 2013 from the following: Amgen, Takeda, Fresenius	December 2012- February 2013	January 2014	Non-personal specific pecuniary	Declare and participate
Invited speaker (in March 2013) to a Fresenius	March 2013	February 2014	Personal non-specific	Declare and participate

Item declared	Date	Expiry	Classification	Action taken
advisory board about changes in and impacts of NHS commissioning and optionally to listen to a discussion about a new phosphate binder (PA21). Received a fee.			pecuniary	
Author of part of a chapter of a new textbook on Renal Nursing (ed Nicola Thomas, publisher Wiley- Blackwell) about self-management to be published after September 2013. No fee.	Declared February 2013, published after Sept. 2013	-	Personal non-pecuniary	Declare and participate
Invited speaker at the BRS conference in mid-May about a) commissioning for patients in the NHSCB and b) What I would like my care to look like in the next 10 years. Expenses will be provided by the BRS.	Declared February 2013, conference mid-May 2013	April 2014	Personal pecuniary	Declare and participate – standard, reasonable expenses
Co-applicant (patient representative) on HTA Project: 11/103/01 - Accuracy of glomerular filtration rate (GFR) estimation using creatinine and cystatin C and albuminuria for monitoring disease progression in patients with stage 3 chronic kidney disease: an observational study in a multiethnic population.	Funding confirmed 25 February 2013	-	Pecuniary (non- healthcare industry related) and neither personal nor non personal (no managerial responsibility for dept)	Declare and participate
Co-applicant for a £2M grant just awarded by the NIHR (non-pharma) for a multicentre study assessing the utility of cystatin C for CKD progression.	April 2013	-	Pecuniary (non- healthcare industry related) and neither personal nor non personal (no managerial responsibility for dept)	Declare and participate

Item declared	Date	Expiry	Classification	Action taken
Speaking on Patient Decision Aids at ReMec (Renal Medicine, run by Central Manchester University Hospitals NHS Foundation Trust Hospital) meeting in Warrington; will receive travel expenses and speaker fee	25 April 2013	24 April 2014	Personal non-specific pecuniary	Declare and participate
Speaking at the British Renal Society on 'What I want my care to look like in 2023' and 'Commissioning – patient perspective on involvement to improve our service.' Travel, registration and accommodation paid by the British Renal Society.	15-16 May 2013	15 May 2014	Personal pecuniary	Declare and participate – standard, reasonable expenses
Travel expenses from Amgen to go to annual renal Clinical Directors meeting to present on Kidney Health project April 2013. Travel and accommodation expenses from the International Society of Nephrology (ISN) to speak at their Nexus conference in Italy May 2013.	25 May 2014	-	Personal pecuniary	Declare and participate – standard, reasonable expenses

B.1.9 Shelagh O'Riordan

Item declared	Date	Expiry	Classification	Action taken
Co-author on: 1. Kilbride H, Eaglestone G, Knight S, Carter JC, Delaney MP, Farmer CKT, O'Riordan SE, Dalton N,	Accepted for publication 18 June 2012	-	Personal non-pecuniary specific	Declare and participate

Item declared	Date	Expiry	Classification	Action taken
Stevens PE, Lamb EJ. Accuracy of the MDRD and CKD- EPI equations for estimation of GFR in the elderly. Am J Kidney Dis 2012;				
Investigator on HTA Project: 11/103/01 - Accuracy of glomerular filtration rate (GFR) estimation using creatinine and cystatin C and albuminuria for monitoring disease progression in patients with stage 3 chronic kidney disease: an observational study in a multiethnic population.	Funding confirmed 25 February 2013	-	Personal non-pecuniary specific	Declare and participate

ואמרוסטומו כוונטורמו פתומפוונוה כהנותה 2017 **B.1.10** Nicholas Palmer

Item declared	Date	Expiry	Classification	Action taken
Participation in a round table discussion on 3 rd October on home haemodialysis, sponsored by Baxter (honorarium and hotel accommodation)	October 2012	October 2013	Personal pecuniary non- specific	Declare and participate
Participation in a conference on 3 December, run by SBK Healthcare, called 'Managing Improvement in Renal services'	October 2012		Personal non-pecuniary non-specific	Declare and participate
Participated in an advisory board meeting sponsored by Fresenius discussing the implications of the 'new' NHS on commissioning renal services; honorarium payment received.	18 March 2013	17 March 2013	Personal pecuniary non specific	Declare and participate
Participated in a World Kidney Day event for Sanofi raising awareness about CKD and transplantation	14 March 2013	13 March 2014	Personal non pecuniary	Declare and participate

Item declared	Date	Expiry	Classification	Action taken
amongst their staff. No payment received.				
I will be attending a Holiday Dialysis Conference in Barcelona, September 2013, my flights and accommodation will be paid for by the sponsors and organisers – Diaverum.	September 2013	September 2014	Personal pecuniary non- specific	Declare and participate
Presenting to the Associated Renal Industry (ARI) in December about 'NKF Patient Advocacy – it's role and value within the Renal Community'. No fee being paid.	December 2013	December 2014	Personal non-pecuniary	Declare and participate.

B.1.11 Paul Roderick

Item declared	Date	Expiry	Classification	Action taken
Member of the research team for a PFIZER funded study on wound infection epidemiology in GPRD	Ongoing		Non-personal pecuniary specific	Declare and participate
Author or co-author on: 1. Roderick PJ. Assessing the impact of chronic kidney disease on individuals and populations: use of relative and absolute measures. Nephrol Dial Transplant. 2012 Feb 29. [Epub ahead of print] 2. Roderick PJ. Chronic kidney disease in older people: a cause for concern? Nephrol Dial Transplant. 2011 Oct;26(10):3083-6.	Sept. 2012	-	Personal non-pecuniary specific	Declare and participate

ואמעוטדומו כוודווכמו שעומפוודופ כפדונדפ בטב4

Item declared	Date	Expiry	Classification	Action taken
Epub 2011 Sep 13.				
3. International Consortium for Blood Pressure				
Genome-Wide Association Studies; CARDIoGRAM				
consortium; CKDGen Consortium; KidneyGen				
Consortium; EchoGen consortium; CHARGE-HF				
consortium. Genetic variants in novel pathways				
influence blood pressure and cardiovascular disease				
risk. Nature. 2011 Sep 11;478(7367):103-9. doi:				
10.1038/nature10405.				
Part of kidney research UK expert group working with 'Roche' to discuss opportunities to set up cohort studies to identify new biomarkers for CKD	21-06-2013	-	Personal non-pecuniary specific	Declare and participate

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

B.1.12 Paul Stevens (Chair)

Item declared	Date	Expiry	Classification	Action taken
Co-author on: 1. Kilbride H, Eaglestone G, Knight S, Carter JC, Delaney MP, Farmer CKT, O'Riordan SE, Dalton N, Stevens PE, Lamb EJ. Accuracy of the MDRD and CKD-	Kilbride et al accepted for publication June 2012	-	Personal specific non- pecuniary	Declare and participate
EPI equations for estimation of GFR in the elderly. Am J Kidney Dis 2012; accepted for publication 18th June	Carter et al. October 2011			

Item declared	Date	Expiry	Classification	Action taken
2. Carter JL, Stevens PE, Irving J, Lamb EJ. Estimating glomerular filtration rate: comparison of the CKD-EPI and MDRD equations in a large UK cohort with particular emphasis on the effect of age. QJM 2011;104:839-847, doi: 10.1093/qjmed/hcr077 PMID: 21652537 (Non pecuniary).				
Co-Chair of KDIGO	On-going		Personal specific non- pecuniary	Declare and participate
Co-applicant on HTA Project: 11/103/01 - Accuracy of glomerular filtration rate (GFR) estimation using creatinine and cystatin C and albuminuria for monitoring disease progression in patients with stage 3 chronic kidney disease: an observational study in a multiethnic population.	Funding confirmed 25 February 2013		Non personal pecuniary (non-healthcare industry related)	Declare and participate (decision made by Guideline Lead and Clinical Director)
Co-applicant for a £2M grant just awarded by the NIHR (non-pharma) for a multicentre study assessing the utility of cystatin C for CKD progression.	March 2013	-	Non personal pecuniary specific (non-healthcare industry related)	Declare and participate (decision made by Guideline Lead and Clinical Director)
Invited speaker at a French Society of Nephrology meeting in Lyon; subject 'How to control the CKD workload'. Travel expenses and hotel accommodation sponsored by Hemotech (French dialysis company).	28 March 2013	27 March 2014	Personal non-specific pecuniary	Declare and participate – standard, reasonable expenses
Speaking at the British Renal Society (BRS); subject 'The BRS in the NICE era'. Travel, registration and accommodation paid by the BRS.	15 May 2013	14 May 2014	Personal pecuniary	Declare and participate – standard, reasonable expenses
Speaking at the World Congress of Nephrology (Hong Kong); subject 'KDIGO – clinical practice guidelines for	01 June 2013	31 May 2014	Personal pecuniary	Declare and participate – standard, reasonable expenses

	Item declared	Date	Expiry	Classification	Action taken
	evaluation and management of CKD: research gaps from an international perspective'. Travel, registration and accommodation paid by the International Society of Nephrology.				
	Invited to write an educational article for the BMJ on rational use of eGFR. No financial reimbursement.	Due to submit July 2013		Personal non-pecuniary	Declare and participate
B.2	Invited experts (2014)				

Invited experts (2014)

Caroline Ashley (Attended GDG 7)

Item declared	Date	Expiry	Classification	Action taken
Nothing declared				

ZUT4

Campbell Cowan (Attended GDG 9)

Item declared	Date	Expiry	Classification	Action taken
Nothing declared				

Nervine El-Sherbini (Attended GDG 2)

Item declared	Date	Expiry	Classification	Action taken
Nothing declared				

Rob Henderson (Attended GDG 9)

Item declared	Date	Expiry	Classification	Action taken
Nothing declared				

Daniel Lasserson (Attended GDG 7)

Item declared	Date	Expiry	Classification	Action taken
Nothing declared				

Tom Kenny (Attended GDG 11)

Item declared	Date	Expiry	Classification	Action taken
Nothing declared				

ווארוסנושו כוונווכשו פתומפוונופ כפנונג פ לחדק

Pamela Young (Attended GDG 11)

Item declared	Date	Expiry	Classification	Action taken
Nothing declared				

Declarations of interest

B.3 Technical team members (2014)

Name	Personal pecuniary interest *	Personal family interest	Non-personal pecuniary interest	Personal non- pecuniary interest
Caroline Blaine	Nil	Nil	Nil	Nil
Serena Carville	Nil	Nil	Nil	Nil
Lisbeth Hoeg- Jensen	Nil	Nil	Nil	Nil
Lilian Li	Nil	Nil	Nil	Nil
Jill Parnham	Nil	Nil	Commissions received from non pharma related international work	Nil
Sharon Swain	Nil	Nil	Nil	Nil
Richard Whittome	Nil	Nil	Nil	Nil
David Wonderling	Nil	Nil	Nil	Nil

* All staff members receive salary from the Royal College of Physicians and undertake commissions received from NICE.

Appendix C: Review protocols

C.1 Review protocols for the 2014 guideline

C.1.1 Measuring kidney function

Table 1: Review protocol: measuring kidney function

Review	What is the accuracy of equations to estimate GFR as a measurement of kidney
question	function?
Objectives	To determine the most clinically and cost effective method of estimating GFR to assess kidney function.
Population:	Adults (aged 18 and over) with suspected CKD
	Subgroups:Older people aged over 75 years
	 Black and minority ethnic groups
Index tests	CKD-EPI GFR (serum creatinine)
index lests	 Cystatin C estimating equations (cystatin C)
	 Combined CKD-EPI (serum creatinine + cystatin C)
	Comparator test: MDRD
	Reference standard: Measured GFR (urinary or plasma clearance of inulin, iohexol,
	iothalamate, para aminohippurate [PAH], diethylenetriaminepentaacetic acid [DTPA] or ethylenediaminetetraacetic acid [EDTA]).
Outcomes	Critical:
outcomes	Accuracy (P30)
	• Bias
	Precision
	Important:
	• Sensitivity
	• Specificity
	• Area under the receiver energing characteristic curve (ALIC)Net reclassification index
	 Area under the receiver operating characteristic curve (AUC)Net reclassification index (NRI)
Study design	Diagnostic studies
Search	Databases: Medline, Embase, the Cochrane Library
	Language: restrict to English only
	Search from 2007 onwards
Review strategy	• Minimum n=100.

- Limit to studies using international standardisation for serum creatinine and cystatin C.
- Externally validated equations only.
- Geographical exclusion studies not relevant to population of England and Wales excluded as equations known to function differently in different populations.
- Medians to be calculated for analysis of outcomes. Due to differences in gold standard mGFRs only studies with more than one equation that meets inclusion criteria will be considered.

C.1.2 Markers of kidney damage

Table 2: Review protocol: Markers of kidney damage

Review question	What is the best combination of measures of kidney function and markers of kidney damage to identify people with CKD who are at increased risk of progression?
Objectives	To determine the most clinically and cost effective combination of measures and markers to identify people with CKD who are at increased risk of progression.
Population	Adults (aged 18 and over) with CKD Subgroups Older people aged over 75 years Black and minority ethnic groups
Prognostic factor	MDRD (serum creatinine) plus urinary ACR CKD-EPI eGFR (serum creatinine) plus urinary ACR CKD-EPI cystatin C plus urinary ACR Combined CKD-EPI (serum creatinine + cystatin C eGFR) plus urinary ACR
Outcomes	 CKD progression: change in eGFR CKD progression: occurrence of end stage kidney disease (ESRD or ESKD as reported by the study) AKI All-cause mortality Cardiovascular mortality
Covariates	Age, gender, hypertension and diabetes.
Study design	Prospective cohort studies (or retrospective cohorts if no prospective available)
Exclusions	Abstracts (excluded from review, not from search) Studies with N<100
Search	Databases: Medline, Embase, the Cochrane Library Language: restrict to English only Search from 2007 onwards
The review strategy	Minimum length of follow up: 1 year Minimum n=100 GFR category will be considered if reported (suggested sub-divisions <15, 15-29, 30-44, 45-59, 60-89, >90 ml/minml/min/1.73 m ²)

Review protocols

C.1.3 Classification of CKD

Table 3: Review protocol: Classification of CKD

Review question	For people with suspected CKD, what is the effect of proteinuria at any given eGFR on adverse outcomes (CKD progression, AKI, all-cause mortality and cardiovascular mortality)?
Objectives	To determine whether occurrence of adverse outcomes is different in people with different levels of proteinuria compared to those without at any given eGFR.
Population	Adults (aged 18 and over) with suspected CKD Subgroups: • Older people (≥75 years) • People with hypertension (BP > 140/90 mmHg) • People with diabetes
Presence of prognostic factor	Proteinuria: ACR <3 mg/mmol (<30mg/g) ACR 3-29 mg/mmol (30-299mg/g) ACR >30 mg/mmol (>300mg/g) (or equivalent PCR and reagent strip result)
Absence of prognostic factor	Normal - increased proteinuria (ACR <3 mg/mmol)
Outcome	 Critical CKD progression: change in eGFR CKD progression: occurrence of end stage kidney disease (ESRD or ESKD as reported by the study)All-cause mortality Cardiovascular mortality AKI Important Cardiovascular events Hospitalisation
Study design	Prospective cohort studies (Retrospective cohorts if no prospective identified)
Exclusions	Non English language studies Abstracts only (not excluded from the search)
Search	Databases: Medline, Embase, the Cochrane Library Language: restrict to English only Search from 2007 onwards

C.1.4 Cause of CKD – Risk factors for adverse outcomes

C.1.4.1 Diabetes

Table 4: Review protocol: presence of diabetes on adverse outcomes

	For people with CKD, does the presence of diabetes have an effect on adverse
Review question	outcomes at any given category of eGFR and ACR?
Objectives	To determine whether occurrence of adverse outcomes is different in those with CKD associated with diabetes to those with CKD from another cause, at any given eGFR
Population	Adults aged over 18 with CKD
Presence of prognostic factor	Diabetes and CKD
Absence of prognostic factor	CKD and no known diabetes
Outcomes	Adverse outcomes:Critical• CKD progression:change in eGFR• CKD progression: occurrence of end stage kidney disease (ESRD or ESKD as reported by the study)• All-cause mortality• Cardiovascular mortality• Cardiovascular eventsImportant• Hospitalisation
Study design	Prospective cohort studies (or retrospective if no prospective studies identified) Cross sectional studies
Exclusions	Non English language studies. Abstracts (excluded from review, not from search)
Search	Databases: Medline, Embase, the Cochrane Library Language: restrict to English only Search from 2007 onwards
The review strategy	 Will report type I & type II diabetes (or insulin / non-insulin dependent) separately if data available Key papers: Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis, The Lancet, Early Online Publication, 24 September 2012

C.1.4.2 Hypertension

Table 5: Review protocol: presence of hypertension on adverse outcomes

Deview exection	For people with CKD, does the presence of hypertension have an effect on adverse
Review question	outcomes at any given category of eGFR and ACR?
Objectives	To determine whether occurrence of adverse outcomes is different in those with CKD associated hypertension
Population	Adults (aged 18 and over) with CKD
Presence of prognostic factor	Diagnosed hypertension and CKD (BP >140/90mmHg)
Absence of prognostic factor	CKD and no known hypertension
Outcomes	Adverse outcomes:
	Critical
	• CKD progression:change in eGFR
	• CKD progression: occurrence of end stage kidney disease (ESRD or ESKD as reported by the study)
	All-cause mortality
	Cardiovascular mortality
	Cardiovascular events
	Important
	Hospitalisation
Study design	Prospective cohort studies (or retrospective if no prospective studies identified)
	Cross sectional studies
Exclusions	Non English language studies.
	Abstracts (excluded from review, not from search)
Search	Databases: Medline, Embase, the Cochrane Library
	Language: restrict to English only
	Search from 2007 onwards
The review	Key papers:
strategy	Associations of kidney disease measures with mortality and end-stage renal disease in
	individuals with and without hypertension: a meta-analysis, The Lancet, Early Online
	Publication, 24 September 2012

C.1.4.3 Glomerular disease

Table 6: Review protocol: presence of glomerular disease on adverse outcomes

Review question	For people with CKD, does the presence of glomerular disease have an effect on adverse outcomes at any given category of eGFR and ACR?	
Objectives	To determine whether occurrence of adverse outcomes is different in those with CKD	

Review protocols

	For people with CKD, does the presence of glomerular disease have an effect on
Review question	adverse outcomes at any given category of eGFR and ACR?
	caused by glomerular disease
Population	Adults (aged 18 and over) with CKD
Presence of prognostic factor	CKD and glomerular disease
Absence of prognostic factor	CKD and no underlying glomerular disease
Outcomes	Adverse outcomes: Critical
	CKD progression:change in eGFR
	 CKD progression: occurrence of end stage kidney disease (ESRD or ESKD as reported by the study)
	All-cause mortality
	Cardiovascular mortality
	Cardiovascular events
	Important
	Hospitalisation
Study design	Prospective cohort studies (or retrospective if no prospective studies identified) Cross sectional studies
Exclusions	Non English language studies. Abstracts (excluded from review, not from search)
Search	Databases: Medline, Embase, the Cochrane Library Language: restrict to English only Search from 2002 onwards
The review strategy	Glomerular disease to include: proliferative glomerulonephritis, membranous glomerulonephritis, minimal-change nephropathy, IgA nephropathy, Focal glomerulosclerosis, nephrotic syndrome, focal segmental.

C.1.4.4 Acute kidney injury

Table 7: Review protocol: presence of acute kidney injury on adverse outcomes

Review question	For people with CKD, does the presence of acute kidney injury (AKI) have an effect on adverse outcomes at any given category of eGFR and ACR?
Objectives	To determine whether occurrence of adverse outcomes is different in those with CKD caused by acute kidney injury.
Population	Adults (aged 18 and over) with CKD
Presence of prognostic factor	CKD and acute kidney injury
Absence of	CKD and no known acute kidney injury (or history of)

Review protocols

	For people with CKD, does the presence of acute kidney injury (AKI) have an effect on
Review question	adverse outcomes at any given category of eGFR and ACR?
prognostic factor	
Outcomes	Adverse outcomes:
	Critical
	CKD progression:change in eGFR
	• CKD progression: occurrence of end stage kidney disease (ESRD or ESKD as reported by the study)
	All-cause mortality
	Cardiovascular mortality
	Cardiovascular events
	Important
	Hospitalisation
Study design	Prospective cohort studies (or retrospective if no prospective studies identified)
	Cross sectional studies
Exclusions	Non English language studies.
	Abstracts (excluded from review, not from search)
Search	Databases: Medline, Embase, the Cochrane Library
	Language: restrict to English only
	Search from 2002 onwards

C.1.5 Frequency of monitoring

Table 8: Review protocol: frequency of monitoring

Review question	How frequently should eGFR, ACR or PCR be monitored in people with CKD?
Objectives	To determine how frequently eGFR, ACR or PCR should be measured for people diagnosed with CKD.
Population	Adults (aged 18 and over) with CKD
Prognostic factor	eGFR measure ACR measure PCR measure
Outcomes	CKD progression:change in eGFR CKD progression: occurrence of end stage kidney disease (ESRD or ESKD as reported by the study) All-cause mortality Cardiovascular mortality
Study design	Prospective cohort studies (or retrospective if no prospective available) Cross sectional studies
Exclusions	Non English language studies. Abstracts (excluded from review, not from search)

Review protocols

Review question	How frequently should eGFR, ACR or PCR be monitored in people with CKD?
Search	Databases: Medline, Embase, the Cochrane Library
	Language: restrict to English only
	Search from 2007 onwards
The review	Retrospective cohort studies will be considered if better quality studies not available
strategy	Stage of CKD will be considered if reported e.g.
	eGFR >90 ml/min/1.73 m ²
	eGFR 60-89 ml/min/1.73 m ²
	eGFR 45-59 ml/min/1.73 m ²
	eGFR 30-44 ml/min/1.73 m ²
	eGFR 15-29 ml/min/1.73 m ²
	eGFR<15 ml/min/1.73 m ² .
	Threshold of 25% change in eGFR and cut-offs of 3 and 30mg/mmol for albuminuria to
	be used to mark significant change at various time points.
	Multivariate analysis with Hazard ratios will be considered the best quality outcome.
	Other analyses will only be considered if these are not available.

C.1.6 Progression of CKD after acute kidney injury

Table 9: Review protocol: progression to CKD after acute kidney injury

Review question	What is the risk of developing and/or progression of CKD after an episode of AKI?
Objectives	To determine whether the risk of developing CKD is different in those who have had acute kidney injury to those who haven't.
Population	Adults (aged 18 and over)
	Subgroups:
	People aged over 75 years
Presence of prognostic factor	Prior episode of acute kidney injury
Absence of prognostic factor	No history of acute kidney injury
Outcomes	• Incident CKD;
	CKD progression:change in eGFR
	 CKD progression: occurrence of end stage kidney disease (ESRD or ESKD as reported by the study)
Study design	Prospective cohort studies; Cross sectional studies
Search	Databases: Medline, Embase, the Cochrane Library
	Language: restrict to English only
	Search from 2002 onwards
Review strategy	Severity of AKI will be considered if reported.
	GFR category at baseline will be considered if reported.

Retrospective cohorts will be considered if no prospective cohorts identified.

C.1.7 Low protein diet

Table 10: Review protocol: low protein diet

Review question	For people with CKD, are low protein diets a clinically and cost effective method for the management of CKD?
Guideline condition and its definition	Adults with chronic kidney disease. Definition:
Review population	Adults (aged 18 and over) with CKD
	Adults aged 18 and over
	Line of therapy not an inclusion criterion
Interventions and comparators: generic/class; specific/drug	Low protein diet; Low protein diet (0.6 - 0.8g/kg) Higher protein diet; Higher protein diet (greater than 0.8g/kg) Higher protein diet; Higher protein diet (unrestricted or free protein)
(All interventions will be compared with each other, unless otherwise stated)	
Outcomes	Quality of life (Critical) at 1 year minimum (Continuous)
	 Progression of CKD (measured by end stage renal disease requiring RRT) (Critical) at 1 year minimum (Time to event; MID: Other)
	 Progression of CKD (measured by change in GFR) (Critical) at 1 year minimum (Continuous)
	• Mortality (all-cause and cardiovascular) (Critical) at 1 year minimum (Time to event; MID: Other)
	 Compliance (measured by actual protein intake) (Important) at 1 year minimum (Continuous)
	 Nutritional status (measured by subjective global assessment) (Important) at 1 year minimum (Dichotomous)
	 Nutritional status (measured by change in BMI) (Important) at 1 year minimum (Continuous)
Study design	Systematic Review RCT
Unit of randomisation	Patient
Crossover study	Not permitted
Minimum duration of study	1 year
Allocation concealment	Adequate and unclear
Other exclusions	Renal replacement therapy
Sensitivity/other analysis	• Continous outcomes - final values preferred. Change scores and final values will be pooled if required.
	• Time to event outcomes will be reported as dichotomous if time to event data not available.

	 Stage of CKD at time of administration will be considered if reported. Different levels of protein restriction will be considered if reported. Progression of CKD measured by creatinine clearance will be considered if GFR not reported
Subgroup analyses if there is heterogeneity	 Older people aged 75 years and over (Aged 75 or over; Aged under 75; RCT: mixed); People aged 75 years and over may have greater risks associated with a low protein diet. People with diabetes (CKD and diabetes; CKD only); People with diabetes may have greater difficulty adhering to a diet which is low protein and also suitable for diabetes.
Search criteria	Databases: Medline, Embase, the Cochrane Library Language: restrict to English only Search from 2007 onwards

C.1.8 Self-management

Table 11: Review protocol: Self-management support systems

Review question	For people with CKD, what is the clinical and cost effectiveness of self- management support systems?
Guideline condition and its definition	Adults with chronic kidney disease.
Review population	Adults aged 18 or over with chronic kidney disease
	Adults aged 18 or over
	Line of therapy not an inclusion criterion
Interventions and comparators: generic/class; specific/drug (All interventions will be	Usual care Self management support system
compared with each other, unless otherwise stated)	
Outcomes	 Health related quality of life (Important) at At stated in paper (Continuous) Mortality (all-cause and cardiovascular) (Critical) at At stated in paper (Time to event; MID: Other)
	 Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Important) at At stated in paper (Time to event; MID: Other) Progression of CKD (change in eGFR) (Important) at At stated in paper (Continuous) Hospitalisation (Important) at At stated in paper (Time to event; MID: Other) Adherence to treatment at At stated in paper (Dichotomous) Outpatient attendance at At stated in paper (Dichotomous)

Review protocols

	For people with CKD, what is the clinical and cost effectiveness of self-
Review question	management support systems?
Study design	Systematic Review RCT Non randomised study
Unit of randomisation	Patient
Crossover study	Not permitted
Minimum duration of study	Not defined
Allocation concealment	Adequate and unclear
Other exclusions	Dialysis patients
Sensitivity/other analysis	Continuous outcomes - final values preferred. Change scores and final values will be pooled if required Time to event outcomes - will be reported as dichotomous if time to event data not available Stage of CKD at time of administration will be considered if reported Doses will be pooled for analysis. Time points will be pooled for analysis (<1 year, 1year – 18 months, 18 months – 3 years etc.)
Subgroup analyses if there is heterogeneity	 Older people aged 75 or over (Aged 75 or over; Aged under 75; Mixed); People over 75 are at greater risk of renal bone disease People with diabetes (People with diabetes; People without diabetes); People with diabetes are likely to respond differently to treatment People from BME gps (People from BME gps; People not from BME gps); Peoplefrom BME gps may respond differently to treatment
Search criteria	Databases: Date limits for search: Language: Databases: Medline, Embase, the Cochrane Library Language: restrict to English only Search from 2007 onwards

C.1.9 Blood pressure - combined renin-angiotensin-aldosterone system antagonists

Table 12: Review protocol: Renin-angiotensin-aldosterone system antagonists

Review question	For people with CKD, what is the clinical and cost effectiveness of renin- angiotensin-aldosterone antagonists in the management of CKD?
Guideline condition and its definition	Adults with chronic kidney disease.
Review population	Adults aged 18 or over with chronic kidney disease
	Adults aged 18 or over

Review question	For people with CKD, what is the clinical and cost effectiveness of renin-
Review question	angiotensin-aldosterone antagonists in the management of CKD?
	Line of therapy not an inclusion criterion
Interventions and	Placebo
comparators:	ACE inhibitors; Captopril
generic/class;	ACE inhibitors; Cilazapril
specific/drug	ACE inhibitors; Enalapril
	ACE inhibitors; Fosinopril
(All interventions will be	ACE inhibitors; Imidapril
compared with each	ACE inhibitors; Lisinopril
other, unless otherwise	ACE inhibitors; Perindopril
stated)	ACE inhibitors; Ramipril
	ACE inhibitors; Trandolapril
	Angiotensin-II receptor blockers; Azilsartan
	Angiotensin-II receptor blockers; Candesartan
	Angiotensin-II receptor blockers; Eprosartan
	Angiotensin-II receptor blockers; Irbesartan
	Angiotensin-II receptor blockers; Losartan
	Angiotensin-II receptor blockers; Olmesartan
	Angiotensin-II receptor blockers; Telmisartan
	Angiotensin-II receptor blockers; Valsartan
	Aldosterone antagonists; Spironolactone
	Aldosterone antagonists; Eplerenone
	Direct renin inhibitors; Aliskiren
	ACE inhibitors and Angiotensin-II receptor blockers; Captopril and Azilsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Captopril and Candesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Captopril and Eprosartan
	ACE inhibitors and Angiotensin-II receptor blockers; Captopril and Irbesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Captopril and Losartan
	ACE inhibitors and Angiotensin-II receptor blockers; Captopril and Olmesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Captopril and Telmisartan
	ACE inhibitors and Angiotensin-II receptor blockers; Captopril and Valsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Cilazapril and Azilsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Cilazapril and Candesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Cilazapril and Eprosartan
	ACE inhibitors and Angiotensin-II receptor blockers; Cilazapril and Irbesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Cilazapril and Losartan
	ACE inhibitors and Angiotensin-II receptor blockers; Cilazapril and Olmesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Cilazapril and Telmisartan
	ACE inhibitors and Angiotensin-II receptor blockers; Cilazapril and Valsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Enalapril and Azilsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Enalapril and Candesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Enalapril and Eprosartan
	ACE inhibitors and Angiotensin-II receptor blockers; Enalapril and Irbesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Enalapril and Losartan
	ACE inhibitors and Angiotensin-II receptor blockers; Enalapril and Olmesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Enalapril and Telmisartan
	ACE inhibitors and Angiotensin-II receptor blockers; Enalapril and Valsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Fosinopril and Azilsartan

	For people with CKD, what is the clinical and cost effectiveness of renin-
Review question	angiotensin-aldosterone antagonists in the management of CKD?
	ACE inhibitors and Angiotensin-II receptor blockers; Fosinopril and Candesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Fosinopril and Eprosartan
	ACE inhibitors and Angiotensin-II receptor blockers; Fosinopril and Irbesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Fosinopril and Losartan
	ACE inhibitors and Angiotensin-II receptor blockers; Fosinopril and Olmesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Fosinopril and Telmisartan
	ACE inhibitors and Angiotensin-II receptor blockers; Fosinopril and Valsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Imidapril and Azilsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Imidapril and Candesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Imidapril and Eprosartan
	ACE inhibitors and Angiotensin-II receptor blockers; Imadapril and Irbesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Imadapril and Losartan
	ACE inhibitors and Angiotensin-II receptor blockers; Imadapril and Olmesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Imadapil and Telmisartan
	ACE inhibitors and Angiotensin-II receptor blockers; Imadapril and Valsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Lisinopril and Azilsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Lisinopril and Candesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Lisinopril and Eprosartan
	ACE inhibitors and Angiotensin-II receptor blockers; Lisinopril and Irbesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Lisinopril and Losartan
	ACE inhibitors and Angiotensin-II receptor blockers; Lisinopril and Olmesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Lisinopril and Telmisartan
	ACE inhibitors and Angiotensin-II receptor blockers; Perindopril and Azilsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Perindopril and
	Candesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Perindopril and Eprosartan
	ACE inhibitors and Angiotensin-II receptor blockers; Perindopril and Irbesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Perindopril and Losartan
	ACE inhibitors and Angiotensin-II receptor blockers; Perindopril and Olmesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Perindopril and
	Telmisartan
	ACE inhibitors and Angiotensin-II receptor blockers; Ramipril and Azilsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Ramipril and Candesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Ramipril and Eprosartan
	ACE inhibitors and Angiotensin-II receptor blockers; Ramipril and Irbesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Ramipril and Losartan
	ACE inhibitors and Angiotensin-II receptor blockers; Ramipril and Olmesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Ramipril and Telmisartan
	ACE inhibitors and Angiotensin-II receptor blockers; Trandolapril and Azilsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Trandolapril and
	Candesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Trandolapril and
	Eprosartan
	ACE inhibitors and Angiotensin-II receptor blockers; Trandolapril and Irbesartan
	ACE inhibitors and Angiotensin-II receptor blockers; Trandolapril and Losartan
	ACE inhibitors and Angiotensin-II receptor blockers; Trandolapril and
	Olmesartan

Review question	For people with CKD, what is the clinical and cost effectiveness of renin- angiotensin-aldosterone antagonists in the management of CKD?
Neview question	ACE inhibitors and Angiotensin-II receptor blockers; Trandolapril and
	Telmisartan
	ACE inhibitors and Angiotensin-II receptor blockers; Trandolapril and Valsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Perindopril and Valsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Ramipril and Valsartan
	ACE inhibitors and Angiotensin-II receptor blockers; Lisinopril and Valsartan
	ACE inhibitors and Angiotensin-II receptor blockers; ACEI (mixed) and Azilsartan
	ACE inhibitors and Angiotensin-II receptor blockers; ACEI (mixed) and
	Candersartan
	ACE inhibitors and Angiotensin-II receptor blockers; ACEI (mixed) and
	Eprosartan
	ACE inhibitors and Angiotensin-II receptor blockers; ACEI (mixed) and
	Irbesartan
	ACE inhibitors and Angiotensin-II receptor blockers; ACEI (mixed) and Losartan
	ACE inhibitors and Angiotensin-II receptor blockers; ACEI (mixed) and
	Olmesartan
	ACE inhibitors and Angiotensin-II receptor blockers; ACEI (mixed) and
	Telmisartan ACE inhibitors and Angiotensin-II receptor blockers; ACEI (mixed) and Valsartan
	Aldosterone antagonist and ACE inhibitor; Spironolactone and ACE inhibitor
	Aldosterone antagonist and ACE inhibitor; Spironolactoric and ACE inhibitor
	Aldosterone antagonist and ARB; Spironolactone and ARB
	Aldosterone antagonist and ARB; Eplerenone and ARB
	Aldosterone antagonist and ACE inhibitor and ARB; Spironolactone and ACEI
	and ARB
	Aldosterone antagonist and ACE inhibitor and ARB; Eplerenone and ACEI and ARB
	Direct renin inhibitor and ACE inhibitor; Aliskiren and ACEI
	Direct renin inhibitor and ARB; Aliskiren and ARB Direct renin inhibitor and ACE inhibitor and ARB; Aliskiren and ACEI and ARB
	Placebo and standard therapy; Placebo and ACEI
	Placebo and standard therapy; Placebo and ARB
	Placebo and standard therapy; Placebo and ACEI and ARB
Outcomes	 Health related quality of life (Important) at 12 months minimum (Continuous)
	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum
	(Time to event; MID: Other)
	• Cardiovascular events (Critical) at 12 months minimum (Time to event; MID:
	Other)
	 Progression of CKD (measured by occurrence of end stage renal disease
	needing RRT) (Critical) at 12 months minimum (Time to event; MID: Other)
	• Progression of CKD (change in eGFR) (Critical) at 12 months minimum
	(Continuous)
	 Hospitalisation (Important) at 12 months minimum (Time to event; MID: Other)
	 Acute kidney injury (Critical) at 12 months minimum (Dichotomous)
	• Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12

Review question	For people with CKD, what is the clinical and cost effectiveness of renin- angiotensin-aldosterone antagonists in the management of CKD?
neview question	months minimum (Continuous)
Study design	Systematic Review RCT
Unit of randomisation	Patient
Crossover study	Not permitted
Minimum duration of study	12 months
Allocation concealment	Adequate and unclear
Other exclusions	Dialysis patients
Population stratification	CKD without diabetes CKD with diabetes
Reasons for stratification	Clinicians would manage an ACR between 3-30 mg/mmol differently in people with diabetes compared to those without - so different recommedations may be required for these populations.
Sensitivity/other analysis	Continuous outcomes - final values preferred. Change scores and final values will be pooled if required Time to event outcomes - will be reported as dichotomous if time to event data not available Stage of CKD at time of administration will be considered if reported Doses will be pooled for analysis. Time points will be pooled for analysis (<1 year, 1year – 18 months, 18 months – 3 years etc.) Mixed treatment comparisons by meta-analysis will be considered Measures of proteinuria will be combined using a table of equivalence
Subgroup analyses if there is heterogeneity	 Older people aged 75 or over (Aged 75 or over; Aged under 75; Mixed); People over 75 are at greater risk of cardiovascular disease and renal progression People with proteinuria (ACR <3mg/mmol; ACR 3-30 mg/mmol; ACR >30 mg/mmol); People with proteinuria are at increased risk of renal progression People with diabetes and proteinuria (People with diabetes and ACR <2.5mg/mmol; People with diabetes and ACR 2.5-3.0 mg/mmol; People with diabetes and ACR <2.5mg/mmol; People with diabetes and ACR 2.5-3.0 mg/mmol; People with diabetes and ACR >3.0mg/mmol); People with diabetes and proteinuria at increased risk of progression at lower levels than general population People with hypertension (Blood pressure <140/90mmHg; Blood pressure >140/90mmHg); People with hypertension are at greater risk of cardiovascular disease; People with cardiovascular disease); People with cardiovascular disease are at greater risk of cardiovascular events and renal progression

Review protocols

Review question	For people with CKD, what is the clinical and cost effectiveness of renin- angiotensin-aldosterone antagonists in the management of CKD?
	- Black and minority ethnic groups (BME; Not BME); People from BME groups may be at greater risk of cardiovascular disease and renal progression
Search criteria	Databases: Medline, Embase, the Cochrane Library Language: restrict to English only Search from 2007 onwards

C.1.10 Oral antiplatelets and anticoagulants

Table 13: Review protocol: anticoagulants and oral antiplatelets

Review question	For people with CKD, what is the clinical and cost effectiveness of oral antiplatelet and anticoagulant therapy in reducing cardiovascular disease?
Guideline condition and its definition	Adults with chronic kidney disease. Definition:
Review population	Adults aged 18 or over with chronic kidney disease
	Adults aged 18 or over
	Line of therapy not an inclusion criterion
Interventions and comparators: generic/class; specific/drug	Placebo Antiplatelet agents; Aspirin Antiplatelet agents; Ticagrelor Antiplatelet agents; Clopidogrel Antiplatelet agents; Prasugrel
(All interventions will be compared with each other, unless otherwise stated)	Antiplatelet agents; Ticagrelor and aspirin Antiplatelet agents; Clopidogrel and aspirin Oral anticoagulants; Dabigatran Oral anticoagulants; Apixaban Oral anticoagulants; Rivaroxaban Oral anticoagulants; Warfarin
Outcomes	 Health related quality of life (Important) at 6 months minimum (Continuous) Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum (Time to event; MID: Other) Cardiovascular or cerebrovascular events (Critical) at 6 months minimum (Time to event; MID: Other) Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Important) at 6 months minimum (Time to event; MID: Other) Progression of CKD (change in eGFR) (Important) at 6 months minimum (Continuous) Hospitalisation (Important) at 6 months minimum (Time to event; MID: Other) Major bleeding (as reported by studies) (Critical) at 6 months minimum (Time to event; MID: Other) Minor bleeding (as reported by the studies) (Important) at Define (Dichotomous)

Review protocols

Deview exection	For people with CKD, what is the clinical and cost effectiveness of oral
Review question	antiplatelet and anticoagulant therapy in reducing cardiovascular disease?
Study design	Systematic Review
	RCT
Unit of randomisation	Patient
Crossover study	Not permitted
Minimum duration of study	6 months
Allocation concealment	Adequate and unclear
Other exclusions	Dialysis patients
Sensitivity/other analysis	Continuous outcomes - final values preferred. Change scores and final values will be pooled if required Time to event outcomes - will be reported as dichotomous if time to event data
	not available Stage of CKD at time of administration will be considered if reported Doses will be pooled for analysis.
	Time points will be pooled for analysis (<1 year, 1year – 18 months, 18 months – 3 years etc.)
Subgroup analyses if there is heterogeneity	 Older people aged 75 or over (Aged 75 or over; Aged under 75; Mixed); People over 75 are at greater risk of renal bone disease
	- People with cardiovascular disease (People without cardiovascular disease;
	People with cardiovascular disease); People with atrial fibrillation are at greater risk of cardiovascular and cerebrovascular events
Search criteria	Databases: Medline, Embase, the Cochrane Library
	Language: restrict to English only
	Search from 2007 onwards

C.1.11 Asymptomatic hyperuricaemia

Table 14: Review protocol: Asymptomatic hyperuricaemia

Review question	For people with CKD and asymptomatic hyperuricaemia, what is the clinical and cost effectiveness of uric acid lowering with allopurinol or febuxostat in the management of CKD?
Guideline condition and its definition	Adults aged 18 or over. Definition:
Review population	Adults aged 18 and over with chronic kidney disease and asymptomaic hyperuricaemia
	Adults aged 18 and over
	Line of therapy not an inclusion criterion
Interventions and comparators:	Uric acid lowering therapies; Allopurinol Uric acid lowering therapies; Febuxostat

National Clinical Guideline Centre 2014

Review protocols

Review question	For people with CKD and asymptomatic hyperuricaemia, what is the clinical and cost effectiveness of uric acid lowering with allopurinol or febuxostat in the management of CKD?
generic/class; specific/drug	
(All interventions will be compared with each other, unless otherwise stated)	
Outcomes	 Quality of life at 3 months (Continuous) Hospitalisation at 3 months (Time to event; MID: Other) Cardiovascular events at 3 months (Dichotomous) Reduction in antihypertensive agents at 3 months (Dichotomous) Renal progression - eGFR (final values) at 3 months (Dichotomous) Renal progression - end stage renal disease needing RRT at 3 months (Dichotomous) All-cause mortality at 3 months (Time to event; MID: Other) Serious adverse events at 3 months (Dichotomous) Cardiovascular mortality at 3 months (Time to event; MID: Other)
Study design	Systematic Review RCT
Unit of randomisation	Patient
Crossover study	Not permitted
Minimum duration of study	Not defined
Other inclusions	Define
Subgroup analyses if there is heterogeneity	- Aged 75 or older or under 75 (Aged 75 or over; Aged under 75; Systematic review (mixed)); People aged over 75 may respond differently to the intervention
Search criteria	Databases: Medline, Embase, the Cochrane Library Language: restrict to English only Search from 2007 onwards

C.1.12 Vitamin D supplements in the management of CKD-mineral and bone disorders

Table 15: Review protocol: Vitamin D supplementation for the management of renal bone disease?

Review question	For people with GFR 15-60 ml/min/1.73 m ² , what is the clinical and cost- effectiveness of vitamin D supplementation for the management of renal bone disease?
Guideline condition and its definition	Adults with chronic kidney disease. Definition:
Review population	Adults aged 18 or over with chronic kidney disease and GFR 15-60

	For people with GFR 15-60 ml/min/1.73 m ² , what is the clinical and cost-
	effectiveness of vitamin D supplementation for the management of renal
Review question	bone disease?
	Adults aged 18 or over
	Line of therapy not an inclusion criterion
Interventions and comparators: generic/class; specific/drug (All interventions will be	Vitamin D; Ergocalciferol (Vitamin D2) Vitamin D; Alfacalcidol (1 alpha hydroxycholecalciferol) Vitamin D; Calcitriol (1,25 dihidroxycholecalciferol) Vitamin D; Cholecalciferol (Vitamin D3) Vitamin D; Dihydrotachysterol Vitamin D; Paracalcitrol
compared with each other, unless otherwise stated)	Vitamin D; Doexercalciferol Placebo
Outcomes	 Health related quality of life (Important) at 6 months minimum (Continuous) Mortality (all cause) (Critical) at 6 months minimum (Time to event; MID: Other) Cardiovascular events (Critical) at 6 months minimum (Time to event; MID: Other) Fracture (Critical) at 6 months minimum (Time to event; MID: Other) Progression of CKD (change in eGFR) (Critical) at 6 months minimum (Continuous) Hypercalcaemia (serum calcium >2.5 mmol/litre) (Critical) at 6 months minimum (Dichotomous) Hospitalisation (Important) at 6 months minimum (Time to event; MID: Other) Mortality (cardiovascular) (Critical) at 6 months minimum (Time to event; MID: Other) Progression of CKD (creatinine clearance) at Define (Continuous)
Study design	Systematic Review RCT
Unit of randomisation	Patient
Crossover study	Not permitted
Minimum duration of study	6 months
Other inclusions	GFR 15-60ml/minml/min/1.73 m2
Allocation concealment	Adequate and unclear
Other exclusions	Dialysis patients
Sensitivity/other analysis	Continuous outcomes - final values preferred. Change scores and final values will be pooled if required Time to event outcomes - will be reported as dichotomous if time to event data not available Stage of CKD at time of administration will be considered if reported
Subgroup analyses if there is heterogeneity	 Older people aged 75 or over (Aged 75 or over; Aged under 75; Mixed); People over 75 are at greater risk of renal bone disease Black and minority ethnic groups (RCT mixed population; BME; Not BME);

Review protocols

Review question	For people with GFR 15-60 ml/min/1.73 m ² , what is the clinical and cost- effectiveness of vitamin D supplementation for the management of renal bone disease?
	BME groups are at increased risk - People with secondary hyperparathyroidism (CKD and secondary hyperparathyroidism; CKD only; Secondary hyperparathyroidism (cause not stated)); People with secondary hyperparathyroidism as well as CKD may respond differently
Search criteria	Databases: Medline, Embase, the Cochrane Library Language: restrict to English only Search from 2007 onwards

C.1.13 Oral bicarbonate supplements in the management of people with CKD and metabolic acidosis

	What is the clinical and cost effectiveness of oral bicarbonate supplements in
Review question	the management of CKD?
Guideline condition and its definition	Adults with chronic kidney disease. Definition:
Review population	Adults aged 18 or over with chronic kidney disease
	Adults aged 18 or over
	Line of therapy not an inclusion criterion
Interventions and comparators: generic/class; specific/drug (All interventions will be compared with each other, unless otherwise stated)	Placebo Oral bicarbonate supplements; Sodium bicarbonate Usual care
Outcomes	 Health related quality of life (Important) at 6 months minimum (Continuous) Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum (Time to event; MID: Other) Cardiovascular events (including chronic heart failure) (Critical) at 6 months minimum (Time to event; MID: Other) Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 6 months minimum (Time to event; MID: Other) Progression of CKD (change in eGFR) (Critical) at 6 months minimum (Continuous) Hypertension (measured by use of antihypertensives) (Critical) at 6 months minimum (Dichotomous) Hospitalisation (Important) at 6 months minimum (Time to event; MID: Other)

 Table 16:
 Review protocol: Oral bicarbonate supplements for the management of CKD

Review protocols

	What is the clinical and cost effectiveness of oral bicarbonate supplements in
Review question	the management of CKD?
	 Alkalosis (Critical) at 6 months minimum (Dichotomous) Nutrition (measured by subjective global assessment) (Critical) at 6 months minimum (Continuous)
	 Nutrition (measured by change in BMI) (Critical) at 6 months minimum (Continuous)
Study design	Systematic Review RCT
Unit of randomisation	Patient
Crossover study	Not permitted
Minimum duration of study	6 months
Allocation concealment	Adequate and unclear
Other exclusions	Dialysis patients
Sensitivity/other analysis	Continuous outcomes - final values preferred. Change scores and final values will be pooled if required Time to event outcomes - will be reported as dichotomous if time to event data not available Stage of CKD at time of administration will be considered if reported Usual care will be considered as a comparator if no placebo controlled RCTs are identified. Doses will be pooled for analysis. Time points will be pooled for analysis (<1 year, 1year – 18 months, 18 months – 2 years etc.)
Subgroup analyses if there is heterogeneity	 Older people aged 75 or over (Aged 75 or over; Aged under 75; Mixed); People over 75 are at greater risk of renal bone disease
Search criteria	Databases: Medline, Embase, the Cochrane Library Language: restrict to English only No date restrictions

C.2 Economic review protocol for the 2014 guideline

Table 17: Economic review protocol for the 2014 guideline

Review question	All questions – health economic evidence
Objectives	To identify economic studies relevant to the review questions set out above.
Criteria	Populations, interventions and comparators as specified in the individual review protocols above. Must be a relevant economic study design (cost-utility analysis, cost-benefit analysis, cost-effectiveness analysis, cost-consequence analysis, comparative cost analysis).
Search strategy	An economic study search was undertaken using population specific terms and an economic study filter – see Appendix F.

ReviewEach study is assessed using the NICE economic evaluation checklist – NICE (2009) GuidelinesstrategyManual.

Inclusion/exclusion criteria

- If a study is rated as both 'Directly applicable' and 'Minor limitations' (using the NICE economic evaluation checklist) then it should be included in the guideline. An evidence table should be completed and it should be included in the economic profile.
- If a study is rated as either 'Not applicable' or 'Very serious limitations' then it should be excluded from the guideline. It should not be included in the economic profile and there is no need to include an evidence table.
- If a study is rated as 'Partially applicable' and/or 'Potentially serious limitations' then there is discretion over whether it should be included. The health economist should make a decision based on the relative applicability and quality of the available evidence for that question, in discussion with the GDG if required. The ultimate aim being to include studies that are helpful for decision making in the context of the guideline and current NHS setting. Where exclusions occur on this basis, this should be noted in the relevant section of the guideline with references.

Also exclude:

- unpublished reports unless submitted as part of a call for evidence
- abstract-only studies
- letters
- editorials
- reviews of economic evaluations(a)
- foreign language articles

Where there is discretion

The health economist should be guided by the following hierarchies.

- Setting:
- UK NHS
- OECD countries with predominantly public health insurance systems (e.g. France, Germany, Sweden)
- OECD countries with predominantly private health insurance systems (e.g. USA, Switzerland)
- Non-OECD settings (always 'Not applicable')

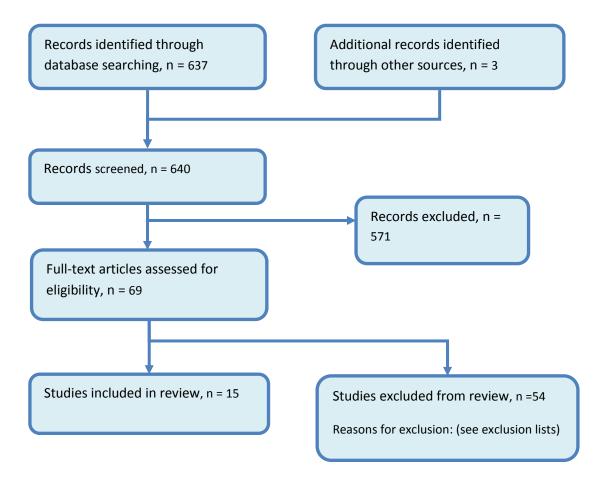
Economic study type:

- Cost-utility analysis
- Other type of full economic evaluation (cost-benefit analysis, cost-effectiveness analysis, cost-consequence analysis)
- Comparative cost analysis
- Non-comparative cost analyses including cost of illness studies (always 'Not applicable') Year of analysis:
- The more recent the study, the more applicable it is

Quality and relevance of effectiveness data used in the economic analysis:

• The more closely the effectiveness data used in the economic analysis matches with the studies included for the clinical review the more useful the analysis will be to decision

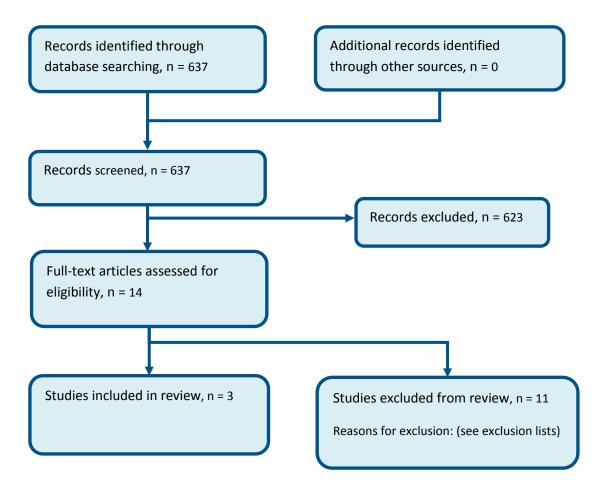
Clinical article selection (2014)


making for the guideline.

(a) Recent reviews will be ordered although not reviewed. The bibliographies will be checked for relevant studies, which will then be ordered.

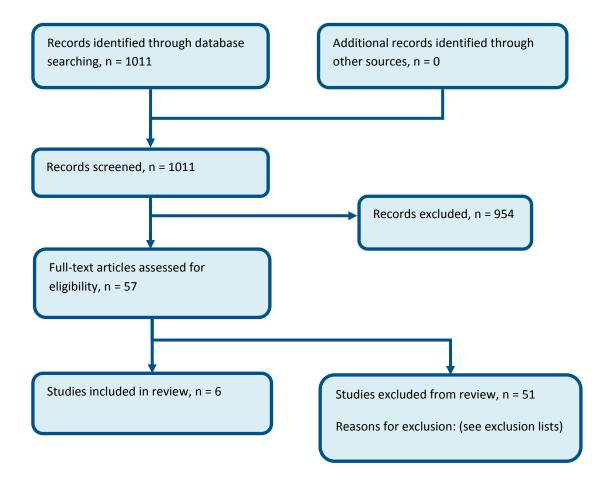
Appendix D: Clinical article selection (2014)

D.1 Measuring kidney function


Figure 1: Flow diagram of article selection for measurement of kidney function review

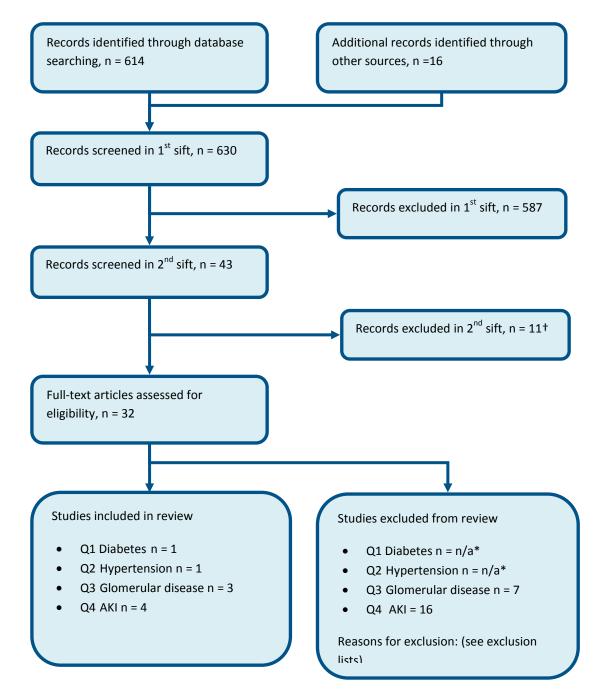
Clinical article selection (2014)

D.2 Markers of kidney damage



Clinical article selection (2014)

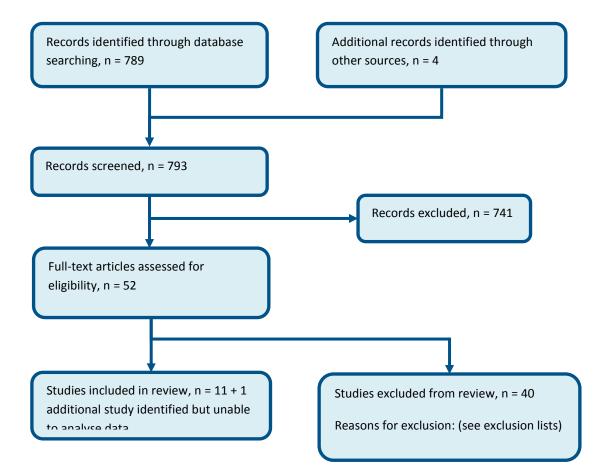
D.3 Classification of CKD


Figure 3: Flow diagram of article selection for classification of CKD review

Clinical article selection (2014)

D.4 Cause of CKD – risk factors for adverse outcomes

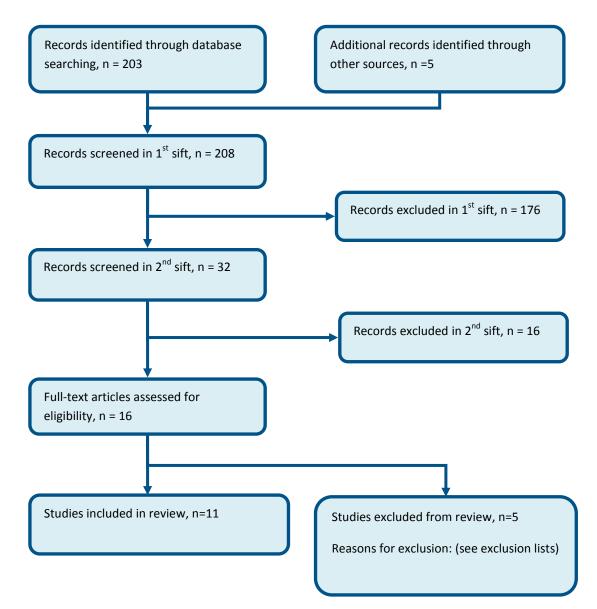



†AKI papers to be considered in 'risk of AKI review'

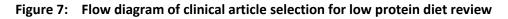
* IPD meta-analyses identified by previous review, directly relevant to this question, therefore new search not undertaken.

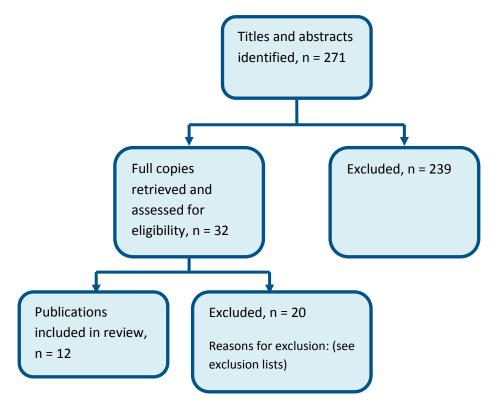
Clinical article selection (2014)

D.5 Frequency of monitoring



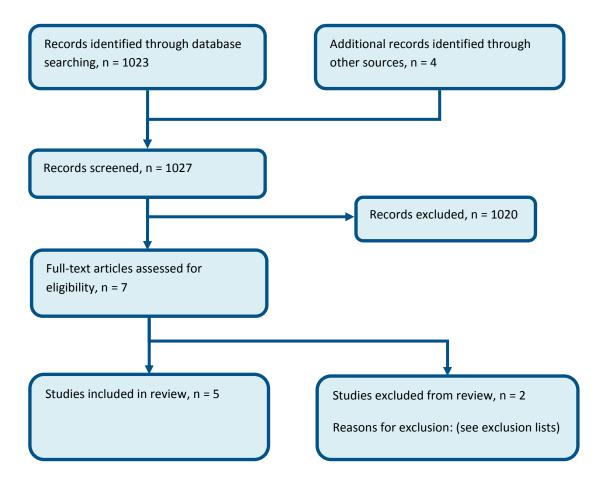
Clinical article selection (2014)


D.6 Progression of/to CKD after acute kidney injury

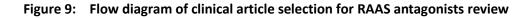


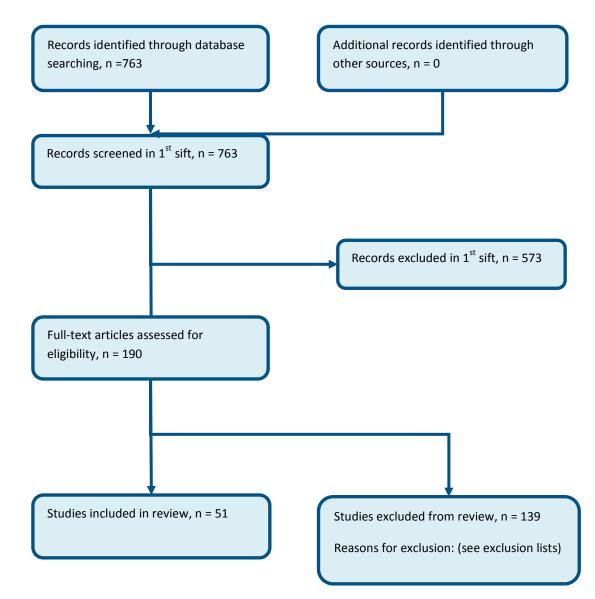
Clinical article selection (2014)

D.7 Low protein diet



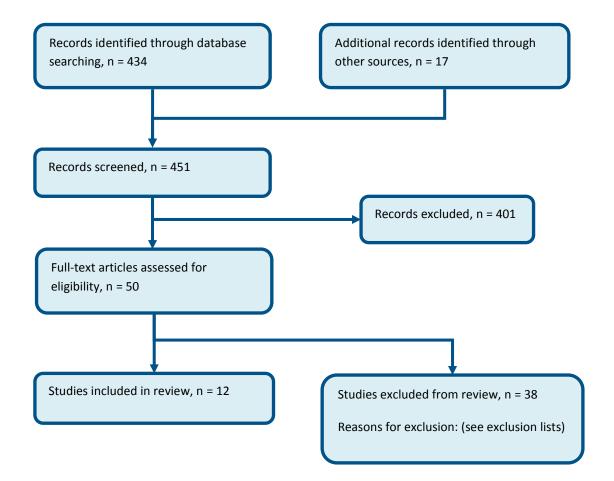
Clinical article selection (2014)


D.8 Self-management



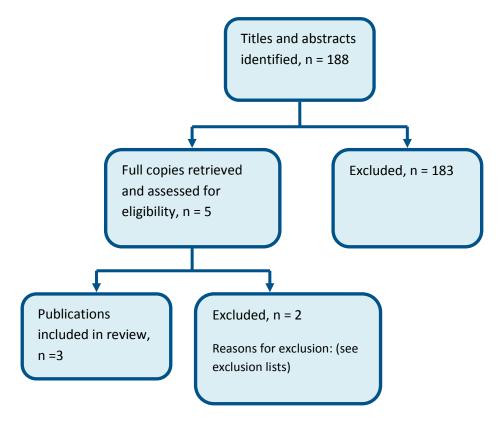
Clinical article selection (2014)

D.9 Blood pressure – combined renin-angiotensin-aldosterone system antagonists



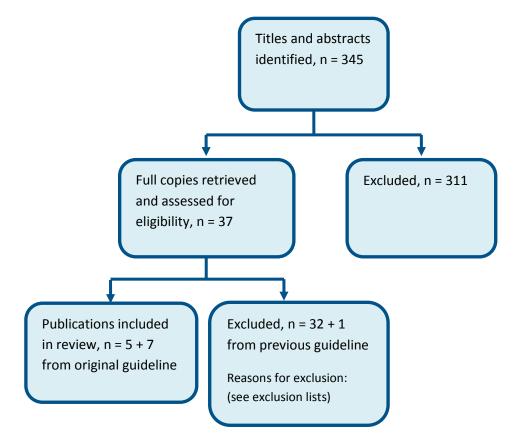
Clinical article selection (2014)

D.10 Oral antiplatelets and anticoagulants


Figure 10: Flow diagram of article selection for anticoagulants and antiplatelets review

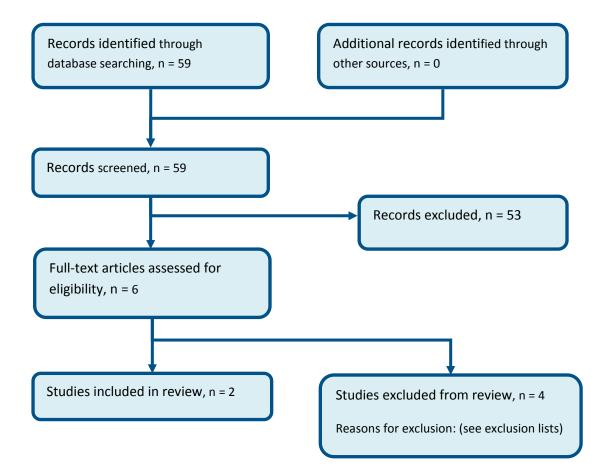
Clinical article selection (2014)

D.11 Asymptomatic hyperuricaemia


Figure 11: Flow diagram of clinical article selection for asymptomatic hyperuricaemia review

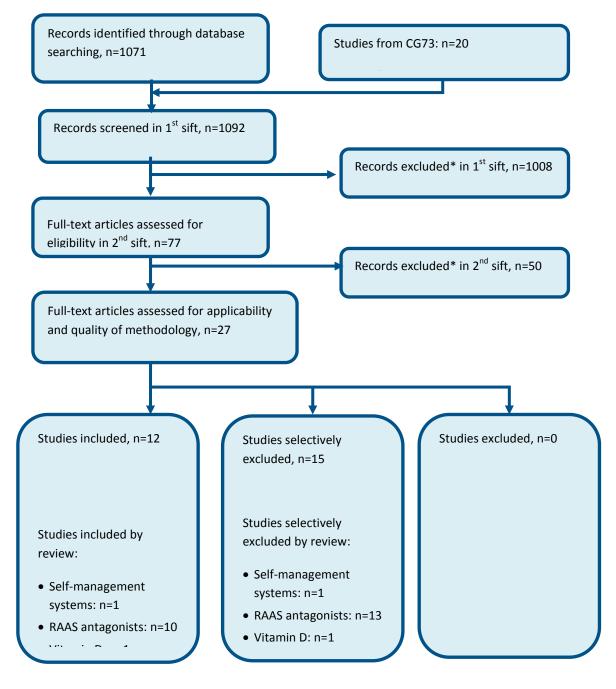
Clinical article selection (2014)

D.12 Vitamin D supplements in the management of CKD-mineral and bone disorders


Figure 12: Flow diagram of clinical article selection for vitamin D supplements

Clinical article selection (2014)

D.13 Oral bicarbonate supplements in the management of people with CKD and metabolic acidosis



Economic article selection

Appendix E: Economic article selection

Figure 14: Flow diagram of economic article selection for guideline

* Non-relevant population, intervention, comparison, design or setting; non-English language

Appendix F: Literature search strategies

Contents

Introduction	Search methodology
Section F.1	Standard population search strategy
	This population was used for all search questions unless stated
Section F.2	Study filter terms
F.2.1	Systematic reviews (SR)
F.2.2	Randomised controlled trials (RCT)
F.2.3	Observational studies
F.2.4	Exclusions
F.2.5	Health economic studies
F.2.6	Quality of life studies
Section F.3	Searches for specific questions with intervention (and population where different from F.1)
F.3.1	Measures and markers
F.3.2	Classification
F.3.3	Cause – AKI
F.3.4	Cause – glomerular disease
F.3.5	Cause – diabetes and hypertension
F.3.7	Frequency of monitoring
F.3.8	Self management support systems
F.3.9	RAAS
F.3.10	Antiplatelet and anticoagulant therapy
F.3.11	Asymptomatic hyperuricaemia
F.3.12	Vitamin D
F.3.13	Bicarbonate supplements
Section F.4	Economic searches
F.4.1	Economic reviews
F.4.2	Quality of life reviews

Search strategies used for the chronic kidney disease guideline are outlined below and were run in accordance with the methodology in the NICE Guidelines Manual 2012.⁴⁸¹ All searches were run up to 25 November 2013 unless otherwise stated. Any studies added to the databases after this date were not included unless specifically stated in the text. Where possible searches were limited to retrieve material published in English.

Searches for the **clinical reviews** were run in Medline (OVID), Embase (OVID) and the Cochrane Library (Wiley). Usually, searches were constructed in the following way:

Literature search strategies

• A PICO format was used for **intervention** searches where population (P) terms were combined with Intervention (I) and sometimes comparison (C) terms. An intervention can be a drug, a procedure or a diagnostic test. Outcomes (O) are rarely used in search strategies for interventions. Search filters were also added to the search where appropriate.

• A PEO format was used for **prognosis** searches where population (P) terms were combined with exposure (E) terms and sometimes outcomes (O). Search filters were added to the search where appropriate.

Searches for the **health economic reviews** were run in Medline (Ovid), Embase (Ovid), the NHS Economic Evaluations Database (NHS EED via CRD), the Health Technology Assessment (HTA via CRD) database and the Health Economic Evaluation Database (HEED). Searches in CRD and HEED were constructed only using population terms. For Medline and Embase an economic filter (instead of a study type filter) was added to the same clinical search strategy.

F.1 Population search strategies

Medline search terms

1	renal insufficiency, chronic/
2	exp kidney failure, chronic/
3	kidney diseases/ and chronic.ti,ab.
4	((chronic or progressive) adj2 (renal or kidney)).ti,ab.
5	(chronic adj (kidney or renal) adj insufficienc*).ti,ab.
6	CKD.ti,ab.
7	diabetic nephropathies/
8	exp glomerulonephritis/
9	exp proteinuria/
10	acidosis, renal tubular/
11	exp hypertension, renal/
12	(diabetic adj (kidney or renal) adj (disease* or failure)).ti,ab.
13	((renal or renovascular) adj2 hypertensi*).ti,ab.
14	(glomerulosclerosis or glomerulonephritis or nephropath* or proteinuria* or albuminuria or microalbuminuria).ti,ab.
15	(glomerular adj (sclerosis or nephritis)).ti,ab.
16	((renal or distal or proximal or tubul*) adj2 acidos*).ti,ab.
17	hyperuricemia/ or hyperuric?emi*.ti,ab.
18	exp hyperparathyroidism, secondary/
19	(renal adj2 (osteo* or hyperparathyroidism)).ti,ab.
20	or/1-19
21	ureteral obstruction/
22	exp urethral obstruction/
23	((uropath* or ureter* or urethra*) adj obstruct*).ti,ab.

Literature search strategies

24	(renal of kidney or chronic).ti,ab.
25	(21 or 22 or 23) and 24
26	20 or 25
27	(transplant* or donor* or graft* or allograft*).ti.
28	pregnan*.ti.
29	*renal dialysis/ not (predialysis or pre dialysis or ("not" adj4 dialysis)).ti.
30	26 not (27 or 28 or 29)

Embase search terms

29 30	 *hemodialysis/ not (predialysis or pre dialysis or ("not" adj4 dialysis)).ti. 26 not (27 or 28 or 29)
28	pregnan*.ti.
27	(transplant* or donor* or graft* or allograft*).ti.
26	20 or 25
25	(21 or 26 or 23) and 24
24	(renal or chronic or kidney).ti,ab.
23	((uropath* or ureter* or urethra*) adj obstruct*).ti,ab.
22	exp urinary tract obstruction/
21	obstructive uropathy/
20	or/1-19
19	(renal adj2 (osteo* or hyperparathyroidism)).ti,ab.
18	secondary hyperparathyroidism/ or renal osteodystrophy/
17	hyperuricemia/ or hyperuric?emi*.ti,ab.
16	((renal or distal or proximal or tubul*) adj2 acidos*).ti,ab.
15	(glomerular adj (sclerosis or nephritis)).ti,ab.
14	(glomerulosclerosis or glomerulonephritis or nephropath* or proteinuria* or albuminuria or microalbuminuria).ti,ab.
13	((renal or renovascular) adj2 hypertensi*).ti,ab.
12	(diabetic adj (kidney or renal) adj (disease* or failure)).ti,ab.
11	renovascular hypertension/
10	kidney tubule acidosis/
9	exp proteinuria/
8	exp glomerulonephritis/
7	diabetic nephropathy/
6	CKD.ti,ab.
5	(chronic adj (kidney or renal) adj insufficienc*).ti,ab.
4	((chronic or progressive) adj2 (renal or kidney)).ti,ab.
3	(kidney failure/ or kidney disease/) and chronic.ti,ab.
2	chronic kidney failure/
1	chronic kidney disease/

splant* or donor* or graft* or allograft* or pregnan*):ti I descriptor Renal Dialysis, this term only ialysis or "pre dialysis" or ("not" NEAR/4 dialysis)):ti AND NOT #33)
I descriptor Renal Dialysis, this term only
plant* or donor* or graft* or allograft* or pregnan*):ti
DR #29)
AND #28)
l of kidney* or chronic):ti,ab
DR #25 OR #26)
path* or ureter* or urethra*) NEXT obstruct*):ti,ab
l descriptor Urethral Obstruction explode all trees
I descriptor Ureteral Obstruction, this term only
R #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #17 OR #18 OR #19 20 OR #21 OR #22)
NEAR/2 (osteo* or hyperparathyroidism)):ti,ab
l descriptor Hyperparathyroidism, Secondary explode all trees
l descriptor Hyperuricemia, this term only
ruricaemi* or hyperuricemi*):ti,ab
al or distal or proximal or tubul*) NEAR/2 acidosis):ti,ab
erular NEXT (sclerosis or nephritis)):ti,ab
erulosclerosis or glomerulonephritis or nephropath* or proteinuria* or albuminuria or albuminuria or albuminuria):ti,ab
al or renovascular) NEAR/2 hypertensi*):ti,ab
etic NEXT (kidney or renal) NEXT (disease* or failure)):ti,ab
l descriptor Hypertension, Renal explode all trees
l descriptor Acidosis, Renal Tubular, this term only
l descriptor Proteinuria explode all trees
l descriptor Glomerulonephritis explode all trees
l descriptor Diabetic Nephropathies, this term only
i,ab
nic NEXT (kidney or renal) NEXT insufficienc*):ti,ab
onic or progressive) NEAR/2 (renal or kidney)):ti,ab
R #2 OR (#3 AND #4))
ic:ti,ab
l descriptor Kidney Diseases explode all trees
l descriptor Kidney Failure, Chronic explode all trees

Literature search strategies

F.2 Study filter search terms

F.2.1 Systematic review (SR) search terms

Medline search terms

meta-analysis/
meta-analysis as topic/
(meta analy* or metanaly* or metaanaly* or meta regression).ti,ab.
((systematic* or evidence*) adj2 (review* or overview*)).ti,ab.
(reference list* or bibliograph* or hand search* or manual search* or relevant journals).ab.
(search strategy or search criteria or systematic search or study selection or data extraction).ab.
(search* adj4 literature).ab.
(medline or pubmed or cochrane or embase or psychlit or psyclit or psychinfo or psycinfo or cinahl or science citation index or bids or cancerlit).ab.
cochrane.jw.
((multiple treatment* or indirect or mixed) adj2 comparison*).ti,ab.
or/1-10

Embase search terms

1	systematic review/
2	meta-analysis/
3	(meta analy* or metanaly* or metaanaly* or meta regression).ti,ab.
4	((systematic or evidence) adj2 (review* or overview*)).ti,ab.
5	(reference list* or bibliograph* or hand search* or manual search* or relevant journals).ab.
6	(search strategy or search criteria or systematic search or study selection or data extraction).ab.
7	(search* adj4 literature).ab.
8	(medline or pubmed or cochrane or embase or psychlit or psyclit or psychinfo or psycinfo or cinahl or science citation index or bids or cancerlit).ab.
9	cochrane.jw.
10	((multiple treatment* or indirect or mixed) adj2 comparison*).ti,ab.
11	or/1-10

F.2.2 Randomised controlled studies (RCT) search terms Medline search terms

1	randomized controlled trial.pt.
2	controlled clinical trial.pt.
3	randomi#ed.ab.
4	placebo.ab.

Literature search strategies

5	randomly.ab.
6	clinical trials as topic.sh.
7	trial.ti.
8	or/1-7

Embase search terms

1	random*.ti,ab.
2	factorial*.ti,ab.
3	(crossover* or cross over*).ti,ab.
4	((doubl* or singl*) adj blind*).ti,ab.
5	(assign* or allocat* or volunteer* or placebo*).ti,ab.
6	crossover procedure/
7	single blind procedure/
8	randomized controlled trial/
9	double blind procedure/
10	or/1-9

F.2.3 Observational studies search terms Medline search terms

1	exp cohort studies/
2	cross-sectional studies/
3	((prospective or cross sectional or follow up or longitudinal or comparative) and (study or studies or review or analys*)).ti,ab.
4	comparative study.pt.
5	(cohort* or participant*).ti,ab.
6	or/1-5

Embase search terms

1	comparative study/
2	longitudinal study/
3	prospective study/
4	cross-sectional study/
5	cohort analysis/
6	((prospective or cross sectional or follow up or longitudinal or comparative) and (study or studies or review or analys*)).ti,ab.
7	(cohort* or participant*).ti,ab.
8	or/1-7

F.2.4 Exclusions search terms

These terms were combined with searches using the NOT Boolean operator, in order to exclude unwanted study types such as animal studies.

Medline search terms

1	letter/
2	editorial/
3	news/
4	exp historical article/
5	anecdotes as topic/
6	comment/
7	case report/
8	(letter or comment*).ti.
9	or/1-8
10	9 not (randomized controlled trial/ or random*.ti,ab.)
11	animals/ not humans/
12	exp animals, laboratory/
13	exp animal experimentation/
14	exp models, animal/
15	exp rodentia/
16	(rat or rats or mouse or mice).ti.
17	or/10-16

Embase search terms

1	letter.pt. or letter/
2	note.pt.
3	editorial.pt.
4	case report/ or case study/
5	(letter or comment*).ti.
6	or/1-5
7	6 not (randomized controlled trial/ or random*.ti,ab.)
8	animal/ not human/
9	nonhuman/
10	exp animal experiment/
11	exp experimental animal/
12	animal model/
13	exp rodent/
14	(rat or rats or mouse or mice).ti.
15	or/7-14

F.2.5 Health economic search terms Medline search terms

1

economics/

Literature search strategies

2	value of life/
3	exp "costs and cost analysis"/
4	exp economics, hospital/
5	exp economics, medical/
6	economics, nursing/
7	economics, pharmaceutical/
8	exp "fees and charges"/
9	exp budgets/
10	budget*.ti,ab.
11	cost*.ti.
12	(economic* or pharmaco?economic*).ti.
13	(price* or pricing*).ti,ab.
14	(cost* adj2 (effectiv* or utilit* or benefit* or minimi* or unit* or estimat* or variable*)).ab.
15	(financ* or fee or fees).ti,ab.
16	(value adj2 (money or monetary)).ti,ab.
17	or/1-16

Embase search terms

1	health economics/
2	exp economic evaluation/
3	exp health care cost/
4	exp fee/
5	budget/
6	funding/
7	budget*.ti,ab.
8	cost*.ti.
9	(economic* or pharmaco?economic*).ti.
10	(price* or pricing*).ti,ab.
11	(cost* adj2 (effectiv* or utilit* or benefit* or minimi* or unit* or estimat* or variable*)).ab.
12	(financ* or fee or fees).ti,ab.
13	(value adj2 (money or monetary)).ti,ab.
14	or/1-13

F.2.6 Quality of life search terms Medline search terms

1	quality-adjusted life years/
2	sickness impact profile/
3	(quality adj2 (wellbeing or well being)).ti,ab.
4	sickness impact profile.ti,ab.
5	disability adjusted life.ti,ab.

Literature search strategies

6	(qal* or qtime* or qwb* or daly*).ti,ab.
7	(euroqol* or eq5d* or eq 5*).ti,ab.
8	(qol* or hql* or hqol* or h qol* or hrqol* or hr qol*).ti,ab.
9	(health utility* or utility score* or disutilit* or utility value*).ti,ab.
10	(hui or hui1 or hui2 or hui3).ti,ab.
11	(health* year* equivalent* or hye or hyes).ti,ab.
12	discrete choice*.ti,ab.
13	rosser.ti,ab.
14	(willingness to pay or time tradeoff or time trade off or tto or standard gamble*).ti,ab.
15	(sf36* or sf 36* or short form 36* or shortform 36* or shortform36*).ti,ab.
16	(sf20 or sf 20 or short form 20 or shortform 20 or shortform20).ti,ab.
17	(sf12* or sf 12* or short form 12* or shortform 12* or shortform12*).ti,ab.
18	(sf8* or sf 8* or short form 8* or shortform 8* or shortform8*).ti,ab.
19	(sf6* or sf 6* or short form 6* or shortform 6* or shortform6*).ti,ab.
20	or/1-19

Embase search terms

1	quality adjusted life year/
2	"quality of life index"/
3	short form 12/ or short form 20/ or short form 36/ or short form 8/
4	sickness impact profile/
5	(quality adj2 (wellbeing or well being)).ti,ab.
6	sickness impact profile.ti,ab.
7	disability adjusted life.ti,ab.
8	(qal* or qtime* or qwb* or daly*).ti,ab.
9	(euroqol* or eq5d* or eq 5*).ti,ab.
10	(qol* or hql* or hqol* or h qol* or hrqol* or hr qol*).ti,ab.
11	(health utility* or utility score* or disutilit* or utility value*).ti,ab.
12	(hui or hui1 or hui2 or hui3).ti,ab.
13	(health* year* equivalent* or hye or hyes).ti,ab.
14	discrete choice*.ti,ab.
15	rosser.ti,ab.
16	(willingness to pay or time tradeoff or time trade off or tto or standard gamble*).ti,ab.
17	(sf36* or sf 36* or short form 36* or shortform 36* or shortform36*).ti,ab.
18	(sf20 or sf 20 or short form 20 or shortform 20 or shortform20).ti,ab.
19	(sf12* or sf 12* or short form 12* or shortform 12* or shortform12*).ti,ab.
20	(sf8* or sf 8* or short form 8* or shortform 8* or shortform8*).ti,ab.
21	(sf6* or sf 6* or short form 6* or shortform 6* or shortform6*).ti,ab.
22	or/1-21

Literature search strategies

F.3 Searches by specific questions

F.3.1 Measures and markers

Searches for the following two questions were run as one search:

What is the accuracy of equations to estimate GFR as a measurement of kidney function?

What is the best combination of measures of kidney function and markers of kidney damage to identify people with CKD who are at increased risk of progression?

Search constructed by combining the columns in the following table using the AND Boolean operator

Population	Intervention / exposure	Comparison	Study filter used	Date parameters
Kidneys Population terms in section F.1 not used. See below for all search terms:	Measures and markers		SR, Observational NOT Exclusions (Medline and Embase only)	Search run from 2007 up to 25 November 2013.

Medline search terms

1	exp kidney diseases/ or exp kidney function tests/ or exp kidney/
2	(kidney* or renal or ckd).ti,ab.
3	1 or 2
4	(transplant* or graft* or allograft* or pregnan*).ti.
5	((child* or adolescen* or school* or infant* or teen* or paediatric* or pediatric* or youth*) not adult*).ti.
6	3 not (4 or 5)
7	glomerular filtration rate/
8	glomerul* filtration rate.ti,ab.
9	(eGFR* or GFR*).ti,ab.
10	or/7-9
11	6 and 10
12	(formula* or equation* or reclassif* or re classif*).ti,ab.
13	(chronic kidney disease epidemiology collaboration or CKD EPI*).ti,ab.
14	(modif* of diet in renal disease* or MDRD*).ti,ab.
15	(multimark* or multi-mark* or multi* mark*).ti,ab.
16	or/12-15
17	11 and 16
18	cystatin c/
19	creatinine/
20	(creatinine or cystatin c or acr).ti,ab.

_	
21	or/18-20
22	17 and 21
23	exp "sensitivity and specificity"/
24	disease progression/
25	prognosis/
26	risk/
27	risk factors/
28	(sensitivity or specificity or precision or bias).ti,ab.
29	(predict* or diagnos* or detect* or performance or accura* or risk* or prognos* or progression or PPV or NPV).ti,ab.
30	(reference or gold standard*).ti,ab.
31	or/23-30
32	22 and 31

Embase search terms

1	exp kidney disease/ or exp kidney function test/ or exp kidney/
2	(kidney* or renal or ckd).ti,ab.
3	1 or 2
4	(transplant* or graft* or allograft* or pregnan*).ti.
5	((child* or adolescen* or school* or infant* or teen* or paediatric* or pediatric* or youth*) not adult*).ti.
6	3 not (4 or 5)
7	glomerulus filtration rate/
8	glomerul* filtration rate.ti,ab.
9	(eGFR* or GFR*).ti,ab.
10	or/7-9
11	6 and 10
12	(formula* or equation* or reclassif* or re classif*).ti,ab.
13	(chronic kidney disease epidemiology collaboration or CKD EPI*).ti,ab.
14	(modif* of diet in renal disease* or MDRD*).ti,ab.
15	(multimark* or multi-mark* or multi* mark*).ti,ab.
16	or/12-15
17	11 and 17
18	cystatin C/
19	(cystatin c or acr).ti,ab.
20	creatinine.ti,ab,hw.
21	or/18-20
22	17 and 21
23	"sensitivity and specificity"/
24	predictive value/

Literature search strategies

25	diagnostic accuracy/
26	diagnostic test accuracy study/
27	risk factor/
28	disease course/
29	disease exacerbation/
30	(predict* or diagnos* or detect* or performance or accura* or risk* or prognos* or progression or PPV or NPV).ti,ab.
31	(sensitivity or specificity or precision or bias).ti,ab.
32	(reference or gold standard*).ti,ab.
33	or/23-32
34	22 and 34

#1	MeSH descriptor: [Kidney Diseases] explode all trees
#2	MeSH descriptor: [Kidney Function Tests] explode all trees
#3	MeSH descriptor: [Kidney] explode all trees
#4	(kidney* or renal or CKD):ti,ab
#5	#1 or #2 or #3 or #4
#6	(transplant* or graft* or allograft* or pregnan*):ti
#7	((child* or adolescen* or school* or infant* or teen* or paediatric* or pediatric* or youth*) not adult*):ti
#8	#5 not (#6 or #7)
#9	MeSH descriptor: [Glomerular Filtration Rate] this term only
#10	(glomerul* next filtration next rate*):ti,ab
#11	(eGFR* or GFR*):ti,ab
#12	#9 or #10 or #11
#13	#8 and #12
#14	(formula* or equation* or reclassif* or "re classification" or "re classify" or "re classified"):ti,ab
#15	("chronic kidney disease epidemiology collaboration"):ti,ab
#16	(CKD next EPI*):ti,ab
#17	("modification of diet in renal disease" or "modifying of diet in renal disease" or MDRD*):ti,ab
#18	#14 or #15 or #16 or #17
#19	#13 and #18
#20	MeSH descriptor: [Cystatin C] this term only
#21	MeSH descriptor: [Creatinine] this term only
#22	(creatinine or "cystatin c" or acr):ti,ab
#23	#20 or #21 or #22
#24	#19 and #23
#25	MeSH descriptor: [Sensitivity and Specificity] explode all trees
#26	MeSH descriptor: [Disease Progression] this term only

Literature search strategies

#27	MeSH descriptor: [Prognosis] this term only
#28	MeSH descriptor: [Risk] this term only
#29	MeSH descriptor: [Risk Factors] this term only
#30	(sensitivity or specificity or precision or bias):ti,ab
#31	(predict* or diagnos* or detect* or performance or accura* or risk* or prognos* or progression or PPV or NPV):ti,ab
#32	(reference or "gold standard"):ti,ab
#33	#25 or #26 or #27 or #28 or #29 or #30 or #31 or #32
#34	#24 and #33

F.3.2 Classification

For people with suspected CKD, what is the effect of proteinuria at any given eGFR on adverse outcomes (CKD progression, AKI, all-cause mortality and cardiovascular mortality)?

Search constructed by combining the columns in the following table using the AND Boolean operator

Population	Interventi on / exposure	Comparison	Study filter used	Date parameters
Kidneys Population terms in section F.1 not used. See below for all search terms:	Proteinuria		SR, Observational NOT Exclusions (Medline and Embase only)	Search run from 2007 up to 25 November 2013.

Medline search terms

1	exp kidney diseases/ or exp kidney function tests/ or exp kidney/
2	(kidney* or renal or ckd).ti,ab.
3	1 or 2
4	(transplant* or graft* or allograft* or pregnan*).ti.
5	((child* or adolescen* or school* or infant* or teen* or paediatric* or pediatric* or youth*) not adult*).ti.
6	3 not (4 or 5)
7	glomerular filtration rate/
8	glomerul* filtration rate.ti,ab.
9	(eGFR* or GFR*).ti,ab.
10	or/7-9
11	6 and 10
12	exp Proteinuria/
13	((urin* or ratio*) adj5 (albumin* or protein*)).ti,ab.
14	(PCR* or ACR* or UACR* or UPCR* proteinuria or albuminuria or microalbuminuria).ti,ab.
15	or/12-14
16	11 and 15
17	disease progression/

18	prognosis/
19	risk/
20	risk factors/
21	(predict* or diagnos* or risk* or hazard or prognos* or progress* or PPV or NPV or death* or mortality).ti,ab.
22	or/17-21
23	16 and 22

Embase search terms

1	exp kidney disease/ or exp kidney function test/ or exp kidney/
2	(kidney* or renal or ckd).ti,ab.
3	1 or 2
4	(transplant* or graft* or allograft* or pregnan*).ti.
5	((child* or adolescen* or school* or infant* or teen* or paediatric* or pediatric* or youth*) not adult*).ti.
6	3 not (4 or 5)
7	glomerulus filtration rate/
8	glomerul* filtration rate.ti,ab.
9	(eGFR* or GFR*).ti,ab.
10	or/7-9
11	6 and 10
12	exp proteinuria/
13	(PCR* or ACR* or UACR* or UPCR*).ti,ab.
14	((urin* or ratio*) adj5 (albumin* or protein*)).ti,ab.
15	(proteinuria or albuminuria or microalbuminuria).ti,ab.
16	or/12-15
17	11 and 16
18	prognosis/
19	risk factor/
20	disease course/
21	disease exacerbation/
22	(predict* or diagnos* or risk* or hazard or prognos* or progress* or PPV or NPV or death* or mortality).ti,ab.
23	or/18-22
24	17 and 23

#1	MeSH descriptor: [Kidney Diseases] explode all trees
#2	MeSH descriptor: [Kidney Function Tests] explode all trees
#3	MeSH descriptor: [Kidney] explode all trees
#4	(kidney* or renal or CKD):ti,ab

#5	#1 or #2 or #3 or #4
#6	(transplant* or graft* or allograft* or pregnan*):ti
#7	((child* or adolescen* or school* or infant* or teen* or paediatric* or pediatric* or youth*) not adult*):ti
#8	#5 not (#6 or #7)
#9	MeSH descriptor: [Glomerular Filtration Rate] this term only
#10	(glomerul* next filtration next rate*):ti,ab
#11	(eGFR* or GFR*):ti,ab
#12	#9 or #10 or #11
#13	#8 and #12
#14	MeSH descriptor: [Proteinuria] explode all trees
#15	((urin* or ratio*) near/5 (albumin* or protein*)):ti,ab
#16	(proteinuria or albuminuria or microalbuminuria or PCR* or ACR* or UPCR* or UACR*):ti,ab
#17	#14 or #15 or #16
#18	#13 and #17
#19	MeSH descriptor: [Disease Progression] this term only
#20	MeSH descriptor: [Prognosis] this term only
#21	MeSH descriptor: [Risk] this term only
#22	MeSH descriptor: [Risk Factors] this term only
#23	(predict* or diagnos* or risk* or hazard or prognos* or progress* or PPV or NPV or death* or mortality):ti,ab
#24	#19 or #20 or #21 or #22 or #23
#25	#18 and #24

F.3.3 Cause – AKI

Searches for the following two questions were run as one search:

For people with CKD, does the presence of acute kidney injury (AKI) have an effect on adverse outcomes at any given category of eGFR and ACR (CKD progression, all-cause mortality and cardiovascular mortality)?

What is the risk of developing and/or progression of CKD after an episode of AKI?

Search constructed by combining the columns in the following table using the AND Boolean operator

Population	Intervention / exposure	Comparison	Study filter used	Date parameters
CKD	AKI		SR, Observational NOT Exclusions (Medline and Embase only)	Search run from 2002 up to 25 November 2013.

AKI search terms

Medline search terms

19	12 and 18
18	or/13-17
17	(predict* or risk* or hazard* or prognos* or progress* or PPV or NPV or death* or mortality).ti,ab.
16	risk factors/
15	risk/
14	prognosis/
13	disease progression/
12	4 and 11
11	or/5-10
10	(PCR* or ACR* or UACR* or UPCR* or proteinuria or albuminuria or microalbuminuria).ti,ab.
9	((urin* or ratio*) adj5 (albumin* or protein*)).ti,ab.
8	exp proteinuria/
7	(eGFR* or GFR*).ti,ab.
6	glomerul* filtration rate.ti,ab.
5	glomerular filtration rate/
4	or/1-3
3	((acute or early) adj (kidney or renal) adj (failure* or injur* or insufficien* or dysfunction* or impair*)).ti,ab.
2	AKI.ti,ab.
1	exp acute kidney injury/

Embase search terms

1	acute kidney failure/ or acute kidney tubule necrosis/
2	((acute or early) adj (kidney or renal) adj (failure* or injur* or insufficien* or dysfunction* or impair*)).ti,ab.
3	AKI.ti,ab.
4	kidney injury/ and acute.ti,ab.
5	or/1-4
6	glomerulus filtration rate/
7	exp proteinuria/
8	glomerul* filtration rate.ti,ab.
9	(eGFR* or GFR*).ti,ab.
10	(PCR* or ACR* or UACR* or UPCR*).ti,ab.
11	((urin* or ratio*) adj5 (albumin* or protein*)).ti,ab.
12	(proteinuria or albuminuria or microalbuminuria).ti,ab.
13	or/6-12
14	5 and 13
15	prognosis/
16	risk factor/
17	disease course/

18	disease exacerbation/
19	(predict* or risk* or hazard* or prognos* or progress* or PPV or NPV or death* or mortality).ti,ab.
20	or/15-19
21	14 and 20

Cochrane search terms

#1	MeSH descriptor: [Acute Kidney Injury] explode all trees			
#2	AKI:ti,ab			
#3	((acute or early) next (kidney or renal) next (failure* or injur* or insufficien* or dysfunction* or impair*)):ti,ab			
#4	#1 or #2 or #3			
#5	MeSH descriptor: [Glomerular Filtration Rate] explode all trees			
#6	MeSH descriptor: [Proteinuria] explode all trees			
#7	(glomerul* next filtration next rate*):ti,ab			
#8	(eGFR* or GFR*):ti,ab			
#9	((urin* or ratio*) near/5 (albumin* or protein*)):ti,ab			
#10	(proteinuria or albuminuria or microalbuminuria or PCR* or ACR* or UPCR* or UACR*):ti,ab			
#11	#5 or #6 or #7 or #8 or #9 or #10			
#12	#4 and #11			
#13	MeSH descriptor: [Disease Progression] this term only			
#14	MeSH descriptor: [Prognosis] this term only			
#15	MeSH descriptor: [Risk] this term only			
#16	MeSH descriptor: [Risk Factors] this term only			
#17	(predict* or risk* or hazard* or prognos* or progress* or PPV or NPV or death* or mortality):ti,ab			
#18	#13 or #14 or #15 or #16 or #17			
#19	#12 and #18			

F.3.4 Cause – glomerular disease

For people with CKD, does the presence of glomerular disease have an effect on adverse outcomes at any given category of eGFR and ACR (CKD progression, AKI, all-cause mortality and cardiovascular mortality)?

Search constructed by combining the columns in the following table using the AND Boolean operator

Population	Intervention / exposure	Comparison	Study filter used	Date parameters
CKD	Glomerular disease		SR, Observational NOT Exclusions (Medline and Embase only)	Search run from 2002 up to 25 November 2013.

Glomerular disease search terms

Medline search terms

Literature search strategies

1	exp glomerulonephritis/			
2	nephrosis, lipoid/			
3	((inflam* or disease) adj2 glomerul*).ti,ab.			
4	(glomerulosclero* or glomerul* sclero* or glomerulonephr* or glomerul* nephr* or glomerulopath* or glomerulitis).ti,ab.			
5	((glomerular or segmental) adj2 hyalino*).ti,ab.			
6	((iga or immunoglobin a or membran* or lupus or minim* change or lipoid) adj2 (nephro* or nephriti*)).ti,ab.			
7	((dense deposit or bright* or b?erger* or minim* change or basement membrane) adj disease*).ti,ab.			
8	or/1-7			
9	glomerular filtration rate/			
10	glomerul* filtration rate.ti,ab.			
11	(eGFR* or GFR*).ti,ab.			
12	exp proteinuria/			
13	((urin* or ratio*) adj5 (albumin* or protein*)).ti,ab.			
14	(PCR* or ACR* or UACR* or UPCR* or proteinuria or albuminuria or microalbuminuria).ti,ab.			
15	or/9-14			
16	8 and 15			
17	disease progression/			
18	prognosis/			
19	risk/			
20	risk factors/			
21	(predict* or risk* or hazard* or prognos* or progress* or PPV or NPV or death* or mortality).ti,ab.			
22	or/17-21			
23	16 and 22			
24	(gene* or genome* or serum or plasma or polymorphism* or allel* or effect of or effects of or dose* or dosage* or therap* or drug* or excretion or receptor* or smoking or weight or obesity or obese or exercise or activity or agent* or marker* or biomarker*).ti.			
25	23 not 24			

Embase search terms

1	exp glomerulonephritis/
2	glomerulopathy/
3	immunoglobulin a nephropathy/
4	glomerulosclerosis/
5	focal glomerulosclerosis/
6	lipoid nephrosis/
7	((inflam* or disease) adj2 glomerul*).ti,ab.
8	(glomerulosclero* or glomerul* sclero* or glomerulonephr* or glomerul* nephr* or

	glomerulopath* or glomerulitis).ti,ab.			
9	((glomerular or segmental) adj2 hyalino*).ti,ab.			
10	((iga or immunoglobin a or membran* or lupus or minim* change or lipoid) adj2 (nephro* or nephriti*)).ti,ab.			
11	((dense deposit or bright* or b?erger* or minim* change or basement membrane) adj disease*).ti,ab.			
12	or/1-11			
13	glomerulus filtration rate/			
14	exp proteinuria/			
15	glomerul* filtration rate.ti,ab.			
16	(eGFR* or GFR*).ti,ab.			
17	(PCR* or ACR* or UACR* or UPCR*).ti,ab.			
18	((urin* or ratio*) adj5 (albumin* or protein*)).ti,ab.			
19	(proteinuria or albuminuria or microalbuminuria).ti,ab.			
20	or/13-19			
21	12 and 20			
22	prognosis/			
23	risk factor/			
24	disease course/			
25	disease exacerbation/			
26	(predict* or risk* or hazard* or prognos* or progress* or PPV or NPV or death* or mortality).ti,ab.			
27	or/22-26			
28	21 and 27			
29	(gene* or genome* or serum or plasma or polymorphism* or allel* or effect of or effects of or dose* or dosage* or therap* or drug* or excretion or receptor* or smoking or weight or obesity or obese or exercise or activity or agent* or marker* or biomarker*).ti.			
30	28 not 29			

#1	MeSH descriptor: [Glomerulonephritis] explode all trees			
#2	MeSH descriptor: [Nephrosis, Lipoid] explode all trees			
#3	((inflammation or disease) near/2 (glomerulus or glomerular)):ti,ab			
#4	((glomerulo or glomerulus or glomerular) near/2 (sclerosis or scleroses or nephritis or nephritides or nephrosis or nephroses or nephropathy or nephropathies)):ti,ab			
#5	(glomerulosclero* or glomerulonephr* or glomerulopath* or glomerulitis):ti,ab			
#6	((glomerular or segmental) near/2 hyalinosis):ti,ab			
#7	((iga or "immunoglobin a" or membranous or lupus or "minimal change" or "minimum change" or lipoid) near/2 (nephritis or nephritides or nephrosis or nephroses or nephrotic or nephropathy or nephropathies or nephro):ti,ab			
#8	(("dense deposit" or brights or bright or buerger or berger or "minimal change" or "minimum change" or "basement membrane") next (disease or diseases)):ti,ab			

Literature search strategies

#9	#1 or #2 or #3 or #4 or #5 or #6 or #7 or #8
#10	MeSH descriptor: [Glomerular Filtration Rate] this term only
#11	MeSH descriptor: [Proteinuria] explode all trees
#12	(glomerul* next filtration next rate*):ti,ab
#13	(eGFR* or GFR*):ti,ab
#14	((urin* or ratio*) near/5 (albumin* or protein*)):ti,ab
#15	(proteinuria or albuminuria or microalbuminuria or PCR* or ACR* or UPCR* or UACR*):ti,ab
#16	#10 or #11 or #12 or #13 or #14 or #15
#17	#9 and #16
#18	MeSH descriptor: [Disease Progression] this term only
#19	MeSH descriptor: [Prognosis] this term only
#20	MeSH descriptor: [Risk] this term only
#21	MeSH descriptor: [Risk Factors] this term only
#22	(predict* or risk* or hazard* or prognos* or progress* or PPV or NPV or death* or mortality):ti,ab
#23	#18 or #19 or #20 or #21 or #22
#24	#17 and #23
#25	(gene* or genome* or serum or plasma or polymorphism* or allel* or effect of or effects of or dose* or dosage* or therap* or drug* or excretion or receptor* or smoking or weight or obesity or obese or exercise or activity or agent* or marker* or biomarker*):ti
#26	#24 not #25

F.3.5 Cause – diabetes and hypertension

IPD analyses^{208,411} were found from the Classification search that answered the following two questions; no additional searches were undertaken:

For people with CKD, does the presence of diabetes have an effect on adverse outcomes at any given category of eGFR and ACR (CKD progression, AKI, all-cause mortality and cardiovascular mortality)?

For people with CKD, does the presence of hypertension have an effect on adverse outcomes at any given category of eGFR and ACR (CKD progression, AKI, all-cause mortality and cardiovascular mortality)?

F.3.6 Frequency of monitoring

How frequently should eGFR, ACR or PCR be monitored in people with CKD?

Search constructed by combining the columns in the following table using the AND Boolean operator

Population	Intervention / exposure	Comparison	Study filter used	Date parameters
CKD	Monitoring		SR, Observational NOT Exclusions (Medline and Embase only)	Search run from 2007 up to 25 November 2013.

Monitoring search terms

Medline search terms

1	
1	glomerular filtration rate/
2	exp proteinuria/
3	glomerul* filtration rate*.ti,ab.
4	((urin* or ratio*) adj5 (albumin* or protein*)).ti,ab.
5	(eGFR* or GFR* or PCR* or ACR* or UACR* or UPCR* proteinuria or albuminuria or
	microalbuminuria).ti,ab.
6	or/1-5
7	disease progression/
8	monitor*.ti.
9	6 and (7 or 8)
10	prognosis/
11	time factors/
12	((interval* or every) adj5 (month* or year* or week*)).ti,ab.
13	(treatment adj3 (nonresponse* or failure* or response* or duration or outcome*)).ti,ab,hw.
14	(predict* adj2 (value* or treatment* or response* or outcome* or factor*)).ti,ab,hw.
15	((review* or recall* or follow up* or regular* or periodic*) adj3 (interval* or visit* or examin* or attend* or test*)).ti,ab.
16	(management adj (strateg* or protocol* or plan*)).ti,ab.
17	natural histor*.ti,ab.
18	(PPV or NPV).ti,ab.
19	or/10-18
20	monitor*.ab,hw.
21	19 and 20
22	6 and 21
23	9 or 22

Embase search terms

1	glomerulus filtration rate/
2	exp proteinuria/
3	glomerul* filtration rate*.ti,ab.
4	(PCR* or ACR* or UACR* or UPCR* or eGFR* or GFR*).ti,ab.
5	((urin* or ratio*) adj5 (albumin* or protein*)).ti,ab.
6	(proteinuria or albuminuria or microalbuminuria).ti,ab.
7	or/1-6
8	disease course/
9	disease exacerbation/
10	monitor*.ti.
11	or/8-10
12	7 and 11

Literature search strategies

13	therapy delay/			
14	prognosis/			
15	((interval* or every) adj5 (month* or year* or week*)).ti,ab.			
16	(treatment adj3 (nonresponse* or failure* or response* or duration or outcome* or planning)).ti,ab,hw.			
17	(predict* adj2 (value* or treatment* or response* or outcome* or factor*)).ti,ab,hw.			
18	((review* or recall* or follow up* or regular* or periodic*) adj3 (interval* or visit* or examin* or attend* or test*)).ti,ab.			
19	(PPV or NPV).ti,ab.			
20	(management adj (strateg* or protocol* or plan*)).ti,ab.			
21	natural histor*.ti,ab.			
22	or/13-21			
23	monitor*.ab,hw.			
24	22 and 23			
25	7 and 24			
26	12 or 25			

	-			
#1	MeSH descriptor: [Glomerular Filtration Rate] this term only			
#2	MeSH descriptor: [Proteinuria] explode all trees			
#3	(glomerul* next filtration next rate*):ti,ab			
#4	((urin* or ratio*) near/5 (albumin* or protein*)):ti,ab			
#5	(proteinuria or albuminuria or microalbuminuria or PCR* or ACR* or UPCR* or UACR* or eGFR* or GFR*):ti,ab			
#6	#1 or #2 or #3 or #4 or #5			
#7	MeSH descriptor: [Disease Progression] this term only			
#8	monitor*:ti			
#9	#7 or #8			
#10	#6 and #9			
#11	MeSH descriptor: [Time Factors] this term only			
#12	MeSH descriptor: [Predictive Value of Tests] this term only			
#13	MeSH descriptor: [Prognosis] this term only			
#14	((interval* or every) near/5 (month* or year* or week*)):ti,ab			
#15	(treatment near/3 (nonresponse* or failure* or response* or duration or outcome*)):ti,ab			
#16	((review* or recall* or "follow up" or regular* or periodic*) near/3 (interval* or visit* or examin* or attend* or test*)):ti,ab			
#17	(predict* near/2 (treatment* or response* or outcome* or factor* or value*)):ti,ab			
#18	(PPV or NPV):ti,ab			
#19	(management next (strateg* or protocol* or plan*)):ti,ab			
#20	(natural next histor*):ti,ab			
#21	#11 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20			

Literature search strategies

#22	monitor*:ab
#23	MeSH descriptor: [Monitoring, Physiologic] explode all trees
#24	#22 or #23
#25	#21 and #24
#26	#11 or #25

F.3.7 Low protein diet

For people with CKD, are low protein diets a clinically and cost effective method for the management of CKD?

Search constructed by combining the columns in the following table using the AND Boolean operator

Population	Intervention / exposure	Comparison	Study filter used	Date parameters
CKD	Low protein diet		SR, RCT NOT Exclusions (Medline and Embase only)	Search run from 2007 up to 25 November 2013.

Low protein diet search terms

Medline search terms

1	exp proteins/ and exp diet therapy/
2	diet, protein-restricted/
3	exp dietary proteins/
4	((protein or proteins) adj5 (low or intake* or restrict* or consum* or reduc* or diet*)).ti,ab.
5	hypoproteic.ti,ab.
6	or/1-5

Embase search terms

1	diet restriction/ or diet therapy/
2	protein/
3	1 and 2
4	protein restriction/
5	protein diet/
6	protein intake/
7	((protein or proteins) adj5 (low or intake* or restrict* or consum* or reduc* or diet*)).ti,ab.
8	hypoproteic.ti,ab.
9	or/3-8

#1	MeSH descriptor Proteins explode all trees
#2	MeSH descriptor Diet Therapy explode all trees
#3	(#1 AND #2)

Literature search strategies

#4	MeSH descriptor Diet, Protein-Restricted, this term only
#5	MeSH descriptor Dietary Proteins explode all trees
#6	((protein or proteins) NEAR/5 (low or intake* or restrict* or consum* or reduc* or diet*)):ti,ab
#7	hypoproteic:ti,ab
#8	(#3 OR #4 OR #5 OR #6 OR #7)

F.3.8 Self management support systems

For people with CKD, what is the clinical and cost effectiveness of self management support systems?

Search constructed by combining the columns in the following table using the AND Boolean operator

Population	Intervention / exposure	Comparison	Study filter used	Date parameters
CKD	Self management support systems		NOT Exclusions (Medline and Embase only)	Search run from 2007 up to 25 November 2013.

Medline search terms

1	exp self care/
2	patient education as topic/
3	telemedicine/
4	publications/
5	pamphlets/
6	internet/
7	access to information/
8	consumer health information/
9	information dissemination/
10	patient preference/
11	disease management/
12	(self adj3 (manag* or care)).ti,ab.
13	((train* or teach* or educat*) adj3 (model* or program* or structured or intervention* or support)).ti,ab.
14	(patient* adj3 (information* or educat* or knowledge or literacy or learn* or train* or program* or prefer* or expectation*)).ti,ab.
15	(information* adj3 (need* or requirement* or support* or seek* or access* or disseminat*)).ti,ab.
16	(decision adj5 (aid* or tool*)).ti,ab.
17	(patient* adj3 (literature or leaflet* or booklet* or pamphlet* or handout* or internet or website* or interview* or survey*)).ti,ab.
18	Focus groups/
19	or/1-18

Embase search terms

1	exp self care/	
---	----------------	--

Literature search strategies

	website* or interview* or survey*)).ti,ab.
15	(patient* adj3 (literature or leaflet* or booklet* or pamphlet* or handout* or internet or
14	(information* adj3 (need* or requirement* or support* or seek* or access* or disseminat*)).ti,ab.
13	(patient* adj3 (information* or educat* or knowledge or literacy or learn* or train* or program* or prefer* or expectation*)).ti,ab.
12	((train* or teach* or educat*) adj3 (model* or program* or structured or intervention* or support)).ti,ab.
11	(self adj3 (manag* or care)).ti,ab.
10	patient education/
9	information dissemination/
8	consumer health information/
7	access to information/
6	patient preference/
5	patient decision making/
4	internet/
3	publication/
2	exp telehealth/

#1	MeSH descriptor Self Care explode all trees
#2	MeSH descriptor Patient Education as Topic, this term only
#3	MeSH descriptor Telemedicine, this term only
#4	MeSH descriptor Publications, this term only
#5	MeSH descriptor Pamphlets, this term only
#6	MeSH descriptor Internet, this term only
#7	MeSH descriptor Access to Information, this term only
#8	MeSH descriptor Consumer Health Information explode all trees
#9	MeSH descriptor Information Dissemination, this term only
#10	MeSH descriptor Patient Preference explode all trees
#11	MeSH descriptor Disease Management, this term only
#12	(self NEAR/3 (manag* or care)):ti,ab
#13	((train* or teach* or educat*) NEAR/3 (model* or program* or structured or intervention* or support)):ti,ab
#14	(patient* NEAR/3 (information* or educat* or knowledge or literacy or learn* or train* or program* or prefer* or expectation*)):ti,ab
#15	(information* NEAR/3 (need* or requirement* or support* or seek* or access* or disseminat*)):ti,ab
#16	(patient* NEAR/3 (literature or leaflet* or booklet* or pamphlet* or handout* or internet or website* or interview* or survey*)):ti,ab

Literature search strategies

#17	(#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14	
	OR #15 OR #16)	

F.3.9 Renin-angiotensin-aldosterone system antagonists

For people with CKD, what is the clinical and cost effectiveness of renin-angiotensin-aldosterone system antagonists in the management of CKD?

Search constructed by combining the columns in the following table using the AND Boolean operator

Population	Intervention / exposure	Comparison	Study filter used	Date parameters
CKD	RAAS		RCT NOT Exclusions (Medline and Embase only)	Search run from 2007 up to 25 November 2013.

RAAS search terms

Medline search terms

1	angiotensin-converting enzyme inhibitors/
2	angiotensin ii type 1 receptor blockers/
3	angiotensin ii type 2 receptor blockers/
4	aldosterone antagonists/
5	((angiotensin* or renin or aldosterone or ace) adj5 (antagonist* or blocker* or inhibitor*)).ti,ab.
6	(RAAS or RAS or RASI or ARB or ARBs).ti,ab.
7	exp enalapril/
8	fosinopril/
9	lisinopril/
10	perindopril/
11	ramipril/
12	captopril/
13	(enalapril* or fosinopril* or lisinopril*or perindopril* or quinapril* or ramipril* or cilizapril* or captopril* or trandolapril* or imidapril* or moexipril*).ti,ab.
14	(innovace* or innozide* or zestril* or carace* or zestoretic* or coversyl* or accupro* or accuretic* or tritace* or triapin* or vascace* or capoten* or capozide* or cozidocapt* or zidocapt* or gopten* or tarka* or tanatril* or perdix*).ti,ab.
15	spironolactone/
16	(eplerenone* or spironolactone* or aliskiren*).ti,ab.
17	(inspra* or aldactone* or coflumactone* or flumactone* or lasilactone* or rasilez*).ti,ab.
18	losartan/
19	(candesartan* or azilsartan* or eprosartan* or irbesartan* or losartan* or olmesartan* or telmisartan*).ti,ab.
20	(amias* or atacand* or edarbi* or teveten* or aprovel* or coaprovel* or cozaar* or olmetec* or benicar* or sevikar* or micardis* or diovan* or codiovan*).ti,ab.

or/1-20

Embase search terms

21

1	*dipeptidyl carboxypeptidase inhibitor/
2	angiotensin receptor antagonist/
3	aldosterone antagonist/
4	renin inhibitor/
5	((angiotensin* or renin or aldosterone or ACE) adj5 (antagonist* or blocker* or inhibitor*)).ti,ab.
6	enalapril maleate/ or fosinopril/ or lisinopril/ or perindopril/ or quinapril/ or ramipril/ or captopril/ or trandolapril/ or imidapril/ or moexipril/
7	(enalapril* or fosinopril* or lisinopril*or perindopril* or quinapril* or ramipril* or cilizapril* or captopril* or trandolapril* or imidapril* or moexipril*).ti,ab.
8	(innovace* or innozide* or zestril* or carace* or zestoretic* or coversyl* or accupro* or accuretic* or tritace* or triapin* or vascace* or capoten* or capozide* or cozidocapt* or zidocapt* or gopten* or tarka* or tanatril* or perdix*).ti,ab.
9	eplerenone/
10	spironolactone/
11	aliskiren/
12	(eplerenone* or spironolactone* or aliskiren*).ti,ab.
13	(inspra* or aldactone* or coflumactone* or flumactone* or lasilactone* or rasilez*).ti,ab.
14	candesartan/ or azilsartan/ or eprosartan/ or irbesartan/ or losartan potassium/ or olmesartan/ or telmisartan/
15	(candesartan* or azilsartan* or eprosartan* or irbesartan* or losartan* or olmesartan* or telmisartan*).ti,ab.
16	(amias* or atacand* or edarbi* or teveten* or aprovel* or coaprovel* or cozaar* or olmetec* or benicar* or sevikar* or micardis* or diovan* or codiovan*).ti,ab.
17	or/1-16

#1	MeSH descriptor: [Angiotensin-Converting Enzyme Inhibitors] this term only	
#2	MeSH descriptor: [Angiotensin II Type 1 Receptor Blockers] this term only	
#3	MeSH descriptor: [Angiotensin II Type 2 Receptor Blockers] this term only	
#4	MeSH descriptor: [Aldosterone Antagonists] this term only	
#5	((angiotensin* or renin or aldosterone or ACE) near/5 (antagonist* or blocker* or inhibitor*)):ti,ab	
#6	(RAAS or RAS or RASI or ARB or ARBs):ti,ab	
#7	MeSH descriptor: [Enalapril] explode all trees	
#8	MeSH descriptor: [Fosinopril] this term only	
#9	MeSH descriptor: [Lisinopril] this term only	
#10	MeSH descriptor: [Perindopril] this term only	
#11	MeSH descriptor: [Ramipril] this term only	

Literature search strategies

#12	MeSH descriptor: [Captopril] this term only
#13	(enalapril* or fosinopril* or lisinopril*or perindopril* or quinapril* or ramipril* or cilizapril* or captopril* or trandolapril* or imidapril* or moexipril*):ti,ab
#14	(innovace* or innozide* or zestril* or carace* or zestoretic* or coversyl* or accupro* or accuretic* or tritace* or triapin* or vascace* or capoten* or capozide* or cozidocapt* or zidocapt* or gopten* or tarka* or tanatril* or perdix*):ti,ab
#15	MeSH descriptor: [Spironolactone] this term only
#16	(eplerenone* or spironolactone* or aliskiren*):ti,ab
#17	(inspra* or aldactone* or coflumactone* or flumactone* or lasilactone* or rasilez*):ti,ab
#18	MeSH descriptor: [Losartan] this term only
#19	(candesartan* or azilsartan* or eprosartan* or irbesartan* or losartan* or olmesartan* or telmisartan*):ti,ab
#20	(amias* or atacand* or edarbi* or teveten* or aprovel* or coaprovel* or cozaar* or olmetec* or benicar* or sevikar* or micardis* or diovan* or codiovan*):ti,ab
#21	#1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20

F.3.10 Antiplatelet and anticoagulant therapy

For people with CKD, what is the clinical and cost effectiveness of oral antiplatelet and anticoagulant therapy in reducing cardiovascular disease?

Search constructed by combining the columns in the following table using the AND Boolean operator

Population	Intervention / exposure	Compariso n	Study filter used	Date parameters
Kidneys Population terms in section F.1 not used. See below for all search terms:	Antiplatelets		SR, RCT NOT Exclusions (Medline and Embase only)	Search run from 2007 up to 25 November 2013.

Medline search terms

1	exp kidney diseases/ or exp kidney function tests/ or exp kidney/
2	(kidney* or renal or ckd).ti,ab.
3	transplant*.ti.
4	(1 or 2) not 3
5	aspirin/
6	warfarin/
7	(acetylsalicylic acid* or aspirin* or apixaban* or rivaroxaban* or warfarin* or clopidogrel* or ticagrelor* or prasugrel* or dabigatran*).ti,ab.
8	(coumadin* or jantoven* or marevan* or lawarin* or waran* or warfant* or plavix* or brilique* or brilinta* or possia* or pradax* or prazaxa* or effient* or efient* or eliquis* or xarelto*).ti,ab.
9	or/5-8
10	4 and 9

Literature search strategies

Embase search terms

exp kidney disease/ or exp kidney function test/ or exp kidney/
(kidney* or renal or ckd).ti,ab.
transplant*.ti.
(1 or 2) not 3
*acetylsalicylic acid/
warfarin/
clopidogrel/
ticagrelor/
dabigatran/
dabigatran etexilate/
prasugrel/
apixaban/
rivaroxaban/
(acetylsalicylic acid* or aspirin* or apixaban* or rivaroxaban* or warfarin* or clopidogrel* or ticagrelor* or prasugrel* or dabigatran*).ti,ab.
(coumadin* or jantoven* or marevan* or lawarin* or waran* or warfant* or plavix* or brilique* or brilinta* or possia* or pradax* or prazaxa* or effient* or efient* or eliquis* or xarelto*).ti,ab.
or/5-15
4 and 16

#1	MeSH descriptor: [Kidney Diseases] explode all trees
#2	MeSH descriptor: [Kidney Function Tests] explode all trees
#3	MeSH descriptor: [Kidney] explode all trees
#4	(kidney* or renal or CKD):ti,ab
#5	transplant*:ti
#6	(#1 or #2 or #3 or #4) not #5
#8	MeSH descriptor: [Aspirin] explode all trees
#9	MeSH descriptor: [Warfarin] explode all trees
#10	("acetylsalicylic acid" or aspirin* or apixaban* or rivaroxaban* or warfarin* or clopidogrel* or ticagrelor* or prasugrel* or dabigatran*):ti,ab
#11	(coumadin* or jantoven* or marevan* or lawarin* or waran* or warfant* or plavix* or brilique* or brilinta* or possia* or pradax* or prazaxa* or effient* or efient* or eliquis* or xarelto*) .ti,ab.
#12	#8 or #9 or #10 or #11
#13	#6 and #12

Literature search strategies

F.3.11 Asymptomatic hyperuricaemia

For people with CKD and asymptomatic hyperuricaemia, what is the clinical and cost effectiveness of uric acid lowering with allopurinol or febuxostat in the management of CKD?

Search constructed by combining the columns in the following table using the AND Boolean operator

Population	Intervention / exposure	Comparison	Study filter used	Date parameters
CKD	Allopurinol,		SR, RCT	Search run from 2007 up to
	febuxostat		NOT Exclusions	25 November 2013.
			(Medline and Embase only)	

Allopurinol, febuxostat search terms

Medline search terms

1	allopurinol/	
2	(allopurinol* or purinol).ti,ab.	
3	(febuxostat or adenuric or uloric).ti,ab.	
4	or/1-3	

Embase search terms

1	febuxostat/	
2	(febuxostat or adenuric or uloric or purinol).ti,ab.	
3	allopurinol*.ti,ab,hw.	
4	or/1-3	

Cochrane search terms

#1	MeSH descriptor Allopurinol, this term only		
#2	(allopurinol* or purinol):ti,ab		
#3	(febuxostat or adenuric or uloric):ti,ab		
#4	(#1 OR #2 OR #3)		

F.3.12 Vitamin D supplements in the management of CKD-mineral and bone disorders

For people with GFR 15-60 ml/minml/min/1.73 m², what is the clinical and cost-effectiveness of vitamin D supplementation for the management of renal bone disease?

Search constructed by combining the columns in the following table using the AND Boolean operator

Population	Intervention / exposure	Comparison	Study filter used	Date parameters
CKD	Vitamin D		SR, RCT NOT Exclusions (Medline and Embase only)	Search run from 2007 up to 25 November 2013.

Vitamin D search terms

Medline search terms

1	exp vitamin d/			
2	(vitamin adj (D or D2 or D3 or D4 or D5)).ti,ab.			
3	(paracalcitol* or zemplar* or ergocalciferol* or alfacalcidol* or one-alpha* or calcitriol* or rocaltrol* or calcijex* or oxacalcitriol* or falecalcitriol* or fluorocalcitriol*).ti,ab.			
4	(dihydrotachysterol* or maxacalcitol* or calciferol* or calcifediol* or doxercalciferol* or cholecalciferol* or ercalcidiol* or hectorol* or sitocalciferol* or paracalcin*).ti,ab.			
5	(dihydroxyvitamin* or hydroxyvitamin* or hydroxycalciferol* or dihydroxycalciferol* or hydroxyergocalciferol* or dihydroxyergocalciferol* or hydroxycholecalciferol* or dihydroxycholecalciferol*).ti,ab.			
6	or/1-5			

Embase search terms

1	exp vitamin d/
2	(vitamin adj (D or D2 or D3 or D4 or D5)).ti,ab.
3	(paracalcitol* or zemplar* or ergocalciferol* or alfacalcidol* or one-alpha* or calcitriol* or rocaltrol* or calcijex* or oxacalcitriol* or falecalcitriol* or fluorocalcitriol*).ti,ab.
4	(dihydrotachysterol* or maxacalcitol* or calciferol* or calcifediol* or doxercalciferol* or cholecalciferol* or ercalcidiol* or hectorol* or sitocalciferol* or paracalcin*).ti,ab.
5	(dihydroxyvitamin* or hydroxyvitamin* or hydroxycalciferol* or dihydroxycalciferol* or hydroxyergocalciferol* or dihydroxyergocalciferol* or hydroxycholecalciferol* or dihydroxycholecalciferol*).ti,ab.
6	or/1-5

Cochrane search terms

#1	MeSH descriptor Vitamin D explode all trees			
#2	(vitamin NEXT (D or D2 or D3 or D4 or D5)):ti,ab			
#3	(paracalcitol* or zemplar* or ergocalciferol* or alfacalcidol* or one-alpha* or calcitriol* or rocaltrol* or calcijex* or oxacalcitriol* or falecalcitriol* or fluorocalcitriol*):ti,ab			
#4	(dihydrotachysterol* or maxacalcitol* or calciferol* or calcifediol* or doxercalciferol* or cholecalciferol* or ercalcidiol* or hectorol* or sitocalciferol* or paracalcin*):ti,ab			
#5	(dihydroxyvitamin* or hydroxyvitamin* or hydroxycalciferol* or dihydroxycalciferol* or hydroxyergocalciferol* or dihydroxyergocalciferol* or hydroxycholecalciferol* or dihydroxycholecalciferol*):ti,ab			
#6	(#1 OR #2 OR #3 OR #4 OR #5)			

F.3.13 Oral bicarbonate supplements in the management of people with CKD and metabolic acidosis

What is the clinical and cost effectiveness of oral bicarbonate supplements in the management of CKD?

Search constructed by combining the columns in the following table using the AND Boolean operator

Literature search strategies

Population	Intervention / exposure	Comparison	Study filter used	Date parameters
CKD	Bicarbonate		SR, RCT NOT Exclusions (Medline and Embase only)	Search run up to 25 November 2013. No start date restrictions.

Bicarbonate search terms

Medline search terms

1	exp bicarbonates/
2	bicarbonate*.ti,ab.
3	(hydrogen adj2 carbonate*).ti,ab.
4	or/1-3
5	((contrast or radiocontrast) and (nephropathy or induce*)).ti.
6	4 not 5

Embase search terms

1	exp bicarbonates/	
2	bicarbonate*.ti,ab.	
3	(hydrogen adj2 carbonate*).ti,ab.	
4	or/1-3	
5	((contrast or radiocontrast) and (nephropathy or induce*)).ti.	
6	4 not 5	

Cochrane search terms

#1	MeSH descriptor Bicarbonates explode all trees		
#2	bicarbonate*:ti,ab		
#3	(hydrogen near/2 carbonate*):ti,ab		
#4	(#1 OR #2 OR #3)		
#5	((contrast or radiocontrast) and (nephropathy or induce*)):ti		
#6	(#4 AND NOT #5)		

F.4 Economics search

F.4.1 Economics search

Economic searches were conducted in Medline, Embase, HEED and CRD for NHS EED and HTA.

Population	Intervention / exposure	Comparison	Study filter used	Date parameters
CKD			Economic NOT Exclusions (Medline and Embase only).	Search run from 2009 in Medline and Embase, from 2007 in CRD and HEED, up to 25 November 2013.

Literature search strategies

CRD search terms

#1	MeSH DESCRIPTOR Renal Insufficiency, Chronic EXPLODE ALL TREES IN NHSEED, HTA
#2	MeSH DESCRIPTOR Kidney Diseases EXPLODE ALL TREES IN NHSEED, HTA
#3	(chronic) IN NHSEED, HTA
#4	#2 AND #3
#5	(((chronic or progressive) adj2 (renal or kidney))) IN NHSEED, HTA
#6	((chronic NEXT (kidney or renal) NEXT insufficienc*)) IN NHSEED, HTA
#7	(("end stage" adj2 (kidney or renal))) IN NHSEED, HTA
#8	((CKD or ESRD)) IN NHSEED, HTA
#9	MeSH DESCRIPTOR Diabetic Nephropathies IN NHSEED,HTA
#10	MeSH DESCRIPTOR Glomerulonephritis EXPLODE ALL TREES IN NHSEED, HTA
#11	MeSH DESCRIPTOR Proteinuria EXPLODE ALL TREES IN NHSEED, HTA
#12	MeSH DESCRIPTOR Acidosis, Renal Tubular IN NHSEED, HTA
#13	MeSH DESCRIPTOR Hypertension, Renal EXPLODE ALL TREES IN NHSEED, HTA
#14	((diabetic NEXT (kidney or renal) NEXT (disease* or failure))) IN NHSEED, HTA
#15	(((renal or renovascular) adj2 hypertensi*)) IN NHSEED, HTA
#16	((glomerulosclerosis or glomerulonephritis or nephropath* or proteinuria*)) IN NHSEED, HTA
#17	((glomerular NEXT (sclerosis or nephritis))) IN NHSEED, HTA
#18	(((renal or distal or proximal) NEXT "tubular acidosis")) IN NHSEED, HTA
#19	("asymptomatic hyperuricaemia") IN NHSEED, HTA
#20	#1 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR
	#16 OR #17 OR #18 OR #19

HEED search terms

1	AX=kidney or renal
2	AX=chronic
3	CS=1 AND 2
4	AX=CKD
5	CS=3 OR 4

F.4.2 Quality of life search

Quality of life searches were conducted in Medline and Embase

Population	Intervention / exposure	Comparison	Study filter used	Date parameters
CKD			Quality of life NOT Exclusions	Search run from 2007 up to 25 November 2013.

Appendix G: Clinical evidence tables

ואמרוטוזמו כווווכמו ממומפוווזה כהוות ה 2014 ואמרוטוזמו כווווכמו Measuring kidney function

Table 18: BJORK 2012

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
Bjork et al 2012 ⁸¹ Country: Sweden	External validation; non- renal transplant patients aged ≥16 years; patients on dialysis excluded; 45% female; median age 61 years (range 19- 83). Patients, n: 996 patients (1397 examinations)	Enzymatic method; Hitachi 911 analyser (May 2005 to June 2008) then (to December 2009) dry slide enzymatic method on a Vitrus 5.1 instrument (Ortho Clinical Diagnostics, Rochester, NY, USA); both used calibrator traceable to isotope dilution mass spectrometry (IDMS); negligible difference between	Reference standard: lohexol clearance Mean (SD) ml/minml/mi n/1.73m ² : median 44 (range 12- 116)	MDRD 175 x (sCr/ 88.4) ^{-1.154} x age ^{-0.203} x 0.742 [if female] x 1.210 [if African- American]	Accuracy (P30) [95% CI] Bias [95% CI] (defined as the median difference [eGFR-mGFR] and median percentage difference) Precision [95% CI] (defined as IQR of differences eGFR-mGFR) Sensitivity, Specificity, Area under the curve (AUC) Net Reclassification Index (NRI)	79.5 [77.3 to 81.6] -0.8 [-1.4 to -0.4] ml/minml/min/1.73m ² and -2.2% [-3.3 to -0.9] 12.3 [11.5 to 13.2] ml/minml/min/1.73m ² NR Overall 65% patients classified correctly, performed best at 30-59 ml/minml/min/1.73m ² where 77% classified	Data set included participants more than once so Cls may underestimate statistical uncertainty, P30 increased by 1- 2% when multiple examinations excluded (not in results).

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
	Subgroups:	assays				correctly	subgroups.
	GFR 60-89			GFR 60-	Accuracy (P30)	84%	
	ml/minml/min/1. 73 m ² n=313		3m ²	89ml/minml/min/1.7 3m ²	Bias (median percentage difference)	-1%	Bias and P30 also reported
	GFR 30-59 n=414			GFR 30-	Accuracy (P30)	93%	for GFR <15; 15 29; <30 and ≥9
	≥80 ml/minml/min/1. 73 m ² n=91	59ml/minml/min/1 3m ²	59ml/minml/min/1.7 3m ²	Bias (median percentage difference)	-8%	ml/minml/min/	
	, o iii ii o i			Age ≥ 80 years	Accuracy (P30)	67%	
				Bias (median percentage difference)	16%	P10 also reported overall	
				CKD-EPI (for white or	Accuracy (P30) [95% CI]	79.1 [77.0 to 81.2]	and for all GFR subgroups.
				other non-black): female and sCr ≤62µmol/L: 144 x (sCr/ 62) ^{-0.329} x 0.993 ^{age} ; female and	Bias [95% CI] (defined as the median difference [eGFR-mGFR] and median percentage difference)	0.8 [0.2 to 1.3] ml/min/1.73m ² and 1.7% [0.4 to 3.7]	
				sCr >62µmol/L: 144 x (sCr/ 62) ^{-1.209} x 0.993 ^{age} ; male and	Precision [95% CI]	11.7 [10.9 to 12.7] ml/min/1.73m ²	
		sCr ≤80µmol/L: 141 x (sCr/ 80) ^{-0.411} x	Sensitivity, Specificity, AUC	NR			
			Net Reclassification Index (NRI)	69% patients classified correctly, superior at >90ml/min/1.73m ²			

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
				0.993 ^{age}			
				GFR 60- 89ml/min/1.73m ²	Accuracy (P30)	92%	
					Bias (median percentage difference)	0%	
				GFR 30-	Accuracy (P30)	79%	
				59ml/min/1.73m ²	Bias (median percentage difference)	2%	
				Age ≥ 80 years	Accuracy (P30)	74%	
					Bias (median percentage difference)	11%	

Table 19: ILIADIS2011

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
Iliadis et	Patients with	Serum creatinine	Reference	MDRD: 175 x (sCr/	Accuracy (P30) [95% CI]	78.8%	White people
al 2011 ²⁹² Country:	type 2 diabetes; mean (SD) age 65 (10) years; 53% female; all	measured by chemistry analyser (Cobas Integra 400, Roche, Rotkreutz,	standard: ⁵¹ Cr-EDTA Mean (SD)	88.4) ^{-1.154} x age ^{-0.203} x 0.742 [if female]	Bias [95% Cl] (defined as the mean difference [eGFR-mGFR])	7.5	only, so unable to study different ethnicities;

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
Greece	Europids Patients, n:	Switzerland); creatinine using Jaffe method	eatinine using m ² : ffe method 73.4 (23.0) andardised to		Precision [95% CI] (defined as SD of bias)	13.4	small number of patients with measured GFR
	448 (originally 460 but 12	standardised to IDMS.			Sensitivity, specificity, AUC and NRI	NR	<30 ml/min/1.73m ² so unable to
	patients with measured GFR			eGFR <60 ml/min/1.73 m ²	Sensitivity [95% CI]	86.5% [78.7-92.2]	study the
	<30ml/min/1.73				Specificity [95% CI]	89.5% [85.0-93.0]	performance of the equations in such patients. Cystatin C not standardised therefore not included in review.
	m ² excluded)				AUC [95% CI]	0.947 [0.917-0.968]	
				eGFR <90 ml/min/1.73 m ²	Sensitivity [95% CI]	73.9% [68.2-79.0]	
	Subgroups:				Specificity [95% CI]	94.8% [88.3-98.3]	
	GFR <60 n=145				AUC [95% CI]	0.920 [0.887-0.947]	
				CKD-EPI female and	Accuracy (P30) [95% CI]	80.7%	
	GFR <90 n=339 (includes GFR<60			sCr ≤62µmol/L: 144 x	Bias [95% CI]	7.1	
	ml/min/1.73 m ²			(sCr/ 62 ^{)-0.329} x 0.993 ^{age} ; female and	Precision [95% CI]	12.0	
	subgroup)			sCr >62µmol/L: 144 x	Sensitivity, specificity, AUC and NRI	NR	

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
			eGFR <60	Sensitivity [95% CI]	91.0% [84.1-95.6]		
		ml/min/1.73 m ²	Specificity [95% CI]	88.3% [83.6-92.0]			
					AUC [95% CI]	0.952 [0.924-0.972]	
	eGFR <90 ml/min/1.73 m ²		Sensitivity [95% CI]	84.3% [79.4-88.5)			
				ml/min/1.73 m ²	Specificity [95% CI]	91.7% [84.2-96.3]	
			AUC [95% CI]	0.937 [0.906-0.960]			

Table 20: INKER2012A

		Serum creatinine			Outcomes			
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments	
Inker et al 2012 ²⁹⁹	External validation set	Roche enzymatic method (Roche–	Reference standard:	CKD-EPI _{cr} (creatinine based equation)	Accuracy (P30)* [95% Cl]	87.2% [85.3-89.1]	*Accuracy reported as 1-	
Country: USA	from 4 studies (NephroTest, Steno, RASS and Lund CKD), excluded renal	Hitachi P-Module with Roche Creatininase Plus assay), traceable to National Institute	lothalomate and other filtration markers	and other (s filtration 0 markers w 1	ther $(sCr/0.7)^{-0.329} x$ ion $0.993^{age} x 144$ [if white or other] or x 166 [if black]; female	Bias** [95% CI] (defined as the median difference [eGFR- mGFR])	-3.7[-4.6 to -2.8]	P30; P30 calculated by NCGC. Also reports 1-
	recipients F29/ Technology	Mean (SD) ml/min/1.73 m ² :	and sCr >0.7: (sCr/0.7) ^{-1.209} x 0.993 ^{age} x 144 [if	Precision [95% CI] (defined as IQR of differences mGFR-eGFR)	15.4 [14.3-16.5]	P20. Accuracy, Bias		

		Serum creatinine			Outcomes		Limitations/ Comments
Study and Country	Population		Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	
	black, age	reference material	70 (41)	, ,			and Precision also reported
	mean(SD) 50(17).(SRM 967).Patients, n:Cystatin C1119 (External validation set)calibrated on theSubgroups:Siemens Dade BehringGFR 60-89 ml/min/1.73 m²:Nephelometer, traceable to the Internation federation of Clinical Chemistry	white or other] or x 163 [if black]; and male and sCr >0.9: (sCr/ 0.9) ^{-1.209} x 0.993 ^{age} x 141 [if white or other] or x 162 [if black]		Sensitivity, Specificity and AUC and NRI	NR	for eGFR ≥90. **Bias reported as median difference [mGFR-eGFR]; median difference [eGFR-mGFR] calculated by	
	eGFR <60 ml/min/1.73	Working group for Standardization of		eGFR 60- 89ml/min/1.73m ²	Accuracy (P30) [95% CI]	89.8% [85.8-93.6]	NCGC.
	m²;n=533	Serum Cystatin C			Bias [95% CI]	-6.6 [-9.2 to -3.5]	
		and the Institute			Precision [95% CI]	19.6 [17.3-23.2]	
		for Reference Materials and		eGFR <60 ml/min/1.73 m ²	Accuracy (P30) [95% CI]	83.4% [80.3-86.4]	
		Measurements		,,	Bias [95% CI]	-1.8 [-2.5 to -1.1]	
		certified reference			Precision [95% CI]	10.0 [8.9-11.0]	
	materials.	materials.		CKD-EPIcys (cystatin C based equation)	Accuracy (P30) [95% CI]	85.9% [83.8-87.8]	
			female or male and	Bias [95% CI]	-3.4 [-4.4 to -2.3]		
			sCysC ≤0.8: 133 x	Precision [95% CI]	16.4 [14.8-17.8]		
				(sCysC/0.8) ^{-0.499} x	Sensitivity, Specificity, AUC	NR	

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
				female]; female or male and sCysC >0.8: 133 x (sCysC/0.8) ⁻ ^{1.328} x 0.996 ^{age} [x 0.932 if female]	And NRI		
				eGFR 60- 89ml/min/1.73m ²	Accuracy (P30) [95% CI]	87.3% [82.6-91.5]	
					Bias [95% CI]	-6.0 [-8.5 to -4.6]	
					Precision [95% CI]	19.6 [16.1-23.1]	
				eGFR <60 ml/min/1.73 m ²	Accuracy (P30) [95% CI]	78.6% [75.1-81.8]	
					Bias [95% CI]	-0.4 [-1.4to 0.5]	
					Precision [95% Cl]	11.0 [10.0-12.4]	
				CKD-EPI _{cr-cys}	Accuracy (P30) [95% CI]	91.5% [89.8-93.0]	
				(creatinine and	Bias [95% CI]	-3.9 [- 4.5 to -3.2]	
				cystatin C based equation) 135 x	Precision [95% Cl]	13.4 [12.3-14.5]	
				min(Scr/ κ , 1) ^{α} x max(Scr/ κ , 1) ^{-0.601} x	Sensitivity, Specificity, AUC	NR	
				min(Scys/0.8, 1) ^{-0.375} x max(Scys/0.8, 1) ^{-0.375} x max(Scys/0.8, 1) ^{-0.375} where x 0.969 [if female] x 1.08 [if black] ml/min/1.73m ² where κ =0.7 for	NRI [95% CI] (compared to CKD EPI sCr threshold eGFR<60 ml/min/1.73 m ²)	Overall: 4.9 [2.2-7.7] eGFR 45-74 ml/min/1.73 m ² : 19.4 [8.7-30.1]	

		Serum creatinine			Outcomes		
Study and		(SCr)/ Cystatin C calibration and	Measured	GFR estimation equation and			Limitations/
Country	Population	assay detail	GFR	subgroups	Outcome measure	Effect size	Comments
			women and 0.9 for men, α is -0.248 for women and -0.207 for men, "min" indicates the minimum of Scr/κ or 1 and "max" is the maximum of Scr/κ or				
				1			
				eGFR 60-89 ml/min/1.73m ²	Accuracy (P30) [95% CI]	94.7% [91.8-97.3]	
				111/1111/1.7511	Bias [95% CI]	-6.9 [-8.9 to -5.0]	
					Precision [95% CI]	15.9 [13.9-18.1]	
				eGFR <60	Accuracy (P30) [95% CI]	86.7% [83.9-89.3]	
				ml/min/1.73 m ²	Bias [95% CI]	-1.3 [- 1.8 to -0.5]	
					Precision [95% CI]	8.1 [7.3-9.1]	

Table 21: KILBRIDE2013

		Serum creatinine			Outcomes		
		(SCr)/ Cystatin C		GFR estimation			
Study and	Population	calibration and	Measured	equation and			Limitations/
Country		assay detail	GFR	subgroups	Outcome measure	Effect size	Comments

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
Kilbride et al 2013 ³⁴¹ Country: UK	Ibride et 2013 ³⁴¹ People aged 74 years or older; known to the Centre or recruited from the community; excluded if history ofPlasma measu 	Plasma creatinine measured using modified stable isotope-dilution electrospray tandem mass spectrometric method (Applied Biosystems SCIEX API5000).	Reference standard: lohexol Mean (SD) ml/min/1.73 m ² : 53.4 (range 7.2-100.9)	IDMS traceable version of the 4- variable MDRD	Accuracy (P30) [95% CI] Bias [95% CI] (defined as the difference [eGFR- mGFR]) Precision [95% CI] (defined as RMSE and IQR of differences eGFR- mGFR) Sensitivity, Specificity,	81% [77-85] 3.5 [1.9-4.8] RMSE:13.4 [11.8-14.9] IQR:13.7 [11.4-16.0]	All European ancestry so no analysis on other ethnicities. Also reports outcomes for age <80 years and ≥80 years.
	contrast material, current active malignancy, life expectancy <3 months, cognitive impairment	Cystatin C measured by particle-enhanced nephelometric immunoassay using BN Prospec analyser (Siemens Healthcare		mGFR ≥60 ml/min/1.73m ²	AUC and NRI Accuracy (P30) [95% CI] Bias [95% CI] Precision [95% CI])	RMSE: 16.2 [13.4-18.6] IQR:18.3 [14.3-22.3]	
	precluding consent, recent (<3 months) acute kidney injury, renal dialysis. Median	Diagnostics)		mGFR <60	Accuracy (P30) [95% CI] Bias [95% CI] Precision [95% CI])	78% [72-83] 2.0 [0.8to 3.9] RMSE: 11.1 [9.5 -12.6] IQR: 11.4 [9.5 - 13.3]	

ועמנוטחמו כווחוכמו סטומפווחפ כפחורפ בטדק

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and Measure assay detail GFR	Measured GFR	· · · · · · · · · · · · · · · · · · ·	Outcome measure	Effect size	Limitations/ Comments
	age 80 (range 74-			CKD-EPI _{cr} (creatinine	Accuracy (P30) [95% CI]	83% [79-87]	
	97) years; 52% female; 19% diabetes.			based equation)	Bias [95% CI]	1.7 [0.3-3.2]	
	ulabetes.				Precision [95% CI]	RMSE:10.9 [10.0-11.7]	
	Patients, n:					IQR:13.1 [11.7-14.6]	
	394 (original sample also				Sensitivity, Specificity, AUC and NRI	NR	
	included 3 people of African- Caribbean			mGFR ≥60	Accuracy (P30) [95% CI]	93% [88-97]	
				ml/min/1.73m ²	Bias [95% CI]	4.3 [1.2 to 6.2]	
	ethnicity and 1				Precision [95% Cl])	RMSE: 11.1 [10.1-12.1]	
	amputee but					IQR:15.8 [13.0-18.7]	
	these were			mGFR <60	Accuracy (P30) [95% CI]	76% [70-81]	
	excluded).				Bias [95% CI]	0.6 [-0.7 to 2.3]	
	Subgroups: eGFR <60: n=234				Precision [95% CI])	RMSE: 10.7 [9.5-11.8]	
						IQR:11.7 [9.8-13.6]	
	eGFR ≥60; n=160		$CKD\operatorname{-EPI}_{cys}$ (cystatin C	Accuracy (P30) [95% CI]	86% [82-89]		
			based equation)	Bias [95% CI]	-1.2 [-2.2 to 0]		
					Precision [95% CI]	RMSE:10.5[9.6-11.4]	
						IQR:14.2 [12.5-15.9]	

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
					Sensitivity, Specificity, AUC and NRI	NR	
				mGFR ≥60	Accuracy (P30) [95% CI]	91% [86-95]	
				ml/min/1.73m ²	Bias [95% CI]	3.4 [0.7 to 6.5]	
					Precision [95% CI])	RMSE: 12.2 [10.4-13.7] IQR: 14.4 [11.9-16.8]	
				mGFR <60	Accuracy (P30) [95% CI]	82% [77-87]	
				Bias [95% CI]	-2.9 [-3.7 to -1.9]		
					Precision [95% CI])	RMSE:9.2 [8.2-10.2] IQR:10.7 [8.1-13.2]	
				CKD-EPI _{cr-cys}	Accuracy (P30) [95% CI]	86% [82-90]	
				(creatinine and cystatin C based	Bias [95% CI]	0.8 [-0.4 to +1.9]	
				equation)	Precision [95% CI]	RMSE:9.8 [9.0-10.5]	
						IQR:12.7 [11.5-13.9]	
					Sensitivity, Specificity, AUC and NRI	NR	
				mGFR ≥60	Accuracy (P30) [95% CI]	94% [90-97]	
				ml/min/1.73m ²	Bias [95% CI]	4.8 [2.1 to 6.8]	

Study and	Population	Serum creatinine (SCr)/ Cystatin C calibration and	Measured	GFR estimation equation and	Outcomes		Limitations/
Country		assay detail	GFR	subgroups	Outcome measure	Effect size	Comments
					Precision [95% Cl])	RMSE: 11.0 [9.8-12.1]	
					IQR: 13.3 [9.6-17.1]		
				mGFR <60	Accuracy (P30) [95% CI]	81% [75-86]	
					Bias [95% CI]	-1.6 [-2.8 to -0.2]	
				Precision [95% CI])	RMSE: 8.9 [7.8-9.8]		
						IQR: 10.3 [8.4-12.2]	

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

Table 22: KONG2013

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
Kong et al 2013 ³⁵⁰	Prospective cohort enrolled	Jaffe kinetic method calibrated	Reference standard:	MDRD 175 x S _{Cr} - ^{1.154} x (age) ⁻	Accuracy (P30) [95% CI]	69.8 (95% Cl not reported)	Cohort included healthy
Country: China	from nine renal institutes of tertiary hospitals	using traceable high-level isotope dilution mass	^{99m} Tc- diethylenetria mine	^{0.203} x 0.742 [if female]	Bias [95% CI] (defined as the mean difference [eGFR-mGFR])	-5.49 [-6.57 to -4.23]	volunteers. Chinese
	located in different geographic	spectrometry reference Scr.	pentaacetic acid (DTPA) plasma		Precision [95% Cl] (defined IQR [mGFR- eGFR])	23.4 (95% Cl not reported)	population only. 720 participants

		Serum creatinine			Outcomes		Limitations/ Comments
Study and Country	Population		Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	
	regions of China. 51% women, 3.8% diabetic nephropathy,		clearance. Mean (SD) ml/min/1.73 m ² : Total study population: 68.3 (37)		Sensitivity, Specificity and Area under the curve (AUC)	NR	wit CKD underwent GFR measurement and 38 outliers
	Mean age (SD): 48 (16).				Net Reclassification Index (NRI)	NR	were deleted.
	Excluded people with AKI, RRT, severe oedema,			(scr/ 62) ^{-1.209} x $(scr/ 62)^{-1.209} x$	Accuracy (P30) [95% CI]	73.4 (95% Cl not reported)	
	skeletal muscle atrophy, pleural effusion or	People with CKD:	CKD:		Bias [95% CI] (defined as the median difference [eGFR-mGFR])	-0.44 [-1.57 to -0.69]	
	ascites, malnutrition,		55.3 (35)		Precision [95% CI]	20.5 (95% Cl not reported)	
	amputation, heart failure, ketoacidosis, or taking		volunteers: 98.4 (21)		Sensitivity (in predicting CKD stages 3-5) [95% CI]	87.9% (95% Cl not reported)	
	cimetidine.				Specificity (in predicting CKD stages 3-5) [95% CI]	91.6% (95% Cl not reported)	
	Patients , n: 977 (682 [70%] with CKD and 295 healthy				Area under the curve (AUC) and Net Reclassification Index (NRI)	NR	

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations, Comments
	volunteers)			CKD Stage 1	Accuracy (P30)	89.6	
	Subgroups:				Bias [95% CI]	-15.7 [-18.4 to -13.0]	
	CKD Stage 1 n=125				Precision [95% CI]	20.5	
	CKD Stage 2				Sensitivity [95% CI]	60.0	
	n=161				Specificity [95% CI]	93.7	
	CKD Stage 3			CKD Stage 2	Accuracy (P30)	84.5	
	n=197				Bias [95% CI]	2.0 [-6.0 to 4.5]	
	CKD Stage 4				Precision [95% CI]	24.1	
	n=101 CKD Stage 5				Sensitivity [95% CI]	63.4	
	n=98				Specificity [95% CI]	81.2	
				CKD Stage 3	Accuracy (P30)	68.0	
					Bias [95% CI]	6.5 [4.8 to 8.2]	
					Precision [95% CI]	15.1	
					Sensitivity [95% CI]	71.1	
					Specificity [95% CI]	86.6	
				CKD Stage 4	Accuracy (P30)	54.5	
					Bias [95% CI]	5.5 [3.8 to 7.3]	
					Precision [95% CI]	10.3	
				Sensitivity [95% CI]	51.5		
					Specificity [95% CI]	94.5	
				CKD Stage 5	Accuracy (P30)	49.0	

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
					Bias [95% CI]	3.0 [1.9 to 4.1]	
					Precision [95% CI]	6.7	
					Sensitivity [95% CI]	73.5	
					Specificity [95% CI]	98.1	

Table 23: KOPPE2013

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
Koppe et al 2013 ³⁵²	People aged 70 years or older	Creatinine assyas were carried out	Reference standard:	MDRD	Accuracy (P30) [95% CI]	70.7% [95% Cl not reported]	All European ancestry so no
Country: France	referred to a single centre for inulin clearance for suspected or	using an enzymatic method (Roche, France) with calibratiors defined	Inulin Mean (SD) ml/min		Bias [95% CI] (defined as the median difference [eGFR-mGFR])	5.8 [95% Cl not reported]	analysis on other ethnicities.
	established renal dysfunction. No exclusions mentioned in study. Mean age	by isotope dilutaion mass spectrometry in the same laboratory.	/1.73m²: 41.3 (range 10.0-88.9)		Precision [95% CI] (defined as RMSE of differences eGFR-mGFR)	RMSE: 14.9 [95% Cl not reported]	Also reports outcomes for age 70-75 years (n=128), 76-80 years (n=70)
	75.3 (range 70- 88.4) years; 43%				Sensitivity, Specificity, AUC and NRI	NR	and >80 years

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
	female; 22% diabetes.			CKD-EPI _{cr} (creatinine based equation)	Accuracy (P30) [95% CI]	72.0% [95% Cl not reported]	(n=26).
	Patients, n:				Bias [95% CI]	5.4 [95% Cl not reported]	Also reports outcomes for BIS-1 serum creatinine equation (not in protocol for this
	224				Precision [95% CI])	RMSE: 12.8 [95% Cl not reported]	
					Sensitivity, Specificity, AUC and NRI	NR	review)

Table 24: LEVEY2009 (STEVENS2010)

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
Levey et al 2009 ³⁷⁹ Stevens et al 2010 ⁶⁵²	External validation data set from 16 studies. 45% women, 28%	Roche enzymatic method (Roche– Hitachi P-Module with Roche Creatininase Plus	Reference standard: ¹²⁵ l- iothalamate (urine) and others	MDRD	Accuracy (P30) [95% CI] Bias* [95% CI] (defined as the median difference [eGFR- mGFR])	80.6 [79.5-82.0] -5.5 [-5.9 to -5.0]	Bias for CKD EPI differs between Levey and Stevens ?reason

		Serum creatinine	GFR estimation Measured equation and GFR subgroups	Outcomes			
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail		equation and	Outcome measure	Effect size	Limitations/ Comments
USA bla (Si 16 dc kid	diabetic, 10% black, Mean age (SD): 50 (15). 16% kidney donors and 29% kidney transplant recipients	assay) recalibrated to standardized SCr at the Cleveland Clinic.	Mean (SD) ml/min/1.73 m ² : 68 (36)		Precision [95% CI] (defined as as the root mean square error (RMSE) for the regression of estimated GFR on measured GFR) and IQR [mGFR-eGFR]	RMSE: 0.274 [0.265- 0.283] IQR:18.3 [17.4-19.3]	Stevens et al also reports bias at different eGFR levels (including due to race at these levels).
	Patients , n: 3896				Sensitivity, Specificity Area under the curve (AUC)	NR	Cohort included kidney donors
	Subgroups:				Net Reclassification Index (NRI)	NR	and kidney transplant recipients. *Bias reported as median difference [mGFR-eGFR];
	GFR <60 n=1852			eGFR <60	Accuracy (P30)	77.2 [75.5-79.0]	
	GFR ≥60 n=1473				Bias [95% CI]	-3.4 [-4.0 to -2.9]	
	Black n=384 White/other n=3512				Precision [95% CI]	RMSE: 0.294 [0.280- 0.308] IQR: 12.9 [12.0-13.6]	
					Sensitivity [95% CI]	95%	median
					Specificity [95% CI]	82%	difference [eGFR-mGFR]
			eGFR ≥60	Accuracy (P30)	84.7 [83.0-86.3]	calculated by	
					Bias [95% CI]	-10.6 [-11.3 to -9.8]	NCGC.
				Precision [95% CI]	RMSE: 0.248 [0.238- 0.258]		

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
						IQR: 25.7 [24.4-27.1]	
				Black	Bias [95% CI])	-0.3	
					No other outcomes repor	ted for this subgroup.	
				White/ other	Bias [95% CI]	-6.0	
					No other outcomes repor	ted for this subgroup.	
			CKD-EPI (serum	Accuracy (P30) [95% CI]	84.1 [83.0-85.3]		
			creatinine)	Bias [95% CI] (defined as the median difference [eGFR-mGFR])	-2.5 [-2.9 to -2.1]		
				Precision [95% CI]	RMSE: 0.250 [0.241- 0.259] IQR: 16.6 [15.9-17.3]		
					Sensitivity, Specificity Area under the curve (AUC)	NR	
					Net Reclassification Index (NRI)	NR	
				eGFR <60	Accuracy (P30)	79.9 [78.1-81.7]	
				Bias [95% CI]	-2.1 [-2.4 to -1.7]		
					Precision [95% CI]	RMSE: 0.284 [0.270- 0.298]	
						IQR: 11.3 [10.7-12.1]	

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
					Sensitivity [95% CI]	91%	
					Specificity [95% CI]	87%	
				eGFR ≥60	Accuracy (P30)	88.3 [86.9-89.7]	
					Bias (median percentage difference)	-3.5 [-4.5 to -2.6]	
					Precision [95% CI]	RMSE: 0.213 [0.203- 0.233] IQR: 24.2 [22.8-25.3]	
				Black	Bias [95% CI]	1.1	
					No other outcomes report	ted for this subgroup	
				White/other	Bias [95% CI]	-2.5	
					No other outcomes report	ted for this subgroup	

Table 25: MICHELS2010

		Serum creatinine			Outcomes		
Study and	Population	(SCr)/ Cystatin C calibration and	Measured	GFR estimation equation and			Limitations/
Country		assay detail	GFR	subgroups	Outcome measure	Effect size	Comments
Michels et al 2010 ⁴⁵¹	Potential kidney donors and adult	Plasma creatinine measured with	Reference standard: ¹²⁵ I-	Abbreviated MDRD 175 x $S_{Cr}^{-1.154}$ x (age) ^{-0.203} x 0.742 [if	Accuracy (P30) [95% CI]	81.2%	Plasma creatinine and
Country:	patients who	IDMS-validated	iothalamate	female] x 1.210 [if black]	Bias [95% CI]	14.6ml/min	GFR

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
The underwent a GFR Netherlan measurement for ds clinical reasons; measured GFR at least 15 ml/min. 56% female, mean (SD) age 44.3 (14.5); 12% black Patients, n:	measurement for	enzymatic assay on automated analyser (Hitachi	m Mean (SD) ml/min/1.73		(defined as the mean difference [eGFR-mGFR])		measurement no on the same day for most
	least 15 ml/min. 56% female, mean (SD) age 44.3 (14.5); 12%	red GFR at H911, Boehringer m ² : 5 ml/min. Mannheim, 72.6 (30.4) male, Mannheim, ml/min/1.73 SD) age Germany). m ²	m²: 72.6 (30.4) ml/min/1.73		Precision [95% CI] (defined as SD of differences eGFR- mGFR)	19.9	patients (but patients found to be stable); Small single centre study;
				Sensitivity, Specificity, AUC and NRI	NR 65% patients classified correctly	178 patients excluded because no height	
	271	1		CKD-EPI female and sCr ≤0.7: (sCr/0.7) ⁻	Accuracy (P30) [95% CI]	84.5%	measurement.
				^{0.329} x 0.993 ^{age} x 144 [if white or other] or x 166 [if black];	Bias [95% CI]	12.3ml/min	
				female and sCr >0.7: (sCr/0.7) ⁻ ^{1.209} x 0.993 ^{age} x 144 [if white or other] or x 166 [if black];	Precision [95% CI]	12.1	
				male and sCr ≤0.9: (sCr/0.9) [–] ^{0.411} x 0.993 ^{age} x 141 [if white or other] or x 163 [if black]; and male and sCr >0.9: (sCr/ 0.9) ^{–1.209} x 0.993 ^{age} x 141 [if white or other] or x 163 [if black]	Sensitivity, Specificity, AUC and NRI	NR 69% patients classified correctly	

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
Murata et	All patients	Creatinine	Reference	MDRD (not further	Accuracy (P30) [95% CI]	77.6%	Too few non-
al 2011 ⁴⁶²	undergoing iothalamate	measured using IDMS-traceable	standard : Non- radiolabelled	defined)	Bias [95% CI] defined as	-4.1	Caucasian
Country: USA	clearance	Roche enzymatic	iothalamate		difference in mean		people to assess effect of
USA	(clinical	method.	clearance;		eGFR-mGFR		ethnicity.
	indications were		concentrations		Precision [95% CI]	NR	
	potential kidney		measured using			INK	1375/5238
	donor, post- nephrectomy		capillary electrophoresis		Sensitivity [95% CI]	potential kidney donor	(26%) kidney
	kidney donor,		on a Beckman		(threshold mGFR <60)	(no known CKD) 70%	transplant recipients.
	native chronic		MDQ analyser		n=10/583 (2%)		recipients.
	kidney disease,				Specificity [95% CI]	potential kidney donor	
	kidney transplant recipient		Mean (SD)		(threshold mGFR <60)	(no known CKD) 94%	
	(n=1375), non-		ml/min/1.73m ²		Sensitivity [95% CI]	potential kidney donor	
	kidney organ		55.9 (29.7)		(threshold mGFR <80)	(no known CKD) 89%	
	transplant				n=97/583 (17%)	notontial kidnov donor	
	recipient; excluded <18	Mean for	Mean for		Specificity [95% CI] (threshold mGFR <80)	potential kidney donor (no known CKD) 48%	
	years; kidney		potential kidney donors subgroup:		Area under the curve	NR	
	assessment for				(AUC) and Net		
	dosing, 9	99ml/min/1.73		Reclassification Index			
	paraplegic or		m ²		(NRI)	70.40/	
				CKD-EPI (sCr, not	Accuracy (P30) [95% CI]	78.4%	

Table 26: MURATA2011

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
	quadriplegic,			further defined)	Bias [95% CI]	-0.7	
	neurogenic bladder, dialysis				Precision [95% CI]	NR	
	patients, amputees. Mean (SD) age 56.1				Sensitivity [95% Cl] (threshold mGFR <60) n=10/583 (2%)	potential kidney donor (no known CKD) 50%	
	(14.8); 89% Caucasian, 2%				Specificity [95% CI] (threshold mGFR <60)	potential kidney donor (no known CKD) 98%	
	African-American				Sensitivity [95% CI] (threshold mGFR <80)	potential kidney donor (no known CKD) 71%	
	Patients, n:				n=97/583 (17%)		
	5238				Specificity [95% CI] (threshold mGFR <80)	potential kidney donor (no known CKD) 76%	
					Area under the curve (AUC) and Net Reclassification Index (NRI)	NR	

Table 27: NYMAN2011

		Serum creatinine			Outcomes		
		(SCr)/ Cystatin C		GFR estimation			
Study and	Population	calibration and	Measured	equation and			Limitations/
Country		assay detail	GFR	subgroups	Outcome measure	Effect size	Comments
Nyman et	External	Creatinine	Reference	MDRD 175 x (sCr/	Accuracy (P30) [95% CI]	79.9 [77.2 to 82.6]	95% Cl not

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
al 2011 ⁴⁹⁴ Country : Sweden	l 2011 ⁴⁹⁴ validation; country: consecutive	measured using IDMS-traceable assay. (Roche enzymatic at Lund Hospital and Beckman modified Jaffe at Malmo Hospital)	standard: lohexol clearance Mean (SD) ml/min/1.73 m ² : Median (2.5 and 97.5 percentiles) 55 (9-121))	88.4) ^{-1.154} x age ^{-0.203} x 0.742 [if female] x 1.210 [if African- American]	Bias [95% CI] (defined as the median difference [eGFR-mGFR] and median percentage difference) Precision [95% CI] (defined as IQR of differences eGFR-mGFR) Sensitivity, Specificity, Area under the curve (AUC)	1.2 [0.5 to 2.1] ml/min/1.73m ² and - 3.4% [1.3 to -5.5] 13.8 [12.4 to 14.9] ml/min/1.73m ² NR	reported for subgroups. Bias and P30 also reported for GFR <15; 15- 29; <30 and ≥90 and age 18-29, 30-39, 40-49, 50-59, 60-69, 70-79.
	44% female; 100% Caucasian Patients , n: 850				Net Reclassification Index (NRI)	Overall 66.9% patients classified correctly, performed best at 30-59 ml/min/1.73m ² where 74% classified correctly	P10 also reported overall and for all GFR subgroups.
	Subgroups:			GFR 60- 89ml/min/1.73m ²	Accuracy (P30) Bias	87.2% 1.3 ml/min/1.73m ² and	
	GFR 60-89 n=219 GFR 30-59 n=232			GFR 30- 59ml/min/1.73m ²	Accuracy (P30) Bias	1.7% 83.6% 2.4 ml/min/1.73m ² and	
	Age >80 n=64			Age ≥ 80 years	Accuracy (P30) Bias (median	4.9% 71.9% 17.7%	

ועמנוטחמו כווחוכמו שעומפווחפ כפחנרפ 2014

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
				CKD-EPI (for white or other non-black): female and sCr $\leq 62\mu$ mol/L: 144 x (sCr/ 62) ^{-0.329} x 0.993 ^{age} ; female and sCr >62 μ mol/L: 144 x (sCr/ 62) ^{-1.209} x 0.993 ^{age} ; male and sCr $\leq 80\mu$ mol/L: 141 x (sCr/ 80) ^{-0.411} x 0.993 ^{age} ; and male and sCr >80 μ mol/L: 141 x (sCr/ 80) ^{-1.209} x 0.993 ^{age}	percentage difference) Accuracy (P30) [95% CI] Bias [95% CI] (defined as the median difference [eGFR-mGFR] and median percentage difference) Precision [95% CI] Sensitivity, Specificity, AUC Net Reclassification Index (NRI)	79.5 [76.8 to 82.2] 2.3 [1.4 to 3.2] ml/min/1.73m ² and 5.4% [3.9 to 7.9] 13.5 [12.1 to 14.8] ml/min/1.73m ² NR Overall 67.8% patients classified correctly, performed best at >90ml/min/1.73m ² where 78.5% classified correctly and <15 ml/min/1.73m ² where 75.5% classified correctly.	
				GFR 60- 89ml/min/1.73m ²	Accuracy (P30) Bias	84.5% 6.5 ml/min/1.73m ² and	
				GFR 30-	Accuracy (P30)	8.6% 75.0%	

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
				59ml/min/1.73m ²	Bias	4.2 ml/min/1.73m ² and 9.3%	
				Age ≥ 80 years	Accuracy (P30)	82.8%	
					Bias (median percentage difference)	7.6%	

Table 28: SCHAEFFNER2012

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
Schaeffne	Age 70 or older;	Serum creatinine	Reference	MDRD: 175 x creat	Accuracy (P30) [95% CI]	70.9%	Note results for
r et al 2012 ⁶¹² Country:	German statutory health insurance; living	measured using IDMS traceable enzymatic	standard: Iohexol clearance	^{1.154} x age ^{-0.203} x 0.742 [if female]	Bias [95% CI] (defined as the median difference [eGFR-mGFR])	11.29	MDRD and CKD- EPI only reported for
Germany	in Berlin; excluded if receiving dialysis or kidney transplant. All white, mean age	method; cystatin C measured by particle- enhanced nephelometric assay using BN	Mean (SD) ml/min/1.73m ² : mean 60.3		Precision [95% CI] (defined as IQR of difference [eGFR- mGFR])	13.8	validation sample (n=285). Not random sample of participants;
	78.5 years, 42.8% female, 21.4%	Prospec analyser (Siemens	(range 15.5- 116.7)		Sensitivity,	53.0% (calculated by NCGC)	only white

ואמווטוזמו כוווזוכמו שמומפווזופ כפוונרפ לסדל

Study and Population (SCr)/ Cystatin C GFR estimation calibration and equation and	
Country assay detail Measured GFR subgroups Outcome measure Effect size	Limitations/ ze Comments
diabetes.Healthcare Diagnostics, formerly Dade- Behring, 	calculated by participants with mild to moderate reductions in kidney function so not necessarily generalisable to other ethnicities or to patients with more severe kidney dysfunction. BIS 2 excluded as not externally validated equation.

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
						≥60ml/min	
				CKD EPI Cystatin C	Accuracy (P30) [95% CI]	NR	
				(CysC1): 76.7 x cystatin	Bias [95% CI]	8.71	
				CKD EPI cystatin C	Precision [95% CI], Sensitivity, Specificity, AUC, NRI	NR	
				CKD EPI cystatin C	Accuracy (P30) [95% CI]	89.1%	
				(CysC2): 127.7 x cystatin	Bias [95% CI]	1.92	
				C ^{-1.17} x age ^{-0.13} x 0.91 [if female]	Precision [95% CI]	11.8	
				lemalej	Sensitivity	79.1% (calculated by NCGC)	
					Specificity	90.0% (calculated by NCGC)	
					AUC	NR	
					NRI	Overall 43 patients (15.1%) misclassified, 15 (9.9%) wrongly considered <60ml/min and 28 (20.9%) ≥60ml/min	

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטב4

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
				CKD EPI combined	Accuracy (P30) [95% CI]	81.4%	
				sCr and Cystatin C: 177.6 x creat ^{-0.65} x	Bias [95% CI]	7.66	
				cystatin C ^{-0.57} x	Precision [95% CI]	11.0	
				age ^{-0.20} x 0.82 [if	Sensitivity	59.7% (calculated)	
				female]	Specificity	97.4% (calculated)	
					AUC	NR	
					NRI	Overall 58 patients (20.4%) misclassified, 4 (2.6%) wrongly considered <60ml/min and 54 (40.3%) ≥60ml/min	

Table 29: STEVENS2008

		Serum creatinine			Outcomes		
		(SCr)/ Cystatin C		GFR estimation			
Study and	Population	calibration and	Measured	equation and			Limitations/
Country		assay detail	GFR	subgroups	Outcome measure	Effect size	Comments

		Serum creatinine	GFR estimation Measured equation and	Outcomes			
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail		equation and	Outcome measure	Effect size	Limitations/ Comments
al 2008 ⁶⁵¹ screened for 3 Country: chronic kidney USA, disease studies in France the USA (MDRD, African American	chronic kidney disease studies in the USA (MDRD, African American	recalibrated to standardized SCr at the Cleveland Clinic.	standard: ¹²⁵ iothalamat e in the USA studies and ⁵¹ Cr-EDTA in the France stud Mean (SD) ml/min/1.73 m ² : 48 (25)	to IDMS: 175 x creat ^{-1.154} x age ^{-0.203} x 0.742 [if female] x 1.212 [if black]	Bias* [95% CI] (defined as the median difference [eGFR-mGFR] and median percentage difference)	-2 (-3 to -2) ml/min/1.73m ² ; 8 (6 to 11)%	developed using 2/3 data from USA; internal validation using remaining 1/3
	Study of Kidney disease and hypertension [AASK], Captopril trial by the Collaborative Study Group				Precision [95% CI] (defined as RMSE [log scale] and IQR of differences eGFR-mGFR)	RMSE (95% CI) 0.231 (0.213 to 0.249) IQR (95% CI) 8 (7 to 9) ml/min/1.73m ² ; 24 (22- 27)%	USA data; external validation using Paris, France study. Study population composed
	[CSG]) and a clinical				Sensitivity, Specificity, AUC and NRI	NR	mainly of patients with
	population in Paris, France.			creatinine) female and sCr ≤ 0.7 : $(sCr/0.7)^{-0.329} x$ $0.993^{age} x 144$ [if white or other] or x	Accuracy (P30) [95% CI]	84% (83-85)	CKD. Racial subgroup analysis used whole data set i.e. not external validation. Only
	Total sample: Mean (SD) age				Bias [95% CI]	-2 (-3 to - 1)ml/min/1.73m ² and 7 (4-9)%	
	52 (13); 37% female; 53% black; 43% white; 4% other; 13% diabetes.				Precision [95% CI]	RMSE (95% CI) 0.229 (0.210 to 0.247) IQR (95% CI) 8 (7 to 9) ml/min/1.73m ² ; 25 (22- 29)%	1 external validation set used so results may not be generalisable to other

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
	External validation: Mean (SD) age 59 (15); 29% female; 8% black; 79% white; 13% other; 22% diabetes. Patients, n: Total sample n=3418	;e lack; 3%		166 [if black]; male and sCr ≤ 0.9 : (sCr/0.9) ^{-0.411} x 0.993 ^{age} x 141 [if white or other] or x 163 [if black]; and male and sCr >0.9: (sCr/0.9)-1.209 x 0.993age x 141 [if white or other] or x 163 [if black] White/ other	Sensitivity, Specificity, AUC and NRI Accuracy (P30) [95% CI] Bias [95% CI]	NR 85% 0 (-0.3 to +0.3)	populations. Cystatin C not standardised therefore not included in review. *Bias reported as median difference [mGFR-eGFR]; median difference [eGFR-mGFR]
	External validation n= 438 Internal					ml/min/1.73m ² ; 0.1 (- 0.9 to +1.0)%	calculated by NCGC.
	validation n=1045 Derivation n=				Precision [95% Cl]	RMSE 0.220 IQR 8.2 ml/min/1.73m ² ; 26.1%	
	2980			African-American	Accuracy (P30) [95% CI]	84%	
					Bias [95% CI]	0.1 (-0.3 to +0.7) ml/min/1.73m ² ; 0.4 (- 0.8 to +1.3)	
					Precision [95% CI]	RMSE log scale 0.232	

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
						IQR 13.7 ml/min/1.73m ² ; 27.6%	

Table 30: TEO 2011 (and TEO2012)

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
Teo et al	Patients with	Serum creatinine	Reference	IDMS traceable	Accuracy (P30) [95% CI]	79.7% (74.6-84.9)	Study
2011 ⁶⁶⁹ and Teo et al 2012 ⁶⁷⁰	stable CKD (<20% difference in creatinine >60 days apart); >21	measured using enzymatic method (creatininase) on	standard: ^{99m} Tc-DTPA Mean (SD)	MDRD: 175 x sCr ^{-1.154} x age ^{-0.203} x 0.742 [if female]	Bias [95% CI] (defined as the median difference [eGFR-mGFR])	-3.0 (-4.2 to -1.7)	population only patients with CKD, excluded kidney
Country : Singapore	years; serum creatinine level with eGFR or mGFR 10- 90ml/min;	the Siemens Advia 2400, calibrated to traceable IDMS.	ml/min/1.73m² : 51.7 (27.5)		Precision [95% CI] (defined as RMSE and IQR)	RMSE: 15.2 (12.1-18.3) IQR: 12.2 (10.0-14.4)	transplant patients and healthy individuals. Small single
	excluded if	Cystatin C			Sensitivity,	90.5%	centre study.
	unable to	measured by			Specificity	78.4%	
	consent, physical condition making	particle-			AUC and NRI	NR	Also reports 1
	phlebotomy	enhanced immunonephelo		eGFR <60	Accuracy (P30) [95% CI]	78.8% (72.4-85.1)	cystatin C and 2 combined sCr
	difficult, unable				Bias [95% CI]	-2.4 (-3.7 to -1.1)	

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
	to collect urine samples successfully,	metry on a BN Prospec platform (Dade Behring).			Precision [95% CI]	RMSE: 12.6 (8.5-16.6) IQR: 9.2 (7.0-11.4)	and cystatin C equations with Chinese
	acute kidney			eGFR >60	Accuracy (P30) [95% CI]	81.9% (73.1-90.8)	coefficients.
	function				Bias [95% CI]	-5.3 (-9.5 to -1.2)	
	deterioration, amputation,				Precision [95% CI]	RMSE: 19.8 (14.9-24.8) IQR: 18.3 (10.3-26.4)	Also reports outcomes for Malay and Indian/other subgroups
	oedema, pleural effusion, ascites, skeletal muscle			CKD-EPI: 141 x min(Scr/ κ , 1) ^{α} x max(Scr/ κ , 1) ^{-1.209} x 0.993 ^{Age} x 1.018 [if female] ml/min/1.73m ² where κ =0.7 for women and 0.9 for men, α is -0.329 for women and -0.411 for men,	Accuracy (P30) [95% CI]	82.8 (77.9-87.6)	
	atrophy, condition interfering with				Bias [95% CI]	-1.2 (-2.7 to +0.3) Chinese: -2.2 (-4.0 to - 0.5)	
	GFR measurement. Mean (SD) age 58.4 (12.8); 48% female; 40.5% Chinese; 32%				Precision [95% Cl]	RMSE: 13.8 (11.3-16.4) IQR: 12.1 (9.0-15.1) Chinese: RMSE: 13.1 (9.3-16.9); IQR 13.0 (8.4-17.6)	
	Malay; 27.5%			"min" indicates the	Sensitivity	88.6%	
	Indian/ other			minimum of Scr/κ or 1 and "max" is the	Specificity	85.1%	
	Patients, n:			maximum of Scr/κ or 1.	AUC and NRI	NR	
	232			eGFR <60	Accuracy (P30) [95% CI]	78.8% (72.4-85.1)	
					Bias [95% CI]	-1.5 (-2.8 to -0.1)	

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
	Subgroups:				Precision [95% CI]	RMSE: 12.9 (9.6-16.10	
	eGFR <60: n=160					IQR: 9.3 (7.0-11.6)	
	eGFR >60: n=72			eGFR >60	Accuracy (P30) [95% CI]	91.7% (85.3-98.1)	
					Bias [95% CI]	0.9 (-4.1 to 5.9)	
	Chinese: n=94		(eGFR1): 0.105 + 1		Precision [95% CI]	RMSE: 15.8 (11.8- 19.8) IQR: 22.0 (16.7-27.2)	
				CKD EPI cystatin C	Accuracy (P30) [95% CI]	86.6% (82.2-91.1)	
				(eGFR1): 76.7 x (- 0.105 + 1.13 x		Chinese: 90.4 (84.6- 96.3)	
				cystatin C) ^{-1.19} ml/min/1.73m ²	Bias [95% CI]	-0.4 (-2.3 to +1.4)	
				111/1111/1.7511		Chinese:-1.3 (-3.3 to	
						+0.7)	
					Precision [95% CI]	RMSE: 15.2 (11.6-18.7)	
						IQR: 11.8 (9.7-13.8)	
						Chinese: RMSE: 16.3	
						(10.5-22.2); IQR: 11.7 (7.6-15.8))	
					Sensitivity, Specificity, AUC and NRI	NR	
				CKD EPI cystatin C	Accuracy (P30) [95% CI]	87.1% (82.8-91.4)	
				(eGFR2): 127.7 x (-		Chinese: 92.6 (87.1-	
				0.105 + 1.13 x		98.0)	

		Serum creatinine			Outcomes		
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	Effect size	Limitations/ Comments
	cystatin C) ^{-1.17} x age ^{-0.13} x 0.91 [if female] x 1.06 [if black]	Bias [95% CI]	-2.7 (-3.9 to -1.6) Chinese: -3.3 (-4.9 to - 1.7)				
				black] ml/min/1.73m ² S	Precision [95% Cl]	RMSE: 14.3 (11.1-17.5) IQR: 10.6 (8.6-12.6) Chinese: RMSE: 14.6 (9.4-19.7); IQR: 11.2 (8.2-14.2)	
			Sensitivity, Specificity, AUC and NRI	NR			
				Accuracy (P30) [95% CI]	88.4% (84.2-92.6) Chinese: 88.3 (81.8- 94.8)		
				x sCr ^{-0.65} x (-0.105 + 1.13 x cystatin C) ^{-0.57} x	Bias [95% CI]	-1.6 (-2.7 to -0.4) Chinese: -2.5 (-4.1 to - 0.8)	
					Precision [95% CI]	RMSE: 13.6 (10.7-16.5) IQR: 10.5 (8.1-12.8) Chinese: RMSE: 13.8 (8.8-18.8)); IQR: 9.0 (6.2-11.8)	
					Sensitivity, Specificity,	NR	

		Serum creatinine			Outcomes				
Study and Country	Population	(SCr)/ Cystatin C calibration and assay detail	Measured GFR	GFR estimation equation and subgroups	Outcome measure	re E	ffect size		Limitations Comments
country		ussay actain			AUC and NRI				connents
	rs of kidney	damage							
	r s of kidney Peralta 2011	damage							

Reference	Study type	Number of patients	Patient characteristic s	Markers and Covariates	Prognostic factors	Effect size	Comments
Peralta CA, Shlipak MG, Judd S, Cushman M, McClellan W, Zakai NA et al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin- to-creatinine ratio and association with progression to	Prospectiv e cohort <u>Country:</u> USA	N= 26 643, USA (REGARDS) Reasons for Geographic and Racial Differences in Stroke Inclusion criteria: black and white participants ≥ 45 yrs,	See table below	ACR alone n=2485 Cystatin C alone n=963 ACR+ Cystatin C n=415 Creatinine alone n=701 Creatinine + ACR n=148 Creatinine + Cystatin C n=1172 All measures n=883 <u>Covariates:</u> Mortality associated with cystatin C, estimated glomerular filtration rate, and albuminuria Estimated GFR creatinine ≥ 60	See table belo	w	Source of funding: National Institute of Neurological disorders and Stroke, National Institute of Health, Dept of Health and Human Services. Amgen Corp Blood was collected from participants during an in- home examination after a 12 hr fast. Serum creatinine was measured and calibrated to isotope dilution mass spectrometry

end-stage renal disease and mortality. JAMA. 2011; 305(15):1545- 1552. (Guideline Ref ID PERALTA2011)	free of cancerand, at thetime of theinitialtelephone callwere able toanswer thequestions andwere not livingin an assistedliving home.Exclusioncriteria:Participantswho weremissingbaseline datafor serumcreatinine,cystatin C,or urinealbumin andcreatinine.Thosereceivingdialysis or hadreceived arenaltransplant atstudy entry.	 ml/min/1.73m² (i) Adjusts for age, race, income and educational attainment (ii) Adjusts for the above plus hypertension, diabetes, prevalent cardiovascular disease, smoking status and BMI Risk of death and end-stage renal disease associated with CKD stage 3 estimated by eGFR using creatinine and cystatin c (stage 3 defined as eGFR < 60 ml/min/1.73²) using CKD-EPI equations. All-cause mortality over 4.6 yr (i) Mortality model adjusts for age, race, sex, income, education attainment, hypertension and diabetes (ii) As above plus hypertension, diabetes, prevalent cardiovascular disease, smoking status, BMI, waist circumference and log albumin-to-creatinine ratio End-stage renal disease over 4.6 yr (i) Model adjusts for age, race, sex, hypertension and diabetes (ii) As above plus log albumin-to-creatinine ratio 	traceable methods. Cystatin C was measured by particle-enhanced immunonephelometry. Urine albumin was measured by nephelometry, and urine creatinine by the Jaffe method using the modular- P chemistry analyser.
---	---	---	--

Length of	
follow up:	
Maximum 7	
yrs 4 mths	

Table 32: Effect sizes: Peralta 2011

Mortality : Estimated GFR creatinine \geq 60 ml/min/1.73m²

CKD defined by biomarkers	Total no. of patients	Total no. of deaths	Adjusted model 1* HR (95%CI)	Adjusted model 2**
No CKD all	19 876	863	1 (reference)	1 (reference)
ACR alone	2485	241	1.9 (1.6 to 2.2)	1.7 (1.4 to 1.9)
Cystatin C alone	963	173	2.5 (2.1 to 3.0)	2.2 (1.9 to 2.7)
ACR + Cystatin	415	106	3.9 (3.1 to 4.7)	3.0 (2.4 to 3.7)

* Adjusts for age, race, income and educational attainment

** Adjusts for the above plus hypertension, diabetes, prevalent cardiovascular disease, smoking status and BMI

Mortality : Estimated GFR creatinine < 60 ml/min/1.73m²

CKD defined by biomarkers	Total no. of patients	Total no. of deaths	Adjusted model 1* HR (95%CI)	Adjusted model 2**
Creatinine alone	701	32	1 (reference)	1 (reference)
Creatinine + ACR	148	27	3.7 (2.2 to 6.2)	3.3 (2.0 to 5.6)
Creatinine + Cystatin C	1172	223	3.5 (2.4 to 5.1)	3.2 (2.2 to 4.7)
All biomarkers	883	276	6.6 (4.6 to 9.6)	5.6 (3.9 to 8.2)

* Adjusts for age, race, income and educational attainment

** Adjusts for the above plus hypertension, diabetes, prevalent cardiovascular disease, smoking status and BMI

Risk of death and end-stage renal disease associated with CKD stage 3 estimated by eGFR using creatinine and cystatin c (stage 3 defined as eGFR < 60 ml/min/1.732)

All-cause mortality over 4.6 yr

Biomarker measures, estimated GFR ml/min/1.73 ²	No. of participants	No. of events	Rates per 1000 person- years	Adjusted model*	Adjusted model**
Creatinine + Cystatin C≥ 60	22 361	1104	10.9 (10.9 to 11.0)	1 (reference)	1 (reference)

ואמנוטוזמו כווחוכמו שטומפווחפ כפחנרפ 2014

Creatinine alone < 60	849	59	15.4 (14.9 to 15.9)	1.0 (0.7 to 1.2)	0.9 (0.7 to 1.1)
Cystatin C alone < 60	1378	278	47.0 (45.8 to 48.2)	2.6 (2.2 to 2.9)	2.1 (1.9 to 2.5)
Creatinine + cystatin C <	2055	799	57.8 (56.6 to 59.1)	2.8 (2.5 to 3.1)	2.1 (1.9 to 2.4)
60					

* Mortality model adjusts for age, race, sex, income, education attainment, hypertension and diabetes

** As above plus hypertension, diabetes, prevalent cardiovascular disease, smoking status, BMI, waist circumference and log albumin-to-creatinine ratio

Risk of death and end-stage renal disease associated with CKD stage 3 estimated by eGFR using creatinine and cystatin c (stage 3 defined as eGFR < 60 ml/min/1.732)

End-stage renal disease over 4.6 yr

Biomarker measures, estimated GFR ml/min/1.73 ²	No. of participants	No. of events	Rates per 1000 person- years	Adjusted model*	Adjusted model**
Creatinine + Cystatin C≥ 60	22 361	17	0.2 (0.1 to 0.3)	1 (reference)	1 (reference)
Creatinine alone < 60	849	2	0.5 (0.1 to 2.2)	3.9 (0.9 to 16.9)	2.5 (0.6 to 10.9)
Cystatin C alone < 60	1378	14	2.2 (1.3 to 3.8)	12.6 (6.2 to 25.9)	5.8 (2.8 to 12.1)
Creatinine + cystatin C < 60	2055	144	15.8 (13.5 to 18.6)	90.5 (53.2 to 153.9)	26.1 (14.9 to 45.7)

* Model adjusts for age, race, sex, hypertension and diabetes

** As above plus log albumin-to-creatinine ratio

Table 33: Peralta 2011 Baseline characteristics

	No CKD (n=19 876)	ACR alone (n=2485)	Cystatin C alone (n=963)	ACR + cystatin C (n=415)	Creatinine alone (n=701)	Creatinine + ACR n=148	Creatinine + Cystatin C n=1172	All measures N=1172
Estimated GFR,								

	No CKD (n=19 876)	ACR alone (n=2485)	Cystatin C alone (n=963)	ACR + cystatin C (n=415)	Creatinine alone (n=701)	Creatinine + ACR n=148	Creatinine + Cystatin C n=1172	All measures N=1172
normal ≥ 60 ml/min/1.73 ²								
Creatinine	Normal	Normal	Normal	Normal	Abnormal	Abnormal	Abnormal	Abnormal
Cystatin	Normal	Normal	Abnormal	Abnormal	Normal	Normal	Abnormal	Abnormal
ACR, normal: < 30 mg/g	Normal	Abnormal	Normal	Abnormal	Normal	Abnormal	Normal	Abnormal
Age, mean (SD) y	63 (9)	65 (9)	70 (9)	69 (10)	71 (8)	79 (53)	74 (9)	71 (9)
Women %	55	52	50	43	62	53	57	46
Black %	38	52	34	46	39	55	34	50
Diabetes %	16	24	26	49	20	32	31	50
Hypertension %	52	38	73	82	71	82	83	87
Prevalent CVD %	17	73	33	44	27	32	41	47
Estimated GFR, median (IQR), ml/min/1.73 ²								
Cystatin C	92 (27)	87 (29)	55 (7)	54 (9)	70 (14)	67.7 (9)	48 (14)	41 (18)
Creatinine	91 (20)	91 (23)	71 (15)	71 (16)	55 (7)	55 (7)	49 (14)	43 (19)

Reference	Study type	Number of patients	Patient characteristics	Markers and Covariates	Prognostic factors	Effect sizes	Comments							
Peralta 2011B	Prospecti ve cohort <u>Country</u> : USA	N = 11909 (6749 from MESA and 5160 from CHS) <u>Inclusion</u> <u>criteria:</u> participants from the Multi- Ethnic Study of	Mean age: MESA: All: 62 GFR not decreased: 61 (10) Decreased GFRcreat + GFRcys:73 (8) CHS: All 72 ± 5 years	Markers: This study compares CKD classification by the estimated GFR values of creatinine (eGFRcreat) and cystatin C (eGFRcys) in ambulatory adults. All of the assays were performed in frozen	MESA (n)GFR not decreasedDecreased GFRcreat onlyDecreased GFRcyc onlyDecreased GFR bothCHS (n)GFR not decreasedDecreased GFRcreat onlyDecreased GFRcreat onlyDecreased GFRcreat only	5759 614 107 269 3639 605 227	Source of funding: Supported by contracts N01-HC- 95159 through N01- HC-95165 and N01-							
		Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS)	GFR not decreased: 72 (5) Decreased GFRcreat + GFRcys:76 (7) <u>M:F:</u> MESA:	(5) Decreased GFRcreat + GFRcys:76 (7) <u>M:F:</u>	(5) Decreased GFRcreat + GFRcys:76 (7) <u>M:F:</u>	(5) Decreased GFRcreat + GFRcys:76 (7) <u>M:F:</u>	(5) Decreased GFRcreat + GFRcys:76 (7) <u>M:F:</u>	(5) Decreased GFRcreat + GFRcys:76 (7) <u>M:F:</u>	(5) Decreased GFRcreat + GFRcys:76 (7) <u>M:F:</u>	(5) Decreased GFRcreat + GFRcys:76 (7) <u>M:F:</u>	5) serum specimens that were stored at -70°C. Cystatin C was measured by particle enhanced <u>A:F:</u> immunonephelometric	Decreased GFR both <u>All-cause mortality -MESA</u> n Decreased GFR _{creat} + GFR _{cys} (adjusted HR (95% CI))	689 223 1.93 (1.27, 2.92)	HC-95169 from the National Heart, Lung, and Blood
		MESA - recruited men and women (45- 84 yearrs) free of cardiovascular disease, and who self- identified as	GFR not decreased: 2738 (48%) men Decreased GFRcreat + GFRcys:132 (49%) men CHS: GFR not decreased: 1322 (38%) men Decreased GFRcreat +	assay with a nephelometer. Serum cystatin C was calibrated to Cleveland Clinic using internal standards supplied by the manufacturer to both sites. Serum creatinine was measured by a colorimetric method in	All-cause mortality -CHS <u>n</u> Decreased GFR _{creat} + GFR _{cys} (adjusted HR (95% Cl)) Cardiovascular disease (MI, cardiac arrest, stroke or cardiovascular death) -MESA n Decreased GFR _{creat} + GFR _{cys}	3345 1.74 (1.58, 1.93) 212 1.67 (1.06, 2.63)	Supported by contract numbers N01-HC- 85079 through							

Table 34: Peralta 2011B

Reference	Study type	Number of patients	Patient characteristics	Markers and Covariates	Prognostic factors	Effect sizes	Comments
		white, African American, Hispanic, or Chinese American. Between July CHS:	GFRcys:335 (49%) men <u>Ethnicity:</u> MESA: All = 39% white, 28% black, 12% Chinese, and 22% Hispanic Decreased GFRcreat +	CHS. In MESA, serum creatinine was measured by rate reflectance spectrophotometry using thin film adaptation of the creatine	(adjusted HR (95% CI)) <u>Cardiovascular disease - CHS</u> n Decreased GFR _{creat} + GFR _{cys} (adjusted HR (95% CI))	2249 1.46 (1.29, 1.65)	N01-HC- 85086, N01- HC-35129, N01 HC- 15103, N01 HC-55222, N01-HC-
		longitudinal study designed community- dwelling adults (≥ 65 yrs) <u>Exclusion</u> <u>criteria:</u> MESA: If they had physician	GFRcys: 40% white, 13% black, 28% Chinese, and 20% Hispanic CHS: All = white (84%) and 16% black. Decreased GFRcreat + GFRcys: white (84%) and 16% black.	amidinohydrolase method at the Collaborative Studies Clinical Laboratory at Fairview-University Medical Center. Serum creatinine was calibrated directly to Cleveland Clinic in MESA and indirectly in CHS. Estimated the GFR using	Heart failure - CHS (MESAN/R)nDecreased GFR _{creat} + GFR _{cys} (adjusted HR (95% CI))Kidney failure - CHS (MESAN/R)nDecreased GFR _{creat} + GFR _{cys} (adjusted HR (95% CI))	1407 1.43 (1.22, 1.67) 84 23.82 (12.68, 44.76)	75150, and N01-HC- 45133; grant number U01 HL080295 from the National Heart, Lung, and Blood Institute;
		diagnosed heart attack, angina, heart failure, stroke, transient ischemic attack, or atrial fibrillation; had undergone coronary artery bypass grafting,	CHS = Prevalent cardiovascular disease was present in 24% MESA = no prevalent cardiovascular disease at baseline <u>Hypertension:</u> MESA. Decreased	CKD-EPI creatinine equation and the CKD- EPI cystatin C equation without demographic coefficients: $eGFRcys =$ 76.7 x cystatin C ^{-1.19} . Both formulae were developed from the pooling of several cohorts with GFR	All-cause mortality - CHS (MESA N/R) n (events/n) eGFRcys ≥60 and alb/cr <30 (adjusted HR (95% CI)) n (events/n) eGFRcys ≥60 and alb/cr >30 (adjusted HR (95% CI))	71/170 1.00 (ref) 181/200 3.41 (2.54, 4.59)	with additional contribution s from the Nationa Institute of Neurologic Disorders and Stroke.

Reference	Study type	Number of patients	Patient characteristics	Markers and Covariates	Prognostic factors	Effect sizes	Comments
		angioplasty, valve replacement, or pacemaker; or weighed >300 lbs. CHS: Excluded if they were not expected to remain in the current community for 3 yrs or longer, were receiving treatment for cancer, or were unable to provide informed consent. The initial 5201 participants were enrolled from Jan 1989 to June 1990; an additional 687 black participants	GFRcreat + GFRcys: 80% CHS. Decreased GFRcreat + GFRcys: 66% Diabetes: MESA. Decreased GFRcreat + GFRcys: 26% CHS. Decreased GFRcreat + GFRcys: 20% <u>CKD:</u> In MESA, 9% had CKD by the creatinine- based equation only, 2% had CKD by the cystatin C-based equation only, and 4% had CKD by both equations; in CHS, these percentages were 12, 4, and 13%, respectively.	measured from iothalamate clearance. Urine albumin and creatinine were not available at baseline in CHS but were measured at year 7 in CHS using nephelometry. Decreased GFR refers to eGFR<60ml/min/ 1.73m ² Statistical analysis: Estimated the incidence rates of death and cardiovascular disease in MESA and CHS, and the rates of heart failure and kidney failure in CHS only. Using Cox proportional hazard models, they determined their association with the risks for death, cardiovascular events, incident heart failure,	(Adjusted for age, gender, race, diabetes, smoking, total cholesterol, body mass index, prevalent CVD, and C-reactive protein)		This work was also funded by the NIDDK Other outcomes: Limitations:

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

Reference	Study	Number of	Patient characteristics	Markers and Covariates	Prognostic factors	Effect sizes	Comments
	type	patients					
		were recruited		and kidney failure in			
		and enrolled by		separate models.			
		June 1993.		Adjusted for covariates			
		<u>Follow up:</u> MESA: mean 4.7 years CHS: 12.2 years		chosen a priori (listed below) as potential confounders of the association of eGFR <60 ml/min/1.73m ² with adverse outcomes.			
				<u>Covariates</u> : Adjusted for age, race, gender, diabetes, hypertension, LDL, HDL, CRP, and prevalent CVD for CHS (persons with baseline CVD were excluded for incident CVD analyses). Reference group is GFR not decreased.			

Table 35: Waheed 2012

Reference	Study type	Number of patients	Patient characteristics	Markers and Covariates	Prognostic factors	Effect sizes	Comments
Waheed	Prospecti	N = 9489	Mean age: 63 yrs	Markers:	Mortality	Adjusted Hazard	Source of

Reference	Study type	Number of patients	Patient characteristics	Markers and Covariates	Prognostic factors	Effect sizes	Comments
2012	ve cohort <u>Country</u> : USA	Subgroups: No CKD: n=7950 eGFRcreatinine only: n=219 ACR only: n=476 eGFR cystatin only: n= 476 eGFRcreatine and eGFRcystatin: n=185 eGFRcreatinine and ACR: n=24 eGFR cystatin and ACR: n=63 All 3 markers abnomal: n=96 Inclusion criteria: ARIC study of 15,792 participants, aged 45-64 years, recruited from 1987-	 a) eGFR_{creatinine}.+ eGFR_{cystatin}.:67.5 (4.7) b) eGFR_{creatinine} + ACR: 65.6 (5.5) c) eGFR_{cystatin}.+ ACR: 66.1 (5.3) d) All 3 markers: 66.8 (5.2) M:F: 58% female a) 63.2% b) 54.2 c) 47.6 d) 54.2 c) 47.6 d) 54.2 Ethnicity: 22% African American White: a) 84.3% b) 54.2% c) 76.2% d) 66.7% Hyp=rtension: 45% a) 74.1% b) 70.8% 	 eGFR_{creatinine}. Serum creatinine concentration was measured using a modified kinetic Jaffe method. The CKD-EPI creatinine equation was used to estimate eGFR_{creatinine} eGFR_{cystatin}. Plasma cystatin C concentration was measured byparticle- enhanced immunonephelometric assay from frozen stored samples. eGFR_{cystatin} calculated using CKD-EPI cycstatin C equation. Urinary albumin:creatinine ratio (ACR). Calculated from a random urine sample from urine albumin and urine creatinine concentrations. Jaffe method used to 	eGFR _{creatinine} + eGFR _{cystatin} . eGFR _{creatinine} + ACR eGFR _{cystatin} + ACR All 3 markers <u>Coronary heart disease</u> (a hospitalised definite or probable MI, fatal CHD or a coronary revascularization procedure). eGFR _{creatinine} + eGFR _{cystatin} . eGFR _{creatinine} + ACR eGFR _{cystatin} + ACR eGFR _{cystatin} + ACR All 3 markers <u>Heart failure</u> (Codes ICD9:428 and ICD10: I50) eGFR _{creatinine} + eGFR _{cystatin} . eGFR _{creatinine} + ACR eGFR _{creatinine} + ACR iCD9:428 and ICD10: I50) eGFR _{creatinine} + ACR eGFR _{cystatin} + ACR All 3 markers <u>AKI</u> (validated AKI events from hospital discharge diagnosis [ICD9: 584.5- 584.9, ICD10: N17.0-N17.9]. Also those with AKI on their death certificate.)	ratios (95% Cl) 1.86 (1.42, 2.44) 1.26 (0.52, 3.05) 2.47 (1.70, 3.61) 3.69 (2.79, 4.87) Adjusted Hazard ratios (95% Cl) 1.85 (1.35, 2.5) 1.03 (0.38, 2.76) 0.93 (0.49, 1.74) 3.01 (2.15, 4.20) Adjusted Hazard ratios (95% Cl) 2.00 (1.44, 2.80) 4.31 (2.28, 8.13) 3.25 (2.10, 5.03) 6.92 (5.14, 9.31) Adjusted Hazard ratios (95% Cl)	funding:The ARICstudy iscarried outas acollaborative studysupportedby NationalHeart, Lung,and bloodInstitutecontracts.SiemensHealthcareDiagnosticsprovidedthe reagentsand loan ofBNIIinstrumentto conductthe cystatinC assays.Otheroutcomes:Further

Reference	Study type	Number of patients	Patient characteristics	Markers and Covariates	Prognostic factors	Effect sizes	Comments
		1989. Exclusion criteria: Those with race other than African American and white (n = 31), those with missing data (n = 1302), and those with prevalent cardiovascular disease at baseline (n = 834) Follow up: Followed by annual telephone calls (response rate >90%) and 4 standardized examinations (n = 11,656) each approximately 3	 c) 81.0 d) 89.6% Diabetes: 15% a) 20% b) 50% c) 43.6% d) 39.6% CKD: 16.2% had CKD by any marker. 	measure urine creatinine, whereas urine albumin was measured using the nephelometric method. Statistical analysis: Divided cohort into: No CKD by any marker (eGFR _{creatinine} . \geq 60 and eGFR _{cystatin} . \geq 60 and ACR <30 [reference]) n = 7950 eGFR _{creatinine} .+ eGFR _{cystatin} . (Both.<60ml/min/1.73 m ²) n = 185 eGFR _{creatinine} . \neq 60ml/m in/1.73m ² and ACR \geq 30 mg/g) n = 24 eGFR _{cystatin} . \neq ACR (eGFR _{cystatin} . \neq ACR	eGFR _{creatinine} + eGFR _{cystatin} . eGFR _{cystatin} .+ ACR eGFR _{cystatin} .+ ACR All 3 markers <u>ESRD</u> (ICD9 or ICD10 codes for kidney transplant, dialysis, or procedural codes indicating dialysis. Also those with an earlier diagnosis of CKD who had an underlying cause of death being ARF on their death certificate) eGFR _{creatinine} .+ eGFR _{cystatin} . eGFR _{creatinine} + ACR eGFR _{cystatin} .+ ACR All 3 markers	3.90 (2.65, 5.74) 2.19 (0.70, 6.9) 3.96 (2.18, 7.18) 9.78 (6.63, 14.43) Adjusted Hazard ratios (95% Cl) 14.57 (6.75, 31.46) 8.91 (2.06, 38.49) 14.55 (5.38, 39.32) 125.98 (73.06, 217.22)	baseline characteristi c (cholesterol, BMI, smokers and individual marker levels) Single comparison of markers (hazard ratios). Limitations:

Reference	Study type	Number of patients	Patient characteristics	Markers and Covariates	Prognostic factors	Effect sizes	Comments
		years apart. Median follow up of 11.2 years		<u>Covariates</u> : All hazard ratios adjusted for age, race, sex, and total cholesterol, history of diabetes, hypertension, smoking, BMI, and C- reactive protein eGFR, estimated GFR			

QCT

G.3 Classification

Table 36: ASTOR2011C

	Number of					
	patients &	Inclusion /				
Reference	characteristics	exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
Brad C. Astor, Kunihiro Matsushita, Ron T. Gansevoort, Marije van der Velde, Mark Woodward, Andrew S. Levey, Paul E de Jong, Josef Coresh, Chronic Kidney Disease Prognosis Consortium. Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end- stage renal disease. A collaborative meta-analysis of kidney disease population cohorts.	21,688 participants 14 studies (6 RCTs, 4 observational studies of referred patients and 4 studies of participants identified by laboratory testing). Cohorts with ACR: British Columbia (Levin et al. 2008) CRIB (Landray et al. 2001) Grampian-ACR	Study type: IPD meta-analysis Inclusion: Studies had to include primarily participants selected because of CKD, have information about baseline eGFR and urinary albumin or urinary protein excretion, and at least 50 cases of end stage renal disease (ESRD) or deaths. Exclusion: Individuals with ESRD. Data from	MDRD equation was used to estimate GFR from age, sex, ethnic origin and serum creatinine concentration. Each study group asked to standardize serum creatinine measurements to isotope dilution mass spectrometry- traceable methods, but calibration was not uniform. Albuminuria was assessed as the urinary ACR or PCR, preferably measured in a first morning void urine sample. Spot urine samples or samples from 24-hour urine collections were used if first morning not available. If no quantitative albuminuria measurements available, data on dipstick proteinuria were collected.	ESRD was defined as the start of renal replacement therapy or death due to decreased kidney function and not due to acute kidney injury. HR (95% CI)	ACR (mg/g) ACR 30-299: 2.87 (1.91, 4.34) ACR 300-999: 7.96 (6.27, 10.09) ACR \geq 1000: 14.61 (11.16, 19.13) PCR (mg/g) 50-599: 3.18 (1.40, 7.18) 500-1499: 16.38 (1.34, 30.34) \geq 1500: 9.47 (1.81, 49.60) Dipstick category +: 2.92 (2.08, 4.10) ++: 7.70 (4.52, 13.10) +++: 15.01 (8.36, 26.95)	Source of funding: KDIGO planning committee and National Kidney Foundation staff participated in study design and data collection. Additional info: Confounders adjusted for: Age, sex, race, previous cardiovascular disease, smoking status, diabetes mellitus, systolic blood pressure, & serum total cholesterol concentration. Interaction of ofeGFR<15 and end stage renal disease was significant in all 12 included studies.
(12):1331-1340, 2011. (Guideline ref ID ASTOR2011C)	(Clark et al. 2007) MASTERPLAN	transplant patients was not used in this	History of cardiovascular	Mortality HR (95% Cl)	ACR (mg/g) ACR 30-299: 1.50 (1.28, 1.75)	

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

patie	mber of ients & racteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
al. 24 Nepl (Mor 2005 REN/ (Brei 2001 Sten et al 2001 Sten et al 2007 PCR: AASI al. 24 Grar (Clar 2007 MDF et al MMI (Diej al. 24 REIN (Rug	NAAL enner et al. (1) no (Hovind al. 2004) horts with R : (Wright et 2002) mpian-PCR ark et al. (7) RD (Menon al. 2008) MKD eplinger et 2009)	analysis.	disease (CVD) was defined as previous myocardial infarction, bypass grafting, percutaneous coronary intervention, heart failure, or stroke. Hypertension defined as systolic blood pressure 140mmHg or more, diastolic blood pressure 90mmHg or more, or use of antihypertensive medication. Hyperchloesterolemia was defined as total cholesterol ≥5.0 mmol/l in the case of a positive history of CVD, and ≥6.0mmol/l for a negative history of CVD. Diabetes mellitus defined as fasting glucose concentration 7.0mmol/L or more, non- fasting glucose concentration 11.1 mmol/L or more, or use		ACR 300-999: 1.85 (1.08, 3.16) ACR \geq 1000: 2.73 (1.74, 4.26) PCR (mg/g) 50-599: 1.08 (0.53, 2.18) 500-1499: 1.81 (1.30, 2.53) \geq 1500: 1.72 (0.90, 3.29) Dipstick category +: 1.46 (1.24, 1.71) ++: 1.80 (1.38, 2.35) +++: 2.26 (1.68, 3.04)	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
	REIN 2 (Ruggenenti et al. 2005)		of glucose lowering drugs or self-reported diabetes.			
	Cohorts with dipstick proteinuria:		Smoking status was dichotomised as current versus non current smoking.			
	Kaiser Permanente Northwest (Johnson et al. 2007)		Statistical analysis: Investigators from each study analysed their data in accordance with an a priori analytical plan.			
			Cox proportional hazard ratios (HRs) were calculated for each category of eGFR (15-29, 30-44, 45-74, 75-89, 90-104 and ≥105ml/min/1.73m ²) relative			
			2105ml/min/1.73m) relative to the reference group of 45- 74ml/min/1.73m ² , and for each category of ACR/PCR/dipstick proteinuria (using the lowest category for			
			each as the reference). These were adjusted for age, sex,			

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
			race, history of cardiovascular disease, systolic blood pressure, diabetes, concentration of serum total cholesterol and smoking.			

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
Caroline S. Fox, Kunihiro Matsushita , Mark Woodward , Henk J. G. Bilo, John Chalmers, Hiddo J. L. Heerspink, Brian J. Lee, Robert M. Perkins, Peter Rossing, Toshimi Sairenchi, Marcello Tonelli, Joseph A. Vassalotti, KazumasaY amagishi,	1,024,977 participants: 128,505 (13%) with diabetes 23 general population cohorts, 7 high risk and 15 CKD cohorts were included. General population cohorts: Aichi ARIC AusDIab Beaver Dam CKD Beijing CHS COBRA	Study type: IPD meta- analysis Inclusion: Studies that had at least 1000 participants (not applied to studies that predominantl y included patients with CKD), baseline information about eGFR and albuminuria, and at least 50 events for each outcome of interest.	GFR was calculated using the CKD Epidemiology Collaboration equation. Studies were included in which assessed proteinuria with the urine albumin to creatinine ratio (ACR), urine albumin excretion rate, urine protein to creatinine ratio (PCR), or quantitative dipstick protein were measured. Diabetes defined as fasting glucose concentration 7.0mmol/L or more, non-fasting glucose	End stage renal disease Defined as start of renal replacement therapy or death because of kidney disease other than AKI	<pre>With diabetes Any eGFR ACR <30: Reference ACR 30-299: 1.60 [0.85, 2.35] ACR 300-999: 3.55 [2.89, 4.21] ACR 300-999: 3.55 [2.89, 4.21] ACR ≥1000: 6.79 [4.36, 9.22] eGFR<15 ACR <10: 1.74 [0.23, 13.16] ACR 10-29: 34.70 [4.21, 286.01] ACR 30-299: 122.00 [4.64, 3207.41] ACR ≥300: 35.70 [21.50, 59.28] eGFR 15-29 ACR <10: 2.98 [1.68,</pre>	<pre>Without diabetes Any eGFR ACR <30: Reference ACR 30-299: 1.86 [1.32, 2.40] ACR 300-999: 2.70 [1.78, 3.62] ACR 300-999: 2.70 [1.78, 3.62] ACR ≥1000: 5.56 [3.44, 7.68] eGFR<15 ACR <10: 3.97 [1.58, 9.98] ACR 10-29: 16.00 [11.50, 22.26] ACR 30-299: 22.70 [16.10, 32.01] ACR ≥300: 31.80 [18.90, 53.51] eGFR 15-29 ACR <10: 6.15 [3.17,</pre>	Source of funding US National Kidney Foundation Confounding factors adjusted for: Age, sex, ethnicity (black vs.non- black), smoking, systolic blood pressure, total cholesterol, body- mass index, history of cardiovascular disease, and albuminuria. Other information: Participants with diabetes were generally older

Table 37: FOX2012

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
Josef Coresh, Paul E. de Jong, Chi Pang Wen, Robert G. Nelson, and Chronic Kidney Disease Prognosis Consortiu m. Associatio ns of kidney disease measures with mortality and end- stage renal disease in individuals with and	ESTHER Framingham Gubbio HUNT IPHS MESA MRC MRC MRC MRC MRANES III Ohasama PREVEND ABARDS REGARDS Severance C REGARDS Severance I aiwan ULSAM ADVANCE CARE ADVANCE CARE KEEP KP Hawaii MRFIT	Analysis restricted to participants aged at least 18 years. Exclusion: Not stated.	concentration 11.1 mmol/L or more, at least 6.5% use of glucose lowering drugs, or self- reported diabetes. History of cardiovascular disease (CVD) was defined as previous myocardial infarction, coronary revascularisation, heart failure or stroke. Hypertension defined as systolic blood pressure 140mmHg or more, diastolic blood pressure 90mmHg or more, or use of antihypertensive medication.		5.29] ACR 10-29: 8.25 [5.19, 13.11] ACR 30-299: 23.70 [8.09, 69.43] ACR ≥300: 33.70 [13.80, 82.29] eGFR 30-44 ACR <10: 2.11 [1.26, 3.53] ACR 10-29: 3.35 [2.07, 5.42] ACR 30-299: 5.71 [3.57, 9.13] ACR ≥300: 8.56 [5.27, 13.90] eGFR 45-74 ACR <10: Reference ACR 10-29: 1.76 [1.05, 2.95] ACR 30-299: 2.84 [1.11, 7.27] ACR ≥300: 8.01 [3.62,	11.93] ACR 10-29: 7.94 [5.93, 10.63] ACR 30-299: 11.90 [7.17, 19.75] ACR ≥300: 28.90 [10.50, 79.54] eGFR 30-44 ACR <10: 1.42 [0.85, 2.37] ACR 10-29: 3.01 [2.23, 4.06] ACR 30-299: 4.20 [3.04, 5.80] ACR ≥300: 6.76 [4.90, 9.33] eGFR 45-74 ACR <10: Reference ACR 10-29: 1.69 [1.23, 2.32] ACR 30-299: 2.85 [1.22, 6.66] ACR ≥300: 3.93 [2.78,	than those without and had a higher prevalence of hypertension, hyperchloesterola emia and cardiovascular disease. Interactions: Interaction of diabetes between those with and those without averaged across full range of eGFR for a 15ml/min / 1.73m ² reduction was not significant for all-cause or cardiovascular mortality.

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
diabetes: a meta- analysis. Lancet 380 (9854):166 2-1673, 2012.	Pima ZODIAC CKD cohorts: AASK BCCKD Geisinger ACR Geisinger Dip GLOMMS-1 ACR GLOMMS-1 ACR KPNW MASTERPLAN MDRD MMKD NephroTest RENAAL STENO Sunnybrook		Hyperchloesterolemi a was defined as total cholesterol ≥5.0 mmol/l in the case of a positive history of CVD, and ≥6.0mmol/l for a negative history of CVD. Smoking status was defined as present, former or never.	All-cause mortality	17.72] eGFR ≥75 ACR <10: 1.47 [0.63, 3.43] ACR 10-29: 2.47 [1.29, 4.73] ACR 30-299: 3.43 [1.58, 7.45] ACR ≥300: 4.42 [2.20, 8.88] With diabetes ACR ≥300: 4.42 [2.20, 8.88] With diabetes ACR ≥10: Reference ACR 10-29: 1.35 [1.27, 1.43] ACR 30-299: 1.73 [1.61, 1.85] ACR ≥300: 2.67 [2.31, 3.03] eGFR<15 ACR <10: 12.00 [3.02, 47.68]	5.56] eGFR ≥75 ACR <10: 0.54 [0.07, 4.17] ACR 10-29: 0.68 [0.38, 1.22] ACR 30-299: 0.74 [0.33, 1.66] ACR ≥300: 1.59 [0.54, 4.68] Without diabetes Any eGFR ACR <30: Reference ACR 10-29: 1.31 [1.23, 1.39] ACR 30-299: 1.67 [1.54, 1.80] ACR ≥300: 2.38 [2.07, 2.69] eGFR<15 ACR <10: 6.55 [3.53, 12.15]	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
					ACR 10-29: 5.88 [2.43, 14.23] ACR 30-299: 9.55 [4.53, 20.13] ACR ≥300: 14.50 [8.84, 23.78] eGFR 15-29 ACR <10: 2.69 [1.78, 4.07] ACR 10-29: 3.30 [2.43, 4.48] ACR 30-299: 4.96 [3.19, 7.71] ACR ≥300: 6.80 [4.76, 9.71]	ACR 10-29: 8.56 [5.72, 12.81] ACR 30-299: 6.91 [4.67, 10.22] ACR ≥300: 12.00 [8.84, 16.29] eGFR 15-29 ACR <10: 3.16 [2.25, 4.44] ACR 10-29: 4.01 [2.86, 5.62] ACR 30-299: 3.90 [2.93, 5.19] ACR ≥300: 6.69 [4.94, 9.06]	
					eGFR 30-44 ACR <10: 1.81 [1.35, 2.43] ACR 10-29: 2.25 [1.87, 2.71] ACR 30-299: 3.13 [2.57, 3.81] ACR ≥300: 4.61 [3.64,	eGFR 30-44 ACR <10: 1.71 [1.44, 2.03] ACR 10-29: 2.54 [2.26, 2.85] ACR 30-299: 2.89 [2.31, 3.62] ACR ≥300: 4.00 [2.92,	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
					5.84] eGFR 45-59 ACR <10: 1.15 [1.01, 1.31] ACR 10-29: 1.82 [1.60, 2.07] ACR 30-299: 1.97 [1.65, 2.35]	5.48] eGFR 45-59 ACR <10: 1.22 [1.09, 1.37] ACR 10-29: 1.70 [1.49, 1.94] ACR 30-299: 2.10 [1.75, 2.52] ACR >200: 2 15 [2.44]	
					ACR ≥300: 3.23 [2.51, 4.16] eGFR 60-74 ACR <10: 0.99 [0.92, 1.07] ACR 10-29: 1.32 [1.16, 1.50]	ACR ≥300: 3.15 [2.44, 4.07] eGFR 60-74 ACR <10: 1.01 [0.95, 1.07] ACR 10-29: 1.38 [1.20, 1.59]	
					ACR 30-299: 1.86 [1.60, 2.16] ACR ≥300: 2.98 [2.36, 3.76] eGFR 75-89 ACR <10: 0.94 [0.87, 1.02]	ACR 30-299: 1.86 [1.64, 2.11] ACR ≥300: 2.41 [1.88, 3.09] eGFR 75-89 ACR <10: 0.94 [0.89, 0.99]	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
					ACR 10-29: 1.33 [1.16, 1.52] ACR 30-299: 1.59 [1.35, 1.87] ACR ≥300: 2.42 [1.89, 3.10] eGFR 90-104	ACR 10-29: 1.30 [1.18, 1.43] ACR 30-299: 1.60 [1.40, 1.83] ACR ≥300: 2.57 [1.98, 3.34] eGFR 90-104	
					ACR <10: Reference ACR 10-29: 1.41 [1.24, 1.60] ACR 30-299: 1.73 [1.45, 2.06] ACR ≥300: 2.95 [2.22, 3.92]	ACR <10: Reference ACR 10-29: 1.47 [1.32, 1.64] ACR 30-299: 1.82 [1.64, 2.02] ACR ≥300: 3.23 [2.39, 4.37]	
					eGFR ≥105 ACR <10: 1.27 [1.07, 1.51] ACR 10-29: 1.58 [1.29, 1.94] ACR 30-299: 2.43 [1.90, 3.11] ACR ≥300: 4.38 [2.97, 6.46]	eGFR ≥105 ACR <10: 1.27 [1.14, 1.41] ACR 10-29: 1.62 [1.35, 1.94] ACR 30-299: 2.39 [2.03, 2.81] ACR ≥300: 5.40 [3.33, 8.76]	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
				Cardiovascular mortality Defined as deaths due to myocardial infarction, heart failure, sudden cardiac death, or stroke.	With diabetes Any eGFR ACR <10: Reference ACR 10-29: 1.43 [1.25, 1.61] ACR 30-299: 1.81 [1.62, 2.00] ACR >300: 2.44 [1.99, 2.89] eGFR<15 ACR 10: 19.90 [1.79, 221.25] ACR 30-299: Not estimable ACR 30: 21.60 [4.65, 100.34] eGFR 15-29 ACR <10: 4.10 [1.75, 9.61] ACR 10-29: 3.39 [1.56,	Without diabetes Any eGFR ACR <10: Reference ACR 10-29: 1.38 [1.26, 1.50] ACR 30-299: 1.72 [1.51, 1.93] ACR ≥300: 2.33 [1.92, 2.74] eGFR<15 ACR 10: 9.63 [2.29, 40.49] ACR 30: 299: 8.46 [5.04, 14.20] ACR 2300: 11.90 [7.62, 18.58] eGFR 15-29 ACR <10: 5.44 [3.11, 9.52] ACR 10-29: 7.12 [3.12,	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
					7.37]	16.25]	
					ACR 30-299: 5.64 [2.64,	ACR 30-299: 3.35 [2.34,	
					12.05]	4.80]	
					ACR ≥300: 7.96 [4.89,	ACR ≥300: 8.91 [4.31,	
					12.96]	18.42]	
					eGFR 30-44	eGFR 30-44	
					ACR <10: 2.12 [1.55,	ACR <10: 2.51 [2.05,	
					2.90]	3.07]	
					ACR 10-29: 2.49 [1.62,	ACR 10-29: 2.99 [2.07,	
					3.83]	4.32]	
					ACR 30-299: 3.62 [2.50,	ACR 30-299: 3.52 [2.76,	
					5.24]	4.49]	
					ACR ≥300: 5.57 [4.08,	ACR ≥300: 5.21 [3.28,	
					7.60]	8.28]	
					eGFR 45-59	eGFR 45-59	
					ACR <10: 1.33 [1.05,	ACR <10: 1.52 [1.30,	
					1.68]	1.78]	
					ACR 10-29: 1.75 [1.31,	ACR 10-29: 2.19 [1.86,	
					2.34]	2.58]	
					ACR 30-299: 2.27 [1.70,	ACR 30-299: 2.57 [1.93,	
					3.03]	3.42]	
					ACR ≥300: 3.24 [2.41,	ACR ≥300: 3.74 [2.73,	
					4.36]	5.12]	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
Kererence	characteristics	criteria	Intervention	measures	eGFR 60-74 ACR <10: 1.25 [1.06, 1.47] ACR 10-29: 1.56 [1.21, 2.01] ACR 30-299: 2.53 [2.00, 3.20] ACR ≥300: 3.21 [2.42, 4.26]	eGFR 60-74 ACR <10: 1.14 [1.00, 1.30] ACR 10-29: 1.49 [1.17, 1.90] ACR 30-299: 2.17 [1.88, 2.50] ACR ≥300: 2.38 [1.78, 3.18]	Comments
					<pre>4.20] eGFR 75-89 ACR <10: 1.04 [0.88, 1.23] ACR 10-29: 1.70 [1.29, 2.24] ACR 30-299: 1.79 [1.41, 2.27] ACR ≥300: 2.69 [1.91, 3.79]</pre>	eGFR 75-89 ACR <10: 1.01 [0.91, 1.12] ACR 10-29: 1.46 [1.21, 1.76] ACR 30-299: 1.80 [1.51, 2.15] ACR ≥300: 2.53 [2.03, 3.15]	
					eGFR 90-104 ACR <10: Reference ACR 10-29: 1.28 [0.95, 1.72]	eGFR 90-104 ACR <10: Reference ACR 10-29: 1.62 [1.31, 2.00]	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
					ACR 30-299: 1.74 [1.28,	ACR 30-299: 1.79 [1.43,	
					2.37]	2.24]	
					ACR ≥300: 3.03 [1.90,	ACR ≥300: 3.39 [2.12,	
					4.83]	5.42]	
					eGFR ≥105	eGFR ≥105	
					ACR <10: 1.19 [0.76,	ACR <10: 1.22 [0.98,	
					1.86]	1.52]	
					ACR 10-29: 1.93 [1.12,	ACR 10-29: 1.82 [1.14,	
					3.33]	2.91]	
					ACR 30-299: 3.00 [1.49,	ACR 30-299: 4.00 [2.82,	
					6.04]	5.67]	
					ACR ≥300: 5.07 [1.86,	ACR ≥300: 7.04 [2.83,	
					13.82]	17.51]	

Table 38: GANSEVOORT2011

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
R. T.	173,892 from	Study type:	In each cohort,	Progression of	eGFR 15-29	Source of funding
Gansevoort	high risk cohorts.		subjects were	CKD Defined as	ACR under10: 0.50 [0.40, 0.60]	
, K.		Inclusion (for	subdivided according	annual decline in	ACR 10-29: 3.10 [1.20, 5.00]	Confounding
Matsushita	(845,125	high risk	to eGFR and	eGFR during	ACR 30-299: 9.40 [5.30, 13.50]	factors adjusted
, Der Van,	(0.0)220		albuminuria. GFR was	follow-up of at	ACK 30-233. 3.40 [3.30, 13.30]	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
V, B. C. Astor, M. Woodward , A. S. Levey, P. E. D. Jong, and J. Coresh. Lower estimated GFR and higher albuminuri a are associated with adverse kidney outcomes. A collaborati ve meta- analysis of general and high- risk population	participants from 9 general population cohorts – data not reported in this review). 8 high risk cohorts – (risk of developing CKD) Cohorts with ACR data: Cohorts with dipstick data:	cohorts only): Prospective ccohorts of individuals selected because of high risk of CKD, including patients with cardiovascular disease risk factors (such as hypertension and diabetes) or a history of cardiovascular disease, because screening for CKD is recommende d in these groups. Studies had to have information at	estimated using the MDRD equation. Each participating study was asked to standardize their serum creatinine to isotope dilution mass spectrometry- traceable methods, but calibration methods were not uniform. Albuminuria was assessed as the albumin to creatinine ration. If first morning voids were not available, spot urine samples or samples from 24hour urine collections were used. In studies in which no quantitative albuminuria measurements were available, data urine PCR or dipstick testing	least 2.5ml/min/1.73m ² per year and a last e GFR being less than 45ml/min/1.73m ² , independent of baseline eGFR. Hazard ratio (95% CI)	ACR over300: 38.60 [15.70, 61.50] eGFR 30-44 ACR <10: 3.30 [2.70, 3.90] ACR 10-29: 3.40 [2.50, 4.30] ACR 30-299: 9.80 [6.30, 13.30] ACR over300: 68.70 [57.60, 79.80] eGFR 45-59 ACR <10: 3.00 [2.10, 3.90] ACR 10-29: 4.80 [3.70, 5.90] ACR 10-29: 4.80 [3.70, 5.90] ACR 30-299: 10.10 [4.90, 15.30] ACR over300: 31.40 [16.10, 46.70] eGFR 60-74 ACR <10: Reference ACR 10-29: Reference ACR 30-299: 2.80 [1.30, 4.30] ACR over300: 9.30 [6.00, 12.60] eGFR 75-89 ACR <10: Reference ACR 10-29: Reference	for: Age, sex, race and cardiovascular risk factors (including cardiovascular disease history, smoking status, diabetes mellitus, systolic blood pressure and serum total cholesterol). Other information: High risk cohorts had a higher proportion of males and higher prevalence of cardiovascular risk factors than the general population cohorts. High risk cohorts also had lower

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
cohorts. Kidney Int. 80 (1):93- 104, 2011.		baseline on eGFR as well as albuminuria levels; at least 1000 subjects included; information on at least one of the three kidney outcome measures and a minimum of 50 events for that outcome measure. Exclusion: Not stated.	for proteinuria were collected. History of cardiovascular disease (CVD) was defined as previous myocardial infarction, bypass grafting, percutaneous coronary intervention, heart failure, or stroke. Hypertension defined as systolic blood pressure 140mmHg or more, diastolic blood pressure 90mmHg or more, or use of antihypertensive medication. Hyperchloesterolemia was defined as total cholesterol ≥5.0 mmol/l in the case of a positive history of	End stage renal disease Defined as start of renal replacement therapy or death coded as because of kidney disease other than AKI	ACR over300: 3.50 [2.50, 4.50] eGFR 90-104 ACR <10: Reference ACR 10-29: Reference ACR 30-299: 0.90 [0.70, 1.10] ACR over300: 3.50 [0.50, 6.50] eGFR>105 ACR <10: Reference ACR 10-29: Reference ACR 30-299: 0.60 [0.50, 0.70] ACR over300: 4.70 [0.30, 9.10] eGFR 15-29 ACR <10: 32.60 [4.30, 60.90] ACR 10-29: 308.00 [97.00, 519.00] ACR 10-29: 387.00 [86.90, 687.10] ACR 30-299: 387.00 [86.90, 687.10] ACR over300: 462.70 [31.60, 893.80] eGFR 30-44 ACR 10-29: 33.40 [12.90, 53.90] ACR 10-29: 33.40 [12.90, 53.90] ACR 30-299: 56.00 [20.00, 92.00] ACR over300: 139.80 [35.60, 244.00]	eGFR and higher ACR. Incidence of outcomes were 2- 6 fold higher in the high risk cohorts than general population cohorts. Interactions: Interaction between eGFR and albuminuria was significant for ESRD in only 1 out of 8 cohorts, for AKI in 3 out of 5 cohorts and for progression of CKD in 4 of 11 cohorts. Significant interaction between eGFR and age was found for

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
			CVD, and ≥6.0mmol/l for a negative history of CVD. Diabetes mellitus defined as fasting glucose concentration 7.0mmol/L or more, non-fasting glucose concentration 11.1 mmol/L or more, or use of glucose lowering drugs or self- reported diabetes. Smoking status was dichotomised as current versus non current smoking.		eGFR 45-59 ACR <10: 2.70 [1.70, 3.70] ACR 10-29: 3.80 [1.90, 5.70] ACR 30-299: 14.50 [6.30, 22.70] ACR over300: 55.50 [17.90, 93.10] eGFR 60-74 ACR <10: Reference ACR 10-29: Reference ACR 30-299: 3.10 [1.80, 4.40] ACR over300: 32.20 [11.80, 52.60] eGFR 75-89 ACR <10: Reference ACR 10-29: Reference ACR 30-299: 1.70 [0.90, 2.50] ACR over300: 17.30 [4.00, 30.60] HCR <10: Reference ACR 10-29: Reference ACR 30-299: 2.30 [1.00, 3.60] ACR over300: 10.00 [2.10, 17.90]	ESRD in only 1 ou of 9 cohorts, for AKI in 3 out of 5 cohorts and for progression of CK in 4 of 11 cohorts Meta-regression was performed to test association between eGRF an ACR ratio with outcomes differe by the proportion of diabetic participants withi each high risk cohort. Proportion of diabetic participants was not significantly associated with the hazard ratio for ESRD associated with eGFR or ACR, or with progression

Chronic kidney disease Clinical evidence tables

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
				ESRD by Age	eGFR>105 ACR <10: Reference ACR 10-29: Reference ACR 30-299: 1.10 [0.80 ACR over300: 2.00 [0.9 Aged <65 years		of CKD associated with eGFR or ACR. There were too few cohorts with sufficient events to allow meta- regression models for AKI.
					eGFR 15-29 ACR <10: Not estimable ACR 10-29: 656.00 [172.00, 2501.95] ACR 30-299: 792.00 [210.00, 2986.97] ACR over300: 998.00 [105.00, 9485.75]	eGFR 15-29 ACR <10: 25.00 [3.20, 195.31] ACR 10-29: 175.00 [42.50, 720.59] ACR 30-299: 125.00 [43.00, 363.37] ACR over300: 506.00 [158.00, 1620.48]	
					eGFR 30-44 ACR <10: 15.90 [1.90, 133.06] ACR 10-29: 73.60 [20.50, 264.24] ACR30-299: 90.90 [27.60, 299.38]	eGFR 30-44 ACR <10: 16.10 [6.70, 38.69] ACR 10-29: 18.10 [7.50, 43.68] ACR30-299: 24.30 [9.30, 63.49]	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
					ACR over300: 161.00 [26.30, 985.59] eGFR 45-59 ACR <10: 92.70 [1.40, 6138.06] ACR 10-29: 5.30	ACR over300: 92.70 [46.30, 185.60] eGFR 45-59 ACR <10: 2.80 [1.10, 7.13] ACR 10-29: 1.80 [0.50,	
					[2.30, 12.21] ACR 30-299: 16.90 [4.70, 60.77] ACR over300: 66.90 [20.10, 222.67]	6.48] ACR 30-299: 10.00 [5.50, 18.18] ACR over300: 31.20 [10.90, 89.31]	
					eGFR 60-74 ACR <10: Reference ACR 10-29: Reference ACR 30-299: 4.00 [2.00, 8.00] ACR over300: 39.00 [10.30, 147.67]	eGFR 60-74 ACR <10: Reference ACR 10-29: Reference ACR 30-299: 1.70 [0.60, 4.82] ACR over300: 20.70 [9.40, 45.58]	
					eGFR 75-89 ACR <10: Reference ACR 10-29:	eGFR 75-89 ACR <10: Reference ACR 10-29: Reference ACR 30-299: 1.90	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
					Reference ACR 30-299: 1.70 [0.80, 3.61] ACR over300: 16.30 [2.30, 115.52] eGFR 90-104 ACR <10: Reference ACR 10-29: Reference ACR 30-299: 2.60 [1.00, 6.76] ACR over300: 10.50 [2.00, 55.12] eGFR>105 ACR <10: Reference ACR 10-29: Reference ACR 10-29: Reference ACR 30-299: 1.10 [0.80, 1.51] ACR over300: 1.40 [0.90, 2.18]	[0.60, 6.02] ACR over300: 16.20 [3.10, 84.66] eGFR 90-104 ACR <10: Reference ACR 10-29: Reference ACR 30-299: Not estimable ACR over300: 15.50 [2.00, 120.12] eGFR>105 ACR <10: Reference ACR 10-29: Reference ACR 30-299: Not estimable ACR over300: 20.60 [2.40, 176.82]	
				AKI Defined as ICD-9	eGFR 15-29 ACR <10: 12.30 [5.40, 2	19.20]	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
				code 584 as	ACR 10-29: 1.60 [0.00, 3.20]	
				primary or	ACR 30-299: 25.30 [13.70, 36.90]	
				additional discharge code	ACR over300: 13.70 [0.00, 27.40]	
					eGFR 30-44	
					ACR <10: 8.00 [5.40, 10.60]	
					ACR 10-29: 7.50 [5.30, 9.70]	
					ACR 30-299: 14.30 [11.20, 17.40]	
					ACR over300: 26.90 [12.30, 41.50]	
					eGFR 45-59	
					ACR <10: 1.70 [1.20, 2.20]	
					ACR 10-29: 3.50 [2.60, 4.40]	
					ACR 30-299: 6.60 [5.20, 8.00]	
					ACR over300: 13.00 [9.70, 16.30]	
					eGFR 60-74	
					ACR <10: Reference	
					ACR 10-29: Reference	
					ACR 30-299: 2.80 [1.40, 4.20]	
					ACR over300: 6.30 [4.30, 8.30]	
					eGFR 75-89	
					ACR <10: Reference	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
					ACR 10-29: Reference	
					ACR 30-299: 1.80 [1.30, 2.30]	
					ACR over300: 5.20 [3.20, 7.20]	
					eGFR 90-104	
					ACR <10: Reference	
					ACR 10-29: Reference	
					ACR 30-299: 2.10 [1.30, 2.90]	
					ACR over300: 3.40 [1.40, 5.40]	
					eGFR>105	
					ACR <10: Reference	
					ACR 10-29: Reference	
					ACR 30-299: 2.20 [1.20, 3.20]	
					ACR over300: 3.80 [1.20, 6.40]	

Table 39: Hallan et al. 2012 243

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
SI Hallan, K Matsushita , Y Sang et al. Age and association of kidney measures with mortality and end- stage renal disease. JAMA 308 (22):2349- 2360	Matsushita y Yang etgeneral population and high risk cohorts.IPD meta- analysisal. Age and al. Age and bigh risk cohorts.high risk cohorts.Inclusion Prospective cohorts ofof kidney measures38,612 from CKD cohorts.Inclusion Prospective cohorts ofwith mortality and end- disease.General population and high risk cardiovascular cohorts:people from heheral, high risk (of vascular cohorts:JAMA 308 (22):2349- 2360,AichiCKD populations with baseline	IPD meta- analysis Inclusion Prospective cohorts of people from heheral, high risk (of vascular disease) and CKD populations	The CKD-EPI equation with serum creatinine values standardised to isotope dilution mass spectrometry traceable methods was used to estimate GFR. Albuminuria was preferably measured as albumin creatinine ratio (ACR), but studies with urine protein- creatinine ratio (PCR), or dipstick protein	All-cause mortality Interaction of eGFR according to 15ml/min/1.73m ² decline Hazard ratio (95% CI) All-cause mortality	 18-54 years versus 55-64 years: 1.22 (1.11, 1.35) P<0.001 ² = 84.5% 65-74 years versus 55-64 years: 0.93 (0.89, 0.98) P=0.003 ² = 62.6% ≥75 years versus 55-64 years: 0.89 (0.84, 0.94) P<0.001 ² = 51.8% 18-54 years versus 55-64 years: 1.12 (0.96, 1.29) P=0.139 	Source of funding Confounding factors adjusted for: Sex, race (black versus non-black) history of cardiovascular disease history, smoking status, diabetes mellitus, systolic blood pressure, serum
2012.		were also included. Information on demographic and cardiovascular risk factors was also obtained for all participants. Age was categorised as	Interaction of ACR according to 10 fold increase Hazard ratio (95% CI)	I ² = 23.8% 65-74 years versus 55-64 years: 0.92 (0.85, 0.99) P=0.020 I ² = 4.5% ≥ 75 years versus 55-64 years: 0.81 (0.71, 0.92) P=0.002 I ² = 41%	total cholesterol, BMI, albuminuria and the randomised intervention (for clinical trials). Other information: Insufficient	

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
	Gubbio HUNT IPHS MESA MRC NHANES III Ohasama Okinawa 83 Okinawa 93 PREVEND Rancho Bernardo	outcome of interest18-54, 55 to 64, 65 to interestduring follow- up.74 and 75 or more years.up.Participants with missing values for either eGFR orExclusion criteria: Not stated.albuminuria were excluded. Missing values for other adjustment variables	74 and 75 or more years. Participants with missing values for either eGFR or albuminuria were excluded. Missing values for other	End stage renal disease Interaction of eGFR according to 15ml/min/1.73m ² decline Hazard ratio (95% Cl)	 18-54 years versus 55-64 years: 1.10 (0.87, 1.39) P=0.423 I² = 54.1% 65-74 years versus 55-64 years: 0.84 (0.67, 1.04) P=0.113 I² = 36.2% ≥75 years versus 55-64 years: 0.77 (0.36, 1.65) P<0.505 I² = 82.2% 	information was presented in the study for hazard ratios at each eGFR and ACR category to add to a forest plot (no confidence intervals presented nor number at risk on Kaplan Meier
	REGARDS Severance Taiwan ULSAM		cohort mean.	End stage renal disease Interaction of	18-54 years versus 55-64 years: 0.75 (0.42, 1.33) P=0.318 I ² = 70.3%	curves) therefore only interaction a various age range can be presented.
	High risk: ADVANCE AKDN (ACR) CARE KEEP KP Hawaii MRFIT			ACR according to 10 fold increase Hazard ratio (95% CI)	65-74 years versus 55-64 years: 0.89 (0.64, 1.25) P=0.502 I ² = 36.9% ≥75 years versus 55-64 years: 0.88 (0.43, 1.80) P=0.73 I ² = 75.9%	The Cox proportional hazard ratios (HRs were calculated with eGFR of 80ml/min/1.73m ² as the stable reference group of 50ml/min/1.73m ²

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
	ZODIAC					cohorts, and ACR <10mg/g or
	13 CKD cohorts:					<20mg/g for CKD cohorts.
	AASK BC CKD					
	CRIB					Interactions:
	Geisinger					Evaluated as the
	GLOMMS-1					ratio of HRs in each age category
	KPNW					compared with th
	MASTERPLAN					age category of 5
	MDRD					to 64 years at eac 1 ml/min/1.73m ²
	MMKD NonbroTest					of eGFR from 150
	NephroTest RENAAL					to 120.
	STENO					
	Sunnybrook					All-cause
						mortality: Age interaction was
						significant for a
						broad range of
						eGFRs, and was significant in all
						categories
						compared with 5
						to 64 years

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
						(P<0.004).
						Age interaction
						with ACR less
						evidence. Overall
						interaction only
						reached
						significance for 6
						74years (P=0.02)
						and 75 years and
						older (P=0.002).
						For ESRD overall
						interactions for
						eGFR and ACR
						were not
						significant in the
						age categories of
						18-54, 65 to 74
						and 75 years or
						older.
						For CKD cohorts:
						Mortality did not
						interact with age,
						ESRD was
						borderline

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
						significant (P=0.04 for age 18-54 years, P=0.07 for 65-74 years and P=0.08 for ≥75years versus 55-64 years).

Table 40: MAHMOODI2012

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
B. K. Mahmoodi , K. Matsushita , M. Woodward , P. J. Blankestijn, M. Cirillo, T. Ohkubo, P. Rossing, M. J. Sarnak, B. Stengel, K. Yamagishi, K. Yamagishi, K. Yamashita, L. Zhang, J. Coresh, P. E. de Jong, and B. C. Astor.	742,240 participants without hypertension and 347 256 with hypertension from 25 general population cohorts, 7 high risk cohorts. 21072 participants without hypertension and 17,088 people with hypertension from 13 chronic kidney disease cohorts.	Study type: IPD meta- analysis Inclusion: Studies with at least 1000 participants (not applied to studies that predominantly included patients with CKD), baseline information about eGFR and albuminuria, and either mortality or end stage renal disease with a	GFR was estimated using the CKD Epidemiology Collaboration equation, based on age, sex, race and serum creatinine concentration. Studies were included in which assessed proteinuria with the urine albumin to creatinine ratio (ACR), urine albumin excretion rate, urine protein to creatinine ratio (PCR), or quantitative dipstick protein	End stage renal disease Defined as start of renal replacement therapy or death because of kidney disease other than AKI.	Without hypertensionAny eGFRACR <30: Reference	With hypertension Any eGFR ACR <30: Reference ACR 30-299: 1.86 [1.52, 2.20] ACR 300-999: 2.94 [2.35, 3.53] ACR ≥1000: 5.80 [3.86, 7.74] eGFR<15 ACR <10: 6.26 [2.61, 15.02] ACR 10-29: 17.50 [12.20, 25.10] ACR 30-299: 30.30 [20.60, 44.57] ACR ≥300: 28.70 [17.40, 47.34]	Source of funding Data coordinating centre funded by a programme grant from the US National Kidney Foundation (funding sources include Abbott and Amgen). Various sources supported enrolment and data collection Confounding factors adjusted for: Age, sex, race (black vs.non-black), history of cardiovascular disease, diabetes, serum total cholesterol, body mass index, smoking and albuminuria.

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
Association s of kidney disease measures with mortality and end- stage renal disease in individuals with and without hypertensi on: a meta- analysis. Lancet Epub, 2012.	cohorts: Aichi ARIC AusDiab Beaver Dam CKD Beijing CHS CIRCS COBRA ESTHER Framingham Gubbio HUNT IPHS MESA MESA MRC NHANES III Ohasama Okinawa 83 Okinawa 93 PREVEND RanchoBernardo REGARDS	minimum of 50 events. Analysis restricted to participants aged at least 18 years. Exclusion: Not stated.	were measured. Diabetes defined as fasting glucose concentration 7.0mmol/L or more, non-fasting glucose concentration 11.1 mmol/L or more, at least 6.5% use of glucose lowering drugs, or self- reported diabetes. History of cardiovascular disease (CVD) was defined as previous myocardial infarction, coronary revascularisation, heart failure or stroke.		eGFR 15-29 ACR <10: 5.45 [2.81, 10.57] ACR 10-29: 12.50 [6.41, 24.38] ACR 30-299: 27.00 [8.66, 84.18] ACR \geq 300: 50.60 [15.10, 169.58] eGFR 30-44 ACR <10: 1.88 [0.67, 5.28] ACR 10-29: 5.65 [2.11, 15.13] ACR 30-299: 8.57 [3.24, 22.67] ACR \geq 300: 17.10 [6.52, 44.84] eGFR 45-74 ACR <10: Reference ACR 10-29: 2.61 [1.17, 5.82] ACR 30-299: 4.90	eGFR 15-29 ACR <10: 5.45 [2.97, 10.00] ACR 10-29: 9.41 [6.33 , 13.99] ACR $30-299$: 21.40 [10.40 , 44.04] ACR ≥ 300 : 44.10 [15.90 , 122.32] eGFR $30-44$ ACR <10: 1.96 [1.33 , 2.89] ACR $10-29$: 3.43 [2.11 , 5.58] ACR $30-299$: 5.08 [3.62 , 7.13] ACR ≥ 300 : 15.60 [6.62 , 36.76] eGFR $45-74$ ACR <10: Reference ACR $10-29$: 1.81 [1.31 , 2.50] ACR $30-299$: 1.99	Other information: The mean age of participants and the prevalence of traditional cardiovascular risk factors, especially diabetes, was higher in hypertensive individuals than in those without hypertension. Interactions: Significant interaction identified at eGFR levels of less than 59ml/min/1.73m ² for all-cause mortality and less than 73ml/min/1.73m ² for cardiovascular mortality. The overall interaction of hypertension with

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
	Severance Taiwan ULSAM High risk cohorts: ADVANCE CARE KEEP KP Hawaii MRFIT Pima ZODIAC		defined as systolic blood pressure 140mmHg or more, diastolic blood pressure 90mmHg or more, or use of antihypertensive medication in primary and high risk population cohorts. In CKD cohorts, hypertension was categorised only by systolic and		[1.80, 13.34] ACR ≥300: 6.12 [3.35, 11.18] eGFR ≥75 ACR <10: 0.79 [0.32, 1.95] ACR 10-29: 1.48 [0.81, 2.70] ACR 30-299: 1.43 [0.48, 4.26] ACR ≥300: 3.61 [1.89, 6.90]	[1.19, 3.33] ACR ≥300: 6.01 [3.78, 9.56] eGFR ≥75 ACR <10: 0.53 [0.03, 9.36] ACR 10-29: 0.91 [0.52, 1.59] ACR 30-299: 1.62 [0.86, 3.05] ACR ≥300: 2.40 [0.36, 16.00]	eGFR was significant for all-cause mortality and cardiovascular mortality. Although there was heterogeneity, most cohorts were in agreement with a weaker association for low eGFR in participants with hypertension compared with those without.
	CKD cohorts: AASK BC CKD CRIB Geisinger ACR Geisinger dipstick GLOMMS-1 ACR LOMMS-1 PCR KPNW MASTERPLAN MDRD		diastolic blood pressure values because antihypertensive drugs were used in at least 97% of participants in 4 cohorts and information not available in one cohort.	All-cause mortality	Without hypertension Any eGFR ACR <10: Reference ACR 10-29: 1.31 [1.25, 1.37] ACR 30-299: 1.65 [1.54, 1.76] ACR ≥300: 2.33 [2.07, 2.59]	With hypertension Any eGFR ACR <30: Reference ACR 10-29: 1.31 [1.19, 1.43] ACR 30-299: 1.73 [1.54, 1.92] ACR ≥300: 2.80 [2.31, 3.29]	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
	MMKD Nephro Test RENAAL STEMO Sunnybrook		Hyperchloesterole mia was defined as total cholesterol ≥5.0 mmol/l in the case of a positive history of CVD, and ≥6.0mmol/l for a negative history of CVD. Smoking status was dichotomised as smokers versus former or never smokers.		eGFR<15 ACR <10: 8.42 [2.94, 24.11] ACR 10-29: 5.98 [3.64, 9.82] ACR 30-299: 7.89 [5.94, 10.48] ACR ≥300: 9.74 [7.24, 13.10] eGFR 15-29 ACR <10: 2.18 [1.56, 3.05] ACR 10-29: 3.94 [3.15, 4.93] ACR 30-299: 3.70 [2.46, 5.57] ACR ≥300: 5.26 [4.02, 6.88] eGFR 30-44 ACR <10: 1.53 [1.32, 1.77] ACR 10-29: 2.34 [2.07, 2.65]	eGFR<15 ACR <10: 5.14 [1.83, 14.44] ACR 10-29: 12.80 [7.28, 22.50] ACR 30-299: 21.10 [6.12, 72.75] ACR \geq 300: 25.70 [9.16, 72.11] eGFR 15-29 ACR <10: 3.55 [2.16, 5.83] ACR 10-29: 4.86 [2.06, 11.46] ACR 30-299: 6.52 [3.86, 11.01] ACR \geq 300: 14.80 [7.07, 30.98] eGFR 30-44 ACR <10: 2.29 [1.82, 2.88] ACR 10-29: 3.17 [2.62, 3.84]	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
					ACR 30-299: 2.80 [2.25, 3.48] ACR ≥300: 4.24 [3.17, 5.67] eGFR 45-59 ACR <10: 1.11 [1.01, 1.22] ACR 10-29: 1.62 [1.44, 1.82] ACR 30-299: 1.90 [1.59, 2.27] ACR ≥300: 2.72 [2.14, 3.46] eGFR 60-74 ACR <10: 0.99 [0.91, 1.08] ACR 10-29: 1.31 [1.15, 1.49] ACR 30-299: 1.77 [1.57, 2.00] ACR ≥300: 2.32 [1.89, 2.85]	ACR 30-299: 3.89 [2.73, 5.54] ACR \geq 300: 5.15 [2.95, 8.99] eGFR 45-59 ACR <10: 1.35 [1.16, 1.57] ACR 10-29: 1.90 [1.49, 2.42] ACR 30-299: 2.59 [2.02, 3.32] ACR \geq 300: 4.12 [2.83, 6.00] eGFR 60-74 ACR <10: 1.02 [0.94, 1.11] ACR 10-29: 1.30 [1.07, 1.58] ACR 30-299: 1.95 [1.65, 2.30] ACR \geq 300: 3.84 [2.37, 6.22]	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
					eGFR 75-89	eGFR 75-89	
					ACR <10: 0.94 [0.88, 1.00]	ACR <10: 0.93 [0.87, 0.99]	
					ACR 10-29: 1.27 [1.16,	ACR 10-29: 1.30	
					1.39]	[1.11, 1.52]	
					ACR 30-299: 1.58	ACR 30-299: 1.72	
					[1.40, 1.78]	[1.45, 2.04]	
					ACR ≥300: 2.18 [1.76,	ACR ≥300: 2.61	
					2.70]	[1.90, 3.59]	
					eGFR 90-104	eGFR 90-104	
					ACR <10: Reference	ACR <10: Reference	
					ACR 10-29: 1.35 [1.23,	ACR 10-29: 1.52	
					1.48]	[1.30, 1.78]	
					ACR 30-299: 1.73	ACR 30-299: 1.84	
					[1.57, 1.91]	[1.54, 2.20]	
					ACR ≥300: 2.89 [2.13,	ACR ≥300: 4.41	
					3.92]	[2.97, 6.55]	
					eGFR ≥105	eGFR ≥105	
					ACR <10: 1.27 [1.15,	ACR <10: 1.22 [1.12,	
					1.40]	1.33]	
					ACR 10-29: 1.45 [1.26,	ACR 10-29: 1.63	
					1.67]	[1.40, 1.90]	
					ACR 30-299: 2.40	ACR 30-299: 2.94	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
					[1.90, 3.03] ACR ≥300: 3.62 [2.42, 5.42]	[1.98, 4.37] ACR ≥300: 8.00 [4.36, 14.68]	
				Cardiovascular mortality Defined as death due to myocardial infarction, heart failure, stroke, or sudden cardiac death.	Without hypertension Any eGFR ACR <10: Reference ACR 10-29: 1.38 [1.26, 1.50] ACR 30-299: 1.79 [1.58, 2.00] ACR ≥300: 2.33 [1.99, 2.67] eGFR<15 ACR <10: Not estimable ACR 10-29: 7.40 [2.74, 19.99] ACR 30-299: 8.57 [4.20, 17.49] ACR ≥300: 7.75 [4.63, 12.97]	With hypertension Any eGFR ACR <10: Reference ACR 10-29: 1.50 [1.29, 1.71] ACR 30-299: 2.04 [1.74, 2.34] ACR ≥300: 3.26 [2.32, 4.20] eGFR<15 ACR <10: 2.60 [0.33, 20.49] ACR 10-29: 33.00 [10.50, 103.72] ACR 30-299: 8.59 [2.57, 28.71] ACR ≥300: 14.10 [5.20, 38.23] eGFR 15-29	

pat	mber of tients & aracteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
					ACR <10: 2.96 [1.52, 5.76] ACR 10-29: 2.35 [1.35, 4.09] ACR 30-299: 6.38 [4.73, 8.61] ACR ≥300: 6.38 [4.73, 8.61] eGFR 30-44 ACR <10: 1.93 [1.66, 2.24] ACR 10-29: 2.85 [2.10, 3.87] ACR 30-299: 3.70 [2.92, 4.69] ACR ≥300: 5.36 [4.21, 6.82] eGFR 45-59 ACR <10: 1.35 [1.22, 1.49] ACR 10-29: 1.81 [1.54, 2.13] ACR 30-299: 2.23	ACR <10: 6.94 [4.12, 11.69] ACR 10-29: 11.90 [2.63, 53.84] ACR 30-299: 18.70 [5.33, 65.61] ACR ≥300: 73.60 [15.20, 356.37] eGFR 30-44 ACR <10: 4.29 [3.39, 5.43] ACR 10-29: 5.31 [3.28, 8.60] ACR 30-299: 5.26 [2.77, 9.99] ACR ≥300: 9.74 [3.74, 25.37] eGFR 45-59 ACR <10: 1.72 [1.32, 2.24] ACR 10-29: 2.65 [1.75, 4.01] ACR 30-299: 4.57	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
					[1.89, 2.63]	[3.30, 6.33]	
					ACR ≥300: 3.50 [2.42, 5.06]	ACR ≥300: 8.75 [5.79, 13.22]	
					eGFR 60-74	eGFR 60-74	
					ACR <10: 1.03 [0.96, 1.11]	ACR <10: 1.23 [1.02, 1.48]	
					ACR 10-29: 1.37 [1.20,	ACR 10-29: 1.34	
					1.56]	[0.92, 1.95]	
					ACR 30-299: 2.10	ACR 30-299: 3.47	
					[1.83, 2.41]	[2.67, 4.51]	
					ACR ≥300: 2.83 [2.10,	ACR ≥300: 4.47	
					3.81]	[2.33, 8.58]	
					eGFR 75-89	eGFR 75-89	
					ACR <10: 0.98 [0.92,	ACR <10: 1.04 [0.92,	
					1.04]	1.18]	
					ACR 10-29: 1.29 [1.14,	ACR 10-29: 1.64	
					1.46]	[1.20, 2.24]	
					ACR 30-299: 1.83	ACR 30-299: 2.25	
					[1.50, 2.23]	[1.72, 2.94]	
					ACR ≥300: 2.54 [1.98,	ACR ≥300: 6.17	
					3.26]	[3.68, 10.34]	
					eGFR 90-104	eGFR 90-104	

Chronic kidney disease Clinical evidence tables

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes		Comments
					ACR <10: Reference ACR 10-29: 1.48 [1.17, 1.87] ACR 30-299: 1.67 [1.38, 2.02] ACR ≥300: 2.68 [2.00, 3.59] eGFR ≥105 ACR <10: 1.32 [1.00, 1.74]	ACR <10: Reference ACR 10-29: 1.54 [1.26, 1.88] ACR 30-299: 1.80 [1.23, 2.63] ACR ≥300: 7.70 [3.17, 18.70] eGFR ≥105 ACR <10: 1.16 [0.90, 1.50]	
					ACR 10-29: 1.28 [0.94, 1.74] ACR 30-299: 2.56 [1.82, 3.60] ACR ≥300: 2.34 [1.25, 4.38]	ACR 10-29: 1.99 [1.28, 3.09] ACR 30-299: 5.47 [3.18, 9.41] ACR ≥300: 13.40 [7.05, 25.47]	

der Velde, Kunihirontsanalysissubjects were subdivided according to eGFR and albuminuria. GFR was estimated using the MarkmortalityACR 30mg/g: 1.38 (1.23-1.56)Matsushita, Josef Coresh, Brad C. Astor, Mark10 high risk cohorts - (risk of developing CKD)Inclusion: Prospective cohort studies; include subjects referred forInclusion: Prospective cohort estimated using the MDRD equation. Each participating study wasMortality Adjusted hazard ratio (95% CI) Compared to ACR 5mg/gACR 300mg/g: 2.16 (1.99- 2.35)ACR 300mg/g: 2.16 (1.99- 2.35)	Source of funding KDIGO & US National Kidney Foundation
Andrew Levey, Paul de Jong, Ron T.Of these, 6 had data on ACR (n=117,500), 4 on dipstick 	Confounding factors adjusted for: Age, sex, race, cardiovascular disease history, smoking status, diabetes mellitus, systolic blood pressure, and serum total cholesterol. For randomised controlled trials, data were also adjusted for treatment arm. Other information: The subgroup of people with CKD accounted for 58.6% of all-cause mortality events and

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
are associated with all-cause and cardiovascula r mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 79 (12):1341- 1352, 2011.	Cohorts with ACR data: ADVANCE (Patel et al. 2008) AKDN (Hemmelgarn et al. 2010) ONTARGET (Mann et al. 2008) Pima (Pavkov et al. 2008) TRANSCEND (Mann et al. 2009) ZODIAC (Lutgers et al. 2009) Cohorts with dipstick data:	Exclusion: Not stated	from 24hour urine collections were used. In studies in which no quantitative albuminuria measurements were available, data on dipstick testing for proteinuria were collected. History of cardiovascular disease (CVD) was defined as previous myocardial infarction, bypass grafting, percutaneous coronary intervention, heart failure, or stroke.		eGFR 30-44: 2.06 (1.42-2.97) eGFR 15-29:3.52 (2.18-5.69) All: 1.28 (1.17-1.39) ACR 30-299mg/g eGFR>105: 1.51 (1.23-1.84) eGFR 90-104: 1.63 (1.37-1.95) eGFR 75-89: 1.58 (1.36-1.84) eGFR 60-74: 1.63 (1.28-2.07) eGFR 45-59: 1.96 (1.57-2.43) eGFR 30-44: 2.84 (1.98-4.06) eGFR 15-29: 3.73 (2.90-4.80) All: 1.79 (1.60-2.00) ACR ≥300 eGFR >105: 2.97 (2.19-4.04) eGFR 90-104: 2.72 (2.08-3.56) eGFR 75-89: 2.91 (2.28-3.73)	59.4% of cardiovascular mortality events. Baseline characteristics of the dipstick cohorts are generally comparable to the ACR cohorts, although ACR cohorts had a higher percentage of males an people with diabetes or history of cardiovascular disease, and a lower percentage of Blacks. Interactions: Interactions (assessed by likelihood-ratios) between eGFR and albuminuria was
	CARE (Tonelli et al. 2006) KEEP (McCullough et al. 2008)		as systolic blood pressure 140mmHg or more, diastolic blood pressure 90mmHg or more, or use of antihypertensive	All-cause	eGFR 60-74: 2.67 (1.76-4.04) eGFR 45-59: 3.58 (2.54-5.05) eGFR 30-44: 3.99 (2.73-5.83) eGFR 15-29: 5.43 (3.94-7.49) All: 3.29 (3.04-3.56) Dipstick negative	significant for all-cause mortality in only 4 of 10 cohorts, and for cardiovascular mortalit in only 1 of 7 cohorts. Significant interaction

Number of patients & Reference characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
KP Hawaii (Lee & Forbes 2009) MRFIT (Ishani et al. 2006)		medication. Hyperchloesterolemia was defined as total cholesterol ≥5.0 mmol/l in the case of a positive history of CVD, and ≥6.0mmol/l for a negative history of CVD. Diabetes mellitus defined as fasting glucose concentration 7.0mmol/L or more, non-fasting glucose concentration 11.1 mmol/L or more, or use of glucose lowering drugs or self- reported diabetes. Smoking status was dichotomised as current versus non current smoking.	 mortality Adjusted hazard ratio (95% Cl) Stratified by eGFR With dipstick data 	eGFR>105: 1.08 (0.91-1.27) eGFR 90-104: Reference eGFR 75-89: 0.82 (0.75-0.90) eGFR 60-74: 0.81 (0.73-0.89) eGFR 45-59: 0.88 (0.75-1.03) eGFR 30-44: 1.18 (0.68-2.06) eGFR 15-29: 3.12 (1.53-6.37) All: Reference Dipstick Trace eGFR>105: 1.16 (0.69-1.97) eGFR 90-104: 1.09 (0.90-1.32) eGFR 75-89: 1.02 (0.86-1.20) eGFR 60-74: 0.93 (0.79-1.11) eGFR 45-59: 1.05 (0.82-1.36) eGFR 30-44: 1.87 (1.30-2.68) eGFR 15-29: 4.25 (2.11-8.58) All: 1.24 (1.09-1.41) Dipstick 1+ eGFR>105: 2.10 (1.33-3.32) eGFR 75-89: 1.35 (0.88-2.05) eGFR 75-89: 1.35 (0.88-2.05)	between eGFR and Age was found in 3 or 10 cohorts for all-cause mortality and in 2 out of 7 cohorts for cardiovascular mortality

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
					eGFR 45-59: 2.25 (1.55-3.25)	
					eGFR 30-44: 2.51 (1.78-3.54)	
					eGFR 15-29: 3.49 (2.26-5.41)	
					All: 1.93 (1.38-2.70)	
					Dipstick ≥2+	
					eGFR >105: 1.86 (0.63-5.46)	
					eGFR 90-104: 3.86 (1.44-	
					10.36)	
					eGFR 75-89: 3.22 (1.59-6.52)	
					eGFR 60-74: 2.29 (1.32-3.98)	
					eGFR 45-59: 2.40 (1.13-5.12)	
					eGFR 30-44: 5.50 (3.56-8.50)	
					eGFR 15-29: 7.14 (4.64-10.99)	
					All: 3.48 (1.75-6.92)	
				Cardiovascular	ACR 10mg/g: 1.13 (1.07-1.2)	
				mortality	ACR 30mg/g: 1.55 (1.30-1.86)	
				Defined as death	ACR 300mg/g: 2.59 (1.95-	
				due to myocardial	3.44)	
				infarction, heart failure, sudden		
				cardiac death, or		
				stroke.		
				Adjusted hazard		
				ratio (95% CI)		

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
				Compared to ACR 5mg/g		
				Cardiovascular mortality Adjusted hazard ratio (95% CI) Stratified by eGFR With ACR data	ACR <10mg/g eGFR>105: 1.20 (0.89-1.62) eGFR 90-104: Reference eGFR 75-89: 1.02 (0.82-1.26) eGFR 60-74: 0.86 (0.75- 1.00)1.00 (0.81-1.23) eGFR 45-59: 1.42 (1.14-1.77) eGFR 30-44: 2.27 (1.72-3.01) eGFR 15-29: 3.93 (2.10-7.35) All: Reference ACR 10-29mg/g eGFR>105: 1.62 (1.10-2.39) eGFR 90-104: 1.56 (1.12-2.17) eGFR 75-89: 1.34 (1.03-1.76) eGFR 60-74: 1.54 (1.16-2.04) eGFR 45-59: 2.06 (1.60-2.66) eGFR 30-44: 3.74 (2.06-6.78) eGFR 15-29: 5.60 (2.34- 13.43) All: 1.46 (1.32-1.62)	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
					ACR 30-299mg/g	
					eGFR>105: 2.04 (1.40-2.95)	
					eGFR 90-104: 1.95 (1.44-2.65)	
					eGFR 75-89: 1.82 (1.42-2.34)	
					eGFR 60-74: 2.01 (1.55-2.59)	
					eGFR 45-59: 2.56 (2.03-3.22)	
					eGFR 30-44: 3.95 (3.02-5.18)	
					eGFR 15-29: 6.06 (3.89-9.45_	
					All: 2.09 (1.73-2.53)	
					ACR ≥300	
					eGFR >105: 3.55 (1.80-7.01)	
					eGFR 90-104: 4.12 (2.50-6.77)	
					eGFR 75-89: 4.76 (3.32-6.81)	
					eGFR 60-74: 4.00 (2.83-5.66)	
					eGFR 45-59: 5.58 (3.19-9.79)	
					eGFR 30-44: 6.00 (4.40-8.18)	
					eGFR 15-29: 7.21 (4.33-11.99)	
					All: 4.02 (3.50-4.62)	
				Cardiovascular	Dipstick Negative	
				mortality	eGFR>105: 0.96 (0.73-1.26)	
				Adjusted hazard	eGFR 90-104: Reference	
				ratio (95% CI)	eGFR 75-89: 0.87 (0.75-1.00)	
				Stratified by eGFR	eGFR 60-74: 0.86 (0.75-1.00)	

ККТ

Chronic kidney disease Clinical evidence tables

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
					eGFR 45-59: 0.89 (0.79-1.15)	
				With dipstick data	eGFR 30-44: 0.55 (0.13-2.31)	
					eGFR 15-29: Insufficient events for reliable estimate	
					All: Reference	
					Dipstick Trace	
					eGFR>105: 1.07 (0.62-1.83)	
					eGFR 90-104: 1.10 (0.81-1.50)	
					eGFR 75-89: 1.03 (0.85-1.26)	
					eGFR 60-74: 1.05 (0.72-1.54)	
					eGFR 45-59: 1.04 (0.65-1.66)	
					eGFR 30-44: 1.07 (0.23-5.05)	
					eGFR 15-29: Insufficient events for reliable estimate	
					All: 1.15 (1.03-1.29)	
					Dipstick 1+	
					eGFR>105: 3.05 (0.60-15.40)	
					eGFR 90-104: 2.07 (1.24-3.46)	
					eGFR 75-89: 1.03 (0.72-1.48)	
					eGFR 60-74: 1.29 (0.91-1.82)	
					eGFR 45-59: 2.70 (1.29-5.68)	
					eGFR 30-44: 3.06 (0.81-11.56)	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
					eGFR 15-29: Insufficient	
					events for reliable estimate	
					All: 1.57 (1.27-1.93)	
					Dipstick ≥2+	
					eGFR>105: 1.18 (0.29-4.75)	
					eGFR 90-104: 2.28 (1.07-4.86)	
					eGFR 75-89: 2.82 (1.03-7.70)	
					eGFR 60-74: 1.91 (0.96-3.79)	
					eGFR 45-59: 1.62 (0.80-3.31)	
					eGFR 30-44: 3.45 (1.01-11.76)	
					eGFR 15-29: Insufficient	
					events for reliable estimate	
					All: 2.30 (1.52-3.50)	

4.1	Diabetes									
	Table 42: Fox et al. 2012									
ווכשו התומהווווה רהנות ה	Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect size	Comments			
	Caroline S. Fox, Kunihiro Matsushita , Mark Woodward , Henk J. G. Bilo, John Chalmers, Hiddo J. L. Heerspink, Brian J. Lee, Robert M. Perkins, Peter Rossing, Toshimi Sairenchi, Marcello	1,024,977 participants: 128,505 (13%) with diabetes 23 general population cohorts, 7 high risk and 15 CKD cohorts were included. General population cohorts: Aichi ARIC AusDlab Beaver Dam CKD Beijing CHS	Study type: IPD meta-analysis Inclusion: Studies that had at least 1000 participants (not applied to studies that predominantly included patients with CKD), baseline information about eGFR and albuminuria, and at least 50 events for each outcome of interest.	GFR was calculated using the CKD Epidemiology Collaboration equation. Studies were included in which assessed proteinuria with the urine albumin to creatinine ratio (ACR), urine albumin excretion rate, urine protein to creatinine ratio (PCR), or quantitative dipstick protein were measured. Diabetes defined as fasting glucose concentration 7.0mmol/L or more, non- fasting glucose concentration 11.1 mmol/L or more, at least 6.5% use of glucose lowering drugs, or self-reported	End stage renal disease Defined as start of renal replacement therapy or death because of kidney disease other than AKI Adjusted HR (95% Cl), diabetes vs.no diabetes.*	eGFR <30: 1.40 (1.14, 1.73) eGFR 30-44: 1.41 (1.28, 1.55) eGFR 45-60: 1.44 (1.32, 1.58)	Source of funding US National Kidney Foundation Confounding factors adjusted for: Age, sex, ethnicity (black vs.non- black), smoking, systolic blood pressure, total cholesterol, body- mass index, history of cardiovascular disease, and albuminuria.			

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect size	Comments
Tonelli, Joseph A. Vassalotti, KazumasaY amagishi, Josef Coresh, Paul E. de Jong, Chi Pang Wen, Robert G. Nelson, and Chronic Kidney Disease Prognosis Consortiu m. Associatio ns of kidney disease measures with mortality and end-	COBRA ESTHER Framingham Gubbio HUNT IPHS MESA MRC MRC NHANES III Ohasama PREVEND RanchoBernardo REGARDS Severance Taiwan ULSAM High risk cohorts: ADVANCE CARE KEEP KP Hawaii MRFIT	Analysis restricted to participants aged at least 18 years. Exclusion: Not stated.	diabetes. History of cardiovascular disease (CVD) was defined as previous myocardial infarction, coronary revascularisation, heart failure or stroke. Hypertension defined as systolic blood pressure 140mmHg or more, diastolic blood pressure 90mmHg or more, or use of antihypertensive medication. Hyperchloesterolemia was defined as total cholesterol ≥5.0 mmol/l in the case of a positive history of CVD, and ≥6.0mmol/l for a negative history of CVD. Smoking status was defined as present, former or never.			Other information: * Data provided by CKD prognosis consortium. Participants with diabetes were generally older than those without and had a higher prevalence of hypertension, hyperchloesterola emia and cardiovascular disease. Interaction of diabetes between those with and those without averaged across full range of eGFR for a

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect size	Comments
stage renal disease in individuals with and without diabetes: a meta- analysis. Lancet 380 (9854):166 2-1673, 2012.	ZODIAC CKD cohorts: AASK BCCKD Geisinger ACR Geisinger Dip GLOMMS-1 ACR GLOMMS-1 PCR KPNW MASTERPLAN MDRD MMKD NephroTest RENAAL STENO Sunnybrook.					15ml/min/1.73m ² reduction was not significant for all- cause or cardiovascular mortality.

4.2 Hypertension

G.4.2 אמנוטוומו כוווווכמו פטומפוווופ כפוונו פ 2014

Table 43:Mahmoodi et al. 2012

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
B. K. Mahmoodi, K. Matsushita , M. Woodward , P. J. Blankestijn,	742,240 participantsStudy type:without hypertensionIPD meta-and 347 256 withanalysishypertension from 25general populationcohorts, 7 high riskInclusion:cohorts.Studies withat least 1000participants	CKD Epidemiology Collaboration equation, based on age, sex, race and serum creatinine concentration. Studies were included in which assessed proteinuria with the	End stage renal disease Defined as start of renal replacement therapy or death because of kidney disease other than AKI. Adjusted HR (95% CI), diabetes vs.no diabetes.*	eGFR <30: 0.72 (0.53, 0.98) eGFR 30-44: 0.94 (0.84, 1.05) eGFR 45-60: 1.08 (0.99, 1.18)	Source of funding Data coordinating centre funded by a programme grant from the US National Kidney Foundation (funding sources include Abbott and Amgen).	
M. Cirillo, T. Ohkubo, P. Rossing, M. J. Sarnak, B. Stengel, K. Yamagishi,	without hypertension and 17,088 people with hypertension from 13 chronic kidney disease cohorts.	(not applied to studies that predominantl y included patients with CKD), baseline information	urine albumin to creatinine ratio (ACR), urine albumin excretion rate, urine protein to creatinine ratio (PCR), or quantitative dipstick protein were measured.	All-cause mortality Adjusted HR (95% Cl), diabetes vs.no diabetes.*	eGFR <30: 0.78 (0.51, 1.20) eGFR 30-44: 1.10 (0.94, 1.30) eGFR 45-60: 1.22 (1.02, 1.46)	Various sources supported enrolment and data collection Confounding factors adjusted for:
K. Yamashita, L. Zhang, J. Coresh, P. E. de Jong, and B. C. Astor. Association	General population cohorts: Aichi ARIC AusDiab Beaver Dam CKD Beijing	about eGFR and albuminuria, and either mortality or end stage renal disease with a	Diabetes defined as fasting glucose concentration 7.0mmol/L or more, non- fasting glucose concentration 11.1 mmol/L or more, at least 6.5% use of glucose lowering drugs, or self-reported	Cardiovascular mortality Defined as death due to myocardial infarction, heart failure, stroke, or sudden cardiac death. Adjusted HR (95% CI),	eGFR <30: 1.39 (0.78, 4.05) eGFR 30-44: 1.06 (0.51, 2.22) eGFR 45-60: -	Age, sex, race (black vs.non-black), history of cardiovascular disease, diabetes, serum total cholesterol, body mass index, smoking and albuminuria.

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
s of kidney disease measures with mortality and end- stage renal disease in individuals with and without hypertensi on: a meta- analysis. Lancet Epub, 2012.	CHS CIRCS COBRA ESTHER Framingham Gubbio HUNT IPHS MESA MRC NHANES III Ohasama Okinawa 83 Okinawa 83 Okinawa 93 PREVEND RanchoBernardo REGARDS Severance Taiwan ULSAM High risk cohorts: ADVANCE CARE	minimum of 50 events. Analysis restricted to participants aged at least 18 years. Exclusion: Not stated.	diabetes. History of cardiovascular disease (CVD) was defined as previous myocardial infarction, coronary revascularisation, heart failure or stroke. Hypertension defined as systolic blood pressure 140mmHg or more, diastolic blood pressure 90mmHg or more, or use of antihypertensive medication in primary and high risk population cohorts. In CKD cohorts, hypertension was categorised only by systolic and diastolic blood pressure values because antihypertensive drugs were used in at least 97% of participants in 4 cohorts and information not available in one cohort. Hyperchloesterolemia was	diabetes vs.no diabetes.*		Other information: * Data provided by CKD prognosis consortium. The mean age of participants and the prevalence of traditional cardiovascular risk factors, especially diabetes, was higher in hypertensive individuals than in those without hypertension. Interactions: Significant interaction identified at eGFR levels of less than 59ml/min/1.73m ² for all-cause mortality and less than 73ml/min/1.73m ² for

D . (Number of patients &	Inclusion / exclusion		.		6
Reference	characteristics	criteria	Intervention	Outcome measures	Effect sizes	Comments
	KEEP		defined as total cholesterol			cardiovascular
	KP Hawaii		\geq 5.0 mmol/l in the case of a			mortality.
	MRFIT		positive history of CVD, and ≥6.0mmol/I for a negative			The overall interaction
	Pima		history of CVD.			of hypertension with
	ZODIAC					eGFR was significant for all-cause mortality
			Smoking status was			and cardiovascular
	CKD cohorts:		dichotomised as smokers			mortality.
	AASK		versus former or never			Although there was
	BC CKD		smokers.			heterogeneity, most
	CRIB					cohorts were in
	Geisinger ACR					agreement with a
	Geisinger dipstick					weaker association for
	GLOMMS-1 ACR					low eGFR in
	LOMMS-1 PCR					participants with
	KPNW					hypertension
	MASTERPLAN					compared with those without.
	MDRD					without.
	MMKD					
	Nephro Test					
	RENAAL					
	STEMO					
	Sunnybrook					

4.3 Glomerular disease

Table 44: Chou et al. 2012

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
YH. Chou, Y C. Lien, FC. Hu, WC. Lin, CC. Kao, CF. Lai, WC. Chiang, SL. Lin, TJ. Tsai, KD. Wu, and YM. Chen. Clinical outcomes and predictors for ESRD and mortality in primary GN. Clin.J.Am.Soc. Nephrol. 7 (9):1401-1408, 2012. Time: 1993- 2006, all	n: 580 participants Baseline characteristics N: 987 Excluded:407 Total: n=580 Age: 44.4 (16.8) Diabetes, %: 7.9 Hypertension, %:32.5 eGFR (ml/min/1.73m ²),%: \geq 90: 27.6 60-89: 34.1 30-59: 25.5 15-29: 8.8 <15: 4.0 Proteinurea, %: -mild (1+ or2+): 28.7 -severe (>3.5g/d or \geq 3+): 71.3 Steroid treatment alone, %:	Study type: Retrospective observational Inclusion: People aged over 18 years referred to the Taiwan University Hospital between 1993 – 2006 for native kidney biopsy; reason for biopsy included nephrotic syndrome, unexplained renal failure, persistent urinary abnormalities or haematuria. Exclusion: people with membrano-proliferative glomerylonephritis, mesiango-proliferative glomerulonephritis,	Data was obtained from databank of National Health Insurance Research Database. Study population cross linked with Taiwan Society of Nephrology registry of 2008. All subjects followed until 2008 for occurrence of primary endpoints such as death from any cause of=r ESRD requiring renal transplantation or long term dialysis.	Time from biopsy to dialysis in years (Kaplan Meier) HR (95% Cl) calculated by NCGC from Kaplan Meier curve and number at risk.	Events in next period/subjects at risk MCD - reference 0: 1/109 3: 0/93 6: 0/61 9: 0/31 12: 0/7 15: 0/1 MN: 2.2 (0.64- 7.56) IgAN: 5.1 (2.4- 10.83) FSGS: 5.86 (3.07- 11.19)	Source of funding: Grants from National Taiwan University hospital, Bureau of health promotion, Ta-Tung Kidney Foundation, Mrs Hsiu-Chin Lee Kidney Research Fund, Taipei, Taiwan. Additional info: Predictors for ESRD were (all values HR (95%CI): FSGS 34.64 (2.68-447.38), IgAn patients with hypertension (6.92, 1.83- 26.22), IgAN patients with higher proteinuria (3.05, 1.68-5.54), MN patients with higher proteinuria (2.98, 1.62-
patients followed up	42.0 Cytotoxic treatment alone, %: 1	secondary GN or other renal pathologies such as	MDRD equation	Time from biopsy to death	MCD:	5.47), FSGS patients with higher proteinuria (1.80,

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
until 2008 for primary end points of death or ESRD requiring renal transplantatio n or long term dialysis	FSGS: n=132 Age: 44.3 (15.1) Diabetes, %: 8.3 Hypertension, %: 48.5 eGFR (ml/min/1.73m ²)%: \geq 90: 13.5 60-89: 25.6 30-59: 39.9 15-29: 16.5 <15: 4.5 Proteinurea, %: -mild (1+ or2+): 31.1 -severe (>3.5g/d or \geq 3+): 68.9 Steroid treatment alone, %: 19.7 Cytotoxic treatment alone, %: 1	diabetic nephropathy, lupus nephritis and incomplete laboratory data.	was used to estimate GFR from age, sex, ethnic origin and serum creatinine concentration. Decline of eGFR calculated by calculated by calculating the differences of eGFR normalised by intervals between the time at biopsy and the time at the last clinic visit before occurrence of primary endpoints or end of 2008	survival curve (years) (Kaplan Meier) HR (95% CI) calculated by NCGC from Kaplan Meier curve and number at risk.	Reference MN:3.48 (1.75- 6.92) IgAN:1.95 (0.49- 7.76) FSGS: 4.04 (1.68- 9.72)	1.18-2.73), patients with higher serum albumin (1.74, 1.17-2.60), patient with higher serum creatinine (1.49, 1.25- 1.78) and patients with higher serum tryiglycerides (1.003, 1.001-1.004) Predictors for mortality were (all values HR (95%CI): MN with higher proteinuria (1.69, 1.24- 2.32), FSGS with higher serum creatinine (1.46, 1.19-1.80), and older age (1.08, 1.06-1.10), MN with higher serum albumin (0.54, 0.33-0.08)
	IgAN: n=130 Age: 34.5 (12.1) Diabetes, %: 2.3 Hypertension, %: 25.4 eGFR (ml/min/1.73m ²) %: ≥90: 17.7 60-89: 35.4		Statistical analysis: Cox proportional hazard models were constructed using multivariate analysis.			Follow-up: 15 years

	Number of patients &	Inclusion / exclusion		Outcome		
Reference	characteristics	criteria	Intervention	measures	Effect sizes	Comments
	30-59: 29.2					
	15-29: 8.5					
	<15: 9.2					
	Proteinurea, %:					
	-mild (1+ or2+): 56.3					
	-severe(>3.5g/d or ≥3+):43.7					
	Steroid treatment alone, %:					
	30.0					
	Cytotoxic treatment alone, %:0					
	MCD: n=109					
	Age: 35.7 (15.9)					
	Diabetes, %: 4.6					
	Hypertension, %: 21.1					
	eGFR (ml/min/1.73m ²)%:					
	≥90: 48.6					
	60-89: 33.1					
	30-59: 11.9					
	15-29: 4.6					
	<15: 1.8					
	Proteinurea, %:					
	-mild (1+ or2+): 25.9					
	-severe (>3.5g/d or ≥3+): 74.1					
	Steroid treatment alone, %:					
	64.2					

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
	Cytotoxic treatment alone, %: 0					
	MN: n=209					
	Age: 55.2 (14.3)					
	Diabetes, %: 13.9					
	Hypertension, %: 33.0					
	eGFR (ml/min/1.73m ²)%:					
	≥90: 31.6					
	60-89: 39.7					
	30-59: 21.1					
	15-29: 6.2					
	<15: 1.4					
	Proteinurea, %:					
	-mild (1+ or2+): 11.6					
	-severe (>3.5g/d or ≥3+): 88.4					
	Steroid treatment alone, %:					
	52.2					
	Cytotoxic treatment alone, %: 1					
1CD = minimal c	hange disease, MN = membranous nephr	opathy, IgAN = IgA nephropath	ay, FSGS = focal segmental	l glomerulosclerosis		

Chronic kidney disease Clinical evidence tables

	Number of patients &	Inclusion /				
Reference	characteristics	exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments

	Number of patients &	Inclusion /				
Reference	characteristics	exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
Hajeong Lee, Dong Ki Kim, Kook Hwan Oh, Kwon Wook Joo, Yon Su Kim, Dong Wan Chae, Suhnggwon Kim, and Ho Jun Chin. Mortality and renal outcome of primary glomerulonephr itis in Korea: observation in 1,943 biopsied cases. Am.J.Nephrol. 37 (1):74-83,	 n: 1,943 participants Baseline characteristics: MCD: At biopsy: N: 187 Age 37 (23-52) (years)median (IQR): Gross haematuria, n(%): 21 m (11.3) Nephrotic syndrome n(%): 120 (67.4) Diabetes n(%): 8 (4.3) Hypertension n(%): 24 (13) eGFR ml/min/1.73m²(median, IQR): 80.2 (51.2-100.5) Proteinuria, g/day: 7.86 (4.08-12.08) <i>Follow up:</i> Diabetes n,%: 14 (7.6) Malignancy, n, %: 20 (10.9) 	Study type: Retrospective cohort Inclusion: 4,998 patients older than 15 years underwent percutaneous native kidney biopsy at Seoul National Hospital Exclusion: people diagnosed with secondary GN, tuberlointerstitial disease, renal vascular disease,	Baseline data obtained from review of medical records at time of biopsy. MDRD equation was used to estimate GFR after measuring serum creatinine concentration. Data on mortality and cause of death obtained from Korean National Statistical Office. ESRD data collected from Korean ESRD	ESRD progression defined as permanent haemodialysis, peritoneal dialysis or renal transplantation after renal biopsy. Kaplan-meier Cumulative patient survival after ESRD progression HR (95% CI) calculated by NCGC from Kaplan Meier curve and number at risk.	MCD: Reference MN: 4.3 (1.72- 10.75) IgAN: 3.05 (1.96- 4.75) FSGS: 4.42 (2.51- 7.78) MPGN: 34.65 (9.54- 125.85)	Source of funding: None Additional info Follow-up: 240 months Unadjusted hazard ratios
2013. Setting: Seoul National University Hospital	CVD, n,%: 3 (5.9) FSGS <i>At biopsy:</i> N:251 Age (years)median (IQR): 40 (26-55) Gross haematuria, n(%): 18 (7.2) Nephrotic syndrome n(%): 63 (25.4)	solid organ malignancy, immunoglobulin deposition disease or ESRD. Inadequate specimens and biopsies taken	registry. Medical records reviewed retrospectively to obtain additional information related to primary outcome.	Mortality HR (95% CI) HR (95% CI) calculated by NCGC from Kaplan Meier curve and number at risk.	MCD: Reference MN: 1.41 (0.97- 2.05) IgAN: 1.08 (0.97- 1.20) FSGS: 1.41 (0.98- 2.03) MPGN: 1.80 (0.97-	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
Duration: January 1979- December 2008. Median follow up of 90 months (IQR 56-142 months)	Characteristics Diabetes $n(\%)$: 14 (5.6) Hypertension $n(\%)$: 89 (35.9) eGFR ml/min/1.73m ² (median, IQR): 42 (40.1-84.5) Proteinuria, g/day: 3.23 (1.70-7.33) <i>Follow up:</i> Diabetes $n,\%$: 37 (14.9) Malignancy, $n,\%$: 21 (8.5) CVD, $n,\%$: 4 (11.3) MN <i>At biopsy:</i> N:232 Age (years)median (IQR): 54 (44-63) Gross haematuria, $n(\%)$: 14 (6) Nephrotic syndrome $n(\%)$: 102 (44.3) Diabetes $n(\%)$: 20 (8.7) Hypertension $n(\%)$: 61 (26.6) eGFR ml/min/1.73m ² (median, IQR): 79.3 (60.4-95.5) Proteinuria, g/day: 5.20 (3.13-8.80) <i>Follow up:</i> Diabetes $n,\%:30$ (13) Malignancy, $n,\%: 23$ (10) CVD, $n,\%: 8$ (10)	exclusion criteria before 1992 also excluded (to maximise completeness of data)	InterventionAssumed that patients with no follow up creatinine values who did not undergo renal replacement therapy or a reported death did not meet the primary endpoint.Participants divided into one of 5 major type of GN: MCD (n=187), FSGS (n=251), MN (n=232), IgAN (n=1009), MPGN (n=47)Statistical analysis: Investigators from each study analysed their data in accordance with an a priori analytical plan.Kaplan Meier curves used to estimate survival rates using	Kaplan-meier Cumulative patient or renal survival after renal biopsy	3.34)	

	Number of patients &	Inclusion /				
Reference	characteristics	exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
			log-rank test to			
	IgAN		analyse ESRD			
	At biopsy:		progression and patient death.			
	N:1009		patient death.			
	Age (years)median (IQR): 35 (26-46)		Mortality in GN			
	Gross haematuria, n(%): 240 (23.9)		patients compared to			
	Nephrotic syndrome n(%): 16 (4.2)		age/sex matched			
	Diabetes n(%): 25 (2.5)		general population-			
	Hypertension n(%): 247 (24.6)		SMR calculated (not			
	eGFR ml/min/1.73m ² (median, IQR):		reported here)			
	68.9 (49.6-85.5)					
	Proteinuria, g/day: 1.30 (0.60-2.40)					
	Follow up:					
	Diabetes n,%: 61 (6.1)					
	Malignancy, n, %: 55 (5.5)					
	CVD, n,%: 9 (4.9)					
	MPGN					
	At biopsy:					
	N:47					
	Age (years)median (IQR): 46 (29-60)					
	Gross haematuria, n(%): 6 (12.8)					
	Nephrotic syndrome n(%): 16 (34.8)					
	Diabetes n(%): 3 (6.4)					
	Hypertension n(%): 16 (34)					

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
	eGFR ml/min/1.73m ² (median, IQR): 66 (35.5-88.2)					
	Proteinuria, g/day:4.80 (2.14-8.01)					
	Follow up:					
	Diabetes n,%: 4 (8.5)					
	Malignancy, n, %: 4 (8.5)					
	CVD, n,%: 1 (12.8)					

MCD = minimal change disease, MN = membranous nephropathy, IgAN = IgA nephropathy, FSGS = focal segmental glomerulosclerosis. MPGN = membranoproliferative glomerulonephritis

Table 46:Moranne et al. 2008

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
O. Moranne, L. Watier, J. Rossert, and B. Stengel. Primary glomerulonephr itis: An update on renal survival and determinants of progression. QJM 101 (3):215-224, 2008. Location: University Paris Sud, School of medicine. Duration: 1994- 2001	<pre>n: 536 participants</pre> Baseline characteristics: Cases included: 536 Number interviewed:339 Could not attend:88 Died before 2002:18 Lost to follow up:91 Overall cohort: N:536 Age (years, mean, SD): 43 (17) Diabetes, %:5 Hypertension (>140-90 or treated):60 eGFR (ml/min/1.73m ²⁾ median, IQR):70 (43-91) ≥60:61 30-60:24 15-30:15 Proteinuria (g/L), median, IQR:2.5 (0.9-5.0)	<pre>Study type: Retrospective cohort Inclusion: All white adult patients (>18 years) from 11 Paris area nephrology departments who were first diagnosed with primary IgAN, MN or FSGS between January 1994 ND June 2001.</pre> Exclusion: HIV, heroin abuse and severe reduction in kidney mass for FSGS; Henoch-Schonen purpura, cirrhosis, GI inflammatory diseases for IgAN and SLE, malignancy, viral hepatitis B and drug toxicity for MN. 26 patients were excluded with an eGFR	 Patients were identified from renal biopsy files and affiliated pathology departments; all GNs were histologically proven. Of the 536 cases included, these were invited for interview and blood test between 2002-2004. Nine experts reviewed medical records of 853 patients meeting these criteria and confirmed diagnosis and primary nature of GN for 562. Patients invited for interview and blood test between 2002- 2004 MDRD equation was used to estimate GFR from age, sex, ethnic origin and serum 	ESRD time to first treatment of ESRD, including dialysis or pre- emptive transplantation. End point for sub-cohort was composite of time to either ESRD treatment of halving of eGFR (n=339) HR (95% CI)	Overall cohort: GN type: IgAN: referent (n=283) MN: 2.6 (0.3- 13.0) (n=129) FSGS: 7.0 (2.0- 24.0) (n=124) Sub-cohort (n=339) GN type: IgAN: referent (n=193) MN: 1.9 (0.2-22) (n=76) FSGS:17.0 (4.0- 72.0) (n=70)	Source of funding: Study supported by grants from ministry of Health, Ministry of environment, ministry of research and biomedicine agency. Additional info: Confounders adjusted for: Age, gender, histological type and all baseline covariates except eGFR. Follow-up: 7 years

וומנוטוזמו כוווווכמו שטומפוווופ כפוונרפ בטדק

	Number of patients &	Inclusion / exclusion		Outcome		
Reference	characteristics	criteria	Intervention	measures	Effect sizes	Comments
	%>3: 43	<15ml/min/1.73m ²	creatinine concentration.			
	FSGS:		Statistical analysis:			
	N: 124		Investigators from each study			
	Age (years, mean, SD): 46		analysed their data in			
	(16)		accordance with an a priori			
	Diabetes, %: 10		analytical plan.			
	Hypertension (>140-90 or treated):74 eGFR (ml/min/1.73m ²⁾ median, IQR): 56 (36-83) ≥60: 45 30-60: 36 15-30: 19 Proteinuria (g/L), median, IQR: 3.7 (2-6.6) %>3: 61 MN: N:129 Age (years, mean, SD): 54 (18) Diabetes, %: 7 Hypertension (>140-90 or treated): 60		Cox proportional hazard ratios (HRs) were calculated for ESRD for all GN patients and subgroup of 339 patients who were interviewed. All models adjusted or interaction of age and histological type. Kaplan-Meier used to estimate renal survival probabilities. Patients who died before ESRD were censored			

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
	eGFR (ml/min/1.73m ²⁾					
	median, IQR): 79 (61-95)					
	≥60: 75					
	30-60: 18					
	15-30: 7					
	Proteinuria (g/L), median,					
	IQR: 6.0 (2.3-9)					
	%>3:84					
	IgAN:					
	N: 283					
	Age (years, mean, SD): 37					
	(14)					
	Diabetes, %: 3					
	Hypertension (>140-90 or					
	treated): 53					
	eGFR (ml/min/1.73m ²⁾					
	median, IQR): 70 (61-95)					
	≥60: 62					
	30-60: 21					
	15-30: 17					
	Proteinuria (g/L), median,					
	IQR: 1.2 (0.5-2.5)					
	%>3: 17					

MN = membranous nephropathy, IgAN = IgA nephropathy, FSGS = focal segmental glomerulosclerosis

4.4 Acute kidney injury

National cillical פטומפוווופ כפווניפ 2014

Table 47: Amdur et al. 2009

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
Richard L. Amdur, Lakhmir S. Chawla, Susan Amodeo, Paul L. Kimmel, and Carlos E. Palant. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int. 76 (10):1089- 1097, 2009. Setting: United States Department of Veterans Affairs database Duration: October 1999-December 2005.	n: 113,272 participants Baseline characteristics: ATN: N: 346 Age(mean, SD): 63.8 (12.5) ARF: N:5058 Age(mean, SD): 66.5 (12.2) CON: N:63491 Age(mean, SD): 68.7 (11.9) CKD: N:44377 Age(mean, SD): 74.4 (10.6)	Study type: Retrospective cohort Inclusion: All patients in the VA decision support system database with at least one inpatient admission with a primary diagnosis of ARF or ATN as markers for an episode of AKI. Patients with PNE or MI codes (ICD9 codes) were designated as controls (CON).	Patients divided into 4 groups: ATN: those with at least one ATN admission, but no admissions for MI or PNE ARF: those with 1 or more ARF admissions, but no ATN, PNE or MI admissions CON: those with PNE or MI admissions but no ARF or ATN admissions CKD: Patients with one of the above admission diagnoses who also had CKD who were removed from the above 3 groups and examined separately. Patients labelled CKD if they entered CKD3,4 or 5 or started chronic dialysis before the first ATN/ARF/MI/PNE admission date and had mean eGFR <60ml/min/1.73m ² .	ESRD defined as time from diagnosis to development of CKD4 n developed CKD4/ total (cox regression HR) Mortality Time from diagnosis to death N died/ total n (cox regression HR)	ATN: 69/345 (6.64) ARF: 663/5021 (4.03) CON: 2100/62850 (1.0) CKD: 9263/37562 (6.50) TOTAL: 12095/105778 ATN: 127/345 (1.10) ARF: 1958/5021 (1.12) CON: 24622/62850 (1.00) CKD: 23544/44076 (1.20) TOTAL: 50251/112292	Source of funding: Part supported by Satellite Research, Norman S Coplon Extramural Research Grant Additional info: Confounders adjusted for: Acute renal failure, acute tubular necrosis, CKD, age, Caucasian, African American, Hispanic, gender, pre-admission diabetes mellitus, diagnosis date, mean pre- admission serum creatinine, mean pre- admission albumin and teaching hospital (y/n).

l evidence tables

GT 7

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
		Exclusion:CKD4 or higher before diagnosis date	 MDRD equation was used to estimate GFR from age, sex, ethnic origin and serum creatinine concentration. Date of death from VA BIRLS death file. SC values <0.4 or above 25mg/dl were coded as missing CKD3, 4, and 5 were defined as the first day when eGFR dropped below the threshold after which it never returned above the threshold for that patient Chronic dialysis was defined as having at least 13 outpatient dialysis visits within a 60 day period. AKI assessed by RIFLE criteria 			*95% CI for HR not reported, calculated by NCGC for forest plots. Follow-up: 60 months

clusion / clusion criteria	Intervention	Outcome measures	Effect sizes	Comments
	Patients censored at death or at			
	60 months after their diagnosis			
	dates.			
	Statistical analysis:			
	Investigators from each study			
	analysed their data in accordance			
	with an a priori analytical plan.			
	lusion criteria	Iusion criteriaInterventionPatients censored at death or at 60 months after their diagnosis dates.Statistical analysis: Investigators from each study analysed their data in accordance	Iusion criteriaInterventionmeasuresPatients censored at death or at 60 months after their diagnosis dates.Frank Statistical analysis: Investigators from each study analysed their data in accordance with an a priori analytical plan.Frank Statistical plan.	Iusion criteriaInterventionmeasuresEffect sizesPatients censored at death or at 60 months after their diagnosis dates.Fact sizesFact sizesStatistical analysis: Investigators from each study analysed their data in accordance with an a priori analytical plan.Fact sizes

ATN, acute tubular necrosis; ARF, acute renal failure; CON, control; PNE, pneumonia; MI, myocardial infarction.

Table 48: LaFrance et al. 2010

Number of Inclusion / patients & Reference Intervention Effect sizes characteristics exclusion criteria **Outcome measures** Comments J.-P. Lafrance, O. **n:** 6862 Study type: Provincial CKD registry, ESRD was defined AKI: 2.33 (2.07, Source of funding: Djurdjev, and A. participants Retrospective including all patients referred as time to dialysis 2.61) Not stated, but states 'no Levin. Incidence to nephrologists or on dialysis cohort initiation Age (by 10 years): declarations of interest'. and outcomes of therapy in British Columbia 0.78 (0.75, 0.81) Baseline acute kidney injury HR* (95% CI) Male: 1.00 (ref) characteristics Additional info: in a referred Patients followed up until All Inclusion: subjects Female: 0.76 (0.68, Confounders adjusted chronic kidney dialysis, kidney registered as 0.85) N: 6862 for: sex, age, baseline disease cohort. transplantation, death, end of having CKD eGFR (by eGFR and time in registry Mean age:69.8 Nephrology Dialysis study, discharge to family between 5ml/min/1.73m²): before cohort entry. (13.3) Transplantation 25 doctor immigration or loss to November 2002 0.63 (0.60, 0.65) (7):2203-2209, Mean baseline follow up. and November time in registry

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
2010. Setting: British Columbia, Canada Duration: November 2002- November 2007	eGFR (ml/min/1.73m ²)): 23.6 (5.8) Mean follow up time:19.4 (11.1, 32.4) AKI N: 3079 Mean age: 68.0 (13.2) Mean baseline eGFR (ml/min/1.73m ²)): 23.7 (5.5) Mean follow up time: 22.9 (13.4, 36.3) No AKI N: 3783 Mean age: 70.6 (13.4) Mean baseline eGFR (ml/min/1.73m ²) Mean baseline eGFR (ml/min/1.73m ²)	2007, had been followed up for at least 6 months and had at least 3 eGFR values (at least 1 value of 30ml/min/1.73m ²) or less Exclusion:	MDRD equation was used to estimate GFR from age, sex, ethnic origin and serum creatinine concentration. AKI defined as decrease in eGFR of at least 25% and of more then 5ml/min/1.73m ² compared to baseline eGFR. Statistical analysis: Investigators from each study analysed their data in accordance with an a priori analytical plan. Cox proportional hazard ratios (RRs) were calculated reference group. These were adjusted for age, sex, baseline eGFR and time in registry before cohort entry. A look back period of 180 days was used for analysis.	Mortality risk of pre-dialysis mortality HR* (95% CI)	before cohort entry (by year): 0.84 (0.76, 0.92) n/total: AKI: 711/3079 No AKI: 533/3783 AKI: 2.32 (2.04, 2.64) Age (by 10 years): 1.87 (1.75, 2.00) Male:1.00 (ref) Female: 0.75 (0.67, 0.86) eGFR (by Sml/min/1.73m ²): 0.81 (0.76, 0.85) time in registry before cohort entry (by year): 1.15 (1.06, 1.26) n/total: AKI: 554/3079 No AKI: 492/3783	*Study states that adjusted relative risks were calculated using a cox-proportional hazard model and Kaplan Meier curves are presented – NCGC assumes these are therefore Hazard ratios. Follow-up: 4 years

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
	time: 17.0 (9.5, 28.9)					

Table 49: Pannu et al. 2011

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
N. Pannu, M. James, B. R. Hemmelgarn, J. Dong, M. Tonelli, and S. Klarenbach. Modification of outcomes after acute kidney injury by the presence of CKD. Am.J.Kidney Dis. 58 (2):206-213, 2011. Setting: Alberta, Canada. Health and Wellness linked with	 n: 43,008 participants Baseline characteristics: All patients: N:43008 Age:62.2 (0.1) Comorbid disease (%): MI: 13 Peripheral vascular disease: 5 cerebrovascular disease: 6 Congestive heart failure: 12 Diabetes (%): Uncomplicated: 14 Complicated: 5 eGFR 	Study type: Retrospective cohort Inclusion: patients 18 years and older, hospitalised between January 2003 and December 2006, with at least 1 outpatient sCR measurement within 6 months prior to admission. Exclusion: Patients with records that indicated treatment with dialysis or kidney transplant before the	Patients stratified into eGFR groups. MDRD equation was used to estimate GFR from age, sex, ethnic origin and serum creatinine concentration. AKI defined as change between the baseline and highest in-	ESRD or death HR (95% CI) [events/total]	No AKI eGFR ≥60: 1.00 (referent) [823/26357] eGFR 45-59: 1.02 (0.94- 1.24) [294/5377] eGFR 30-44: 1.07 (0.90- 1.26) [182/26161] eGFR <30: 1.67 (1.34- 2.08) [92/802] AKI Stage 1 eGFR ≥60: 2.99 (2.59- 3.44) [270/1935] eGFR 45-59: 2.92 (2.52- 3.40) [234/1358] eGFR 30-44: 2.89 (2.50- 3.32) [289/1580] eGFR <30: 2.93 (2.52-	Source of funding: Kidney Foundation of Canada. Additional info: Confounders adjusted for: age, sex, comorbid conditions. Mean follow-up not given.

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

	Number of patients &	Inclusion / exclusion		Outcome		
Reference	characteristics	criteria	Intervention	measures	Effect sizes	(
aboratory data.	≥60:	index hospitalisation	hospital SCR		3.40) [276/1394]	
	N: 28,944	were excluded.	value during			
Duration: January	Age: 57.3 (0.1)		index		AKI stage 2	
2003 and	Comorbid disease (%):		hospitalisation.		eGFR ≥60: 8.28 (6.92-	
ecember 2006	MI:11		a		9.92) [143/388]	
	Peripheral vascular		Statistical		eGFR 45-59: 7.53 (5.98-	
	disease: 4		analysis:		9.47) [85/182]	
	cerebrovascular disease:5		Investigators from each study		eGFR 30-44: 7.46 (5.95-	
	Congestive heart failure:6		analysed their		9.35) [88/171]	
	Diabetes (%):		data in		eGFR <30: 6.74 (4.96-	
	Uncomplicated:13		accordance with		9.18) [44/108]	
	Complicated:3		an a priori			
	eGFR		analytical plan.		AKI stage 3	
	45-59:				eGFR ≥60: 10.62 (8.78-	
	N:7023		Cox		12.82) [131/264]	
	Age: 72.2 (0.2)		proportional		eGFR 45-59: 8.01 (6.12- 10.49) [85/182]	
	Comorbid disease (%):		hazard ratios		eGFR 30-44: 8.35 (6.20-	
	MI: 17		(HRs) were calculated for		11.25) [88/171]	
	Peripheral vascular		ESRD and		eGFR <30: 4.71 (3.61-	
	disease: 7		mortality. These		6.15) [44/108]	
	cerebrovascular disease: 9		were adjusted	Mortality (in	No AKI	
	Congestive heart failure:		for all baseline	hospital)	eGFR ≥60: 1.00	
	17		demographics	HR (95% CI)	(referent) [4791/25534]	
	Diabetes (%):				eGFR 45-59: 1.02 (0.94,	
	Uncomplicated: 19				1.24) [1532/5083]	

	Number of patients &	Inclusion / exclusion		Outcome		
Reference	characteristics	criteria	Intervention	measures	Effect sizes	Comments
	Complicated: 6				eGFR 30-44: 1.07 (0.90,	
	eGFR				1.26) [1011/2434]	
	30-44:				eGFR <30: 1.67 (1.34,	
	N: 4460				2.08) [378/705]	
	Age: 75.1 (0.2)					
	Comorbid disease (%):				AKI Stage 1	
	MI:18				eGFR ≥60: 2.99 (2.59,	
	Peripheral vascular				3.44) [495/1665]	
	disease: 9				eGFR 45-59: 2.92 (2.52,	
	cerebrovascular disease:9				3.40) [453/1124]	
	Congestive heart				eGFR 30-44: 2.89 (2.50,	
	failure:26				3.32) [572/1291]	
	Diabetes (%):				eGFR <30: 2.93 (2.52,	
	Uncomplicated: 18				3.40) [676/1118]	
	Complicated: 11					
	eGFR				AKI stage 2	
	<30:				eGFR ≥60: 8.28 (6.92	
	N:2581				(6.92, 9.92) [91/245]	
	Age: 71.6 (0.3)				eGFR 45-59: 7.53 (5.98,	
	Comorbid disease (%):				9.47) [46/97]	
	MI: 18				eGFR 30-44: 7.46 (5.95,	
	Peripheral vascular				9.35) [54/83]	
	disease: 8				eGFR <30:6.74 (4.96,	
	cerebrovascular disease:7				9.18) [43/64]	
	Congestive heart				AKI stage 3	

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
	failure:28 Diabetes (%): Uncomplicated: 15 Complicated:23				eGFR ≥60: 10.62 (8.78, 12.82) [41/133] eGFR 45-59: 8.01 (6.12, 10.49) [23/46] eGFR 30-44: 8.35 (6.20, 11.25) [26/46] eGFR <30: 4.71 (3.61, 6.15) [148/214]	

Table 50: Wu et al. 2011

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
VC. Wu, TM. Huang, CF. Lai, CC. Shiao, YF. Lin, TS. Chu, P C. Wu, CT. Chao, JY. Wang, TW. Kao, GH. Young, PR. Tsai, HB. Tsai, CL. Wang, MS. Wu, WC. Chiang, IJ. Tsai, FC. Hu, SL. Lin, YM. Chen, TJ. Tsai, WJ. Ko,	9425 participants Baseline characteristics (all mean, SD unless otherwise stated) Without prior CKD Non-AKI N:4724 Age: 57.2 (16.8) Comorbidities: -Charlson score:2.8 (4.3)	Study type: Prospective cohort Inclusion: Admissions to ICU after major surgery. Surgery procedures considered major if length of stay for patients exceeded 2 days.	Patients divided into groups: those without prior CKD, subdivided into AKI risk, Injury and failure; and those with CKD subdivided into non-AKI and AKI. Chinese MDRD equation was used to estimate GFR from age, sex, ethnic origin and serum creatinine concentration. AKI classified according to	ESRD HR (95% CI) [events/total]	Long term dialysis (subgroups) Without prior CKD: Non-AKI: 1 (referent) [13/4724] AKI-Risk 2.09 (0.97, 4.52) [14/2434] AKI-Injury: 3.19 (1.27, 8.03) [7/979] AKI-Failure: 22.35 (11.9, 42.1)	Source of funding: Te-Tung Kidney Foundation and Taiwan National Science Council (grant) Additional info: Confounders adjusted for: age, gender, intervention (extracorporeal membrane oxygenation, ventilator, intra-aortic balloon pump,

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
and KD. Wu. Acute-on-chronic kidney injury at hospital discharge is associated with long-term dialysis and mortality. Kidney Int. 80 (11):1222-1230, 2011. Setting: Database from National Taiwan University Hospital Study Group Duration : January 2002- January 2008	Hypertension:1671 (35.4) Diabetes: 774 (16.4) Liver cirrhosis: 102 (2.2) CHF: 195 (4.1) Chronic hepatitis:134 (2.8) COPD: 145 (3.1) CAD: 1939 (41.1) Atrial fibrillation: 246 (5.2) Cancer: 1941 (41.1) AKI-Risk N: 2434 Age (mean, SD): 61.0 (16.7) Comorbidities: -Charlson school: 4.2 (5.2) Hypertension: 949 (39) Diabetes: 533 (21.9) Liver cirrhosis: 151 (6.2)	Exclusion effected patients stay in ICU for ≥2 days, repeat ICU admission after index discharge, kidney transplant recipients, patients who died during the hospital admission	sRIFLE criteria, where only serum creatinine for classification. Kidney recovery existed if the discharge sCr remained <50% above baseline sCr. Non- reovery existed if there was a persistent increase in sCr >50% above the baseline sCr or need for dialysis at time of discharge from hospital. Patient survival after discharge was determined through the databank of National Health Insurance Database in January 2009. Cross-linked with Taiwan Society Nephrology Registry. Statistical analysis: Investigators from each study analysed their data in accordance with an a priori analytical plan.		[58/745] Prior CKD: Non-AKI: 52.0 (25.6, 105.8) [21/2.62] AKI: 122.9 (66.8, 253.9) [69/235] Renal recovery (n, %) (all subgroups): Without prior CKD: AKI-risk: 1725 (70.9) AKI-Injury:380 (38.8) AKI- Failure: 164 (22) Prior CKD Non-AKI: - AKI:170 (72.3) Non-recovery (n, %) Without prior CKD:- AKI-risk:709 (29.1) AKI-risk:709 (29.1) AKI-Injury:599 (61.2) AKI- Failure: 581 (78)	intracranial pressure, transcutaneous pacemaker, Swan-Ganz tube, PiCCO an Sengstaken-Blakemore tube), comorbidity (hypertension, diabetes mellitus, liver cirrhosis, chronic heart failure, chronic hepatitis, COPD coronary artery disease atrial fibrillation and cancer) admission subgroups (Charlson score). Follow-up: 6 years

Chronic kidney disease Clinical evidence tables

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
	CHF: 211 (8.7)		Cox proportional hazard		Prior CKD	
	Chronic hepatitis:		ratios (HRs) were calculated.		Non-AKI:-	
	165 (6.8)		These were adjusted for age,		AKI: 65 (27.7)	
	COPD: 100 (4.1)		sex, admission subgroups,			
	CAD: 1062 (43.6)		interventions and			
	Atrial fibrillation:		comorbidity.		Long Term dialysis	
	195 (8.0)				(without vs.with	
	Cancer: 1061 (43.6)				prior CKD, fewer	
					subgroups)	
	AKI Injury				Without prior CKD	
	N:979				Non-AKI: 1	
	Age: 61.7 (16.8)				(referent)	
	Comorbidities:				AKI: 4.64 (2.51,	
	-Charlson score: 4.6				8.56)	
	(5.2)				Prior CKD-non	
	Hypertension:372				AKI:40.86 (20.01,	
	(38.0)				83.50)	
	Diabetes: 234 (23.9)				Prior CKD- AKI: 91.6	
	Liver cirrhosis: 83				(49.3, 170.1)	
	(8.5)					
	CHF: 147 (15.0)					
	Chronic hepatitis:					
	95 (9.7)					
	COPD: 48 (4.9)					
	CAD: 393 (40.1)					

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
	Atrial fibrillation: 96					
	(9.8)					
	Cancer: 395 (40.4)					
	AKI Failure					
	N: 745					
	Age: 60.6 (16.8)					
	Comorbidities:					
	-Charlson score: 4.1 (4.5)					
	Hypertension: 267					
	(35.8)					
	Diabetes:195 (26.2) Liver cirrhosis: 87					
	(11.7)					
	CHF: 145 (19.5)					
	Chronic hepatitis:					
	96 (12.9)					
	COPD: 35 (4.7)					
	CAD: 253 (34.0)					
	Atrial fibrillation: 74					
	(9.9)					
	Cancer: 243 (32.6)					
	Prior CKD					

exclusion crit (10.7) dities: n score: 3.8 nsion: 78 :55 (47.4) hosis: 5 21.6) nepatitis: 6	teria Intervention	measures	Effect sizes	Comments
dities: n score: 3.8 nsion: 78 :55 (47.4) hosis: 5 21.6)				
dities: n score: 3.8 nsion: 78 :55 (47.4) hosis: 5 21.6)				
dities: n score: 3.8 nsion: 78 :55 (47.4) hosis: 5 21.6)				
n score: 3.8 nsion: 78 :55 (47.4) hosis: 5 21.6)				
nsion: 78 :55 (47.4) hosis: 5 21.6)				
:55 (47.4) hosis: 5 21.6)				
:55 (47.4) hosis: 5 21.6)				
hosis: 5 21.6)				
hosis: 5 21.6)				
21.6)				
penatitis: 6				
iepatitis. 0				
(3.5)				
(29.3)				
rillation:6				
32 (27.6)				
) (12.5)				
) (12.5) dities:				
) (12.5)) (12.5)		

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

	Number of patients	Inclusion /		Outcome		
Reference	& characteristics	exclusion criteria	Intervention	measures	Effect sizes	Comments
	(2.8)					
	Hypertension: 132					
	(56.2)					
	Diabetes: 114 (48.5)					
	Liver cirrhosis: 14					
	(6.0)					
	CHF: 59 (25.1)					
	Chronic hepatitis:					
	17 (7.2)					
	COPD: 8 (3.4)					
	CAD: 56 (23.8)					
	Atrial fibrillation: 26					
	(11.1)					
	Cancer: 49 (20.9)					
	ESRD					
	N: 192					
	Age: 63.2 (12.3)					
	Comorbidities:					
	-Charlson score: 3.0					
	(2.4)					
	Hypertension: 68					
	(35.4)					
	Diabetes: 89 (46.4)					
	Liver cirrhosis:12					
	(6.3)					
	CHF: 34 (17.7)					

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
	Chronic hepatitis: 14 (7.3) COPD: 4 (2.1) CAD: 46 (25.0) Atrial fibrillation: 19 (9.9) Cancer: 47 (24.5)					

.5 Frequency of monitoring

Table 51: Amin et al. 2013

	Population and		Outcomes			
Study and Country	Exclusions	Baseline characteristics	Outcome measure	Subgroups	Effect size	Limitations/ Comments
Amin et	Adults with diabetes and	Subgroup eGFR 90-104	All-cause	eGFR ≥ 105	1.00 (reference)	HR adjusted for
al.2013 ³³	for whom eGFR and	n= 9158	mortality	eGFR 90 - 104	0.84 [0.66-1.06]	age, sex, race,
	albuminuria measurements were	Age, mean (SD): 55.4 ± 10.0	(adjusted HR [95% CI])	eGFR 75-89	0.88 [0.70-1.11]	insurance status, BMI,
Cohort study based on the	available.	Male: 33.5%	[95% CI])	eGFR 60-74	0.92 [0.73-1.16]	education level,
National		Ethnicity:		eGFR 45-59	1.23 [0.97-1.56]	family history of
Kidney	Median follow up 4 years.	White: 47.3% African American: 28.5%		eGFR 30-44	1.40 [1.09-1.80]	diabetes,
Foundation's		Native American: 4.5%		eGFR <30	1.74 [1.31-2.31]	hypertension, CKD, self
Kidney Early	Patients, n: 42,761			ACR <30mg/g	1.00 (reference)	

	Population and		Outcomes			
Study and Country	Exclusions	Baseline characteristics	Outcome measure	Subgroups	Effect size	Limitations/ Comments
Evaluation Program (KEEP). Country: USA	Subgroups : ACR <30 n= 35,046 ACR 30-300 n=6632 ACR >300 n=1083 eGFR \geq 105 n= 5714 eGFR 90 - 104 n= 9158 eGFR 75-89 n=10,354 eGFR 60-74 n=8917 eGFR 45-59 n=5383 eGFR 30-44 n=2555 eGFR <30 n=680 Exclusions <18 years old	Asian: 7.6% Other: 12.1% SBP: 134.7 ± 19.0 DBP: 80.0 ± 11.1 <i>Diabetic Medication:</i> Yes: 43.8% No: 31.0% Missing: 25.2% <i>ACR Category:</i> <30: 86.5% 30-300: 12.4% >300: 1.0% Subgroup eGFR 75-89 n= 10354 Age, mean (SD): 61.0 ± 11.1 Male: 35.3% <i>Ethnicity:</i> White: 53.5% African American: 29.4% Native American: 3.0% Asian: 6.5% Other: 7.6%	Progression to ESRD (adjusted HR [95% CI])	ACR 30-300mg/g ACR >300mg/g ACR >105 eGFR 90 - 104 eGFR 75-89 eGFR 60-74 eGFR 30-44 eGFR 30-43 ACR 300mg/g ACR 300mg/g	 1.79 [1.62-1.97] 3.16 [2.70-3.70] 1.00 (reference) 1.51 [0.77-2.93] 1.83 [0.97-3.47] 2.86 [1.54-5.33] 5.93 [3.25-10.80] 18.48 [10.27 - 33.22] 84.20 [46.57-152.22] 1.00 (reference) 6.44 [4.81-8.61] 15.11 [10.90-20.95] 	reported hypertension, measured blood pressure, hypercholestro aemia, smoking status, haemoglobin level, diabetes medications and insulin use.

Chronic kidney disease Clinical evidence tables

	Population and		Outcomes			
Study and	Exclusions		Outcome			Limitations/
Country		Baseline characteristics	measure	Subgroups	Effect size	Comments
		SBP: 136.8 ± 19.4				
		DBP: 79.4 ± 11.4				
		Diabetic Medication:				
		Yes: 46.3%				
		No: 30.2%				
		Missing: 23.5%				
		ACR Category:				
		<30: 86.0%				
		30-300: 12.5%				
		>300: 1.5%				
		Subgroup eGFR 60-74				
		n= 8917				
		Age, mean (SD): 65.2 ± 10.4				
		Male: 35.7%				
		Ethnicity:				
		White: 55.7%				
		African American: 29.6%				
		Native American: 3.1%				
		Asian: 5.2%				
		Other: 6.3%				
		SBP: 137.7 ± 19.4				
		DBP: 78.3 ± 11.3				

	Population and		Outcomes			
Study and	Exclusions		Outcome			Limitations/
Country		Baseline characteristics	measure	Subgroups	Effect size	Comments
		Diabetic Medication:				
		Yes: 48.0%				
		No: 28.0%				
		Missing: 24.0%				
		ACR Category:				
		<30: 83.4%				
		30-300: 14.7%				
		>300: 1.9%				
		Subgroup eGFR 45-59				
		n= 5383				
		Age, mean (SD): 69.1 ± 10.2				
		Male: 34.3%				
		Ethnicity:				
		White: 61.6%				
		African American: 25.4%				
		Native American: 3.0%				
		Asian: 4.9%				
		Other: 5.2%				
		SBP: 138.1 ± 20.0				
		DBP: 76.3 ± 11.6				
		Diabetic Medication:				
		Yes: 48.7%				

	Population and		Outcomes			
Study and	Exclusions		Outcome			Limitations/
Country		Baseline characteristics	measure	Subgroups	Effect size	Comments
		No: 27.5%				
		Missing: 23.8%				
		ACR Category:				
		<30: 76.2%				
		30-300: 20.2%				
		>300: 3.6%				
		Subgroup eGFR 30-44				
		n= 2555				
		Age, mean (SD): 72.1 ± 9.9				
		Male: 32.0%				
		Ethnicity:				
		White: 62.9%				
		African American: 24.1%				
		Native American: 3.3%				
		Asian: 4.2%				
		Other: 5.4%				
		SBP: 139.3 ± 21.4				
		DBP: 74.2 ± 12.3				
		Diabetic Medication:				
		Yes: 50.3%				
		No: 25.3%				
		Missing: 24.4%				

ועמנוטחמו כווחוכמו סטומפווחפ כפחורפ בטדק

	Population and		Outcomes			
Study and Country	Exclusions	Baseline characteristics	Outcome measure	Subgroups	Effect size	Limitations/ Comments
		ACR Category:				
		<30: 63.8%				
		30-300: 28.1%				
		>300: 8.1%				
		Subgroup eGFR <30				
		n= 680				
		Age, mean (SD): 69.8 ± 12.6				
		Male: 38.7%				
		Ethnicity:				
		White: 53.8%				
		African American: 29.3%				
		Native American: 3.2%				
		Asian: 6.9%				
		Other: 6.8%				
		SBP: 141.1 ± 23.4				
		DBP: 74.3 ± 13.5				
		Diabetic Medication:				
		Yes: 41.9%				
		No: 27.8%				
		Missing: 30.3%				
		ACR Category:				
		<30: 35.9%				

	Population and		Outcomes				
Study and Country	Exclusions	Baseline characteristics	Outcome measure	Subgroups	Effect size	Limitations/ Comments	
		30-300: 35.4%					
		>300: 28.7%					
		Subgroup ACR 30-300 mg/g					
		n= 6632					
		Age, mean (SD): 61.9 ± 13.8					
		Male: 38.9%					
		Ethnicity:					
		White: 44.7%					
		African American: 33.7%					
		Native American: 4.6%					
		Asian: 6.4%					
		Other: 9.6%					
		SBP: 142.1 ± 21.9					
		DBP: 80.6 ± 12.8					
		Diabetic Medication:					
		Yes: 48.7%					
		No: 24.2%					
		Missing: 27.1%					
		eGFR Category:					
		eGFR ≥ 105: 12.7%					
		eGFR 90 – 104: 17.2%					

	Population and		Outcomes			
Study and	Exclusions		Outcome			Limitations/
Country		Baseline characteristics	measure	Subgroups	Effect size	Comments
		eGFR 75-89: 19.5%				
		eGFR 60-74: 19.8%				
		eGFR 45-59: 16.4%				
		eGFR 30-44: 10.8%				
		eGFR <30: 3.6%				
		Subgroup ACR >300 mg/g				
		n= 1083				
		Age, mean (SD): 62.0 ± 13.4				
		Male: 39.0%				
		Ethnicity:				
		White: 44.1%				
		African American: 28.8%				
		Native American: 8.7%				
		Asian: 7.2%				
		Other: 11.2%				
		SBP: 151.2 ± 24.8				
		DBP: 82.2 ± 13.7				
		Diabetic Medication:				
		Yes: 46.1%				
		No: 22.8%				
		Missing: 31.1%				
		eGFR Category:				

	Population and	on and	Outcomes			
Study and	Exclusions		Outcome			Limitations/
Country		Baseline characteristics	measure	Subgroups	Effect size	Comments
		eGFR ≥ 105: 6.3%				
		eGFR 90 – 104: 8.8%				
		eGFR 75-89: 14.5%				
		eGFR 60-74: 15.6%				
		eGFR 45-59: 17.6%				
		eGFR 30-44: 19.2%				
		eGFR <30: 18.0%				

Study and	Population and Exclusions		Outcomes			Limitations/
Country		Baseline characteristics	Outcome measure	Subgroups	Effect size	Comments
Barbour et al.	People from three different	Caucasian:	All-cause mortality	Caucasian	1.00 (reference)	HR adjusted for Age,
2010 ⁵⁶	Oriental Asian and South Asian) referred to nephrology with CKD (eGFR	Age: 70 [58-78]	(multivariate HR [95%	Oriental Asian	0.69 [0.55-0.88]	gender, eGFR,
Cohort study on ethnicity based on data from universal health care system.		Male: 59% Diabetes: 42% CVD: 36% eGFR: 27.4 ± 11.9 eGFR 30-60: 38% eGFR 15-30: 48% eGFR <15: 14% Proteinuria: Normal: 27%	CI]) with RRT as a time- varying covariate		0.80 [0.63-1.02]	diabetes, CVD, haemoglobin, albumin, calcium, phosphate, iPTH, proteinuria, DBP, ACE inhibitors or ARB, Vitamin D and statin Annualised rate of eGFR progression (mean ± SD, median
Country: Canada	Referral to nephrologist	Moderate: 13% Severe: 17% Not Available: 43%				[IQR] and range) showed South Asian group most likely to progress, followed by
	Minimum follow up: 2	SBP:				Oriental Asian and
	years Maximum follow up: 8	>130 mmHg: 42% ≤130 mmHg: 25%				then Caucasian.
	years Patients, n: 3,444	Not Available: 33% DBP: >80 mmHg: 20%				Study also reported HR using a competing risk approach.
	Subgroups : Caucasian n = 2626	≤80 mmHg: 47% Not Available: 33%				

Table 52: Barbour et al. 2010

Study and	Population and Exclusions		Outcomes			Limitations/
Country		Baseline characteristics	Outcome measure	Subgroups	Effect size	Comments
	OA = 397	ACE inhibitors /ARB: 90%				
	SA = 421	Vitamin D: 53%				
		Statin: 58%				
	Exclusions:					
	Patients who did not	Oriental Asian:				
	identify self-reported	Age: 71 [58-78]				
	race as Caucasian, OA or	Male: 53%				
	SA	Diabetes: 40%				
	No presence of CKD	CVD: 23%				
	Incomplete data set for	eGFR: 25.5 ± 11.9				
	multivariate analysis	eGFR 30-60: 35%				
		eGFR 15-30: 44%				
		eGFR <15: 21%				
		Proteinuria:				
		Normal: 16%				
		Moderate: 16%				
		Severe: 35%				
		Not Available: 33%				
		SBP:				
		>130 mmHg: 24%				
		≤130 mmHg: 17%				
		Not Available: 59%				

Study and	Population and Exclusions		Outcomes			Limitations/
Country		Baseline characteristics	Outcome measure	Subgroups	Effect size	Comments
		DBP:				
		>80 mmHg: 12%				
		≤80 mmHg: 29%				
		Not Available: 59%				
		ACE inhibitors /ARB: 91%				
		Vitamin D: 55%				
		Statin: 63%				
		South Asian:				
		Age: 64 [53-73]				
		Male: 56%				
		Diabetes: 56%				
		CVD: 32%				
		eGFR: 27.9 ± 12.3				
		eGFR 30-60: 39%				
		eGFR 15-30: 47%				
		eGFR <15: 14%				
		Proteinuria:				
		Normal: 18%				
		Moderate: 15%				
		Severe: 27%				
		Not Available: 40%				

Study and	Population and Exclusions		Outcomes	Outcomes		
Country		Baseline characteristics	Outcome measure	Subgroups	Effect size	Comments
		SBP:				
		>130 mmHg: 43%				
		≤130 mmHg: 20%				
		Not Available: 37%				
		DBP:				
		>80 mmHg: 21%				
		≤80 mmHg: 42%				
		Not Available: 37%				
		ACE inhibitors /ARB: 84%				
		Vitamin D: 42%				
		Statin: 45%				

Table 53: de Goeij et al. 2012

	Population and		Outcomes			
Study and Country	Exclusions	Baseline characteristics	Outcome measure	Subgroups	Effect size	Limitations/ Comments
de Goeij et	Adults with CKD stage	No proteinuria(UPE ≤0.3g/24h)	Progression to	No proteinuria	1.00 (reference)	HR adjusted for
al.2012 ¹⁵⁶	4 to 5 on predialysis	n= 45	RRT	UPE >0.3 to ≤1.0g/24h	1.70 [1.05-2.77]	age, sex,
	care.	Age, median (IQR): 67 (56-75)	(adjusted HR	UPE >1.0 to ≤3.0g/24h	1.87 [1.17-3.00]	primary kidney disease, systolic
Cohort study based on the	Median (IQR) follow	Diabetes: 4%	[95% CI])	UPE >3.0 to ≤6.0g/24h	2.62 [1.59-4.33]	blood pressure,
bused on the	Weddin (reit) follow	Systolic blood pressure, mean		UPE >6.0g/24h	2.52 [1.45-4.39]	haemoglobin

	Population and		Outcomes			
Study and Country	Exclusions	Baseline characteristics	Outcome measure	Subgroups	Effect size	Limitations/ Comments
PREPARE-1	up 11.6 (4.7-22.4)	(SD): 150 (27)				level, baseline
cohort.	months.	UPE, median (IQR): 0.2 (0.1-0.3)				eGFR,
		eGFR, mean (SD): 17.1 (9.2)				cardiovascular
Country:	Patients, n: 413					disease and
The		Proteinuria>0.3 to ≤1.0				diabetes.
Netherlands	Exclusions	n= 88				
	Less than one month	Age, median (IQR): 67 (52-75)				
	on predialysis care or	Diabetes: 8%				
	prior RRT	Systolic blood pressure, mean				
		(SD): 144 (25)				
		UPE, median (IQR): 0.6 (0.4-0.8)				
		eGFR, mean (SD): 13.6 (4.6)				
		Proteinuria>1.0 to ≤3.0				
		n= 132				
		Age, median (IQR): 66 (48-73)				
		Diabetes: 15%				
		Systolic blood pressure, mean				
		(SD): 152 (26)				
		UPE, median (IQR): 1.9 (1.4-2.5)				
		eGFR, mean (SD): 13.1 (5.6)				
		Proteinuria>3.0 to ≤6.0				
		n= 101				

	Population and		Outcomes			
Study and	Exclusions		Outcome			Limitations/
Country		Baseline characteristics	measure	Subgroups	Effect size	Comments
		Age, median (IQR): 54 (44-70)				
		Diabetes: 22%				
		Systolic blood pressure, mean (SD): 160 (29)				
		UPE, median (IQR): 4.0 (3.5-4.4)				
		eGFR, mean (SD): 11.6 (4.2)				
		Proteinuria>6.0				
		n= 47				
		Age, median (IQR): 61 (52-70)				
		Diabetes: 49%				
		Systolic blood pressure, mean				
		(SD): 161 (30)				
		UPE, median (IQR): 7.6 (6.9-				
		10.1)				
		eGFR, mean (SD): 11.2 (3.6)				

ועמנוטחמו כווחוכמו סטומפווחפ כפחורפ בטדק

Study and	Population and Exclusions		Outcomes			Limitations/
Country		Baseline characteristics	Outcome measure	Subgroups	Effect size	Comments
Dreyer et al. 2013 ¹⁷⁰	170	Caucasian:	CKD progression: change in eGFR	Whole populatio		Annualised rate of
2013	ethnic origins (Caucasian, Black African/Caribbean	Age: 65 ± 8.1	change in eGFK	Caucasian	-2.66	eGFR progression (mean ± SD, median
	and South Asian) with	Male: 61%		South Asian	-4.25	[IQR] and range)
Cohort study on ethnicity based on	diabetes and CKD (eGFR 16-60) with no RRT at start	Mean duration diabetes (years): 7.8±8.6		Black African/ Caribbean	-3.13	showed Black African/Caribbean
data from	of observation period.	Hypertension: 78%		Proteinuria		with proteinuria group
135 general practices in	Minimum follow up: 3	eGFR: 51.4 Proteinuria:26.5%		Caucasian	-7.25	most likely to progress, followed by
east London.	years	(Not Available: 30%)		South Asian	-8.17	South Asian and then
	Maximum follow up: 5 years	ACE inhibitors /ARB: 80%		Black African/ Caribbean	-11.61	Caucasian.
Country:	years	South Asian:		No proteinuria		Black defined as
UK	Patients, n: 3,855	Age: 63 ± 8.5		Caucasian	-1.29	people of Black
UK		Male: 51%		South Asian	-2.02	African, Black
	Subgroups :	Mean duration diabetes (years): 8.8±7.7		Black African/ Caribbean	-0.38	Caribbean, Black British, other black

Table 54: Dreyer et al. 2013

Study and Population and	d Exclusions	Outcomes			Limitations/
Country	Baseline characteristi	tics Outcome measure	Subgroups	Effect size	Comments
Caucasian n = : (39.1%) South Asian n = (44.7%) Black African/C n=621 (16.1%) Exclusions: • Age less thar greater than entry to stuc • RRT at entry	eGFR: 51.0 Proteinuria: 36% (Not Available: 30%) ACE inhibitors /ARB: 8 Black African/Caribbe Age: 64 ± 8.2 Male: 60% Mean duration diabet (years): 9.9±8.1	80% pean: etes			and mixed black famil origin.

Table 55: Hoefield et al. 2010

	Population and		Outcomes			
Study and	Exclusions					Limitations/
Country		Baseline characteristics	Outcome measure	Subgroups	Effect size	Comments

	Population and		Outcomes			
Study and Country	Exclusions	Baseline characteristics	Outcome measure	Subgroups	Effect size	Limitations/ Comments
Hoefield et	Adults with CKD stage	eGFR 45-59	All-cause mortality	eGFR 45-59	1.00 (reference)	HR adjusted for
al.2010 ²⁷¹	3-5 not on dialysis therapy.	n= 238 Age, mean (SD): 61.3 (15)	(adjusted HR [95% CI])	eGFR 30-44	1.65 [0.98-2.77] P=0.05	age, sex, diabetes, smoker, cardiovascular disease, renin- angiotensin blockade, statin, systolic and diastolic blood pressure, haemoglobin, phosphate, PTH, albumin, cholesterol, CRP, proteinuria.
Chronic Renal n Insufficiency e	Median follow up 26 months. By protocol eGFR was determined every 12 months.	Diabetes: 21.4% Cardiovascular disease:		eGFR 15-29	2.38 [1.43-3.97] P=0.001	
				eGFR <15	2.57 [1.35-4.88] P=0.004	
Implementati			Progression to RRT eGFR 45- (adjusted HR [95% CI]) (adjusted HR [95% eGFR 30- CI]) (adjusted HR [95% eGFR 15- (adjusted HR [95% e	eGFR 45-59	1.00 (reference)	
on Study (CRISIS). Single centre.	1325			eGFR 30-44	1.88 [0.62-5.68] P=0.3	
Country:	Subgroups :			eGFR 15-29	5.54 [1.96-15.64] P=0.001	
UK				eGFR <15	18.82 [6.45-54.94] P=<0.001	
	Exclusions Previous RRT					

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

	Population and		Outcomes	Outcomes		
Study and	Exclusions					Limitations/
Country		Baseline characteristics	Outcome measure	Subgroups	Effect size	Comments
		Cardiovascular disease: 51.1%				
		Proteinuria (g/d): 1.08 (1.86)				
		Ethnicity: 98.5% White				
		eGFR <15				
		n= 175				
		Age, mean (SD): 64.8 (13.1)				
		Diabetes: 34.3%				
		Cardiovascular disease: 44.0%				
		Proteinuria (g/d): 2.23 (2.77)				
		Ethnicity: 99.4% White				

	Population and Exclusions	Baseline characteristics	Outcomes			
Study and Country			Outcome measure	Subgroups	Effect size HR, (95% Cl) [n]	Limitations/ Comments
Levin et al. 2008 ³⁸² Cohort study	A data set including people with an eGFR less than 30ml/min/1.73m ² was derived from a registry of all people referred to nephrologists and on dialysis therapy in British Columbia.	eGFR < 15 ml/min/1.73m ² n= 647 Age, mean (SD): 66.8 (14.5) Diabetes: 204 (32%) PCKD/nephropathy/cong enital: 103 (20%) Glomerulonephritis (GN)/renal vascular: 157 (31%) Systolic blood pressure, mean (SD) :144.6 (25.7) Diastolic blood pressure, mean (SD): 79.1 (13) Albumin (g/dL) mean (SD): 3.6 (0.52) eGFR 15-24 ml/min/1.73m ² n= 1905 Age, mean (SD): 67.8 (14.1)	Renal replacement therapy by eGFR (censored for death) Hazard ratios calculated from Kaplan Meier curves (by NCGC)	eGFR 25-29 * reference group for hazard ratios eGFR 15-24	[189] 1.94 (1.73-2.17) [506]	Variables in the analysis include ethnicity, age, sex, medication use,
using a provincial CKD registry (Patient Registration and				eGFR <15	7.52 (6.32-8.49) [343]	blood pressure, laboratory variables and proteinuria. Comorbid conditions were captured at the time of referral.
Outcomes Management Information	months (range 19-43) Patients, n: 4231		Mortality before RRT by eGFR level	·	[101]	Cox proportional hazard models were
System	Mean age: 67		Hazard ratios	eGFR 15-24	1.25 (1.03-1.51) [135]	used to identify
[PROMIS] database) Country: Canada	Male (%): 64% 33% with diabetes Race: 68 % white, 16% Asian oriental, 11% Asian (South/East) 5% other. Exclusions People who were deactivated from the		calculated from Kaplan Meier curves (by NCGC)	eGFR <15	2.56 (1.87-3.49) [55]	predictors of mortality before renal replacement therapy (RRT) and predictors of RRT (dialysis initiation or transplantation). Analyses were adjusted for duration of follow-up before

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

			Outcomes			
Study and Country	Population and Exclusions	Baseline characteristics	Outcome measure	Subgroups	Effect size HR, (95% Cl) [n]	Limitations/ Comments
	registry less than 3 months after the index result (n=145) and people with less than 3 eGFR results during a 4-month period (n=520). To ensure cohort represents long-term patients seen in nephrology offices. (i.e. those excluded had an index eGFR on the day they started dialysis therapy or had acute disease but were registered as long term in error).	Diabetes: 656 (34%) PCKD/nephropathy/cong enital: 245 (17%) GN/renal vascular: 504 (35%) Systolic blood pressure, mean (SD): 141 (24.9) Diastolic blood pressure, mean (SD): 76.3 (13.3) Albumin (g/dL) mean (SD): 3.7 (0.51) eGFR 25- 29ml/min/1.73m ² n= 1679 Age, mean (SD): 66.7 (14.8) Diabetes: 547 (33%) PCKD/nephropathy/cong enital: 236 (19%) GN/renal vascular: 423 (33%) Systolic blood pressure, mean (SD): 139.8 (23.6)				eGFR <30ml/min/1.73m ² to account for selection bias.

			Outcomes	Outcomes			
Study and					Effect size	Limitations/	
Country	Population and Exclusions	Baseline characteristics	Outcome measure	Subgroups	HR, (95% Cl) [n]	Comments	
		mean (SD): 76.9 (12.7)					
		Albumin (g/dL), mean					
		(SD): 3.8 (0.52)					

Table 57:Lorenzo et al. 2010

Study and Country	Population and Exclusions	Baseline characteristics	Outcome	Covariates	Effect size (hazard ratio)	Limitations/ Comments
Lorenzo et al. 2010 ³⁹⁹ Retrospecti ve cohort study Country: Spain (Canary Islands)	People with CKD (GFR<50ml/min) Mean follow 30 ± 18 months (range 4-79 months). Participants, n: data collected from 407. Analysis restricted to 333 who had more than 3 serum creatinine tests to calculate the rate of decline in kidney function. Visits scheduled every 2-4 month, or more often if necessary. All	64% received angiotensin-II receptor enzyme inhibitors or angiotensin-II- receptor antagonists or both as antihypertensive and renoprotective medication. Baseline characteristics were collected from electronic medical records: Age (years): 66.8±14.5 Gender (% male): 63 CV comorbidity (%): 49.5 MDRD (ml/min): 24.7±7.4 ACR (mg/g): 1026 (242-2312) SBP (mm/Hg): 139±15 DBP (mm/HG): 76±9 RAS blockers (%): 63.7 Diabetes (%): 46.0 During follow-up: 1334 initiated dialysis, 26 died, 12 lost to follow-up and 4 received pre-emptive kidney-pancreas transplantation.	Dialysis- free survival (effect of diabetes)	Diabetes + age + sex + MDRD (at baseline) Diabetes + age + sex + MDRD (at baseline) + SBP Diabetes + age + sex + MDRD (at baseline) + ACR decline	1.83 (1.29:2.58) P<0.001 1.52 (1.08:2.16) P<0.02 1.3 (0.81:2.10) P=0.279	GFR calculated using the MDRD equation. More than 3 measurements required to estimate the slope. Dialysis-free survival curves estimated by the Kaplan-Meier method – number at risk not reported, so hazard ratios could not be calculated. Multivariate Cox proportional-hazard regression used to assess the relationship of diabetes as independent variable with time to initiation of dialysis (adjusted for age, gender, mean systolic blood pressure, MDRD at entry, baseline cardiovascular comorbidity, BMI, lipid profile, estimated protein intake, smoking status and renin- angiotensin system blocker medication). Linear regression also calculated – not reported here.

Study and Country	Population and Exclusions	Baseline characteristics	Outcome	Covariates	Effect size (hazard ratio)	Limitations/ Comments
	participants received standard care.					

Table 58: Marks et al. 2013

	Population and		Outcomes			
Study and Country	Exclusions	Baseline characteristics	Outcome measure	Subgroups	Effect size	Limitations/ Comments
Marks et al.2013 ⁴²¹	Adults with CKD stage 3-4	Progressors (sustained drop of eGFR by 15 or to	Progression - sustained drop of	CKD stage 3	1.00 (reference)	HR adjusted for
al.2015	5-4	10ml/min/1.73m ²)	eGFR by 15 or to	CKD Stage 4 Normoalbuminuria	0.96 [0.78-1.20] 1.00 (reference)	age, sex, CKD and proteinuria
Cohort study based on the Grampian Laboratory Outcomes	Follow up 6 years. Patients, n: 3322	n= 435 Age, median (range): 74.9 (16-97) Male: 250 (57.5%) Type 1 Diabetes: 16 (3.7%)	10ml/min/1.73m ² (adjusted HR [95% Cl])	Microalbuminuria (ACR≥2.5mg/mmmol for men or ≥3.5mg/mmol for women)	1.70 [1.07-2.68]	status at baseline. Diabetes not adjusted for in
		1 ype 1 Diabetes. 10 (5.7%)		Macroalbuminuria	3.14 [2.21-4.45]	-

	Population and		Outcomes			Limitations/ Comments
Study and Country	Exclusions	Baseline characteristics	Outcome measure	Subgroups	Effect size	
Morbidity and Mortality	Subgroups : CKD 3: 2289 (69%)	CKD 3: 2289 (69%) (24.4%) CKD 4: 1044 (31%) Hypertension: 245 (56.3%) ACR (mg/mmol), median SU		(ACR≥30mg/mmol or PCR ≥50mg/mmol)		model. HRs for comorbidities
Study (GLOMMS-I)	CKD 4: 1044 (31%) Hypertension: 245 (56.3%)				CKD stage 3	1.00 (reference)
c .	Exclusions:	(range): 15 (0.9-669)	reduction in eGFR	CKD Stage 4	0.47 [0.36-0.61]	
Country: UK	RRT	eGFR (ml/min/1.73m ²),	and CKD stage change (adjusted HR	Normoalbuminuria	1.00 (reference)	Baseline characteristics
UK	CKD stage 5 49	median (range): 35.1 (15- 49)	[95% CI])	Microalbuminuria	1.51 [0.95-2.40]	only reported for progressors versus non- progressors
				Macroalbuminuria	3.59 [2.54-5.09]	
		· · · · · · · · ·	7 (adjusted HR [95% edian (range): 79.1 CI])	CKD Stage 3	1.00 (reference)	
				CKD Stage 4	5.60 [3.84-8.15]	
		Age, median (range): 79.1		Normoalbuminuria	1.00 (reference)	
		(18-103)		Microalbuminuria	2.07 [0.82-5.21]	
		Male: 1223 (42.4%)		Macroalbuminuria	5.31 [2.86-9.88]	
		Type 1 Diabetes: 40 (1.4%) Type 2 Diabetes: 659 (22.8%) Hypertension:1507 (52.2%) ACR (mg/mmol), median (range): 3 (0.9-858) eGFR (ml/min/1.73m ²), median (range): 33.4 (15- 50)				

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

Table 59: Perkins et al. 2011

	Population and		Outcomes			
Study and Country	Exclusions	Baseline characteristics	Outcome measure	Subgroups	Effect size	Limitations/ Comments
Perkins et al.	Adults aged 18 -88	Declining eGFR	All-cause mortality	Declining eGFR	2.22 [1.94-2.55]	Cohort stratified
2011 ⁵³⁹	with non dialysis	n= 5103	(adjusted HR [95%	Stable eGFR	1.00 (reference)	by tertile of rate
Cohort study	dependent CKD with an eGFR 15-	Age, mean (SD): 75.5 (10.8) Diabetes: 1939 (38%)	CI])	Increasing eGFR	1.73 [1.50-2.00]	of eGFR change.
Conort study based on data repository of a large integrated healthcare system in central Pennsylvania. Country: USA	59 using CKD EPI creatinine equation. Median follow up 3.4 years. Patients, n: 15,465	Diabetes: 1939 (38%) Hypertension: 3674 (72%) Mean eGFR (SD): 49 (9.1) Proteinuria: 526 (31%) Ethnicity: 94.4% White Rate of eGFR change ml/min/yr, median (IQR): -4.8 (-98.2 to -3.2) Stable eGFR n= 5255				HR adjusted for age, sex, race, smoking history, hypertension, dementia, chronic liver disease, heart failure, peripheral vascular disease, Charlean
	Exclusions <18 years old >88 years old Any solid organ	Age, mean (SD): 74.4 (9.8) Diabetes: 1627 (31%) Hypertension: 3940 (75%) Mean eGFR (SD): 48 (9.4)				Charlson Comorbidity Index score, prescription for beta blocker,

Population and		Outcomes			
Study and Exclusions Country	Baseline characteristics	Outcome measure	Subgroups	Effect size	Limitations/ Comments
transplant Prior haemo- or peritoneal dialysis Metastatic cancer Active prescription for cytotoxic or immunosuppressiv e therapy. Censoring criteria: ESRD (eGFR <10, RRT) >18 months without serum creatinine result	Proteinuria: 289 (20%) Ethnicity: 95.8% White Rate of eGFR change ml/min/yr, median (IQR): -0.6 (-1.4 to 0.0) Increasing eGFR n= 5107 Age, mean (SD): 72.8 (10.9) Diabetes: 1414 (28%) Hypertension: 3563 (70%) Mean eGFR (SD): 48 (9.4) Proteinuria: 342 (20%) Ethnicity: 95.0% White Rate of eGFR change ml/min/yr, median (IQR): +3.5 (+1.9 to +6.7)				loop diuretic, aldosterone antagonist, calcium acetat insulin, Coumadin or aspirin, systolic and diastolic blood pressure proteinuria, serum albumir HDL and LDL cholesterol, baseline eGFR. Also reported results for model with hospital and/o community acquired acute kidney injury during follow up.

ואמנוטדומו כוודווכמו שעומפוודופ כפרונדפ בטד4

ואמנוטדומו כוודווכמו שעומפוודופ כפרונדפ בטד4

Table 60:Turin et al. 2012 and 2012A

Study and	Population and			Outcomes		Limitations/
Country	Exclusions	Baseline characteristics	subgroups	Outcome measure	Effect size	Comments
-	-	Certain drop n= 19,591 (3.3%) Age, mean (SD): 63.3 (17.4) Diabetes: 23.4% Hypertension: 57% Mean eGFR (SD): 78.9 (24.1) Proteinuria Normal: 42.0% Mild: 9.9% Heavy: 5.4% Unmeasured:42.8% Uncertain drop	subgroups Certain drop		Effect size 5.11 [4.56-5.71] 4.49 [3.12-6.47] 5.20 [3.94-6.86] 5.57 [4.11-7.55] 4.02 [3.18-5.08] 4.85 [4.01-5.87] 1.89 [1.83-1.95] 1.64 [1.51-1.79] 1.85 [1.76-1.93] 1.82 [1.71-1.94]	-
	Participants, n: $n = 64$, 598,397 Age, m Subgroups (from Diabet table A1)*: Hyper eGFR \geq 90 Protei n=260,589 Norma eGFR 60-89 Mild: 6	n= 64,067 (10.7%) Age, mean (SD): 58.6 (15.1) Diabetes: 15.1% Hypertension: 43.6% Mean eGFR (SD): 84.8 (18.7) Proteinuria Normal: 54.4% Mild: 6.4% Heavy: 1.7%	Uncertain drop	Baseline eGFR 30-44 Baseline eGFR 15-29 ESRD Baseline eGFR ≥90 Baseline eGFR 60-89 Baseline eGFR 45-59 Baseline eGFR 30-44 Baseline eGFR 15-29	2.06 [1.90-2.23] 2.07 [1.79-2.39] 2.13 [1.84-2.47] 1.08 [0.72-1.61] 1.96 [1.38-2.80] 1.86 [1.31-2.66] 2.31 [1.73-3.10] 2.93 [2.20-3.91]	in rest of study. HR adjusted for age, sex, diabetes, hypertension, socioeconomic status, kidney function, proteinuria,

וומנוטוזמו כוווווכמו שטומפוווופ כפוונרפ 2014

Study and	Population and			Outcomes		Limitations/	
Country	Exclusions	Baseline characteristics	subgroups	Outcome measure	Effect size	Comments	
		Unmeasured:36.7%		Baseline eGFR ≥90	Not applicable		
				Baseline eGFR 60-89	0.63 [0.32-1.25]		
		Certain rise		Baseline eGFR 45-59	0.58 [0.34-0.98]		
		n= 22,171 (3.7%)		Baseline eGFR 30-44	0.35 [0.23-0.55]		
		Age, mean (SD): 59.9 (17.8)		Baseline eGFR 15-29	0.18 [0.12-0.27]		
		Diabetes: 16.3% Hypertension: 48.6%	A	All-cause mortality	1.51 [1.46-1.56]		
		Mean eGFR (SD): 59.6 (17.8)		Baseline eGFR ≥90	Not applicable		
		Proteinuria		Baseline eGFR 60-89	4.29 [3.97-4.63]		
		Normal: 48.3% Mild: 8.7% Heavy: 2.1%		Baseline eGFR 45-59	1.55 [1.46-1.64]		
			Mild: 8.7%		Baseline eGFR 30-44	1.21 [1.13-1.29]	
				Baseline eGFR 15-29	0.93 [0.85-1.02]		
		Unmeasured: 41.0%					

Table 61: Van Pottelbergh et al. 2012

	Population and		Outcomes			
Study and Country	Exclusions	Baseline characteristics	Outcome measure	Subgroups	Effect size	Limitations/ Comments
Country Van Pottelbergh et al. 2012 ⁶⁹⁶ Cohort study based on data from Intego, a Flemish general practice- based morbidity registration network. Country: Belgium	Adults aged ≥50 years with ≥4 serum creatinine measurements. GFR estimated by MDRD. Mean follow up 7.8 years (SD 3.90). Patients, n: 24,682 Subgroups : Baseline eGFR >60 n= 19,931 Baseline eGFR 45-60 n=3748 Baseline eGFR 30-45 n=840 Baseline eGFR 15-30 n=162	Baseline characteristicsAge, mean (SD): 64 (NR)Diabetes: 18%Hypertension: 62%Proteinuria: NREthnicity: NR	Outcome measure Progression to ESRD (adjusted HR [95% CI])	Subgroups Age 50 – 64 (n=14160) Age 65-79 (n=8743) Baseline eGFR >60 Baseline eGFR 45-60 Baseline eGFR 30-45 Baseline eGFR 15-30 Age 80+ (n=1779) Baseline eGFR 45-60 Baseline eGFR 30-45 Baseline eGFR 30-45 Baseline eGFR 15-30 Baseline eGFR 30-45 Baseline eGFR 30-45 Baseline eGFR 15-30	Effect size 1.00 (reference) 2.49 [2.41-2.57] 2.78 [2.61-2.94] 0.70 [0.62-0.78] 0.58 [0.41-0.75] 4.43 [4.03-4.83] 2.55 [2.15-2.95] 0.52 [0.43-0.61] 0.30 [0.23-0.37]	Comments HR adjusted for diabetes, hypertension, high total cholesterol, high LDL cholesterol and gender.
	Exclusions:					

	Population and		Outcomes			
Study and	Exclusions		_			Limitations/
Country		Baseline characteristics	Outcome measure	Subgroups	Effect size	Comments
	<50 years old					
	eGFR <15					
	"People with					
	impossible serum					
	creatinine values".					

Progression of CKD after acute kidney injury

Table 62: Amdur et al. 2009

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
Richard L. Amdur, Lakhmir S. Chawla, Susan Amodeo, Paul L. Kimmel, and Carlos E. Palant. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int. 76 (10):1089-	n: 113,272 participants Baseline characteristics: ATN: N: 346 Age(mean, SD): 63.8 (12.5) ARF: N:5058	Study type: Retrospective cohort Inclusion: All patients in the VA decision support system database with at least one inpatient admission with a	Patients divided into 4 groups: ATN : those with at least one ATN admission, but no admissions for MI or PNE ARF : those with 1 or more ARF admissions, but no ATN, PNE or MI admissions CON: those with PNE or MI admissions but no ARF or ATN admissions CKD : Patients with one of the	ESRD defined as time from diagnosis to development of CKD4 n developed CKD4/ total (cox regression HR)	ATN: 69/345 (6.64) ARF: 663/5021 (4.03) CON: 2100/62850 (1.0) CKD: 9263/37562 (6.50) TOTAL: 12095/105778	Source of funding: Part supported by Satellite Research, Norman S Coplon Extramural Research Grant Additional info: Confounders adjusted for: Acute renal failure, acute tubular necrosis, CKD,

ואמרוסדומו כוודווכמו המומהוודוה כהבות ה דחדה פיפ

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
1097, 2009. Setting: United States Department of Veterans Affairs database Duration: October 1999-December 2005.	Age(mean, SD): 66.5 (12.2) CON: N:63491 Age(mean, SD): 68.7 (11.9) CKD: N:44377 Age(mean, SD): 74.4 (10.6)	primary diagnosis of ARF or ATN as markers for an episode of AKI. Patients with PNE or MI codes (ICD9 codes) were designated as controls (CON). Exclusion: CKD4 or higher before diagnosis date	above admission diagnoses who also had CKD who were removed from the above 3 groups and examined separately. Patients labelled CKD if they entered CKD3,4 or 5 or started chronic dialysis before the first ATN/ARF/MI/PNE admission date and had mean eGFR <60ml/min/1.73m ² . MDRD equation was used to estimate GFR from age, sex, ethnic origin and serum creatinine concentration. Date of death from VA BIRLS death file. SC values <0.4 or above 25mg/dl were coded as missing CKD3, 4, and 5 were defined as the first day when eGFR dropped below the threshold after which it never returned above the			age, Caucasian, African American, Hispanic, gender, pre-admission diabetes mellitus, diagnosis date, mean pre- admission serum creatinine, mean pre- admission albumin and teaching hospital (y/n). *95% CI for HR not reported, calculated by NCGC for forest plots. Follow-up: 60 months

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
			threshold for that patient			
			Chronic dialysis was defined as having at least 13 outpatient dialysis visits within a 60 day period.			
			AKI assessed by RIFLE criteria			
			Patients censored at death or at 60 months after their diagnosis dates.			
			Statistical analysis: Investigators from each study analysed their data in accordance with an a priori analytical plan.			

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטב4

Table 63: Hsu et al. 2009

	Number of patients &	Inclusion /		Outcome		
Reference	characteristics	exclusion criteria	Intervention	measures	Effect sizes	Comments
C. Y. Hsu, G. M.	39,805 participants with CKD;	Study type:	ARF: peak	ESRD	ARF: Of the 213	Source of funding:
Chertow, C. E.	1061had superimposed dialysis-	Retrospective	inpatient	(defined as the	survivors (no ESRD	National Institute of
McCulloch, D.	requiring acute renal failure during	cohort	serum		or death within 30	Diabetes and Digestive

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
Fan, J. D. Ordonez, and A. S. Go. Nonrecovery of kidney function and death after acute on chronic renal failure. Clin.J.Am.Soc.Nep hrol. 4 (5):891- 898, 2009.	hospitalisation (ARF group) and 38,744 did not (no ARF group). Baseline characteristics: Mean age: ARF group: 66.6 (13.5); no ARF: 73.5 (12.9) years % women: ARF: 460 (43.4%); no ARF: 22.915 (59.1%) White/ European: ARF: 611 (57.6%); no ARF: 28,570 (73.7%) Black/African American: ARF: 156 (14.7%), no ARF: 2923 (7.5%) Hispanic: ARF: 104 (9.8%), no ARF: 1856 (4.8%) Asian/ Pacific Islander: ARF: 117 (11.0%), no ARF: 2987 (7.7%) Native American: ARF: 10 (0.9%), no ARF: 288 (0.7%) Mixed/ unknown: ARF: 63 (5.9%), no ARF: 2120 (5.5%) Diabetes: ARF: 614 (57.9%). no ARF: 10,517 (27.1%) Hypertension: ARF: 864 (81.4%), no ARF: 26,993 (69.7%) Proteinuria: ARF: 749 (70.6%), no ARF: 11,475 (29.6%)	Inclusion: Adults aged 20 years or older hospitalised between Jan 1 st 1996 and Dec 31 st 2003 who were Kaiser Permanente members and had one or more outpatient determination of serum creatinine giving an eGFR <45ml/min/1.73m ² (MDRD equation); first hospitalisation per person during study period only. Exclusion: Patients with previous kidney transplant or on maintenance dialysis	creatinine > last outpatient value by ≥50% plus acute dialysis Statistical analysis: Proportion of patients who died during index admission. Proportion of hospital survivors with ESRD within 30 days of discharge. Cox proportional hazard ratios (HRs) adjusted for age, gender, race,	start of renal replacement therapy [dialysis or transplant]) in survivors within 6 months of discharge. Adjusted HR (95% CI)	days), 12.7% developed ESRD within 6 months. No ARF: Of the 34,721 survivors (no ESRD or death within 30 days), 1.7% developed ESRD within 6 months. HR 1.47 (0.95 to 2.28) (reference group no ARF)	and Kidney Diseases. Confounders adjusted for: Age, gender, race/ethnicity, preadmission eGFR, diabetes, diagnosed hypertension, known proteinuria

	Number of patients &	Inclusion /		Outcome		
Reference	characteristics	exclusion criteria	Intervention	measures	Effect sizes	Comments
	CHD: ARF: 532 (50.1%), no ARF:		pre-admission			
	10,622 (27.4%)		eGFR and co-			
	Stroke/TIA: ARF: 273 (25.7%), no		morbid			
	ARF: 6728 (17.4%)		conditions.			
	Peripheral artery disease: ARF: 363					
	(34.2%), no ARF: 5045 (13.0%)					
	Chronic heart failure: ARF: 603					
	(56.8%), no ARF: 8414 (21.7%)					
	Dyslipidaemia: ARF: 576 (54.3%), no					
	ARF: 13,602 (35.1%)					
	Chronic lung disease: ARF: 399					
	(37.6%), no ARF: 10,059 (26.0%)					
	Chronic liver disease: ARF: 45 (4.2%),					
	no ARF: 816 (2.1%)					
	Cancer: ARF: 165 (15.6%), no ARF:					
	6010 (15.5%)					
	Hypoalbuminaemia: ARF: 628					
	(59.2%), no ARF: 4990 (12.9%)					
	Dementia: ARF: 31 (2.9%), no ARF:					
	2447 (6.3%)					
	Serum creatinine: ARF: 3.31 (1.67) mg/dL; no ARF: 2.11 (1.42)					
	eGFR 30–44 ml/min/1.73m ² : ARF:					
	eGFR 30–44 mi/min/1.73m : ARF: 294 (27.7%), no ARF: 28,434 (73.4%)					
	15–19 ml/min/1.73m ² : ARF: 476					
	15-19 mi/min/1./3m : AKF: 4/6					

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
	(44.9%), no ARF: 7763 (20.0%) <15 ml/min/1.73m ² : ARF: 291 (27.4%), no ARF: 2547 (6.6%)					

Table 64: Ishani et al 2009

						Source of
	No. of patients &	Inclusion/ exclusion		Outcome		funding/
Reference	characteristics	criteria	Intervention	measures	Effect sizes	Comments

Reference	No. of patients & characteristics	Inclusion/ exclusion criteria	Intervention	Outcome measures	Effect sizes	Source of funding/ Comments
Ishani A et al. Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol 2009; 20: 223- 228. Study type: Retrospective cohort Follow-up: 2 years	233,803 patients ≥67 years on discharge. Of those discharged alive: Mean age 79.2 years Male 38.8% White: 89.0% Black: 7.7% Other: 3.3% Diabetes: 27.2% Hypertension: 64.9% Heart disease: 69.3% CKD: 3.1% AKI 3.1%, of whom prior CKD in 34.3% Overall prior CKD: 12%	Inclusion: Hospitalised in 2000 with discharge diagnosis of AKI from 5% random sample of Medicare beneficiary claims data; age ≥67 years at hospital discharge; Medicare 2 years prior to hospitalisation; survived hospital admission; no history of ESRD before hospital discharge; no previous AKI in 2 years prior to current event Exclusion : AKI and died in hospital People who recovered kidney function within 180 days of ESRD initiation were classified as non-ESRD.	AKI (n=7197, of whom 2467 also had CKD) No AKI (n=226,606, of whom 25,653 had CKD)	ESRD (defined as enrolment in the ESRD program) HR (95% CI)	Overall: 5.3/1000 developed ESRD; of those discharged with AKI, 25.2% had ESRD AKI and CKD: HR: 41.2 (34.6 to 49.1) (reference group no AKI or CKD) AKI without previous CKD: HR: 13.0 (10.6 to 16.0) (reference group no AKI or CKD) HR for AKI total (with or without CKD): 6.74 (5.90 to 7.71) (reference group no AKI).	National Institute of Diabetes and Digestive and Kidney Diseases. Cox proportional hazards models adjusted for age, gender, race, diabetes, hypertension.

Reference	No. of patients and characteristics	Inclusion/ exclusion criteria	Intervention	Outcome measures	Effect sizes	Source of funding/ Comments
James MT et al. Glomerular filtration rate, proteinuria, and the incidence and consequence of acute kidney injury: a cohort study. Lancet 2010; 376: 2096– 103. Study type: Retrospective cohort Follow-up: Median 35 months	920,985 patients Inclusion: Age ≥18 years; with at least 1 outpatient measurement of serum creatinine and one of proteinuria in Alberta, Canada, between 2002 and 2007. Exclusion: ESRD at baseline (eGFR <15ml/min/1.73m ² , chronic dialysis or kidney transplant)	Baseline eGFR (n): ≥60ml/min/1.73 m ² : 820,571 45–59.9 ml/min/1.73m ² : 79,845 30–44.9 ml/min/1.73m ² : 16,713 15–29.9 ml/min/1.73m ² : 3856.	AKI (n=6520)broken down by severity (eGFR and proteinuria levels) No AKI, normal proteinuria and eGFR≥60ml/ min/1.73m ²	ESRD or doubling of serum creatinine HR for patients with AKI (95% CI); referent group for all HR = no AKI, normal proteinuria and eGFR≥60ml/ min/1.73m ²	eGFR ≥60ml/min/1.73m ² : Proteinuria normal (urine dipstick negative): 30 (24–37) Proteinuria mild (urine dipstick trace or 1+): 39 (29–52) Proteinuria heavy (urine dipstick 2+): 107 (77–150) eGFR 45–59.9 ml/min/1.73m ² : Proteinuria normal: 21 (16–27) Proteinuria mild: 23 (16–32) Proteinuria heavy: 87 (62–122) eGFR 30–44.9 ml/min/1.73m ² : Proteinuria normal: 24 (18–32) Proteinuria mild: 33 (24–45) Proteinuria heavy: 80 (58–110) eGFR 15–29.9 ml/min/1.73m ² : Proteinuria heavy: 80 (58–110) Proteinuria normal: 50 (36–70) Proteinuria mild: 76 (54–108) Proteinuria heavy: 230 (165–320)	Alberta Heritage Foundation for Medical Research Poisson regression models adjusted for: age, sex, aboriginal status, low income, social assistance and comorbidities. Kaplan Meier plots not shown.

Chronic kidney disease Clinical evidence tables

Table 65: James et al. 2010A

Table 66: James et al. 2011B

וומרוסנומו כוונווכמו שמומפוונופ כפנות פ לחדק

Table 67:	Jones et	al. 2012
-----------	----------	----------

Reference	No. of patients and characteristics	Inclusion/ exclusion criteria	Intervention	Outcome measures	Effect sizes	Source of funding/ Comments
Jones J et al. Association of complete recovery from acute kidney injury with incident CKD stage 3 and all-cause mortality. Am J Kidney Dis 2012; 60: 402–408. Study type: Retrospective cohort study Follow-up: Median 2.5 years	3809 patients Mean age 58 (18) years Male: 48% AKI stage I (serum creatinine increased 50– 100%): n=224 AKI stage II (serum creatinine increased 100– 200%): n=261 AKI stage III (serum creatinine increased >200%): n=234	Inclusion: Adult patients with at least 1 hospitalisation between January 1, 1999 and December 31, 2009 with clinical data at least 90 days prior to admission and at least 1 serum creatinine; plus data at least 1 year after admission Exclusion: <18 years; pregnant; outpatient or inpatient diagnosis of ESRD; inpatient dialysis; prior diagnosis of AKI or eGFR <60ml/min/1.73m ²	AKI by ICD-9 definition (n=719): complete recovery of kidney function at discharge (serum creatinine level within 7 days of discharge to <1.10 times baseline). No AKI (n=3090).	Incident CKD stage 3 (eGFR <60ml/min/1.73m ²) Adjusted HR (95% CI)	AKI: 108/719 (15%) and no AKI: 97/3090 (3%) HR 3.82 (2.81 to 5.19)	American Heart Association, Genzyme Nephrology Fellowship Award, National Institute of Diabetes and Digestive and Kidney Disease Logistic regression model to calculate propensity score analysis; covariates: age, sex, race, comorbidity, hypertension, prior inpatient visits, admission day, baseline serum creatinine

Table 68: LaFrance et al. 2010

		Number of patients &	Inclusion / exclusion		Outcome		
Re	eference	characteristics	criteria	Intervention	measures	Effect sizes	Comments

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Intervention	Outcome measures	Effect sizes	Comments
JP. Lafrance, O. Djurdjev, and A. Levin. Incidence and outcomes of acute kidney injury in a referred chronic kidney disease cohort. Nephrology Dialysis Transplantation 25 (7):2203-2209, 2010. Setting: British Columbia, Canada Duration: November 2002- November 2007	n: 6862 participants Baseline characteristics All N: 6862 Mean age:69.8 (13.3) Mean baseline eGFR (ml/min/1.73m ²): 23.6 (5.8) Mean follow up time:19.4 (11.1, 32.4) AKI N: 3079 Mean age: 68.0 (13.2) Mean baseline eGFR (ml/min/1.73m ²): 23.7 (5.5) Mean follow up time: 22.9 (13.4, 36.3) No AKI N: 3783 Mean age: 70.6 (13.4) Mean baseline eGFR (ml/min/1.73m ²): 23.6	Study type: Retrospective cohort Inclusion: subjects registered as having CKD between November 2002 and November 2007, had been followed up for at least 6 months and had at least 3 eGFR values (at least 1 value of 30ml/min/1.73m ²) or less	Provincial CKD registry, including all patients referred to nephrologists or on dialysis therapy in British Columbia Patients followed up until dialysis, kidney transplantation, death, end of study, discharge to family doctor immigration or loss to follow up. MDRD equation was used to estimate GFR from age, sex, ethnic origin and serum creatinine concentration. AKI defined as a decrease in eGFR of at least 25% and of more then 5ml/min/1.73m ²	ESRD was defined as dialysis initiation HR* (95% CI)	AKI: 2.33 (2.07, 2.61) n/total: AKI: 711/3079 No AKI: 533/3783	Source of funding: Not stated, but states 'no declarations of interest'. Additional info: Confounders adjusted for: sex, age, baseline eGFR and time in registry before cohort entry. *Study states that adjusted relative risks were calculated using a cox-proportional hazard model and Kaplan Meier curves are presented – NCGC assumes these are therefore Hazard ratios. Follow-up: 4 years

Chronic kidney disease Clinical evidence tables

	Number of patients &	Inclusion / exclusion		Outcome		
Reference	characteristics	criteria	Intervention	measures	Effect sizes	Comments
	Mean follow up time:		eGFR.			
	17.0 (9.5, 28.9)					
			Statistical analysis:			
			Investigators from			
			each study analysed			
			their data in			
			accordance with an a			
			priori analytical plan.			
			Cox proportional			
			hazard ratios (RRs)			
			were calculated			
			reference group.			
			These were adjusted			
			for age, sex, baseline			
			eGFR and time in			
			registry before cohort			
			entry.			
			A look back period of			
			180 days was used for			
			analysis.			

	patients &			Outcome		Source of funding/
Reference	characteristics	Inclusion / exclusion criteria	Risk factor	measures	Effect sizes	Comments
Lo LL et al. Dialysis- requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney International 2009; 76: 893–899. Study type: Retrospective cohort study Follow-up: 10,344 person-years or follow up	3773 patients Mean age ARF: 62.3 (15.3) years; matched controls 62.6 (15.5) years Male: 62% White: 66.5% Black: 11.7% Hispanic: 7.9% Asian/Pacific Islander: 7.3% Other: 6.7%	Inclusion: Members of Kaiser Permanente of Northern California; age ≥20 years; hospitalised between 1 January 1996 and 31 December 2003 with serum creatinine before hospitalisation giving eGFR ≥45ml/min/1.73m ² by MDRD equation Exclusion: ESRD before admission	Dialysis-requiring ARF (peak inpatient serum creatinine ≥50% higher than baseline and renal replacement therapy during admission); survived admission; did not develop ESRD within 30 days of discharge (n=343) No ARF (n=3430)	Progressive CKD (eGFR ≤30ml/min/1.73 m ² or ESRD) Adjusted HR (95% CI)	ARF: 47.9 per 100 person- years; no ARF: 1.7 per 100 person-years HR 28.1 (21.1 to 37.6)	National Institutes for Health Each patient matched to 10 controls on baseline eGFR, diabetes, age, sex, race/ethnicity. Cox proportional hazards model.

Number of

Source of funding/ patients & Inclusion / exclusion Outcome Reference **Risk factor** Effect sizes characteristics criteria measures Comments Newsome BB et al. 87,094 patients **Inclusion:** Medicare Increase in serum **ESRD** Quartile 1: increase Funding: none Long-term risk of beneficiaries admitted creatinine level 0.1mg/dL (9µmol/l): HR 1.45 reported Adjusted HR (95% mortality and endwith acute myocardial during admission. CI where shown in quartile 2: increase 0.2mg/dL Mean age 77.1 infarction between stage renal disease text; other Cls (18µmol/l): HR 1.97; (7.5) years Cox proportional February 1994 and July among the elderly shown on graph Decrease or no quartile 3: 0.3 to 0.5 mg/dL hazards model 1994 after small only, all change in serum adjusted for (27-44µmol/l): 2.36; Male 50% increases in serum significantly creatinine level demographic quartile 4: 0.6 to 3.0mg/dL creatinine level different from Exclusion: Long-term during admission. characteristics (age, (53-265µmol/l): 3.26 (2.73 to African American: during reference group) renal replacement in sex, race), 3.71). 7.0% hospitalization for hospital or death in comorbidity (history acute myocardial White: 93.0% hospital; ESRD before of stroke, NOTE: Quartiles 1 and 2 infarction. Arch admission; transfer in hypertension, show a small rise in serum Intern Med 2008; Baseline sCr or out (within 24 diabetes, previous creatinine but would not be 168: 609-616. myocardial infarction μ mol/l (SD) : hours) of the index defined as AKI. hospital; race not or coronary bypass, Decrease/no Study type: African American or smoking), reduced change in sCr: Retrospective white; age <65 years; kidney function on 115 (62) cohort acute haemodialysis admission, anaemia Quartile 1: 106 during hospitalisation; on admission. (44) patients in 99th Follow-up: Median Quartile 2: 106 percentile of increase 4.1 years sCr converted from (44) in serum creatinine mg/dL to µmol/l Quartile 3: 115 during hospitalisation; (multiplied by 88.4) (62) missing data. Quartile 4: 150

Chronic kidney disease Clinical evidence tables

Table 70: Newsome et al. 2008

Number of

117

ועמנוסחמו כווחוכמו שעומפווחפ

רהווו ה

ZUT4

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Risk factor	Outcome measures	Effect sizes	Source of funding/ Comments
	(88)					95% confidence intervals calculated from lower 95% confidence interval read from graph and upper 95% confidence interval calculated by NCGC using RevMan 5.2, asymmetrical confidence intervals shown in graph. For the one group reported in the text only the lower 95% interval agrees with that shown in the graph.

Table 71: Thakar et al. 2011

	Number of patients &	Inclusion /		Outcome		Source of funding/
Reference	characteristics	exclusion criteria	Risk factor	measures	Effect sizes	Comments
Thakar C et al.	3679 patients: 1822	Inclusion: Patients	AKI during each	Development of	Effect of up to 3 episodes of	Veterans Health
Acute kidney	hospitalised, of whom	with diabetes	hospitalisation:	stage 4 CKD	AKI versus hospitalised no AKI:	Administration
injury episodes	530 had AKI, 1292	seeking care in VA	0.3mg/dL	(GFR <30ml/	HR 2.02 per episode (1.78 to	
and chronic	hospitalised no AKI, 1857	healthcare system	(27µmol/l) or 1.5-			

Deference	Number of patients &	Inclusion /	Disk fastar	Outcome	Effect sizes	Source of funding/
Reference	characteristics	exclusion criteria	Risk factor	measures	Effect sizes	Comments
kidney disease	not hospitalised	between January	fold increase in	min/1.73m ²)	2.30)	Cox regression
risk in diabetes	Mean age 61.7 (11.2%)	1, 1999 and	creatinine relative			analysis; covariates:
mellitus. CJASN		December 31,	to admission level	HR (95% CI)	Effect of up to 3 episodes of	demographic
2011; 6: 2567-	NA-1 07 70/	2004	for that		AKI versus hospitalised no AKI	variables, baseline
2572.	Male: 97.7%		hospitalisation.		by baseline GFR:	creatinine; chronic
Study type: Retrospective cohort. Follow-up: Mean 61.2 (25) months	Black: 18.8% Other: 81.2% Baseline GFR: 81.1 (25.9) ml/min/1.73m ² Baseline creatinine: 1.10 (0.3) mg/dL	Exclusion: <3 outpatient creatinine values, eGFR <30 ml/min/1.73m ²	No AKI		GFR <60ml/min/1.73m ² : HR 1.61 (1.28 to 2.03); GFR 60 to 90ml/min/1.73m ² : 2.33 (1.93 to 2.81); GFR >90ml/min/1.73m ² : 2.27 (1.69 to 3.06)	comorbid conditions

Table 72: Wald et al 2009

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Risk factor	Outcome measures	Effect sizes	Source of funding/ Comments
Wald R et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 2009; 302:	17,367 patients Mean age 62 years Male: 60%	Inclusion: Adults (≥19 years) with AKI requiring dialysis, admitted to acute care hospital between July 1, 1996 and December 31, 2006; length of stay <180 days,	AKI requiring dialysis (n=3769) Controls: patients without AKI or dialysis during hospitalisation matched (1–4 per case)	Chronic dialysis beginning >30 days after discharge and lasting ≥90 days	HR 3.23 (2.70 to 3.86) (reference group no AKI) No prior CKD: HR 15.54 (9.65 to 25.03) (Prior CKD figures only	Ontario Ministry of Health and Long- Term Care and University of Toronto Faculty of Medicine

Reference	Number of patients & characteristics	Inclusion / exclusion criteria	Risk factor	Outcome measures	Effect sizes	Source of funding/ Comments
1179–1185.	Charlson comorbidity index:	surviving 30 days free of dialysis or re-	on age, sex, CKD in previous 5 years,		shown graphically)	Cox proportional hazards models
Study type: Retrospective cohort Follow-up: Median 3 years	2.7 CKD in prior 5 years: 25%	hospitalisation after discharge. Exclusion: AKI, kidney transplant or dialysis in previous 5 years; no matches found in dataset.	ventilation during admission and propensity score for developing AKI requiring dialysis (n=13,598)			adjusted for age and propensity score

7 X N

G.7 Low protein diet

Table 73: Brouhard 1990

Study	Brouhard 1990 ⁹⁴
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=15)
Countries and setting	Conducted in USA; Setting: Outpatient
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 12 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Microalbuminuria of at least 30 μ g/minute
Stratum	Overall
Subgroup analysis within study	Not applicable

Study	Brouhard 1990 ⁹⁴
Inclusion criteria	Background or proliferative retinopathy; serum creatinine at or below 8mg/dl
Exclusion criteria	Blood pressure greater than 140/90 mmHg in the 3 months before the start of the study
Age, gender and ethnicity	Age - Mean (SD): Intervention: 36 (13); Control: 30 (12). Gender (M:F): 9:6. Ethnicity: Not reported
Further population details	1. Older people aged 75 years and over: Not applicable / Not stated / Unclear 2. People with diabetes: CKD and diabetes
Extra comments	Patients with insulin dependent diabetes mellitus and diabetic nephropathy (microalbuminuria of at least 30 μ g/minute)
Indirectness of population	No indirectness
Interventions	(n=8) Intervention 1: Low protein diet - Low protein diet (0.6 - 0.8g/kg). 0.6g/kg/day. Duration 12 months. Concurrent medication/care: Blood pressure medications other than angiotensin-converting enzyme inhibitors were adjusted to maintain blood pressure at or below 140/90mmHg
	(n=7) Intervention 2: Higher protein diet - Higher protein diet (greater than 0.8g/kg). dose/quantity, brand name, extra details. Duration 12 months. Concurrent medication/care: Blood pressure medications other than angiotensin-converting enzyme inhibitors were adjusted to maintain blood pressure at or below 140/90mmHg.
Funding	Academic or government funding
RESULTS (NUMBERS ANALYSED) AND	RISK OF BIAS FOR COMPARISON: LOW PROTEIN DIET (0.6 - 0.8G/KG) versus HIGHER PROTEIN DIET (GREATER THAN 0.8G/KG)

Protocol outcome 1: Progression of CKD (measured by change in GFR) (Critical) at 1 year minimum - Actual outcome: eGFR final values at 12 months; Group 1: mean 71 ml/minute/1.73m² (SD 21); n=8, Group 2: mean 47 ml/minute/1.73m² (SD 21); n=7; Risk of bias: Very high; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Progression of CKD (measured by end stage renal disease requiring RRT) (Critical) at 1 year minimum; Mortality (all-
	cause and cardiovascular) (Critical) at 1 year minimum; Compliance (measured by actual protein intake) (Important) at
	1 year minimum ; Nutritional status (measured by subjective global assessment) (Important) at 1 year minimum;

Study	Brouhard 1990 ⁹⁴
	Nutritional status (measured by change in BMI) (Important) at 1 year minimum; Quality of life (Critical) at 1 year minimum

Table 74: Cianciaruso 2008, Cianciaruso 2008

Study (subsidiary papers)	Cianciaruso 2008 ¹²⁷ (Cianciaruso 2009 ¹²⁶)
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=423 randomised)
Countries and setting	Conducted in Italy; Setting: CKD clinic of university hospital
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 18 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: eGFR obtained with the MDRD equation
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Aged 18 years and over with a basal value of eGFR less than or equal to 30ml/min/1.73m ²
Exclusion criteria	Unstable renal function, malignant diesase, treatment with immunosuppressant drugs, urinary protein excretion exceeding 5g/24h, pregnancy or refusal to participate.
Recruitment/selection of patients	Consecutive patients were screened for inclusion criteria and randomly assiged to one of two test diets. Randomisation was generated by a computer. eGFR checked monthly for 3 months (baseline) if stable (eGFR variability <15%) people were deemed eligible for the study.
Age, gender and ethnicity	Age - Mean (SD): 61 (18). Gender (M:F):Define Ethnicity: Not stated
Further population details	1. Older people aged 75 years and over: Not applicable / Not stated / Unclear (Age range not stated). 2. People with diabetes: Not applicable / Not stated / Unclear (Mixed).
Extra comments	Aged 18 years with CKD and stable kidney function. Baseline eGFR (ml/min/1.73m ²): low protein diet 16 +/- 6, higher

Study (subsidiary papers)	Cianciaruso 2008 ¹²⁷ (Cianciaruso 2009 ¹²⁶)
	protein diet 17 +/- 8 Stage 4/5: low protein diet 106/94, higher protein diet 92/100.
Indirectness of population	No indirectness
Interventions	 (n=212) Intervention 1: Low protein diet - Low protein diet (0.6 - 0.8g/kg). Target low protein diet was 0.55g/kg/day, but achieved level was 0.71g/kg/day. Duration 18 months. Concurrent medication/care: All dietary prescriptions and estimates of dietary intake are expressed according to the patients' desirable body weight (DBW), derived from the BMI. Patients were prescribed at least 30kcal/kg/day, reduced to a minimum of 25 in overweight patients, or if hypertension and hyperlipidaemia were present. A multivitamin and mieral tablet was also administered daily. Dietary sodum intake was restricted in all patients (2.5g/day of sodium). Calcium supplements were given in the form of calcium carbonate in order to guarantee a calcium intake of 100-1500mg/day. Iron supplementation was administered as necessary to maintain transferrin saturation at 20% or greater, and serum ferritin level at 60 microgram/l. The therapy consisted of 200mg/day of oral element iron. (n=211) Intervention 2: Higher protein diet - Higher protein diet (greater than 0.8g/kg). Target higher protein diet was 0.86g/kg/day. Duration 18 months. Concurrent medication/care: As with low protein diet
Funding	Academic or government funding (Partially funded by an unrestricted grant from the Italian Ministry of Univerity and Scientific Research)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: LOW PROTEIN DIET (0.6 - 0.8G/KG) versus HIGHER PROTEIN DIET (GREATER THAN 0.8G/KG)

Protocol outcome 1: Progression of CKD (measured by end stage renal disease requiring RRT) (Critical) at 1 year minimum - Actual outcome: Progression of CKD (ESRD/RRT) at 48 months; HR 0.98 (95%CI 0.64 to 1.51) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Progression of CKD (measured by change in GFR) (Critical) at 1 year minimum - Actual outcome: Progression of CKD (eGFR) at 48 months; Risk of bias: Low; Indirectness of outcome: Serious indirectness

Protocol outcome 3: Mortality (all-cause and cardiovascular) (Critical) at 1 year minimum

Study (subsidiary papers)	Cianciaruso 2008 ¹²⁷ (Cianciaruso 2009 ¹²⁶)
- Actual outcome: All-cause mortality at 48 months; HR 1.04 (95%CI 0.59 to 1.83) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness	
Protocol outcome 4: Compliance (measured by a	actual protein intake) (Important) at 1 year minimum
- Actual outcome: Compliance (actual protein in	take) at 18 months; Group 1: mean 0.71 g/kg/day (SD 0.12); n=200, Group 2: mean 0.86 g/kg/day (SD 0.05); n=192; Risk
of bias: Low; Indirectness of outcome: No indirection of bias: Low; Indirectness of outcome: No indirection of bias in the second s	ctness
Protocol outcomes not reported by the study	Nutritional status (measured by subjective global assessment) (Important) at 1 year minimum; Nutritional status
	(measured by change in BMI) (Important) at 1 year minimum; Quality of life (Critical) at 1 year minimum

Table 75:Ciarambino 2012

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

284

Study	Ciarambino 2012 ¹²⁸
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=38)
Countries and setting	Conducted in Italy; Setting: Secondary care
Line of therapy	Unclear
Duration of study	Intervention time: 30 months
Method of assessment of guideline condition	Unclear method of assessment/diagnosis
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Type 2 diabetes for at least 15 years treated with diet + insulin; arterial hypertension treated with diet + RAS inhibitors; chronic renal disease stage 3 or 4; >65 years; functionally independent (except on max of 1 of 6 ADL); MMSE >24; no severe disease influencing mood state; Cumulative Illness Rating Scale <3
Exclusion criteria	Thyroid abnormalities or altered B12 and folic acid levels; on antidepressants
Recruitment/selection of patients	Not stated

Study	Ciarambino 2012 ¹²⁸
Age, gender and ethnicity	Age - Other: Inclusion criterion: >65 years; no mean stated. Gender (M:F): 18:20. Ethnicity: Not stated
Further population details	1. Older people aged 75 years and over: 2. People with diabetes: CKD and diabetes (All had CKD stage 3 or 4 + type 2 diabetes).
Indirectness of population	No indirectness
Interventions	 (n=19) Intervention 1: Low protein diet - Low protein diet (0.6 - 0.8g/kg). Low protein diet 0.7g/kg 7 days a week. Duration 30 months. Concurrent medication/care: Insulin + RAS inhibitors (n=19) Intervention 2: Low protein diet - Low protein diet (0.6 - 0.8g/kg). Low protein diet 6 days a week plus normal protein diet once a week. Duration 30 months. Concurrent medication/care: Insulin + RAS inhibitors
Funding	Academic or government funding (Italian Regional Founds)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: LOW PROTEIN DIET (0.6 - 0.8G/KG) versus LOW PROTEIN DIET (0.6 - 0.8G/KG)

Protocol outcome 1: Quality of life (Critical) at 1 year minimum

- Actual outcome: SF-36 MCS at 30 months; Group 1: mean 36.8 (SD 0.5); n=19, Group 2: mean 49 (SD 0.6); n=19; SF-36 mental component score 0-100 Top=High is good outcome; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome: SF-36 PCS at 30 months; Group 1: mean 37 (SD 0.8); n=19, Group 2: mean 48 (SD 0.9); n=19; SF-36 Physical component score 0-100 Top=High is good outcome; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Nutritional status (measured by change in BMI) (Important) at 1 year minimum

- Actual outcome: BMI at 30 months; Group 1: mean 29.7 kg/m² (SD 0.5); n=19, Group 2: mean 29.2 kg/m² (SD 0.6); n=19; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Progression of CKD (measured by change in GFR) (Critical) at 1 year minimum; Mortality (all-cause and cardiovascular)
	(Critical) at 1 year minimum; Compliance (measured by actual protein intake) (Important) at 1 year minimum ;
	Nutritional status (measured by subjective global assessment) (Important) at 1 year minimum; Progression of CKD

ואמנוטרומו כוורווכמו שמומפווחפ כפרונרפ

ZUT4

Study	Ciarambino 2012 ¹²⁸
	(measured by end stage renal disease requiring RRT) (Critical) at 1 year minimum

Table 76: Klahr 1994, Levey 2006

Study (subsidiary papers)	Klahr 1994 ³⁴⁴ (Levey 2006 ³⁸⁰)
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=585)
Countries and setting	Conducted in USA; Setting: Multicentre trial (15 clinical centres)
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 3 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: GFR assessed by urinary clearane of iothalamate
Stratum	Overall
Subgroup analysis within study	Stratified then randomised: Usual vs.low blood presure
Inclusion criteria	Aged 18 - 70; increased serum creatinine, men: 1.4 to 7.0 mg/dl, women 1.2 to 7.0 mg/dl, or other objective evidence of kidney disease; mean arterial blood pressure less than or equal to 125mm Hg; GRF 13-55 ml/min/1.73m ² ; urinary protein excretion <10g/day; protein intake >0.9g/kg/day if GFR 25-55 ml/min/1.73m ² .
Exclusion criteria	Insulin-dependent diabetes or fasting serum glucose >200 mg/dl; on dialysis; kidney transplant recipient; lactating or pregnant women or women planning to become pregnant with the time frame of the study; doubtful compliance; body weight <80% or >160% of standard body weight; serum albumin <3 g/dl; selected renal disorders: upper or lower urinary tract obstruction, renal artery stenosis, branched or staghorn calculi, cystinuria; serious medical conditions: malignancy (excluding skin cancer) within 1 year, heart failuer (New York Heart Association class 3 or 4), lung disease, liver disease, gastrointestinal disease, chronic systemic infections including AIDS, collagen vascular disease (other than rheumatoid arthritis), frequent hospitalisations or disability; drugs: immunosuppressive agents, corticosteroids n

Study (subsidiary papers)	Klahr 1994 ³⁴⁴ (Levey 2006 ³⁸⁰)
	excess of replacement dosage for 2 months peryear or more, gold or penicillamine with past month, salicylates (more than 20 tablets per week), other nonsteroidal antiinflammatory agents more than 3 times per week in past 2 months, investigational drugs; allergy to iothalamate or iodine; inability or unwillingness to give consent.
Recruitment/selection of patients	Selection was conducted in two phases: a screening period for initirial determination of eligibility and a 3-month baseline period. The baseline period was used to intstruct patients about study procedures; to assess GFR and dietary protein intake and to control blood pressure according to standard medical practice. GFR, dietary protein and urinary protein must meet eligibility criteria at the end of the baseline period before an individual can be randomised.
Age, gender and ethnicity	Age - Mean (SD): Low protein diet: 51.8 (12.1), Usual protein diet 25.5 (12.2). Gender (M:F): 61.05% M. Ethnicity: 8% African American
Further population details	1. Older people aged 75 years and over: Aged under 75 (All participants 18 - 70 years old). 2. People with diabetes: CKD only
Extra comments	Adults aged 18 - 70 with chronic kidney disease GFR at baseline (ml/min/1.73m ²): low protein diet 39.3 +/- 9, higher protein diet 37.9 +/- 8.8
Indirectness of population	Serious indirectness: Blood pressure also modified
Interventions	(n=250) Intervention 1: Low protein diet - Low protein diet (0.6 - 0.8g/kg). Target value 0.58g/kg. Duration 3 years. Concurrent medication/care: Dietary sodium intake was not restricted. Pharmacologic and nonpharmacologic therapies used to achieve the desired blood-p[ressure values. The recommended antihypertensive regimen was an angiotensin-converting-enzyme inhibitor with or without a diuretic agent; a calcium-channel blocker and other medications were added as needed. Hyperphosphatemia was treated with calcium carbonate as needed. (n=263) Intervention 2: Higher protein diet - Higher protein diet (greater than 0.8g/kg). Target value 1.3g/kg. Duration 3 years. Concurrent medication/care: As with low protein diet
For disc.	
Funding	Academic or government funding (National Institue of Diabetes, Digestive and Kidney Dieases, and the Health Care Finance Administration. Carizem and Oscal provided by Marion Merrell DOw and Vasotec provided by Merck Sharp and Dohme.)

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

Study (subsidiary papers)	Klahr 1994 ³⁴⁴ (Levey 2006 ³⁸⁰)
RESULTS (NUMBERS ANALYSED) AND RISK OF B	AS FOR COMPARISON: LOW PROTEIN DIET (0.6 - 0.8G/KG) versus HIGHER PROTEIN DIET (GREATER THAN 0.8G/KG)
Protocol outcome 1: Progression of CKD (measu	red by end stage renal disease requiring RRT) (Critical) at 1 year minimum
- Actual outcome: Progression of CKD (ESRD RR	Γ) at 11 years; HR 0.89 (95%Cl 0.71 to 1.12) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness
Protocol outcome 2: Progression of CKD (measu	red by change in GFR) (Critical) at 1 year minimum
- Actual outcome: Progression of CKD (eGFR) at	3 years; Risk of bias: Unclear; Indirectness of outcome: Serious indirectness
Protocol outcome 3: Mortality (all-cause and ca	rdiovascular) (Critical) at 1 year minimum
- Actual outcome: Mortality (all cause) at 3 year	s; Group 1: 5/291, Group 2: 10/294; Risk of bias: Low; Indirectness of outcome: No indirectness
- Actual outcome: Mortality (all cause) at 11 yea	rs; Group 1: 63/291, Group 2: 66/294; Risk of bias: Low; Indirectness of outcome: No indirectness
Protocol outcome 4: Compliance (measured by	actual protein intake) (Important) at 1 year minimum
- Actual outcome: Compliance at 3 years; Group 1: mean 0.77 g/kg/day (SD 0.12); n=286, Group 2: mean 1.11 g/kg/day (SD 0.14); n=292; Risk of bias: Low; Indirectness	
of outcome: No indirectness	
Protocol outcomes not reported by the study	Nutritional status (measured by subjective global assessment) (Important) at 1 year minimum; Nutritional status
	(measured by change in BMI) (Important) at 1 year minimum; Quality of life (Critical) at 1 year minimum

Table 77:Locatelli 1991

Study	Locatelli 1991 ³⁹⁶
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=456)
Countries and setting	Conducted in Afghanistan, Italy; Setting: Outpatient departments (multicentre)
Line of therapy	Adjunctive to current care

Study	Locatelli 1991 ³⁹⁶
Duration of study	Intervention time: 2 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Creatinine levels used for diagnosis
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Plasma creatinine concentrations between 133 micromol/l (119 in women) and 619 micromol/l and a creatine clearance rate below 60ml/min.
Exclusion criteria	A variation in plasma creatinine of more than 100% during the 3-month preliminary observation period; diabetes; nephrotic syndrome (defined as proteinuria of more than 3g/24 h and serum albumin below 25 g/l); acute obstructions of the urinary tract; an ideal body weight below 45kg or above 90kg; acute infectious diseases (including those of the urinary tract); systemic illnesses (such as autoimmune or malignant disorders); any other disorder necessitating treatment with drugs that might affect the progression of the underlying renal disease; and previous surgery of the gastrointestinal tract.
Age, gender and ethnicity	Age - Mean (range): 48.5 (18 - 65). Gender (M:F): 247:209. Ethnicity: Italian
Further population details	1. Older people aged 75 years and over: Aged under 75 2. People with diabetes: CKD only
Extra comments	Outpatients aged 18 - 65 with Chronic renal insufficiency. Population stratified into 3 groups: group A plasma creatinine 133-221 micromol/l; group B 222-442 micromol/l; and group C 443-619 micromol/l.
Indirectness of population	
Interventions	(n=230) Intervention 1: Low protein diet - Low protein diet (0.6 - 0.8g/kg). 0.6g/kg ideal body weight plus energy supplememnt of 35 kcal/kg daily Duration 2 years. Concurrent medication/care: Daily phosphate intake restricted to 0.26 mmol/kg. Patients with hypertension received the following stepped treatment: beta blockers or central antihypertensive agents; calcium channel blockers or other vasodilators; and frusemide. Angiotensin-converting enzyme inhibitors and minoxidil were avoided as much as possible, and vitamin D was not permitted. Calcium carbonate was recommended between meals, to maintain total plasma calcium concentrations at 2.25-2.75 mmol/l; when necessary, calcium carbonate or aluminium hydroxide was given with meals to maintain normal plasma phosphate concentrations. Severe hyperuricaemia was treated with allopuriol; uricosuric agents were not allowed. For treatment of metabolic acidosis, calcium carbonate was supported by the administation of the lowest possible

Study	Locatelli 1991 ³⁹⁶
	doses of sodium bicarbonate.
	(n=226) Intervention 2: Higher protein diet - Higher protein diet (greater than 0.8g/kg). 1.0g protein per kg daily plus energy supplement of 30 kcal/kg daily. Duration 2 years. Concurrent medication/care: Daily phosphate intake restricted to 0.42 mmol/kg. other treatments as for low protein diet.
Funding	Funding not stated
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: LOW PROTEIN DIET (0.6 - 0.8G/KG) versus HIGHER PROTEIN DIET (GREATER THAN 0.8G/KG) Protocol outcome 1: Progression of CKD (measured by end stage renal disease requiring RRT) (Critical) at 1 year minimum - Actual outcome: Progression of CKD (ESRD RRT) at 2 years; Risk of bias: Low; Indirectness of outcome: Protocol outcome 2: Mortality (all-cause and cardiovascular) (Critical) at 1 year minimum - Actual outcome: Mortality (all cause) at 2 years; Group 1: 2/230, Group 2: 3/226; Risk of bias: Low; Indirectness of outcome: Protocol outcome 3: Compliance (measured by actual protein intake) (Important) at 1 year minimum - Actual outcome: Compliance at 2 years; Other: Low protein diet: 19.7, higher protein diet: -0.1; Risk of bias: Low; Indirectness of outcome:	
Protocol outcomes not reported by the study	Progression of CKD (measured by change in GFR) (Critical) at 1 year minimum; Nutritional status (measured by subjective global assessment) (Important) at 1 year minimum; Nutritional status (measured by change in BMI) (Important) at 1 year minimum; Quality of life (Critical) at 1 year minimum

Table 78: Meloni 2002

Study	Meloni 2002 ⁴⁴⁶
Study type	RCT (Patient randomised; Parallel)

Study	Meloni 2002 ⁴⁴⁶
Number of studies (number of participants)	1 (n=69)
Countries and setting	Conducted in Italy; Setting: Outpatients
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 12 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Adults with overt diabetic nephropathy (not defined); Type 1 or type 2 diabetes traeted with insuin; hypertension treated with ACE inhibitor and calcium blocker therapy with a treated blood pressure of less than or equal to 140/85mmHg for at least 3 months prior to entry
Exclusion criteria	Clinical or biochemical signs of malnutrition
Age, gender and ethnicity	Age - Mean (SD): 54.4 (15.3). Gender (M:F): 38:31. Ethnicity: Not stated
Further population details	1. Older people aged 75 years and over: Aged under 75 (Age range 35-73 years). 2. People with diabetes: CKD and diabetes
Extra comments	Adults with type 1 or type 2 diabetes and overt diabetic nephropathy and hypertension. Baseline eGFR intervention: 45.6 (5.4) ml/min/1.73m ² , control: 44.0 (6.1) ml/min/1.73m ² . None
Indirectness of population	No indirectness
Interventions	(n=35) Intervention 1: Low protein diet - Low protein diet (0.6 - 0.8g/kg). 0.6g/kg/day. Duration 12 months. Concurrent medication/care: Insulin and antihypertensives, same for both groups
	(n=34) Intervention 2: Higher protein diet - Higher protein diet (greater than 0.8g/kg). free-protein diet (mean 1.39g/kg/day). Duration 12 months. Concurrent medication/care: Insulin and antihypertensives, same for both groups
Funding	Funding not stated

Study	Meloni 2002 ⁴⁴⁶
RESULTS (NUMBERS ANALYSED) AND RISK OF E	BIAS FOR COMPARISON: LOW PROTEIN DIET versus HIGHER PROTEIN DIET (GREATER THAN 0.8G/KG)
Protocol outcome 1: Progression of CKD (meas	ured by change in GFR) (Critical) at 1 year minimum
- Actual outcome: Change in GFR at 12 months	; Group 1: mean 6.15 ml/min/1.73m ² (SD 1.61); n=35, Group 2: mean 6.26 ml/min/1.73m ² (SD 1.84); n=34; Risk of bias:
High; Indirectness of outcome: No indirectness	
Protocol outcome 2: Compliance (measured by	v actual protein intake) (Important) at 1 year minimum
- Actual outcome: Actual protein intake at 12 n	nonths; Group 1: mean 0.68 g/kg/day (SD 0.4); n=35, Group 2: mean 1.38 g/kg/day (SD 0.3); n=34; Risk of bias: High;
Indirectness of outcome: No indirectness	
Protocol outcome 3: Nutritional status (measu	red by change in BMI) (Important) at 1 year minimum
- Actual outcome: Obesity index at 12 months; Group 1: mean 10.3 kg (SD 1.6); n=35, Group 2: mean 13.7 kg (SD 2.6); n=34; Risk of bias: High; Indirectness of outcome:	
No indirectness	
Protocol outcomes not reported by the study	Progression of CKD (measured by end stage renal disease requiring RRT) (Critical) at 1 year minimum; Mortality (all-
	cause and cardiovascular) (Critical) at 1 year minimum; Nutritional status (measured by subjective global assessment)

Table 79: Meloni 2004

Study	Meloni 2004 ⁴⁴⁷
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=169)
Countries and setting	Conducted in Italy; Setting: Outpatients
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 12 months

(Important) at 1 year minimum; Quality of life (Critical) at 1 year minimum

Study	Meloni 2004 ⁴⁴⁷
Method of assessment of guideline condition	Adequate method of assessment/diagnosis
Stratum	Overall
Subgroup analysis within study	Stratified then randomised
Inclusion criteria	CKD; chronic hypertension treated with both an ACE inhibitor and calcium blocker
Exclusion criteria	Biochemical signs of malnutrition; other systemic disease; chronic infection; malignancy; steroids or immunosuppressive drugs
Age, gender and ethnicity	Age - Mean (SD): 62.2 (13.4). Gender (M:F): 45:44. Ethnicity: Not reported
Further population details	 Older people aged 75 years and over: Aged under 75 (Age range 29-73 years). People with diabetes: CKD only (Subgroup with CKD and diabetes were excluded (see comments)).
Extra comments	Non diabetic adults with CKD. Different low protein diets for diabetic and non-diabetic subgroups, diabetic subgroup excluded as actual protein intake was 0.9g/kg/day.
Indirectness of population	No indirectness
Interventions	 (n=44) Intervention 1: Low protein diet - Low protein diet (0.6 - 0.8g/kg). 0.6g/kg/day. Duration 12 months. Concurrent medication/care: None Comments: Home visits to improve compliance if necessary (n=45) Intervention 2: Higher protein diet - Higher protein diet (unrestricted or free protein). Free protein diet (mean 1.54g/kg/day). Duration 12 months. Concurrent medication/care: None
Funding	Funding not stated

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: LOW PROTEIN DIET (0.6 - 0.8G/KG) versus HIGHER PROTEIN DIET (UNRESTRICTED OR FREE PROTEIN)

Protocol outcome 1: Progression of CKD (measured by change in GFR) (Critical) at 1 year minimum - Actual outcome: GFR final values at 12 months; Group 1: mean 41.8 ml/min/1.73m² (SD 2.4); n=44, Group 2: mean 38.3 ml/min/1.73m² (SD 3.8); n=45; Risk of bias:

Study	Meloni 2004 ⁴⁴⁷
Low; Indirectness of outcome: No indirectnes	5
 Actual outcome: Actual protein intake from n=45; Risk of bias: High; Indirectness of outco Protocol outcome 3: Nutritional status (measurement) 	y actual protein intake) (Important) at 1 year minimum diet questionnaire at 12 months; Group 1: mean 0.67 g/kg/day (SD 0.21); n=44, Group 2: mean 1.54 g/kg/day (SD 0.39); ome: No indirectness ured by change in BMI) (Important) at 1 year minimum : mean 23.9 kg/m ² (SD 2.9); n=44, Group 2: mean 25.1 kg/m ² (SD 3.4); n=45; Risk of bias: Low; Indirectness of outcome:
Protocol outcomes not reported by the study	Progression of CKD (measured by end stage renal disease requiring RRT) (Critical) at 1 year minimum; Mortality (all- cause and cardiovascular) (Critical) at 1 year minimum; Nutritional status (measured by subjective global assessment) (Important) at 1 year minimum; Quality of life (Critical) at 1 year minimum

Table 80: Rosman 1989

Study	Rosman 1989 ⁵⁸⁷
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=151)
Countries and setting	Conducted in Switzerland; Setting: Nephrology outpatient department
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 48 months
Method of assessment of guideline condition	Partially adequate method of assessment/diagnosis: Creatinine clearance 10-60ml/min (how this was measured is not reported)

Study	Rosman 1989 ⁵⁸⁷
Stratum	Overall
Subgroup analysis within study	Stratified then randomised
Inclusion criteria	CKD (CrCl 10-60ml/min)
Exclusion criteria	Lupus erythematosus; active vasculitis; Wegener's disease.
Recruitment/selection of patients	Patients with CrCl of 31-60 were randomised to either low [protein diet 0.6g/kg/day or usual diet.
Age, gender and ethnicity	Age - Median (range): 48 (15-73) NOTE: this is for all patients, includes 0.4g/kg/day subgroup and their controls that did not meet our inclusion criteria). Gender (M:F): 84:67. Ethnicity: Not reported
Further population details	 Older people aged 75 years and over: Aged under 75 (All patients under 75 years of age.). People with diabetes: CKD and diabetes (Total number of people with diabetes unclear but <15%.).
Extra comments	CKD (mixed with and without diabetes, although <15% had diabetes). Patients were stratified pre-randomisation for sex, age (above and below 40 years) and renal function (CrCl above and below 30ml/min). Otherwise baseline characteristics not clearly reported by subgroup but states "not statistically different".
Indirectness of population	No indirectness
Interventions	(n=74) Intervention 1: Low protein diet - Low protein diet (0.6 - 0.8g/kg). 0.6g/kg/day. Duration 4 years. Concurrent medication/care: Every 3 months visited nephrology and dietician. Compliance measured by urea excretion (actual values not reported).
	(n=77) Intervention 2: Higher protein diet - Higher protein diet (unrestricted or free protein). "Usual" diet. Duration 4 years. Concurrent medication/care: Nephrology visit every 3 months. Saw dietician "only for a specific indication". Unclear if compliance was measured in this group.
Funding	Funding not stated
	K OF BIAS FOR COMPARISON: LOW PROTEIN DIET (0.6 - 0.8G/KG) versus HIGHER PROTEIN DIET (UNRESTRICTED OR FREE

ואמנוטרומו כווחוכמו שעומפווחפ כפרונרפ בטב4

Study	Rosman 1989 ⁵⁸⁷
 Protocol outcome 1: Progression of CKD (measured by end stage renal disease requiring RRT) (Critical) at 1 year minimum Actual outcome: Mortality at 4 years; Group 1: 4/74, Group 2: 10/77; Risk of bias: Low; Indirectness of outcome: Serious indirectness Actual outcome: Progression of CKD (measured by end stage renal disease requiring RRT) at 4 years; Group 1: 7/74, Group 2: 3/77; Risk of bias: Low; Indirectness of outcome: Serious indirectness Actual outcome: Serious indirectness 	
Protocol outcomes not reported by the study	Progression of CKD (measured by change in GFR) (Critical) at 1 year minimum; Mortality (all-cause and cardiovascular) (Critical) at 1 year minimum; Compliance (measured by actual protein intake) (Important) at 1 year minimum ; Nutritional status (measured by subjective global assessment) (Important) at 1 year minimum; Nutritional status (measured by change in BMI) (Important) at 1 year minimum; Quality of life (Critical) at 1 year minimum

Table 81: Williams 1991

Study	Williams 1991 ⁷²²
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=65)
Countries and setting	Conducted in United Kingdom; Setting: Nephrology clinical at the Royal Liverpool Hospital or at South Cleveland Hospital
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: mean of 19 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Creatinine clearance
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Define
Exclusion criteria	Define
Recruitment/selection of patients	All patients attending the two participating clinics meeting inclusion criteria were eligible. All eligible patients were

Study	Williams 1991 ⁷²²
	reviewed on at least 3 occasions over a 6 month period before randomisation. A full clinical assessment, including measurement of height, weight, triceps and subscapuilar skin fold thickness and mid-upper arm circumference. Serum albumin, transferrin and immunoglobulins and 24 hour urine protein excretion were measured. Blood pressure was measured on 3 occasions. Hypertension controlled with most suitable agent for the individual: no particular drug or group of drugs were excluded. Target blood pressure was <150/95 mmHG for patients under 50 years and <170/95 for those over 50 years. Deterioration of renal function was confirmed on the basis of at least 3 measurements of plasma creatinine and 24 hour creatinine clearance over the 6 month period beofer randomisation Patients with uncontrolled acidosis, untreated urinary tract infection or disturbance of salt and water balance were treated conventionally and were stable at randomisation.
Age, gender and ethnicity	Age - Mean (SD): low protein diet: 43 (2.3), usual protein diet: 44.5 (2.2). Gender (M:F):Define Ethnicity:
Further population details	1. Older people aged 75 years and over: Aged under 75 2. People with diabetes: Not applicable / Not stated / Unclear
Extra comments	Adult patients with chnoic renal failure. Plasma creatnine at randomisation: low protein diet, 382 +/- 33 micromol/l, 382 +/-28 micromol/litre
Indirectness of population	No indirectness
Interventions	 (n=33) Intervention 1: Low protein diet - Low protein diet (0.6 - 0.8g/kg). 0.6g/kg/day . Duration 19 months. Concurrent medication/care: 800mg phosphate, energy intake at least 30 kCal/kg/day (n=32) Intervention 2: Higher protein diet - Higher protein diet (greater than 0.8g/kg). Minimum of 0.8g/kg/day protein. Duration 19 months. Concurrent medication/care: Energy intake at least 30 kCal/kg/day. No phosphate restriction
Funding	Academic or government funding (Mersey Region Association for Kidney Research)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: LOW PROTEIN DIET (0.6 - 0.8G/KG) versus HIGHER PROTEIN DIET (GREATER THAN 0.8G/KG)

Protocol outcome 1: Progression of CKD (measured by end stage renal disease requiring RRT) (Critical) at 1 year minimum - Actual outcome: Mortality (all cause) at 24 months; Group 1: 1/31, Group 2: 1/29; Risk of bias: Low; Indirectness of outcome: No indirectness

Study	Williams 1991 ⁷²²
- Actual outcome: Progression of CKD (ESRD RRT	Γ) at 24 months; Group 1: 17/31, Group 2: 15/29; Risk of bias: Low; Indirectness of outcome: No indirectness
Protocol outcome 2: Mortality (all-cause and car	rdiovascular) (Critical) at 1 year minimum
- Actual outcome: Compliance at Mean of 19 mc	onths; Group 1: mean 0.69 g/kg/day (SD 0.11); n=31, Group 2: mean 1.14 g/kg/day (SD 0.27); n=29; Risk of bias: Low;
Indirectness of outcome: Serious indirectness	
Protocol outcomes not reported by the study	Progression of CKD (measured by change in GFR) (Critical) at 1 year minimum; Compliance (measured by actual protein intake) (Important) at 1 year minimum ; Nutritional status (measured by subjective global assessment) (Important) at 1 year minimum; Nutritional status (measured by change in BMI) (Important) at 1 year minimum; Quality of life (Critical) at 1 year minimum

Table 82: Zeller 1991

Study	Zeller 1991 ⁷³⁹
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=35)
Countries and setting	Conducted in USA; Setting: Outpatients
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: Mean 35 months (minimum12 months)
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Renal function measured by iothalamate clearance at baseline
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Type 1 diabetes mellitus with onset before the age of 30; diabetic nephropathy (24h protein excretion more than 500 mg); diabetic retinopathy; absence of other causes of renal failure.
Exclusion criteria	Contraindications to a low-protein diet such as severe infection, cancer, pregnancy, history of brittle diabetes, age

Study	Zeller 1991 ⁷³⁹
	under 18 or over 60.
Age, gender and ethnicity	Age - Mean (SD): Intervention: 33 (2); Control: 35 (2). Gender (M:F): 21:14. Ethnicity: Not reported
Further population details	1. Older people aged 75 years and over: Aged under 75 (Aged 18-60). 2. People with diabetes: CKD and diabetes
Extra comments	Mean duration of diabetes: Intervention 21 years. Control 22 years
Indirectness of population	No indirectness
Interventions	 (n=20) Intervention 1: Low protein diet - Low protein diet (0.6 - 0.8g/kg). 0.6g/kg/day Duration Mean 37 months (minimum 12 months). Concurrent medication/care: Diet also contained phosphorus 500-1000mg, sodium 2000mg and calcium 1000mg (supplemented with calcium carbonate). Standard multivitamin preparation. (n=15) Intervention 2: Higher protein diet - Higher protein diet (greater than 0.8g/kg). Greater than or equal to 1g/kg/day. Duration Mean 31 months (minimum 12 months). Concurrent medication/care: Diet also contained
Funding	sodium 2000mg and at least 1000mg of phosphorus. Standard multivitamin preparation. Academic or government funding

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: LOW PROTEIN DIET (0.6 - 0.8G/KG) versus HIGHER PROTEIN DIET (GREATER THAN 0.8G/KG)

Protocol outcome 1: Progression of CKD (measured by change in GFR) (Critical) at 1 year minimum - Actual outcome: GFR (iothalamate clearance) at Mean 35 months; Risk of bias: ; Indirectness of outcome: No indirectness

Protocol outcome 2: Compliance (measured by actual protein intake) (Important) at 1 year minimum

- Actual outcome: Actual protein intake (calculated from urinary excretion of urea nitrogen) at Mean 37 months; Group 1: mean 0.72 g/kg/day (SD 0.06); n=20, Group 2: mean 1.08 g/kg/day (SD 0.1); n=13; Risk of bias: ; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study Cause and cardiovascular) (Critical) at 1 year minimum; Nutritional status (measured by subjective global assessment) (Important) at 1 year minimum; Nutritional status (measured by change in BMI) (Important) at 1 year minimum;

ועמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטדא

Study	Zeller 1991 ⁷³⁹
tudy	
	Quality of life (Critical) at 1 year minimum
alf management	
Self-management	
Study	Barrett 2011 ⁶⁰
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=474)
Countries and setting	Conducted in Canada; Setting: Community (only 4% receiving nephrology care)
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: Median 742 days (614 to 854 days)
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Documented CKD; eGFR 25 to 60 ml/min/1.73m2
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Aged 40 to 75 yrs and had documented CKD with an estimated GFR (eGFR) between 25 and 60 ml/min/1.73m2
Exclusion criteria	Likely to die within 6 months; recently unstable/advanced cardiovascular disease, current treatment for malignance
	receiving immunotherapy for kidney disease; on dialysis or with an organ transplant either currently or within 6
	months; already enrolled in a disease management program for kidney disease or cardiovascular disease or anothe interventional clinical trial; or resident of a location too distant to attend study visits
Recruitment/selection of patients	Patients with elevated serum creatinine levels identified by community laboratories, and their family physicians we
Netratinent/selection of patients	then asked to consider referring the patient to the study.
Age, gender and ethnicity	Age - Median (IQR): Intervention: 67 (62, 72); control: 67 (61, 72). Gender (M:F): 211:263. Ethnicity: 94% Caucasian
Further population details	1. Older people aged 75 or over: 2. People from BME gps: 3. People with diabetes:
Indirectness of population	No indirectness
Interventions	(n=238) Intervention 1: Self management support system. Nurse-coordinated care focusing on risk factor

	modification. The nurse followed medical protocols and worked in close collaboration with a nephrologist. Additional clinical care delivered by a study nurse and nephrologist guided by protocols aimed at achieving the prespecified targets but focused on the needs of the individual. Most intervention-group patients were seen for additional interim study visits to address identified clinical issues. There was emphasis on patient self-management and working collaboratively Duration Median 742 days (614 to 854 days). Concurrent medication/care: Plus usual care. This meant care delivered by a family doctor providing assessments and treatments for their parents as they saw fit. The family doctors could consult specialists or involve allied health personnel if necessary. (n=236) Intervention 2: Usual care. This means care delivered by a family doctor providing assessments and treatments for their parents as they saw fit. The family doctors could consult specialists or involve allied health personnel if necessary. Unation Median 742 days (614 to 854 days). Concurrent medication/care: Not stated
Funding	Other (Canadian Institutes for Health Research, Kidney Foundation of Canada, Heart and Stroke Foundation of Canada, Canadian Diabetes Association; Amgen Canada, Ortho Biotech, Merck Frosst Canada)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: SELF MANAGEMENT SUPPORT SYSTEM versus USUAL CARE

Protocol outcome 1: Mortality (all cause and cardiovascular) (Critical) at At stated in paper

- Actual outcome: All cause death at 24 months ; Group 1: 7/238, Group 2: 2/236; Risk of bias: Low; Indirectness of outcome: No indirectness
- Actual outcome: Cardiovascular death at 24 months; Group 1: 2/238, Group 2: 2/236; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Important) at At stated in paper - Actual outcome: Dialysis at 24 months ; Group 1: 2/238, Group 2: 1/236; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 3: Progression of CKD (change in eGFR) (Important) at At stated in paper

- Actual outcome: Progression of CKD (eGFR declined by 4ml/min/1.73m2 or more) at 20 months of follow-up; Group 1: 28/165, Group 2: 23/165; Risk of bias: High; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Hospitalisation (Important) at At stated in paper; Adherence to treatment at At stated in paper; Outpatient
	attendance at At stated in paper; Health related quality of life (Important) at At stated in paper

ועמרוסדומו כוודווכמו שמומפוודופ כפדונרפ

ZUT4

Study	Chen 2011 ¹¹⁵
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=54)
Countries and setting	Conducted in Taiwan; Setting: Nephrology outpatient dept
Line of therapy	Adjunctive to current care
Duration of study	Follow up (post intervention): 1 yr
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: National Kidney Federation classification
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Incidental CKD (stages III-V), an age 18-80 yrs and the ability to communicate in Taiwanese and Mandarin
Exclusion criteria	Cardiovascular disease in the last 3 mths, infections requiring admission in the previous 3 mths, uncontrolled hypertension, serum albumin level > 2.5 g/dL
Age, gender and ethnicity	Age - Mean (SD): Self management 67.93 (12.87) Control 68.39 (12.08). Gender (M:F): 15:12 for both gps. Ethnicity: Taiwanese
Further population details	 Older people aged 75 or over: Mixed (18-80 yrs). People from BME gps: People from BME gps (Taiwanese). People with diabetes: People with diabetes (>50% diabetes).
Extra comments	Incidental predialysis CKD patients 2008. Education 70% junior high school, hypertension 56%. eGFR ml/min 1.73 m-2 25 (SD13.93), CKD status III 35%, IV 28%, V 37%
Indirectness of population	No indirectness
Interventions	(n=27) Intervention 1: Usual care. Care from a nephrologist. Instructed patients regarding renal function, evaluation of lab data and clinical indicators of chronic renal failure as well as strategies for its management and treatment. Duration 12 mths. Concurrent medication/care: None stated
	(n=27) Intervention 2: Self management support system. Provision of information, reinforced learning incentives and encouraged self care and maintainenance of the therapeutic regimen. Support from MDT including nurses, dieticians, peers and volunteers. Program included the provision of health information, patient education, telephone-based

	support and the aid of a support group. Individualised lectures of range of topics e.g., renal health. Patient education monthyl one-to-one face-to-face meetings. Support gp twice a month. Biannual dietary counselling. Duration 12 months. Concurrent medication/care: None stated
Funding	Academic or government funding (Chang Gung Memorial Hospital)
Protocol outcome 1: Mortality (all cause and cau - Actual outcome: No hospitalised at 12 mths; G	roup 1: 5/27, Group 2: 12/27; Risk of bias: High; Indirectness of outcome: No indirectness
- Actual outcome: Mortality (all cause) at 12 mt	hs; Group 1: 0/27, Group 2: 1/27; Risk of bias: High; Indirectness of outcome: No indirectness
Protocol outcome 2: Progression of CKD (change - Actual outcome: Final eGFR at 12 mths; Group High; Indirectness of outcome: No indirectness	e in eGFR) (Important) at At stated in paper o 1: mean 29.11 ml/min 1.73 m-2 (SD 20.61); n=27, Group 2: mean 15.72 ml/min 1.73 m-2 (SD 10.67); n=27; Risk of bias:
Protocol outcomes not reported by the study	Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Important) at At stated in paper; Hospitalisation (Important) at At stated in paper; Adherence to treatment at At stated in paper; Outpatient

attendance at At stated in paper; Health related quality of life (Important) at At stated in paper

Study	Mukoro 2012 ⁴⁶⁰
Study type	Non randomised study
Number of studies (number of participants)	1 (n=365)
Countries and setting	Conducted in United Kingdom; Setting: Secondary care
Line of therapy	Unclear
Duration of study	Intervention time: 71% used it for >1 year
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Two-thirds of respondents have had a form of renal replacement therapy (RRT), including kidney transplantation (45%), haemodialysis (13%) and peritoneal dialysis (8%). Nearly all participants who were not RRT patients reported having functioning kidneys, although 3% were in conservative care pathway.
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Define
Exclusion criteria	Define
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Other: More than 70% of respondents were 26 to 65 yrs, with the majority (39%) in the 51 to 65 yr age gp Gender (M:F): 60:40. Ethnicity: 87% British White
Further population details	1. Older people aged 75 or over: 2. People from BME gps: 3. People with diabetes:
Extra comments	Some patient were on dialysis
Indirectness of population	No indirectness
Interventions	(n=365) Intervention 1: Self management support system. Renal Patient View: Secure internet based system that enables kidney patients to view their live test results online and obtain information about their kidney disease Duration >1 year. Concurrent medication/care: Not stated
Funding	

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: SELF MANAGEMENT SUPPORT SYSTEM [INTERVENTION 1] ONLY

Protocol outcome 1: Health related quality of life (Important) at At stated in paper

- Actual outcome: Makes me feel more in control of my medical care (strongly agree or agree) at >1 year; Group 1: 226/257, Risk of bias:; Indirectness of outcome:	
No indirectness	

- Actual outcome: Gives me better understanding of my renal disease (strongly agree or agree) at >1 year; Group 1: 229/257, Risk of bias: ; Indirectness of outcome: No indirectness

- Actual outcome: Helps me communicate better with my doctor (strongly agree or agree) at >1 year; Group 1: 203/257, Risk of bias: ; Indirectness of outcome: No indirectness

- Actual outcome: Helps me to be more involved in decisions about my care (strongly agree or agree) at >1 year; Group 1: 193/257, Risk of bias: ; Indirectness of outcome: No indirectness

- Actual outcome: Reassures me about my treatment (strongly agree or agree) at >1 year; Group 1: 198/257, Risk of bias: ; Indirectness of outcome: No indirectness

- Actual outcome: The forum is a good place for learning from others (strongly agree or agree) at >1 year; Group 1: 63/103, Risk of bias: ; Indirectness of outcome: No indirectness

- Actual outcome: The forum has helped me to learn about symptom(s) I experienced (strongly agree or agree) at >1 year; Group 1: 46/103, Risk of bias: ; Indirectness of outcome: No indirectness

- Actual outcome: The forum is helping me cope better with problems in my life (strongly agree or agree) at >1 year; Group 1: 33/103, Risk of bias: ; Indirectness of outcome: No indirectness

- Actual outcome: The forum is a good place of social support (strongly agree or agree) at >1 year; Group 1: 49/103, Risk of bias: ; Indirectness of outcome: No indirectness

- Actual outcome: The forum has helped me to find ways of reducing treatment side effects (strongly agree or agree) at >1 year; Group 1: 28/103, Risk of bias: ; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the studyProgression of CKD (measured by occurrence of end stage renal disease needing RRT) (Important) at At stated in
paper; Progression of CKD (change in eGFR) (Important) at At stated in paper; Hospitalisation (Important) at At stated
in paper; Adherence to treatment at At stated in paper; Outpatient attendance at At stated in paper; Mortality (all
cause and cardiovascular) (Critical) at At stated in paper

Study	Williams 2012 ⁷²⁰
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=75)
Countries and setting	Conducted in Australia; Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention + follow up: 12 mths
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: urine microalbumin/creatinine ratios 2-6020 mg/mmol
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	People age ≥ 18 yrs of age who comprehended English, who were mentally competent, who had Type 1 or Type 2 diabetes and CKD estimated by a Modified Diet in Renal Disease eGFR > 15 (≤ 60 ml/min/1.73m ²) or diabetic kidney disease (microalbumin/creatinine rations > 2.0 mg/mmol for men, > 3.5 mg/mmol for women), a systolic hypertension ≥ 130 mmHg treated with prescribed hypertensive medication
Exclusion criteria	If they lived more than 50 km from the city centre, were pregnant or had received a new diagnosis of cancer
Age, gender and ethnicity	Age - Mean (SD): intervention 68 (8.3) control 66 (10.8). Gender (M:F): Intervention and control 56%. Ethnicity: Country of birth Australia 36%
Further population details	1. Older people aged 75 or over: Mixed 2. People from BME gps: Not applicable / Not stated / Unclear 3. People with diabetes: People with diabetes
Extra comments	Note: n=1389 assessed for eligibility
Indirectness of population	No indirectness
Interventions	(n=39) Intervention 1: Self management support system. Self monitoring of blood pressureIndividualised medication review20 min Digital Versatile Disc (DVD)Fortnightly motivational interviewing follow-up telephone contact For 12 wks to support blood pressure control and optimal medication self-managementDelivered by an intervention nurse with renal specialist and doctoral qualifications trained in motivational interviewing. Duration 3 mths. Concurrent medication/care: Not stated

	(n=41) Intervention 2: Usual care. Received standard care offered to patients with co-existing diabetes and CKD attending the diabetes and nephrology outpatients' clinics at hospital. Blood pressure control was the most important aspect of standard care and care was dependent on the patients' individual circumstances and morbidity. Duration 12 mths (standard care). Concurrent medication/care: Not stated
Funding	Academic or government funding

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: SELF MANAGEMENT SUPPORT SYSTEM versus USUAL CARE

Protocol outcome 1: Progression of CKD (change in eGFR) (Important) at At stated in paper

- Actual outcome: Final value eGFR at 3 mths; Other: 48 (95%Cl 35 to 60.5) (Median (IQR)); Risk of bias: High; Indirectness of outcome: No indirectness

- Actual outcome: Final value eGFR at 12 mths; Other: 48 (95%CI 38 to 76) (Median (IQR)); Risk of bias: High; Indirectness of outcome: No indirectness

Protocol outcome 2: Adherence to treatment at At stated in paper

- Actual outcome: Adherence to medication at 12 months; Group 1: 24/36, Group 2: 25/39; Risk of bias: High; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Mortality (all cause and cardiovascular) (Critical) at At stated in paper; Progression of CKD (measured by occurrence of
	end stage renal disease needing RRT) (Important) at At stated in paper; Hospitalisation (Important) at At stated in
	paper; Outpatient attendance at At stated in paper; Health related quality of life (Important) at At stated in paper

Blood pressure - combined renin-angiotensin-aldosterone system antagonists Manonal cillical palaeline celle 2014

Table 83: Ahmad 1997

Study	Ahmad 1997 ²²
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=103)
Countries and setting	Conducted in India; Setting: Outpatient endocrinology clinic
Line of therapy	1st line
Duration of study	Intervention time: 5 years on treatment
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Albumin excretion rate
Stratum	CKD with diabetes: Type 2 diabetes + microalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Age 43-55; diabetes <15 years; no non-diabetic renal, systemic, cardiac or hepatic disease; BMI <27kg/m ² ; normal BP (less than or equal to 140.90mmHg); GFR >90ml/min; AER 20-200 microg/min or 2 consecutive visits without UTI
Exclusion criteria	None other
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): 49.6 (5.2) years. Gender (M:F): 60 men + 43 women. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: Mixed 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline mean (SD) range eGFR: enalapril 124 (12.2) 95-148 ml/min/1.73m ² ; placebo 124 (14.6) 92-149 ml/min/1.73m ²
Indirectness of population	No indirectness
Interventions	(n=52) Intervention 1: ACE inhibitors - Enalapril. Enalapril 10mg daily. Duration 5 years. Concurrent medication/care: 14 patients on diet alone; 29 oral antidiabetic agents; 9 insulin; normotensive, no other antihypertensive medication

Study	Ahmad 1997 ²²
	(n=51) Intervention 2: Placebo. placebo . Duration 5 years. Concurrent medication/care: 12 diet alone, 31 oral antidiabetic agents, 8 insulin; normotensive, no other antihypertensive agents
Funding	Academic or government funding (Department of Science and Technology, Government of India)
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ENALAPRIL versus PLACEBO Protocol outcome 1: Progression of CKD (change in eGFR) (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: GFR at 5 years; Group 1: mean 119 ml/min/1.73m ² (SD 12); n=46, Group 2: mean 119 ml/min/1.73m ² (SD 15.5); n=44; Risk of bias: Unclear; Indirectness of outcome: No indirectness Protocol outcome 2: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD with diabetes: AER (log transformed; geometric mean presented) at 5 years; Group 1: mean 20 microg/min (SD 59); n=46, Group 2: mean 85 microg/min (SD 90); n=44; Risk of bias: Unclear; Indirectness of outcome: No indirectness - Actual outcome for CKD with diabetes: Progression to clinical proteinuria (AER >200 microg/min) at 5 years; Group 1: 4/46, Group 2: 12/44; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 84: Ahmad 2003

Study	Ahmad 2003 ²³
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=73)

Study	Ahmad 2003 ²³
Countries and setting	Conducted in India; Setting: Endocrinology outpatients
Line of therapy	1st line
Duration of study	Intervention time: 5 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: AER 20-200 microg/min on two consecutive visits
Stratum	CKD with diabetes: Type 1 diabetes + microalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Age <40 years; diabetes 5-15 years; no evidence of non-diabetic renal, systemic, cardiac or hepatic disease; stable BMI for last 3 months; stable HbA1c <9% last 3 months; BP <140/90mmHg on no antihypertensive treatment; GFR >90ml/min; AER 20-200 microg on 2 visits twoconsecutive
Exclusion criteria	Pulmonary TB, CVA, UTI, microscopic haematuria, clinila proteinuria
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Enalapril: 31.3 (3.2); placebo 31.7 (3.8). Gender (M:F): 38 men + 35 women. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline mean (SD) range eGFR: enalapril 131 (15.3) 95-147 ml/min/1.73m ² ; placebo 130 (15.5) 97-155 ml/min/1.73m ²
Indirectness of population	No indirectness
Interventions	(n=37) Intervention 1: ACE inhibitors - Enalapril. Enalapril 10mg daily. Duration 5 years. Concurrent medication/care: Insulin mean dose 0.8 (0.2) IU/kg/24 hours; no antihypertensives
	(n=36) Intervention 2: Placebo. placebo. Duration 5 years. Concurrent medication/care: Insulin mean dose 0.8 (0.2) IU/kg/24 hours; no antihypertensives
Funding	Academic or government funding (Department of Science and Technology, India)

Ahmad 2003²³

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ENALAPRIL versus PLACEBO

Protocol outcome 1: Progression of CKD (change in eGFR) (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: GFR at 5 years; Group 1: mean 126 ml/min/1.73m² (SD 15); n=37, Group 2: mean 121 ml/min/1.73m² (SD 20.1); n=36; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcome 2: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD with diabetes: AER (geometric mean) at 5 years; Group 1: mean 33 mg/24 hours (SD 31.5); n=37, Group 2: mean 215 mg/24 hours (SD 212.6); n=36; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Progression to overt nephropathy at 5 years; Group 1: 3/37, Group 2: 11/36; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months
	minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12
	months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months
	minimum; Health related quality of life (Important) at 12 months minimum

Table 85: Anand 2009

Study	Anand 2009 ³⁴
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=Total 5010; CKD subgroup 2890)
Countries and setting	Conducted in USA; Setting: Not stated
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: Mean duration 23 months (range 0-38 months)
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: GFR < 60ml/min/1.73m ²
Stratum	Overall: Whole trial was patients with heart failure; CKD subgroup reported here

ואמרוסדומו כוונדוכמו פתומפוונופ כפנורג פ

ZUT4

Study	Anand 2009 ³⁴
Subgroup analysis within study	Post-hoc subgroup analysis: CKD patients
Inclusion criteria	Stable symptomatic heart failure, on HF therapy, LVEF <40%, LV internal diameter in diastole adjusted for body surface area 2.9cm/m ² or more; GFR <60ml/min/1.73m ²
Exclusion criteria	Systolic BP <90mmHg; serum creatinine >2.5 mg/dL
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): CKD no proteinuria: 66 (9) years; CKD + proteinuria: 65 (10). Gender (M:F): 88% male. Ethnicity: 89% white
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline mean (SD) eGFR: CKD and proteinuria: 46 (10) ml/min/1.73m ² ; CKD no proteinuria: 48 (9) ml/min/1.73m ²
Indirectness of population	No indirectness
Interventions	(n=1476) Intervention 1: Angiotensin-II receptor blockers - Valsartan. Valsartan initially 40mg twice daily, doubled every 2 weeks to reach target dose of 160mg twice daily provided systloic BP not below 90mmHg, no signs or symptoms of hypotension and serum creatinine did not exceed 150% of baseline value. Duration Mean 23 months (range 0-38 months). Concurrent medication/care: ACE inhibitors around 92%; beta blockers around 34%; diuretics around 90%; digoxin around 65%; spironolactone around 7% (not shown by intervention/control group) (n=1440) Intervention 2: Placebo. placebo. Duration mean 23 months (range 0-38 months). Concurrent
	medication/care: ACE inhibitors around 92%; beta blockers around 34%; diuretics around 90%; digoxin around 65%; spironolactone around 7% (not shown by intervention/control group)
Funding	Study funded by industry (Novartis Pharmaceuticals AG, Basel, Switzerland)

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum

Study	Anand 2009 ³⁴
- Actual outcome: Mortality at Mean follow up 2	23 months; HR 1.01 (95%CI 0.85 to 1.2) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness
Protocol outcomes not reported by the study	Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 86: Anon 1997

Study (subsidiary papers)	Anon 1997 ² (Ruggenenti 1999 ⁵⁹⁴)
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=352)
Countries and setting	Conducted in Italy; Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: Stratum 1: 31 months; Stratum 2: 16 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary protein excretion
Stratum	CKD without diabetes: Proteinuria 3g/24 hours or more; no diabetes
Subgroup analysis within study	Stratified then randomised: Proteinuria 3g/24 hours or more
Inclusion criteria	Normotensive (BP ,140/90mmHg without antihypertensive therapy) or hypertensive; 18-70 years; chronic nephropathy (creatinine clearance 20-70ml/min/1.73m ² ; variation <30% in last 3 months) and persistent proteinuria (urinary protein excretion >1g/24 hours for at least 3 months without UTI or overt heart failure); no ACE inhibitors in last 2 months; serum potassium 3.5-5.0mmol/L; compliance >80% in run-in phase
Exclusion criteria	Steroids, NSAIDs or immunosuppressive drugs; acute MI or CVA in last 6 months; severe uncontrolled hypertension (diastolic BP 115mmHg or more and/or systolic BP 220mmHg or more); renovascular disease; obstructive uropathy; IDDM; collagen disease, cancer, raised serum aminotransferase; chronic cough; drug or alcohol abuse; pregnancy;

Study (subsidiary papers)	Anon 1997 ² (Ruggenenti 1999 ⁵⁹⁴)
	breastfeeding; ineffective contraception
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Stratum 1: ramipril 49.1 (1.3); placebo 50.3 (1.5); Stratum 2: ramipril 48.9 (13.6); placebo 49.7 (13.6). Gender (M:F): 130/166 (78%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria : Mixed (Stratum 1: 1-2.9g/24 hours; stratum 2: 3g/24 hours or more).
Extra comments	Baseline measured GFR: ramipril 40.2 (19.0) ml/min/1.73m ² ; placebo 37.4 (17.5) ml/min/1.73m ²
Indirectness of population	No indirectness
Interventions	(n=177) Intervention 1: ACE inhibitors - Ramipril. Ramipril 1.25mg, increased every 2 weeks until diastolic BP <90mmHg. Duration 16 months. Concurrent medication/care: In patients already on antihypertensives, study drug increased and other drug decreased to minimum dose. Antihypertensives (other than ACE inhibitors ACE inhibitors and ARBs) could be introduced and doses adjusted to achieve and maintain diastolic BP <90mmHg Comments: 99 Stratum 1; 78 Stratum 2
	(n=175) Intervention 2: Placebo. Placebo. Duration 16 months. Concurrent medication/care: In patients already on antihypertensives, study drug increased and other drug decreased to minimum dose. Antihypertensives (other than ACEI and ARBs) could be introduced and doses adjusted to achieve and maintain diastolic BP <90mmHg Comments: 87 Stratum 1 + 88 Stratum 2
Funding	Study funded by industry (Hoechst Marion Roussel Clinical Research Institute, Frankfurt am Main, Germany)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: RAMIPRIL versus PLACEBO

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum

- Actual outcome for CKD without diabetes: All-cause mortality (Stratum 2) at 16 months; Group 1: 2/78, Group 2: 1/88; Risk of bias: Low; Indirectness of outcome: No indirectness

Anon 1997² (Ruggenenti 1999⁵⁹⁴)

- Actual outcome for CKD without diabetes: Sudden death (Stratum 1) at 31 months; Group 1: 1/99, Group 2: 0/87; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Cardiovascular events (Critical) at 12 months minimum

- Actual outcome for CKD without diabetes: Non-fatal cardiovascular events (Stratum 2) at 16 months; Group 1: 4/78, Group 2: 3/88; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD without diabetes: Non-fatal CV events (Stratum 1) at 31 months; Group 1: 2/99, Group 2: 3/87; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 3: Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum

- Actual outcome for CKD without diabetes: Doubling serum creatinine or ESRD at 36 months; HR 0.54 (95%CI 0.32 to 0.92) Calculated – from Kaplan Meier curve; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD without diabetes: ESRD (dialysis or transplant) Stratum 1 at 31 months; HR 0.35 (95%CI 0.16 to 0.78) Calculated – from Kaplan Meier curve; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD without diabetes: GFR <45 ESRD (dialysis or transplant) Stratum 1 at 31 months; HR 0.39 (95%Cl 0.16 to 0.94) Calculated – from Kaplan Meier curve; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 4: Progression of CKD (change in eGFR) (Critical) at 12 months minimum

- Actual outcome for CKD without diabetes: Rate of GFR decline (stratum 2) at 16 months; Group 1: mean 0.53 ml/min/month (SD 0.6); n=56, Group 2: mean 0.88 ml/min/month (SD 1.01); n=61; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD without diabetes: Change in GFR per month (Stratum 1) at 31 months; Group 1: mean -0.26 ml/min/1.73m²/month (SD 0.5); n=99, Group 2: mean -0.29 ml/min/1.73m²/month (SD 0.6); n=87; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 5: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD without diabetes: Progression to macroalbuminuria (Stratum 1) at 31 months; Group 1: 15/99, Group 2: 27/87; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health
	related quality of life (Important) at 12 months minimum

Table 87: Anon 2001

Study	Anon 2001 ⁴
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=36)
Countries and setting	Conducted in Italy, United Kingdom; Setting: Diabetic and renal centres
Line of therapy	1st line
Duration of study	Intervention time: 3 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: AER 30-1500microg/min
Stratum	CKD with diabetes: Type 1 diabetes + AER 30-1500 microg/min
Subgroup analysis within study	Not applicable
Inclusion criteria	18-65 years; typ1 diabetes; AER 30-1500microg/min; GFR >70ml/min; serum creatinine <130 micromol/l; BP 150/90mmHg or less on no antihypertensive treatment; agreed to renal biopsy; compliance at least 85% during baseline period
Exclusion criteria	HbA1c >6SDs above local normal range; antihypertensive or NSAID therapy; hyperkalaemia, other renal or urinary tract disease, liver disease, recent CVA or cardiac disease; pregnancy, contraindication to renal biopsy
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (range): 38 (20-64). Gender (M:F): 24 male + 12 female. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline mean (range) eGFR: 103 (62-162) ml/min/1.73m ²
Indirectness of population	No indirectness
Interventions	(n=18) Intervention 1: ACE inhibitors - Enalapril. Enalapril 10mg once daily. Duration 3 years. Concurrent medication/care: No other antihypertensives
	(n=18) Intervention 2: Placebo. placebo. Duration 3 years. Concurrent medication/care: No other antihypertensives

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Chronic kidney disease Clinical evidence tables

Study	Anon 2001 ⁴
Funding	Other (Northern Regional Health Authority, British Diabetic Association adn Merck, Sharp and Dohme, Herts UK)
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ENALAPRIL versus PLACEBO Protocol outcome 1: Progression of CKD (change in eGFR) (Critical) at 12 months minimum • Actual outcome for CKD with diabetes: GFR rate of decline at 3 years; Other: 4.1 (95%Cl 2.6 to 5.6) (Annual rate of decline of GFR); Risk of bias: Low; Indirectness of putcome: No indirectness	
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 88: Arai 2008

Study	Arai 2008 ³⁸
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=80)
Countries and setting	Conducted in Japan; Setting: Outpatient clinics
Line of therapy	Unclear
Duration of study	Intervention time: 12 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion
Stratum	CKD with diabetes: Type 2 diabetes + hypertension + microalbuminuria
Subgroup analysis within study	Not applicable

Study	Arai 2008 ³⁸
Inclusion criteria	Type 2 diabetes (on diet and exercise therapy), hypertension (BP 140/90mmHg or higher), early (stage 2) nephropath defined as 30-299mg urinary albumin/24 hours
Exclusion criteria	None other
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Telmisartan 74.3 (4.4), valsartan 73.6 (5.0), candesartan 73.3 (5.5), losartan 72.6 (4.7). Gender (M:F) 40/80 (50%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline GFR not stated; baseline UAER candesartan: 82.3 (17.1) mg/d; losartan: 80.8 (19.2) mg/d; telmisartan 81.4 (18.3) mg/d; valsartan 80.0 (17.2) mg/d
Indirectness of population	No indirectness
Interventions	(n=20) Intervention 1: Angiotensin-II receptor blockers - Candesartan. Candesartan mean dose 10.2 (2.0) mg daily. Duration 12 months. Concurrent medication/care: 3/20 (15%) on statins
	(n=20) Intervention 2: Angiotensin-II receptor blockers - Losartan. Losartan mean dose 71.3 (21.9) mg daily. Duration 12 months. Concurrent medication/care: 2/20 (10%) on statins
	(n=20) Intervention 3: Angiotensin-II receptor blockers - Telmisartan. Telmisartan mean dose 48.0 (16.4) mg daily. Duration 12 months. Concurrent medication/care: 2/20 (10%) on statins
	(n=20) Intervention 4: Angiotensin-II receptor blockers - Valsartan. Valsartan mean dose 116.0 (40.8) mg daily. Duration 12 months. Concurrent medication/care: 1/20 (5%) on statins
Funding	Funding not stated

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: CANDESARTAN versus LOSARTAN

Study	Arai 2008 ³⁸
Protocol outcome 1: Change in proteinuria (AC	CR, PCR or 24 hour urinary protein) (Important) at 12 months minimum
- Actual outcome for CKD with diabetes: Urinary albumin excretion at 12 months; Group 1: mean 81.2 mg/d (SD 33.4); n=20, Group 2: mean 74.2 mg/d (SD 31.5); n=20; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
RESULTS (NUMBERS ANALYSED) AND RISK OF E	BIAS FOR COMPARISON: CANDESARTAN versus TELMISARTAN
Protocol outcome 1: Change in proteinuria (AC	CR, PCR or 24 hour urinary protein) (Important) at 12 months minimum
- Actual outcome for CKD with diabetes: Urinar	ry albumin excretion at 12 months; Group 1: mean 81.2 mg/d (SD 33.4); n=20, Group 2: mean 57.2 mg/d (SD 27.1); n=20;
Risk of bias: Unclear; Indirectness of outcome:	No indirectness
RESULTS (NUMBERS ANALYSED) AND RISK OF E	BIAS FOR COMPARISON: CANDESARTAN versus VALSARTAN
Protocol outcome 1: Change in proteinuria (AC	CR, PCR or 24 hour urinary protein) (Important) at 12 months minimum
- Actual outcome for CKD with diabetes: Urinar Risk of bias: Unclear; Indirectness of outcome:	ry albumin excretion at 12 months; Group 1: mean 81.2 mg/d (SD 33.4); n=20, Group 2: mean 66 mg/d (SD 27.7); n=20; No indirectness
RESULTS (NUMBERS ANALYSED) AND RISK OF E	BIAS FOR COMPARISON: LOSARTAN versus TELMISARTAN
Protocol outcome 1: Change in proteinuria (AC	CR, PCR or 24 hour urinary protein) (Important) at 12 months minimum
- Actual outcome for CKD with diabetes: Urinar	ry albumin excretion at 12 months; Group 1: mean 74.2 mg/d (SD 31.5); n=20, Group 2: mean 57.2 mg/d (SD 27.1); n=20;
Risk of bias: Unclear; Indirectness of outcome:	No indirectness
RESULTS (NUMBERS ANALYSED) AND RISK OF E	BIAS FOR COMPARISON: LOSARTAN versus VALSARTAN
Protocol outcome 1: Change in proteinuria (AC	CR, PCR or 24 hour urinary protein) (Important) at 12 months minimum
- Actual outcome for CKD with diabetes: Urinar	ry albumin excretion at 12 months; Group 2: mean 66 mg/d (SD 27.7); n=20; Risk of bias: Unclear; Indirectness of

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: TELMISARTAN versus VALSARTAN

outcome: No indirectness

Study	Arai 2008 ³⁸
Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD with diabetes: Urinary albumin excretion at 12 months; Group 1: mean 57.2 mg/d (SD 27.1); n=20, Group 2: mean 66 mg/d (SD 27.7); n=20; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 89: Bakris 2008

Study	Bakris 2008 ⁵²
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=860)
Countries and setting	Conducted in Multiple countries; Setting: Outpatient centres
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 12 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary protein: creatinine ratio
Stratum	CKD with diabetes: Type 2 diabetes and hypertension and macroalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Age 21-80 years; type 2 diabetes; HbA1c 10% or below; serum creatinine 3mg/dl or less for women or 3.2mg/dL or less for men; first morning spot urinary protein to creatinine (UPC) 700mg/g or more; BP 130/80mmHg or more or on antihypertensives
Exclusion criteria	Pregnant, nursing, surgically sterile and not using effective contraception; >35% increase in serum creatinine during

Study	Bakris 2008 ⁵²
	washout or serum potassium >5meq; non-diabetic renal disease; clincially significant heart disease, stroke, renal artery stenosis, hepatic dysfunction, electrolyte imbalance; hypersensitivity to study drugs; on chronic immunosuppression
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Telmisartan 60 (9.2); losartan 60.5 (9.4) years. Gender (M:F): 62.2% male. Ethnicity: 47% Caucasian, 12% Black, 41% Asian
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline mean (SD) eGFR: telmisartan: 49.5 (21.6) ml/min/1.73m ² ; losartan: 49.6 (22.4) ml/min/1.73m ²
Indirectness of population	No indirectness
Interventions	(n=419) Intervention 1: Angiotensin-II receptor blockers - Telmisartan. Telmisartan 40mg once daily for 2 weeks then 80mg daily. Duration 12 months. Concurrent medication/care: Additional antihypertensives excluding ARBs, ACEIs or direct vasodilators could be given following forced titration to achieve BP target of <130/80mmHg
	(n=441) Intervention 2: Angiotensin-II receptor blockers - Losartan. Losartan 50mg daily for first 2 weeks then 100mg daily. Duration 12 months. Concurrent medication/care: Additional antihypertensives excluding ARBs, ACEIs or direct vasodilators could be given following forced titration to achieve BP target of <130/80mmHg
Funding	Funding not stated

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: TELMISARTAN versus LOSARTAN

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: All-cause mortality at 12 months; Group 1: 2/419, Group 2: 13/441; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Cardiovascular events (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: Cardiovascular morbidity or mortality at 12 months; Group 1: 21/419, Group 2: 37/441; Risk of bias: Low; Indirectness of

Study Bakris 2008⁵² outcome: No indirectness Protocol outcome 3: Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: Doubling serum creatinine, ESRD or all-cause mortality at 12 months; Risk of bias: Low; Indirectness of outcome: No indirectness Protocol outcome 4: Progression of CKD (change in eGFR) (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: Change in eGFR at 12 months; Group 1: mean -6.49 ml/min/1.73m² (SD 1.1); n=419, Group 2: mean -6.5 ml/min/1.73m² (SD 1.1); n=441; Risk of bias: Low; Indirectness of outcome: No indirectness Protocol outcome 5: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD with diabetes: Urinary albumin to creatinine ratio at 12 months; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health
	related quality of life (Important) at 12 months minimum

Table 90: Barnett 2004

Study	Barnett 2004 ⁵⁹
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=250)
Countries and setting	Conducted in Multiple countries; Setting: Outpatient centres
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 5 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion rate
Stratum	CKD with diabetes: Type 2 diabetes + HT + albuminuria

Study	Barnett 2004 ⁵⁹
Subgroup analysis within study	Not applicable
Inclusion criteria	White or Asian; 35-80 years; type 2 diabetes treated by diet, diet + oral antidiabetic drugs (at least 1 year) or diet + insulin (at least 1 year; if on insulin, diabetes diagnosed after age 40 and BMI >25kg/m ² at diagnosis); hypertension (BP <185/95mmHg after at least 3 months of ACEI; normal renal morphology; UAER 11-999microg/min; HbA1c<12%; serum creatinine <1.6mg/dL; GFR >70ml/min/1.73m ²
Exclusion criteria	Any condition other than cardiovascular disease that could restrict long-term survival and known allergy to study drugs or iohexol
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Telmisartan 61.2 (8.5); enalapril 60 (9.1). Gender (M:F): 182/250 (73%) male. Ethnicity: 98.4% white
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline measured mean (SD) GFR: telmisartan 91.4 (21.5) ml/min/1.73m ² ; enalapril 94.3 (22.1) ml/min/1.73m ²
Indirectness of population	No indirectness
Interventions	(n=120) Intervention 1: Angiotensin-II receptor blockers - Telmisartan. Telmisartan 40mg once daily with forced titration after 4 weeks to 80mg once daily. Duration 5 years. Concurrent medication/care: 1 month screening period: patients received antihypertensive medication including ACEI; then this medication stopped and patients randomised; additional antihypertensive medication (not ACEI or ARB) allowed after 2 months if resting BP >160/100mmHg; initial target BP <160/90mmHg but lowered as guidelines changed during study; treatment of diabetes at investigator's discretion. During study: diuretics 52.5%, beta-blockers 39.2%, calcium channel blockers 45.8%, other antihypertensives 35%, aspirin 36.7%, statins 42.5%
	(n=130) Intervention 2: ACE inhibitors - Enalapril. Enalapril 10mg once daily with forced titration after 4 weeks to 20mg once daily. Duration 5 years. Concurrent medication/care: 1 month screening period: patients received antihypertensive medication including ACEI; then this medication stopped and patients randomised; additional antihypertensive medication (not ACEI or ARB) allowed after 2 months if resting BP >160/100mmHg; initial target BP <160/90mmHg but lowered as guidelines changed during study; treatment of diabetes at investigator's discretion. During study: diuretics 51.5%, beta-blockers 39.2%, calcium channel blockers 46.1%, other antihypertensives 35.4%,

Study	Barnett 2004 ⁵⁹
	aspirin 41.5%, statins 41.5%
Funding	Study funded by industry (Boehringer Ingelheim)
	IAS FOR COMPARISON: TELMISARTAN versus ENALAPRIL
Protocol outcome 1: Mortality (all-cause and ca	
	se mortality at 5 years; Group 1: 6/120, Group 2: 6/130; Risk of bias: Low; Indirectness of outcome: No indirectness vascular mortality at 5 years; Group 1: 3/120, Group 2: 2/130; Risk of bias: Low; Indirectness of outcome: No
Protocol outcome 2: Cardiovascular events (Crit	ical) at 12 months minimum
- Actual outcome for CKD with diabetes: Stroke at 5 years; Group 1: 6/120, Group 2: 6/130; Risk of bias: Low; Indirectness of outcome: No indirectness	
	ailure at 5 years; Group 1: 9/120, Group 2: 7/130; Risk of bias: Low; Indirectness of outcome: No indirectness rdial infarction at 5 years; Group 1: 9/120, Group 2: 6/130; Risk of bias: Low; Indirectness of outcome: No indirectness
Protocol outcome 3: Progression of CKD (change	e in eGFR) (Critical) at 12 months minimum
- Actual outcome for CKD with diabetes: Mean o	change in GFR at 5 years; Risk of bias: Low; Indirectness of outcome: No indirectness
Protocol outcome 4: Change in proteinuria (ACF	R, PCR or 24 hour urinary protein) (Important) at 12 months minimum
- Actual outcome for CKD with diabetes: Urinary	albumin excretion: ratio of final to baseline value at 5 years; Other: 1.04 (95%Cl 0.71 to 1.51) (Ratio of difference
between groups); Risk of bias: Low; Indirectnes	ss of outcome: No indirectness
Protocol outcomes not reported by the study	Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum;

Health related quality of life (Important) at 12 months minimum

Bilic 2011⁷⁸ Study Study type RCT (Patient randomised; Parallel) Number of studies (number of participants) 1 (n=71) Countries and setting Conducted in Croatia; Setting: Outpatient renal department Line of therapy Mixed line Duration of study Intervention time: 12 months Method of assessment of guideline condition Adequate method of assessment/diagnosis: Established by patient history, physical examination, urinalysis, serum biochemistry tests and renal biopsy CKD without diabetes: CKD; diabetes excluded Stratum Subgroup analysis within study Not applicable 18 to 60 years of age, nondiabetic nephropathy, and persistent proteinuria (>=0.5 g/day) for a minimum of 3 months Inclusion criteria after first visit, without evidence of urinary tract infection or heart failure. **Exclusion criteria** Treatment with nonsteroidal anti-inflammatory drugs, renal failure, acute myocardial infarction or stroke, severe uncontrolled hypertension, chronic pulmonary disease, evidence or suspician or renovascular disease, obstructive uropathy, diabetes mellitus, cancer, pregnancy, and infectious disease. Recruitment/selection of patients Consective renal patients were screened for inclusion between Feb 2001 and May 2003. Age, gender and ethnicity Age - Mean (SD): ACEI: 46.3 (16.4); ARB: 47.4 (16.9); ACE + ARB: 46.1 (18.3). Gender (M:F): Not reported. Ethnicity: Not stated 1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. Further population details People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria : . 4 week wash-out period in patients taking ACE inhibitors or ARB and 2 weeks in patients without antihypertensive Extra comments treatment. Baseline GFR not stated; baseline mean (SD) proteinuria: ramipril: 4.9 (6.5) g/d; valsartan: 3.7 (3.9) g/d; ramipril + valsartan: 5.5 (6.1) g/d Indirectness of population No indirectness

ועמרוסנומן כוונווכמו פתומפוונופ

רהווווה

ZUT4

Study	Bilic 2011 ⁷⁸
Interventions	(n=26) Intervention 1: ACE inhibitors and Angiotensin-II receptor blockers - Ramipril and Valsartan. 5 mg/day ramipril plus 80 mg/day valsartan. Duration 12 months. Concurrent medication/care: Urapidil (no details on dose reported); none of the patients were on calcium channel blockers
	(n=23) Intervention 2: ACE inhibitors - Ramipril. 5 mg/day (increased to 10mg/day in a few patients). Duration 12 months. Concurrent medication/care: Urapidil (no details provided on dose)
	(n=22) Intervention 3: Angiotensin-II receptor blockers - Valsartan. 80 mg/day (increased to 180 mg/day in a few patients). Duration 12 months. Concurrent medication/care: Urapidil (no detail on dose reported)
Funding	Academic or government funding (Supported by funds from the Scientific project of Ministry of science, education and sports Republic of Croatia)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: RAMIPRIL AND VALSARTAN versus RAMIPRIL

Protocol outcome 1: Progression of CKD (change in eGFR) (Critical) at 12 months minimum

- Actual outcome for CKD without diabetes: Creatinine clearance (ml/min) at 12 months; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcome 2: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD without diabetes: Proteinuria in 24-h urine sample at 12 months; Risk of bias: Unclear; Indirectness of outcome: No indirectness

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: RAMIPRIL AND VALSARTAN versus VALSARTAN

Protocol outcome 1: Progression of CKD (change in eGFR) (Critical) at 12 months minimum - Actual outcome for CKD without diabetes: Creatinine clearance (ml/min) at 12 months; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcome 2: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD without diabetes: Proteinuria in 24-h urine sample at 12 months; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Study	Bilic 2011 ⁷⁸	
- Actual outcome for CKD without diabetes: 12 hour sample at 6 months; Risk of bias: ; Indirectness of outcome: No indirectness		
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: RAMIPRIL versus VALSARTAN		
Protocol outcome 1: Progression of CKD (change	e in eGFR) (Critical) at 12 months minimum	
- Actual outcome for CKD without diabetes: Creatinine clearance (ml/min) at 12 months; Risk of bias: Unclear; Indirectness of outcome: No indirectness		
Protocol outcome 2: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum		
- Actual outcome for CKD without diabetes: Prot	teinuria in 24-h urine sample at 12 months; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months	

Table 92: Bojestig 2001

Study	Bojestig 2001 ⁸⁶
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=55)
Countries and setting	Conducted in Sweden; Setting: Outpatient centres
Line of therapy	1st line
Duration of study	Intervention time: 2 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion rate
Stratum	CKD with diabetes: Type 1 diabetes + microalbuminuria
Subgroup analysis within study	Not applicable

minimum; Health related quality of life (Important) at 12 months minimum

Churcher	Delection 2001 ⁸⁶
Study	Bojestig 2001 ⁸⁶
Inclusion criteria	Type 1 diabetes; normotensive (diastolic BP <90mmHg); microalbuminuria (UAER 20-200 microg/min in two of three urine collections)
Exclusion criteria	On antihypertensive drugs
Recruitment/selection of patients	Consecutively recruited
Age, gender and ethnicity	Age - Mean (SD): Ramipril 5mg: 39 (10), ramipril 1.25mg: 42 (10), placebo: 38 (9) . Gender (M:F): 41/55 (75%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline median (range) eGFR: ramipril 1.25mg: 100 (63-144) ml/min/1.73m ² ; ramipril 5mg: 100 (69-134) ml/min/1.73m ² ; placebo 108 (49-138) ml/min/1.73m ²
Indirectness of population	No indirectness
Interventions	(n=18) Intervention 1: ACE inhibitors - Ramipril. Ramipril 5mg once daily in the morning. Duration 2 years. Concurrent medication/care: No antihypertensives; other medication not stated
	(n=19) Intervention 2: ACE inhibitors - Ramipril. Ramipril 1.25mg once daily in the morning. Duration 2 years. Concurrent medication/care: No antihypertensives; other medication not stated
	(n=18) Intervention 3: Placebo. Placebo. Duration 2 years. Concurrent medication/care: No antihypertensives; other medication not stated
Funding	Study funded by industry (Hoechst AG, later Aventis Pharma)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: RAMIPRIL versus PLACEBO

Protocol outcome 1: Progression of CKD (change in eGFR) (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: GFR (ramipril 5mg) at 2 years; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: GFR (ramipril 1.25mg) at 2 years; Risk of bias: Low; Indirectness of outcome: No indirectness

2 7 S

Study	Bojestig 2001 ⁸⁶	
Protocol outcome 2: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD with diabetes: UAER (ramipril 5mg) at 2 years; Risk of bias: Low; Indirectness of outcome: No indirectness - Actual outcome for CKD with diabetes: UAER (ramipril 1.25mg) at 2 years; Risk of bias: Low; Indirectness of outcome: No indirectness		
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum	

Table 93: Brenner 2001

Study	Brenner 2001 ⁹³
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=1513)
Countries and setting	Conducted in Multiple countries; Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: Mean 3.4 years (range 2.3 to 4.6)
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin:creatinine ratio, urinary protein
Stratum	CKD with diabetes: Type 2 diabetes and macroalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Age 31-70 years; type 2 diabetes; nephropathy (on 2 occasions urinary albumin [mg/L] to creatinine [g/L] of at least 300 or urinary protein excretion rate of 0.5g/day and serum creatinine 1.3 to 3.0mg/dL [or lower limit 1.5 for males >60kg])
Exclusion criteria	Type 1 diabetes or non-diabetic renal disease including renal artery stenosis; MI or CABG in previous month; CVA or PTCA in previous 6 months; TIA in previous year; history of heart failure

Study	Brenner 2001 ⁹³
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Losartan 60 (7); placebo 60 (7). Gender (M:F): 63.2% male. Ethnicity: Asian 16.7%; Black 15.2%; White 48.6%; Hispanic 18.2%; Other 1.3%
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline GFR not stated; baseline median urinary albumin:creatinine ratio: losartan 1237; placebo 1261
Indirectness of population	No indirectness
Interventions	 (n=751) Intervention 1: Angiotensin-II receptor blockers - Losartan. Losartan initial dose 50mg once daily, increased to 100mg after 4 weeks if BP >140/90mmHg (71% received 100mg). Duration 3.4 years. Concurrent medication/care: During 6 week screening phase, patients continued antihypertensive drugs except ACEI and ARB replaced with diuretics, calcium channel antagonists, alpha- or beta-blockers, centrally acting agents or combination of these. Randomisation and dose titration of losartan at 4 weeks. After additional 8 weeks, further antihypertensives from these classes could be added if BP > 140/90mmHg. During study: diuretics 83.8%, calcium channel antagonists 77.9%, alpha-blockers 40.2%, beta-blockers 34.1%, centrally acting agents 18.0% (n=762) Intervention 2: Placebo. Placebo. Duration 3.4 years. Concurrent medication/care: During 6 week screening phase, patients continued antihypertensive drugs except ACEI and ARB replaced with diuretics, calcium channel antagonists, alpha- or beta-blockers 40.2%, beta-blockers 34.1%, centrally acting agents 18.0% (n=762) Intervention 2: Placebo. Placebo. Duration 3.4 years. Concurrent medication/care: During 6 week screening phase, patients continued antihypertensive drugs except ACEI and ARB replaced with diuretics, calcium channel antagonists, alpha- or beta-blockers, centrally acting agents or combination of these. Randomisation and dose titration at 4 weeks. After additional 8 weeks, further antihypertensives from these classes could be added if BP > 140/90mmHg. During study: diuretics 84.0%, calcium channel antagonists 81.1%, alpha-blockers 45.7%, beta-blockers 36.7%, centrally acting agents 21.7%
Funding	Study funded by industry (Merck and Company)
RESULTS (NUMBERS ANALYSED) AND RIS	K OF BIAS FOR COMPARISON: LOSARTAN versus PLACEBO

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum

Study	Brenner 2001 ⁹³	
- Actual outcome for CKD with diabetes: Mortali	ity at 3.4 years; Group 1: 158/748, Group 2: 155/762; Risk of bias: Low; Indirectness of outcome: No indirectness	
Protocol outcome 2: Cardiovascular events (Crit	ical) at 12 months minimum	
	- Actual outcome for CKD with diabetes: Fatal or non-fatal cardiovascular event (MI, stroke, first hospitalisation for heart failure or unstable angina, coronary or	
	ortality) at 3.4 years; Group 1: 247/748, Group 2: 268/762; Risk of bias: Low; Indirectness of outcome: No indirectness	
- Actual outcome for CKD with diabetes: Myoca indirectness	rdial infarction at 3.4 years; Group 1: 50/748, Group 2: 68/762; Risk of bias: Low; Indirectness of outcome: No	
Protocol outcome 3: Progression of CKD (measu	red by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum	
- Actual outcome for CKD with diabetes: ESRD (o	dialysis or transplant) at 3.4 years; HR 0.71 (95%Cl 0.57 to 0.89) Calculated – from Kaplan Meier curve; Risk of bias: Low;	
Indirectness of outcome: No indirectness		
Protocol outcome 4: Progression of CKD (change	e in eGER) (Critical) at 12 months minimum	
	ng of serum creatining at 3.4 years; HR 0.77 (95%Cl 0.62 to 0.95) Calculated – from Kaplan Meier curve; Risk of bias: ;	
Indirectness of outcome: No indirectness		
Protocol outcome 5: Hospitalisation (Important)		
- Actual outcome for CKD with diabetes: First hospitalisation for heart failure at 3.4 years; HR 0.67 (95%CI 0.51 to 0.88) Calculated – from Kaplan Meier curve; Risk of		
bias: Low; Indirectness of outcome: No indirectr	ness	
Protocol outcomes not reported by the study	Acute kidney injury (Critical) at 12 months minimum; Change in proteinuria (ACR, PCR or 24 hour urinary protein)	
	(Important) at 12 months minimum; Health related quality of life (Important) at 12 months minimum	

Table 94: Crepaldi 1998

Study	Crepaldi 1998 ¹⁴⁴
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=66)

Chudu	Crepaldi 1998 ¹⁴⁴
Study	
Countries and setting	Conducted in Italy; Setting: Outpatient centres
Line of therapy	Unclear
Duration of study	Intervention time: 3 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Albumin excretion rate
Stratum	CKD with diabetes: Type 1 diabetes + microalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	18-65 years; type 1 diabetes diagnosed <35 years; insulin within 3 years of diagnosis; HbA1c<11% and within 30% of entry value for past 12 months; standing systolic BP 115-140mmHg without anithypertensive drugs and diastolic 75-90mmHg; median AER 20-200 microg/min 3 times in previous year and 3 times within 2 weeks of entry; GFR 80ml/min/1.73m ²
Exclusion criteria	Impaired renal function (serum creatinine >10% above ULN and median AER >200microg/min); history of non-diabetic renal disease; haematuria; clinically significant liver or haematological disease; aortic or mitral valve obstruction; arrhythmia; unstable angina; MI in last 3 months; autonomic neuropathy; malignancy; hyperkalaemia (>5.5mmol/L); triglycerides >3.4mmol/L; total cholesterol >6.5mmol/L; familial lipid disorder; risk of transmitting AIDS/viral hepatitis; hypersensitivity/contraindications to study drugs; childbearing potential (oral contraceptives not allowed) or planning pregnancy; compliance <85% in run in period; antihypertensive drugs
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Lisinopril 38 (11); placebo 37 (10). Gender (M:F): 44/66 (67%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline mean (SD) measured GFR: lisinopril 122 (14) ml/min/1.73m ² ; placebo 107 (20) ml/min/1.73m ²
Indirectness of population	No indirectness
Interventions	(n=32) Intervention 1: ACE inhibitors - Lisinopril. Lisinopril 10mg once daily; doubled if systolic and diastolic BP not reduced by 5% of baseline values after 1 month. Duration 3 years. Concurrent medication/care: No baseline antihypertensives; if 3 months after randomisation systolic and diastolic BP not reduced by 5% of baseline values and standing BP >140/90mmHg on 2 consecutive visits on higher dose of study drug, atenolol 50mg once daily added. If BP

Study	Crepaldi 1998 ¹⁴⁴
	>140/90mmHg at any subsequent visit, atenolol doubled to 100mg once daily. If BP >160/90mmHg, patient withdrawn. Continued usual insulin.
	(n=34) Intervention 2: Placebo. Placebo. Duration 3 years. Concurrent medication/care: No baseline antihypertensives; if 3 months after randomisation systolic and diastolic BP not reduced by 5% of baseline values and standing BP >140/90mmHg on 2 consecutive visits on higher dose of study drug, atenolol 50mg once daily added. If BP >140/90mmHg at any subsequent visit, atenolol doubled to 100mg once daily. If BP >160/90mmHg, patient withdrawn. Continued usual insulin.
Funding	Funding not stated
·	D) AND RISK OF BIAS FOR COMPARISON: LISINOPRIL versus PLACEBO

Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD with diabetes: Progression to clinical albuminuria (AER >200microg/min) at 3 years; Group 1: 2/32, Group 2: 7/34; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: AER at 3 years; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Regression to normoalbuminuria (AER <20microg/min) at 3 years; Group 1: 4/30, Group 2: 1/28; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months
	minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12
	months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important)
	at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important)
	at 12 months minimum

Table 95: Fernandez 2013

Study	Fernandez 2013 ¹⁹⁹
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=133)
Countries and setting	Conducted in Spain; Setting: Outpatient centres
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 3 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urine protein-creatinine ratio
Stratum	CKD with diabetes: Type 2 diabetes + macroalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	>35 years; type 2 diabetes; diabetic nephropathy, stage 2 or 3 chronic kidney disease, urine protein-creatinine ratio >300mg/g on morning spot sample on 2 occasions; serum potassium <5.5mEq/L; HbA1c <10%; proteinuria with protein excretion <10g/24 hours; blood albumin >2g/dL; hypertension BP <180/95mmHg
Exclusion criteria	MI, stroke, heart failure, or myocardial revascularisation in last 3 months; any condition that could restrict long-term survival
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Lisinopril 68.7 (6.8); irbesartan 67.9 (8.0); lisinopril + irbesartan 63.0 (8.5): combination group significantly younger p<0.05. Gender (M:F): 75% male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline mean (SD) eGFR: lisinopril 48 (14) ml/min/1.73m ² ; irbesartan 46 (16) ml/min/1.73m ² ; lisinopril + irbesartan 50 (25) ml/min/1.73m ²
Indirectness of population	No indirectness
Interventions	(n=35) Intervention 1: ACE inhibitors - Lisinopril. Lisinopril 10mg once daily, titrated up to maximum 40mg after 8 weeks; 92% reached final recommended dose. Duration 32 months. Concurrent medication/care: 4-week washout

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Study	Fernandez 2013 ¹⁹⁹
	period: patients continued usual antihypertensive except ACEI or ARB replaced by alternative drugs. Received "standard of care" for diabetes.
	(n=28) Intervention 2: Angiotensin-II receptor blockers - Irbesartan. Irbesartan 150mg, titrated up to maximum 600mg after 8 weeks; 93% reached final recommended dose. Duration 32 months. Concurrent medication/care: 4-week washout period: patients continued usual antihypertensive except ACEI or ARB replaced by alternative drugs. Received "standard of care" for diabetes.
	(n=70) Intervention 3: ACE inhibitors and Angiotensin-II receptor blockers - Lisinopril and Irbesartan. Lisinopril 5mg + irbesartan 75mg, titrated up to maximum lisinopril 20mg + irbesartan 300mg after 8 weeks; 96% reached final recommended dose. Duration 32 months. Concurrent medication/care: 4-week washout period: patients continued usual antihypertensive except ACEI or ARB replaced by alternative drugs. Received "standard of care" for diabetes.
Funding	Other (Spanish Ministry of Science and Innovation, Spanish Society of Nephrology, Bristol Myers Squibb)
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: LISINOPRIL versus IRBESARTAN Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum	
- Actual outcome for CKD with diabetes: Mortality at 32 months; Group 1: 2/35, Group 2: 1/28; Risk of bias: High; Indirectness of outcome: No indirectness	

Protocol outcome 2: Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: ESRD (dialysis or transplant) at 32 months; Group 1: 6/35, Group 2: 5/28; Risk of bias: High; Indirectness of outcome: No indirectness

Protocol outcome 3: Progression of CKD (change in eGFR) (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: Rate of decrease in GFR at 32 months; Risk of bias: High; Indirectness of outcome: No indirectness

Protocol outcome 4: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD with diabetes: Urine protein-creatinine ratio (geometric mean) at 12 months; Group 1: mean 0.68 g/g (SD 0.42); n=35, Group 2: mean 1.01

Study	Fernandez 2013 ¹⁹⁹	
g/g (SD 0.57); n=28; Risk of bias: High; Indirectness of outcome: No indirectness		
RESULTS (NUMBERS ANALYSED) AND RISK OF BI	AS FOR COMPARISON: LISINOPRIL AND IRBESARTAN versus LISINOPRIL	
Protocol outcome 1: Mortality (all-cause and ca	rdiovascular) (Critical) at 12 months minimum	
- Actual outcome for CKD with diabetes: Mortal	ity at 32 months; Group 1: 6/70, Group 2: 2/35; Risk of bias: High; Indirectness of outcome: No indirectness	
Protocol outcome 2: Progression of CKD (measu	red by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum	
- Actual outcome for CKD with diabetes: ESRD (or indirectness	dialysis or transplant) at 32 months; Group 1: 10/70, Group 2: 6/35; Risk of bias: High; Indirectness of outcome: No	
Protocol outcome 3: Progression of CKD (change	e in eGFR) (Critical) at 12 months minimum	
- Actual outcome for CKD with diabetes: Rate of decrease in GFR at 32 months; Risk of bias: High; Indirectness of outcome: No indirectness		
Protocol outcome 4: Change in proteinuria (ACR	R, PCR or 24 hour urinary protein) (Important) at 12 months minimum	
- Actual outcome for CKD with diabetes: Urine protein-creatinine ratio (geometric mean) at 12 months; Group 1: mean 1.04 g/g (SD 0.33); n=70, Group 2: mean 0.68 g/g (SD 0.42); n=35; Risk of bias: High; Indirectness of outcome: No indirectness		
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: LISINOPRIL AND IRBESARTAN versus IRBESARTAN		
Protocol outcome 1: Mortality (all-cause and ca	rdiovascular) (Critical) at 12 months minimum	
- Actual outcome for CKD with diabetes: Mortal	ity at 32 months; Group 1: 6/70, Group 2: 1/28; Risk of bias: High; Indirectness of outcome: No indirectness	
Protocol outcome 2: Progression of CKD (measu	red by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum	
- Actual outcome for CKD with diabetes: ESRD (or indirectness	dialysis or transplant) at 32 months; Group 1: 10/70, Group 2: 5/28; Risk of bias: High; Indirectness of outcome: No	
Protocol outcome 3: Progression of CKD (change	e in eGFR) (Critical) at 12 months minimum	

- Actual outcome for CKD with diabetes: Rate of decrease in GFR at 32 months; Risk of bias: High; Indirectness of outcome: No indirectness

Study	Fernandez 2013 ¹⁹⁹
-	, PCR or 24 hour urinary protein) (Important) at 12 months minimum rotein-creatinine ratio (geometric mean) at 12 months; Group 1: mean 1.04 g/g (SD 0.33); n=70, Group 2: mean 1.01 ess of outcome: No indirectness
Protocol outcomes not reported by the study	Cardiovascular events (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 96: Galle 2008

Study	Galle 2008 ²¹⁷
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=885)
Countries and setting	Conducted in Multiple countries; Setting: Outpatient centres
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 12 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Proteinuria 900mg/24 hours or more
Stratum	CKD with diabetes: Type 2 diabetes + HT + macroalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	30-80 years; type 2 diabetes; HbA1c 10% or less; overt nephropathy (serum creatinine 3.0mg/dL or less and proteinuria 900mg/24 hours or more); hypertension (BP > 130/80mmHg or on antihypertensives
Exclusion criteria	Premenopausal women not surgically sterile/using acceptable contraception/pregnant/breastfeeding; recent acute CV event; congestive heart failure; reciept of metformin if elevated serum creatinine; non-diabetic renal disease; >30% increase in serum creatinine in run-in period; secondary hypertension; hepatic dysfunction; biliary obstructive disorders; renal artery stenosis; chronic immunosuppressive therapy; drug or alcohol dependency; systolic BP > 180mmHg and/or distolic BP >110mmHg on 2 consecutive visits during run-in

וומנוטרומו כווחוכמו שעומפווחפ כפרונרפ 2014

Study	Galle 2008 ²¹⁷
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Telmisartan 60.9 (9.2); valsartan 61.4 (9.1). Gender (M:F): 64.1% male. Ethnicity: Asian 19.1%; Black 1.8%; White 79.1%
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline geometric mean (SD) eGFR: telmisartan 56.7 (26.3) ml/min/1.72 m ² ; valsartan 56.5 (25.4) ml/min/1.72 m ²
Indirectness of population	No indirectness
Interventions	(n=443) Intervention 1: Angiotensin-II receptor blockers - Telmisartan. Telmisartan 40mg once daily, increased after 2 weeks in all patients to 80mg once daily. Duration 12 months. Concurrent medication/care: 2 weeks screening and 2 weeks placebo run-in to wash out ACEI and ARB; alternatives allowed other than direct vasodilators; after titration, additional antihypertensives allowed other than ACEI or ARB if BP <130/80mmHg. Statins 45.1%, other lipid-lowering drugs 8.4%, oral antidiabetic drugs 58.2%, insulin 58.7%, diuretic 92.1%, diuretic + beta-blocker 3.8%, beta-blocker 48.8%, calcium channel blocker 93.2%, calcium channel blocker + beta-blocker 0.7%, other antihypertensives 54.6% (n=442) Intervention 2: Angiotensin-II receptor blockers - Valsartan. Valsartan 80mg once daily, increased to 160mg after 2 weeks in all patients Duration 12 months. Concurrent medication/care: 2 weeks screening and 2 weeks placebo run-in to wash out ACEI and ARB; alternatives allowed other than direct vasodilators; after titration, additional antihypertensives allowed other than ACEI or ARB if BP <130/80mmHg. Statins 44.6%, other lipid-lowering drugs 10.9%, oral antidiabetic drugs 57%, insulin 56.8%, diuretic 94.1%, diuretic + beta-blocker 9%, beta-blocker 51.4%, calcium channel blocker 94.8%, calcium channel blocker + beta-blocker 1.8%, other antihypertensives 58.6%
Funding	Study funded by industry (Boehringer Ingelheim)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: TELMISARTAN versus VALSARTAN

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: All-cause mortality at 12 months; Group 1: 15/428, Group 2: 8/429; Risk of bias: Low; Indirectness of outcome: No indirectness

Galle 2008²¹⁷

- Actual outcome for CKD with diabetes: Cardiovascular mortality at 12 months; Group 1: 8/428, Group 2: 6/429; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Cardiovascular events (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: Myocardial infarction at 12 months; Group 1: 4/428, Group 2: 11/429; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Stroke at 12 months; Group 1: 11/428, Group 2: 5/429; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: First hospitalisation for heart failure at 12 months; Group 1: 7/428, Group 2: 6/429; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: First hospitalisation for unstable angina at 12 months; Group 1: 4/428, Group 2: 5/429; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: First hospitalisation for coronary revascularisation at 12 months; Group 1: 3/428, Group 2: 5/429; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: First hospitalisation for peripheral revascularisation at 12 months; Group 1: 2/428, Group 2: 2/429; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 3: Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: ESRD (dialysis, transplant or serum creatinine 6mg/dL or more) at 12 months; Group 1: 7/428, Group 2: 8/429; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 4: Progression of CKD (change in eGFR) (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: eGFR at 12 months; Group 1: mean 45.8 ml/min/1.73m² (SD 22.7); n=428, Group 2: mean 46.5 ml/min/1.73m² (SD 22.3); n=429; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 5: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD with diabetes: Urinary protein excretion rate at 12 months; Group 1: mean -33 % (SD 6.1); n=428, Group 2: mean -33 % (SD 5.6); n=429; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Urinary albumin excretion rate at 12 months; Group 1: mean -39 % (SD 6.1); n=428, Group 2: mean -36 % (SD 6.1); n=429; Risk of bias: Low; Indirectness of outcome: No indirectness

ועמרוסדומו כוודווכמו שמומפוודופ כפדונרפ

ZUT4

Study	Galle 2008 ²¹⁷
Protocol outcomes not reported by the study	Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum
Table 97: Imai 2011	
Study	Imai 2011 ²⁹⁴
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=566)
Countries and setting	Conducted in Hong Kong (China), Japan; Setting: Outpatient clinics
Line of therapy	Mixed line
Duration of study	Intervention time: Mean 3.2 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin:creatinine ratio
Stratum	CKD with diabetes: Type 2 diabetes; UACR >300mg/g
Subgroup analysis within study	Not applicable
Inclusion criteria	Type 2 diabetes; age 30-70 years; urinary albumin:creatinine ratio >33.9mg/mmol (>300mg/g) in first morning sample; serum creatinine 1.0-2.5mg/dL in women or 1.2-2.5mg/dL in men
Exclusion criteria	Type 1 diabetes; MI or CABG in last 3 months; PCI, carotid or peripheral artery revascularisation within 6 months; stroke or TIA within 1 year; unstable angina or heart failure NYHA class III or IV; rapidly progressive renal disease within 3 months; severe orthostatic hypotension; serum potassium 3.5mmol/L or less or 5.5mmol/L or more
Recruitment/selection of patients	Not reported
Age, gender and ethnicity	Age - Mean (SD): Olmesartan 59.1 (8.1); placebo 59.2 (8.1). Gender (M:F): 391/566 (69.1%) male. Ethnicity: Japanese 65%; Chinese 35%
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :

Study	Imai 2011 ²⁹⁴
Extra comments	Baseline GFR not reported; baseline median (IQR) urinary albumin:creatinine ratio: olmesartan 192.3 (87.1-339.4) mg/mmol; placebo 191.2 (98.4-352.9) mg/mmol
Indirectness of population	No indirectness
Interventions	 (n=282) Intervention 1: Angiotensin-II receptor blockers - Olmesartan. Olmesartan 10mg once daily, titrated to 20mg once daily if BP not <130/85mmHg at 4 weeks, and further titrated to 40mg once daily. Every reasonable attempt made to up-titrate test drug to maximum dose even if target BP reached. 63.4% on 40mg at week 144. Duration 3.2 years. Concurrent medication/care: Patients already on ACEI at baseline (72.7%) could continue the same dose but ACEI could not be added after enrolment. Additional antihypertensives (diuretics 38.3%, beta-blockers 19.1%, calcium channel blockers 66.0%, alpha blockers 14.5% and others 13.1%) could be used but not potassium-sparing diuretics or ARBs. (n=284) Intervention 2: Placebo. Placebo. Duration 3.2 years. Concurrent medication/care: Patients already on ACEI at baseline (73.6%) could continue the same dose but ACEI could not be added after enrolment. Additional antihypertensives (diuretics 34.9%, beta-blockers 14.8%, calcium channel blockers 69.7%, alpha blockers 14.4% and others 13.4%) could be used but not potassium-sparing diuretics or ARBs.
Funding	Study funded by industry (Daiichi Sankyo)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: OLMESARTAN versus PLACEBO

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: All-cause mortality at 3.2 years; HR 0.99 (95%CI 0.53 to 1.86) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Cardiovascular mortailty at 3.2 years; HR 2.81 (95%CI 0.76 to 10.38) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Cardiovascular events (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: Non-fatal stroke at 3.2 years; HR 0.73 (95%CI 0.29 to 1.83) Reported; Risk of bias: Low; Indirectness of outcome: No

Study	Imai 2011 ²⁹⁴		
indirectness			
- Actual outcome for CKD with diabetes: Non-fa	- Actual outcome for CKD with diabetes: Non-fatal MI at 3.2 years; HR 0.45 (95%CI 0.11 to 1.75) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness		
- Actual outcome for CKD with diabetes: Coronary, carotid or peripheral revascularisation at 3.2 years; HR 0.35 (95%Cl 0.15 to 0.8) Reported; Risk of bias: Low;			
Indirectness of outcome: No indirectness			
- Actual outcome for CKD with diabetes: Amput	ation at 3.2 years; Group 1: 4/282, Group 2: 0/284; Risk of bias: Low; Indirectness of outcome: No indirectness		
Protocol outcome 3: Progression of CKD (measu	ired by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum		
	SCr >5mg/dL, dialysis, transplantation) at 3.2 years; HR 1.08 (95%Cl 0.78 to 1.49) Reported; Risk of bias: Low;		
Indirectness of outcome: No indirectness			
Protocol outcome 4: Hospitalisation (Important	Protocol outcome 4: Hospitalisation (Important) at 12 months minimum		
- Actual outcome for CKD with diabetes: Hospitalisation for unstable angina at 3.2 years; HR 1.37 (95%CI 0.31 to 6) Reported; Risk of bias: Low; Indirectness of			
outcome: No indirectness			
- Actual outcome for CKD with diabetes: Hospitalisation for heart failure at 3.2 years; HR 0.59 (95%CI 0.32 to 1.1) Reported; Risk of bias: Low; Indirectness of outcome:			
No indirectness			
Destand outcome 5. Acuto hide outpine (Critic			
Protocol outcome 5: Acute kidney injury (Critical) at 12 months minimum			
- Actual outcome for CKD with diabetes: Discontinuation due to acute renal failure at 3.2 years; Group 1: 1/282, Group 2: 1/284; Risk of bias: Low; Indirectness of outcome: No indirectness			
Protocol outcomes not reported by the study	Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Change in proteinuria (ACR, PCR or 24 hour		
	urinary protein) (Important) at 12 months minimum; Health related quality of life (Important) at 12 months minimum		

Table 98: Jerums 2004

Study	Jerums 2004 ³¹⁷
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=50)

Study	Jerums 2004 ³¹⁷
Countries and setting	Conducted in Australia; Setting: Outpatient clinics
Line of therapy	Unclear
Duration of study	Intervention time: Median 66 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Albumin excretion rate
Stratum	CKD with diabetes: Type 2 diabetes + microalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Age 15-65 years; type 2 diabetes for at least 1 year; microalbuminuria (2/3 consecutive measurements of AER 20- 200microg/min on overnight samples); supine BP <140/90mmHg
Exclusion criteria	Non-diabetic renal disease; serum creatinine 200microM or more; haematuria; cardiac failure; hypertension; systemic disease; HbA1c >10%, serum potassium >5mM; recurrent UTI; at risk of pregnancy; other condition which might pose a risk to the patient or confound the results
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Perindopril 50 (2); placebo 53 (1). Gender (M:F): 29/50 (58%) male. Ethnicity: Caucasian 90%; Asian 10%
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline measured mean (SEM) GFR: perindopril: 92 (8); placebo 98 (6) ml/min/1.73m ²
Indirectness of population	No indirectness
Interventions	 (n=23) Intervention 1: ACE inhibitors - Perindopril. Perindopril 2mg once daily in the morning then titrated at 2-weekly intervals to 4mg, then 8mg, aiming for a reduction in supine diastolic BP 5mmHg or more. Final dose achieved not stated. Duration 6 years. Concurrent medication/care: Lipid treatment 59%; other antihypertensive drugs: 1/18 at 24 months; 0/15 at 48 months and 2/11 at 72 months (n=27) Intervention 2: Placebo. Placebo. Duration 6 years. Concurrent medication/care: Lipid treatment 64%; other
	antihypertensive drugs: 2/22 at 24 months; 10/20 at 48 months and 10/15 at 72 months

Chronic kidney disease Clinical evidence tables

Study	Jerums 2004 ³¹⁷
Funding	Other (Servier IRIS, Paris, France and Diabetes Australia Research Trust)
Protocol outcome 1: Change in proteinuria (ACF - Actual outcome for CKD with diabetes: Revers of outcome: No indirectness	IAS FOR COMPARISON: PERINDOPRIL versus PLACEBO R, PCR or 24 hour urinary protein) (Important) at 12 months minimum al microalbuminuria to normoalbuminuria at 72 months; Group 1: 1/11, Group 2: 3/15; Risk of bias: High; Indirectness Ilbuminuria to macroalbuminuria at 72 months; Group 1: 2/11, Group 2: 7/15; Risk of bias: High; Indirectness of
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 99: Kanno 2006

Study	Kanno 2006 ³²⁷
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=90)
Countries and setting	Conducted in Japan; Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: Mean 3.1 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Daily urine protein excretion

Study	Kanno 2006 ³²⁷
Stratum	CKD without diabetes: Hypertension + proteinuria (diabetes excluded)
Subgroup analysis within study	Not applicable
Inclusion criteria	Hypertension (systolic BP > 130 and <180mmHg; diastolic >80 and <120mmhg); serum creatinine 1.2-5.0mg/dL; daily urine protein excretion >1.0g; on ACEI
Exclusion criteria	None other
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Candesartan + ACEI 60.3 (11.9); ACEI 59.9 (12.0). Gender (M:F): 36/90 (40%) male. Ethnicity: Japanese
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline GFR not stated; baseline mean (SEM) urinary protein excretion: candesartan + ACEI: 1.78 (0.10) g/d; ACEI: 1.61 (0.11) g/d
Indirectness of population	No indirectness
Interventions	 (n=45) Intervention 1: ACE inhibitors and Angiotensin-II receptor blockers - ACEI (mixed) and Candersartan. Candesartan 2-12mg daily; mean final dose 8.5 (1.2)mg/day. ACEI: benazepril (mean dose 4.5 [1.1]mg) or trandolapril (mean dose 2.4 [0.9]mg). Duration 3.1 years. Concurrent medication/care: Diuretics 15.5%; beta-blockers 6.7%; calcium antagonists 66.7%; others 17.8% (n=45) Intervention 2: ACE inhibitors - Trandolapril. ACEI: benazepril (mean dose 4.2 [0.9]mg) or trandolapril (mean
	dose 2.8 [1.2]mg). Duration 3.1 years. Concurrent medication/care: Diuretics 17.8%; beta-blockers 4.4%; calcium antagonists 62.2%; others 6.7%
Funding	Funding not stated

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ACEI (MIXED) AND CANDERSARTAN versus TRANDOLAPRIL

Study	Kanno 2006 ³²⁷
•	ired by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum
	lysis at 3 years; Group 1: 2/45, Group 2: 2/45; Risk of bias: Unclear; Indirectness of outcome: No indirectness
Protocol outcome 2: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD without diabetes: Urinary protein excretion at 3 years; Group 1: mean 0.55 g/d (SD 0.16); n=45, Group 2: mean 1.21 g/d (SD 0.17); n=45; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 100: Katayama 2002

Study	Katayama 2002 ³³²
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=79)
Countries and setting	Conducted in Japan; Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 1.48 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion
Stratum	CKD with diabetes: Type 1 diabetes + microalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Type 1 diabetes diagnosed before age 20; age 20-50 years; UAE >30mg/day in 2 consecutive overnight urine samples; in hypertensive cases, diastolic BP <90mmHg with antihypertensives other than ACEI, calcium channel blockers or ARBs

Study	Katayama 2002 ³³²
Exclusion criteria	HbA1c>10%; serum creatinine >2mg/dL and other renal, endocrine, cardiac, liver, gastrointestinal or connective tissue diseases
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Captopril 30.9 (8.5); imidapril 36.2 (6.7); placebo 33.4 (7.9). Gender (M:F): 28/79 (35%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline GFR not reported; baseline mean (SD) albumin excretion: captopril: 550 (736) mg/d; imidapril 969 (1746) mg/d; placebo 619 (750) mg/d
Indirectness of population	No indirectness
Interventions	(n=26) Intervention 1: ACE inhibitors - Captopril. Captopril 27.5mg. Duration 1.48 years. Concurrent medication/care: Not stated. Target systolic BP <140mmHg of baseline <150mmHg; <150mmHg if baseline 150-170mmHg; <160mmHg if baseline >170mmHg; hypotensive drugs other than ACEI, calcium channel blockers or ARBs added or dosage increased.
	(n=26) Intervention 2: ACE inhibitors - Imidapril. Imidapril 5mg daily. Duration 1.48 years. Concurrent medication/care: Not stated. Target systolic BP <140mmHg of baseline <150mmHg; <150mmHg if baseline 150- 170mmHg; <160mmHg if baseline >170mmHg; hypotensive drugs other than ACEI, calcium channel blockers or ARBs added or dosage increased.
	(n=27) Intervention 3: Placebo. Placebo. Duration 1.48 years. Concurrent medication/care: Not stated. Target systolic BP <140mmHg of baseline <150mmHg; <150mmHg if baseline 150-170mmHg; <160mmHg if baseline >170mmHg; hypotensive drugs other than ACEI, calcium channel blockers or ARBs added or dosage increased.
Funding	Academic or government funding (Ministry of Health and Welfare and Research on Health Sciences focusing on Drug Innovation, Japan Health Sciences Foundation)

Study	Katayama 2002 ³³²	
RESULTS (NUMBERS ANALYSE	AND RISK OF BIAS FOR COMPARISON: CAPTOPRIL versus PLACEBO	
Protocol outcome 1: Change in	proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum	
- Actual outcome: Percentage	nange in UAE at 1.48 years; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
RESULTS (NUMBERS ANALYSEE	AND RISK OF BIAS FOR COMPARISON: IMIDAPRIL versus CAPTOPRIL	
Protocol outcome 1: Change in	proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum	
- Actual outcome: Percentage	nange in UAE at 1.48 years; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
RESULTS (NUMBERS ANALYSEE	AND RISK OF BIAS FOR COMPARISON: IMIDAPRIL versus PLACEBO	
Protocol outcome 1: Change in	proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum	
- Actual outcome: Percentage	nange in UAE at 1.48 years; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
Protocol outcomes not reporte		
	minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Impo	

at 12 months minimum

Table 101: Lacourciere 2000

Study	Lacourciere 2000 ³⁶⁴
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=103)
Countries and setting	Conducted in Canada; Setting: Outpatients
Line of therapy	Mixed line

at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important)

Study	Lacourciere 2000 ³⁶⁴
Duration of study	Intervention time: 12 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion
Stratum	CKD with diabetes: Type 2 diabetes + micro- or macro-albuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Type 2 diabetes diagnosed age 30 or later; hypertension (sitting diastolic BP 90-115mmHg); UAE 20-350microg/min without evidence of UTI
Exclusion criteria	Renovascular disease; malignant hypertension; systolic BP > 210mmHg; CVA or MI in last 12 months; current TIAs; clinically significant AV conduction disturbances and/or arrhythmias; unstable angina; history of heart failure; serum creatinine 200mmol/L or more; serum potassium 5.5mmol/L or more, or 3.5mol/L or less; steroids; drugs affecting BP except beta-blockers and nitrates for stable angina; drug or alcohol abuse; pregnancy, breastfeeding, ineffective contraception
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Losartan 59.2 (9.2); enalapril 57.8 (10.5). Gender (M:F): 83/103 (81%) male. Ethnicity: Caucasian 96%; Oriental 3%; Black 1%
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline GFR (geometric mean): losartan 96.7 ml/min; enalapril 95.3 ml/min
Indirectness of population	No indirectness
Interventions	 (n=52) Intervention 1: Angiotensin-II receptor blockers - Losartan. Losartan 50mg; at week 8, doubled to 100mg if sitting diastolic BP >85mmHg. Mean dose 86.3 (22.5) mg at 12 months Duration 12 months. Concurrent medication/care: At week 12, if sitting diastolic BP >85mmHg, hydrochlorothiazide added (12.5mg titrated to 25mg); other antihypertensive drugs could also be added (other than ACEI or ARB or calcium channel blockers). At week 52, 31/52 (59.6%) on hydrochlorothiazide (mean dose 23.0 [4.7] mg), including 12/52 (23%) on triple therapy (hydrochlorothiazide plus beta- or alpha1-adrenoceptor blockers). Usual insulin or oral antidiabetic drugs. (n=51) Intervention 2: ACE inhibitors - Enalapril. Enalapril 5mg once daily; at 4 weeks, titrated up to 10mg once daily if

Study	Lacourciere 2000 ³⁶⁴
	sitting diastolic BP >85mmHg; at 8 weeks, titrated up to 20mg once daily if sitting diastolic BP >85mmHg. Mean dose at 12 months: 16.0 (6.2) mg. Duration 12 months. Concurrent medication/care: At week 12, if sitting diastolic BP >85mmHg, hydrochlorothiazide added (12.5mg titrated to 25mg); other antihypertensive drugs could also be added (other than ACEI or ARB or calcium channel blockers). At week 52, 26/51 (51%) on hydrochlorothiazide (mean dose 21.6 [5.7] mg), including 5/51 (5.8%) on triple therapy (hydrochlorothiazide plus beta- or alpha1-adrenoceptor blockers). Usual insulin or oral antidiabetic drugs.
Funding	Study funded by industry (Merck Frosst Canada & Co)
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: LOSARTAN versus ENALAPRIL Protocol outcome 1: Progression of CKD (change in eGFR) (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: GFR at 12 months; Risk of bias: Low; Indirectness of outcome: No indirectness Protocol outcome 2: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD with diabetes: Albuminuria at 12 months; Risk of bias: Low; Indirectness of outcome: No indirectness	
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 102: Laffel 1995

Study	Laffel 1995 ³⁶⁵
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=143)

Study	Laffel 1995 ³⁶⁵
Countries and setting	Conducted in Canada, USA; Setting: Outpatient clinics
Line of therapy	1st line
Duration of study	Intervention time: 2 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Overnight urinary albumin excretion rate
Stratum	CKD with diabetes: Type 1 diabetes + microalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Age 14 to 57 years; 4 to 33 years of type 1 diabetes diagnosed before age 45 (history of ketonuria and continuous need for insulin except for periods <6 months in first 2 years after diagnosis); overnight UAE 20-200microg/min
Exclusion criteria	HbA1c 11.5% or more; body weight outside 75-125% ideal; serum creatinine and potassium levels outside normal ranges; WBC <3500/mm3; BP 140/90mmHg or more; antihypertensive therapy; pregnancy, lactation or inadequate contraception for women of childbearing age; history of renal, cardiac, hepatic, gastrointestinal or autoimmune disease; use of calcium cahnnel blockers, beta-blockers or NSAIDs (except low dose aspirin <650mg/day)
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (range): 32.7 (14 to 57). Gender (M:F): 72/143 (50.3%) male. Ethnicity: 91.6% white
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline GFR not reported; baseline geometric mean (SD) AER: captopril: 62 (36) microg/min; placebo 62 (41) microg/min
Indirectness of population	No indirectness
Interventions	(n=70) Intervention 1: ACE inhibitors - Captopril. Captopril 50mg twice daily. Duration 24 months. Concurrent medication/care: Usual diet and insulin treatment. If BP 140/90mmHg or more at two consecutive vists, prazosin or clonidine added.
	(n=73) Intervention 2: Placebo. Placebo. Duration 24 months. Concurrent medication/care: Usual diet and insulin treatment. If BP 140/90mmHg or more at two consecutive vists, prazosin or clonidine added.

Study	Laffel 1995 ³⁶⁵
Funding	Study funded by industry (Bristol-Myers Squibb)
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: CAPTOPRIL versus PLACEBO Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD with diabetes: Progression microalbuminuria to clinical proteinuria at 24 months; HR 0.3 (95%CI 0.1 to 0.93) Calculated – from logrank P- value; Risk of bias: Low; Indirectness of outcome: No indirectness - Actual outcome for CKD with diabetes: Albumin excretion rate at 24 months; Group 1: mean -42.4 % (SD 90); n=67, Group 2: mean 13.5 % (SD 166); n=70; Risk of bias: Low; Indirectness of outcome: No indirectness	
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 103: Lebovitz 1994-1

Study (subsidiary papers)	Lebovitz 1994-1 ³⁷¹ (Lebovitz 1994-2 ³⁷¹)
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=Total study: 121; macroalbuminuria subgroup 46; microalbuminuria subgroup 38)
Countries and setting	Conducted in USA; Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 36 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion, serum creatinine, creatinine clearance

itudy (subsidiary papers) itratum	Lebovitz 1994-1 ³⁷¹ (Lebovitz 1994-2 ³⁷¹) CKD with diabetes: Type 2 diabetes + micro- or macro-albuminuria
tratum	CKD with diabates: Type 2 diabates + micro, or macro albuminuria
	CKD with diabetes. Type 2 diabetes + micro- of macro-abdiminuna
ubgroup analysis within study	Post-hoc subgroup analysis: Group I: UAE <30mg/24 hours (<20microg/min); Group II: UAE 30-300mg/24 hours (20- 200 microg/min); Group III: UAE >300mg/24 hours (>200microg/min)
nclusion criteria	Type 2 diabetes; BP >90mmHg or on antihypertensives; GFR 30-100ml/min/1.73m ²
xclusion criteria	Significant bladder dysfunction so GFR invalid; polycystic kidney disease
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age: Not stated. Gender (M:F): Not stated. Ethnicity: Not stated
urther population details	 Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: People with diabetes and ACR >3.0mg/mmol (Group II: UAE 30-300mg/24 hours (20-200 microg/min) n=38; Group III: UAE >300mg/24 hours (>200microg/min) n=46). 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline mean (SEM) measured GFR: Group I: enalapril: 83.38 (0.865); placebo 76.6 (1.009); Group II: enalapril 82.5 (0.786); placebo 76.3 (0.917); Group III: enalapril: 58.3 (0.896); placebo 65.3 (1.344)
ndirectness of population	No indirectness
nterventions	(n=63) Intervention 1: ACE inhibitors - Enalapril. Enalapril 5mg daily, titrated to target diastolic BP 65-80mmHg or maximal daily dose of 40mg daily; achieved dose not stated. Duration 36 months . Concurrent medication/care: If patients initially on antihypertensives, drugs tapered as study drug increased; study drug used alone if possible, or if insufficient to maintain BP in target range, other drugs added (alpha- and beta-adrenergic antagonists, diuretics, calcium channel antagonists)
	(n=58) Intervention 2: Placebo. Placebo. Duration 36 months. Concurrent medication/care: If patients initially on antihypertensives, drugs tapered as study drug increased; study drug used alone if possible, or if insufficient to maintain BP in target range, other drugs added (alpha- and beta-adrenergic antagonists, diuretics, calcium channel antagonists)
unding	Other (Merck Research Laboratories and Division of Research Resources of the NIH)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ENALAPRIL versus PLACEBO

Protocol outcome 1: Progression of CKD (change in eGFR) (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: Change in GFR per month (macroalbuminuria subgroup) at 36 months; Group 1: mean -0.533 ml/min/1.73m²/month (SD 0.84); n=28, Group 2: mean -0.785 ml/min/1.73m²/month (SD 1.07); n=18; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Change in GFR per month (microalbuminuria subgroup) at 36 months; Group 1: mean -0.003 ml/min/1.73m²/month (SD 0.74); n=17, Group 2: mean -0.416 ml/min/1.73m²/month (SD 0.88); n=21; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcome 2: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD with diabetes: Urinary protein excretion (macroalbuminuria subgroup) at 2 years; Group 1: mean 2.53 g/24 hours (SD 3.1); n=26, Group 2: mean 4.36 g/24 hours (SD 4.4); n=18; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months
	minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12
	months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months
	minimum; Health related quality of life (Important) at 12 months minimum

Table 104: Lewis 1993

Study	Lewis 1993 ³⁸³
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=409)
Countries and setting	Conducted in USA; Setting: Outpatient clinics
Line of therapy	Mixed line
Duration of study	Intervention time: Completers median 3 years (range 1.8-4.8); with endpoint (dialysis, transplantation or death) median 1.7 years (maximum 4.5); discontinued median 0.7 years (maximum 3.3)

Study	Lewis 1993 ³⁸³
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary protein excretion
Stratum	CKD with diabetes: Type 1 diabetes + macroalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Age 18-49 years; type 1 diabetes for at least 7 years; onset before age 30; diabetic retinopathy, urinary protein excretion 500mg/24 hours or more, serum creatinine 2.5mg/dL or less; BP maintained to target without ACEI or calcium antagonists
Exclusion criteria	Pregnancy; marked departure form standard dietary recommendations; WBC <2500/mm3, congestive heart failure NYHA class III or worse; serum potassium 6mmol/L or more
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Captopril 35 (7); placebo 34 (8). Gender (M:F): 53% male. Ethnicity: White 89%; Black 7.5%; Other 3.5%
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline GFR not reported; baseline urinary protein excretion: captopril: 2500 (2500) mg/d; placebo: 3000 (2600) mg/d
Indirectness of population	No indirectness
Interventions	(n=207) Intervention 1: ACE inhibitors - Captopril. 25mg three times daily. Duration Median 3 years. Concurrent medication/care: 60% on antihypertensives at baseline, of whom 62% on diuretics (range 74-87% during study), 11% on beta-blockers at baseline (15-53% during study); other drugs (e.g. labetalol, clonidine, methyldopa, prazosin, hydralazine, guanabenz, terazosin, minoxidil) proportion not stated
	(n=202) Intervention 2: Placebo. Placebo. Duration Median 3 years. Concurrent medication/care: 59% on antihypertensives at baseline, of whom 64% on diuretics (range 79-93% during study), 15% on beta-blockers at baseline (34-46% during study); other drugs (e.g. labetalol, clonidine, methyldopa, prazosin, hydralazine, guanabenz, terazosin, minoxidil) proportion not stated

Study	Lewis 1993 ³⁸³
Funding	Other (Public Health Service and Bristol-Myers Squibb)
RESULTS (NUMBERS ANALYSED) AND RISK OF BI	AS FOR COMPARISON: CAPTOPRIL versus PLACEBO
Protocol outcome 1: Mortality (all-cause and car - Actual outcome for CKD with diabetes: All-caus indirectness	rdiovascular) (Critical) at 12 months minimum se mortality at Median 3 years; Group 1: 8/205, Group 2: 14/200; Risk of bias: Unclear; Indirectness of outcome: No
Protocol outcome 2: Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: ESRD (dialysis or transplantation) at Median 3 years; Group 1: 20/205, Group 2: 31/200; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
Protocol outcome 3: Progression of CKD (change in eGFR) (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: Doubling of baseline creatinine at 4 yeas; HR 0.7 (95%CI 0.54 to 0.91) Calculated – from Kaplan Meier curve; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
Protocol outcomes not reported by the study	Cardiovascular events (Critical) at 12 months minimum: Hospitalisation (Important) at 12 months minimum: Acute

Protocol outcomes not reported by the study	Cardiovascular events (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute
	kidney injury (Critical) at 12 months minimum; Change in proteinuria (ACR, PCR or 24 hour urinary protein)
	(Important) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 105: Lewis 2001

Study (subsidiary papers)	Lewis 2001 ³⁸⁴ (Berl 2003 ⁶⁷)
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=1148)
Countries and setting	Conducted in Multiple countries; Setting: Outpatient centres
Line of therapy	Adjunctive to current care

Study (subsidiary papers)	Lewis 2001 ³⁸⁴ (Berl 2003 ⁶⁷)
Duration of study	Intervention time: 2.6 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Proteinuria
Stratum	CKD with diabetes: Type 2 diabetes + HT + proteinuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Age 30-70 years; type 2 diabetes; sitting systolic BP > 135mmHg or diastolic >85mmHg or treatment with antihypertensive drugs; urinary protein excretion 900mg/24 hours or more; serum creatinine 1.0 to 3.0mg/dL in women or 1.2 to 3.0mg/dL in men
Exclusion criteria	None other
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Irbesartan 69.3 (7.1), placebo 58.3 (8.2). Gender (M:F): 68% male. Ethnicity: Non-Hispanic White 74.3%, Non-Hispanic black 12.3%, Hispanic 4.7%, Asian/Pacific Islander 4.4%, Other 4.3%
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline GFR not stated; baseline median (IQR) urinary protein excretion: irbesartan 2.9 (1.6-5.4) g/24 hours; placebo 2.9 (1.8-5.2) g/24 hours; baseline median (IQR) urinary albumin excretion: irbesartan 1.9 (1.0-3.8); placebo 1.9 (1.1-3.5)
Indirectness of population	No indirectness
Interventions	(n=579) Intervention 1: Angiotensin-II receptor blockers - Irbesartan. Irbesartan titrated from 75 to 300mg daily. Duration Mean 2.6 years. Concurrent medication/care: ACEI, ARB and Calcium channel blockers stopped at least 10 days before screening (BP controlled with other agents); then randomised. Antihypertensive drugs other than ACEI, ARB or calcium channel blockers used as needed for target BP: systolic <135mmHg or 10mmHg lower than at screening if screening value >145mmHg and diastolic <85mmHg. Drugs used: diuretics, beta-blockers, periphheral alpha-blockers, central alpha-2 agonists; mean 3 drugs used
	(n=569) Intervention 2: Placebo. Placebo. Duration Mean 2.6 years. Concurrent medication/care: ACEI, ARB and Calcium channel blockers stopped at least 10 days before screening (BP controlled with other agents); then

Study (subsidiary papers)	Lewis 2001 ³⁸⁴ (Berl 2003 ⁶⁷)		
	randomised. Antihypertensive drugs other than ACEI, ARB or calcium channel blockers used as needed for target BP: systolic <135mmHg or 10mmHg lower than at screening if screening value >145mmHg and diastolic <85mmHg. Drugs used: diuretics, beta-blockers, periphheral alpha-blockers, central alpha-2 agonists; mean 3.3 drugs used		
Funding	Study funded by industry (Bristol-Myers Squibb and Sanofi-Aventis)		
RESULTS (NUMBERS ANALYSED) AND RISK OF F	BIAS FOR COMPARISON: IRBESARTAN versus PLACEBO		
Protocol outcome 1: Mortality (all-cause and c	ardiovascular) (Critical) at 12 months minimum		
- Actual outcome for CKD with diabetes: All-ca Indirectness of outcome: No indirectness	- Actual outcome for CKD with diabetes: All-cause mortality at Mean 2.6 years; HR 0.84 (95%CI 0.63 to 1.12) Calculated – from Kaplan Meier curve; Risk of bias: Low; Indirectness of outcome: No indirectness		
- Actual outcome for CKD with diabetes: Cardio	ovascular mortality at Mean 2.6 years; HR 1.08 (95%Cl 0.72 to 1.6) Reported; Risk of bias: Low; Indirectness of outcome:		
No indirectness			
Protocol outcome 2: Cardiovascular events (Cr	itical) at 12 months minimum		
- Actual outcome for CKD with diabetes: Congestive heart failure at Mean 2.6 years; HR 0.72 (95%CI 0.52 to 1) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness			
- Actual outcome for CKD with diabetes: Non-fatal myocardial infarction at Mean 2.6 years; HR 0.9 (95%CI 0.6 to 1.33) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness			
- Actual outcome for CKD with diabetes: Cerebrovascular accident at Mean 2.6 years; HR 1.01 (95%CI 0.61 to 1.67) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness			
- Actual outcome for CKD with diabetes: Cardiac revascularisation at Mean 2.6 years; HR 0.8 (95%CI 0.49 to 1.3) Reported; Risk of bias: Low; Indirectness of outcome			
No indirectness			
Protocol outcome 3: Progression of CKD (meas	ured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum		
- Actual outcome for CKD with diabetes: ESRD	at Mean 2.6 years; HR 0.76 (95%Cl 0.57 to 1.03) Calculated – from Kaplan Meier curve; Risk of bias: Low; Indirectness of		
outcome: No indirectness			

Protocol outcome 4: Progression of CKD (change in eGFR) (Critical) at 12 months minimum

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטב4

Study (subsidiary papers)	Lewis 2001 ³⁸⁴ (Berl 2003 ⁶⁷)
- Actual outcome for CKD with diabetes: Mean change in GFR at Mean 2.6 years; Risk of bias: Low; Indirectness of outcome: No indirectness	
Protocol outcome 5: Change in proteinuria (ACR	, PCR or 24 hour urinary protein) (Important) at 12 months minimum
- Actual outcome for CKD with diabetes: Mean decrease in protein concentration at Mean 2.6 years; Group 1: mean -1.1 g/24 hours (SD 1.7); n=574, Group 2: mean -0.3	
g/24 hours (SD 4.3); n=565; Risk of bias: Low; Indirectness of outcome: No indirectness	
Protocol outcomes not reported by the study	Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health
	related quality of life (Important) at 12 months minimum

Table 106: Li 2006

Study	Li 2006 ³⁸⁶
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=109)
Countries and setting	Conducted in Hong Kong (China); Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 2 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Biopsy-confirmed (morphological and immunohistochemical criteria)
Stratum	CKD without diabetes: Immunoglobulin A (IgA) nephropathy
Subgroup analysis within study	Not applicable
Inclusion criteria	IgA nephropathy; age at least 18 years; proteinuria (protein at least 1g/day plus serum creatinine <2.8mg/dL) or serum creatinine 1.4-2.8mg/dL irrespective of degree of proteinuria
Exclusion criteria	Accelerated or malignant hypertension; expected survival <2 years; secondary IgA nephropathy including Henoch- Schonlein purpura; pregnant or lactating; clinically significant heaptic disease; allergy or reaction to ARBs; ACEI or ARB within 4 weeks
Recruitment/selection of patients	Not stated

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

Study	Li 2006 ³⁸⁶
Age, gender and ethnicity	Age - Mean (SD): Valsartan 40 (10); placebo 41 (9). Gender (M:F): 30/109 (28%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline mean (SD) eGFR: valsartan 87 (36) ml/min/1.73m ² ; placebo 78 (38) ml/min/1.73m ²
Indirectness of population	No indirectness
Interventions	 (n=54) Intervention 1: Angiotensin-II receptor blockers - Valsartan. Valsartan 80mg daily; if BP >140/90mmHg after 4 weeks, dose doubled to 160mg daily . Duration 104 weeks. Concurrent medication/care: Usual antihypertensive treatment continued; additional antihypertensives (beta-blocker [14 patients], calcium channel antagonist [19 patients] or thiazide diuretic [4 patients], followed by any appropriate additional agent [methyldopa 1 patient]) could be added at discretion of attending physicians (n=55) Intervention 2: Placebo. Placebo. Duration 104 weeks. Concurrent medication/care: Usual antihypertensive treatment continued; additional antihypertensives (beta-blocker [38 patients], calcium channel antagonist [16 patients] or thiazide diuretic [7 patients], followed by any appropriate additional agent [alpha blocker 1 pateint; methyldopa 5 patients]) could be added at discretion of attending physicians
Funding	Equipment / drugs provided by industry (Novartis Pharmaceuticals provided drugs and cost of admin support)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: VALSARTAN versus PLACEBO

Protocol outcome 1: Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum - Actual outcome: Doubling of serum creatinine or ESRD requiring renal replacement therapy at 2 years; HR 0.2 (95%CI 0.02 to 2) Calculated – from logrank P-value; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Progression of CKD (change in eGFR) (Critical) at 12 months minimum

- Actual outcome: GFR at 2 years; Group 1: mean 72.36 ml/min/1.73m² (SD 34.2); n=54, Group 2: mean 63.39 ml/min/1.73m² (SD 34.79); n=55; Risk of bias: Low; Indirectness of outcome: No indirectness

Study	Li 2006 ³⁸⁶
	R, PCR or 24 hour urinary protein) (Important) at 12 months minimum 1: mean 1.23 g/day (SD 1.25); n=54, Group 2: mean 1.97 g/day (SD 1.67); n=55; Risk of bias: Low; Indirectness of
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 107: Makino 2008-1

Study (subsidiary papers)	Makino 2008-1 ⁴¹⁴ (Makino 2008-2 ⁴¹⁴)
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=163)
Countries and setting	Conducted in Japan; Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: mean 1.3 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin:creatinine ratio
Stratum	CKD with diabetes: Type 2 diabetes + microalbuminuria
Subgroup analysis within study	Post-hoc subgroup analysis: Normotensive and hypertensive patients analysed separately
Inclusion criteria	Japanese; type 2 diabetes; age 30-74 years; first morning urinary albumin:creatinine ratio 100-300mg/g; serum creatinine <1.5mg/dL in males or <1.3mg/dL in females
Exclusion criteria	Type 2 diabetes before age 30; type 1 diabetes; non-diabetic renal disease; HbA1c 9% or more; seated BP 180/100mmHg or more; unstable angina, MI, CABG, PTCA, TIA or stroke in last 6 months; history of heart failure; pregnant or possibly pregnant women
Recruitment/selection of patients	not stated

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטב4

Study (subsidiary papers)	Makino 2008-1 ⁴¹⁴ (Makino 2008-2 ⁴¹⁴)
Age, gender and ethnicity	Age - Mean (SD): 61.7 years. Gender (M:F): 73.1% male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: Mixed (Normotensive and hypertensive subgroups). 6. People with proteinuria :
Extra comments	Baseline GFR not reported; baseline UACR: normotensive patients: telmisartan 40mg: 173 (50.6) mg/g; telmisartan 80mg: 168 (48.6) mg/g; placebo 164 (40.3) mg/g; hypertensive: telmisartan 40mg: 172 (47.5)mg/g; telmisartan 80mg: 175 (44.6) mg/g; placebo: 178 (38.9) mg/g
Indirectness of population	No indirectness
Interventions	 (n=172) Intervention 1: Angiotensin-II receptor blockers - Telmisartan. Telmisartan 40mg once daily. Duration Mean 1.3 years. Concurrent medication/care: Hypertensive patients continued therapy except ARBs and/or ACEI replaced by calcium channel blockers, diuretics (except potassium sparing), alpha or beta-blockers. (n=168) Intervention 2: Angiotensin-II receptor blockers - Telmisartan. Telmisartan 80mg. Duration Mean 1.3 years. Concurrent medication/care: Hypertensive patients continued therapy except ARBs and/or ACEI replaced by calcium channel blockers, diuretics (except potassium sparing), alpha or beta-blockers. (n=174) Intervention 3: Placebo. Placebo. Duration Mean 1.3 years. Concurrent medication/care: Hypertensive patients continued therapy except and/or ace: Hypertensive patients continued therapy. (n=174) Intervention 3: Placebo. Placebo. Duration Mean 1.3 years. Concurrent medication/care: Hypertensive patients continued blockers, diuretics (except potassium sparing), alpha or beta-blockers. (n=174) Intervention 3: Placebo. Placebo. Duration Mean 1.3 years. Concurrent medication/care: Hypertensive patients continued therapy except ARBs and/or ACEI replaced by calcium channel blockers, diuretics (except potassium sparing), alpha or beta-blockers.
Funding	Funding not stated

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: TELMISARTAN versus PLACEBO

Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD with diabetes: Urinary albumin:creatinine ratio (normotensive; telmisartan 40mg) at Mean 1.3 years; Group 1: mean 136 mg/g (SD 124.3); n=58, Group 2: mean 204 mg/g (SD 140.3); n=54; Risk of bias: Unclear; Indirectness of outcome: No indirectness

	A1A		
Study (subsidiary papers)	Makino 2008-1 ⁴¹⁴ (Makino 2008-2 ⁴¹⁴)		
- Actual outcome for CKD with diabetes: Urinary	y albumin:creatinine ratio (normotensive; telmisartan 80mg) at Mean 1.3 years; Group 1: mean 112 mg/g (SD 113.7);		
n=51, Group 2: mean 204 mg/g (SD 140.3); n=54; Risk of bias: Unclear; Indirectness of outcome: No indirectness			
- Actual outcome for CKD with diabetes: Urinary	y albumin:creatinine ratio (hypertensive; telmisartan 40mg) at Mean 1.3 years; Group 1: mean 134 mg/g (SD 137.5);		
n=114, Group 2: mean 219 mg/g (SD 180.2); n=2	120; Risk of bias: Unclear; Indirectness of outcome: No indirectness		
- Actual outcome for CKD with diabetes: Urinary	y albumin:creatinine ratio (hypertensive; telmisartan 80mg) at Mean 1.3 years; Group 1: mean 113 mg/g (SD 122.1);		
n=117, Group 2: mean 219 mg/g (SD 180.2); n=:	120; Risk of bias: Unclear; Indirectness of outcome: No indirectness		
- Actual outcome for CKD with diabetes: Progres	ssion to overt nephropathy (normotensive; telmisartan 40mg) at Mean 1.3 years; Group 1: 7/58, Group 2: 18/54; Risk of		
bias: Unclear; Indirectness of outcome: No indir	ectness		
- Actual outcome for CKD with diabetes: Progres	ssion to overt nephropathy (normotensive; telmisartan 80mg) at Mean 1.3 years; Group 1: 5/51, Group 2: 18/54; Risk of		
bias: Unclear; Indirectness of outcome: No indir	ectness		
- Actual outcome for CKD with diabetes: Progres	ssion to overt nephropathy (hypertensive; telmisartan 40mg) at Mean 1.3 years; Group 1: 17/114, Group 2: 41/120; Risk		
of bias: Unclear; Indirectness of outcome: No in	directness		
- Actual outcome for CKD with diabetes: Progres	ssion to overt nephropathy (hypertensive; telmisartan 80mg) at Mean 1.3 years; Group 1: 13/117, Group 2: 41/120; Risk		
of bias: Unclear; Indirectness of outcome: No indirectness			
- Actual outcome for CKD with diabetes: Regress	sion to normoalbuminuria (normotensive; telmisartan 40mg) at Mean 1.3 years; Group 1: 9/58, Group 2: 1/54; Risk of		
bias: Unclear; Indirectness of outcome: No indir	bias: Unclear; Indirectness of outcome: No indirectness		
- Actual outcome for CKD with diabetes: Regres	- Actual outcome for CKD with diabetes: Regression to normoalbuminuria (normotensive; telmisartan 80mg) at Mean 1.3 years; Group 1: 10/51, Group 2: 1/54; Risk of		
bias: Unclear; Indirectness of outcome: No indir	ectness		
- Actual outcome for CKD with diabetes: Regress	sion to normoalbuminuria (hypertensive; telmisartan 40mg) at Mean 1.3 years; Group 1: 14/114, Group 2: 1/120; Risk		
of bias: Unclear; Indirectness of outcome: No in	of bias: Unclear; Indirectness of outcome: No indirectness		
- Actual outcome for CKD with diabetes: Regress	sion to normoalbuminuria (hypertensive; telmisartan 80mg) at Mean 1.3 years; Group 1: 25/117, Group 2: 1/120; Risk		
of bias: Unclear; Indirectness of outcome: No in	directness		
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months		
	minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12		
	months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important)		
	at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important)		

Table 108: Mann 2001

Study	Mann 2001 ⁴¹⁶
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=980)
Countries and setting	Conducted in Canada, Germany; Setting: Outpatient clinics
Line of therapy	Unclear
Duration of study	Intervention time: Median 4.5 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Serum creatinine
Stratum	Overall: Renal insufficiency (serum creatinine 1.4mg/dL or more), with or without diabetes
Subgroup analysis within study	Post-hoc subgroup analysis: Renal insufficiency (serum creatinine 1.4mg/dL or more) or no renal insufficiency
Inclusion criteria	Age at least 55 years; vascular disease or diabetes plus another cardiovascular risk factor
Exclusion criteria	Heart failure, intolerance of ACEI or vitamin E, serum creatinine >2.3mg/dL, dipstick positive proteinuria >1+
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Ramipril 68.1 (6.6); placebo 68.8 (7.2). Gender (M:F): 87.2% male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline GFR not stated; baseline median (IQR) albumin:creatinine ratio ramipril: 0.73 (0.26-2.81) mg/mmol; placebo 0.77 (0.22-2.89) mg/mmol
Indirectness of population	No indirectness
Interventions	(n=509) Intervention 1: ACE inhibitors - Ramipril. Ramipril 10mg/d. Duration Median 4.5 years. Concurrent medication/care: Antiplatelet agents: 80.8%; beta-blockers: 48.1%; calcium antagonists: 55.6%; diuretics: 22.2%; cholesterol lowering drugs: 29.7%
	(n=471) Intervention 2: Placebo. Placebo. Duration Median 4.5 years. Concurrent medication/care: Antiplatelet agents: 81.1%; beta-blockers: 47.6%; calcium antagonists: 51.8%; diuretics: 25.3%; cholesterol lowering drugs: 29.5%

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Study	Mann 2001 ⁴¹⁶
Funding	Other (Medical Research Council of Caanada, Ontario Heart Foundation, Aventis, Astra-Zeneca, NEGMA, Natural
	Source Vitamin E Producers Association)
RESULTS (NUMBERS ANALYSED) AND RISK OF BI	AS FOR COMPARISON: RAMIPRIL versus PLACEBO
Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum	
- Actual outcome: Cardiovascular mortality at 4.5 years; HR 0.59 (95%CI 0.39 to 0.91) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
- Actual outcome: All-cause mortality at 4.5 years; HR 0.59 (95%CI 0.42 to 0.83) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
Protocol outcome 2: Cardiovascular events (Criti	cal) at 12 months minimum
- Actual outcome: Fatal or non-fatal MI at 4.5 years; HR 0.78 (95%CI 0.54 to 1.11) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
- Actual outcome: Stroke at 4.5 years; HR 0.83 (95%CI 0.44 to 1.56) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
- Actual outcome: Revascularisation at 4.5 years; HR 0.96 (95%CI 0.7 to 1.33) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
Protocol outcome 3: Hospitalisation (Important) at 12 months minimum	
- Actual outcome: Hospitalisation for heart failure at 4.5 years; HR 0.56 (95%CI 0.3 to 1.06) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
Protocol outcomes not reported by the study	Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months

minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 109: Marre 2004

Study	Marre 2004 ⁴²⁵
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=4912)

Study	Marre 2004 ⁴²⁵
Countries and setting	Conducted in Multiple countries; Setting: Outpatient centres
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: Median 47 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion
Stratum	CKD with diabetes: Type 2 diabetes + micro- or macro-albuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Older than 50 years; type 2 diabetes; urinary albumin excretion 20mg/L or more in 2 successive random urine samples
Exclusion criteria	Serum creatinine >150microg/L; treatment with insulin, ACEI or ARB; congestive chronic heart failure; MI in last 3 months; urinary tract infection; previous intolerance to ACEI
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Ramipril 65.2 (8.4); placebo 65.0 (8.3). Gender (M:F): 3432/4912 (70%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Mean eGFR not reported; 74% microalbuminuria; 26% proteinuria
Indirectness of population	No indirectness
Interventions	(n=2443) Intervention 1: ACE inhibitors - Ramipril. Ramipril 1.25mg once daily, usually in the mornings. Duration Median 47 months. Concurrent medication/care: Antihypertensives 47.4%; lipid lowering agents 29.8%; antiplatelets 18.3%
	(n=2469) Intervention 2: Placebo. Placebo. Duration Median 47 months. Concurrent medication/care: Antihypertensives 48.0%; lipid lowering agents 27.3%; antiplatelets 19.1%
Funding	Other (Aventis (Paris) and Programme Hospitalier de Recherche Clinique (French Health Ministry))

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: RAMIPRIL versus PLACEBO

Study	Marre 2004 ⁴²⁵
Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum	
- Actual outcome for CKD with diabetes: Cardiovascular mortality at 47 months; Group 1: 141/2443, Group 2: 133/2469; Risk of bias: Low; Indirectness of outcome: No	
indirectness	
- Actual outcome for CKD with diabetes: All-cause mortality at 47 months; Group 1: 334/2443, Group 2: 324/2469; Risk of bias: Low; Indirectness of outcome: No	
indirectness	
Protocol outcome 2: Cardiovascular events (Crit	ical) at 12 months minimum
- Actual outcome for CKD with diabetes: Non-fa	tal myocardial infarction at 47 months; Group 1: 52/2443, Group 2: 59/2469; Risk of bias: Low; Indirectness of
outcome: No indirectness	
- Actual outcome for CKD with diabetes: Non-fa	tal stroke at 47 months; Group 1: 89/2443, Group 2: 84/2469; Risk of bias: Low; Indirectness of outcome: No
indirectness	
- Actual outcome for CKD with diabetes: Heart failure requiring hospital admission or intervention of mobile coronary care unit at 47 months; Group 1: 76/2443, Gro	
2: 91/2469; Risk of bias: Low; Indirectness of outcome: No indirectness	
- Actual outcome for CKD with diabetes: Revascularisation (cardiac or peripheral) at 47 months; Group 1: 179/2443, Group 2: 201/2469; Risk of bias: Low; Indirect	
of outcome: No indirectness	
Protocol outcome 3: Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum	
	ge renal failure at 47 months; Group 1: 4/2443, Group 2: 10/2469; Risk of bias: Low; Indirectness of outcome: No
indirectness	
Protocol outcomes not reported by the study	Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months
	minimum; Acute kidney injury (Critical) at 12 months minimum; Change in proteinuria (ACR, PCR or 24 hour urinary
	protein) (Important) at 12 months minimum; Health related quality of life (Important) at 12 months minimum
Table 110: Matsuda 2003	

Study

Matsuda 2003⁴³¹

125

Matsuda 2003 ⁴³¹
RCT (Patient randomised; Parallel)
1 (n=62)
Conducted in Japan; Setting: Outpatient centres
Unclear
Intervention time: 96 weeks
Adequate method of assessment/diagnosis: Urinary protein excretion
CKD without diabetes: HT + proteinuria (diabetes excluded)
Not applicable
Hypertension (>140/90mmHg); proteinuria (>0.5g/day); serum creatinine level <265 micromol/L; creatinine clearance >30ml/min/1.72 m ²
Diabetic nephropathy, polycystic kidney disease, chronic pyelonephritis
Not stated
Age - Other: Mean (SEM): perindopril 51 (4); trandolapril 50 (5); candesartan 58 (5); losartan 51 (3). Gender (M:F): 33/62 (53%) male. Ethnicity: Not stated
1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Mean GFR not reported; mean (SEM) urinary protein excretion: perindopril 2.7 (0.5) g/d; trandolapril 2.7 (0.5) g/d; candesartan 3.0 (0.6) g/d; losartan 2.5 (0.4) g/d
No indirectness

(n=15) Intervention 1: ACE inhibitors - Perindopril. Perinodpril 2mg/d, titrated to acheive BP <135/85mmHg; final dose not stated. Duration 96 weeks. Concurrent medication/care: Some (14/62 in total but not shown by treatment group) had anitplatelet therapy (dipyridamole or dilazep dihydrochloride)

(n=15) Intervention 2: ACE inhibitors - Trandolapril. Trandolapril 0.5mg/d, titrated to achieve BP < 135/85mmHg; final dose not stated. Duration 96 weeks. Concurrent medication/care: Some (14/62 in total but not shown by treatment

Study

Study type

Countries and setting

Subgroup analysis within study

Recruitment/selection of patients

Age, gender and ethnicity

Further population details

Indirectness of population

Line of therapy Duration of study

Inclusion criteria

Exclusion criteria

Extra comments

Interventions

Stratum

Number of studies (number of participants)

Method of assessment of guideline condition

Study	Matsuda 2003 ⁴³¹
	group) had anitplatelet therapy (dipyridamole or dilazep dihydrochloride)
	(n=15) Intervention 3: Angiotensin-II receptor blockers - Losartan. Losartan 25ng/d, titrated to achieve BP
	<135/85mmHg; final dose not stated. Duration 96 weeks. Concurrent medication/care: Some (14/62 in total but not
	shown by treatment group) had anitplatelet therapy (dipyridamole or dilazep dihydrochloride)
	(n=17) Intervention 4: Angiotensin-II receptor blockers - Candesartan. Candesartan cilexetil 4mg/d, titrated to achieve BP < 135/85mmHg; final dose not stated. Duration 96 weeks. Concurrent medication/care: Some (14/62 in total but not shown by treatment group) had anitplatelet therapy (dipyridamole or dilazep dihydrochloride)
Funding	Funding not stated
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: PERINDOPRIL versus TRANDOLAPRIL	
Protocol outcome 1: Change in proteinuria (ACR	, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD without diabetes: Change in proteinuria (%) at 96 weeks; Group 1: mean -60 % (SD 27.1); n=15, Group 2: mean -53 % (SD 27.1); n=15; Risk of bias: Low; Indirectness of outcome: No indirectness

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: PERINDOPRIL versus LOSARTAN

Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD without diabetes: Change in proteinuria (%) at 96 weeks; Group 1: mean -60 % (SD 27.1); n=15, Group 2: mean -36 % (SD 15.5); n=15; Risk of bias: Low; Indirectness of outcome: No indirectness

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: PERINDOPRIL versus CANDESARTAN

Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD without diabetes: Change in proteinuria (%) at 96 weeks; Group 1: mean -60 % (SD 27.1); n=15, Group 2: mean -49 % (SD 20.6); n=17; Risk of bias: Low; Indirectness of outcome: No indirectness

Study	Matsuda 2003 ⁴³¹
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: TRANDOLAPRIL versus LOSARTAN	
Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD without diabetes: Change in proteinuria (%) at 96 weeks; Group 1: mean -53 (SD 27.1); n=15, Group 2: mean -36 (SD 15.5); n=15; Risk of bias: Low; Indirectness of outcome: No indirectness	
RESULTS (NUMBERS ANALYSED) AND RISK OF BI	AS FOR COMPARISON: TRANDOLAPRIL versus CANDESARTAN
Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD without diabetes: Change in proteinuria (%) at 96 weeks; Group 1: mean -53 % (SD 27.1); n=15, Group 2: mean -49 % (SD 20.6); n=17; Risk of bias: Low; Indirectness of outcome: No indirectness	
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: CANDESARTAN versus LOSARTAN	
Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD without diabetes: Change in proteinuria (%) at 96 weeks; Group 1: mean -49 (SD 20.6); n=17, Group 2: mean -36 (SD 15.5); n=15; Risk o bias: Low; Indirectness of outcome: No indirectness	
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum
Table 111: Muirhead 1999	

Study

Muirhead 1999⁴⁵⁹

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

Study	Muirhead 1999 ⁴⁵⁹
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=122)
Countries and setting	Conducted in Canada; Setting: Outpatient clinics
Line of therapy	Mixed line
Duration of study	Intervention time: 52 weeks
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Albumin excretion rate
Stratum	CKD with diabetes: Type 2 diabetes and "incipient diabetic nephropathy": albumin excretion rate 20-300 microg/min with GFR 60ml/min/1.73m ²
Subgroup analysis within study	Not applicable
Inclusion criteria	18 years or older; type 2 diabetes; "incipient diabetic nephropathy": albumin excretion rate 20-300 microg/min with GFR 60ml/min/1.73m ² ; sitting BP 160/95mmHg or less (treated or untreated); women of childbearing potential included if using effective birth control not based on combined oestrogen/progestogen; if on ACE or calcium channel blockers, these had to be discontinued for 28 days before randomisation
Exclusion criteria	"Brittle" diabetes (i.e. increased risk of hypoglycaemia) or history of non-compliance
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Valsartan 80mg 53.7 (9.5); valsartan 160mg 58.3 (9.5); captopril 56.7 (10.0); placebo 55.5 (11.3). Gender (M:F): 89/122 (73%) male. Ethnicity: 90% White; 1% Black; 4% Asian; 5% Other
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline geometric mean measured GFR: valsartan 80mg 101.5ml/min/1.73m ² ; valsartan 180mg 83.1; captopril 88.1; placebo 86.7
Indirectness of population	No indirectness
Interventions	 (n=31) Intervention 1: Angiotensin-II receptor blockers - Valsartan. Valsartan 80mg once daily. Duration 52 weeks. Concurrent medication/care: Glycaemic control maintained with patient's usual treatment; use of antihypertensives (except diuretics or beta-blockers), oestrogen replacement therapy or thyroid medication <6 months before trial entry

Study	Muirhead 1999 ⁴⁵⁹
	was prohibited. 32.3% taking antihypertensives during trial.
	(n=31) Intervention 2: Angiotensin-II receptor blockers - Valsartan. Valsartan 180mg once daily. Duration 52 weeks. Concurrent medication/care: Glycaemic control maintained with patient's usual treatment; use of antihypertensives (except diuretics or beta-blockers), oestrogen replacement therapy or thyroid medication <6 months before trial entry was prohibited. 29.0% taking antihypertensives during trial.
	(n=29) Intervention 3: ACE inhibitors - Captopril. Captopril 25mg three times daily. Duration 52 weeks. Concurrent medication/care: Glycaemic control maintained with patient's usual treatment; use of antihypertensives (except diuretics or beta-blockers), oestrogen replacement therapy or thyroid medication <6 months before trial entry was prohibited. 37.9% taking antihypertensives during trial.
	(n=31) Intervention 4: Placebo. Placebo. Duration 52 weeks. Concurrent medication/care: Glycaemic control maintained with patient's usual treatment; use of antihypertensives (except diuretics or beta-blockers), oestrogen replacement therapy or thyroid medication <6 months before trial entry was prohibited. 54.8% taking antihypertensives during trial.
Funding	Study funded by industry (Novartis Pharma AG, Basel, Switzerland)

Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD with diabetes: Progression to clinical proteinuria at 52 weeks; Group 1: 1/31, Group 2: 1/29; Risk of bias: Low; Indirectness of outcome: No

indirectness

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: VALSARTAN versus PLACEBO

Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD with diabetes: Progression to clinical proteinuria at 52 weeks; Group 1: 1/31, Group 2: 3/31; Risk of bias: Low; Indirectness of outcome: No

Study	Muirhead 1999 ⁴⁵⁹		
indirectness			
RESULTS (NUMBERS ANALYSED) AND RISK OF BI	AS FOR COMPARISON: CAPTOPRIL versus PLACEBO		
Protocol outcome 1: Change in proteinuria (ACR	8, PCR or 24 hour urinary protein) (Important) at 12 months minimum		
- Actual outcome for CKD with diabetes: Progres	- Actual outcome for CKD with diabetes: Progression to clinical proteinuria at 52 weeks; Group 1: 1/29, Group 2: 3/31; Risk of bias: Low; Indirectness of outcome: No		
indirectness			
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum		

Table 112: Nakamura 2010

Study	Nakamura 2010 ⁴⁶⁷
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=30)
Countries and setting	Conducted in Japan; Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 12 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Renal biopsy, clinical history
Stratum	CKD without diabetes: Non-diabetic CKD + HT
Subgroup analysis within study	Not applicable
Inclusion criteria	Non-diabetic CKD (diagnosed by renal biopsy and/or clinical history) with mild renal insufficiency; hypertension

Study	Nakamura 2010 ⁴⁶⁷
Exclusion criteria	Clinical or laboratory evidence of underlying systemic disease including collagen disease or liver disease
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Telmisartan 35 (7); enalapril 36 (8). Gender (M:F): 20/30 (67%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Mean eGFR (modified MDRD formula) 80ml/min
Indirectness of population	No indirectness
Interventions	 (n=15) Intervention 1: Angiotensin-II receptor blockers - Telmisartan. Telmisartan 80mg once daily. Duration 12 months. Concurrent medication/care: Patients on antihypertensive therapy kept at same doses except ACEI or ARB withdrawn. Diuretics 7/15; calcium antagonist 10/15; alpha blocker 4/15; beta blocker 2/15; other 3/15; statin 7/15; antiplatelet 11/15; allopurinol 3/15; steroid 3/15. (n=15) Intervention 2: ACE inhibitors - Enalapril. Enalapril 10mg once daily. Duration 12 months . Concurrent medication/care: Patients on antihypertensive therapy kept at same doses except ACEI or ARB withdrawn. Diuretics 7/15; calcium antagonist 10/15; beta blocker 2/15; other 3/15; statin 7/15; antiplatelet 11/15; allopurinol 3/15; steroid 3/15.
Funding	Funding not stated
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 113: Nakamura 2010

Study	Nakamura 2010 ⁴⁶⁸
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=68)
Countries and setting	Conducted in Japan; Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 12 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion rate
Stratum	CKD with diabetes: Type 2 diabetes + HT + microalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Type 2 diabetes + HT (BP > 140/90mmHg despite antihypertensive drugs [not ACEI or ARB])+ microalbuminuria
Exclusion criteria	Serum creatinine >1.2mg/dL or 24 hour creatinine clearance <80ml/min; malignancy, heart disease, cerebrovascular disease, liver disease or systemic disease (e.g. collagen disease)
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): 54 (13). Gender (M:F): 38/68 (56%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Mean GFR not stated; urinary albumin excretion: losartan 109.8 (42.9); candesartan 104.0 (42.4); olmesartan 104.2 (45.0); telmisartan 108.7 (32.6) microg/min
Indirectness of population	No indirectness
Interventions	(n=17) Intervention 1: Angiotensin-II receptor blockers - Losartan. Losartan 100mg/d. Duration 12 months. Concurrent medication/care: Other antihypertensive drugs (except ACEI) could be added to attain target BP <130/80mmHg. Calcium channel blocker 41.2%, alpha blocker 23.5%; diuretic 47.1%; other antihypertensive 17.6%; insulin 29.4%; pioglitazone 35.3%; voglibose 23.5%; glibenclamide 35.3%; antiplatelet 29.4%; statin 35.3%

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

Study	Nakamura 2010 ⁴⁶⁸	
	(n=17) Intervention 2: Angiotensin-II receptor blockers - Candesartan. Candesartan 12mg/d. Duration 12 months. Concurrent medication/care: Other antihypertensive drugs (except ACEI) could be added to attain target BP <130/80mmHg. Calcium channel blocker 35.3%, alpha blocker 23.5%; diuretic 47.1%; other antihypertensive 17.6%; insulin 23.5%; pioglitazone 29.4%; voglibose 29.4%; glibenclamide 41.2%; antiplatelet 29.4%; statin 41.2%	
	(n=17) Intervention 3: Angiotensin-II receptor blockers - Olmesartan. Olmesartan 40mg/d. Duration 12 months. Concurrent medication/care: Other antihypertensive drugs (except ACEI) could be added to attain target BP	
	<130/80mmHg. Calcium channel blocker 41.2%, alpha blocker 17.6%; diuretic 41.2%; other antihypertensive 23.5%;	
	insulin 29.4%; pioglitazone 29.4%; voglibose 23.5%; glibenclamide 41.2%; antiplatelet 23.5%; statin 35.3%	
	(n=17) Intervention 4: Angiotensin-II receptor blockers - Telmisartan. Telmisartan 80mg/d. Duration 12 months. Concurrent medication/care: Other antihypertensive drugs (except ACEI) could be added to attain target BP <130/80mmHg. Calcium channel blocker 35.3%, alpha blocker 17.6%; diuretic 41.2%; other antihypertensive 17.6%; insulin 23.5%; pioglitazone 29.4%; voglibose 29.4%; glibenclamide 35.3%; antiplatelet 23.5%; statin 35.3%	
Funding	Funding not stated	
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: CANDESARTAN versus OLMESARTAN Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD with diabetes: Urinary albumin excretion at 12 months; Risk of bias: Unclear; Indirectness of outcome: No indirectness		
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12	

minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 114: Nankervis 1998

Study	Nankervis 1998 ⁴⁷⁰
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=40)
Countries and setting	Conducted in Australia; Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 3 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion
Stratum	CKD with diabetes: Type 1 or type 2 diabetes + microalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Non-insulin dependent or insulin-dependent diabetes; age 18-65 years; microalbuminuria (urinary albumin excretion 20-200mg/L); stable glycaemic control; normotensive or hypertensive
Exclusion criteria	Non-diabetic renal disease or other major disease; previous treatment with ACEI
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Other: Mean (SEM) perindopril 43 (3); placebo 49 (3). Gender (M:F): 32/40 (80%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline mean (SEM) measured GFR: perindopril 91 (7); placebo 96 (8)
Indirectness of population	No indirectness
Interventions	(n=20) Intervention 1: ACE inhibitors - Perindopril. Perindopril 4mg once daily. Duration 3 years. Concurrent medication/care: If BP became or remained elevated, other antihypertensive medication added: 10 patients received calcium channel blockers, beta blockers, alpha blockers or diuretics
	(n=20) Intervention 2: Placebo. Placebo. Duration 3 years. Concurrent medication/care: If BP became or remained elevated, other antihypertensive medication added: 7 patients received calcium channel blockers, beta blockers,

ואמנוטרומו כווחוכמו שעומפווחפ כפרונרפ בטב4

Study	Nankervis 1998 ⁴⁷⁰
	alpha blockers or diuretics
Funding	Study funded by industry (Servier Laboratories Australia)
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: PERINDOPRIL versus PLACEBO Protocol outcome 1: Progression of CKD (change in eGFR) (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: GFR at 3 years; Group 1: mean 82 ml/min (SD 33); n=17, Group 2: mean 90 ml/min (SD 26.2); n=14; Risk of bias: Unclear; Indirectness of outcome: No indirectness Protocol outcome 2: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD with diabetes: Urinary albumin excretion rate at 3 years; Group 1: mean 3.2 microg/min (natural log) (SD 3.4); n=17, Group 2: mean 4.8 microg/min (natural log) (SD 2.5); n=14; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12

Table 115: O'hare 2000

Study	O'hare 2000 ⁵⁰²
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=134)
Countries and setting	Conducted in Irish Republic, United Kingdom; Setting: Outpatient clinics
Line of therapy	1st line
Duration of study	Intervention time: 2 years

minimum; Health related quality of life (Important) at 12 months minimum

months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months

Study	O'hare 2000 ⁵⁰²
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion
Stratum	CKD with diabetes: Type 1 diabetes + microalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Type 1 diabetes; microalbuminuria (AER 20-200microg/min in 2 of 3 collections); untreated BP <150/90mmHg for patients under 50 years and <165/90mmHg for patients 50-65 years
Exclusion criteria	Pregnant or lactating; women of childbearing potential not using adequate contraception; concomitant therapy for hypertension; NSAIDs; history of drug or alcohol abuse; other known renal disease or raised creatinine levels (>120micromol/L) or liver function tests twice that of normal on repeat testing; iodine sensitivity (unable to participate in GFR measurements)
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Ramipril 5mg: 40 (13); ramipril 1.25mg: 40 (11); placebo 40 (12). Gender (M:F): 95/134 (71%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline mean (SD) measured GFR: ramipril 5mg: 109 (29); ramipril 1.25mg: 104 (26); placebo 100 (23) ml/min
Indirectness of population	No indirectness
Interventions	(n=44) Intervention 1: ACE inhibitors - Ramipril. Ramipril 5mg . Duration 2 years. Concurrent medication/care: None stated
	(n=44) Intervention 2: ACE inhibitors - Ramipril. Ramipril 1.25mg. Duration 2 years. Concurrent medication/care: None stated
	(n=46) Intervention 3: Placebo. Placebo. Duration 2 years. Concurrent medication/care: None stated
Funding	Study funded by industry (Hoechst Marion Rousel (Aventis))

ועמנוטחמו כווחוכמו סטומפווחפ כפחורפ בטדק

Study		O'hare 2000 ⁵⁰²
RESULTS (NUMBERS ANALYSED) AND RISK OF BI	AS FOR COMPARISON: RAMIPRIL versus PLACEBO
Protocol outcome 1: Cardiovaso	cular events (Crit	ical) at 12 months minimum
	diabetes: Myocar	rdial infarction (ramipril 5mg) at 2 years; Group 1: 1/44, Group 2: 1/46; Risk of bias: Low; Indirectness of outcome: No
indirectness - Actual outcome for CKD with o No indirectness	diabetes: Myocar	rdial infarction (ramipril 1.25mg) at 2 years; Group 1: 2/44, Group 2: 1/46; Risk of bias: Low; Indirectness of outcome:
•		a, PCR or 24 hour urinary protein) (Important) at 12 months minimum ssion to macroalbuminuria (ramipril 5mg) at 2 years; Group 1: 4/44, Group 2: 5/46; Risk of bias: Low; Indirectness of
	diabetes: Progres	ssion to macroalbuminuria (ramipril 1.25mg) at 2 years; Group 1: 2/44, Group 2: 5/46; Risk of bias: Low; Indirectness of
- Actual outcome for CKD with o outcome: No indirectness	diabetes: Regress	sion to normoalbuminuria (ramipril 5mg) at 2 years; Group 1: 9/44, Group 2: 2/46; Risk of bias: Low; Indirectness of
- Actual outcome for CKD with o outcome: No indirectness	diabetes: Regress	sion to normoalbuminuria (ramipril 1.25mg) at 2 years; Group 1: 5/44, Group 2: 2/46; Risk of bias: Low; Indirectness of
Protocol outcomes not reporter	d by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 116: Parving 2001

Study	Parving 2001 ⁵²⁷
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=590)

Study	Parving 2001 ⁵²⁷
Countries and setting	Conducted in Multiple countries; Setting: Outpatient clinics
Line of therapy	Mixed line
Duration of study	Intervention time: 2 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion
Stratum	CKD with diabetes: Type 2 diabetes + HT + microalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Age 30-70 years; hypertension (2 of 3 BP readings 1 week apart >135/85mmHg); type 2 diabetes; albumin excretion rate 20-200microg/min in 2 of 3 consecutive sterile overnight urine samples; serum creatinine no more than 1.5mg/dL for men or 1.1mg/dL for women
Exclusion criteria	Non-diabetic kidney disease, cancer, life-threatening disease with death expected within 2 years, indication for ACEI or ARB
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): 300mg irbesartan 57.3 (7.9); 150mg irbesartan 58.4 (8); placebo 58.3 (8.7). Gender (M:F): 404/590 (68%) male. Ethnicity: White: 300mg irbesartan 96.4%; 150mg irbesartan 97.4%; placebo 98.0%; the rest non-white
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Indirectness of population	No indirectness
Interventions	(n=194) Intervention 1: Angiotensin-II receptor blockers - Irbesartan. Irbesartan 300mg daily (increased to target level in two stages lasting 2 weeks each). Duration 2 years. Concurrent medication/care: Single-blind 3 week run in period during which antihypertensive treatments stopped and replaced by placebo. By end of study, 43.3% on any antihypertensive drugs (19.1% diuretics, 13.4% beta-blockers, 23.2% calcium channel blockers, 17.5% other). Glucose lowering: diet 12.4%, oral antidiabetic drugs 54.6%, insulin + oral 16.5%, insulin alone 16.5%). Lipid lowering drugs: any 24.2%, statin alone 14.9%, fibrate alone 7.2%, statin and fibrate 2.1%. Aspirin (325mg daily or less) 16.5%. (n=195) Intervention 2: Angiotensin-II receptor blockers - Irbesartan. Irbesartan 300mg daily (increased to target level in two stages lasting 2 weeks each). Duration 2 years. Concurrent medication/care: Single-blind 3 week run in period

Study	Parving 2001 ⁵²⁷
	during which antihypertensive treatments stopped and replaced by placebo. By end of study, 45.1% on any antihypertensive drugs (21.5% diuretics, 13.8% beta-blockers, 17.9% calcium channel blockers, 11.3% other). Glucose lowering: diet 10.8%, oral antidiabetic drugs 51.8%, insulin + oral 19.0%, insulin alone 18.5%). Lipid lowering drugs: any 26.7%, statin alone 19.0%, fibrate alone 5.6%, statin and fibrate 2.1%. Aspirin (325mg daily or less) 21.5%. (n=201) Intervention 3: Placebo. Placebo. Duration 2 years. Concurrent medication/care: Single-blind 3 week run in period during which antihypertensive treatments stopped and replaced by placebo. By end of study, 56.2% on any antihypertensive drugs (25.4% diuretics, 18.9% beta-blockers, 27.4% calcium channel blockers, 14.9% other). Glucose lowering: diet 10.4%, oral antidiabetic drugs 45.8%, insulin + oral 17.4%, insulin alone 26.4%). Lipid lowering drugs: any 25.9%, statin alone 18.9%, fibrate alone 6.0%, statin and fibrate 1.0%. Aspirin (325mg daily or less) 14.4%.
Funding	Study funded by industry (Sanofi-Synthelabo and Bristol-Myers Squibb)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: IRBESARTAN versus PLACEBO

Protocol outcome 1: Cardiovascular events (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: Non-fatal cardiovascular events (irbesartan 300mg) at 2 years; Group 1: 9/194, Group 2: 17/201; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD with diabetes: Progression to macroalbuminuria (irbesartan 300mg) at 2 years; Group 1: 10/194, Group 2: 30/201; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Progression to macroalbuminuria (irbesartan 150mg) at 2 years; Group 1: 19/195, Group 2: 30/201; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Regression to normoalbuminuria (irbesartan 300mg) at 2 years; Group 1: 66/194, Group 2: 42/201; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Regression to normoalbuminuria (irbesartan 150mg) at 2 years; Group 1: 47/195, Group 2: 42/201; Risk of bias: Low; Indirectness of outcome: No indirectness

ועמרוסדומו כוונדוכמו פתומפוונופ

רהווווה

ZUT4

e	in	

Chronic kidney disease Clinical evidence tables

Study	Parving 2001 ⁵²⁷
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Progression of CKD (measured by
	occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury
	(Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 117: Parving 2012

Study	Parving 2012 ⁵³¹
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=8606)
Countries and setting	
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: Median 32.9 months.
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: MDRD equation
Stratum	CKD with diabetes
Subgroup analysis within study	Not applicable
Inclusion criteria	35 years old or older, with type II diabetes and evidence of microalbuminuria, macroalbuminuria or cardiovascular disease concomitant treatment must include an ACE inhibitor or an ARB.
Exclusion criteria	Serum potassium >5.0 mmol/L. History of any cardiovascular event (stroke, transient ischemic cerebral attack, MI, unstable angina, CABG, PCI, hospitalization due to HF) during the 3 months prior. Untreated hypertension. Second or third degree heart block without a pacemaker. Clinically significant valvular heart disease. Renal artery stenosis. Type I diabetes.
Recruitment/selection of patients	4-12 week screening period to confirm eligibility.
Age, gender and ethnicity	Age - Mean (SD): 64.5+/-9.7. Gender (M:F): 68% male, 32% female. Ethnicity: 57% caucasian, 3.25% black, 31.7% Asian, 8% other.

Study	Parving 2012 ⁵³¹
Further population details	 Black and minority ethnic groups: Mixed 2. Older people aged 75 or over: Not applicable / Not stated / Unclear 3. People with cardiovascular disease: Mixed (People at high risk of cardiovascular disease.). 4. People with diabetes and proteinuria: People with diabetes and ACR >3.0mg/mmol (All participants had diabetes and micro or macroalbuminuria). 5. People with hypertension: Blood pressure <140/90mmHg (Treated hypertension allowed.). 6. People with proteinuria : ACR 3-30 mg/mmol (Mean at baseline 206mg/g (20.6 mg/mmol)).
Extra comments	At baseline, mean systolic blood pressure: 137/74, eGFR: 57ml/min/1.73m ² , ACR: 207mg/g.
Indirectness of population	No indirectness: 98% of participants had CKD
Interventions	 (n=4274) Intervention 1: Direct renin inhibitors - Aliskiren. 150mg once daily, increased to 300mg at 4 weeks. Duration Median 32.9 months. Concurrent medication/care: Concommitent treatment must include either an ACE inhibitor or an ARB. (n=4287) Intervention 2: Placebo. Placebo. Duration Median 32.9 months. Concurrent medication/care: Concomitant treatment must include either an ACE inhibitor or an ARB
Funding	Study funded by industry (Novartis.)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ALISKIREN versus PLACEBO

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: All-cause mortality at Median 32.9 years; HR 1.06 (95%CI 0.92 to 1.23) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Cardiovascular mortality at Median 32.9 months; HR 1.16 (95%CI 0.96 to 1.39) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Cardiovascular events (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: Cardiac arrest with resuscitation at Median 32.9 months; HR 2.4 (95%CI 1.05 to 5.48) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Myocardial infarction (fatal or non-fatal) at Median 32.9 months; HR 1.04 (95%CI 0.83 to 1.31) Reported; Risk of bias: Low;

Study	Parving 2012 ⁵³¹	
Indirectness of outcome: Serious indirectness - Actual outcome for CKD with diabetes: Stroke (fatal or nonfatal) at Median 32.9 months; HR 1.22 (95%CI 0.96 to 1.55) Reported; Risk of bias: Low; Indirectness of outcome: Serious indirectness		
- Actual outcome for CKD with diabetes: ESRD, d	red by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum leath attributable to kidney failure, or loss of kidney function (need for RRT with no dialysis or transplant available or ICI 0.84 to 1.4) Reported; Risk of bias: Low; Indirectness of outcome: Serious indirectness	
Protocol outcome 4: Progression of CKD (change in eGFR) (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: Doubling of baseline serum creatinine at Median 32.9 months; HR 0.97 (95%CI 0.8 to 1.17) Reported; Risk of bias: Low; Indirectness of outcome: Serious indirectness		
Protocol outcome 5: Hospitalisation (Important) at 12 months minimum - Actual outcome for CKD with diabetes: Unplanned hospitalisation for heart failure at Median 32.9 months; HR 0.95 (95%CI 0.78 to 1.14) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness		
Protocol outcomes not reported by the study	Acute kidney injury (Critical) at 12 months minimum; Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum; Health related quality of life (Important) at 12 months minimum	

Table 118: Penno 1998

Study	Penno 1998 ⁵³⁸
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=75)
Countries and setting	Conducted in Multiple countries; Setting: Outpatient clinics
Line of therapy	Unclear
Duration of study	Intervention time: 2 years

Study	Penno 1998 ⁵³⁸
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion
Stratum	CKD with diabetes: Type 1 diabetes + microalbuminuria
Subgroup analysis within study	Post-hoc subgroup analysis: Microalbuminuria
Inclusion criteria	Non-hypertensive (diastolic BP 75-90mmHg; systolic 155mmHg or less); type 1 diabetes; age 20-59 years
Exclusion criteria	None other
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Range: 20-59 years. Gender (M:F): 308/530 (58%) male in whole study (not shown for subgroup). Ethnicity: Not stated
Further population details	 Black and minority ethnic groups: Older people aged 75 or over: People with cardiovascular disease: People with diabetes and proteinuria: Mixed (Microalbuminuria subgroup; all type 1 diabetes). People with hypertension: People with proteinuria:
Indirectness of population	No indirectness
Interventions	(n=41) Intervention 1: ACE inhibitors - Lisinopril. Lisinopril 10mg; at 3 months, dose could be increased to 20mg if diastolic BP did not fall below target level of 75mmHg Duration 2 years. Concurrent medication/care: Not stated (n=34) Intervention 2: Placebo. Placebo. Duration 2 years. Concurrent medication/care: Not stated
Funding	Study funded by industry (Zeneca Pharmaceuticals)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: LISINOPRIL versus PLACEBO

Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD with diabetes: Progression to macroalbuminuria at 2 years; Group 1: 3/41, Group 2: 6/34; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Regression to normoalbuminuria at 2 years; Group 1: 19/41, Group 2: 11/34; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Study	Penno 1998 ⁵³⁸
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 119: PREVEND IT trial: Asselbergs 2004

Study	PREVEND IT trial: Asselbergs 2004 ⁴²
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=864)
Countries and setting	Conducted in Netherlands; Setting: Outpatient clinics.
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 4 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: 24 hour urinary albumin excertion
Stratum	CKD without diabetes: 2.55% had diabetes melitus
Subgroup analysis within study	Not applicable
Inclusion criteria	Persistent microalbuminuria (>10mg/L in 1 early morning sample and 15-300 mg/24 hours in 2 24 hour urine samples), blood pressure <160/100 mmHg and no use of antihypertensive medication, total cholesterol level <8mmol/L or <5mmol/L in case of previous myocardial infarction, no use of lipid lowering medication.
Exclusion criteria	Creatinine clearance <60 [^] of the normal age-adjusted value and use of ACE inhibitors or angiotensin II receptior antagonists.
Recruitment/selection of patients	Questionnaire sent to all inhibitants of Groningen, of those that replied all who met the inclusion citeria were invited to an outpaithe appointment to confirm inclusion criteria and for randomisation.

ואמנוטדומו כוודווכמו שעומפוודופ כפרונדפ בטד4

Study	PREVEND IT trial: Asselbergs 2004 ⁴²
Age, gender and ethnicity	Age - Mean (SD): Placebo: 51.5 (11.4), Fosinopril: 51.1 (12.2). Gender (M:F): 64.9% male. Ethnicity: 96% white
Further population details	 Black and minority ethnic groups: Not applicable / Not stated / Unclear (Only states 96% white.). Older people aged 75 or over: Not applicable / Not stated / Unclear 3. People with cardiovascular disease: People without cardiovascular disease (People at increased risk of cardiovascular disease). People with hypertension: Blood pressure <140/90mmHg (Cut off was 160/100mmHg). People with proteinuria : ACR >30 mg/mmol (15-300mg/mmol).
Extra comments	Study is a 2x2 factorial design also including pravastatin. Pravastatin results not reported here (not in protocol). Compliance considered as >75% of supplied study medication being taken.
Indirectness of population	No indirectness
Interventions	(n=433) Intervention 1: Placebo. Placebo. Duration 4 years. Concurrent medication/care: 5.2% received an open label ACE inhibitor and 3.5% received open-label statin as prescribed by their general pysicians (not stated which treatment arm).
	(n=431) Intervention 2: ACE inhibitors - Fosinopril. 20mg. Duration 4 years. Concurrent medication/care: 5.2% received an open label ACE inhibitor and 3.5% received open-label statin as prescribed by their general pysicians (not stated which treatment arm).
Funding	Study funded by industry (Unrestricted grant rom Bristol-Myers Squibb and grants from the Dutch kidney Foundation an Netherlands Heart Foundation)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: PLACEBO versus FOSINOPRIL

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum

- Actual outcome for CKD without diabetes: Cardiovascular mortality and hospitalisation for carvdioascular morbidity. at Mean 46+7 months; HR 0.6 (95%CI 0.33 to 1.1) Reported; Risk of bias: Low; Indirectness of outcome: Serious indirectness

- Actual outcome for CKD without diabetes: Cardiovascular mortality at 4 years; Group 1: 3/433, Group 2: 5/431; Risk of bias: Low; Indirectness of outcome: Serious indirectness

Study	PREVEND IT trial: Asselbergs 2004 ⁴²
years; Group 1: 25/433, Group 2: 14/431; Risk of Protocol outcome 3: Change in proteinuria (ACR	pitalisation for non-fatal myocardial infarction, heart failure, peripheral vascular disease or cerebroascular accident. at 4 of bias: Low; Indirectness of outcome: Serious indirectness , PCR or 24 hour urinary protein) (Important) at 12 months minimum dian urinary albumin excretion (mg/24 hours) Final values at 4 years; Other: Placebo: 23.2 (13.4-42.6), Fosinopril: 18.6
Protocol outcomes not reported by the study	Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 120: Ravid 1993

Study	Ravid 1993 ⁵⁶⁶
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=94)
Countries and setting	Conducted in Israel; Setting: Outpatient clinics
Line of therapy	1st line
Duration of study	Intervention time: 5 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Albumin excretion rate
Stratum	CKD with diabetes: Type 2 diabetes + microalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Age < 50 years; Duration of type 2 diabetes < 10 years ; BMI <27kg/m ² ; normal BP on 2 occasions (140/90mmHg or

Study	Ravid 1993 ⁵⁶⁶
	less, mean BP <107mmHg); serum creatinine <1.4mg/dL; urinary protein excretion 30-300 mg/24 hours on 2 visits without evidence of urinary tract infection
Exclusion criteria	Systemic, renal, cardiac or hepatic disease
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Enalapril 43.5 (3); placebo 44.8 (3.5). Gender (M:F): 42/94 (45%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Indirectness of population	No indirectness
Interventions	(n=56) Intervention 1: ACE inhibitors - Enalapril. Enalapril 10mg daily. Duration 5 years. Concurrent medication/care: Overall, 16 patients received insulin, 43 oral antidiabetic drugs, 49 diet for diabetes (not shown by intervention/control group).
	(n=52) Intervention 2: Placebo. Placebo. Duration 5 years. Concurrent medication/care: Overall, 16 patients received insulin, 43 oral antidiabetic drugs, 49 diet for diabetes (not shown by intervention/control group).
Funding	Other (Nissenson-Tyomkin medical research grant)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ENALAPRIL versus PLACEBO

Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD with diabetes: Progression to macroalbuminuria at 5 years; Group 1: 6/49, Group 2: 19/45; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Urinary albumin excretion at 5 years; Group 1: mean 140 mg/24 hours (SD 104); n=49, Group 2: mean 310 mg/24 hours (SD 167); n=45; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months
	minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12

Study	Ravid 1993 ⁵⁶⁶
	months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important)
	at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important)
	at 12 months minimum

Table 121: Shen 2012

Study	Shen 2012 ⁶²⁹
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=238)
Countries and setting	Conducted in China; Setting: Outpatient clinics
Line of therapy	1st line
Duration of study	Intervention time: 12 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: eGFR (modified MDRD formula)
Stratum	CKD without diabetes: eGFR 30-59ml/min/1.73m ²
Subgroup analysis within study	Not applicable
Inclusion criteria	Age 18-70 years; stage 3 CKD (either eGFR <60ml/min/1.73m ² or kidney damage for >3 months, biopsy proven or with clear clinical presentation); eGFR 39059ml/min/1.73m ² ; BP 140/90mmHg or less; mean arterial pressure <107mmHg; persistent stable non-nephrotic proteinuria (0.5-2.5g/dL)
Exclusion criteria	BP > 140/90mmHg; secondary hypertension; rapidly deteriorating renal function (increase >50% serum creatinine in last 6 months): type 1 or type 2 diabetes; active infection; chronic liver disease; renal allografts; ACEI or ARB initiated for known renal disorders; patients on diuretics, steroids, immunosuppressive therapy or toehr medications
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): 49.8 (11.2). Gender (M:F): 114/226 (50%) male. Ethnicity: All Chinese
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Study	Shen 2012 ⁶²⁹
Extra comments	Baseline eGFR losartan: 44.8 (8.1); placebo 44.5 (8.5)
Indirectness of population	No indirectness
Interventions	 (n=119) Intervention 1: Angiotensin-II receptor blockers - Losartan. Losartan 50mg once daily in the morning. Duration 12 months. Concurrent medication/care: ACEI or ARB washed out for 1 month; 2 week washout for other drugs (n=119) Intervention 2: Placebo. Placebo. Duration 12 months. Concurrent medication/care: ACEI or ARB washed out for 1 month; 2 week washout for other drugs
Funding	Academic or government funding (Several government grants, China)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: LOSARTAN versus PLACEBO

Protocol outcome 1: Progression of CKD (change in eGFR) (Critical) at 12 months minimum

- Actual outcome for CKD without diabetes: eGFR at 12 months; Group 1: mean 44.1 ml/min/1.73m² (SD 7.7); n=112, Group 2: mean 39.1 ml/min/1.73m² (SD 7.4); n=114; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcome 2: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD without diabetes: Proteinuria at 12 months; Group 1: mean 0.99 g/d (SD 0.48); n=112, Group 2: mean 1.64 g/d (SD 0.5); n=114; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD without diabetes: Regression to normoalbuminuria at 12 months; Group 1: 16/112, Group 2: 0/114; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months
	minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12
	months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months
	minimum; Health related quality of life (Important) at 12 months minimum

Table 122: Solomon 2006

Study	Solomon 2006 ⁶⁴³
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=1355)
Countries and setting	Conducted in Unknown; Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: Median 4.8 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: eGFR by 4-variable MDRD formula
Stratum	Overall: CKD (eGFR < 60ml/min/1.73m ²) with or without diabetes
Subgroup analysis within study	Post-hoc subgroup analysis: eGFR <45ml/min/1.73m ² or 45-59.9 ml/min/1.73m ² (or 60-74.9 ml/min/1.73m ² or 75 ml/min/1.73m ² or more)
Inclusion criteria	Define
Exclusion criteria	Define
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): eGFR <45 ml/min/1.73m ² : 70.2 (7.9); eGFR 45-59.9 ml/min/1.73m ² : 68.0 (7.7). Gender (M:F): Define. Ethnicity: 95% white
Further population details	 Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: People with cardiovascular disease (Stable coronary artery disease + reduced GFR). 4. People with diabetes and proteinuria: People with hypertension: 6. People with proteinuria :
Extra comments	1355 patients had reduced eGFR out of total 8280 in trial (157 had eGFR <45 ml/min/1.73m ² and 1198 had eGFR 45- 59.9 ml/min/1.73m ²)
Indirectness of population	No indirectness
Interventions	(n=698) Intervention 1: ACE inhibitors - Trandolapril. Trandolapril target dose 4mg/d; achieved dose not stated. Duration 4.8 years. Concurrent medication/care: eGFR <45 ml/min/1.73m ² (not stated by treatment subgroup): calcium channel blocker 50.3%; beta-blocker 63.1%; aspirin/antiplatelet 84.7%; lipid lowering drug 66.2%; diuretic

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Study	Solomon 2006 ⁶⁴³
	31.8%; HRT 14.0%. eGFR 45-59.9 ml/min/1.73m ² : calcium channel blocker 38.3%; beta-blocker 61.5%;
	aspirin/antiplatelet 90.6%; lipid lowering drug 68.5%; diuretic 20.5%; HRT 7.8%
	Comments: 79 eGFR <45 ml/min/1.73m ² + 619 eGFR 45-59.9 ml/min/1.73m ²
	(n=657) Intervention 2: Placebo. Placebo. Duration 4.8 years. Concurrent medication/care: eGFR <45 ml/min/1.73m ² (not stated by treatment subgroup): calcium channel blocker 50.3%; beta-blocker 63.1%; aspirin/antiplatelet 84.7%; lipid lowering drug 66.2%; diuretic 31.8%; HRT 14.0%. eGFR 45-59.9 ml/min/1.73m ² : calcium channel blocker 38.3%; beta-blocker 61.5%; aspirin/antiplatelet 90.6%; lipid lowering drug 68.5%; diuretic 20.5%; HRT 7.8% Comments: 78 eGFR <45 ml/min/1.73m ² + 579 eGFR 45-59.9 ml/min/1.73m ²
Funding	Other (National Heart, Lung, and Blood Institute and Knoll Pharmaceuticals and Abbott Laboratories)
RESULTS (NUMBERS ANALYSED) AND RISK	OF BIAS FOR COMPARISON: TRANDOLAPRIL versus PLACEBO
Protocol outcome 1: Mortality (all-cause a	nd cardiovascular) (Critical) at 12 months minimum
- Actual outcome: All-cause mortality (eGF	R 45-59.9 ml/min/1.73m ²) at 4.8 years; Group 1: 56/619, Group 2: 72/579; Risk of bias: Unclear; Indirectness of outcome: No

indirectness

- Actual outcome: Cardiovascular mortality (eGFR <45 ml/min/1.73m²) at 4.8 years; Group 1: 11/79, Group 2: 14/78; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome: Cardiovascular mortality (eGFR 45-59.9 ml/min/1.73m²) at 4.8 years; Group 1: 28/619, Group 2: 36/579; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome: All-cause mortality (eGFR <45ml/min/1.73m²) at 4.8 years; Group 1: 13/79, Group 2: 20/78; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage
	renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12
	months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months
	minimum; Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum; Health

Study Solomon 2006⁶⁴³ related quality of life (Important) at 12 months minimum

Table 123: Tobe 2011-2

Study (subsidiary papers)	Tobe 2011-2 ⁶⁷⁶ (Mann 2009 ⁴¹⁷)
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=1480)
Countries and setting	Conducted in Multiple countries; Setting: Outpatient centres
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: Mean 56 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: eGFR by 4-variable MDRD formula
Stratum	Overall: GFR <60ml/min/1.73m ²
Subgroup analysis within study	Post-hoc subgroup analysis: GFR <60ml/min/1.73m ²
Inclusion criteria	Age 55 years or older; coronary, peripheral or cerebrovascular disease or diabetes with end-organ damage; intolerant of ACE inhibitors
Exclusion criteria	Patients who needed ARB; hypersensitive or intolerant to ARB; heart failure; significant valvular or cardiac outflow tract obstruction, constrictive pericarditis, complex congenital heart disease, unexplained syncope, planned cardiac surgery, cardiac revascularisation in last 3 months; systolic BP 160mmHg or more; heart transplant; subarachnoid haemorrhage; known significant renal artery stenosis; serum creatinine >3.0mg/dL; hepatic dysfunction; uncorrected volume depletion or sodium depletion; primary aldosteronism; hereditary fructose intolerance; other major non-cardiac illnessreducing life expectancy or interfering with study; use of another experimental drug; disability/incapacity precluding follow up at clinic; no consent
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): 69.5 (7.2). Gender (M:F): 670/1480 (45.3%) male . Ethnicity: Asian 20.7%; Arab 1.0%; African 1.0%; European 60.9%; Native or Aboriginal 15.1%; Other 1.2%

Study (subsidiary papers)	Tobe 2011-2 ⁶⁷⁶ (Mann 2009 ⁴¹⁷)
Further population details	 Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: People with cardiovascular disease (Coronary, peripheral or cerebrovascular disease or diabetes with end-organ damage). 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Mean eGFR 50.1 (8.2)
Indirectness of population	No indirectness
Interventions	 (n=729) Intervention 1: Angiotensin-II receptor blockers - Telmisartan. Telmisartan 80mg/d. Duration Median 56 months. Concurrent medication/care: Overall (not stated by treatment group): 52.8% statins; 59.9% beta-blockers; 77.5% antiplatelets; 43% diuretics; 41.7% calcium channel blockers (n=751) Intervention 2: Placebo. Placebo. Duration Median 56 months. Concurrent medication/care: Overall (not stated by treatment group): 52.8% statins; 59.9% beta-blockers; concurrent medication/care: Overall (not stated by treatment group): 52.8% statins; 59.9% beta-blockers; 77.5% antiplatelets; 43% diuretics; 41.7% calcium channel blockers; 77.5% antiplatelets; 43% diuretics; 41.7% calcium channel blockers; 77.5% antiplatelets; 43% diuretics; 41.7% calcium channel blockers;
Funding	Study funded by industry (Boehringer Ingelheim)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: TELMISARTAN versus PLACEBO

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum

- Actual outcome: Cardiovascular mortality at 56 months; Group 1: 88/729, Group 2: 83/751; Risk of bias: Unclear; Indirectness of outcome: No indirectness - Actual outcome: All-cause mortality at 56 months; Group 1: 133/729, Group 2: 123/751; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcome 2: Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum - Actual outcome: Chronic dialysis at 56 months; Group 1: 3/729, Group 2: 6/751; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome: Dialiysis or doubling of serum creatinine at 5 years; HR 1.29 (95%CI 0.87 to 1.89) Reported; Risk of bias: ; Indirectness of outcome: No indirectness

Protocol outcome 3: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome: Progression from micro- to macro-albuminuria (microalbuminuria subgroup) at 56 months; Group 1: 28/286, Group 2: 49/273; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Study (subsidiary papers)	Tobe 2011-2 ⁶⁷⁶ (Mann 2009 ⁴¹⁷)
Protocol outcomes not reported by the study	Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 124: Tong 2006

Study	Tong 2006 ⁶⁸⁰
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=38)
Countries and setting	Conducted in Hong Kong (China); Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 2 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Plasma creatinine
Stratum	CKD with diabetes: Type 2 diabetes + moderate renal impairment (plasma creatinine 130-300 micromol/L
Subgroup analysis within study	Not applicable
Inclusion criteria	Type 2 diabetes; age <75; mean plasma creatinine 130-300 micromol/L; treated with oral agents or insulin with stable glycaemic control (HbA1c <10%)
Exclusion criteria	Prior treatmetn with ACEI > 5 years; pregnancy; history of MI; unstable angina or CVA in last 6 months; history of congestive cardiac failure; radiological evidence of obstructive renal disease amenable to surgery or functionally significant renal artery stenosis; microscopic haematuria; urine casts; uncontrolled BP (>200/115mmHg); persistent hyperkalaemia (>5.5mmol/L)
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Fosinopril 65.9 (5.5); placebo 65.7 (6.5). Gender (M:F): 15/38 (39%) male. Ethnicity: Chinese
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4.

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Study	Tong 2006 ⁶⁸⁰
	People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline median (IQR) urinary albumin excretion: fosinopril: 1524 (193-4609); placebo 599 (90-3154) - not stated to be significantly different
Indirectness of population	No indirectness
Interventions	 (n=18) Intervention 1: ACE inhibitors - Fosinopril. Fosinopril 10mg daily, increased to 20mg daily at week 4 Duration 2 years. Concurrent medication/care: 4-week washout of ACEI (if any) before treatment started; from week 4 to week 16, additional antuhypertensive drugs (diuretics, calcium channel blockers, alpha or beta-blockers, centrally acting agents but not ACEI or angiotensin II antagonists) were added or doses increased to meet BP goal of 135/85mmHg. Mean (SD) number of antihypertensive drugs (including test drug): 2 (1). (n=20) Intervention 2: Placebo. Placebo. Duration 2 years. Concurrent medication/care: 4-week washout of ACEI (if any) before treatment started; from week 4 to week 16, additional antuhypertensive drugs (diuretics, calcium channel blockers, alpha or beta-blockers, calcium channel blockers, alpha or beta-blockers, centrally acting agents but not ACEI or angiotensin II antagonists) were added or doses increased to meet BP goal of 135/85mmHg. (n=20) Intervention 2: Placebo. Placebo. Duration 2 years. Concurrent medication/care: 4-week washout of ACEI (if any) before treatment started; from week 4 to week 16, additional antuhypertensive drugs (diuretics, calcium channel blockers, alpha or beta-blockers, centrally acting agents but not ACEI or angiotensin II antagonists) were added or doses increased to meet BP goal of 135/85mmHg. Mean (SD) number of antihypertensive drugs (including test drug): 3 (1).
Funding	Study funded by industry (Bristol Myers Squibb)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: FOSINOPRIL versus PLACEBO

Protocol outcome 1: Cardiovascular events (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: Cardiovascular mortality, stroke, myocardial infarction, revascularisation, heart failure or unstable angina requiring hospital admission at 2 years; Group 1: 3/18, Group 2: 1/20; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum

- Actual outcome for CKD with diabetes: Doubling of baseline plasma creatinine or renal replacement therapy at 2 years; Group 1: 4/18, Group 2: 5/20; Risk of bias: Low; Indirectness of outcome: No indirectness

Study	Tong 2006 ⁶⁸⁰
Protocol outcome 3: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD with diabetes: Percentage change in urinary albumin excretion at 2 years; Group 1: mean -15.8 % (SD 28); n=18, Group 2: mean 1.1 % (SD 42.5); n=20; Risk of bias: Low; Indirectness of outcome: No indirectness	
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum

Table 125: Tutuncu 2001

Study	Tutuncu 2001 ⁶⁸⁷
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=37)
Countries and setting	Conducted in Turkey; Setting: Outpatient clinic
Line of therapy	1st line
Duration of study	Intervention time: 12 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion
Stratum	CKD with diabetes: Type 2 diabetes + microalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	Normotensive; type 2 diabetes; microalbuminuria (UAE 30-300mg/day or 20-200 microg/min in at least 3 consecutive 24-hour samples)
Exclusion criteria	Type 1 diabetes; hypertension (BP >130/85mmHg during ambulatory monitoring and history of antihypertensives); secondary diabetes; thyroid disease; alcoholism; renal insufficiency not related to diabetes; chronic liver disease; overt carcinoma; treated with insulin
Recruitment/selection of patients	Not stated

ואמנוטרומו כווחוכמו שעומפווחפ כפרונרפ בטב4

Study	Tutuncu 2001 ⁶⁸⁷
Age, gender and ethnicity	Age - Mean (SD): Enalapril: 51.4 (8.0); losartan: 58.1 (10.8); enalapril + losartan: 57.7 (6.2). Gender (M:F): Not stated. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline GFR not stated; baseline UAER: enalapril: 85.02 (31.25) mg/d; losartan: 101.66 (41.19) mg/d; enalapril + losartan 102.03 (32.77) mg/d
Indirectness of population	No indirectness
Interventions	(n=12) Intervention 1: ACE inhibitors - Enalapril. Enalapril 5mg daily. Duration 12 months. Concurrent medication/care: No antihypertensives; no insulin
	(n=12) Intervention 2: Angiotensin-II receptor blockers - Losartan. Losartan 50mg daily. Duration 12 months. Concurrent medication/care: No antihypertensives; no insulin
	(n=10) Intervention 3: ACE inhibitors and Angiotensin-II receptor blockers - Enalapril and Losartan. Enalapril 5mg daily + losartan 50mg daily. Duration 12 months. Concurrent medication/care: No antihypertensives; no insulin
Funding	Funding not stated

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ENALAPRIL versus LOSARTAN

Protocol outcome 1: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD with diabetes: Urinary albumin excretion rate at 12 months; Group 1: mean 35.41 mg/d (SD 19.59); n=12, Group 2: mean 41.33 mg/d (SD

21.08); n=12; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD with diabetes: Regression to normoalbuminuria at 12 months; Group 1: 10/12, Group 2: 8/12; Risk of bias: Unclear; Indirectness of outcome: No indirectness

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ENALAPRIL AND LOSARTAN versus ENALAPRIL

Study	Tutuncu 2001 ⁶⁸⁷
Protocol outcome 1: Change in proteinuria (AC	CR, PCR or 24 hour urinary protein) (Important) at 12 months minimum
- Actual outcome for CKD with diabetes: Urina	ry albumin excretion rate at 12 months; Group 1: mean 40.7 mg/d (SD 29.52); n=10, Group 2: mean 35.41 mg/d (SD
19.59); n=12; Risk of bias: Unclear; Indirectne	ss of outcome: No indirectness
- Actual outcome for CKD with diabetes: Regre	ssion to normoalbuminuria at 12 months; Group 1: 7/10, Group 2: 10/12; Risk of bias: Unclear; Indirectness of outcome:
No indirectness	
RESULTS (NUMBERS ANALYSED) AND RISK OF	BIAS FOR COMPARISON: ENALAPRIL AND LOSARTAN versus LOSARTAN
Protocol outcome 1: Change in proteinuria (AC	CR, PCR or 24 hour urinary protein) (Important) at 12 months minimum
- Actual outcome for CKD with diabetes: Urinary albumin excretion rate at 12 months; Group 1: mean 40.7 mg/d (SD 29.52); n=10, Group 2: mean 41.33 mg/d (SD	
21.08); n=12; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
- Actual outcome for CKD with diabetes: Regre	ssion to normoalbuminuria at 12 months; Group 1: 7/10, Group 2: 8/12; Risk of bias: Unclear; Indirectness of outcome:
No indirectness	

Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months
	minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12
	months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important)
	at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important)
	at 12 months minimum

Table 126: VA NEPHRON-D

Study	VA NEPHRON-D trial: Fried 2013 ²¹⁴
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=1448)
Countries and setting	Conducted in USA; Setting: 32 Department of Veterans Affairs (VA) medical centers
Line of therapy	2nd line

Study	VA NEPHRON-D trial: Fried 2013 ²¹⁴
Duration of study	Intervention time: Median 2.2 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: 4-variable MDRD
Stratum	CKD with diabetes
Subgroup analysis within study	Not applicable
Inclusion criteria	Veterans with type 2 diabetes, an estimated GFR of 30.0 to 89.9 ml/minute/1.73m ² and a urinary albumin-to- creatinine ratio of at least 300
Exclusion criteria	Patients with known nondiabetic kidney disease, a serum potassium level of more than 5.5 mmol per liter, current treatment with sodium polystyrene sulfonate, or an inability to stop proscribed medications that increase the risk of hyperkalemia.
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): Mean 64.7 (7.7) losartan + placebo group and 64.5 (7.9) losartan + lisinopril group. Gender (M:F): 1436:12. Ethnicity: 72.5% White; 23.9% Black; rest "Other"
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Indirectness of population	No indirectness
Interventions	 (n=724) Intervention 1: ACE inhibitors and Angiotensin-II receptor blockers - Lisinopril and Losartan. Losartan 50-100mg/day + lisinopril 10-40mg/day. Duration Median 2.2 years. Concurrent medication/care: Diuretic 71.3%; Calcium-channel blocker 59.3%; Beta-blocker 69.9%; Alpha-blocker 21.0%; other blood-pressure medications at randomization: 20.3% (n=724) Intervention 2: Angiotensin-II receptor blockers - Losartan. Losartan 50-100mg/day. Duration Median 2.2
	years. Concurrent medication/care: Diuretic 70.3%; Calcium-channel blocker 57.1%; Beta-blocker 68.7%; Alpha- blocker 21.9%; other blood-pressure medications at randomization: 20.3%
Funding	Equipment / drugs provided by industry (Cooperative Studies Program of the Department of Veterans Affairs Office of Research and Development; Investigator-Initiated Studies Program of Merck provided the study drugs)

Study	VA NEPHRON-D trial: Fried 2013 ²¹⁴	
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: LISINOPRIL AND LOSARTAN versus LOSARTAN		
Protocol outcome 1: Mortality (all-cause and ca	rdiovascular) (Critical) at 12 months minimum	
- Actual outcome for CKD with diabetes: Mortality at Median 2.2 years; Group 1: 63/724, Group 2: 60/724; Risk of bias: Low; Indirectness of outcome: No indirectness		
Protocol outcome 2: Cardiovascular events (Critical) at 12 months minimum		
- Actual outcome for CKD with diabetes: MI, hea	art failure or stroke at Median 2.2 years; Group 1: 134/724, Group 2: 136/724; Risk of bias: Low; Indirectness of	
outcome: No indirectness		
Protocol outcome 3: Progression of CKD (measu	red by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum	
- Actual outcome for CKD with diabetes: ESRD at Median 2.2 years; Group 1: 27/724, Group 2: 43/724; Risk of bias: Low; Indirectness of outcome: No indirectness		
Protocol outcome 4: Acute kidney injury (Critica	l) at 12 months minimum	
- Actual outcome for CKD with diabetes: Acute kidney injury at Median 2.2 years; Group 1: 130/724, Group 2: 80/724; Risk of bias: Low; Indirectness of outcome: No		
indirectness		
Protocol outcomes not reported by the study	Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months	

Table 127: Van den meiracker 2006

Study	Van den meiracker 2006 ⁶⁹²
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=59)
Countries and setting	Conducted in Netherlands; Setting: Outpatient clinic

related quality of life (Important) at 12 months minimum

minimum; Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum; Health

Chronic kidney disease Clinical evidence tables

Study	Van den meiracker 2006 ⁶⁹²
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 1 year
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Urinary albumin excretion
Stratum	CKD with diabetes: Type 2 diabetes + macroalbuminuria
Subgroup analysis within study	Not applicable
Inclusion criteria	type 2 diabetes; 24 hour urinary albumin excretion >300mg or urinary albumin:creatinine ratio >20mg/mmol despite use of ACEI or ARB in recommended doses for at least 1 year; retinopathy; age 20-80 years
Exclusion criteria	Clinical or laboratory evidence of other kidney or renal tract disease; serum creatinine >265micromol/L; serum potassium >5mmol/L; underlying malignant, hepatic or gastrointestinal disease; MI or stroke in last 3 months; unstable angina; alcohol or drug abuse; psychological illness
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Other: Geometric mean (IQR): spironolactone 55.2 (38-78); placebo 55.2 (29-75). Gender (M:F): 39/59 (66%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Geometric mean (IQR) eGFR (MDRD formula): spironolactone 87 (67-109); placebo 64 (47-87); p=0.02 for difference
Indirectness of population	No indirectness
Interventions	 (n=29) Intervention 1: Aldosterone antagonists - Spironolactone. Spironolactone 50mg once daily in the morning; reduced to 25mg if serum potassium increased to >5.5mmol/L after 2 weeks; if still >5.5mmol/L after 2 weeks on lower dose, patient withdrawn. Duration 1 year. Concurrent medication/care: Continued previous antihypertensive drugs: 17 ACEI (mostly enalapril, mean dose 25mg, range 20-60mg); 7 ARB (mostly losartan 100mg; remainder candesartan 16mg or valsartan 160mg); 13 non-potassium sparing diuretic; 9 calcium channel blocker; 9 beta-blocker; 3 alpha blocker; mean number of antihypertensives 2.2 (n=30) Intervention 2: Placebo. Placebo. Duration 1 year. Concurrent medication/care: Continued previous antihypertensive drugs: 25 ACEI (mostly enalapril, mean dose 25mg, range 20-60mg); 4 ARB (mostly losartan 100mg;

Study	Van den meiracker 2006 ⁶⁹²	
	remainder candesartan 16mg or valsartan 160mg); 13 non-potassium sparing diuretic; 13 calcium channel blocker; 9 beta-blocker; 1 alpha blocker; mean number of antihypertensives 2.3	
Funding	Funding not stated	
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: SPIRONOLACTONE versus PLACEBO Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: All-cause mortality at 1 year; Group 1: 0/24, Group 2: 2/28; Risk of bias: High; Indirectness of outcome: No indirectness Protocol outcome 2: Progression of CKD (change in eGFR) (Critical) at 12 months minimum - Actual outcome for CKD with diabetes: Change in eGFR at 1 year; Risk of bias: High; Indirectness of outcome: No indirectness Protocol outcome 3: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum - Actual outcome for CKD with diabetes: Urinary albumin:creatinine ratio at 1 year; Risk of bias: High; Indirectness of outcome: No indirectness		
Protocol outcomes not reported by the study	Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum	

Table 128: Viberti 1994

Study	Viberti 1994 ⁷⁰¹
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=92)
Countries and setting	Conducted in Multiple countries; Setting: Outpatient clinics
Line of therapy	1st line

	701
Study	Viberti 1994 ⁷⁰¹
Duration of study	Intervention time: 24 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Albumin excretion rate
Stratum	CKD with diabetes: Type 1 diabetes
Subgroup analysis within study	Not applicable
Inclusion criteria	Insulin dependent diabetes mellitus diagnosed before age 39; age 18-55 years; duration of diabetes 4-28 years; AER 20-200 microg/min in at least 2 of 3 consecutive overnight samples; BP <160/95mmHg if age 35 or older or <145/90mmHg if <35 years; no antihypertensive drugs
Exclusion criteria	On or previously treated with antihypertensive drugs, NSAIDs or aldose-reductase inhibitors; brittle diabetes; insulin resistance (needing >120U/day); history of poor compliance; serum creatinine >1.7mg/dL; raised serum potassium; other renal, endocrine, cardiac, liver, gastrointestinal or connective tissue diseases
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (range): Captopril 32 (19-54); placebo 31 (18-52). Gender (M:F): 51/92 (55%) male. Ethnicity: 87/92 European; 5 Oriental
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline mean (95% CI) measured GFR: captopril 124 (116-132) ml/min/1.73m ² ; placebo 136 (127-145), p<0.04 for difference
Indirectness of population	No indirectness
Interventions	 (n=46) Intervention 1: ACE inhibitors - Captopril. Captopril 50mg twice daily. Duration 24 months. Concurrent medication/care: Usual insulin and diet; no antihypertensives (n=46) Intervention 2: Placebo. Placebo. Duration 24 months. Concurrent medication/care: Usual insulin and diet; no antihypertensives
Funding	Study funded by industry (Bristol-Myers Squibb)

Study	Viberti 1994 ⁷⁰¹	
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: CAPTOPRIL versus PLACEBO		
Protocol outcome 1: Change in proteinuria (ACR,	, PCR or 24 hour urinary protein) (Important) at 12 months minimum	
- Actual outcome for CKD with diabetes: Progress	sion to macroalbuminuria at 24 months; Group 1: 4/44, Group 2: 12/44; Risk of bias: Unclear; Indirectness of outcome:	
No indirectness		
- Actual outcome for CKD with diabetes: Urinary	albumin excretion rate at 24 months; Group 1: mean 2.1 % per year (SD 13.4); n=44, Group 2: mean 18.3 % per year	
(SD 19.7); n=44; Risk of bias: Unclear; Indirectne	ess of outcome: No indirectness	
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months minimum; Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum; Progression of CKD (change in eGFR) (Critical) at 12 months minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum; Health related quality of life (Important) at 12 months minimum	

Table 129: Woo 2009

Study	Woo 2009 ⁷²⁴
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=226)
Countries and setting	Conducted in Singapore; Setting: Outpatient clinics
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 6 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Biopsy-proven IgA nephritis
Stratum	CKD without diabetes: IgA nephritis
Subgroup analysis within study	Not applicable
Inclusion criteria	Biopsy-proven IgA nephritis; proteinuria 1g or more; CKD stage 3

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Study	Woo 2009 ⁷²⁴
Exclusion criteria	Not stated
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): High dose losartan: 34 (10); normal dose losartan 32 (12); normal dose enalapril 32 (10); low dose enalapril 34 (11). Gender (M:F): 110/207 completers (53%) male. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: 2. Older people aged 75 or over: 3. People with cardiovascular disease: 4. People with diabetes and proteinuria: 5. People with hypertension: 6. People with proteinuria :
Extra comments	Baseline eGFR: High dose losartan: 63.5 (24.2); normal dose losartan 61.2 (18.4); normal dose enalapril 62.0 (20.8); low dose enalapril 60.9 (19.8) ml/min
Indirectness of population	No indirectness
Interventions	(n=112) Intervention 1: Angiotensin-II receptor blockers - Losartan. Losartan high dose 200mg or normal dose 100mg. Duration 6 years. Concurrent medication/care: Additional BP control with atenolol, amlodipine and nifedipine with target BP < 130/80mmHg Comments: High dose losartan: 67 patients; normal dose losartan 45 patients
	(n=114) Intervention 2: ACE inhibitors - Enalapril. Enalapril normal dose 20mg or low dose 10mg. Duration 6 years. Concurrent medication/care: Additional BP control with atenolol, amlodipine and nifedipine with target BP < 130/80mmHg Comments: Normal dose enalapril 69 patients; low dose enalapril 45 patients
Funding	Other (Hospital Division of Research)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: LOSARTAN versus ENALAPRIL

Protocol outcome 1: Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 12 months minimum

- Actual outcome for CKD without diabetes: ESRD (losartan high dose vs. enalapril normal dose) at 6 years; Group 1: 7/63, Group 2: 19/61; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD without diabetes: ESRD (losartan high dose vs. enalapril low dose) at 6 years; Group 1: 7/63, Group 2: 9/40; Risk of bias: Unclear; Indirectness

Study

Woo 2009⁷²⁴

of outcome: No indirectness

- Actual outcome for CKD without diabetes: ESRD (losartan normal dose vs. enalapril normal dose) at 6 years; Group 1: 9/43, Group 2: 19/61; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD without diabetes: ESRD (losartan normal dose vs. enalapril low dose) at 6 years; Group 1: 9/43, Group 2: 9/40; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcome 2: Progression of CKD (change in eGFR) (Critical) at 12 months minimum

- Actual outcome for CKD without diabetes: eGFR (losartan high dose vs. enalapril normal dose) at 6 years; Group 1: mean 59.1 ml/min (SD 31.8); n=63, Group 2: mean 41.3 ml/min (SD 27.9); n=61; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD without diabetes: eGFR (losartan high dose vs. enalapril low dose) at 6 years; Group 1: mean 59.1 ml/min (SD 31.8); n=63, Group 2: mean 42.3 ml/min (SD 26.6); n=40; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD without diabetes: eGFR (losartan normal dose vs. enalapril normal dose) at 6 years; Group 1: mean 40.2 ml/min (SD 27.6); n=43, Group 2: mean 41.3 ml/min (SD 27.9); n=61; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD without diabetes: eGFR (losartan normal dose vs. enalapril low dose) at 6 years; Group 1: mean 40.2 ml/min (SD 27.6); n=43, Group 2: mean 42.3 ml/min (SD 26.6); n=40; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcome 3: Change in proteinuria (ACR, PCR or 24 hour urinary protein) (Important) at 12 months minimum

- Actual outcome for CKD without diabetes: Urinary protein g/day (losartan high dose vs. enalapril normal dose) at 6 years; Group 1: mean 1.2 g/day (SD 0.8); n=63,

Group 2: mean 1.7 g/day (SD 1); n=61; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD without diabetes: Urinary protein g/day (losartan high dose vs. enalapril low dose) at 6 years; Group 1: mean 1.2 g/day (SD 0.8); n=63, Group 2: mean 1.7 g/day (SD 0.9); n=40; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD without diabetes: Urinary protein g/day (losartan normal dose vs. enalapril normal dose) at 6 years; Group 1: mean 1.6 g/day (SD 0.9); n=43, Group 2: mean 1.7 g/day (SD 1); n=61; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome for CKD without diabetes: Urinary protein g/day (losartan normal dose vs. enalapril low dose) at 6 years; Group 1: mean 1.6 g/day (SD 0.9); n=43, Group 2: mean 1.7 g/day (SD 0.9); n=40; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 12 months minimum; Cardiovascular events (Critical) at 12 months
	minimum; Hospitalisation (Important) at 12 months minimum; Acute kidney injury (Critical) at 12 months minimum;
	Health related quality of life (Important) at 12 months minimum

ועמרוסדומו כוודווכמו שמומפוודופ כפדונרפ

ZUT4

Nation**G.10** Oral antiplatelets and anticoagulants

Table 130: Agnelli 2013

Study	Agnelli 2013 ¹⁸
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=2486 enrolled)
Countries and setting	Conducted in Multiple countries; Setting: Not stated (hospitals)
Line of therapy	Adjunctive to current care
Duration of study	Intervention + follow up: 1 year intended treatment period and 30 days follow-up
Method of assessment of guideline condition	Unclear method of assessment/diagnosis: Mild or moderate renal impairment. Assessment method not stated.
Stratum	Overall:
Subgroup analysis within study	Not stratified but pre-specified: Renal impairment subgroup
Inclusion criteria	18 years or older; objectively confirmed symptomatic deep-vein thrombosis or pulmonary embolism; treated for 6 to 12 months with standard anticoagulant therapy or had completed treatment with apixaban or enoxaparin and warfarin as participants in the AMPLIFY trial; no sympatomatic recurrence during prior anticoagulant therapy; clinical equipoise about the continuation or cessation of anticoagulant therapy.
Exclusion criteria	Contraindication to continued anticoagulant therapy or if they required ongoing anticoagulant therapy, dual antiplatelet therapy, or aspirin at a dose higher than 165mg daily. Haemoglobin level of less than 9mg per decileter, platelet count of less than 100,00 per cubic mm, serum creatinine >2.5mg/deciliter or creatinine clearance of <25ml/min, alanine amino-transferase or aspartate aminotransferase level >2 times the upper limit of normal range, or total bilirubin level >1.5 times the normal range.
Recruitment/selection of patients	Randomisation with an interactive voice-response system stratified according to initial diagnosis (deep-vein thrombosis or pulmonary embolism) and participation or no participation in the AMPLIFY trial.

Study	Agnelli 2013 ¹⁸
Age, gender and ethnicity	Age - Mean (SD): Apixaban 2.5mg: 56.6 (15.3), Apixaban 5mg: 56.4 (15.6), Placebo 57.1 (15.2). NB overall group only - not CKD subgroup Gender (M:F): Define. Ethnicity: Not stated
Further population details	1. Older people aged 75 or over: Not applicable / Not stated / Unclear (Age range not stated. Average age only 56- 57.). 2. People with cardiovascular disease: People with cardiovascular disease (All participants had pulmonary embolism and/or deep vein thrombosis.).
Extra comments	Particiapnts were enrolled within approximately 7 days after they received the last dose of prior anticoagulant therapy and, if they were receiving a vitamin K antagonist, when the INR was 2.0 or lower.
Indirectness of population	Serious indirectness: All participants had either pulmonary embolism and/or deep vein thrombosis.
Interventions	 (n=842) Intervention 1: Oral anticoagulants - Apixaban. Apixiban 2.5mg. Duration 1 year. Concurrent medication/care: Drugs prohibited during the course of the trial: dual antiplatelet therapy, aspirin >165mg daily and potent inhibitors of cytochrome P-450 3A4 and P-glycoprotein. Comments: 2 participants excluded because verifiable source documentation was lacking. (n=815) Intervention 2: Oral anticoagulants - Apixaban. Apixaban 5mg. Duration 1 year. Concurrent medication/care: Drugs prohibited during the course of the trial: dual antiplatelet therapy, aspirin >165mg daily and potent inhibitors of cytochrome P-450 3A4 and P-glycoprotein. (n=815) Intervention 2: Oral anticoagulants - Apixaban. Apixaban 5mg. Duration 1 year. Concurrent medication/care: Drugs prohibited during the course of the trial: dual antiplatelet therapy, aspirin >165mg daily and potent inhibitors of cytochrome P-450 3A4 and P-glycoprotein. Comments: 2 participants excluded because verifiable source documentation was lacking. (n=829) Intervention 3: Placebo. Placebo. Duration 1 year. Concurrent medication/care: Drugs prohibited during the course of the trial: dual antiplatelet therapy, aspirin >165mg daily and potent inhibitors of cytochrome P-450 3A4 and P-glycoprotein.
Funding	Study funded by industry (Bristol-Myers Squibb and Pfizer)
	RISK OF BIAS FOR COMPARISON: APIXABAN 2.5MG versus PLACEBO

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum

ואמנוטרומו כווחוכמו שעומפווחפ כפרונרפ בטב4

Study	Agnelli 2013 ¹⁸
- Actual outcome: Composite of all-cause mortali	ity or symptomatic recurrent venous thromboembolism. Severe or moderate renal impairment. at 1 year; Group 1:
5/48, Group 2: 7/46; Risk of bias: Unclear; Indire	ctness of outcome: Serious indirectness
- Actual outcome: Composite of all-cause mortali	ity or symptomatic recurrent venous thromboembolism. Mild renal impairment. at 1 year; Group 1: 7/174, Group 2:
26/194; Risk of bias: Unclear; Indirectness of out	tcome: Serious indirectness
Protocol outcome 2: Cardiovascular or cerebrova	ascular events (Critical) at 6 months minimum
- Actual outcome: Composite of symptomatic rec	current venous thromboembolism or death related to venous thromboembolism. Severe or moderate renal
impairment. at 1 year; Group 1: 2/48, Group 2: 5	/46; Risk of bias: Unclear; Indirectness of outcome: Serious indirectness
- Actual outcome: Composite of symptomatic rec	current venous thromboembolism or death related to venous thromboembolism. Mild renal impairment. at 1 year;
Group 1: 5/174, Group 2: 23/194; Risk of bias: U	Inclear; Indirectness of outcome: Serious indirectness
Protocol outcome 3: Major bleeding (as reported	by studies) (Critical) at 6 months minimum
- Actual outcome: Composite of major and clinica	ally relevant non-major bleeding. Severe or moderate renal impairment. at 1 year; Group 1: 4/48, Group 2: 2/46; Risk
of bias: Unclear; Indirectness of outcome: Seriou	s indirectness
- Actual outcome: Composite of major and clinica	ally relevant non-major bleeding. Mild renal impairment. at 1 year; Group 1: 7/174, Group 2: 3/193; Risk of bias:
Unclear; Indirectness of outcome: Serious indirect	ctness
RESULTS (NUMBERS ANALYSED) AND RISK OF BIA	AS FOR COMPARISON: APIXABAN 5MG versus PLACEBO

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum

- Actual outcome: Composite of all-cause mortality or symptomatic recurrent venous thromboembolism. Severe or moderate renal impairment. at 1 year; Group 1:

1/44, Group 2: 7/46; Risk of bias: Unclear; Indirectness of outcome: Serious indirectness

- Actual outcome: Composite of all-cause mortality or symptomatic recurrent venous thromboembolism. Mild renal impairment. at 1 year; Group 1: 7/168, Group 2: 26/194; Risk of bias: Unclear; Indirectness of outcome: Serious indirectness

Protocol outcome 2: Cardiovascular or cerebrovascular events (Critical) at 6 months minimum

- Actual outcome: Composite of symptomatic recurrent venous thromboembolism or death related to venous thromboembolism. Severe or moderate renal impairment. at 1 year; Group 1: 0/44, Group 2: 5/46; Risk of bias: Unclear; Indirectness of outcome: Serious indirectness

- Actual outcome: Composite of symptomatic recurrent venous thromboembolism or death related to venous thromboembolism. Mild renal impairment. at 1 year;

Study	Agnelli 2013 ¹⁸		
Group 1: 5/168, Group 2: 23/194; Risk of bias: L	Group 1: 5/168, Group 2: 23/194; Risk of bias: Unclear; Indirectness of outcome: Serious indirectness		
of bias: Unclear; Indirectness of outcome: Serior	cally relevant non-major bleeding. Severe or moderate renal impairment. at 1 year; Group 1: 6/43, Group 2: 2/46; Risk us indirectness cally relevant non-major bleeding. Mild renal impairment. at 1 year; Group 1: 7/168, Group 2: 3/193; Risk of bias:		
Protocol outcomes not reported by the study	Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Important) at 6 months minimum; Progression of CKD (change in eGFR) (Important) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Minor bleeding (as reported by the studies) (Important) at Define; Health related quality of life		

(Important) at 6 months minimum

Table 131: Alexander 2011

Study	Alexander 2011 ²⁸
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=7392)
Countries and setting	Conducted in Multiple countries; Setting: 858 sites in 39 countries
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: Median 241 days
Method of assessment of guideline condition	Unclear method of assessment/diagnosis: Not stated
Stratum	Overall
Subgroup analysis within study	Not stratified but pre-specified: Level of renal impairment (severe or moderate, mild, or normal renal function)
Inclusion criteria	ACS (MI +/-ST-elevation or unstable angina) in previous 7 days, with symptoms of myocardial ischemia lasting 10 mins

Study	Alexander 2011 ²⁸
	or more with patient at rest + elevated cardiac biomarkers or dynamic ST-segment depression or elevation of 0.1 mV or more; clinically stable and on standard treatment including aspirin or aspirin plus any P2Y12-receptor antagonist; + 2 or more high risk characteristics (age at least 65 years; diabetes; MI in last 5 years; cerebrovascular or peripheral vascular disease; heart failure or LVEF <40% with index event; imparied renal function with creatinine clearance <60ml/min; no revascularisation after index event)
Exclusion criteria	persistent severe hypertension, severe renal dysfunction with calculated creatinine clearance <20ml/min; active bleeding or a high risk for bleeding; known coagulopathy; ischemic stroke within 7 days; NYHA class IV; any history of intracranial bleeding; hemoglobin <9g/dL; platelet count <100,000mm3; required ongoing treatment with a parenteral or oral anticoagulant; required treatment with highdose aspirin (>325 mg daily) or a strong inhibitor of CYP3A4; a severe comorbid condition with life expectancy of ≤6 months; acute pericarditis, active hepatobiliary disease, and women who were pregnant, breastfeeding, or of childbearing potential and unable to use an acceptable method of birth control
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Median (range): 67 (IQR 58-74). Gender (M:F): 5014:2378. Ethnicity: White 5583; Black/African American 173; Asian 1318; Other 318
Further population details	1. Older people aged 75 or over: Mixed 2. People with cardiovascular disease: People with cardiovascular disease (Whole sample ACS; subgroup with renal disease).
Indirectness of population	Serious indirectness: Patients with recent ACS and ≥2 risk factors for recurrent ischaemic events
Interventions	 (n=3705) Intervention 1: Oral anticoagulants - Apixaban. Apixaban 5mg twice daily. Duration Median 240 days. Concurrent medication/care: ACE inhibitor 2434/3705 (65.7%); ARB 527 (14.2%); Beta-blocker 2853 (77.0%); Statin 3076 (83.0%); Proton-pump inhibitor 894 (24.1%) (n=3687) Intervention 2: Placebo. Placebo. Duration Median 242 days. Concurrent medication/care: ACE inhibitor 2406/3687 (65.3%); ARB 503 (13.6%); Beta-blocker 2816 (76.4%); Statin 3105 (84.2%); Proton-pump inhibitor 906 (24.6%)
Funding	Study funded by industry (Bristol-Myers Squibb and Pfizer)

ועמנוטחמו כווחוכמו סטומפווחפ כפחורפ בטדק

Study	Alexander 2011 ²⁸
RESULTS (NUMBERS ANALYSED) AND RISK OF BI	AS FOR COMPARISON: APIXABAN versus PLACEBO
Protocol outcome 1: Cardiovascular or cerebrovascular events (Critical) at 6 months minimum	
- Actual outcome: CV death, MI or ischaemic stro	oke (moderate/severe renal impairment) at 241 days; HR 0.94 (95%Cl 0.69 to 1.29); Risk of bias: Low; Indirectness of
outcome: Serious indirectness	
- Actual outcome: CV death. MI or ischaemic stro	bke (mild renal impairment) at 241 days; Mean 1.04 (95%Cl 0.79 to 1.36); Risk of bias; Low; Indirectness of outcome;

- Actual outcome: CV death, MI or ischaemic stroke (mild renal impairment) at 241 days; Mean 1.04 (95%CI 0.79 to 1.36); Risk of bias: Low; Indirectness of outcome: Serious indirectness

Protocol outcome 2: Major bleeding (as reported by studies) (Critical) at 6 months minimum

- Actual outcome: TIMI major bleeding (moderate/severe renal impairment) at Median 241 days; Mean 4.94 (95%CI 1.42 to 17.22); Risk of bias: Low; Indirectness of outcome: Serious indirectness

- Actual outcome: TIMI major bleeding (mild renal impairment) at Median 241 days; Mean 1.3 (95%CI 0.57 to 2.96); Risk of bias: Low; Indirectness of outcome: Serious indirectness

Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum; Progression of CKD (measured by occurrence
	of end stage renal disease needing RRT) (Important) at 6 months minimum; Progression of CKD (change in eGFR)
	(Important) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Minor bleeding (as reported by
	the studies) (Important) at Define; Health related quality of life (Important) at 6 months minimum

Table 132: Best 2008

Study	Best 2008 ⁶⁸
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=331)
Countries and setting	Conducted in Canada, USA; Setting: Hospitals

ואמרוסדומו כוונדוכמו סמומפוונדפ כפרות פ

LUT4

Chronic kidney disease Clinical evidence tables

	<i>co</i>
Study	Best 2008 ⁶⁸
Line of therapy	1st line
Duration of study	Intervention time: 1 year
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Serum creatinine level; creatinine clearance calcuated using Cockcroft- Gault formula
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Elective PCI planned or considered likely (symptomatic coronary artery disease; objective evicdence of ischaemia; at least 21 years old; provided consent and agreed to protocol specified procedures)
Exclusion criteria	Serum creatinine not available at study entry; contraindications to antiplatelet/anticoagulant therapy; >50% stenosis of left main coronary artery; failed coronary intervention in last 2 weeks; coronary anatomy not amenable to stent placement; persistent ST elevation within 24 hours prior to randomisation; planned staged interventional procedure; GpIIb-IIIa inhibitor within 7 days; clopidogrel within 10 days; thrombolytics within 24 hours.
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): 73.5 (8.1). Gender (M:F): 54.4% male. Ethnicity: Not stated
Further population details	1. Older people aged 75 or over: Mixed (Mean 73.5 (8.1) years). 2. People with cardiovascular disease: People with cardiovascular disease (All symptomatic coronary artery disease).
Extra comments	Diabetes: 26.55%, hypertension: 72.35, previous CABG: 25.3%, previous PCI: 35.3%, previous MI: 35.45%, peripheral vascular disease: 12,9%, CHF: 12.7% Creatinine clearance <60ml/min. All previous cardiac events or interventions slightly higher in group with eGFR<60.
Indirectness of population	Serious indirectness: All participants had a planned elective PCI of single or multiple vessels
Interventions	(n=166) Intervention 1: Antiplatelet agents - Clopidogrel. 300mg 3-24 hours before PCI; after procedure, 75mg daily for 1 year. Duration 1 year. Concurrent medication/care: Aspirin 325mg daily for 28 days then 81-325mg daily for 1 year Comments: Number randomised not stated: 166 is around half of the 331 total
	(n=165) Intervention 2: Placebo. placebo. Duration 1 year. Concurrent medication/care: Aspirin 325mg daily for 28

Study	Best 2008 ⁶⁸
	days then 81-325mg daily for 1 year
	Comments: Number randomsied not stated: 165 is around half of the total of 331
Funding	Study funded by industry (Bristol-Meyers Squibb/Sanofi-Synthelabo partnership)
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: CLOPIDOGREL versus PLACEBO Protocol outcome 1: Cardiovascular or cerebrovascular events (Critical) at 6 months minimum - Actual outcome: Death, MI or stroke CrCl < 60ml/min at 1 year; HR 1.41 (95%Cl 0.81 to 2.45) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness - Actual outcome: Death, MI or stroke CrCl 60-89 ml/min at 1 year; HR 0.8 (95%Cl 0.51 to 1.25) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness	
Protocol outcome 2: Major bleeding (as reported by studies) (Critical) at 6 months minimum	
- Actual outcome: Major bleeding CrCl <60ml/m	nin at 1 year; Mean 1.124 (95%CI 0.511 to 2.476); Risk of bias: Unclear; Indirectness of outcome:
- Actual outcome: Major bleeding CrCl 60-89ml	/min at 1 year; Mean 1.595 (95%Cl 0.97 to 2.621); Risk of bias: Unclear; Indirectness of outcome:

- Actual outcome: Major bleeding CrCl 60-89m/min at 1 year; Mean 1.595 (95%Cl 0.97 to 2.621); Risk of bias: Unclear; Indirectness of outcome: - Actual outcome: Minor bleeding CrCl <60ml/min at 1 year; Mean 0.546 (95%Cl 0.25 to 1.189); Risk of bias: Unclear; Indirectness of outcome:

Protocol outcome 3: Minor bleeding (as reported by the studies) (Important) at Define

- Actual outcome: Minor bleeding CrCl 60-89 ml/min at 1 year; RR 1.579 (95%Cl 0.883 to 2.825); Risk of bias: Unclear; Indirectness of outcome:

Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum; Progression of CKD (measured by occurrence
	of end stage renal disease needing RRT) (Important) at 6 months minimum; Progression of CKD (change in eGFR)
	(Important) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Health related quality of life
	(Important) at 6 months minimum

Table 133: Dasgupta 2009

Study	Dasgupta 2009 ¹⁵⁰
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=2009)
Countries and setting	Conducted in Multiple countries; Setting: Not stated
Line of therapy	1st line
Duration of study	Intervention time: Median 28 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Diabetic nephropathy (diabetes plus microalbuminuria; albumin 30 microg/ml or more)
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Clinically evident cardiovascular disease or multiple atherothrombotic risk factors for cardiovascular disease.
Exclusion criteria	No active acute coronary syndrome at enrolment.
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): 63.1 years. Gender (M:F): 33% female. Ethnicity: 68.8% White; 14.7% Hispanic; 9.1% Asian; 4.2% Black; 3.2% Other
Further population details	1. Older people aged 75 or over: Not applicable / Not stated / Unclear (Mean 63 years; SD or range not stated). 2. People with cardiovascular disease: People with cardiovascular disease (Clinically evident cardiovascular disease or multiple atherothrombotic risk factors for CV disease).
Extra comments	. Hypertension: 86.2% placebo, 88.7% clopidogrel. CHF: 6.8% placebo, 7.6% clopidogrel. Previous MI: 19.6% placebo, 18.2% clopidogrel, AF: 3.1% placebo, 3.3% clopidogrel. Previous stroke: 8.7% placebo, 8.2% clopidogrel. Previous TIA: 4.3% placebo, 3.8% clopidogrel. Peripheral arterial disease: 16.2% placebo, 14.7% clopidogrel. Previous PCI: 11.3% placebo, 10.1% clopidogrel. Previous CABG: 15.3% placebo, 13.1% clopidogrel. Previous carotid endocardectomy: 2.9% placebo, 2.7% clopidogrel. Previous peripheral angioplasty: 6.6% placebo, 5.4% clopidogrel.
Indirectness of population	Serious indirectness: People with clinically evidence cardiovascular disease (symptomatic patients) or multiple

ועמנוטחמו כווחוכמו סטומפווחפ כפחנרפ בטדק

Study	Dasgupta 2009 ¹⁵⁰
	atherothrombotic risk factors for cardiovascular disease. Subgroup analysis of those with diabetic nephropathy.
Interventions	 (n=1006) Intervention 1: Antiplatelet agents - Clopidogrel. 75mg daily. Duration Median 28 months. Concurrent medication/care: 75-162mg aspirin daily (n=1003) Intervention 2: Placebo. Placebo. Duration Median 28 months. Concurrent medication/care: 75-162mg aspirin daily
Funding	Study funded by industry (Bristol-Myers Squibb, Sanofi Aventis)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: CLOPIDOGREL versus PLACEBO

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum

- Actual outcome: All-cause mortality at Median 28 months; HR 1.6 (95%Cl 1.1 to 2.4) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome: Cardiovascular mortality at Median 28 months; HR 1.7 (95%CI 1.1 to 2.6) Reported; Risk of bias: High; Indirectness of outcome: No indirectness

Protocol outcome 2: Cardiovascular or cerebrovascular events (Critical) at 6 months minimum

- Actual outcome: Non-fatal myocardial infarction at Median 28 months; HR 0.8 (95%CI 0.4 to 1.3) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome: Non-fatal stroke at Median 28 months; HR 0.9 (95%CI 0.5 to 1.7) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcome 3: Hospitalisation (Important) at 6 months minimum

- Actual outcome: Hospitalisation at Median 28 months; HR 0.9 (95%CI 0.7 to 1.2) Reported; Risk of bias: High; Indirectness of outcome: No indirectness

Protocol outcome 4: Major bleeding (as reported by studies) (Critical) at 6 months minimum - Actual outcome: GUSTO severe bleeding at Median 28 months; HR 1.8 (95%CI 0.9 to 3.3) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcome 5: Minor bleeding (as reported by the studies) (Important) at Define

- Actual outcome: GUSTO moderate bleeding at Median 28 months; HR 1.2 (95%CI 0.7 to 2) Reported; Risk of bias: High; Indirectness of outcome: No indirectness

Study	Dasgupta 2009 ¹⁵⁰
Protocol outcomes not reported by the study	Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Important) at 6 months minimum; Progression of CKD (change in eGFR) (Important) at 6 months minimum; Health related quality of life (Important) at 6 months minimum

Table 134: Eikelboom 2012

Study	Eikelboom 2012 ¹⁸⁰
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=5525 totoal, 3828 eGFR≥60, 1697 eGFR,60ml/min/1.73m ²)
Countries and setting	Conducted in Multiple countries; Setting: 522 clinical sites.
Line of therapy	Adjunctive to current care
Duration of study	Not clear: Mean follow-up 1.1 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Cockroft-Gault.
Stratum	Overall: Cardiovascular disease (all participants had atrial fibrillation)
Subgroup analysis within study	Unclear: People with stage III CKD
Inclusion criteria	Permanent or paroxysmal atrial fibrillation if they had ≥1 of the following additional risk factors for stroke: previous stroke or transient ischemic attack; age ≥75 years, arterial hypertension on treatment; diabetes mellitus; heart failure, left ventricular ejection fraction <35%; or documented peripheral arterial disease.
Exclusion criteria	Candidates for oral anticoagulation with a vitamin K antagonist either because anticoagulant therapy had been demonstrated or was expected to be unsuitable.
Recruitment/selection of patients	Not stated.
Age, gender and ethnicity	Age - Mean (SD): 75. Gender (M:F): 51% male. Ethnicity: 59% white (other ethnicities not stated)
Further population details	1. Older people aged 75 or over: Mixed 2. People with cardiovascular disease: People with cardiovascular disease (All

ועמרוסנומו כוונווכמו פתומפוווופ כפנות פ לחד4

Study	Eikelboom 2012 ¹⁸⁰
	participants had atrial fibrillation.).
Extra comments	For Stage III CKD (eGFR<60 ml/min/1.73m ²) 88% had hypertension, 22% had diabetes, 43% had heart failure, 16% previous stroke / TIA. Mean daily aspirin dose: 120mg. Mean eGFR: 49ml/min/1.73m ² .
Indirectness of population	Serious indirectness: All participants had atrial fibrillation.
Interventions	 (n=857) Intervention 1: Oral anticoagulants - Apixaban. Apixaban 5mg twice daily (reduced dose of 2.5mg twice daily was assigned to participants who met 2 of the following criteria: (1) age≥80 years, (2) body weight <60kg, or (3) serum creatinine ≥1.5mg/dL or 133 micromol/L) Duration Mean 1.1 years. Concurrent medication/care: Not stated. (n=840) Intervention 2: Antiplatelet agents - Aspirin. 81 to 324 mg daily. Duration Mean 1.1 years Concurrent medication/care: Not stated.
Funding	Study funded by industry (Bristol-Myers-Squibb and Pfizer)
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: APIXABAN versus ASPIRIN	
Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum - Actual outcome: All-cause mortality at Mean 1.1 years; HR 0.86 (95%Cl 0.61 to 1.2) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness	

Protocol outcome 2: Cardiovascular or cerebrovascular events (Critical) at 6 months minimum - Actual outcome: Stroke or systemic embolism at Mean 1.1 years; HR 0.32 (95%CI 0.18 to 0.55) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 3: Major bleeding (as reported by studies) (Critical) at 6 months minimum - Actual outcome: Major haemorrhage at Mean 1.1 years; HR 1.2 (95%Cl 0.65 to 2.1) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Important) at 6 months
	minimum; Progression of CKD (change in eGFR) (Important) at 6 months minimum; Hospitalisation (Important) at 6
	months minimum; Minor bleeding (as reported by the studies) (Important) at Define; Health related quality of life

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטב4

Study Eikelboom 2012¹⁸⁰ (Important) at 6 months minimum

Table 135: Fox 2011

Study	Fox 2011 ²⁰⁹
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=14264)
Countries and setting	Conducted in Multiple countries; Setting: Hospitals in 45 countries.
Line of therapy	1st line
Duration of study	Follow up (post intervention): Median 1.9 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Cockcroft-Gault method Cr Cl 30-49ml/min
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	ECG documented non-valvular atrial fibrillation and at moderate to high risk of stroke (history of stroke, TIA or systemic embolism or at least two of heart failure, LVEF 35% or less, hypertension, age 75 or more, diabetes).
Exclusion criteria	High risk of bleeding (including prior intracerebral bleeding, surgical trauma within 30 days, gastrointestinal bleeding within 6 months). People with a creatinine clearance <30ml/min.
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Median (IQR): 79 (75, 83). Gender (M:F): 1314/1636. Ethnicity: Not stated
Further population details	1. Older people aged 75 or over: Mixed (Median age 79, 25th percentile 75). 2. People with cardiovascular disease: People with cardiovascular disease (All had atrial fibrillation.).
Extra comments	36% were taking aspirin. Prior TIA/stroke or systemic embolism: 52.85%, CHF: 63.65, hypertension: 91%, diabetes: 37.2%, prior MI: 18.13, peripheral vascular disease: 6.5%.
Indirectness of population	Serious indirectness: All participants had non-valvular atrial fibrilation and moderate to high risk of stroke. (Subgroup

Study	Fox 2011 ²⁰⁹
	ananlysis of those with moderate renal impairment (creatinine clearance 30-49ml/min).
Interventions	 (n=1474) Intervention 1: Oral anticoagulants - Rivaroxaban. 15mg daily. Duration Not stated. Concurrent medication/care: Not stated (n=1476) Intervention 2: Oral anticoagulants - Warfarin. Dose adjusted to target INR 2.0 to 3.0. Duration Not stated. Concurrent medication/care: Not stated
Funding	Study funded by industry

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: RIVAROXABAN versus WARFARIN

Protocol outcome 1: Cardiovascular or cerebrovascular events (Critical) at 6 months minimum

- Actual outcome: Ischaemic stroke at Not stated; HR 1.11 (95%CI 0.71 to 1.73) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome: Haemorrhagic stroke at Not stated; HR 0.56 (95%CI 0.21 to 1.51) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome: Undetermined stroke at Not stated; HR 0.51 (95%CI 0.05 to 5.67) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Major bleeding (as reported by studies) (Critical) at 6 months minimum

- Actual outcome: Major bleeding (including haemoglobin drop, transfusion, clinical organ and fatal bleeding) at Not stated; HR 0.95 (95%CI 0.72 to 1.26) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness

- Actual outcome: Intracranial haemorrhage at Not stated; HR 0.81 (95%CI 0.41 to 1.6) Reported; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the studyMortality (all-cause and cardiovascular) (Critical) at 6 months minimum; Progression of CKD (measured by occurrence
of end stage renal disease needing RRT) (Important) at 6 months minimum; Progression of CKD (change in eGFR)
(Important) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Minor bleeding (as reported by
the studies) (Important) at Define; Health related quality of life (Important) at 6 months minimum

Table 136: HJAZI 2014

Study	RE-LY trial: Hijazi 2014 ²⁶⁶
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=17951)
Countries and setting	Conducted in Unknown multicentre
Line of therapy	Not applicable
Duration of study	Intervention + follow up: Assumed receiving study drug throughout follow-up period.
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: CKD-EPI, Cockroft Gault and MDRD equations all used. Results reported here are for CKD-EPI.
Stratum	Overall
Subgroup analysis within study	Not stratified but pre-specified: Pre-specified subgroup analysis by renal function
Inclusion criteria	People with atrial fibrillation (AF) and at least one of the following characteristics: previous stroke or transient ischaemic attack, a left ventricular ejection fraction of less than 40%, New York Heart Association class II of higher heart-failure symptoms within 6 months before screening, and an age of at least 75 years or an age of 65 to 74 years plus diabetes mellitus, hypertension, or coronary artery disease.
Exclusion criteria	Presence of a severe heart-valve disorder, stroke within 14 days or severe stroke within 6 months before screening, a condition that increased the risk of haemorrhage, a creatinine clearance of less than 30 ml/min, acute liver disease, and pregnancy.
Recruitment/selection of patients	Randomised 1:1:1.
Age, gender and ethnicity	Age - Mean (SD): >80ml/min: 66.9 (9.7), 50-80ml/min: 72 (8), <50ml/min: 75.2 (7.2) Gender (M:F): >80ml/min: 70.5% M, 50-80ml/min: 64.3% M, <50ml/min: 53.4% M Ethnicity: Not reported.
Further population details	1. Older people aged 75 or over: Systematic review: mixed (Range 22-101 years.). 2. People with cardiovascular disease: People with cardiovascular disease (AF and at least 1 other risk factor for stroke.).
Extra comments	Dose of dabigatran blinded, warfarin was unblinded (except for study administrators).
Indirectness of population	No indirectness

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Ch. J.	
Study	RE-LY trial: Hijazi 2014 ²⁶⁶
Interventions	 (n=5957) Intervention 1: Oral anticoagulants - Dabigatran. 110mg BID. Duration Median 2 years. Concurrent medication/care: Not stated. (n=6029) Intervention 2: Oral anticoagulants - Dabigatran. 150 mg BID. Duration Median 2 years. Concurrent medication/care: Not stated.
	(n=5965) Intervention 3: Oral anticoagulants - Warfarin. Adjusted dose, target INR 2-3 Duration Median 2 years. Concurrent medication/care: Not stated.
Funding	Study funded by industry (Boehringer Ingelheim)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: DABIGATRAN 110mg versus WARFARIN

Protocol outcome 1: Mortality (all cause and cardiovascular) (Critical) at 6 months minimum

- Actual outcome: All-cause mortality - >80ml/min at 2 years; HR 0.82 (95%CI 0.6 to 1.12) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

- Actual outcome: All-cause mortality - 50-80ml/min at 2 years; HR 0.88 (95%CI 0.74 to 1.05) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

- Actual outcome: All-cause mortality - 30-50ml/min at 2 years; HR 0.97 (95%CI 0.77 to 1.24) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

Protocol outcome 2: Cardiovascular or cerebrovascular events (Critical) at 6 months minimum

- Actual outcome: Stroke or systemic embolism - >80ml/min at 2 years; HR 0.87 (95%CI 0.53 to 1.45) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

- Actual outcome: Stroke or systemic embolism - 50-80ml/min at 2 years; HR 0.94 (95%CI 0.73 to 1.21) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

Protocol outcome 3: Major bleeding (as reported by studies) (Critical) at 6 months minimum

- Actual outcome: Reduction in harmoglobinlevel >20g/L, transfusion of > 2U of blood, or symptomatic bleeding in a cretical area or organ - >80ml/min at 2 years; HR 0.41 (95%CI 0.27 to 0.62) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

- Actual outcome: Reduction in harmoglobinlevel >20g/L, transfusion of > 2U of blood, or symptomatic bleeding in a cretical area or organ - 50-80ml/min at 2 years; HR

Study

RE-LY trial: Hijazi 2014²⁶⁶

0.82 (95%CI 0.68 to 0.99) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

- Actual outcome: Reduction in harmoglobinlevel >20g/L, transfusion of > 2U of blood, or symptomatic bleeding in a cretical area or organ - 30-50ml/min at 2 years; HR 1.02 (95%CI 0.78 to 1.33) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: DABIGATRAN 150mg versus WARFARIN

Protocol outcome 1: Mortality (all cause and cardiovascular) (Critical) at 6 months minimum

- Actual outcome: All-cause mortality - >80ml/min at 2 years; HR 0.7 (95%Cl 0.5 to 0.97) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

- Actual outcome: All-cause mortality - 50-80ml/min at 2 years; HR 0.85 (95%CI 0.71 to 1.02) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness - Actual outcome: All-cause mortality - 30-50ml/min at 2 years; HR 1.03 (95%CI 0.82 to 1.3) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

Protocol outcome 2: Cardiovascular or cerebrovascular events (Critical) at 6 months minimum

- Actual outcome: Stroke or systemic embolism 30-50ml/min at 2 years; HR 0.78 (95%CI 0.51 to 1.21) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness
- Actual outcome: Stroke or systemic embolism >80ml/min at 2 years; HR 0.65 (95%Cl 0.37 to 1.12) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness
- Actual outcome: Stroke or systemic embolism 50-80ml/min at 2 years; HR 0.69 (95%CI 0.52 to 0.9) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness
- Actual outcome: Stroke or systemic embolism 30-50ml/min at 2 years; HR 0.55 (95%CI 0.34 to 0.89) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

Protocol outcome 3: Major bleeding (as reported by studies) (Critical) at 6 months minimum

- Actual outcome: Reduction in harmoglobinlevel >20g/L, transfusion of > 2U of blood, or symptomatic bleeding in a cretical area or organ - >80ml/min at 2 years; HR 0.59 (95%CI 0.41 to 0.84) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

- Actual outcome: Reduction in harmoglobinlevel >20g/L, transfusion of > 2U of blood, or symptomatic bleeding in a cretical area or organ - 50-80ml/min at 2 years; HR 0.9 (95%CI 0.75 to 1.09) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

- Actual outcome: Reduction in harmoglobinlevel >20g/L, transfusion of > 2U of blood, or symptomatic bleeding in a cretical area or organ - 30-50ml/min at 2 years; HR 1.22 (95%CI 0.95 to 1.58) Reported; Risk of bias: --; Indirectness of outcome: Serious indirectness

Study	RE-LY trial: Hijazi 2014 ²⁶⁶
Protocol outcomes not reported by the study	Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Important) at 6 months minimum; Progression of CKD (change in eGFR) (Important) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Minor bleeding (as reported by the studies) (Important) at Define; Health related quality of life (Important) at 6 months minimum.

Table 137: Hohnloser 2012

Study	Hohnloser 2012 ²⁷⁵
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=eGFR >50-80ml/min: 5272, eGFR ≤50ml/min: 2067)
Countries and setting	Conducted in Multiple countries; Setting: Multicentre
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: Median 1.8 years.Uncle
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Assessed by Cockcroft Gault, CKD-EPI or Cystatin C (results of each reported).
Stratum	Overall: All participants had atrial fibrillation.
Subgroup analysis within study	Post-hoc subgroup analysis: CKD
Inclusion criteria	Atrial fibrillation or flutter at enrolment or at least two episodes documented by electrocardiography at least 2 weeks apart in the 12 months before enrolment. In addition, at least one of the following risk factors for stroke was required: age greater or equal to 75 years; prior stroke, TIA or systemic embolism, symptomatic heart failure within 3 months or left ventricular ejection fraction of no more than 40%, diabetes mellitus, hypertension requiring pharmacological treatment.
Exclusion criteria	Atrial fibrillation due to a reversible cause, moderate or severe mitral stenosis, conditions other than atrial fibrillation that required anticoagulation such as prosthetic heart valve, stroke within 7 days, need for aspirin >165mg a day or

Study	Hohnloser 2012 ²⁷⁵
	both aspirin and clopidogrel, and severe renal insufficiency (serum creatinine >2.5mg/dL or calculated creatinine clearance <25ml/min.
Recruitment/selection of patients	Not stated.
Age, gender and ethnicity	Age - Mean (SD): eGFR 50-80 ml/min: 70.3 (9.1), eGFR ≤50ml/min: 73.3 (8.7). Gender (M:F): eGFR 50-80 ml/min: 36% female, eGFR ≤50ml/min: 38% female. Ethnicity: Unclear - assumed mixed (study sites were in North America, Latin America, Europe and Asian Pacific regions).
Further population details	1. Older people aged 75 or over: Mixed 2. People with cardiovascular disease: People with cardiovascular disease (All participants had atrial fibrillation.).
Extra comments	For eGFR≤50ml/min: BP: 129.7/76.9, Prior myocardial infarction 18.5%, congestive heart failure 41.8%, prior stroke, TIA or systemic embolism 23%, diabetes 29.8%, hypertension 89.6%, prior clinically relevant or spontaneous bleeding 20.5%. 10.9% paroxysmal atrial fibrillation, 89.1% persistent or permanent.
Indirectness of population	Serious indirectness: All participants had atrial fibrillation.
Interventions	(n=1422) Intervention 1: Oral anticoagulants - Apixaban. 5mg twice daily or 2.5mg twice daily for people with two or more of the following: aged 80 or over, weight 60kg or under, serum creatinine 1.5mg/dL or more Duration Median 1.8 years. Concurrent medication/care: Not stated. Comments: Number not given per intervention - assumed 50/50 from total n with eGFR <50 from CKD-EPI 2843 (
	(n=1422) Intervention 2: Oral anticoagulants - Warfarin. 2mg tablets adjusted to achieve a target INR of 2-3 Duration Median 1.8 years. Concurrent medication/care: Not stated Comments: Number not given per intervention - assumed 50/50 from total n with eGFR <50 from CKD-EPI 2843
Funding	Study funded by industry (Bristol-Myers Squibb and Pfizer.)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: APIXABAN versus WARFARIN

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum

- Actual outcome: All-cause mortality at Median 1.8 years; HR 0.78 (95%CI 0.63 to 0.96) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Hohnloser 2012²⁷⁵ Study Protocol outcome 2: Cardiovascular or cerebrovascular events (Critical) at 6 months minimum - Actual outcome: Stroke or systemic embolism at Median 1.8 years; HR 0.61 (95%CI 0.39 to 0.94) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness Protocol outcome 3: Major bleeding (as reported by studies) (Critical) at 6 months minimum - Actual outcome: acute or subacute clinically overt bleeding accompanied by one or more of the following: a decrease in the haemoglobin level of >2g/dL over a 24 our period; a transfusion of >2U f packed red blood cells; and/or bleeding that is fatal or occurs in at least one of the following critical sites: intracrnial, intraspinal, intraocular, pericardial, intraarticular, intramuscular with compartment syndrome, retroperitoneal. at Median 1.8 years; HR 0.48 (95%CI 0.37 to 0.64) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Important) at 6 months
	minimum; Progression of CKD (change in eGFR) (Important) at 6 months minimum; Hospitalisation (Important) at 6
	months minimum; Minor bleeding (as reported by the studies) (Important) at Define; Health related quality of life
	(Important) at 6 months minimum

Table 138: James 2010

Study	James 2010 ³¹²
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=3237 with CrCl < 60 ml/min. (Total study n=15202))
Countries and setting	Conducted in Multiple countries; Setting: Hospitals
Line of therapy	1st line
Duration of study	Follow up (post intervention): Median duration of study treatment 9.1 months; follow up 360 days
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Creatinine level; creatinine clearace calculated with Cockcroft-Gault formula

ועמרוסנומו כוונווכמו פתומפוונופ

רפוות ה

LUT4

Study	James 2010 ³¹²
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Hospitalised for potential STE or non-STE ACS; onset in previous 24 hours
Exclusion criteria	Fibrinolytic therapy within 24 hours; need for oral anticoagulation therapy; need for dialysis; clinically important anaemia or thrombocytopaenia
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Median (IQR): 74 (68, 79). Gender (M:F): 39.8% female. Ethnicity: 88.5% White; 1.5% Black; 7.6% Oriental; 2.3% Other
Further population details	1. Older people aged 75 or over: Mixed (Median 74, IQR 68 to 79). 2. People with cardiovascular disease: People with cardiovascular disease (Hospitalised with acute coronary syndrome).
Extra comments	CKD population was a subgroup of full study - demographics of this subgroup aren't provided Randomisation not stratified for renal function
Indirectness of population	No indirectness
Interventions	(n=1619) Intervention 1: Antiplatelet agents - Ticagrelor. Loading dose 180mg then 90mg twice daily. Duration Media 9.1 months. Concurrent medication/care: Aspirin 75-100mg daily recommended but up to 325mg allowed for 6 months after stent placement Comments: Number randomised unclear - 1619 is around half the total of 3237
	(n=1618) Intervention 2: Antiplatelet agents - Clopidogrel. If no clopidogrel in last 5 days: 300mg loading dose then 75mg daily; if previous clopidogrel: 75mg daily. Duration Median 9.1 months. Concurrent medication/care: Aspirin 75 100mg daily recommended but up to 325mg allowed for 6 months after stent placement Comments: Number randomised not stated: 1618 is around half of total 3237
Funding	Study funded by industry (AstraZeneca)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: TICAGRELOR versus CLOPIDOGREL

Study	James 2010 ³¹²	
Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum - Actual outcome: All-cause mortality at 1 year; HR 0.64 (95%Cl 0.5 to 0.81) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness		
Protocol outcome 2: Cardiovascular or cerebrovascular events (Critical) at 6 months minimum - Actual outcome: Cardiovascular mortality or MI or stroke at 1 year; HR 0.71 (95%CI 0.59 to 0.86) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness		
Protocol outcome 3: Major bleeding (as reported by studies) (Critical) at 6 months minimum - Actual outcome: Major bleeding (PLATO defined) at 1 year; HR 1.08 (95%CI 0.87 to 1.34) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness		
Protocol outcomes not reported by the study	Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Important) at 6 months minimum; Progression of CKD (change in eGFR) (Important) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Minor bleeding (as reported by the studies) (Important) at Define; Health related quality of life (Important) at 6 months minimum	

Table 139: Jardine 2010, (Ruilope 2001)

Study (subsidiary papers)	Jardine 2010 ³¹⁵ (Ruilope 2001 ⁵⁹⁷)
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=3083)
Countries and setting	Conducted in Multiple countries; Setting: 26 countries in Europe, North and South America and Asia
Line of therapy	1st line
Duration of study	Intervention time: Mean 3.8 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Serum creatinine; eGFR calculated using MDRD equation
Stratum	Overall

Study (subsidiary papers)	Jardine 2010 ³¹⁵ (Ruilope 2001 ⁵⁹⁷)
Subgroup analysis within study	Not applicable: Baseline eGFR \geq 60, 45-50 and <45
Inclusion criteria	Age 50-80 years; diastolic BP 100-115mmHg
Exclusion criteria	Not stated
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (range): 61.3 (50-80). Gender (M:F): 67% female. Ethnicity: Not stated
Further population details	1. Older people aged 75 or over: Mixed (Age range 50-80 years). 2. People with cardiovascular disease: Mixed (All had hypertension (diastolic BP 100-115mmHg), 289 suffered a stroke, 349 had an myocardial infarction, 1005 had other coronary heart disease).
Extra comments	Median eGFR of 73 ml/min/1.73m ² . 14 978 had an eGFR ≥60, 3083 had an eGFR of 45-59 and 536 had an eGFR of <45 ml/min/1.73m ² . Diabetes: 9%, Previous MI: 1.8%, other coronary heart disease: 6.7%, previous stroke: 1.8%. All participants were hypertensive (diastolic BP 100-115mmHg)
Indirectness of population	No indirectness
Interventions	 (n=9308) Intervention 1: Antiplatelet agents - Aspirin. 75mg daily. Duration Mean 3.8 years. Concurrent medication/care: All had antihypertensive treatment (n=9289) Intervention 2: Placebo. Placebo. Duration Mean 3.8 years. Concurrent medication/care: All had antihypertensives
Funding	Study funded by industry (AstraZeneca)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ASPIRIN versus PLACEBO

Protocol outcome 1: Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum

- Actual outcome: Cardiovascular mortality at 3.8 years; HR 0.95 (95%CI 0.75 to 1.21) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome: Cardiovascular mortality GFR≥60 at 3.8 years; HR 1.08 (95%Cl 0.81 to 1.43) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome: Cardiovascular mortality GFR <45 at 3.8 years; HR 0.36 (95%CI 0.14 to 0.9) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Study (subsidiary papers)	Jardine 2010 ³¹⁵ (Ruilope 2001 ⁵⁹⁷)
- Actual outcome: Cardiovascular mortality GFR	45-59 at 3.8 years; HR 0.92 (95%Cl 0.54 to 1.54) Reported; Risk of bias: Unclear; Indirectness of outcome: No
indirectness	
	s; HR 0.93 (95%CI 0.79 to 1.09) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness
	: 3.8 years; HR 1 (95%CI 0.83 to 1.2) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness
	at 3.8 years; HR 0.89 (95%CI 0.6 to 1.31) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness
- Actual outcome: All-cause mortality GFR <45 at	: 3.8 years; HR 0.51 (95%Cl 0.27 to 0.94) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness
Protocol outcome 2: Cardiovascular or cerebrova	ascular events (Critical) at 6 months minimum
- Actual outcome: Myocardial infarction at 3.8 ye	ears; HR 0.71 (95%Cl 0.58 to 0.88) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness
- Actual outcome: Major cardiovascular disease	GFR≥60 at 3.8 years; HR 0.91 (95%CI 0.76 to 1.09) Reported; Risk of bias: High; Indirectness of outcome: No
indirectness	
- Actual outcome: Major cardiovascular disease (GFR 45-59 at 3.8 years; HR 0.85 (95%Cl 0.61 to 1.17) Reported; Risk of bias: High; Indirectness of outcome: No
indirectness	
-	GFR <45 at 3.8 years; HR 0.85 (95%CI 0.73 to 0.98) Reported; Risk of bias: High; Indirectness of outcome: No
indirectness	
	at 3.8 years; HR 0.78 (95%CI 0.61 to 1) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness
	59 at 3.8 years; HR 0.64 (95%Cl 0.39 to 1.03) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness
	at 3.8 years; HR 0.31 (95%CI 0.11 to 0.85) Reported; Risk of bias: ; Indirectness of outcome: No indirectness
	15%CI 0.78 to 1.24) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness
	IR 1.09 (95%CI 0.83 to 1.44) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness
	HR 1.02 (95%Cl 0.64 to 1.62) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness
· · · · ·	IR 0.31 (95%CI 0.11 to 0.85) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness
- Actual outcome: Myocardial infarction GFR <45	at 3.8 years; HR 0.31 (95%CI 0.11 to 0.85) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness
Protocol outcome 3: Major bleeding (as reported	d by studies) (Critical) at 6 months minimum

- Actual outcome: Major bleeding (fatal, life-threatening, disabling or requiring hospital admission) at 3.8 years; HR 1.61 (95%Cl 1.21 to 2.14) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness

- Actual outcome: Major bleeding (fatal, life-threatening, disabling or requiring hospital admission) GFR ≥60 at 3.8 years; HR 1.52 (95%Cl 1.11 to 2.08) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness

Study (subsidiary papers)	Jardine 2010 ³¹⁵ (Ruilope 2001 ⁵⁹⁷)			
- Actual outcome: Major bleeding (fatal, life-threatening, disabling or requiring hospital admission) GFR 45-59 at 3.8 years; HR 1.7 (95%CI 0.74 to 3.88) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness				
- Actual outcome: Major bleeding (fatal, life-threatening, disabling or requiring hospital admission) GFR <45 at 3.8 years; HR 1.61 (95%Cl 1.21 to 2.14) Reported; Risk bias: Unclear; Indirectness of outcome: No indirectness				
Protocol outcome 4: Minor bleeding (as reported by the studies) (Important) at Define - Actual outcome: Minor bleeding at 3.8 years; HR 1.7 (95%Cl 1.28 to 2.25) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness - Actual outcome: Minor bleed GFR ≥60 at 3.8 years; HR 1.54 (95%Cl 1.11 to 2.13) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness - Actual outcome: Minor bleed GFR 45-59 at 3.8 years; HR 2.25 (95%Cl 1.22 to 4.14) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness - Actual outcome: Minor bleed GFR 45-59 at 3.8 years; HR 2.25 (95%Cl 1.22 to 4.14) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness - Actual outcome: Minor bleed GFR <45 at 3.8 years; HR 2.57 (95%Cl 0.5 to 13.27) Reported; Risk of bias: Unclear; Indirectness of outcome: No indirectness				
Protocol outcomes not reported by the study	Progression of CKD (measured by occurrence of end stage renal disease needing RRT) (Important) at 6 months minimum; Progression of CKD (change in eGFR) (Important) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Health related quality of life (Important) at 6 months minimum			
Table 140: Keltai 2007				

Study	Keltai 2007 ³³⁴
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=4087)
Countries and setting	Conducted in Multiple countries; Setting: Hospitals
Line of therapy	1st line
Duration of study	Intervention + follow up: Mean 9 months treatment; outcomes at 12 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Serum creatinine and eGFR calculated using MDRD formula
Stratum	Overall

Study	Keltai 2007 ³³⁴
Subgroup analysis within study	Not applicable
Inclusion criteria	Non-STE ACS; hospitalised within 24 hours of symptoms; positive troponin or creatine kinase-MB levels; or ischaemic changes on ECG other than ST elevation of 2mm or more
Exclusion criteria	Contraindications to antithrombotic or antiplatelet therapy; high risk for bleeding; administration of oral anticoagulants; coronary revascularisation in last 3 months; IV glycoprotein IIb/IIIa inhibitors in previous 3 days; planned long term (>3 months) administration of NSAIDs
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): 69.6 (9.9). Gender (M:F): 51.2% female. Ethnicity: Not stated
Further population details	1. Older people aged 75 or over: Mixed (Mean 69.6 (9.9) years). 2. People with cardiovascular disease: People with cardiovascular disease (All acute coronary syndrome).
Extra comments	History: MI; 32.23%, CABG;11%, PCI; 9.9%, Stroke; 4%, peripheral arterial disease; 8.4%, heart failure; 7.6%, hypertension; 58.9%, diabetes; 22.6% People in the lowest tertile of eGFR were significantly older, more often female and had more frequent comorbid conditions. Previous MI, stroke, peripheral arterial disease, heart failure, hypertension and diabetes were more prevalent in this group.
Indirectness of population	Serious indirectness: All participatns had acute coronary syndrome (ACS) without ST-segment elevation. (Subgroup analysis of people with CKD).
Interventions	 (n=2044) Intervention 1: Antiplatelet agents - Clopidogrel. Loading dose 300mg then 75mg daily for 3-12 months. Duration mean duration 9 months. Concurrent medication/care: Aspirin 75-325mg daily recommended Comments: Number randomised not stated: 2044 is around half the 4087 total (n=2043) Intervention 2: Placebo. placebo. Duration Mean duration 9 months. Concurrent medication/care: Aspirin
	75-325mg daily recommended Comments: Number randomised not stated: 2043 is around half the 4087 total
Funding	Study funded by industry (Bristol-Myers Squibb, Sanofi-Synthelabo)

Study	Keltai 2007 ³³⁴
RESULTS (NUMBERS ANALYSED) AND RISK OF BI	AS FOR COMPARISON: CLOPIDOGREL versus PLACEBO
Protocol outcome 1: Mortality (all-cause and car	diovascular) (Critical) at 6 months minimum
- Actual outcome: All-cause mortality at 1 year;	Mean 0.95 (95%Cl 0.78 to 1.16); Risk of bias: Unclear; Indirectness of outcome: No indirectness
- Actual outcome: Cardiovascular mortality at 1 y	year; Mean 0.95 (95%Cl 0.77 to 1.17); Risk of bias: Unclear; Indirectness of outcome: No indirectness
Protocol outcome 2: Major bleeding (as reported	d by studies) (Critical) at 6 months minimum
- Actual outcome: Bleeding (life-threatening) at 2	1 year; Mean 0.89 (95%Cl 0.6 to 1.31); Risk of bias: Unclear; Indirectness of outcome: No indirectness
- Actual outcome: Major bleeding at 1 year; Mea	an 1.37 (95%Cl 0.89 to 2.12); Risk of bias: ; Indirectness of outcome: No indirectness
Protocol outcome 3: Minor bleeding (as reported	d by the studies) (Important) at Define
- Actual outcome: Minor bleeding at 1 year; Mea	an 1.50 (95%Cl 1.21 to 1.86); Risk of bias: Unclear; Indirectness of outcome: No indirectness
Protocol outcomes not reported by the study	Cardiovascular or cerebrovascular events (Critical) at 6 months minimum; Progression of CKD (measured b

brted by the studyCardiovascular or cerebrovascular events (Critical) at 6 months minimum; Progression of CKD (measured by
occurrence of end stage renal disease needing RRT) (Important) at 6 months minimum; Progression of CKD (change in
eGFR) (Important) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Health related quality of
life (Important) at 6 months minimum

Table 141: Mega 2012

Study	Mega 2012 ⁴⁴⁰
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=15526)
Countries and setting	Conducted in Multiple countries; Setting: 766 sites in 44 countries
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 13.1 months

Study	Mega 2012 ⁴⁴⁰
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Creatinine clearance above or below 50ml/min
Stratum	Overall
Subgroup analysis within study	Not stratified but pre-specified: ACS; subgroup with renal impairment
Inclusion criteria	≥18 years of age; symptoms suggestive of an acute coronary syndrome and in whom STEMI, NSTEMI or unstable angina diagnosed; those under 55 years had either diabetes mellitus or a previous MI in addition to the index event
Exclusion criteria	platelet count <90,000/mm3, haemoglobin <10g/dL, or a creatinine clearance <30ml/min at screening; clinically significant gastrointestinal bleeding within 12 months before randomization; previous intracranial haemorrhage; previous ischemic stroke or TIA in patients who were taking both aspirin and a thienopyridine
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): 61.8±9.2 for rivaroxaban 2.5mg; 61.9±9.0 for rivaroxaban 5mg; 61.5±9.4 for placebo. Gender (M:F): 11600:3926. Ethnicity: White 11409; Black 107; Asian 3229; Other 781
Further population details	1. Older people aged 75 or over: Mixed 2. People with cardiovascular disease: People with cardiovascular disease (ACS; subgroup with renal impairment).
Indirectness of population	Serious indirectness: ACS patients; subgroup by renal impairment
Interventions	(n=5174) Intervention 1: Oral anticoagulants - Rivaroxaban. Rivaroxaban 2.5mg twice daily. Duration 13.1 months. Concurrent medication/care: Aspirin 5105/5174 (98.7%); Thienopyridine 4790 (92.6%); Beta-blocker 3426 (66.2%); ACE inhibitor or ARB 2022 (39.1%); Statin 4304 (83.2%); Calcium channel blocker 820 (15.8%)
	(n=5176) Intervention 2: Oral anticoagulants - Rivaroxaban. Rivaroxaban 5mg twice daily. Duration 13.1 months. Concurrent medication/care: Aspirin 5099/5176 (98.5%); Thienopyridine 4812 (93.0%); Beta-blocker 3394 (65.6%); ACE inhibitor or ARB 1977 (38.2%); Statin 4342 (83.9%); Calcium channel blocker 742 (14.3%)
	(n=5176) Intervention 3: Placebo. Placebo. Duration 13.1 months. Concurrent medication/care: Aspirin 5108/5176 (98.7%); Thienopyridine 4811 (92.9%); Beta-blocker 3444 (66.5%); ACE inhibitor or ARB 2050 (39.6%); Statin 4321 (83.5%); Calcium channel blocker 764 (14.8%)

Study	Mega 2012 ⁴⁴⁰			
Funding	Study funded by industry (Johnson & Johnson and Bayer Healthcare)			
Protocol outcome 1: Cardiovascular or cerebrov	IAS FOR COMPARISON: RIVAROXABAN versus PLACEBO vascular events (Critical) at 6 months minimum inine clearance <50ml/min) at 13.1 months; Group 1: 80/686, Group 2: 49/368; Risk of bias: Low; Indirectness of			
otocol outcomes not reported by the study of end stage renal disease needing RRT) (Important) at 6 months minimum; Progression of CKD (measured by occur of end stage renal disease needing RRT) (Important) at 6 months minimum; Progression of CKD (change in eGFR (Important) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Major bleeding (as report studies) (Critical) at 6 months minimum; Minor bleeding (as reported by the studies) (Important) at Define; Heal related quality of life (Important) at 6 months minimum				

G.11 Asymptomatic hyperuricaemia

Study	Goicoechea 2010 ²³⁰
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=113)
Countries and setting	Conducted in Spain; Setting: Outpatient
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 2 years
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: estimated GFR and serum creatinine
Stratum	Overall
Subgroup analysis within study	Not applicable

Inclusion criteria	Renal disease (eGFR <60), no hospitalisations or cardiovascular events in last 3 months, baseline serum creatinine not increased by 50% in previous 3 months
Exclusion criteria	History of allopurinol intolerance, already on allopurinol treatment, active infection or inflammatory diseases, HIV infection, chronic hepatopathy, immunosuppressive therapy
Age, gender and ethnicity	Age - Mean (SD): Intervention group: 72.1 (7.9) Control group: 71.4 (9.5). Gender (M:F): Not reported. Ethnicity:
Further population details	1. Aged 75 or older or under 75: Not applicable / Not stated / Unclear
Extra comments	People with "moderate" chronic kideny disease not already on allopurinol
Indirectness of population	No indirectness
Interventions	 (n=57) Intervention 1: Uric acid lowering therapies - Allopurinol. 100mg, route oral. Duration 24 months. Concurrent medication/care: Usual treatment including antihypertensive agents and diuretics. (n=56) Intervention 2: Usual care - Usual care (as defined by study). Continued on usual treatment (no further details).
	Duration 24 months. Concurrent medication/care: Not stated
Funding	Funding not stated

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ALLOPURINOL versus USUAL CARE (AS DEFINED BY STUDY)

Protocol outcome 1: Hospitalisation at 3 months

- Actual outcome: Hospitalisation at 24 months; Group 1: 12/54, Group 2: 22/50; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Cardiovascular events at 3 months

- Actual outcome: Congestive HF, ischaemic coronary events, cerebrovascular accidents, peripheral arteriopathy, arrhythmia at 24 months; Group 1: 7/57, Group 2: 15/56; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 3: Renal progression - eGFR (final values) at 3 months

- Actual outcome: eGFR at 24 months; Group 1: mean 42.2 ml/min/1.73m2 (SD 13.2); n=54, Group 2: mean 35.9 ml/min/1.73m2 (SD 12.3); n=50; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 4: Renal progression - end stage renal disease needing RRT at 3 months - Actual outcome: Dialysis at 24 months; Group 1: 1/57, Group 2: 1/56; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 5: All cause mortality at 3 months

- Actual outcome: Mortality at 24 months; Group 1: 0/57, Group 2: 2/56; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Reduction in antihypertensive agents at 3 months; Serious adverse events at 3 months; Cardiovascular mortality at 3	
	months; Quality of life at 3 months	

ועמנוטחמו כווחוכמו שעומפווחפ כפחנרפ בטדא

Chronic kidney disease Clinical evidence tables

Study	Kao 2011 ³²⁸
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=67)
Countries and setting	Conducted in United Kingdom; Setting: Secondary care
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 9 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: eGFR 30 to 60ml/min/1.73m2
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Stage 3 CKD; left ventricular hypertrophy
Exclusion criteria	Not stated
Recruitment/selection of patients	Recruited from General Nephrology clinic and Cardiovascular Risk clinic, January to December 2008
Age, gender and ethnicity	Age - Mean (SD): Intervention: 70.6 ± 6.9 years; control: 73.7 ± 5.3 years. Gender (M:F): 28:25. Ethnicity: Not stated
Further population details	1. Aged 75 or older or under 75:
Indirectness of population	No indirectness
Interventions	(n=32) Intervention 1: Uric acid lowering therapies - Allopurinol. 300mg once a day orally. Duration 9 months. Concurrent medication/care: Not stated
	(n=35) Intervention 2: Placebo. Placebo. Duration 9 months. Concurrent medication/care: Not stated
Funding	Academic or government funding (British Heart Foundation)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ALLOPURINOL versus PLACEBO

Protocol outcome 1: Reduction in antihypertensive agents at 3 months

- Actual outcome: Antihypertensive agents stopped at 9 months; Group 1: 5/27, Group 2: 2/26; Risk of bias: High; Indirectness of outcome: No indirectness

Protocol outcome 2: Renal progression - eGFR (final values) at 3 months

- Actual outcome: Change in eGFR at 9 months; Group 1: mean 0.2 ml/min/1.73m2 (SD 6.9); n=27, Group 2: mean 0.2 ml/min/1.73m2 (SD 5.5); n=26; Risk of bias: High; Indirectness of outcome: No indirectness

Protocol outcome 3: All cause mortality at 3 months

- Actual outcome: All cause mortality at 9 months; Group 1: 0/32, Group 2: 1/35; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study	Hospitalisation at 3 months; Cardiovascular events at 3 months; Renal progression - end stage renal disease needing
	RRT at 3 months; Serious adverse events at 3 months; Cardiovascular mortality at 3 months; Quality of life at 3
	months

Study	Siu 2006 ⁶³⁷
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=54)
Countries and setting	Conducted in China; Setting: Secondary care
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 12 months
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Serum uric acid level >7.6mg/dL
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Daily proteinuria > 0.5g and/or elevated sCr >120 μ mol/L; baseline sCr level and daily proteinuria not increased by >40% within last 3 months; uric acid level >452 μ mol/L
Exclusion criteria	History of gouty arthritis; renal stones; advanced CKD (sCr >400 μmol/L); patients already on allopurinol or azathioprine; known allopurinol hypersensitivity; women of childbearing age who were unwilling to use "effective means" of contraception; pregnancy or lactation
Recruitment/selection of patients	Renal clinic fron April 2003 to April 2004
Age, gender and ethnicity	Age - Mean (SD): Allopurinol: 47.7 (12.9); control: 48.8 (16.8) years. Gender (M:F): 19:22. Ethnicity: Not stated
Further population details	1. Aged 75 or older or under 75:
Indirectness of population	No indirectness
Interventions	(n=26) Intervention 1: Uric acid lowering therapies - Allopurinol. Allopurinol 100mg to 300mg once a day orally. Duration 12 months. Concurrent medication/care: Not stated
	(n=28) Intervention 2: Usual care - Usual care (as defined by study). Usual care (no futher details). Duration 12 months. Concurrent medication/care: Not stated
Funding	No funding

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ALLOPURINOL versus USUAL CARE (AS DEFINED BY STUDY)

Protocol outcome 1: Reduction in antihypertensive agents at 3 months

- Actual outcome: Reduction in antihypertensive agents (ACEI and ARBs) at 12 months; Group 1: 0/23, Group 2: 0/19; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 2: Renal progression - end stage renal disease needing RRT at 3 months

- Actual outcome: End stage renal failure at 12 months; Group 1: 1/25, Group 2: 1/26; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcome 3: All cause mortality at 3 months

- Actual outcome: Mortality at 12 months; Group 1: 0/25, Group 2: 0/26; Risk of bias: Low; Indirectness of outcome: No indirectness

Protocol outcomes not reported by the study

Hospitalisation at 3 months; Cardiovascular events at 3 months; Renal progression - eGFR (final values) at 3 months; Serious adverse events at 3 months; Cardiovascular mortality at 3 months; Quality of life at 3 months

ועמרוסדומו כוודווכמו שמומפוודופ כפדונרפ

ZUT4

G.12 Vitamin D supplements in the management of CKD-mineral and bone disorders

Table 142: Baker 1989

RCT (Patient randomised; Parallel)
1 (n=16)
Conducted in United Kingdom
Adjunctive to current care
Intervention time: 12 mths
Adequate method of assessment/diagnosis: creatinine clearance
Overall
Not applicable
Patients with creatinine clearance 20 to 60 ml/min
Pregnancy, hypertension, gastrointestinal or liver disease, urinary protein output greater than 3 g daily, psychosis, known tetracycline allergy, treatment with medication known to affect bone, or vitamin D metabolites
Age: . Gender (M:F): 7:6. Ethnicity: not reported
 Black and minority ethnic groups: Not applicable / Not stated / Unclear 2. Older people aged 75 or over: Aged under 75 3. People with secondary hyperparathyroidism: CKD and secondary hyperparathyroidism (7/13 had elevated concentrations of parathyroid hormone).
No indirectness
 (n=8) Intervention 1: Vitamin D - Calcitriol (1,25 dihidroxycholecalciferol). 0.25 ug daily increaed to twice daily if serum calcium below 2.6 mmol/L. Duration 12 mths. Concurrent medication/care: anti-hypertensives. Phosphate binders in one patient. Calcium supplementation as required. Continued on usual diet. (n=8) Intervention 2: Placebo. no details. Duration 12 mths. Concurrent medication/care: As for intervention

Study	Baker 1989 ⁵¹
Funding	Study funded by industry (Dialysis Clinics Inc)
Protocol outcome 1: Cardiovascular events (Crit - Actual outcome: Incidence of myocardial infar Protocol outcome 2: Hypercalcaemia (serum cal	IAS FOR COMPARISON: CALCITRIOL (1,25 DIHIDROXYCHOLECALCIFEROL) versus PLACEBO cical) at 6 months minimum ction at 12 mths; Group 1: 0/8, Group 2: 1/8; Risk of bias: High; Indirectness of outcome: No indirectness lcium >2.5 mmol/litre) (Critical) at 6 months minimum oup 1: 4/7, Group 2: 0/5; Risk of bias: High; Indirectness of outcome: No indirectness
Protocol outcomes not reported by the study	Mortality (all cause) (Critical) at 6 months minimum; Fracture (Critical) at 6 months minimum; Progression of CKD (change in eGFR) (Critical) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Mortality (cardiovascular) (Critical) at 6 months minimum; Progression of CKD (creatinine clearance) at Define; Health related quality of life (Important) at 6 months minimum

Table 143: Coburn 2004

Study	Coburn 2004 ¹³³
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	(n=55)
Countries and setting	Conducted in USA; Setting: Secondary care
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 24 weeks

Study	Coburn 2004 ¹³³
Method of assessment of guideline condition	Method of assessment /diagnosis not stated
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Age 18-85 years; serum creatinine 1.8-5.0mg/dL for men or 1.6-4.0mg/dL for women; plasma iPTH >85pg/ml
Exclusion criteria	Alcohol or drug abuse; pregnancy or nursing; history of nephrolithiasis, renal transplant, hyperthyroidism or sarcoidosis; active malignancy requiring treatment; gastrointestinal disease (e.g. malabsorption syndrome, surgery that might reduce intestinal absorption, ulcerative colitis); significant impairment of hepatic function; any other condition that might place patient at undue risk or preclude study completion; treatment with anticonvulsants, glucocorticoids, bisphosphonates, fluoride or lithium in previous 12 months.
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): 64.1 (12.6) doxercalciferol; 65.0 (12.1) placebo. Gender (M:F): 45 male; 10 female. Ethnicity: 28/55 Caucasian; 22 African American; 4 Hispanic; 1 Other
Further population details	1. Black and minority ethnic groups: RCT mixed population (28/55 Caucasian; 22 African American; 4 Hispanic; 1 Other). 2. Older people aged 75 or over: Mixed (Age 18-85 years). 3. People with secondary hyperparathyroidism: CKD and secondary hyperparathyroidism (CKD stage 3 or 4 and secondary hyperparathyroidism).
Extra comments	Stage 3 or 4 chronic kidney disease and secondary hyperparathyroidism. None
Indirectness of population	No indirectness
Interventions	(n=27) Intervention 1: Vitamin D - Doexercalciferol. 2 capsules (0.5microg each) daily before breakfast; increased by 1 capsule per day at monthly intervals if plasma iPTH not reduced by at least 30% from baseline, and providing serum calcium 9.6mg/dL or less, serum phosphorus 5.0mg/dL or less, 24 hour urinary calcium 200mg or less and fasting urine calcium-creatinine ratio 0.25mg/mg or less; maximum dose 10 capsules/day (5microg). Duration 24 weeks. Concurrent medication/care: Only calcium-based phosphate binders were administered
	(n=28) Intervention 2: Placebo. 2 capsules daily before breakfast; increased by 1 capsule per day at monthly intervals if plasma iPTH not reduced by at least 30% from baseline, and providing serum calcium 9.6mg/dL or less, serum phosphorus 5.0mg/dL or less, 24 hour urinary calcium 200mg or less and fasting urine calcium-creatinine ratio

	122	
Study	Coburn 2004 ¹³³	
	0.25mg/mg or less; maximum dose 10 capsules/day . Duration 24 weeks. Concurrent medication/care: Only calcium-	
	based phosphate binders were administered	
Funding	Study funded by industry	
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: DOEXERCALCIFEROL versus PLACEBO		
Protocol outcome 1: Progression of CKD (change	e in eGFR) (Critical) at 6 months minimum	
- Actual outcome: mean mGFR at 24 weeks; Group 1: mean 30 ml/min (SD 13.6); n=22, Group 2: mean 33.9 ml/min (SD 14.76); n=20; Risk of bias: Low; Indirectness of outcome: No indirectness		
Protocol outcome 2: Hypercalcaemia (serum calcium >2.5 mmol/litre) (Critical) at 6 months minimum		
- Actual outcome: Hypercalcaemia (>2.67mmol/L) at 24 weeks; Group 1: 1/27, Group 2: 1/28; Risk of bias: Low; Indirectness of outcome: No indirectness		
Protocol outcomes not reported by the study	Mortality (all cause) (Critical) at 6 months minimum; Cardiovascular events (Critical) at 6 months minimum; Fracture (Critical) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Mortality (cardiovascular) (Critical) at 6 months minimum; Progression of CKD (creatinine clearance) at Define; Health related quality of life (Important) at	

Table 144: Coyne 2006

Study	Coyne 2006 ¹⁴³
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	3 (n=220 (107 intervention, 113 placebo))
Countries and setting	Conducted in Poland, USA; Setting: 46 investigative sites.
Line of therapy	Adjunctive to current care

6 months minimum

Chu hu	0
Study	Coyne 2006 ¹⁴³
Duration of study	Intervention + follow up: 24 weeks intervention plus 30 day follow up for adverse events
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: eGFR by MDRD
Stratum	Overall: N/A
Subgroup analysis within study	Not applicable
Inclusion criteria	18 years or older, diagnosed with CKD for longer than 2 months, and had not been on active vitamin D therapy in the previous 4 weeks. eGFR 15-60 ml/min/1.73m ² who were not expected to begin dialysis therapy for at least 6 months. People who had been administered a phosphate binder were to have been on a stable regimen for at least 4 weeks before the screening visit.
Exclusion criteria	Acute renal failure in the past 12 weeks, clinically significant chronic gastrointestinal disease or liver disease, malignancy, active granulomatous disease (tuberculosis, sarcoidosis etc.), pregnancy, history of hypersensitivity to vitamin D, spot urinary calcium-creatinine ratio greater than 0.2, or history of renal stones. People were also excluded if they were administered medications that could potentially affect calcium or bone metabolism, such as calcitonin or bisphosphonates, or if they had been administered glucocorticoids for more than 14 days within 6 months. Aluminium containing phosphate binders were not allowed for more than 3 weeks during the study.
Recruitment/selection of patients	The randomisation schedule was computer generated before the study began by Abbott. At the start of the treatment phase, eligible participants were assigned a unique 4-digit number in ascending numerical sequence per investigative site, which randomly asigned them to treatment with paricalcitol or placebo. Studies were performed in 4 parts: a screening visit, pretreatment phase, treatment phase, and follow-up phase. At the screening visit, blood samples were collected for iPTH, blood urea nitrogen, albumin, and serum creatinine levels, and the patient's estimated GFR was derived. During the pretreatment phase (1-4 weeks) patients had 2 visits with blood draws at least 1 day apart. If they had 2 consecutive iPTH levels averaging 150pg/ml or greater and 2 consecutive phosphorus levels of 5.2mg/dl or less, they were eligible to enter the treatment phase.
Age, gender and ethnicity	Age - Mean (SD): Intervention: 63.6 (13.2) Placebo: 61.8 (12.4). Gender (M:F): 67.5% male. Ethnicity: 71% white, 26% black 3% other (no difference between groups)
Further population details	 Black and minority ethnic groups: RCT mixed population 2. Older people aged 75 or over: Mixed (Range not stated). People with secondary hyperparathyroidism: CKD and secondary hyperparathyroidism
Extra comments	Baseline eGFR (ml/min/1.73m ²), mean (SD) Intervention: 23.1 (8.1), Placebo 23 (7.8). Baseline eGFR (ml/min/1.73m ²),

Study	Coyne 2006 ¹⁴³
	mean (SD) Intervention: 23.1 (8.1), Placebo 23 (7.8)
Indirectness of population	No indirectness
Interventions	 (n=107) Intervention 1: Vitamin D - Paracalcitrol. The initial dose was determined according to baseline iPTH levels. In the thrice weekly studies, dosing was initiated at 2µg thrice weekly for baseline iPTH of 500pg/ml or les or 4µg if iPTH >500pg/ml. In the once daily study, the initial dose was 1µg once daily if baseline iPTH level was 500pg/ml or less and 2µg if iPTH >500pg/ml. Subsequent doses were titrated by 2µg for thrice weekly studies and 1µg for once daily studies. Dose increases could occur evey 4 weeks until a 30% decrease in iPTH levels was achieved. The dose could be decreased every 2 weeks or sooner if iPTH level was decreased by greater than 60% from baseline, serum calcium level was elevated, or serum phosphorus level was persistently elevated. Duration 24 weeks. Concurrent medication/care: Patients on phosphate binder therapy were to maintain a stable regimen (brand and doses) throughout treatment. Comments: Patients were discontinued from the study if they required dialysis therapy, or if after 4 weeks of therapy, 2 consecutive iPTH values were greater than 1000pg/ml or were at least 3-fold greater than baseline. (n=113) Intervention 2: Placebo. Placebo capsules were similar to paricalcitol capsules in size, colour, shape and contents, with absence of the active drug Duration 24 weeks. Concurrent medication/care: As for intervention group Comments: Patients were discontinued from the study if they required dialysis therapy, or if after 4 weeks of therapy, 2 consecutive iPTH values were greater than 1000pg/ml or were at least 3-fold greater than baseline.
Funding	Study funded by industry (Abbott Laboratories)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: PARACALCITROL versus PLACEBO

Protocol outcome 1: Mortality (all cause) (Critical) at 6 months minimum

- Actual outcome: Deaths (reported within adverse events) at 7 months; Group 1: 2/107, Group 2: 1/113; Risk of bias: --; Indirectness of outcome: No indirectness

Protocol outcome 2: Progression of CKD (change in eGFR) (Critical) at 6 months minimum

- Actual outcome: Change from baseline in eGFR (measured by MDRD) at 24 weeks; Group 1: mean 21.4 ml/min/1.73m² (SD 8.96); n=82, Group 2: mean 21.9

Study	Coyne 2006 ¹⁴³
ml/min/1.73m ² (SD 8.97); n=93; Risk of bias:; Indirectness of outcome: No indirectness	
Protocol outcome 3: Hypercalcaemia (serum calcium >2.5 mmol/litre) (Critical) at 6 months minimum	
- Actual outcome: At least 2 consecutive correctied calcium vales >2.62mmol/l) at 24 weeks; Group 1: 2/107, Group 2: 0/113; Risk of bias:; Indirectness of outcome:	
No indirectness	
Protocol outcomes not reported by the study	Cardiovascular events (Critical) at 6 months minimum; Fracture (Critical) at 6 months minimum; Hospitalisation
	(Important) at 6 months minimum; Mortality (cardiovascular) (Critical) at 6 months minimum; Progression of CKD
	(creatinine clearance) at Define; Health related quality of life (Important) at 6 months minimum

Table 145: Hamdy 1995

Study	Hamdy 1995 ²⁴⁵
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=176)
Countries and setting	Conducted in Belgium, France, Netherlands, United Kingdom
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 2 yrs
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: creatinine clearance
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Creatinine clearance 15-50 ml/min and no evidence of renal bone disease
Exclusion criteria	A raised serum calcium concentration or total alkaline phosphatase activity, and disturbance in liver function.
Age, gender and ethnicity	Age - Mean (SD): vit D 53 (15) placebo 51 (16). Gender (M:F): % male Exptl 61% control 61%. Ethnicity: Not stated

ואמנוטדומו כוודווכמו שעומפוודופ כפרונדפ בטד4

Study	Hamdy 1995 ²⁴⁵
Further population details	1. Black and minority ethnic groups: Not applicable / Not stated / Unclear 2. Older people aged 75 or over: Systematic review: mixed 3. People with secondary hyperparathyroidism: CKD and secondary hyperparathyroidism (Elevated para thyroid hormone 50/72).
Indirectness of population	No indirectness
Interventions	 (n=89) Intervention 1: Vitamin D - Alfacalcidol (1 alpha hydroxycholecalciferol). 0.25 μg daily increasing to 1 μg a day in order to maintain serum calcium concentration at the upper limit of normal lab reference range. Duration 2 yrs. Concurrent medication/care: The use of phosphate binding drugs other than calcium was permitted when dietary restriction of phosphate failed to maintain serum phosphate concentrations below 2.2 mmol/l (n=87) Intervention 2: Placebo. Placebo. Duration 2 yrs. Concurrent medication/care: The use of phosphate binding drugs other than calcium was permitted when dietary restriction of phosphate binding drugs other than calcium was permitted when dietary restriction of phosphate binding drugs other than calcium was permitted when dietary restriction of phosphate failed to maintain serum phosphate concentration/care: The use of phosphate binding drugs other than calcium was permitted when dietary restriction of phosphate failed to maintain serum phosphate concentration/care: The use of phosphate binding drugs other than calcium was permitted when dietary restriction of phosphate failed to maintain serum phosphate concentrations below 2.2 mmol/l
Funding	Funding not stated
RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: ALFACALCIDOL (1 ALPHA HYDROXYCHOLECALCIFEROL) versus PLACEBO Protocol outcome 1: Hypercalcaemia (serum calcium >2.5 mmol/litre) (Critical) at 6 months minimum - Actual outcome: > 2.63 mmol/l at 2 yrs; Group 1: 14/89, Group 2: 3/87; Risk of bias: High; Indirectness of outcome: No indirectness	
Protocol outcome. 2: Drogrossion of CKD (croatining clearance) at Define	

Protocol outcome 2: Progression of CKD (creatinine clearance) at Define - Actual outcome: creatinine clearance ml/min at 2 yrs; Group 1: mean -5.9 ml/min (SD 9.4); n=89, Group 2: mean -4 ml/min (SD 18.7); n=87; Risk of bias: High; Indirectness of outcome: No indirectness

multectiless of outcome. No multectiless

Protocol outcomes not reported by the study	Mortality (all cause) (Critical) at 6 months minimum; Cardiovascular events (Critical) at 6 months minimum; Fracture
	(Critical) at 6 months minimum; Progression of CKD (change in eGFR) (Critical) at 6 months minimum; Hospitalisation
	(Important) at 6 months minimum; Mortality (cardiovascular) (Critical) at 6 months minimum; Health related quality
	of life (Important) at 6 months minimum

ואמנוטרומו כווחוכמו שטומפווחפ כפרונרפ בטב4

Table 146: Nordal 1988

Study	Nordal 1988 ⁴⁹⁰
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=30)
Countries and setting	Conducted in Norway
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 8 mths
Method of assessment of guideline condition	Partially adequate method of assessment/diagnosis: serum creatinine 180 umol/L
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Serum creatinine greater thn 180 umol/L and stable renal function for the previous 4 mths
Exclusion criteria	None stated
Age, gender and ethnicity	Age - Range: vit D 26-71 placebo 23-69. Gender (M:F): Vit D 9:6 placebo 11:4. Ethnicity: Not reported
Further population details	 Black and minority ethnic groups: Not applicable / Not stated / Unclear 2. Older people aged 75 or over: Aged under People with secondary hyperparathyroidism: Not applicable / Not stated / Unclear
Indirectness of population	No indirectness
Interventions	 (n=15) Intervention 1: Vitamin D - Calcitriol (1,25 dihidroxycholecalciferol). 0.25 ug once daily rising to twice daily. Duration 8 mths. Concurrent medication/care: Phosphate binding agents allowed (n=15) Intervention 2: Placebo. no details. Duration 8 mths. Concurrent medication/care: as for intervention
Funding	Academic or government funding (Placebo tablets from Hoffman La Roche.)

Study	Nordal 1988 ⁴⁹⁰		
RESULTS (NUMBERS ANALYSED) AND RISK OF BI	RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: CALCITRIOL (1,25 DIHIDROXYCHOLECALCIFEROL) versus PLACEBO		
	cium >2.5 mmol/litre) (Critical) at 6 months minimum p 1: 8/14, Group 2: 0/14; Risk of bias: High; Indirectness of outcome: No indirectness		
Protocol outcomes not reported by the study	Mortality (all cause) (Critical) at 6 months minimum; Cardiovascular events (Critical) at 6 months minimum; Fracture (Critical) at 6 months minimum; Progression of CKD (change in eGFR) (Critical) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Mortality (cardiovascular) (Critical) at 6 months minimum; Progression of CKD (creatinine clearance) at Define; Health related quality of life (Important) at 6 months minimum		

Table 147: Patel 2011

Study	Patel 2011 ⁵³²
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	(n=24)
Countries and setting	Conducted in USA; Setting: Nephrology centres
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 24 weeks
Method of assessment of guideline condition	Method of assessment /diagnosis not stated
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	CKD stage 3 or 4; serum 25(OH)D 30ng/ml or more; iPTH >110 and <450pg/ml for stage 3 and >150 and <450 for stage 4
Exclusion criteria	Serum calcium >9.5mg/dL; phosphorus>4.6mg/dL; spot urine calcium/creatinine ratio >0.2; spot urine protein/creatinine ratio >3.5; any clinically significant unstable medical condition

Study	Patel 2011 ⁵³²
Recruitment/selection of patients	Not stated
Age, gender and ethnicity	Age - Mean (SD): 66.7 (14) placebo; 67.4 (11) doxercalciferol. Gender (M:F): 16 male, 8 female. Ethnicity: 17/24 White 4 Black/African American; 3 Other
Further population details	1. Black and minority ethnic groups: RCT mixed population (17/24 White; 4 Black/African American; 3 Other). 2. Older people aged 75 or over: Mixed (Age over 18 years). 3. People with secondary hyperparathyroidism: CKD and secondary hyperparathyroidism (CKD stage 3 or 4 and secondary hyperparathyroidism).
Extra comments	Vitamin D replete patients with CKD stage 3 or 4 and secondary hyperparathyroidism. None
Indirectness of population	No indirectness
Interventions	(n=12) Intervention 1: Vitamin D - Doexercalciferol. 2 capsules (1microg) daily; titrations of 1 capsule daily at 2-week intervals to achieve iPTH levels <70pg/ml for stage 3 and <110pg/ml for stage 4 patients. Duration 24 weeks. Concurrent medication/care: Patients advised to maintain constant dietary intake of calcium and phosphorus, and current dose of phosphate binder during study
	(n=12) Intervention 2: Placebo. 2 capsules daily, titrated by 1 capsule daily at 2-week intervals. Duration 24 weeks. Concurrent medication/care: Patients advised to maintain constant dietary intake of calcium and phosphorus, and current dose of phosphate binder during study
Funding	Study funded by industry (Genzyme)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: DOEXERCALCIFEROL versus PLACEBO

Protocol outcome 1: Progression of CKD (change in eGFR) (Critical) at 6 months minimum

- Actual outcome: median change in eGFR from baseline to week 24 at 24 weeks; Risk of bias: High; Indirectness of outcome: No indirectness

Protocol outcome 2: Hypercalcaemia (serum calcium >2.5 mmol/litre) (Critical) at 6 months minimum

- Actual outcome: Hypercalcaemia (level not specified) at 24 weeks; Group 1: 0/12, Group 2: 0/12; Risk of bias: High; Indirectness of outcome: No indirectness

Study	Patel 2011 ⁵³²
Protocol outcomes not reported by the study	Mortality (all cause) (Critical) at 6 months minimum; Cardiovascular events (Critical) at 6 months minimum; Fracture (Critical) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Mortality (cardiovascular) (Critical) at 6 months minimum; Progression of CKD (creatinine clearance) at Define; Health related quality of life (Important) at 6 months minimum

Table 148: Przedlacki 1995

Study	Przedlacki 1995 ⁵⁵⁷
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=25)
Countries and setting	Conducted in Finland
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 12 mths
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: GFR
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	GFR equal or below 51.2 ml/min and age below 70 yrs
Exclusion criteria	Pregnancy, hypercalcemia (serum > 2.6 mmol/l), renal stones, intestinal diseases, diabetes, treatment with steroids and vit D metabolites, anticoagulants, anticonvulsants
Age, gender and ethnicity	Age - Other: range 35-64. Gender (M:F): vit D 2:13 placebo 8:4. Ethnicity: Not stated
Further population details	1. Black and minority ethnic groups: Not applicable / Not stated / Unclear 2. Older people aged 75 or over: Not applicable / Not stated / Unclear 3. People with secondary hyperparathyroidism: Not applicable / Not stated / Unclear
Indirectness of population	No indirectness
Interventions	(n=13) Intervention 1: Vitamin D - Calcitriol (1,25 dihidroxycholecalciferol). 0.25 μ g/day. Duration 12 mths.

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Study	Przedlacki 1995 ⁵⁵⁷
	Concurrent medication/care: Depending on age, patients were on a low protein and low phosphorus diet. Some of them received calcium carbonate or aluminium-containing phosphorus binders before the study
	(n=13) Intervention 2: Placebo. Placebo. Duration 12 mths. Concurrent medication/care: Depending on age, patients were on a low protein and low phosphorus diet. Some of them received calcium carbonate or aluminum-containing phosphorus binders before the study
Funding	Study funded by industry (Hoffman La Roche)
RESULTS (NUMBERS ANALYSED) AND RISK OF	BIAS FOR COMPARISON: CALCITRIOL (1,25 DIHIDROXYCHOLECALCIFEROL) versus PLACEBO
Protocol outcome 1: Fracture (Critical) at 6 mo - Actual outcome: Incidence of fracture at 12 Protocol outcome 2: Hypercalcaemia (serum o - Actual outcome: > 2.6 mmol/litre at 12 mont Protocol outcome 3: Mortality (cardiovascular	onths minimum mths; Group 1: 0/13, Group 2: 1/12; Risk of bias: High; Indirectness of outcome: No indirectness calcium >2.5 mmol/litre) (Critical) at 6 months minimum ths; Group 1: 2/13, Group 2: 0/12; Risk of bias: High; Indirectness of outcome: No indirectness

Ritz 1995⁵⁷²

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Study	Ritz 1995 ⁵⁷²
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=36)
Countries and setting	Conducted in Germany
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 18 mths
Method of assessment of guideline condition	Partially adequate method of assessment/diagnosis: serum creatinine
Stratum	Overall
Subgroup analysis within study	Not applicable
Inclusion criteria	Serum creatinine above 1.4 mg/dl and below 6.5 mg/dl 1,84 iPTH levels above the normal range ie 6 pmol/l on three separate occasions during recruitment
Exclusion criteria	Nephrotic proteinuria, diabetes mellitus, immunosuppressive therapy, frank vit D deficiency, anticonvulsive therapy and mephrocalcinosis
Age, gender and ethnicity	Age - Mean (SD): Vit D 55 placevo 54. Gender (M:F): vit D 10:11 placebo 16:8. Ethnicity: Not reported
Further population details	1. Black and minority ethnic groups: Not applicable / Not stated / Unclear 2. Older people aged 75 or over: Aged under 75 3. People with secondary hyperparathyroidism: CKD and secondary hyperparathyroidism
Indirectness of population	No indirectness
Interventions	(n=24) Intervention 1: Vitamin D - Calcitriol (1,25 dihidroxycholecalciferol). 0.125 μg. Duration 12 mths. Concurrent medication/care: Calcium carbonate if serum phosphate exceeded 1.7 mmol/l
	(n=21) Intervention 2: Placebo. dose/quantity, brand name, extra details. Duration 12 mths. Concurrent medication/care: Not specified

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: CALCITRIOL (1,25 DIHIDROXYCHOLECALCIFEROL) versus PLACEBO

Funding not stated (No funding stated)

Funding

Study	Ritz 1995 ⁵⁷²
	cium >2.5 mmol/litre) (Critical) at 6 months minimum up 1: 0/24, Group 2: 0/21; Risk of bias: High; Indirectness of outcome: No indirectness
Protocol outcomes not reported by the study	Mortality (all cause) (Critical) at 6 months minimum; Cardiovascular events (Critical) at 6 months minimum; Fracture (Critical) at 6 months minimum; Progression of CKD (change in eGFR) (Critical) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Mortality (cardiovascular) (Critical) at 6 months minimum; Progression of CKD (creatinine clearance) at Define; Health related quality of life (Important) at 6 months minimum

ואמרוסוזמו כוווזוכמו סמומפוווזה כהנות ה דת **ניוז**2.13 Oral bicarbonate supplements in the management of people with CKD and metabolic acidosis

Table 150: De brito-ashurst 2009

Study	De brito-ashurst 2009 ¹⁵⁵
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=134)
Countries and setting	Conducted in United Kingdom; Setting: Single centre outpatients. The low-clearance clinic at the Royal London Hospital, part of the Barts and The London NHS Trust, UK.
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 24 months52
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: Creatinine clearance 15-30ml/min/1.73m ² calculated from a 24 hour urine
Stratum	Overall: Stratified by gender and presence or absence of diabetes with block randomisation within each stratum.
Subgroup analysis within study	Stratified then randomised

Study	De brito-ashurst 2009 ¹⁵⁵
Inclusion criteria	Age >18; stage 4-5 CKD; plasma bicarbonate <20 and >16mmol/L on two consecutive measurements; stable clinical condition.
Exclusion criteria	Malignant disease; morbid obesity; cognitive impairment; chronic sepsis; poorly controlled blood pressure (>150/90mmHg) despite use of four agents; overt congestive heart failure; steroid therapy.
Recruitment/selection of patients	Selected from patients already attending clinic by the principal investigator who was blind to group allocations until the end of the study. "Randomly assigned" to intervention or "routine standard care".
Age, gender and ethnicity	Age - Other: Mean (SE): Control: 54.8 (2.34); Bicarbonate: 54.8 (2.56). Gender (M:F): 69:65. Ethnicity: 52% white: 48% black/Asian
Further population details	1. Older people aged 75 or over: Not applicable / Not stated / Unclear
Extra comments	Adults with CrCl 15-30ml/min/1.73m ² and serum bicarbonate 16-20mmol/L.
Indirectness of population	No indirectness
Interventions	(n=67) Intervention 1: Oral bicarbonate supplements - Sodium bicarbonate. 600mg orally three times a day increased as necessary to maintain bicarbonate level ≥23 mmol/L. Mean 1.82 ± 0.8g/day Duration 24 months. Concurrent medication/care: In all patients use of sevelemar hydrochloride was avoided; calcium acetate was the only phosphate binder allowed.
	(n=67) Intervention 2: Usual care. Standard treatment and monitoring of CKD. Duration 24 months. Concurrent medication/care: In all patients use of sevelemar hydrochloride was avoided; calcium acetate was the only phosphate binder allowed.
Funding	Academic or government funding (Barts and the London Charitable Foundation)

RESULTS (NUMBERS ANALYSED) AND RISK OF BIAS FOR COMPARISON: SODIUM BICARBONATE versus USUAL CARE

Protocol outcome 1: Cardiovascular events (including chronic heart failure) (Critical) at 6 months minimum

- Actual outcome: Worsening oedema requiring increase in loop diuretics at 24 months; Group 1: 26/67, Group 2: 20/67; Risk of bias: High; Indirectness of outcome: --

Study	De brito-ashurst 2009 ¹⁵⁵			
Protocol outcome 2: Progression	KD (measured by occurrence of end stage renal disease needing RRT) (Critical) at 6 months minimum			
- Actual outcome: End stage ren	ease requiring RRT (CrCl <10ml/min) at 24 months; Group 1: 4/62, Group 2: 22/67; Risk of bias: High; Indirectness of outcome:			
Protocol outcome 3: Progression	KD (change in eGFR) (Critical) at 6 months minimum			
- Actual outcome: Decline in cre	ne clearance at 24 months; Risk of bias: Low; Indirectness of outcome: Serious indirectness			
Protocol outcome 4: Hypertensi	neasured by use of antihypertensives) (Critical) at 6 months minimum			
- Actual outcome: Worsening hypertension requiring an increase in therapy at 24 months; Group 1: 41/67, Group 2: 32/67; Risk of bias: High; Indirectness of outcome: No indirectness				
Protocol outcome 5: Hospitalisation (Important) at 6 months minimum				
- Actual outcome: Hospitalisation for congestive heart failure at 24 months; Group 1: 0/67, Group 2: 0/67; Risk of bias: Low; Indirectness of outcome:				
Protocol outcomes not reported by the study Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum; Alkalosis (Critical) at 6 months minimum;				

tcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum; Alkalosis (Critical) at 6 months minimum;
	Nutrition (measured by subjective global assessment) (Critical) at 6 months minimum; Nutrition (measured by change
	in BMI) (Critical) at 6 months minimum; Health related quality of life (Important) at 6 months minimum

Table 151: Mahajan 2010

Study	Mahajan 2010 ⁴⁰⁸
Study type	RCT (Patient randomised; Parallel)
Number of studies (number of participants)	1 (n=80)
Countries and setting	Conducted in USA; Setting: People identified from general clinical database of Texas Tech University Health Science Center. Follow up in outpatient internal medicine clinic.
Line of therapy	Adjunctive to current care
Duration of study	Intervention time: 5 years

Study	Mahajan 2010 ⁴⁰⁸		
Method of assessment of guideline condition	Adequate method of assessment/diagnosis: eGFR 60-90ml/min by MDRD.		
Stratum	Overall: Age, eGFR, albuminuria and ethnicity.		
Subgroup analysis within study	Stratified then randomised		
Inclusion criteria	Non-malignant hypertension; macroalbuminuria (Urine albumin >200 but <2000mg/g creatinine); eGFR ≥60 but <90ml/min; ≥2 clinic visits showing compliance; age ≥18 years and able to give consent.		
Exclusion criteria	Known primary kideny disease or findings consistent thereof such as ≥3 red blood cells per high-powered field of urine or urine cellular casts; history of diabetes or fasting blood glucose ≥110mg/dl; history of malignancy, chronic infection, pregnancy, or clinical evidence of cardiovascular disease; peripheral oedema or diagnoses associated wityh oedema including heart/liver failure or nephrotic syndrome; smoking or oral tobacco use within 1 year of recruitment; history of medication non-compliance; frank metabolic acidosis (plasma total carbon dioxide <24.5mM). Clinically excluded people with systemic diseases associated with nephropathy, nephrotic proteinuria, and urine abnormalities other than albuminuria (none had renal biopsy). Clinically excluded secondary causes of hypertension such as renal artery stenosis or hyperaldosteronism (none had doppler studies or serum aldosterone:renin ratio).		
Recruitment/selection of patients	491 people identified from database; 349 met inclusion criteria; 120 included in final study (40 in each arm: sodium bicarbonate, sodium chloride and placebo).		
Age, gender and ethnicity	Age - Mean (SD): Bicarbonate: 51.2 (8.2); Placebo: 51.3 (8.5). Gender (M:F): 38:42. Ethnicity: 63% Black: 22% Hispanic: 15% White		
Further population details	1. Older people aged 75 or over: Not applicable / Not stated / Unclear		
Extra comments	Adults with eGFR 60-90ml/min (CKD Stage 2) and hypertensive nephropathy and macroalbuminuria		
Indirectness of population	No indirectness		
Interventions	 (n=40) Intervention 1: Oral bicarbonate supplements - Sodium bicarbonate. Sucrose + sodium bicarbonate tablets, each 10mEq. Dose 0.5mEq/kg lean body weight daily. Prescribed tablets to nearest half tablet (for example weight 70kg, dose 3.5 tablets) Duration 5 years. Concurrent medication/care: Annual clinic visit, blood pressure control included an ACE inhibitor for all patients. (n=40) Intervention 2: Placebo. Matched placebo - sucrose tablet Duration 5 years. Concurrent medication/care: 		

	100				
Study	Mahajan 2010 ⁴⁰⁸				
	Annual clinic visit, blood pressure control included an ACE inhibitor for all patients.				
Funding	Academic or government funding (Larry and Jane Woirhaye Memorial Endowment in Renal research; Texas Tech University Health Sciences Center; Statistics Department of Texas A&M University; Research Division of Scott and White Healthcare.)				
RESULTS (NUMBERS ANALYSED) AND RISK OF B	IAS FOR COMPARISON: SODIUM BICARBONATE versus PLACEBO				
(SD 6.1); n=34; Risk of bias: High; Indirectness of - Actual outcome: eGFR using serum cystatin C a (SD 6.3); n=34; Risk of bias: High; Indirectness of Protocol outcome 2: Alkalosis (Critical) at 6 mor	and MDRD equation at 5 years; Group 1: mean 67.6 ml/min/1.73m ² (SD 4.9); n=37, Group 2: mean 64 ml/min/1.73m ² of outcome: No indirectness and CKD-EPI equation at 5 years; Group 1: mean 66.4 ml/min/1.73m ² (SD 4.9); n=37, Group 2: mean 60.8 ml/min/1.73m ² of outcome: No indirectness				
Protocol outcomes not reported by the study	Mortality (all-cause and cardiovascular) (Critical) at 6 months minimum; Cardiovascular events (including chronic heart failure) (Critical) at 6 months minimum; Progression of CKD (measured by occurrence of end stage renal disea needing RRT) (Critical) at 6 months minimum; Hypertension (measured by use of antihypertensives) (Critical) at 6 months minimum; Hospitalisation (Important) at 6 months minimum; Nutrition (measured by subjective global assessment) (Critical) at 6 months minimum; Nutrition (measured by change in BMI) (Critical) at 6 months minimum Health related quality of life (Important) at 6 months minimum				

Appendix H: Economic evidence tables

ואמנוסחומו כוווזוכמו שטומפווחפ כפחנרפ Self-management

Table 152: [HOPKINS2011]

Hopkins RB, Garg A, X, Levin A, Molzahn A, Rigatto C, Singer J et al. Cost-effectiveness analysis of a randomized trial comparing care models for chronic kidney disease. Clinical Journal of the American Society of Nephrology. 2011; 6(6):1248-1257. (Guideline Ref ID HOPKINS2011)

Study details	Population & interventions	Costs	Health outcomes	Cost effectiveness
Economic analysis:	Population:	Total costs (mean per	QALYs (mean per patient):	Intvn 1 vs.Intvn 2:
CUA	Patients with stage 3-4 CKD	patient):	Intvn 1: 1.502	The Intervention was Dominant over the
Study design:	selected on laboratory case	Intvn 1: £2,545	Intvn 2: 1.456	usual care comparator
Cost Effectiveness	finding method from five	Intvn 2: £3,155	Incremental (1-2): 0.046	
analysis of RCT	different primary care	Incremental (1-2): - £610		probability that the intervention was cost
Approach to analysis:	centres across Canada.	Currency & cost year:		effective at £20,000 per QALY = 95%
The analysis used the		2009 Canadian dollars		
CanPREVENT	Intervention 1:	(presented above as 2012 UK		Analysis of uncertainty:
randomised trial of	Multifaceted	pounds‡)		The analysis looked at all-cause costs, which
474 patients to analyse	Nephrologist/Specialist Nurse			added on productivity costs for a societal
the effectiveness of	supported care that targeted	Cost components		perspective. The result of this was that the
models of care for the	factors associated with the	incorporated:		"dominance is even stronger"
treatment of CKD.	development of kidney and	Emergency		The baseline eGFR was also used to see if this
Perspective: Canadian	cardiovascular disease	Hospitalization		had an effect. However the dominance was
healthcare system	The intervention involves			maintained throughout.
(societal perspective	tailored care in discussion	Family physician		
costs used in SA)	with the patient and	Nephrology		
Time horizon: 2 years	specialist to identify risk	Cardiology		

LUT4

Treatment effect	factors for disease	Endocrinology	
duration: 2 years	progression and helps to	Internist	
Discounting: No	manage them	Surgeon	
		Other physician	
	Intervention 2:	Clinic	
	Usual Care involving an	Tests and procedures	
	explanation of kidney status after entering the study.	Other health care provider	
	Nephrologist only provided	Study nurse	
	on call or emergency care in	Study nephrologists	
	the case of ESRD.		

Data sources

Health outcomes: The effectiveness was taken from a Randomized Control Trial called the CanPREVENT study⁶⁰. Baseline event rate taken from the control arm of the trial. **Quality-of-life weights:** The utility data used was from the HUI-3 questionnaire. **Cost sources:** All events were recorded and costed by using estimates from the Ontario schedule of benefits for healthcare workers and using estimates from a case costing centre in Ontario for the unit costs of other interventions.

Comments

Source of funding: supported by a New Engineering Team grant co-funded by the Canadian institutes for health research, the kidney foundation of Canada, the heart and stroke foundation of Canada and the Canadian diabetes association and by unrestricted grants from Amgen Canada, Ortho biotech and Merck Frosst Canada. **Limitations:** In guideline review of clinical effectiveness, it was noted that the trial was unblended and the randomisation method was unclear.

Overall applicability*: Partially Applicable. Overall quality: Potentially serious limitations**

Abbreviations: CI = 95% confidence interval; CUA = cost-utility analysis; ICER = incremental cost-effectiveness ratio; NR = not reported; pa = probabilistic analysis; QALYs = quality-adjusted life year ‡ Converted using 2011 purchasing power parities⁵¹³

* Directly applicable / Partially applicable / Not applicable; ** Minor limitations /Potentially serious limitations / Very serious limitations

ועמרוסדומו כוודווכמו שמומפוודופ כפדונרפ

ZUT4

NALIOITAL CI Blood pressure – combined renin-angiotensin-aldosterone system antagonists

Studies from 2008 guideline

Table 153: Hendry et al. 1997²⁶²

Modelling and costing the consequences of using an ACE inhibitor to slow the progression of renal failure in type I diabetic patients. QJM 1997 Apr; 90(4):277-282

וחוכמו שעומפווחפ כפחת פ 2014

Data sources

Health outcomes: This study used the results from the published The Diabetic Nephropathy Collaborative Study Group, DNCSG (Lewis et al., 1993) where DNCSG is a randomized, double-blinded controlled trial.. **Quality-of-life weights:** N.A. **Cost sources:** Only direct costs were included. NHS perspective was taken. Costs of procedures and other hospital treatments were obtained from a variety of hospitals in England. Drug costs were derived from published NHS sources, ACE inhibitor treatment being costed on the basis of 25 mg captopril three times daily, giving an annual cost of £249. Costs for GP care and cardiology treatments and procedures included in the model were taken from 'Costing of Cardiology Services' [Piercy J, 1995].

Comments

Source of funding: Bristol-Myers Squibb Pharmaceuticals **Limitations:** Costs and benefits discounted at 6%, health effects not expressed in QALYs, study funded by manufacturer of study drug **Other:**

Overall applicability*: Partially applicable **Overall quality**:** Minor limitations

Abbreviations: ACE=angiotensen-converting-enzyme; CEA = cost-effectiveness analysis; CI = 95% confidence interval; ESRF= end stage renal failure; ICER = incremental cost-effectiveness ratio; IDDM=insulin dependent diabetes mellitus; NR = not reported; pa = probabilistic analysis; QALYs = quality-adjusted life years * Directly applicable / Partially applicable / Not applicable; ** Minor limitations / Potentially serious limitations / Very serious limitations

Table 154 Hogan et al. 2002²⁷⁴

Hogan TJ, Elliott WJ, Seto AH, Bakris GL. Antihypertensive treatment with and without benazepril in patients with chronic renal insufficiency: a US economic evaluation. Pharmacoeconomics 2002; 20(1):37-47

Study details	Population & interventions	Costs	Health outcomes	Cost effectiveness
Economic analysis:	Population:	Total costs \$US 1999 (£UK	QALYs (mean per patient	ICER (Intvn 2 vs.Intvn 1):
CUA (health outcome =	Adult patients who	1999), mean per patient	over 7 years):	Benazepril was less expensive and more
QALYs)	experienced chronic renal	over 7 years:	Intvn 1: 4.989	effective than placebo. That is, intervention 1
Study design: Decision	insufficiency.	Intvn 1: 88,715 (£57,899)	Intvn 2: 4.897	dominated intervention 2 over a 7 year
analytic Markov		Intvn 2: 101,706 (£66,378)	Incremental (2-1): -0.092	period. CI: NR
model.	Cohort settings:	Incremental(2-1): 12,991	(CI NR; p = NR)	
Approach to analysis:	Mean age = 51	(£8,479)		Probability Intvn 2 cost-effective (£20K/30K
Health states include	M = 73%			threshold): NR

ועמרוסדומו כווחוכמו פתומפוודופ

רהווווה

ZUT4

impairment, dialysis, Intervention 1: transplant and death. Perspective: US with benazepril. Healthcare payer. Dose and quantity NR. **Time horizon:** 7 years Intervention 2: Treatment effect Placebo duration: **Discounting:** Costs =

3% ; Outcomes = 3%

Data sources

(CI NR; p = NR) Currency & cost year: Antihypertensive treatment 1999 \$US‡ **Cost components** incorporated: Medical treatment, dialysis, renal transplantation, posttransplant maintenance.

Analysis of uncertainty:

Results favouring the benazepril therapy arm were found in sensitivity analyses of changes in key model parameters.

Health outcomes: The effectiveness data were extracted from a randomised controlled trial (the Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency (AIPRI) Study) and its extension study (Locatelli F et al., 1997). Quality-of-life weights: Health utilities employed in the model were determined by analytical estimate based on reference to the quality-of-life literature. Cost sources: Estimated medical treatment costs were obtained from various public sources. Direct medical costs were aggregated and included the costs of all appropriate healthcare resources consumed in the care and treatment of the health state to which these costs are assigned. Costs of dialysis, renal transplantation ans posttransplant maintenance care were obtained from the United States Renal Data System (USRDS) of the National Institutes of Health. Estimates of direct medical costs in the 6 months preceding death were derived from the Healthcare Financing Administration.

Comments

Source of funding: Supported in part by Novartis Pharmaceuticals. Limitations: USA setting. Study funded by Novartis the manufacturer of benazepril. Other:

Overall applicability*: Partially applicable **Overall quality**:** Minor limitations.

Abbreviations: CI = 95% confidence interval; CUA = cost-utility analysis; da = deterministic analysis; ICER = incremental cost-effectiveness ratio; NR = not reported; PSA = probabilistic sensitivity analysis; QALYs = quality-adjusted life years

‡ Converted using 1999 purchasing power parities⁵¹³

* Directly applicable / Partially applicable / Not applicable; ** Minor limitations /Potentially serious limitations / Very serious limitations

Table 155: Palmer et al. 2004⁵¹⁶

Palmer AJ, Annemans L, Roze S, Lamotte M, Rodby RA, Bilous RW. An economic evaluation of the Irbesartan in Diabetic Nephropathy Trial (IDNT) in a UK setting. Journal of Human Hypertension 2004; 18:733-738.

Study details	Population & interventions	Costs	Health outcomes	Cost effectiveness
Economic analysis: CEA (health outcome = life-years saved) Study design: Markov decision analytic model. Approach to analysis: Simulation of progression from DSC, ESRD (dialysis or transplant) or death. Perspective: . UK NHS Time horizon: 10 years Discounting: Costs = 6%; Outcomes = 1.5%.	Population: Patients with type 2 diabetes, hypertension and nephropathy. Cohort settings: Start age = 59 M = NR Intervention 1: Irbesartan 300mg/d Intervention 2: Amlodopine 10mg/d Intervention 3: Standard antihypertensive. (conventional medications excluding. ACE inhibitors, ARBs, and dihydropyridien CCBs)	Total costs at 10 years £ (mean per patient): Intvn 1: 20,884 Intvn 2: 27,417 Intvn 3: 24,642 Incremental (2-1): (CI NR; p = NR) Currency & cost year: UK£s. Published cost data from 1998 to 2003. Cost components incorporated: drug costs, Costs of medications and ESRD were assessed for patients in all three treatment arms.	Increase in life expectancy at 10 years (mean years per patient): Intvn 1:NR Intvn 2:NR Intvn 3:NR Incremental (2-1):- 0.08 Incremental (3-1):-0.23 (CI NR; p = NR)	 ICER (Intvn 2 vs.Intvn 1): ICER not calculated as irbesartan dominates amlodopine and standard antihypertensive. CI:NR Probability Intvn 2 cost-effective (£20K/30K threshold): NR Analysis of uncertainty: One-way sensitivity analysis showed that the annual costs of dialysis in the UK would have to fall below £3,000 irbesartan would no longer be cost saving compared to standard antihypertensives alone.

Health outcomes: The effectiveness data was derived from the Irbesartan in Diabetic Nephropathy Trial (IDNT)³⁸⁴ and UK-specific ESRD management and outcomes data, which were from the UK Renal Registry Report and a previous study review. **Quality-of-life weights:**N.A. **Cost sources:** The cost of each dose was calculated from the British National Formulary. RRT costs were taken from published UK-specific sources. Cost data were derived from papers published between 1998 and 2003.

Comments

Source of funding: Sponsored by an unrestricted grant from Bristol-Myers Squibb. **Limitations:** Costs discounted at 5%, benefits at 1.5%. Health effects not expressed as QALYs. One way sensitivity only. Study sponsored by study drug manufacturer. **Other:**

Overall applicability*: Partially applicable **Overall quality**:** Minor limitations

Abbreviations: ACE = angiotensin converting enzyme; ARB = angiotensin 2 receptor blockers; CCB = calcium channel blockers; CEA = cost-effectiveness analysis; CI = 95% confidence interval; DSC = doubling of serum creatinine; ESRD = end stage renal disease; ICER = incremental cost-effectiveness ratio; NR = not reported; pa = probabilistic analysis; QALYs = quality-adjusted life years; RRT=renal replacement therapy; * Directly applicable / Partially applicable / Not applicable; ** Minor limitations / Potentially serious limitations / Very serious limitations

Table 156: Palmer et al. 2007⁵¹⁸

Palmer AJ, Valentine WJ, Ray JA. Irbesartan treatment of patients with type 2 diabetes, hypertension and renal disease: a UK health economic analysis. International Journal of Clinical Practice, 2007: 61(10):1626-33.

Study details	Population & interventions	Costs	Health outcomes	Cost effectiveness
Economic analysis: CEA (health outcome = life-years saved) Study design: Markov decision analytic model. Approach to analysis: Simulation of progression to DSC, overt nephropathy, ESRD (dialysis or transplant) or death. Perspective: UK NHS Time horizon: 25 years Discounting: Costs = 3.5%; Outcomes = 3.5%.	Population:Patients with type 2 diabetes,hypertension andmicroalbuminuria.Cohort settings:Start age = NRM = NRIntervention 1:Early (24-hr UAE 20-199µg/min) irbesartan300mg/dIntervention 2:Late (UAE 1100mg/24hr)irbesartan 300mg/dIntervention 3:Standard antihypertensive.	Total costs £ (mean per patient): Intvn 1: 6,735 Intvn 2: 9,045 Intvn 3: 10,536 Incremental (1-3): -3801 ±327 Incremental (1-2):-2310±327 Currency & cost year: 2002 UK£ Cost components incorporated: drug costs, Medications and renal replacement therapy.	ESRD Intvn 1: 7.2% Intvn 2: 15.9% Intvn 3: 19.6% Life expectancy (mean years per patient): Intvn 1:11.00 Intvn 2:10.20 Intvn 3:10.18 Incremental (1-3): 0.83 ±0.04 Incremental (1-2):0.81±0.04	Early irbesartan dominates Analysis of uncertainty: This was performed using the confidence limits for the progression rates and varying the mortality rates. Early irbesartan was dominant in all analyses.NR

ועמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטדא

(conventional medications excluding ACE inhibitors, ARBs, and dihydropyridien CCBs)

Data sources

Health outcomes: The effectiveness data was derived from the Irbesartan in Diabetic Nephropathy Trial (IDNT)³⁸⁴ and IRMA-2 trial⁵²⁷ UK-specific ESRD management and data were from the UK Renal Registry Report. **Quality-of-life weights:** NA. **Cost sources:** Renal replacement therapy costs were taken from published UK-specific sources. Cost data were derived from papers published between 1998 and 2003.

Comments

Source of funding: Bristol-Myers Squibb and Sanofi-Aventis. **Limitations:** Health effects not expressed as QALYs. One way sensitivity only. Study sponsored by study drug manufacturer.

Overall applicability*: Partially applicable **Overall quality**:** Minor limitations

Abbreviations: ACE = angiotensin converting enzyme; ARB = angiotensin 2 receptor blockers; CCB = calcium channel blockers; CEA = cost-effectiveness analysis; CI = 95% confidence interval; DSC = doubling of serum creatinine; ESRD = end stage renal disease; NA=Not applicable; NR = not reported; * Directly applicable / Partially applicable / Not applicable; ** Minor limitations /Potentially serious limitations / Very serious limitations

Table 157: Ruggenenti et al. 2001⁵⁹²

Ruggenenti P, Pagano E, Tammuzzo L, Benini R, Garattini L, Remuzzi G. Ramipril prolongs life and is cost effective in chronic proteinuric nephropathies. Kidney International 2001 Jan; 59(1):286-294

Study details	Population & interventions	Costs	Health outcomes	Cost effectiveness
Economic analysis: CEA (health outcome = progression to ESRD and life expectancy.)	Population: Patients with non-diabetic chronic nephropathies. Cohort settings:	Total costs \$US (mean per patient): GFR decline model Intvn 1:84,900 (53,215) Intvn 2:101,505 (63,623)	Overall survival (mean years per patient): GFR decline model Intvn 1:11.6±1.2	Results from both models showed Intervention 1 to be less expensive and more effective than Intervention 2. CI:NR
	Mean age from trial data =	Incremental (2-1):	Intvn 2:10.4±1.1	Probability Intvn 2 cost-effective (£20K/30K

ועמנוסחמו כווחוכמו שעומפווחפ

רהווווה

ZUT4

ואמנוטרומו כווחוכמו שעומפווחפ כפרונרפ בטב4

Data sources

Health outcomes: The effectiveness data were derived from the Ramipril Efficacy in Nephropathy Trial (REIN). Quality-of-life weights: N.A. Cost sources: Public prices were

considered to calculate the expense of medications. The costs of dialysis and renal transplantation were estimated on the basis of previously published data. Price year was not stated though costs were collected from studies published between 1990 and 1997.

Comments:

Source of funding: Aventis Pharma AG. **Limitations:** Italy setting costed in US dollars. Study is funded by drug manufacturer. Did not estimate QALYs. Did not report cost year used. **Other:**

Overall applicability*: Partially applicable **Overall quality**:** Minor limitations

Abbreviations: CEA = cost-effectiveness analysis; CI = 95% confidence interval; ESRD = end stage renal disease; GFR=glomerular filtration rate; ICER = incremental cost-effectiveness ratio; NR = not reported; pa = probabilistic analysis; ‡ Converted using 2001 purchasing power parities⁵¹³

* Directly applicable / Partially applicable / Not applicable; ** Minor limitations /Potentially serious limitations / Very serious limitations

Table 158: Schadlich et. al. 2001⁶¹¹

Schadlich PK, Brecht JG, Brunetti M, Pagano E, Rangoonwala B, Huppertz E. Cost effectiveness of ramipril in patients with non-diabetic nephropathy and hypertension: economic evaluation of Ramipril Efficacy in Nephropathy (REIN) Study for Germany from the perspective of statutory health insurance. Pharmacoeconomics 2001; 19(5: Pt 1): t-512.

Study details	Population & interventions	Costs	Health outcomes	Cost effectiveness
Economic analysis:	Population:	Total costs over 3 years in	Patient-year of chronic	ICER (Intvn 2 vs.Intvn 1):
CEA (health outcome =	Patients with non-diabetic	German DM (£UK) , mean	dialysis avoided (PYCDA)	Ramipril dominated placebo. Was more
The number of patient	nephropathy and	per patient:	over 3 years (mean per	effective and less expensive over 3 year
years of chronic long-	hypertension	Intvn 1:NR	patient):	period. CI: Probability Intvn 2 cost-effective
term dialysis avoided	Cohort settings:	Intvn 2:NR	Intvn 1:NR	(£20K/30K threshold): NR
(PYCDA))	Start age = 49	Incremental (2-1):173,917	Intvn 2:NR	
	M = 85%	(57,442)	Incremental (2-1): -0.212	Analysis of uncertainty: Deterministic
Study design:		(CI NR; p = NR)	(CI NR; p = NR)	analysis (da) showed the cost for chronic
Economic model	Intervention 1:			dialysis per patient per year had by far the
Approach to analysis:		Currency & cost years		greatest impact on costs savings associated
Secondary analysis of	Ramipril (target =5mg/day)	Currency & cost year:		with ramipril. Probabilistic analysis (pa)
, ,	Intervention 2:	German deutchmarks 1996		showed that in 95% of simulations ramipril

ועמנוסחמו כווחוכמו שעומפווחפ

רהוווו ה

⊳ C

published data.	Placebo	(presented also as 1996 UK	strategy was less expensive than placebo.
Perspective: Germany		pounds‡)	
Statutory Health		Cost components	
Insurance provider		incorporated:	
Time horizon: Three		Ramipril (priced in 1999 DM),	
years.		Chronic dialysis: dialytic	
Discounting: Costs =		procedures, medical services,	
5%; Outcomes = 5%.		erythroporitin usage,	
		treatment of complications	
		induced by dialysis,	
		treatment of comorbidity and	
		transportation.	

Data sources

Health outcomes: The effectiveness data were mainly derived from the Ramipril Efficacy in Nephropathy Trial (REIN). Other probability estimates were obtained from a review of published literature. **Quality-of-life weights:** N.A. **Cost sources:** An average cost for ramipril was derived from the interval-related distribution of daily doses of 1.25, 2.5 and 5mg, respectively. The frequency of the different procedures was taken from the Health Report for Germany edited by the Federal Statistical Office and from expert knowledge. The average costs for chronic dialysis per patient per year were given by the weighted mean of SHI expenses for each dialysis procedure.

Comments

Source of funding: Aventis Pharma Deutschland GmbH, D-65812 Bad Soden/Taunus, Germany. **Limitations**: Setting Germany, priced in DM, did not express health effects in QALYs. Discounted costs and benefits at 5%. Time horizon = 3 years only. Study funded by manufacturer of study drug. **Other**:

Overall applicability*: Partially applicable **Overall quality**:** Minor limitations

Abbreviations: CEA = cost-effectiveness analysis; CI = 95% confidence interval; da = deterministic analysis; ICER = incremental cost-effectiveness ratio; NR = not reported; pa = probabilistic analysis; PYCDA= patient-year of chronic dialysis avoided; QALYs = quality-adjusted life years

‡ Converted using 1996 purchasing power parities⁵¹³

* Directly applicable / Partialliy applicable / Not applicable; ** Minor limitations /Potentially serious limitations / Very serious limitations

Table 159: van Hout et al. 1997 695

van Hout BA, Simeon GP, McDonnell J, Mann JF. Economic evaluation of benazepril in chronic renal insufficiency. Kidney International - Supplement 1997 Dec; 63:S159-62, 1997 Dec.:S159-S162.

Study details	Population & interventions	Costs	Health outcomes	Cost effectiveness
Economic analysis: CEA (health outcome = life years) Study design: Markov chain model Approach to analysis: Health states: CRI, HD, post-transplant, second HD, Death. Perspective: Not stated. Setting = Netherlands, Switzerland, Germany. Time horizon: 10 years Discounting: Costs = 5% ; Outcomes = 5%	 Population: adults with chronic renal insufficiency. Cohort settings: Start age = 55 M = 100% Intervention 1: Benazepril Dose and duration NR. Intervention 2: Placebo 	Total costs in \$US (£UK) at 10 years (mean per patient): Intvn 1:39,445 (25,321) Intvn 2:67,459 (43,304) Incremental (2-1): 28,014 (17,983) (CI NR; p = NR) Currency & cost year: 1996 US dollars presented here as 1996 UK pounds‡) Cost components incorporated: Being in each phase of the renal disease progression process: transplantation, irreversible graft rejection and dying.	Life years at 10 years (mean per patient): Intvn 1:7.59 Intvn 2:7.28 Incremental (2-1): -0.32 (CI NR; p = NR) % surviving without ESRD at 10 years : Intvn 1:74.32 Intvn 2:56.18 Incremental (2-1):- 18.14	ICER (Intvn 2 vs.Intvn 1): ICER was not calculated since the benazepril intervention was shown to be the dominant strategy CI: Probability Intvn 2 cost-effective (£20K/30K threshold): NR Analysis of uncertainty: Univariate sensitivity analysis was performed on the costs of end-stage renal disease, the costs of the preventive therapy and other important parameters used in the model. The results indicate that the conclusion of a combination of additional effectiveness and cost savings is extremely robust.

Data sources

Health outcomes: The effectiveness data were extracted from a randomised controlled trial (the Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency (AIPRI) Study). The survival probabilities and some other transition probabilities were estimated using the data from a Dutch foundation (RENINE) responsible for the registration of all ESRD patients in the Netherlands. **Quality-of-life weights:** N.A. **Cost sources:** Estimates of costs of ESRD were primarily based upon two earlier studies addressing the cost effectiveness of the ESRD program in the Netherlands and adjusted to the current situation by consulting a panel of experts.

ואמרוסדומו כוונדוכמו פתומפוונופ כפנורג פ

ZUT4

Comments

Source of funding: NR. **Limitations:** Setting is Netherlands, Switzerland and Germany. Prices in \$US. Value of health effects not expressed in QALYs. Perspective unclear. **Other:** Note again that perspective of the study was not given and resource utilisation and cost data were not reported separately so this may limit to applicability of generalisability of results to other settings, in particular the NHS. There also seems to be a slight lack of information provided in this study e.g. the sensitivity analysis.

Overall applicability*: Partially applicable **Overall quality**:** Minor limitations.

Abbreviations: CEA = cost-effectiveness analysis; CI = 95% confidence interval; CRI= chronic renal insufficiency; HD = haemodialysis; ICER = incremental cost-effectiveness ratio; NR = not reported; QALYs = quality-adjusted life years

‡ Converted using 1996 purchasing power parities⁵¹³

* Directly applicable / Partially applicable / Not applicable; ** Minor limitations /Potentially serious limitations / Very serious limitations

Table 160: Vora et al. 2005⁷⁰³

Vora J, Carides G, Robinson P. Effects of Losartan-based therapy on the incidence of end-stage renal disease and associated costs in type 2 diabetes mellitus: A retrospective cost-effectiveness analysis in the United Kingdom. Current Therapeutic Research, Clinical & Experimental 2005;66(6):475-485

Study details	Population & interventions	Costs	Health outcomes	Cost effectiveness
Economic analysis:	Population:	Total costs £UK (mean per	Life years saved (mean per	ICER (Intvn 2 vs.Intvn 1):
CEA (health outcome =	Patients with nephropathy	patient):	patient):	Intervention 1 dominated intervention 2.
life years saved)	from Type II diabetes.	Intvn 1:14,777	Intvn 1: 7.82	Probability Intvn 2 cost-effective (£20K/30K
Study design:	Cohort settings:	Intvn 2: 21,399	Intvn 2: 7.38	threshold): NR
economic evaluation	Start age = NR	Incremental (2-1): 6,622	Incremental (2-1): -0.44	
based on trial data.	M = NR	(Cl: 2,653 to 10,591;	(CI -0.16 to -0.71; p = 0.002)	Analysis of uncertainty: Base Case results
Approach to analysis:	Intervention 1: Losartan	p = 0.001)		were robust to SA on costs, LYs saved, and
Survival and costs	Intervention 2: Conventional	Currency & cost year:		when cost of renal replacement therapy was
projected over	antihypertensive treatment:	2004 £UK		reduced by 50%.
lifetime.	calcium channel blockers;	Cost components		
Perspective: UK NHS	diuretics; alpha blockers;	incorporated:		
Time horizon: Lifetime	beta blockers; centrally	Losartan (£768 over lifetime),		
Discounting: Costs =				

ועמנוסחמו כווחוכמו שעומפווחפ

רהוווו ה

ZUT4

haemodialysis and peritoneal dialysis (£17,657 to £23,864 annually).

Data sources

Health outcomes: The effectiveness evidence was derived from the Reduction of Endpoints in NIDDM (noninsulin-dependent diabetes mellitus) with the Angiotensin II Antagonist Losartan (REENAL) study which a prospective, randomised, double-blind, placebo-controlled clinical trial [Brenner 2001]. **Quality-of-life weights:** N.A. **Cost sources:** Cost of losartan estimated from the unit cost of losartan to the UK NHS multiplied by average usage during the RENAAL study. Annual costs of haemodialysis and peritoneal dialysis were derived from the UK Transplant website, where costs relevant to the NHS were considered. In a secondary analysis, the costs of haemodialysis and peritoneal dialysis were taken from the UK 2-Center European Dialysis and Cost-Effectiveness (EURODICE) study.

Comments

Source of funding: NR. First author has received grants from Merck Sharp & Dohme, and other authors may hold stock in same company. **Limitations:** Health outcomes not expressed as QALYs. Funding source not reported. However, authors may hold stock in company that manufactures study drug. **Other:**

Overall applicability*: Partially applicable **Overall quality**:** Minor limitations

Abbreviations: CEA = cost-effectiveness analysis; CI = 95% confidence interval; ICER = incremental cost-effectiveness ratio; NR = not reported; QALYs = quality-adjusted life years * Directly applicable / Partially applicable / Not applicable; ** Minor limitations / Potentially serious limitations / Very serious limitations

H.2.2 New studies from 2014 update

Table 161 Adarkwah et al. 2013¹²

Adarkwah CC, Gandjour A, Akkerman M, Evers S. To treat or not to treat? Cost-effectiveness of ace inhibitors in non-diabetic advanced renal disease: a Dutch perspective. Kidney and Blood Pressure Research. Netherlands 2013; 37(2-3):168-180. (Guideline Ref ID ADARKWAH2013)

Study details	Population & interventions	Costs	Health outcomes	Cost effectiveness
Economic analysis:	Population:	Total costs (mean per	QALYs (mean per patient):	ICER (Intervention 2 versus Intervention 1):
CUA (health outcome:	Non diabetic proteinuric	patient):	Intervention 1: 9.32	Intervention 2 dominates Intervention 1.
QALY)	patients with advanced renal	Intervention 1: £171,720	Intervention 2: 11.11	

478

Approach to analysis:Markov DecisionModel- health statesincluded: AdvancedRenal Disease, ESRD,and Death.Perspective:Netherlands healthcare systemperspectiveTime horizon/Follow-up: lifetime (until 100	Cohort settings: Start age: 44 Intervention 1: Placebo Intervention 2: ACE inhibitor- Benezapril 10 mg twice a day. All patients received other	Incremental (2–1): -£29,073 (CI NR; p = NR) Currency & cost year: 2010 Euros presented above as 2010 UK pounds ^(a) Intvn 1: € 220,942 Intvn 2: € 183,535 Cost components incorporated: General health care expenditure not related to	(CI NR; p = NR)	parameter values to their at 95% confidence interval limits. Sensitivity Analysis were conducted on the annual transition probabilities from advanced renal insufficiency to ESRD; effectiveness of ACE inhibitor; utilities; costs; standard mortality rate; discount rate (0%-10%). Base case results remained robust.
Netherlands health care system perspective Time horizon/Follow-	ACE inhibitor- Benezapril 10 mg twice a day.	Intvn 1: € 220,942 Intvn 2: € 183,535 Cost components incorporated:		

Incremental (2–1): 1.79

Intervention 2: £142,647

Data sources

Study design:

disease (n = 1000)

Analysis of uncertainty: Univariate DA varied

Health outcomes: Transition probabilities on progression from advanced renal insufficiency taken from Ihle BU, Whitworth JA, Shahinfar S, Cnaan A, Kincaid-Smith PS, Becker GJ: Angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann Intern Med 1992; 11:234-242. & Hou FF, Zhang X, Zhang GH, Xie D, Chen PY, Zhang WR, Jiang JP, Liang M, Wang GB, Liu ZR, Geng RW: Efficacy and safety of benazepril for advanced chronic renal insufficiency. N Engl J Med 2006; 354; 131-140. Transitions probabilities without ESRD to mortality were regarded as a function of age specific mortality rates. Transition probabilities with ESRD to mortality was calculated as the age specific mortality rate multiplied by the standard mortality ratio for patients with advanced renal disease (taken from Hemmelgarn BR, Manns BJ, Lloyd A, James MT, Klarenbach S, Quinn RR, Wiebe N, Tonelli M; Alberta Kidney Disease Network: Relation between kidney function, proteinuria, and adverse outcomes. JAMA 2010; 303:424-429. **Quality-of-life weights:** utility losses were calculated according to the relevant health state and an age dependent loss of utility. Health State preference weights were derived from patients using a Time-Trade-Off approach.^(d) **Cost sources:** Resource consumption based on K/DOQI and NICE CG73. Costs of drugs based on Dutch Health Authority 2010 Report and included 6% value-based tax as well as 3 monthly pharmacists' prescription fee. Annual costs of ESRD based on prevalence of different types of dialysis & transplantation (Dutch National Register2011) and de Wit et al 1998 ^(e). Post-transplant costs (first and subsequent years) based on German costs from Nebel 2002 ^(f).

Comments

Source of funding: NR Limitations: Exclusion of cardiovascular events in model such that results of analysis are conservative; The study from which effectiveness data was derived (Hou et al 2006) was conducted in China- the efficacy of ACE inhibitors may differ in white Caucasian populations.

Overall applicability^(b): Partially Applicable **Overall quality**^(c): Minor Limitations

Abbreviations: CI: 95% confidence interval; CUA: cost-utility analysis; DA: deterministic analysis; EQ-5D: Euroqol 5 dimensions (scale: 0.0 [death] to 1.0 [full health]; <0.0 means worse than death); ICER: incremental cost-effectiveness ratio; NR: not reported; QALYs: quality-adjusted life years.

- (a) Converted using 2012 purchasing power parities ⁵¹²
- (b) Directly applicable / Partially applicable / Not applicable
- (c) Minor limitations / Potentially serious limitations / Very serious limitations
- (d) Hoerger TJ, Wittenborn JS, Segel JE, Burrows NR, Imai K, Eggers P, Pavkov ME, Jordan R, Hailpern SM, Schoolwerth AC, Williams DE; Centers for Disease Control and Prevention CKD Initiative: A health policy model of CKD: 2. The cost-effectiveness of microabluminuria screening. AM J Kidney Dis 2010; 55:463-473. ; Churchill DN, Torrance GW, Taylor DW, Barnes CC, Ludwin D, Shmizu A, and Smith EK: Measurement of quality of life in end-stage renal diseases: the time trade-off approach. Clin Invest med 1987; 10:14-20. Arnesen T, Trommald M: Roughly right or precisely wrong? Systematic review of quality of life weights elicited with the time trade-off method. J Health Serv Res Policy 2004; 9:43-50.
- (e) De Wit GA, Ramsteijn PG, de Charro FT: Economic evaluation of end stage renal disease treatment. Health Policy 1998; 44:215-232.
- (f) Nebel M: Costs of renal replacement therapies in Germany in 1999. Nieren-und Hochdruckkrankheiten 2002; 3: 85-92.

ועמנוטרומו כווחוכמו שטומפווחפ כפחנרפ בטדא

Table 162: Delea et al. 2009A¹⁶⁰

Delea TE, Sofrygin O, Palmer JL, Lau H, Munk VC, Sung J, Charney A, Parving H-H, Sullivan SD. Cost-effectiveness of aliskiren in type 2 diabetes, hypertension, and albuminuria. *Journal of the American Society of Nephrology*. 2009; 20(10):2205-2213. (*Guideline Ref ID DELEA2009A*)

Study details	Population & interventions	Costs	Health outcomes	Cost effectiveness
Study details Economic analysis: CUA (health outcome = QALY) Study design: Markov model (health states: microalbuminuria, early overt nephropathy, advanced overt nephropathy, doubling of serum creatinine, ESRD dialysis, ESRD transplant, dead) 6 month cycles Perspective: US payer	Population & interventionsPopulation: Patients with type 2 diabetes, hypertension, and renal disease from the AVOID trialCohort settings: Start age = 61 M = 71%Intervention 1: Losartan 100 mg/d and optimal antihypertensive therapy (losartan only)Intervention 2:	Discounted Total Costs (mean per patient): Intvn 1: £39 517 Intvn 2: £41 404 Incremental (2-1): £1888 Currency & cost year: Assumed 2008 US dollars (presented here as 2008 UK pounds‡) Cost components incorporated: Direct health care costs including the medication costs and treatment and routine care	Health outcomes Discounted QALYs (mean per patient): Intvn 1: 5.8808 Intvn 2: 5.9775 Incremental (2-1):0.0967	 ICER (Intvn 2 vs.Intvn 1): £19 500 per QALY gained (pa) Probability Intvn 1 cost-effective (£32K threshold): 60% Analysis of uncertainty: Deterministic SA performed on transition probabilities, costs, disutilities, time frame, starting age and annual discount rate for costs and QALYs. Intervention 2 was not cost effective if relative risk reduction of progression from early overt nephropathy to advanced overt nephropathy is low, if the cost of aliskiren is over £913, if the time frame is 10 years, and if the treatment
	Intervention 2: Aliskerin 300 mg/d plus Iosartan 100 mg/d and	treatment and routine care costs.		frame is 10 years, and if the treatment starting age is 70. Baseline results robust to changes in all other parameters.
Time horizon: 20 yrs approximate lifetime projection	optimal antihypertensive treatment (aliskiren plus losartan)			In the probabilistic analysis, the cost effectiveness of aliskiren ranged from dominated to dominant, reflecting

Discounting: Costs =3%; Outcomes =3%

Note: Both treatments given until death, dialysis, or renal transplantation. uncertainty around the probabilities of progression of renal disease derived from AVOID

Data sources

Health outcomes: Transition Probabilities for Microalbuminuria, early overt nephropathy, and advanced overt nephropathy for the first 6 months were estimated by fitting multinomial logit models to data from the AVOID trial. For following months, transitions were estimated using Bayesian conjugate analyses of these data. Probabilities for advanced overt nephrology to doubling of serum creatinine and End-Stage-Renal-Disease from PRIME model. Probability of transplantation from US Renal Data system. Probabilities of death for patients without ESRD from US data in WHO life tables and the PRIME model. Mortality for patients with ESRD was estimated using data from the US Renal Data System. **Quality-of-life weights:** Utilities were calculated by multiplying age-specific utilities for US population by disutility estimates. Disutilities for non ESRD states based on time trade-off values from Beaver Dam health outcomes study ^(a). Disutility for dialysis and transplantation from diabetic patients Coffey et al 2002^(b). The disutility for renal transplantation was based on a preference study of health workers in Canada using the time trade-off values Kiberd & Jindal 1995^(c). **Cost sources:** Pharmacy costs based on wholesale acquisition costs and annual costs of ESRD and transplantation from the US Renal Data System. Average daily resource consumption from IMS Health National Prescribing data set 2008; Antihypertensive treatment resource use derived from AVOID trial.

Comments

Source of funding: Novartis Pharmaceuticals Corporation Limitations: The UK costs for renal transplant; dialysis; and routine care for T2D are likely to be less than the US costs stated here. The model does not reflect the risks and benefits seen in the later ALTITUDE study. **Other:** Note that 75% of patients began the model simulation in the overt nephropathy states.

Overall applicability*: Partially Applicable **Overall quality**:** Potentially Serious Limitations

Abbreviations: (a) = Fryback DG, Dasbach EJ, Klein R, Klein BE, Dorn N, Peterson K, Martin PA: The Beaver Dam Health outcome Study: Initial catalog of health-state quality factors. IMed Decision Making 13:89-102, 1993. AVOID = Aliskiren in the Evaluation of Proteinuria in Diabetes trial lasted 6 months ; (b) = Coffey JT, Brandle M, Zhou H, Marriot D, Burke R, Tabaei BP, Engelgau MM, Kaplin RM, Herman WH: Valuing health-related quality of life in diabetes. Diabetes Care 25: 2238-2243, 2002; (c) = Kiberd BA, Jindal KK: Screening to prevent renal failure in insulin dependent diabetic patients: An economic evaluation. BMJ 311: 1595-1599, 1995; CUA = cost-utility analysis; da = deterministic analysis; EQ-5D = Euroqol five dimensions (scale: 0.0 [death] to 1.0 [full health]; <0.0 = worse than death); IDNT = Irbesartan in Diabetic Nephropathy Trial; ICER = incremental cost-effectiveness ratio; NR = not reported; pa = probabilistic analysis; QALYs = quality-adjusted life years SA = Sensitivity Analysis; ‡ Converted using 2008 purchasing power parities ⁵¹³; * Directly applicable / Partially applicable / Not applicable; ** Minor limitations /Potentially serious limitations / Very serious limitations

I.3 Vitamin D supplements in the management of CKD-mineral and bone disorders

Table 163: NUIJTEN 2010⁴⁹³

Markov ModelIntervention 1a:annual probability of clinical event, rist annual probability of clinical event, rist mortality in progression, mortality in progression of proteinuria, progression progression of proteinuria, progression proteinuria, prevalence of proteinuria progression of CKD-3 to CKD-4. Result sensitive to prevalence of proteinuria sensitive to prevalence of proteinuria <b< th=""><th>Study details</th><th>Population & interventions</th><th>Costs</th><th>Health outcomes</th><th>Cost effectiveness</th></b<>	Study details	Population & interventions	Costs	Health outcomes	Cost effectiveness
complications (cardiovascular outcomes and fractures); hospitalisations, rehabilitation and routine monitoring including preventative treatment (ACE inhibitors - ARBs).	Economic analysis: CUA (health outcome = QALY)Study design: Markov ModelPerspective: UK NHSTime horizon: 10 yearsDiscounting: Costs = 3.5%; Outcomes =	Population: Hypothetical cohort of CKD patients with secondary hyperparathyroidism Intervention 1 ^a : Alfacacidol, a non-selective Vitamin D receptor (VDR) Activator Intervention 2 ^a :	<pre>patient): Intvn 1:£13,581 Intvn 2:£16,805 Incremental (2-1): £3,224 Currency & cost year: 2006 UK pounds Cost components incorporated: medication, costs associated with renal failure (dialysis and transplantation); complications (cardiovascular outcomes and fractures); hospitalisations, rehabilitation and routine monitoring including preventative treatment (ACE inhibitors -</pre>	Intvn 1:4.342 Intvn 2:4.807	 £6933 per QALY gained Analysis of uncertainty: SA conducted on annual probability of clinical event, risk of mortality in progression, mortality in CKD- 3, CKD-4, CKD-5, cost per hospitalisation, progression of proteinuria, progression to proteinuria, prevalence of proteinuria and progression of CKD-3 to CKD-4. Results were sensitive to prevalence of proteinuria. PSA conducted and the CEAC shows that the probability is 0.82 that the ICER of paricacitol

Progression Rates between CKD stages from USA study (Keith et al 2002) with amendments to progression rate CKD 5 to transplant/dialysis (UK Palmer and Rodby

2004); CKD 3 to CKD 4 alfacacidol (USA Bakris et al 2005 & Smith et al 2004);CKD 3 to CKD 4 Paricalcitol (USA Schumock 2008). Hospitalisation rates from (USA Smith et al 2004) and were similar for both drugs. Mortality rates -- CKD 5 for alfacacidol (UK Palmer and Rodby 2004), CKD 5 for paricalcitol (USA Teng et al 2003). Mortality rates for CKD 1-4 for both Paricalcitol and Alfacacidol (USA Keith et al 2002). Clinical event probabilities documented as the incidence of clinical event (cardiovascular event/fracture) was similar for both drugs and derived from (Kalantar Zadeh et al 2006). The annual risk of hospitalisation was similar for both drugs and was derived from (USA Dobrez et al 2004). **Quality-of-life weights:** Severe CKD (stage five; haemodialysis, peritoneal dialysis, and transplantation) values from UK estimates for patients using SF36 and EQ5D; Utilities for CKD stages 2, 3, 4 from a US population which used the time trade-off method. **Cost sources:** Medication costs from the MIMS; Dialysis, Transplant, Cardiovascular complications and fractures from published UK and international studies from years 2000-2004. Hospitalisation, rehabilitation and routine monitoring costs from published UK studies. All costs inflated to 2006 figures.

Comments

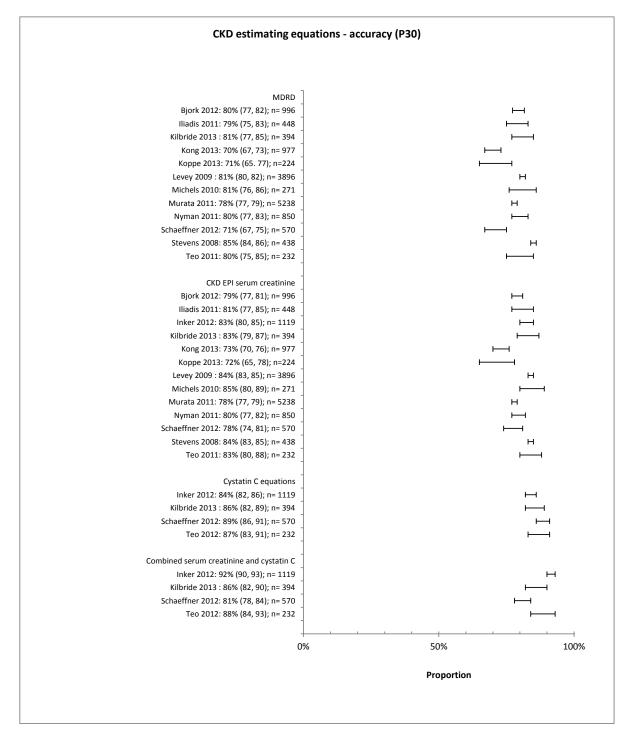
Source of funding: Abbott, manufacturer of paricalcitol **Limitations:** Treatment effects are not derived from randomised evidence and therefore there is a high risk of bias. Dosage and duration of medication was not reported.

Overall applicability*: Directly applicable Overall quality**: Potentially serious limitations

Abbreviations: ^a = Drug administered in oral form for CKD 3 & CKD4; intravenous formulation for CKD 5; ACE inhibitors -ARBs = Angiotensin-Converting Enzyme Inhibitors (ACEIs), Angiotensin II Receptor Antagonists (ARBs), CKD = Chronic Kidney Disease; CUA= Cost Utility Analysis; SF36 = Short Form 36 Health Survey; EQ-5D = Euroqol five dimensions (scale: 0.0 [death] to 1.0 [full health]; <0.0 = worse than death); ICER = incremental cost-effectiveness ratio; NR = not reported; pa = probabilistic analysis; QALYs = quality-adjusted life years

* Directly applicable / Partially applicable / Not applicable; ** Minor limitations / Potentially serious limitations / Very serious limitations

Chronic kidney disease


Forest plots

Appendix I: Forest plots

I.1 Measuring kidney function

I.1.1 Accuracy (P30)

Figure 15: P30 – MDRD vs.CKD EPI (sCr) vs.CKD EPI Cystatin C vs.CKD EPI combined equation

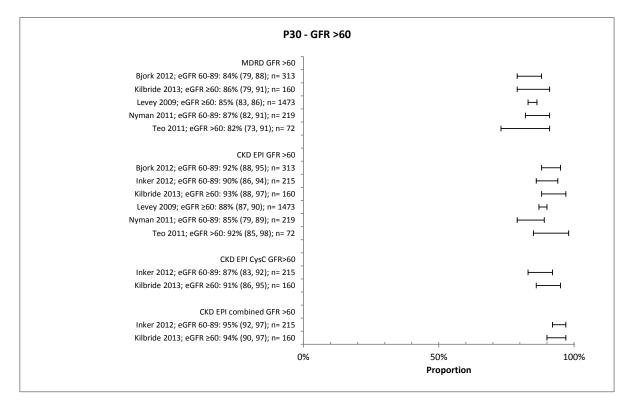
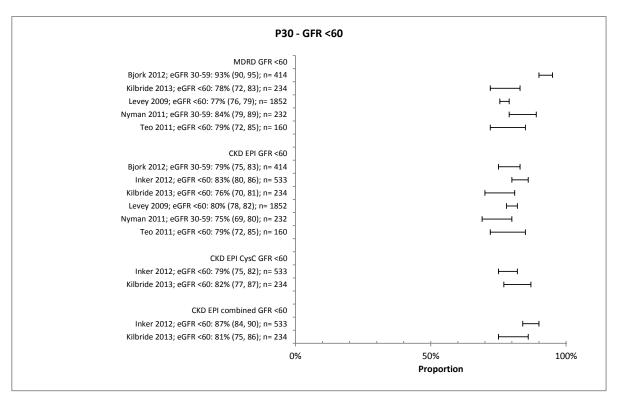
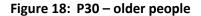
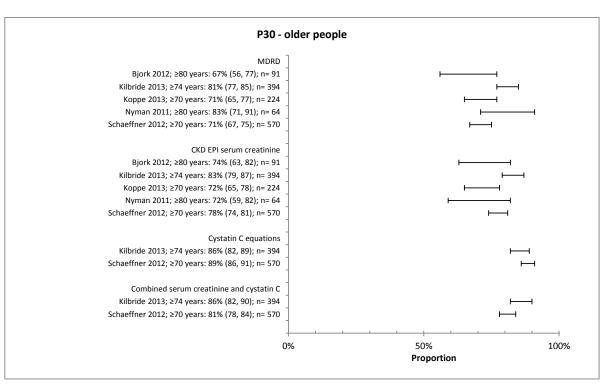
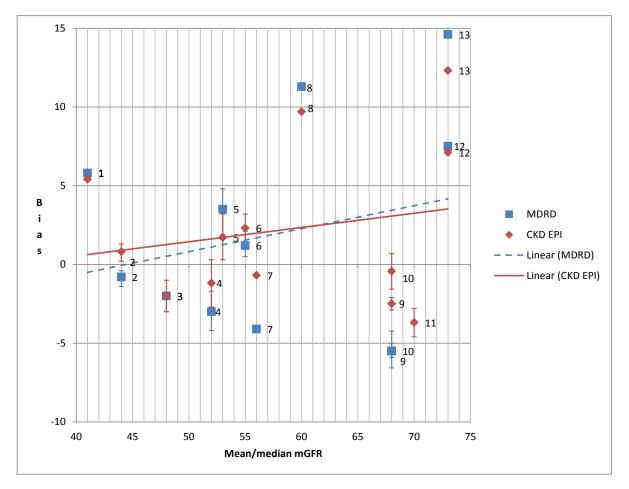





Figure 16: P30 – subgroup GFR >60 ml/min/1.73 m²

Figure 17: P30 – subgroup GFR <60 ml/min/1.73 m²



Chronic kidney disease

Forest plots

I.1.2 Bias

*Number represents study to indicate paired data. Note studies 10 and 11 report mean bias, all others report median. 1 Koppe et al 2013*³⁵²

2 Bjork et al 2012⁸¹

3 Stevens et al 2008⁶⁵¹

4 Teo et al 2011⁶⁶⁹

5 Kilbride et al 2013³⁴¹

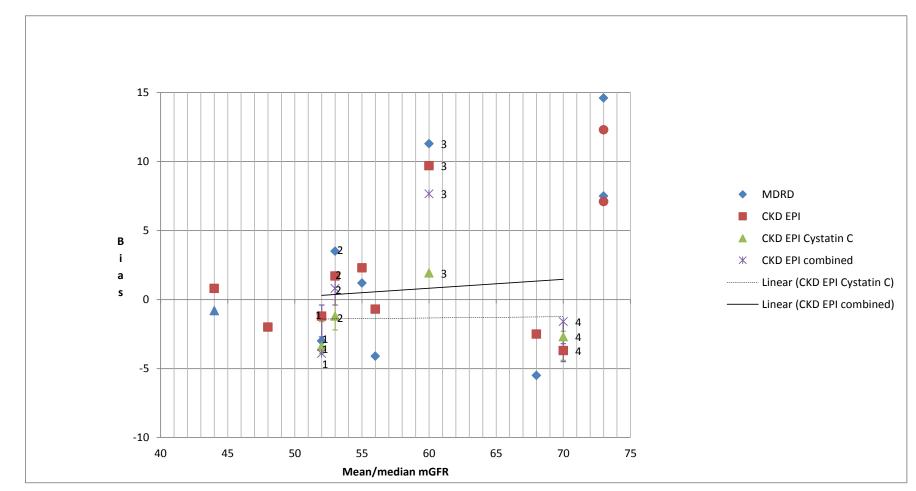
6 Nyman et al 2011⁴⁹⁴

7 Murata et al 2011⁴⁶²

8 Schaeffner et al 2012⁶¹²

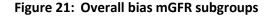
9 Levey et al 2009³⁷⁹

10 Kong et al 2013³⁵⁰


11 Inker et al 2012²⁹⁹

12 Iliadis et al 2011²⁹²

Chronic kidney disease


Forest plots

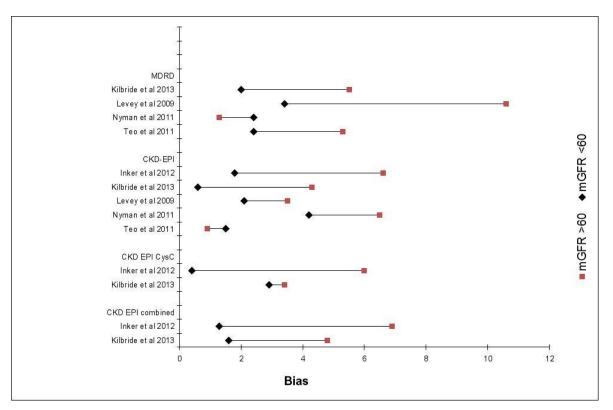

13 Michels et al 2010⁴⁵¹

Figure 20: Bias – MDRD versus CKD EPI (sCr) versus CKD EPI (CysC) versus CKD EPI (combined)

3 Schaeffner et al 2012⁶¹² 4 Inker et al 2012²⁹⁹

Note negative signs removed i.e. direction of bias not shown

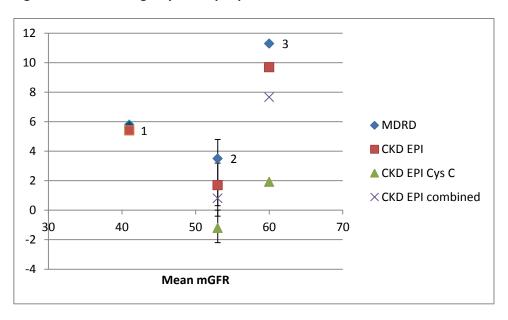


Figure 22: Bias – subgroup older people

1 Koppe et al 2013³⁵² 2 Kilbride et al 2013³⁴¹

3 Schaeffner et al 2012⁶¹²

MDRD

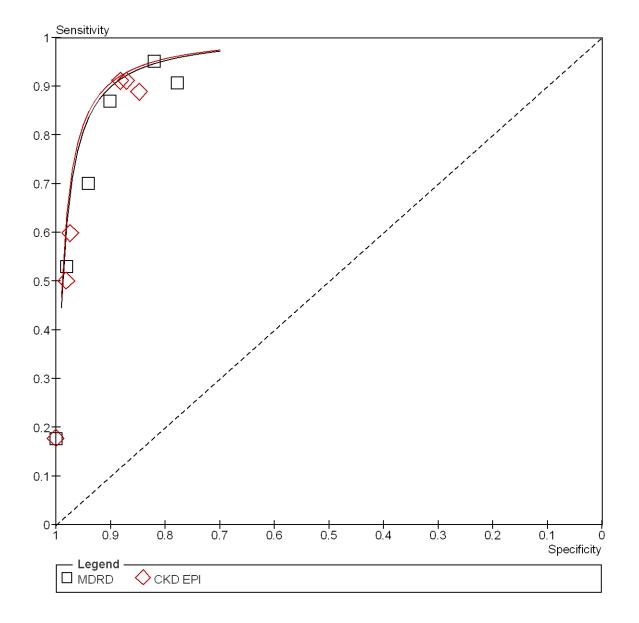
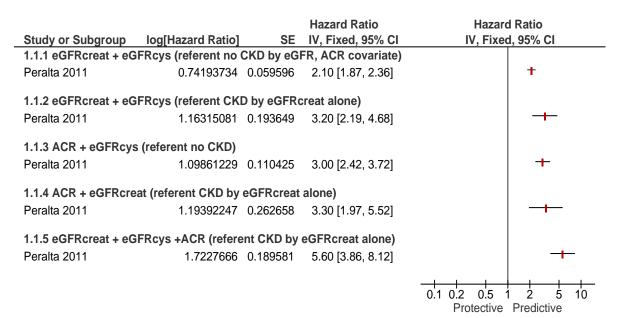

I.1.3 Sensitivity and specificity

Figure 23: Sensitivity and specificity MDRD versus CKD EPI (sCr) (threshold GFR 60ml/min/1.73m²) - studies in order of increasing mean age

MDRD										
Study	ТР	FP	FN	TN	Age	mGFR	Sensitivity	Specificity	Sensitivity	Specificity
Levey 2009	1760	265	92	1208	50.0	68.0	0.95 [0.94, 0.96]	0.82 [0.80, 0.84]	•	
Murata 2011	7	34	3	539	56.0	55.9	0.70 [0.35, 0.93]	0.94 [0.92, 0.96]	-	•
Teo 2011	145	16	15	56	58.0	51.7	0.91 [0.85, 0.95]	0.78 [0.66, 0.87]	-	
Iliadis 2011	126	30	19	273	65.0	73.4	0.87 [0.80, 0.92]	0.90 [0.86, 0.93]	-	-
Schaeffner 2012	71	3	63	148	78.5	60.3	0.53 [0.44, 0.62]	0.98 [0.94, 1.00]		
CKD EPI									0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
Study	ТР	FP	FN	TN	Age	mGFR	Sensitivity	Specificity	Sensitivity	Specificity
Levey 2009	1685	191	167	1282	50.0	68.0	0.91 [0.90, 0.92]	0.87 [0.85, 0.89]	•	•
Murata 2011	5	11	5	562	56.0	55.9	0.50 [0.19, 0.81]	0.98 [0.97, 0.99]	——	•
Teo 2011	142	11	18	61	58.0	51.7	0.89 [0.83, 0.93]	0.85 [0.74, 0.92]	-	
Iliadis 2011	132	36	13	267	65.0	73.4	0.91 [0.85, 0.95]	0.88 [0.84, 0.92]	-	-
Schaeffner 2012	80	4	54	147	78.5	60.3	0.60 [0.51, 0.68]	0.97 [0.93, 0.99]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 24: Sensitivity and specificity MDRD versus CKD EPI (sCr) (threshold GFR 60ml/min/1.73m²) – studies in order of decreasing mean mGFR

Study TP FP FN TN Age mGFR Sensitivity Sensitivity Specificity Specificity 73.4 0.87 [0.80, 0.92] 0.90 [0.86, 0.93] Iliadis 2011 126 30 19 273 65.0 Levey 2009 1760 265 92 1208 50.0 68.0 0.95 [0.94, 0.96] 0.82 [0.80, 0.84] Schaeffner 2012 71 3 63 148 78.5 60.3 0.53 [0.44, 0.62] 0.98 [0.94, 1.00] Murata 2011 55.9 0.70 [0.35, 0.93] 0.94 [0.92, 0.96] 7 34 3 539 56.0 Teo 2011 145 16 15 56 58.0 51.7 0.91 [0.85, 0.95] 0.78 [0.66, 0.87] 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1 CKD EPI Sensitivity Specificity TΡ FP FN TN Age mGFR Study Sensitivity Specificity Iliadis 2011 132 36 13 267 65.0 73.4 0.91 [0.85, 0.95] 0.88 [0.84, 0.92] Levey 2009 1685 191 167 1282 50.0 68.0 0.91 [0.90, 0.92] 0.87 [0.85, 0.89] Schaeffner 2012 80 4 54 147 78.5 60.3 0.60 [0.51, 0.68] 0.97 [0.93, 0.99] Murata 2011 5 11 5 562 56.0 55.9 0.50 [0.19, 0.81] 0.98 [0.97, 0.99] Teo 2011 142 11 18 61 58.0 51.7 0.89 [0.83, 0.93] 0.85 [0.74, 0.92] -0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1


Chronic kidney disease

Forest plots

I.2 Markers of kidney damage

I.2.1 Combination of markers of kidney damage (multivariate analysis)

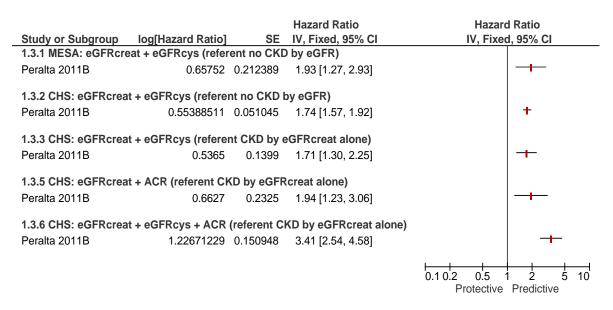

Figure 26: All-cause mortality: REGARDS

Figure 27: All cause mortality: ARIC (referent no CKD)

			Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
1.2.1 ARIC: eGFRcrea	at + eGFRcys			
Waheed 2012	0.62057649	0.138097	1.86 [1.42, 2.44]	+
1.2.2 ARIC: eGFRcrea	at + ACR			
Waheed 2012	0.23111172	0.451293	1.26 [0.52, 3.05]	
1.2.3 ARIC: eGFRcys	+ ACR			
Waheed 2012	0.90421815	0.192112	2.47 [1.70, 3.60]	-+-
1.2.4 ARIC: eGFRcrea	at + eGFRcys + ACR			
Waheed 2012	1.30562646	0.142105	3.69 [2.79, 4.88]	-+-
			ī	D.1 0.2 0.5 1 2 5 10 Protective Predictive

Figure 28: All-cause mortality: CHS and MESA

Figure 29: ESRD

			Hazard Ratio	Haza	ard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI	IV, Fix	ed, 95% Cl
1.4.1 REGARDS: eGF	Rcreat + eGFRcys (referent no	CKD by eGFR, ACR covariate	e only)	
Peralta 2011	3.2619	0.286	26.10 [14.90, 45.72]		+
1.4.2 CHS: eGFRcrea	at and eGFRcys (refe	rent no CKI	D by eGFR, ACR not a marker	r or covariate)	
Peralta 2011B	3.17052556	0.321757	23.82 [12.68, 44.75]		+
1.4.3 ARIC: eGFRcre	at + eGFRcys (refere	nt no CKD)			
Waheed 2012	2.67896462	0.392647	14.57 [6.75, 31.45]		
1.4.4 ARIC: eGFRcre	at + ACR (referent no	o CKD)			
Waheed 2012	2.18717424	0.74686	8.91 [2.06, 38.51]		
1.4.5 ARIC: eGFRcys	+ ACR (referent no	CKD)			
Waheed 2012	2.67759099	0.507409	14.55 [5.38, 39.33]		
1.4.6 ARIC: eGFRcre	at + eGFRcys + ACR	(referent n	o CKD)		
Waheed 2012	4.83612316	0.277967	125.98 [73.06, 217.22]		+
				0.005 0.1 Protectiv	1 10 200 e Predictive

Figure 30: AKI (referent no CKD)

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% Cl
1.5.1 ARIC: eGFRcrea	at + eGFRcys			
Waheed 2012	1.36097655	0.197168	3.90 [2.65, 5.74]	-+-
1.5.2 ARIC: eGFRcrea	at + ACR			
Waheed 2012	0.78390154	0.583724	2.19 [0.70, 6.88]	+++
1.5.3 ARIC: eGFRcys	+ ACR			
Waheed 2012	1.37624403	0.304075	3.96 [2.18, 7.19]	-+
1.5.4 ARIC: eGFRcrea	at + eGFRcys + ACR			
Waheed 2012	2.28033948	0.198394	9.78 [6.63, 14.43]	+-
				0.1 0.2 0.5 1 2 5 10 Protective Predictive

Figure 31: Cardiovascular disease

			Hazard Ratio	Hazard Ratio
Study or Subgrou	p log[Hazard Ratio]	SE	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.6.1 MESA: GFRc	reat and GFRcys			
Peralta 2011B	0.51282363	0.231815	1.67 [1.06, 2.63]	-+
1.6.2 CHS: GFRcre	eat and GFRcys			
Peralta 2011B	0.37843644	0.062789	1.46 [1.29, 1.65]	+
				0.1 0.2 0.5 1 2 5 10 Protective Predictive

Figure 32: Coronary heart disease

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% Cl	Hazard Ratio IV, Fixed, 95% CI
1.7.1 ARIC: eGFRcrea			, ,	, , , , , , , , , , , , , , , , , , , ,
Waheed 2012	0.61518564	0.162242	1.85 [1.35, 2.54]	-+-
1.7.2 ARIC: eGFRcrea	at + ACR			
Waheed 2012	0.0295588	0.50582	1.03 [0.38, 2.78]	
1.7.3 ARIC: eGFRcys	+ ACR			
Waheed 2012	-0.0725707	0.323274	0.93 [0.49, 1.75]	I
1.7.4 ARIC: eGFRcrea	at + eGFRcys + ACR			
Waheed 2012	1.10194008	0.170821	3.01 [2.15, 4.21]	-+-
				0.1 0.2 0.5 1 2 5 10 Protective Predictive

Chronic kidney disease

Forest plots

Figure 33: Heart failure

			Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.8.1 CHS: eGFRcreat	and eGFRcys			
Peralta 2011B	0.35767444	0.080095	1.43 [1.22, 1.67]	+
1.8.2 ARIC: eGFRcrea	t + eGFRcys			
Waheed 2012	0.69314718	0.169637	2.00 [1.43, 2.79]	-+-
1.8.3 ARIC: eGFRcrea	t + ACR			
Waheed 2012	1.4609379	0.324333	4.31 [2.28, 8.14]	
1.8.4 ARIC: eGFRcys	+ ACR			
Waheed 2012	1.178655	0.222827	3.25 [2.10, 5.03]	_
1.8.5 ARIC: eGFRcrea	t + eGFRcys + ACR			
Waheed 2012	1.93441577	0.15154	6.92 [5.14, 9.31]	-+-
				0.1 0.2 0.5 1 2 5 10 Protective Predictive

I.3 Classification of CKD

For all forest plots units are mg/g for ACR and PCR measures and ml/min/1.73m² for eGFR.

I.3.1 Progression of CKD

I.3.1.1 Change in eGFR

Figure 34: Change in eGFR at different ACR levels

			Hazard Ratio		Hazaro	d Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI		IV, Fixed	d, 95% CI	
1.7.2 ACR 30-299							
GANSEVOORT2011(High risk)	0.78845736	0.07479907	2.20 [1.90, 2.55]			+	
1.7.4 ACR >/=300							
GANSEVOORT2011(High risk)	2.29253476	0.19920123	9.90 [6.70, 14.63]			-	
				L			
				0.01	0.1 [·]	i 10	100
					Protective	Predictive	

Figure 35: Change in eGFR , stratified by eGFR level

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% C		d Ratio d, 95% Cl
1.1.1 eGFR 15-29	log[nazara natio]	02	11, 11, 11, CG, 307, 0	1,11,11,0	
GANSEVOORT2011 ACRunder10	-0.69314718	0.11385084	0.50 [0.40, 0.63]	+	
GANSEVOORT2011 ACR10-29		0.48423367	3.10 [1.20, 8.01]		
GANSEVOORT2011 ACR30-299	2.24070969	0.29235377	9.40 [5.30, 16.67]		→
GANSEVOORT2011 ACRover300	3.65325228	0.45898372	38.60 [15.70, 94.90]		
1.1.2 eGFR 30-44					
GANSEVOORT2011 ACRunder10	1.19392247	0.10238489	3.30 [2.70, 4.03]		+
GANSEVOORT2011 ACR10-29	1.22377543	0.15688283	3.40 [2.50, 4.62]		+
GANSEVOORT2011 ACR30-299	2.28238239	0.22542902	9.80 [6.30, 15.24]		+
GANSEVOORT2011 ACRover300	4.2297492	0.0899132	68.70 [57.60, 81.94]		+
1.1.3 eGFR 45-59					
GANSEVOORT2011 ACRunder10	1.09861229	0.18198036	3.00 [2.10, 4.29]		+
GANSEVOORT2011 ACR10-29	1.56861592	0.13279994	4.80 [3.70, 6.23]		+
GANSEVOORT2011 ACR30-299	2.31253542	0.3690375	10.10 [4.90, 20.82]		− +−
GANSEVOORT2011 ACRover300	3.44680789	0.34081678	31.40 [16.10, 61.24]		-+
1.1.4 eGFR 60-74					
GANSEVOORT2011 ACR30-299	1.02961942	0.3914639	2.80 [1.30, 6.03]		
GANSEVOORT2011 ACRover300	2.2300144	0.22360356	9.30 [6.00, 14.42]		+
1.1.5 eGFR 75-89					
GANSEVOORT2011 ACR30-299	0	0.11385084	1.00 [0.80, 1.25]	-	-
GANSEVOORT2011 ACRover300	1.25276297	0.17167266	3.50 [2.50, 4.90]		-+-
1.1.6 eGFR 90-104					
GANSEVOORT2011 ACR30-299	-0.10536052	0.128224	0.90 [0.70, 1.16]		-
GANSEVOORT2011 ACRover300	1.25276297	0.99282954	3.50 [0.50, 24.50]		
1.1.7 eGFR>105					
GANSEVOORT2011 ACR30-299	-0.51082562	0.09302291	0.60 [0.50, 0.72]	+	
GANSEVOORT2011 ACRover300	1.54756251	1.40387034	4.70 [0.30, 73.63]		•
				0.01 0.1	1 10 100
					Predictive
				11010011/6	1100101110

I.3.1.2 Occurrence of end stage renal disease

Figure 36: Occurrence of end stage renal disease at different PCR levels

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI			d Ratio d, 95% Cl	
2.1.1 PCR 50-499							
ASTOR2011C (CKD)	1.1568812	0.41858369	3.18 [1.40, 7.22]				
2.1.2 PCR 500-1499							
ASTOR2011C (CKD)	1.8531681	0.79618733	6.38 [1.34, 30.38]				-
2.1.3 PCR >/= 1500							
ASTOR2011C (CKD)	2.24812891	0.84430228	9.47 [1.81, 49.55]				
				0.01	0.1 Protective	1 10 Predictive	100

Figure 37: Occurrence of end stage renal disease at different ACR levels

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% Cl		d Ratio d, 95% Cl
2.7.2 ACR 30-299					
ASTOR2011C (CKD)	1.05431203	0.2077634	2.87 [1.91, 4.31]		+
2.7.3 ACR 300-999					
ASTOR2011C (CKD)	2.074429	0.12176379	7.96 [6.27, 10.11]		+
2.7.5 ACR >/= 1000					
ASTOR2011C (CKD)	2.68170623	0.13743634	14.61 [11.16, 19.13]		+
				L	ļ <u> </u>
				0.01 0.1 Protective	1 10 100 Predictive

Figure 38: Occurrence of end stage renal disease stratified by eGFR

			Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI	IV, Fixed, 95% CI
3.7.1 eGFR 15-29				
GANSEVOORT2011 ACRunder10	3.48431229	1.033538	32.60 [4.30, 247.15]	
GANSEVOORT2011 ACR10-29		0.58949492	308.00 [97.00, 977.98]	
GANSEVOORT2011 ACR30-299		0.76208883	387.00 [86.90, 1723.46]	
GANSEVOORT2011 ACRover300	6.1370789	1.36937301	462.70 [31.60, 6775.04]	_
3.7.2 eGFR 30-44				
GANSEVOORT2011 ACRunder10	3.15273602	0.38512991	23.40 [11.00, 49.78]	-+-
GANSEVOORT2011 ACR10-29	3.5085559	0.48538065	33.40 [12.90, 86.48]	
GANSEVOORT2011 ACR30-299	4.02535169	0.52532568	56.00 [20.00, 156.80]	+
GANSEVOORT2011 ACRover300	4.94021283	0.69790425	139.80 [35.60, 548.99]	-+-
3.7.3 eGFR 45-59				
GANSEVOORT2011 ACRunder10	0.99325177	0.23603675	2.70 [1.70, 4.29]	+
GANSEVOORT2011 ACR10-29	1.33500107	0.35365302	3.80 [1.90, 7.60]	+
GANSEVOORT2011 ACR30-299	2.67414865	0.42531344	14.50 [6.30, 33.37]	-+-
GANSEVOORT2011 ACRover300	4.01638302	0.57734852	55.50 [17.90, 172.08]	
3.7.4 eGFR 60-74				
GANSEVOORT2011 ACR30-299	1.13140211	0.27735992	3.10 [1.80, 5.34]	+
GANSEVOORT2011 ACRover300	3.47196645	0.51218641	32.20 [11.80, 87.87]	
3.7.5 eGFR 75-89				
GANSEVOORT2011 ACR30-299	0.53062825	0.32449003	1.70 [0.90, 3.21]	
GANSEVOORT2011 ACRover300	2.8507065	0.74716278	17.30 [4.00, 74.82]	
3.7.6 eGFR 90-104				
GANSEVOORT2011 ACR30-299	0.83290912	0.42496144	2.30 [1.00, 5.29]	- + -
GANSEVOORT2011 ACRover300	2.30258509	0.79626348	10.00 [2.10, 47.62]	-+
3.7.7 eGFR>105				
GANSEVOORT2011 ACR30-299	0.09531018	0.16247938	1.10 [0.80, 1.51]	+
GANSEVOORT2011 ACRover300		0.40740937	2.00 [0.90, 4.44]	⊢ ₽-
				0.001 0.1 1 10 1000

0.001 0.1 1 10 1000 Protective Predictive

I.3.1.3 Subgroup - age

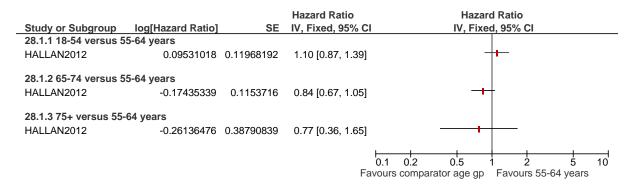
Figure 39: End stage renal disease at varying ACR levels for those <65 years and >65 years

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% Cl		d Ratio d, 95% Cl
4.7.1 ACR 30-299 <65yrs		02	11,11,20,0070 01	1,11,0	
GANSEVOORT2011(High risk)	1.5040774	0.3207246	4.50 [2.40, 8.44]		+
4.7.2 ACR 30-299 >65yrs					
GANSEVOORT2011(High risk)	1.41098697	0.25240068	4.10 [2.50, 6.72]		+
4.7.3 ACR >/=300 <65yrs					
GANSEVOORT2011(High risk)	3.77963382	0.50120946	43.80 [16.40, 116.98]		
4.7.4 ACR >/=300 >65yrs					
GANSEVOORT2011(High risk)	3.76815264	0.6138905	43.30 [13.00, 144.22]		
				0.001 0.1	1 10 1000

0.001 0.1 1 10 10 Protective Predictive Chronic kidney disease

Forest plots

Figure 40: End stage renal disease for those <65 years and >65 years stratified by eGFR


	IODI Hazaro Ratio	SE	IV, Fixed, 95% CI	IV, Fixed, 95% CI
udy or Subgroup 1.1 eGFR 15-29 <65yrs	log[Hazard Ratio]	52	17, 11ACU, 3370 OI	
ANSEVOORT2011 ACRunder10	0	0	Not estimable	
ANSEVOORT2011 ACR10-29			656.00 [172.00, 2501.95]	
ANSEVOORT2011 ACR30-299			792.00 [210.00, 2986.97]	· · · ·
ANSEVOORT2011 ACR30-299 ANSEVOORT2011 ACRover300				
ANSEVOOR12011 ACROVEI300	6.90575326	1.14009000	998.00 [105.00, 9485.75]	
1.2 eGFR 15-29 >65yrs				
ANSEVOORT2011 ACRunder10	3.21887582	1.04885857	25.00 [3.20, 195.31]	— + —
ANSEVOORT2011 ACR10-29	5.16478597	0.72209587	175.00 [42.50, 720.59]	-∔ −
ANSEVOORT2011 ACR30-299	4.82831374	0.54445573	125.00 [43.00, 363.37]	
ANSEVOORT2011 ACRover300	6.22653667	0.59385869	506.00 [158.00, 1620.48]	
1.3 eGFR 30-44 <65yrs				
ANSEVOORT2011 ACRunder10	2 76631911	1.08393075	15.90 [1.90, 133.06]	— + —
ANSEVOORT2011 ACR10-29		0.65216512	73.60 [20.50, 264.24]	
ANSEVOORT2011 ACR30-29		0.60814599	90.90 [27.60, 299.38]	
ANSEVOORT2011 ACR30-299 ANSEVOORT2011 ACRover300		0.80814599	90.90 [27.60, 299.38] 161.00 [26.30, 985.59]	· · ·
1.4 eGFR 30-44 >65yrs ANSEVOORT2011 ACRunder10	2 77881007	0.44731013	16.10 [6.70, 38.69]	_ _
ANSEVOORT2011 ACR010e110 ANSEVOORT2011 ACR10-29				
		0.44950261	18.10 [7.50, 43.68]	
ANSEVOORT2011 ACR30-299		0.49004061	24.30 [9.30, 63.49]	' <u>+</u>
ANSEVOORT2011 ACRover300	4.52936847	0.35420371	92.70 [46.30, 185.60]	
1.5 eGFR 45-59 <65yrs				
ANSEVOORT2011 ACRunder10	4.52936847	2.13927208	92.70 [1.40, 6138.06]	
ANSEVOORT2011 ACR10-29	1.66770682	0.42592502	5.30 [2.30, 12.21]	-+-
ANSEVOORT2011 ACR30-299		0.65294624	16.90 [4.70, 60.77]	-+-
ANSEVOORT2011 ACRover300		0.61352105	66.90 [20.10, 222.67]	
1.6 eGFR 45-59 >65yrs				
ANSEVOORT2011 ACRunder10	1 02061042	0.47669715	2.80 [1.10, 7.13]	_ _
ANSEVOORT2011 ACRUIDEITO		0.47669715	2.80 [1.10, 7.13] 1.80 [0.50, 6.48]	
ANSEVOORT2011 ACR10-29 ANSEVOORT2011 ACR30-299		0.65354969		· +
ANSEVOORT2011 ACR30-299 ANSEVOORT2011 ACRover300		0.30502448	10.00 [5.50, 18.18]	
NUL VOUNTZUTT AUKUVEISUU	3.44041609	0.0000009	31.20 [10.90, 89.31]	
1.7 eGFR 60-74 <65yrs				
ANSEVOORT2011 ACR30-299		0.35365302	4.00 [2.00, 8.00]	+
ANSEVOORT2011 ACRover300	3.66356165	0.67930725	39.00 [10.30, 147.67]	- + -
1.8 eGFR 60-74 >65yrs				
ANSEVOORT2011 ACR30-299	0,53062825	0.53136378	1.70 [0.60, 4.82]	-+ e
ANSEVOORT2011 ACRover300		0.40277475	20.70 [9.40, 45.58]	
1.9 eGFR 75-89 <65yrs				
ANSEVOORT2011 ACR30-299	0 53062825	0.38458452	1.70 [0.80, 3.61]	
ANSEVOORT2011 ACRover300		0.99912856	16.30 [2.30, 115.52]	_
	2.10110011	5.000 12000	10.00 [2.00, 110.02]	
1.10 eGFR 75-89 >65yrs	0.04405055	0 500 / / 65		J.
ANSEVOORT2011 ACR30-299	0.64185389	0.5881126	1.90 [0.60, 6.02]	T•
ANSEVOORT2011 ACRover300	2.78501124	0.84369363	16.20 [3.10, 84.66]	
1.11 eGFR 90-104 <65yrs				
ANSEVOORT2011 ACR30-299	0.95551145	0.4875148	2.60 [1.00, 6.76]	⊢ ∎−
ANSEVOORT2011 ACRover300		0.84605028	10.50 [2.00, 55.12]	+
1.12 eGFR 90-104 >65yrs				
	^	^	Net estimate	
ANSEVOORT2011 ACR30-299	0	0	Not estimable	
ANSEVOORT2011 ACRover300	2.74084002	1.04476044	15.50 [2.00, 120.12]	
1.13 eGFR>105 <65yrs				
ANSEVOORT2011 ACR30-299	0.09531018	0.16247938	1.10 [0.80, 1.51]	+
ANSEVOORT2011 ACRover300	0.33647224	0.22542902	1.40 [0.90, 2.18]	<u> </u> ∎-
1.14 eGFR>105 >65yrs				
ANSEVOORT2011 ACR30-299	0	0	Not estimable	
ANSEVOORT2011 ACRover300		1.09686829	20.60 [2.40, 176.82]	
	0.02020100	1.0000023	LU.UU [L.TU, 110.02]	· · ·

Chronic kidney disease

Forest plots

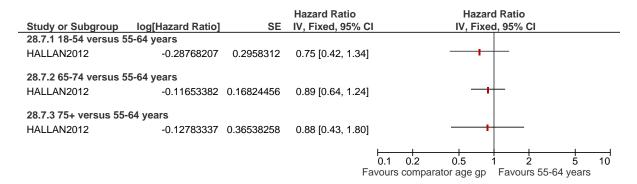

I.3.1.4 Subgroup - age interaction with eGFR (per 15ml/min/1.73m² decline)

Figure 41: End stage renal disease – Age interaction with eGFR

1.3.1.5 Subgroup - age interaction with ACR (according to 10-fold higher ACR)

Figure 42: End stage renal disease – Age interaction with ACR

I.3.1.6 Subgroup – diabetes

Figure 43: End stage renal disease at varying ACR levels for those with and without diabetes

Study or Subgroup	log[Hazard Patio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio I IV, Fixed, 95% CI					
Study or Subgroup log[Hazard Ratio] SE IV, Fixed, 95% CI IV, Fixed, 95% CI 5.7.1 ACR 10-29 with diabetes									
FOX2012A		0.32272152	1.60 [0.85, 3.01]	+					
5.7.2 ACR 10-29 without diabetes									
FOX2012A	0.62057649	0.17497503	1.86 [1.32, 2.62]	+					
5.7.3 ACR 30-299 with diabetes									
FOX2012A	1.2669476	0.10494637	3.55 [2.89, 4.36]	+					
5.7.4 ACR 30-299 without diabetes									
FOX2012A	0.99325177	0.21257452	2.70 [1.78, 4.10]	-+-					
5.7.5 ACR >/=300 with diabetes									
FOX2012A	1.91545094	0.22601379	6.79 [4.36, 10.57]	+					
5.7.6 ACR >/=300 without diabetes									
FOX2012A	1.71559811	0.24496707	5.56 [3.44, 8.99]	-+-					
				0.01 0.1 1 10 100 Protective Predictive					

Figure 44: End stage renal disease stratified by eGFR for those with and without diabetes

Study or Subgroup Ic	g[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% CI
7.1.1 eGFR <15 with diabetes				
OX2012 A ACRunder30	0.5539	1.0324	1.74 [0.23, 13.16]	
OX2012 A ACR30-299	3.5467	1.0762	34.70 [4.21, 286.01]	+
OX2012 A ACR300-999	4.804		122.00 [4.64, 3207.41]	
OX2012 A ACRover1000	3.5752	0.2587	35.70 [21.50, 59.28]	
	0.0702	0.2007	00.70 [21.00, 00.20]	
7.1.2 eGFR <15 without diabete				
OX2012 A ACRunder30	1.3788	0.4701	3.97 [1.58, 9.98]	 -
OX2012 A ACR30-299	2.7726	0.1685	16.00 [11.50, 22.26]	
FOX2012 A ACR300-999	3.1224	0.1753	22.70 [16.10, 32.01]	+
OX2012 A ACRover1000	3.4595	0.2655	31.80 [18.90, 53.51]	+
7.1.3 eGFR 15-29 with diabetes	5			
OX2012 A ACRunder30	1.0919	0.2924	2.98 [1.68, 5.29]	- + -
OX2012 A ACR30-299	2.1102	0.2365	8.25 [5.19, 13.11]	+
OX2012 A ACR300-999	3.1655	0.5484	23.70 [8.09, 69.43]	│
OX2012 A ACRover1000	3.5175	0.4555	33.70 [13.80, 82.29]	_ _
7.1.4 eGFR 15-29 without diab	atas			
FOX2012 A ACRunder30		0 2204	6 15 [2 17 11 00]	
	1.8165	0.3381	6.15 [3.17, 11.93]	
FOX2012 A ACR30-299	2.0719	0.1489	7.94 [5.93, 10.63]	
OX2012 A ACR300-999	2.4765	0.2585	11.90 [7.17, 19.75]	-
FOX2012 A ACRover1000	3.3638	0.5166	28.90 [10.50, 79.54]	-+-
7.1.5 eGFR 30-44 with diabetes	5			
OX2012 A ACRunder30	0.7467	0.2631	2.11 [1.26, 3.53]	-+-
OX2012 A ACR30-299	1.209	0.2456	3.35 [2.07, 5.42]	+
OX2012 A ACR300-999	1.7422	0.2396	5.71 [3.57, 9.13]	+
FOX2012 A ACRover1000	2.1471	0.2475	8.56 [5.27, 13.90]	+
7.1.6 eGFR 30-44 without diab	atas			
FOX2012 A ACRunder30		0.2619	1.42 [0.85, 2.37]	
	0.3507	0.2618		· +
FOX2012 A ACR30-299	1.1019	0.153	3.01 [2.23, 4.06]	
OX2012 A ACR300-999	1.4351	0.1649	4.20 [3.04, 5.80]	- .
FOX2012 A ACRover1000	1.911	0.1642	6.76 [4.90, 9.33]	–
7.1.7 eGFR 45-74 with diabetes	6			
OX2012 A ACRunder30	0	0	Not estimable	
OX2012 A ACR30-299	0.5653	0.2635	1.76 [1.05, 2.95]	⊢ ∎-
OX2012 A ACR300-999	1.0438	0.4793	2.84 [1.11, 7.27]	⊢ ∎−
FOX2012 A ACRover1000	2.0807	0.4052	8.01 [3.62, 17.72]	-+-
		3. 100L	0.01 [0.02, 11.72]	
7.1.8 eGFR 45-74 without diab		^	Net - dimension	
FOX2012 A ACRunder30	0	0	Not estimable	<u>_</u>
OX2012 A ACR30-299	0.5247	0.1621	1.69 [1.23, 2.32]	+
OX2012 A ACR300-999	1.0473	0.4329	2.85 [1.22, 6.66]	- * -
OX2012 A ACRover1000	1.3686	0.1766	3.93 [2.78, 5.56]	+
7.1.9 eGFR >75 with diabetes				
OX2012 A ACRunder30	0.3852624	0.43230277	1.47 [0.63, 3.43]	- +
OX2012 A ACR30-299		0.33142238	2.47 [1.29, 4.73]	_+_
OX2012 A ACR300-999		0.39548452	3.43 [1.58, 7.45]	
FOX2012 A ACRover1000		0.35596692	4.42 [2.20, 8.88]	-
7 4 40 occp > 75	100			
7.1.10 eGFR >75 without diabe		1 0 10 1005		
OX2012 A ACRunder30	-0.61618614	1.0424038	0.54 [0.07, 4.17]	
OX2012 A ACR30-299	-0.38566248	0.2969042	0.68 [0.38, 1.22]	-#†
OX2012 A ACR300-999	-0.30110509	0.41202672	0.74 [0.33, 1.66]	-++-
FOX2012 A ACRover1000	0.46373402	0.5509898	1.59 [0.54, 4.68]	
				0.001 0.1 1 10 100
				0.001 0.1 1 10 100

I.3.1.7 Subgroup – hypertension

Figure 45: End stage renal disease at varying ACR levels for those with and without hypertension

Study or S	ibaroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard	l Ratio I, 95% Cl
Study or Si		hypertension	36	IV, FIXeu, 95% CI	IV, FIXed	, 95 % CI
MAHMOOD			0 40 40 70 20			+
IVIANIVIOOD	120120	0.01977903	0.18487839	2.27 [1.58, 3.26]		•
8.7.2 ACR 1	0-29 witho	out hypertension				
MAHMOOD	I2012B	0.62057649	0.10299483	1.86 [1.52, 2.28]		+
8.7.3 ACR 3	30-299 with	hypertension				
MAHMOOD	I2012B	1.35583515	0.29648911	3.88 [2.17, 6.94]		-+-
074400	0.000					
		out hypertension				
MAHMOOD	I2012B	1.07840958	0.11428488	2.94 [2.35, 3.68]		+
8.7.5 ACR :	>/=300 with	hypertension				
MAHMOOD		1.95727391	0 28877674	7.08 [4.02, 12.47]		—
	120120	1.93727391	0.20077074	7.00 [4.02, 12.47]		•
8.7.6 ACR >	-/=300 with	out hypertension				
MAHMOOD	I2012B	1.75785792	0.20775419	5.80 [3.86, 8.72]		+
					0.01 0.1 1	10 100
					Protective	10 100
					1 101001110	1100100100

Figure 46: End stage renal disease stratified by eGFR for those with and without hypertension

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% C	Hazard Ratio
0.1.1 eGFR <15 with hypertension	- St. Martin (19410)	52	,	
MAHMOODI2012 B ACRunder30	0	0	Not estimable	
MAHMOODI2012 B ACR 30-299	2.6672	0.2264	14.40 [9.24, 22.44]	
MAHMOODI2012 B ACR 30-299 MAHMOODI2012 B ACR300-999	3.1739	0.2204	23.90 [15.50, 36.85]	
MAHMOODI2012 B ACR300-999 MAHMOODI2012 B ACR+1000	3.5293	0.2209	34.10 [22.30, 52.14]	
MARIMOODI2012 B ACR+1000	3.5293	0.2107	34.10 [22.30, 52.14]	· · ·
0.1.2 eGFR <15 without hypertensio				
MAHMOODI2012 B ACRunder30	1.8342	0.4464	6.26 [2.61, 15.02]	-+-
MAHMOODI2012 B ACR 30-299	2.8622	0.1841	17.50 [12.20, 25.10]	+
MAHMOODI2012 B ACR300-999	3.4111	0.1969	30.30 [20.60, 44.57]	+
MAHMOODI2012 B ACR+1000	3.3569	0.2553	28.70 [17.40, 47.34]	+
0.1.3 eGFR 15-29 with hypertension	I			
MAHMOODI2012 B ACRunder30	1.6956	0.338	5.45 [2.81, 10.57]	+-
MAHMOODI2012 B ACR 30-299	2.5257	0.3408	12.50 [6.41, 24.38]	
VAHMOODI2012 B ACR300-999	3.2958	0.5802	27.00 [8.66, 84.18]	
MAHMOODI2012 B ACR+1000	3.924		50.60 [15.10, 169.58]	
			,	
J.1.4 eGFR 15-29 without hypertens MAHMOODI2012 B ACRunder30	ion 1.6956	0.3097	5 45 [2 07 40 00]	
MAHMOODI2012 B ACRUNDER30 MAHMOODI2012 B ACR 30-299			5.45 [2.97, 10.00]	
	2.2418	0.2023	9.41 [6.33, 13.99]	
	3.0634	0.3682	21.40 [10.40, 44.04]	
MAHMOODI2012 B ACR+1000	3.7865	0.5205	44.10 [15.90, 122.32]	
9.1.5 eGFR 30-44 with hypertension	I.			
MAHMOODI2012 B ACRunder30	0.6313	0.5264	1.88 [0.67, 5.28]	++-
MAHMOODI2012 B ACR 30-299	1.7317	0.5025	5.65 [2.11, 15.13]	-+-
MAHMOODI2012 B ACR300-999	2.1483	0.4963	8.57 [3.24, 22.67]	-∔
MAHMOODI2012 B ACR+1000	2.8391	0.4919	17.10 [6.52, 44.84]	- +-
9.1.6 eGFR 30-44 without hypertens	ion			
MAHMOODI2012 B ACRunder30	0.6729	0.1978	1.96 [1.33, 2.89]	+
MAHMOODI2012 B ACR 30-299	1.2326	0.2479	3.43 [2.11, 5.58]	
MAHMOODI2012 B ACR300-999	1.6253	0.1729	5.08 [3.62, 7.13]	
MAHMOODI2012 B ACR+1000	2.7473	0.4373	15.60 [6.62, 36.76]	
9.1.7 eGFR 45-74 with hypertension	0	0	Not optimable	
			Not estimable	
	0.9594	0.4094	2.61 [1.17, 5.82]	
	1.5892	0.511 0.3075	4.90 [1.80, 13.34]	
MAHMOODI2012 B ACR+1000	1.8116	0.3075	6.12 [3.35, 11.18]	
0.1.8 eGFR 45-74 without hypertens				
MAHMOODI2012 B ACRunder30	0	0	Not estimable	
MAHMOODI2012 B ACR 30-299	0.5933	0.165	1.81 [1.31, 2.50]	+
MAHMOODI2012 B ACR300-999	0.6881	0.2623	1.99 [1.19, 3.33]	+ -
MAHMOODI2012 B ACR+1000	1.7934	0.2366	6.01 [3.78, 9.56]	+
0.1.9 eGFR >75 with hypertension				
MAHMOODI2012 B ACRunder30	-0.23572233	0.461086	0.79 [0.32, 1.95]	
MAHMOODI2012 B ACR 30-299		0.30753785	1.48 [0.81, 2.70]	
VAHMOODI2012 B ACR300-999		0.55697126	1.43 [0.48, 4.26]	
MAHMOODI2012 B ACR+1000		0.33017492	3.61 [1.89, 6.90]	
1 10 ocer >75 without hungtons	ion			
0.1.10 eGFR >75 without hypertensi		4 40540055		
MAHMOODI2012 B ACRunder30		1.46516959	0.53 [0.03, 9.36]	
MAHMOODI2012 B ACR 30-299		0.28552351	0.91 [0.52, 1.59]	T_
MAHMOODI2012 B ACR300-999		0.32309218	1.62 [0.86, 3.05]	
MAHMOODI2012 B ACR+1000	0.87546874	0.96793615	2.40 [0.36, 16.00]	
				0.001 0.1 1 10 10
				Protective Predictive

0.1 1 10 Protective Predictive 0.001

I.3.2 All-cause mortality

Figure 47: All-cause mortality at different PCR levels

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% Cl	Hazard Ratio IV, Fixed, 95% Cl
10.1.1 PCR 50-499 ASTOR2011C (CKD)	0.07696104	0.35365302	1.08 [0.54, 2.16]	
10.1.2 PCR 500-1499 ASTOR2011C (CKD)	0.59332685	0.16886156	1.81 [1.30, 2.52]	_+_
10.1.3 PCR >/= 1500 ASTOR2011C (CKD)	0.54232429	0.3304575	1.72 [0.90, 3.29]	
				0.1 0.2 0.5 1 2 5 10 Protective Predictive

Figure 48: All-cause mortality at different ACR levels

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI		d Ratio d, 95% Cl
10.7.1 ACR 10-29			,,	,-	
VANDERVELDE2011(High risk	0.24686008	0.04584591	1.28 [1.17, 1.40]		+
10.7.2 ACR 30-299					
ASTOR2011C (CKD)	0.40546511	0.08092242	1.50 [1.28, 1.76]		+
VANDERVELDE2011(High risk	0.58221562	0.05725207	1.79 [1.60, 2.00]		+
10.7.3 ACR 300-999					
ASTOR2011C (CKD)	0.61518564	0.27460943	1.85 [1.08, 3.17]		
10.7.4 ACR >/=300					
VANDERVELDE2011(High risk	1.19088756	0.04032219	3.29 [3.04, 3.56]		+
10.7.5 ACR >/= 1000					
ASTOR2011C (CKD)	1.00430161	0.22980856	2.73 [1.74, 4.28]		
				0.1 0.2 0.5	

0.1 0.2 0.5 1 2 5 Protective Predictive

Figure 49: All-cause mortality stratified by eGFR

	le efficient De Cal	05	Hazard Ratio	Hazard Ratio
Study or Subgroup 10.7.1 eGFR 15-29	log[Hazard Ratio]	5E	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
VANDERVELDE2011 ACR-10	1 00 1 2	0.193	2 72 [4 97 2 00]	+
VANDERVELDE2011 ACR-10 VANDERVELDE2011 ACR10-29		0.193	2.73 [1.87, 3.99] 3.52 [2.18, 5.68]	<u>+</u>
VANDERVELDE2011 ACR10-29 VANDERVELDE2011 ACR30-299		0.2445		·
VANDERVELDE2011 ACR30-299 VANDERVELDE2011 ACR+300		0.1284		. +
VANDERVEEDEZOTT ACR+300	1.0919	0.1057	5.45 [5.54, 7.40]	· · · · ·
10.7.2 eGFR 30-44				
VANDERVELDE2011 ACR-10	0.4318	0.1671	1.54 [1.11, 2.14]	+
VANDERVELDE2011 ACR10-29	0.7227	0.1898	2.06 [1.42, 2.99]	+
VANDERVELDE2011 ACR30-299	1.0438	0.184	2.84 [1.98, 4.07]	+
VANDERVELDE2011 ACR+300	1.3838	0.1936	3.99 [2.73, 5.83]	+
10.7.3 eGFR 45-59				
VANDERVELDE2011 ACR-10	0.1484	0.2091	1.16 [0.77, 1.75]	+
VANDERVELDE2011 ACR10-29	0.3293	0.1836	1.39 [0.97, 1.99]	
VANDERVELDE2011 ACR30-299	0.6729	0.1132	1.96 [1.57, 2.45]	+
VANDERVELDE2011 ACR+300	1.2754	0.1751	3.58 [2.54, 5.05]	+
10.7.4 eGFR 60-74				
VANDERVELDE2011 ACR-10	-0.1985	0.1264	0.82 [0.64, 1.05]	+
VANDERVELDE2011 ACR10-29		0.1439	1.18 [0.89, 1.56]	+ -
VANDERVELDE2011 ACR30-299		0.1233	1.63 [1.28, 2.08]	+
VANDERVELDE2011 ACR+300		0.2126	2.67 [1.76, 4.05]	+
10.7.5 eGFR 75-89				
VANDERVELDE2011 ACR-10	-0.1278	0.1168	0.88 [0.70, 1.11]	+
VANDERVELDE2011 ACR10-29		0.1407		+
VANDERVELDE2011 ACR30-299		0.0765		+
VANDERVELDE2011 ACR+300	1.0682	0.1245	2.91 [2.28, 3.71]	+
10.7.6 eGFR 90-104				
VANDERVELDE2011 ACR-10	0	0	Not estimable	
VANDERVELDE2011 ACR10-29	-	0.093		+
VANDERVELDE2011 ACR30-299		0.0887		+
VANDERVELDE2011 ACR+300		0.1369	2.72 [2.08, 3.56]	+
10.7.7 eGFR >105				
VANDERVELDE2011 ACR-10	0 2311	0.1335	1.26 [0.97, 1.64]	+
VANDERVELDE2011 ACR10-29		0.1033	1.31 [1.07, 1.60]	+
VANDERVELDE2011 ACR30-299		0.1035	1.51 [1.23, 1.85]	+
VANDERVELDE2011 ACR+300		0.1554	2.97 [2.19, 4.03]	
	1.0000	0.1004	2.07 [2.10, 4.00]	
				· · · · · · · · · · · · · · · · · · ·

0.002 0.1 1 10 500 Protective Predictive

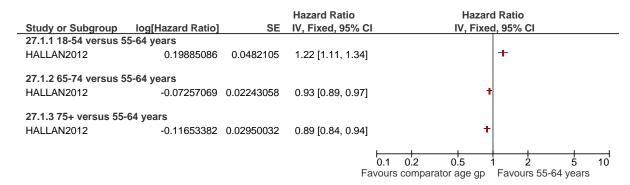
I.3.2.1 Subgroup - age

Figure 50: All-cause mortality at varying ACR levels for those <65 years and >65 years

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% Cl		d Ratio d, 95% Cl
12.7.1 ACR 10-29 <65yrs		02	IV, I IXEU, 3370 OI	10,1180	
VANDERVELDE2011(High risk	0.29266961	0.11005742	1.34 [1.08, 1.66]		
12.7.2 ACR 10-29 >65yrs					
VANDERVELDE2011(High risk	0.27002714	0.0363151	1.31 [1.22, 1.41]		+
12.7.3 ACR 30-299 <65 yrs					
VANDERVELDE2011(High risk	0.54812141	0.0936131	1.73 [1.44, 2.08]		
12.7.4 ACR 30-299 >65yrs					
VANDERVELDE2011(High risk	0.61518564	0.03421707	1.85 [1.73, 1.98]		+
12.7.6 ACR >/=300 <65yrs					
VANDERVELDE2011(High risk	1.22377543	0.10455708	3.40 [2.77, 4.17]		-
12.7.7 ACR >/=300 >65yrs					
VANDERVELDE2011(High risk	1.1568812	0.05233217	3.18 [2.87, 3.52]		+
				0.1 0.2 0.5 Protective	1 2 5 10 Predictive

Forest plots

Figure 51: All-cause mortality by age, stratified by eGFR


	log[Hazard Ratio]	3E	IV, Fixed, 95% Cl	IV, Fixed, 95% CI
2.1.1 eGFR 15-29 <65yrs				
ANDERVELDE2011 ACR-10			9.27 [2.92, 29.43]	
ANDERVELDE2011 ACR10-29			9.16 [4.19, 20.03]	
ANDERVELDE2011 ACR30-299			5.79 [3.03, 11.06]	
ANDERVELDE2011 ACR+300	1.8594	0.2263	6.42 [4.12, 10.00]	•
2.1.2 eGFR 15-29 >65yrs				
ANDERVELDE2011 ACR-10	0.9821			
ANDERVELDE2011 ACR10-29		0.2537		
ANDERVELDE2011 ACR30-299	1.2413			
ANDERVELDE2011 ACR+300	1.6525	0.2248	5.22 [3.36, 8.11]	
2.1.3 eGFR 30-44 <65yrs				
ANDERVELDE2011 ACR-10		0.2433	2.03 [1.26, 3.27]	-+-
ANDERVELDE2011 ACR10-29		0.6189		+- +
ANDERVELDE2011 ACR30-299		0.3721	3.67 [1.77, 7.61]	
ANDERVELDE2011 ACR+300	1.8278	0.1606	6.22 [4.54, 8.52]	· · · · ·
2.1.4 eGFR 30-44 >65yrs				
ANDERVELDE2011 ACR-10	0.3784		1.46 [0.98, 2.18]	T.
ANDERVELDE2011 ACR10-29	0.6366			+
ANDERVELDE2011 ACR30-299	0.8961		2.45 [1.62, 3.71]	
ANDERVELDE2011 ACR+300	1.1314	0.2030	3.10 [2.08, 4.62]	•
2.1.5 eGFR 45-59 <65yrs				.
ANDERVELDE2011 ACR-10	0.1906			
ANDERVELDE2011 ACR10-29 ANDERVELDE2011 ACR30-299		0.2198 0.2293		
ANDERVELDE2011 ACR30-299 ANDERVELDE2011 ACR+300	1.5851	0.2293	2.21 [1.41, 3.46] 4.88 [3.47, 6.86]	+
	1.0001	0.17-4		
2.1.6 eGFR 45-59 >65yrs				
ANDERVELDE2011 ACR-10	-0.0202	0.179	0.98 [0.69, 1.39]	<u>+</u>
ANDERVELDE2011 ACR10-29		0.2195		T_
ANDERVELDE2011 ACR30-299 ANDERVELDE2011 ACR+300	0.6419 1.1019		1.90 [1.47, 2.46] 3.01 [2.22, 4.08]	' +
	1.1013			
2.1.7 eGFR 60-74 <65yrs		a · -	0.0010.00	الم
ANDERVELDE2011 ACR-10	-0.2231	0.13	0.80 [0.62, 1.03]	1_
ANDERVELDE2011 ACR10-29 ANDERVELDE2011 ACR30-299	0.2776	0.2069	1.32 [0.88, 1.98]	
ANDERVELDE2011 ACR30-299 ANDERVELDE2011 ACR+300	1.2809		1.77 [1.22, 2.57] 3.60 [2.48, 5.23]	' +
	1.2000	000.	0.00 [2: 10; 0.20]	
2.1.8 eGFR 60-74 >65yrs				
ANDERVELDE2011 ACR-10	-0.2107		0.81 [0.60, 1.09]	T
ANDERVELDE2011 ACR10-29 ANDERVELDE2011 ACR30-299	0.0198 0.3577		1.02 [0.71, 1.47] 1.43 [1.03, 1.99]	-
ANDERVELDE2011 ACR+300	0.7129		2.04 [1.20, 3.47]	
2.1.9 eGFR 75-89 <65yrs ANDERVELDE2011 ACR-10	-0.1054	0 1356	0.90 [0.69, 1.17]	+
ANDERVELDE2011 ACR10-29	0.2624			
ANDERVELDE2011 ACR30-299		0.1535		+
ANDERVELDE2011 ACR+300	1.0716		2.92 [2.11, 4.04]	+
2.1.10 eGFR 75-89 >65yrs				
ANDERVELDE2011 ACR-10	-0.1393	0.1409	0.87 [0.66, 1.15]	-
ANDERVELDE2011 ACR10-29		0.1536	1.00 [0.74, 1.35]	+
ANDERVELDE2011 ACR30-299	0.4121	0.1088	1.51 [1.22, 1.87]	+
ANDERVELDE2011 ACR+300	1.0332	0.2105	2.81 [1.86, 4.25]	+
2.1.11 eGFR 90-104 <65yrs				
ANDERVELDE2011 ACR-10	0	0	Not estimable	
ANDERVELDE2011 ACR10-29	0.3716		1.45 [1.07, 1.97]	+
ANDERVELDE2011 ACR30-299	0.4574		1.58 [1.24, 2.01]	+
ANDERVELDE2011 ACR+300	1.026	0.4137	2.79 [1.24, 6.28]	- +
2.1.12 eGFR 90-104 >65yrs				
ANDERVELDE2011 ACR-10	0	0	Not estimable	
ANDERVELDE2011 ACR10-29	0.0862		1.09 [0.82, 1.45]	<u>†</u> .
ANDERVELDE2011 ACR30-299	0.5068		1.66 [1.27, 2.17]	* .
ANDERVELDE2011 ACR+300	0.9632	0.2267	2.62 [1.68, 4.09]	
2.1.13 eGFR >105 <65yrs				
ANDERVELDE2011 ACR-10	0.3577		1.43 [1.13, 1.81]	+
ANDERVELDE2011 ACR10-29	0.2852		1.33 [1.04, 1.70]	he in the second s
ANDERVELDE2011 ACR30-299	0.3716		1.45 [1.12, 1.88]	⁺_ _
ANDERVELDE2011 ACR+300	1.1314	0.175	3.10 [2.20, 4.37]	+
2.1.14 eGFR >105 >65yrs				
ANDERVELDE2011 ACR-10	0.0296		1.03 [0.71, 1.49]	+ <u>+</u>
ANDERVELDE2011 ACR10-29	0.2624		1.30 [0.92, 1.84]	1
		0.1653	1.59 [1.15, 2.20]	
ANDERVELDE2011 ACR30-299 ANDERVELDE2011 ACR+300	0.9322		2.54 [1.24, 5.20]	⊢ _

0.002 0.1 1 10 500 Protective Predictive

Forest plots

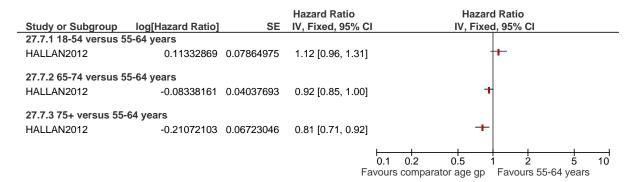

1.3.2.2 Subgroup - age interaction with eGFR (per 15ml/min/1.73m² decline)

Figure 52: All-cause mortality – age interaction with eGFR

1.3.2.3 Subgroup - age interaction with ACR (according to 10 fold higher ACR)

Figure 53: All-cause mortality – age interaction with ACR

I.3.2.4 Subgroup – diabetes

Figure 54: All-cause mortality at varying ACR levels for those with and without diabetes

			Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
14.7.1 ACR 10-29 witl	n diabetes			
FOX2012A	0.30010459	0.03116776	1.35 [1.27, 1.44]	+
14.7.2 ACR 10-29 witl	nout diabetes			
FOX2012A	0.27002714	0.03215006	1.31 [1.23, 1.40]	+
14.7.3 ACR 30-299 wi	th diabetes			
FOX2012A	0.54812141	0.03667783	1.73 [1.61, 1.86]	+
14.7.4 ACR 30-299 wi	thout diabetes			
FOX2012A	0.51282363	0.04134832	1.67 [1.54, 1.81]	+
14.7.5 ACR >/=300 wi	th diabetes			
FOX2012A	0.98207847	0.0738947	2.67 [2.31, 3.09]	+
14.7.6 ACR >/=300 wi	thout diabetes			
FOX2012A	0.86710049	0.07120125	2.38 [2.07, 2.74]	+
				0.1 0.2 0.5 1 2 5 10 Protective Predictive

Forest plots

Figure 55: All-cause mortality stratified by eGFR for those with and without diabetes

Forest plots

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% Cl
4.1.1 eGFR <15 with diab	2.4849	0 7000	12.00 [3.02, 47.68]	
FOX2012 A ACRunder10 FOX2012 A ACR10-29	2.4849	0.4509	5.88 [2.43, 14.23]	
OX2012 A ACR30-299	2.2565	0.3805	9.55 [4.53, 20.13]	_ _
OX2012 A ACRover300	2.6741	0.2525	14.50 [8.84, 23.78]	
14.1.2 eGFR <15 without o				
FOX2012 A ACRunder10 FOX2012 A ACR10-29	1.8795 2.1471	0.3154 0.2057	6.55 [3.53, 12.15] 8.56 [5.72, 12.81]	
FOX2012 A ACR10-29	1.933	0.1999	6.91 [4.67, 10.22]	∔
OX2012 A ACRover300	2.4849		12.00 [8.84, 16.29]	+
14.1.3 eGFR 15-29 with di	abetes			
OX2012 A ACRunder10	0.9895	0.2107	2.69 [1.78, 4.07]	+
FOX2012 A ACR10-29 FOX2012 A ACR30-299	1.1939	0.1561 0.2252	3.30 [2.43, 4.48] 4.96 [3.19, 7.71]	
FOX2012 A ACR30-299 FOX2012 A ACRover300	1.6014 1.9169	0.182	6.80 [4.76, 9.71]	· · ·
14.1.4 eGFR 15-29 withou	t diabetes			
FOX2012 A ACRunder10	1.1506	0.1733	3.16 [2.25, 4.44]	+
FOX2012 A ACR10-29	1.3888	0.1724	4.01 [2.86, 5.62]	
FOX2012 A ACR30-299 FOX2012 A ACRover300	1.361 1.9006	0.1459 0.1547	3.90 [2.93, 5.19] 6.69 [4.94, 9.06]	
14.1.5 eGFR 30-44 with di	abetes			
FOX2012 A ACRunder10	0.5933	0.1496	1.81 [1.35, 2.43]	+
FOX2012 A ACR10-29	0.8109	0.0944	2.25 [1.87, 2.71]	+
FOX2012 A ACR30-299 FOX2012 A ACRover300	1.141 1.5282	0.1006 0.1205	3.13 [2.57, 3.81] 4.61 [3.64, 5.84]	+
		5.1200		
14.1.6 eGFR 30-44 withou FOX2012 A ACRunder10	t diabetes 0.5365	0.0877	1.71 [1.44, 2.03]	+
FOX2012 A ACR10-29	0.9322	0.0596	2.54 [2.26, 2.85]	+
FOX2012 A ACR30-299	1.0613	0.1143	2.89 [2.31, 3.62]	+
FOX2012 A ACRover300	1.3863	0.1606	4.00 [2.92, 5.48]	-
14.1.7 eGFR 45-59 with di		0.0660	1 15 [1 04 4 24]	L
FOX2012 A ACRunder10 FOX2012 A ACR10-29	0.1398 0.5988	0.0662 0.0657	1.15 [1.01, 1.31] 1.82 [1.60, 2.07]	Г+
FOX2012 A ACR30-299	0.678	0.0904	1.97 [1.65, 2.35]	+
FOX2012 A ACRover300	1.1725	0.1287	3.23 [2.51, 4.16]	+
14.1.8 eGFR 45-59 withou				
FOX2012 A ACRunder10 FOX2012 A ACR10-29	0.1989 0.5306	0.0575 0.0673	1.22 [1.09, 1.37] 1 70 [1 49, 1 94]	*
FOX2012 A ACR10-29 FOX2012 A ACR30-299	0.5306	0.0673	1.70 [1.49, 1.94] 2.10 [1.75, 2.52]	+
FOX2012 A ACRover300	1.1474	0.1303	3.15 [2.44, 4.07]	+
14.1.9 eGFR 60-74 with di	abetes			
FOX2012 A ACRunder10	-0.0101	0.0374	0.99 [0.92, 1.07]	<u>t.</u>
FOX2012 A ACR10-29 FOX2012 A ACR30-299	0.2776 0.6206	0.0659 0.0768	1.32 [1.16, 1.50] 1.86 [1.60, 2.16]	*
FOX2012 A ACRover300	1.0919	0.119	2.98 [2.36, 3.76]	+
14.1.10 eGFR 60-74 witho	ut diabetes			
FOX2012 A ACRunder10	0.01	0.0312	1.01 [0.95, 1.07]	t_
FOX2012 A ACR10-29 FOX2012 A ACR30-299	0.3221 0.6206	0.0713 0.0642	1.38 [1.20, 1.59] 1.86 [1.64, 2.11]	*
FOX2012 A ACRover300	0.8796	0.1267	2.41 [1.88, 3.09]	+
14.1.11 eGFR 75-89 with c	liabetes			
FOX2012 A ACRunder10	-0.0618754	0.03948372	0.94 [0.87, 1.02]	4.
FOX2012 A ACR10-29 FOX2012 A ACR30-299		0.06977625 0.08348593	1.33 [1.16, 1.52] 1.59 [1.35, 1.87]	+ +
FOX2012 A ACR30-299 FOX2012 A ACRover300		0.12612003	2.42 [1.89, 3.10]	+
14.1.12 eGFR 75-89 witho	ut diabetes			
FOX2012 A ACRunder10	-0.0618754	0.02788746	0.94 [0.89, 0.99]	•
FOX2012 A ACR10-29		0.04941408	1.30 [1.18, 1.43]	1
FOX2012 A ACR30-299 FOX2012 A ACRover300		0.06812951 0.13306829	1.60 [1.40, 1.83] 2.57 [1.98, 3.34]	+
14.1.13 eGFR 90-104 with	diabetes		-	
FOX2012 A ACRunder10	0	0	Not estimable	
FOX2012 A ACR10-29		0.06555137	1.41 [1.24, 1.60]	*
FOX2012 A ACR30-299		0.09008219 0.14505265	1.73 [1.45, 2.06] 2.95 [2.22, 3.92]	+ +
FOX2012 A ACRover300			. ,]	
FOX2012 A ACRover300	out diabetes			
	out diabetes 0	0	Not estimable	
FOX2012 A ACRover300 14.1.14 eGFR 90-104 with FOX2012 A ACRunder10 FOX2012 A ACR10-29	0 0.3852624	0.05491461	1.47 [1.32, 1.64]	
FOX2012 A ACRover300 14.1.14 eGFR 90-104 with FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR30-299	0 0.3852624 0.5988365		1.47 [1.32, 1.64] 1.82 [1.64, 2.02]	+ + +
FOX2012 A ACRover300 14.1.14 eGFR 90-104 with FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACRover300	0 0.3852624 0.5988365 1.17248214	0.05491461 0.05313376	1.47 [1.32, 1.64]	* *
FOX2012 A ACRover300 14.1.14 eGFR 90-104 with FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR30-299	0 0.3852624 0.5988365 1.17248214 iabetes	0.05491461 0.05313376	1.47 [1.32, 1.64] 1.82 [1.64, 2.02] 3.23 [2.39, 4.37]	+ + +
FOX2012 A ACRover300 14.1.14 eGFR 90-104 with FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR30-299 FOX2012 A ACRover300 14.1.15 eGFR >105 with d FOX2012 A ACRunder10 FOX2012 A ACR10-29	0 0.3852624 0.598365 1.17248214 iabetes 0.2390169 0.45742485	0.05491461 0.05313376 0.15367056 0.08742929 0.10346243	1.47 [1.32, 1.64] 1.82 [1.64, 2.02] 3.23 [2.39, 4.37] 1.27 [1.07, 1.51] 1.58 [1.29, 1.94]	+ + + +
FOX2012 A ACRover300 14.1.14 eGFR 90-104 with FOX2012 A ACRunder10 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR0ver300 14.1.15 eGFR >105 with d FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR30-299	0 0.3852624 0.5988365 1.17248214 iabetes 0.2390169 0.45742485 0.88789126	0.05491461 0.05313376 0.15367056 0.08742929 0.10346243 0.12553158	1.47 [1.32, 1.64] 1.82 [1.64, 2.02] 3.23 [2.39, 4.37] 1.27 [1.07, 1.51] 1.58 [1.29, 1.94] 2.43 [1.90, 3.11]	+ + + + +
FOX2012 A ACRover300 14.1.14 eGFR 90-104 with FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR0ver300 14.1.15 eGFR >105 with d FOX2012 A ACR10-29 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR30-299	0 0.3852624 0.598365 1.17248214 iabetes 0.2390169 0.45742485 0.88789126 1.47704872	0.05491461 0.05313376 0.15367056 0.08742929 0.10346243	1.47 [1.32, 1.64] 1.82 [1.64, 2.02] 3.23 [2.39, 4.37] 1.27 [1.07, 1.51] 1.58 [1.29, 1.94]	+ + + + +
FOX2012 A ACRover300 14.1.14 eGFR 90-104 with FOX2012 A ACRunder10 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACRunder10 FOX2012 A ACRUnder10 FOX2012 A ACRU0-29 FOX2012 A ACR30-299 FOX2012 A ACR30-290 FOX2012 A ACR30-290 FOX2012 A ACR30-290 F	0 0.385263 0.5988365 1.17248214 iabetes 0.2390169 0.45742485 0.88789126 1.47704872 it diabetes	0.05491461 0.05313376 0.15367056 0.08742929 0.10346243 0.12553158 0.19821118	1.47 [1.32, 1.64] 1.82 [1.64, 2.02] 3.23 [2.39, 4.37] 1.27 [1.07, 1.51] 1.58 [1.29, 1.94] 2.43 [1.90, 3.11] 4.38 [2.97, 6.46]	+ + + + +
FOX2012 A ACRover300 14.1.14 eGFR 90-104 with FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR0ver300 14.1.15 eGFR >105 with d FOX2012 A ACR10-29 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR30-299	0 0.3852624 0.598365 1.17248214 iabetes 0.2390169 0.45742485 0.88789126 1.47704872 ut diabetes 0.2390169	0.05491461 0.05313376 0.15367056 0.08742929 0.10346243 0.12553158	1.47 [1.32, 1.64] 1.82 [1.64, 2.02] 3.23 [2.39, 4.37] 1.27 [1.07, 1.51] 1.58 [1.29, 1.94] 2.43 [1.90, 3.11]	* * * * * *
FOX2012 A ACRover300 14.1.14 eGFR 90-104 with FOX2012 A ACRunder10 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACRunder10 FOX2012 A ACRUnder10 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR0ver300 14.1.16 eGFR >105 withou FOX2012 A ACRUNder10 FOX2012 A ACRUNder10 FOX2012 A ACRUNder10 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR30-299	0 0.3852624 0.5988365 1.17248214 iabetes 0.2390169 0.45742485 0.88789126 1.47704872 ut diabetes 0.2390169 0.48242615 0.87129337	0.05491461 0.05313376 0.15367056 0.08742929 0.10346243 0.12553158 0.19821118 0.05509726 0.09302291 0.08329621	1.47 [1.32, 1.64] 1.82 [1.64, 2.02] 3.23 [2.39, 4.37] 1.27 [1.07, 1.51] 1.58 [1.29, 1.94] 2.43 [1.90, 3.11] 4.38 [2.97, 6.46] 1.27 [1.14, 1.41] 1.62 [1.35, 1.94] 2.39 [2.03, 2.81]	* * * * *
FOX2012 A ACRover300 14.1.14 eGFR 90-104 with FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR0ver300 14.1.15 eGFR >105 with d FOX2012 A ACR10-29 FOX2012 A ACR30-299 FOX2012 A ACR30-29	0 0.3852624 0.5988365 1.17248214 iabetes 0.2390169 0.45742485 0.88789126 1.47704872 ut diabetes 0.2390169 0.48242615 0.87129337	0.05491461 0.05313376 0.15367056 0.08742929 0.10346243 0.12553158 0.19821118 0.05509726 0.09302291	1.47 [1.32, 1.64] 1.82 [1.64, 2.02] 3.23 [2.39, 4.37] 1.27 [1.07, 1.51] 1.58 [1.29, 1.94] 2.43 [1.90, 3.11] 4.38 [2.97, 6.46] 1.27 [1.14, 1.41] 1.62 [1.35, 1.94]	* * * * * *

I.3.2.5 Subgroup - hypertension

Figure 56: All-cause mortality at varying ACR levels for those with and without hypertension

			Hazard Ratio	Hazard Ratio
Study or Subgroup		SE	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
16.7.1 ACR 10-29 with	n hypertension			
MAHMOODI2012B	0.86710049	0.32855549	2.38 [1.25, 4.53]	+
16.7.2 ACR 10-29 with	nout hypertension			
MAHMOODI2012B		0.04901816	1.31 [1.19, 1.44]	+
	th humantanaian			
16.7.3 ACR 30-299 wi				
MAHMOODI2012B	0.50077529	0.03520109	1.65 [1.54, 1.77]	+
16.7.4 ACR 30-299 wi	thout hypertension			
MAHMOODI2012B	0.54812141	0.05935772	1.73 [1.54, 1.94]	+
16.7.5 ACR >/=300 wi	th hypertension			
		0.0000000		+
MAHMOODI2012B	0.84586827	0.06036828	2.33 [2.07, 2.62]	· · ·
16.7.6 ACR >/=300 wi	thout hypertension			
MAHMOODI2012B	1.02961942	0.09815073	2.80 [2.31, 3.39]	+
				0.1 0.2 0.5 1 2 5 10
				Protective Predictive

Forest plots

Figure 57: All-cause mortality stratified by eGFR for those with and without hypertension

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% CI
7.1.1 eGFR <15 with hypertensi				, , , , , , , , , , , , , , , , , , , ,
AHMOODI2012 B ACRunder10	2.1306	0.5368	8.42 [2.94, 24.11]	_
AHMOODI2012 B ACR10-29	1.7884	0.2533	5.98 [3.64, 9.82]	
AAHMOODI2012 B ACR 30-299 AAHMOODI2012 B ACRover300	2.0656 2.2762	0.1448 0.1513	7.89 [5.94, 10.48] 9.74 [7.24, 13.10]	+ +
		5.1010	, io.ioj	
7.1.2 eGFR <15 without hyperte		0 5000	E 44 14 00 44 47	
AAHMOODI2012 B ACRunder10 AAHMOODI2012 B ACR10-29	1.6371 2.5494	0.5269	5.14 [1.83, 14.44]	
AHMOODI2012 B ACK 10-29 AAHMOODI2012 B ACK 30-299	3.0493		12.80 [7.28, 22.50] 21.10 [6.12, 72.75]	
MAHMOODI2012 B ACRover300	3.2465		25.70 [9.16, 72.11]	_
7.1.3 eGFR 15-29 with hyperten	sion			
AHMOODI2012 B ACRunder10	0.7793	0.1707	2.18 [1.56, 3.05]	+
AHMOODI2012 B ACR10-29	1.3712	0.1142	3.94 [3.15, 4.93]	+
AHMOODI2012 B ACR 30-299	1.3083	0.2083	3.70 [2.46, 5.57]	+
AHMOODI2012 B ACRover300	1.6601	0.1372	5.26 [4.02, 6.88]	+
7.1.4 eGFR 15-29 without hyper	tension			
AHMOODI2012 B ACRunder10	1.2669	0.2535	3.55 [2.16, 5.83]	+
AHMOODI2012 B ACR10-29	1.581	0.4379	4.86 [2.06, 11.46]	
AAHMOODI2012 B ACR 30-299 AAHMOODI2012 B ACRover300	1.8749 2.6946	0.2675	6.52 [3.86, 11.01] 14.80 [7.07, 30.98]	
		0.3769	· · · · · · · · · · · · · · · · · · ·	
7.1.5 eGFR 30-44 with hyperten				Ι.
AHMOODI2012 B ACRunder10	0.4253	0.0753	1.53 [1.32, 1.77]	* _
AAHMOODI2012 B ACR10-29 AAHMOODI2012 B ACR 30-299	0.8502 1.0296	0.0626 0.1116	2.34 [2.07, 2.65]	*
MAHMOODI2012 B ACR 30-299 MAHMOODI2012 B ACRover300	1.0296	0.1116	2.80 [2.25, 3.48] 4.24 [3.17, 5.67]	*
7.1.6 eGFR 30-44 without hyper AAHMOODI2012 B ACRunder10	tension 0.8286	0.1172	2.29 [1.82, 2.88]	+
AHMOODI2012 B ACRUIDEITO	1.1537	0.0972	3.17 [2.62, 3.84]	*
MAHMOODI2012 B ACR 30-299	1.3584	0.1807	3.89 [2.73, 5.54]	+
AHMOODI2012 B ACRover300	1.639	0.2843	5.15 [2.95, 8.99]	+-
7.1.7 eGFR 45-59 with hyperten	sion			
AHMOODI2012 B ACRunder10	0.1044	0.0482	1.11 [1.01, 1.22]	•
AHMOODI2012 B ACR10-29	0.4824	0.0601	1.62 [1.44, 1.82]	• • • • • • • • • • • • • • • • • • •
AHMOODI2012 B ACR 30-299	0.6419	0.0909	1.90 [1.59, 2.27]	+
AHMOODI2012 B ACRover300	1.0006	0.1224	2.72 [2.14, 3.46]	+
7.1.8 eGFR 45-59 without hyper	tension			
AHMOODI2012 B ACRunder10	0.3001	0.0774	1.35 [1.16, 1.57]	+
AHMOODI2012 B ACR10-29	0.6419	0.124	1.90 [1.49, 2.42]	+
AAHMOODI2012 B ACR 30-299 AAHMOODI2012 B ACRover300	0.9517	0.1268 0.1916	2.59 [2.02, 3.32]	*
MARINUUUUZUIZ BACKOVeľ300	1.4159	0.1916	4.12 [2.83, 6.00]	•
7.1.9 eGFR 60-74 with hyperten				
AHMOODI2012 B ACRunder10	-0.0101	0.043	0.99 [0.91, 1.08]	<u>t</u>
AAHMOODI2012 B ACR10-29 AAHMOODI2012 B ACR 30-299	0.27 0.571	0.0665 0.0612	1.31 [1.15, 1.49] 1.77 [1.57, 2.00]	™
MAHMOODI2012 B ACR 30-299 MAHMOODI2012 B ACRover300	0.8416	0.1046	2.32 [1.89, 2.85]	+
	artension		-	
7.1.10 eGFR 60-74 without hype AAHMOODI2012 B ACRunder10	0.0198	0.0417	1.02 [0.94, 1.11]	•
AHMOODI2012 B ACRUIDEITO	0.2624	0.0993	1.30 [1.07, 1.58]	+
AHMOODI2012 B ACR 30-299	0.6678	0.0852	1.95 [1.65, 2.30]	+
AHMOODI2012 B ACRover300	1.3455	0.2462	3.84 [2.37, 6.22]	
7.1.11 eGFR 75-89 with hyperte	nsion			
AHMOODI2012 B ACRunder10	-0.0618754	0.03365264	0.94 [0.88, 1.00]	•
AHMOODI2012 B ACR10-29		0.04622376	1.27 [1.16, 1.39]	*
AAHMOODI2012 B ACR 30-299 AAHMOODI2012 B ACRover300		0.06171165 0.10919133	1.58 [1.40, 1.78] 2.18 [1.76, 2.70]	* +
		5.10518103	2.10[1.70, 2.70]	
7.1.12 eGFR 75-89 without hype		0.00.00000	0.00 10.07	J
AAHMOODI2012 B ACRunder10 AAHMOODI2012 B ACR10-29	-0.07257069	0.03402684 0.08061589	0.93 [0.87, 0.99] 1.30 [1.11, 1.52]	.
AHMOODI2012 B ACR10-29 AAHMOODI2012 B ACR 30-299		0.08061589	1.30 [1.11, 1.52]	
AHMOODI2012 B ACRover300	0.95935022	0.1619909	2.61 [1.90, 3.59]	·
7.1.13 eGFR 90-104 with hypert	ension		-	
AHMOODI2012 B ACRunder10	0	0	Not estimable	
MAHMOODI2012 B ACR10-29		0.04749599	1.35 [1.23, 1.48]	t l
AHMOODI2012 B ACR 30-299	0.54812141		1.73 [1.57, 1.91]	*
AHMOODI2012 B ACRover300	1.0612565	0.15568374	2.89 [2.13, 3.92]	+
7.1.14 eGFR 90-104 without hyp				
AHMOODI2012 B ACRunder10	0	0	Not estimable	
AAHMOODI2012 B ACR10-29 AAHMOODI2012 B ACR 30-299		0.07976987 0.0908094	1.52 [1.30, 1.78]	1
MAHMOODI2012 B ACR 30-299 MAHMOODI2012 B ACRover300	0.60976557 1.48387469	0.0908094	1.84 [1.54, 2.20] 4.41 [2.97, 6.55]	'+
7.1.15 eGFR >105 with hyperter		0.05064400	1 07 14 45 4 403	.
AAHMOODI2012 B ACRunder10 AAHMOODI2012 B ACR10-29		0.05064122	1.27 [1.15, 1.40]	, i i i i i i i i i i i i i i i i i i i
AAHMOODI2012 B ACR10-29 AAHMOODI2012 B ACR 30-299		0.07166042 0.11919344	1.45 [1.26, 1.67] 2.40 [1.90, 3.03]	`+
AHMOODI2012 B ACRover300		0.20546627	3.62 [2.42, 5.42]	-
7 1 16 eGFP >105 without huma	rtension		-	
7.1.16 eGFR >105 without hype AAHMOODI2012 B ACRunder10		0.04363456	1.22 [1.12, 1.33]	
AHMOODI2012 B ACRUIDEITO	0.48858001	0.07760744	1.63 [1.40, 1.90]	+
			2.94 [1.98, 4.37]	+
AHMOODI2012 B ACR 30-299	1.07840958	0.20169388		
	1.07840958 2.07944154	0.309684	8.00 [4.36, 14.68]	

National Clinical Guideline Centre 2014

I.3.3 Cardiovascular mortality

Figure 58: Cardiovascular mortality and different ACR levels

			Hazard Ratio		d Ratio
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% C	I IV, Fixed	d, 95% Cl
18.7.1 ACR 10-29					
VANDERVELDE2011(High risk	0.37843644	0.05143191	1.46 [1.32, 1.61]		+
18.7.2 ACR 30-299					
VANDERVELDE2011(High risk	0.73716407	0.09645211	2.09 [1.73, 2.52]		
18.7.4 ACR >/=300					
VANDERVELDE2011(High risk	1.3912819	0.07067422	4.02 [3.50, 4.62]		+
				0.1 0.2 0.5 Protective	1 2 5 10 Predictive

Figure 59: Cardiovascular mortality stratified by eGFR

Study or Subgroup log[Hazard Ratio] SE IV, Fixed, 95% CI IV, Fixed, 95% CI 19.7.1 eGFR 15-29 1.3686 0.3198 3.93 [2.10, 7.36] + VANDERVELDE2011 ACR10-29 1.7228 0.4452 5.60 [2.34, 13.40] + VANDERVELDE2011 ACR10-29 1.7228 0.4452 5.60 [2.34, 13.40] + VANDERVELDE2011 ACR30-299 1.8017 0.2262 6.61 [3.89, 9.44] + VANDERVELDE2011 ACR10 0.8198 0.1416 2.27 [1.72, 3.00] + VANDERVELDE2011 ACR10.29 1.3191 0.343 3.74 [2.06, 6.79] + VANDERVELDE2011 ACR10.29 1.3191 0.343 3.74 [2.06, 6.79] + VANDERVELDE2011 ACR10.29 0.3507 0.1121 1.42 [1.14, 1.77] + VANDERVELDE2011 ACR10 0.3507 0.1121 1.42 [1.14, 1.77] + VANDERVELDE2011 ACR10 0.3507 0.1121 1.42 [1.14, 1.77] + VANDERVELDE2011 ACR10 0.3607 0.1075 1.00 [0.81, 1.23] + VANDERVELDE2011 ACR10 0.0175 1.00 [Hazard Ratio	Hazard Ratio
VANDERVELDE2011 ACR10 1.3686 0.3198 3.93 [2.10, 7.36] + VANDERVELDE2011 ACR10.29 1.7228 0.4452 5.60 [2.34, 13.40] + VANDERVELDE2011 ACR10.29 1.3017 0.2262 6.06 [3.89, 9.44] + VANDERVELDE2011 ACR+300 1.9755 0.2602 7.21 [4.33, 12.01] + 19.7.2 eGFR 30-44 VANDERVELDE2011 ACR-10 0.8198 0.1416 2.27 [1.72, 3.00] + VANDERVELDE2011 ACR-10 0.8198 0.1416 2.27 [1.72, 3.00] + VANDERVELDE2011 ACR10.29 1.337 0.137 3.95 [3.02, 5.17] + VANDERVELDE2011 ACR10.29 0.3507 0.1121 1.42 [1.14, 1.77] + VANDERVELDE2011 ACR-10 0.3507 0.1121 1.42 [1.14, 1.77] + VANDERVELDE2011 ACR-10 0.3507 0.1121 1.42 [1.14, 1.77] + VANDERVELDE2011 ACR-10 0.3507 0.121 1.42 [1.14, 1.77] + VANDERVELDE2011 ACR-10 0.1075 1.00 [0.81, 1.23] + + VANDERVELDE2011 ACR-10 0.1075 1.00 [0.81, 1.23] + + VANDERVELDE2011 ACR-10	Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
VANDERVELDE2011 ACR10-29 1.7228 0.4452 5.60 [2.34, 13.40] + VANDERVELDE2011 ACR30-299 1.8017 0.2262 6.06 [3.89, 9.44] + VANDERVELDE2011 ACR+300 1.9755 0.2602 7.21 [4.33, 12.01] + 19.7.2 eGFR 30-44 VANDERVELDE2011 ACR+10 0.8198 0.1416 2.27 [1.72, 3.00] + VANDERVELDE2011 ACR+029 1.3191 0.3043 3.74 [2.06, 6.79] + VANDERVELDE2011 ACR40-299 1.3737 0.1373 3.95 [3.02, 5.17] + VANDERVELDE2011 ACR+300 1.7918 0.1582 6.00 [4.40, 8.18] + 19.7.3 eGFR 45-59 VANDERVELDE2011 ACR+029 0.7227 0.128 2.06 [1.60, 2.65] + VANDERVELDE2011 ACR+029 0.7227 0.128 2.06 [1.60, 2.65] + + VANDERVELDE2011 ACR+029 0.4318 0.144 1.56 [1.62, 2.04] + + VANDERVELDE2011 ACR+10 0 0.1075 1.00 [0.81, 1.23] + + VANDERVELDE2011 ACR+029 0.4318 0.1446 1.55 [1.1, 2.04] + + VANDERVELDE2011 ACR+10 0.0198 0					
VANDERVELDE2011 ACR30-299 1.8017 0.2262 6.06 [3.89, 9.44] + VANDERVELDE2011 ACR4300 1.9755 0.2602 7.21 [4.33, 12.01] + 19.7.2 eGFR 30-44 VANDERVELDE2011 ACR10 0.8198 0.1416 2.27 [1.72, 3.00] + VANDERVELDE2011 ACR10.29 1.3191 0.3043 3.74 [2.06, 6.79] + VANDERVELDE2011 ACR10.29 1.3737 0.137 3.95 [3.02, 5.17] + VANDERVELDE2011 ACR10.29 0.3507 0.1121 1.42 [1.14, 1.77] + VANDERVELDE2011 ACR10.29 0.2227 0.1289 2.06 [1.60, 2.65] + VANDERVELDE2011 ACR10.29 0.7227 0.1289 2.05 [1.60, 2.65] + VANDERVELDE2011 ACR10.29 0.4318 0.1446 1.54 [1.16, 2.04] + VANDERVELDE2011 ACR10.29 0.4318 0.1446 1.54 [1.16, 2.04] + VANDERVELDE2011 ACR10.29 0.4318 0.1446 1.54 [1.16, 2.04] + VANDERVELDE2011 ACR10 0.01075 1.00 [0.81, 1.23] + + VANDERVELDE2011 ACR10.29 0.2927 0.1342 1.34 [1.03, 1.74] + VAN					
VANDERVELDE2011 ACR-300 1.9755 0.2602 7.21 [4.33, 12.01] + 19.7.2 eGFR 30-44 VANDERVELDE2011 ACR-10 0.8198 0.1416 2.27 [1.72, 3.00] + VANDERVELDE2011 ACR-10.29 1.3191 0.3043 3.74 [2.06, 6.79] + VANDERVELDE2011 ACR-30.299 1.3737 0.1373 3.95 [3.02, 5.17] + VANDERVELDE2011 ACR-300 1.7918 0.1582 6.00 [4.40, 8.18] + 19.7.3 eGFR 45-59 VANDERVELDE2011 ACR-10 0.3507 0.1121 1.42 [1.14, 1.77] + VANDERVELDE2011 ACR-10 0.3507 0.1124 1.62 (3.03, 3.23] + VANDERVELDE2011 ACR-10.29 0.42 (3.14 (2.56) (2.03, 3.23] + + VANDERVELDE2011 ACR-10.29 0.4318 0.1444 1.55 (1.55, 2.61] + VANDERVELDE2011 ACR-10.29 0.4318 0.1446 1.54 [1.16, 2.04] + VANDERVELDE2011 ACR-10 0.0198 0.1114 1.02 [0.82, 1.27] + VANDERVELDE2011 ACR-10 0.0198 0.1114 1.02 [0.82, 1.27] + VANDERVELDE2011 ACR-10 0.0198 0.1144 1.02 [0.82, 1.27] +					
19.7.2 #GFR 30-44 VANDERVELDE2011 ACR10-29 1.3191 0.3043 3.74 [2.06, 6.79] VANDERVELDE2011 ACR10-29 1.3191 0.3043 3.74 [2.06, 6.79] VANDERVELDE2011 ACR30-299 1.3737 0.137 3.95 [3.02, 5.17] VANDERVELDE2011 ACR4300 1.7918 0.1582 6.00 [4.40, 8.18] 19.7.3 #GFR 45-59 ************************************					
VANDERVELDE2011 ACR-10 0.8198 0.1416 2.27 [1.72, 3.00] + VANDERVELDE2011 ACR10-29 1.3191 0.3043 3.74 [2.06, 6.79] + VANDERVELDE2011 ACR30-299 1.3737 0.137 3.95 [3.02, 5.77] + VANDERVELDE2011 ACR4300 1.7918 0.1582 6.00 [4.40, 8.18] + 19.7.3 eGFR 45-59 - - + + VANDERVELDE2011 ACR400 0.3507 0.1121 1.42 [1.14, 1.77] + VANDERVELDE2011 ACR400 0.3507 0.1124 2.56 [2.03, 3.23] + VANDERVELDE2011 ACR400 1.7192 0.2853 5.58 [3.19, 9.76] + 19.7.4 eGFR 60-74 - - - + + VANDERVELDE2011 ACR10 0 0.1075 1.00 [0.81, 1.23] + + VANDERVELDE2011 ACR10 0 0.1326 2.01 [1.55, 2.61] + + VANDERVELDE2011 ACR-10 0.0198 0.1144 1.54 [1.16, 2.04] + + VANDERVELDE2011 ACR-10 0.0198 0.1124 1.34 [1.03, 1.74] + + VANDERVELDE2011 ACR-10 <t< td=""><td>VANDERVELDE2011 ACR+300</td><td>1.9755</td><td>0.2602</td><td>7.21 [4.33, 12.01]</td><td> +</td></t<>	VANDERVELDE2011 ACR+300	1.9755	0.2602	7.21 [4.33, 12.01]	+
VANDERVELDE2011 ACR10:29 1.3191 0.3043 3.74 12.06, 6.79 VANDERVELDE2011 ACR30:299 1.3737 0.137 3.95 13.02, 5.17 + VANDERVELDE2011 ACR4300 1.7918 0.1582 6.00 [4.40, 8.18] + 19.7.3 eGFR 45-59	19.7.2 eGFR 30-44				
VANDERVELDE2011 ACR10-29 1.3191 0.3043 3.74 [2.06, 6.79] + VANDERVELDE2011 ACR30-299 1.3737 0.137 3.95 [3.02, 5.17] + VANDERVELDE2011 ACR300 1.7918 0.1582 6.00 [4.0, 8.18] + 19.7.3 eGFR 45-59	VANDERVELDE2011 ACR-10	0.8198	0.1416	2.27 [1.72, 3.00]	+
VANDERVELDE2011 ACR30-299 1.3737 0.137 3.95 [3.02, 5.17] + 19.7.3 eGFR 45-59	VANDERVELDE2011 ACR10-29				
VANDERVELDE2011 ACR+300 1.7918 0.1582 6.00 [4.40, 8.18] + 19.7.3 eGFR 45-59 VANDERVELDE2011 ACR+10 0.3507 0.1121 1.42 [1.14, 1.77] + VANDERVELDE2011 ACR10-29 0.7227 0.1289 2.06 [1.60, 2.65] + VANDERVELDE2011 ACR30-299 0.94 0.1184 2.56 [2.03, 3.23] + VANDERVELDE2011 ACR+300 1.7192 0.2853 5.58 [3.19, 9.76] + 19.7.4 eGFR 60-74	VANDERVELDE2011 ACR30-299				+
VANDERVELDE2011 ACR-10 0.3507 0.1121 1.42 [1.14, 1.77] + VANDERVELDE2011 ACR10-29 0.7227 0.1289 2.06 [1.60, 2.65] + VANDERVELDE2011 ACR30-299 0.94 0.1184 2.56 [2.03, 3.23] + VANDERVELDE2011 ACR+300 1.7192 0.2853 5.58 [3.19, 9.76] + 19.7.4 eGFR 60-74 VANDERVELDE2011 ACR-10 0 0.1075 1.00 [0.81, 1.23] + VANDERVELDE2011 ACR-10 0 0.1075 1.00 [0.81, 1.23] + VANDERVELDE2011 ACR-10 0 0.4318 0.1446 1.54 [1.16, 2.04] + VANDERVELDE2011 ACR-300 1.3863 0.1765 4.00 [2.83, 5.65] + 19.7.5 eGFR 75-89 - - + + + VANDERVELDE2011 ACR-10 0.0198 0.1114 1.02 [0.82, 1.27] + + VANDERVELDE2011 ACR-10 0.0198 0.1141 1.02 [0.82, 1.27] + + + VANDERVELDE2011 ACR10-29 0.2927 0.1342 1.34 [1.03, 1.74] + + + + + VANDERVELDE2011 ACR10-29 0.4447	VANDERVELDE2011 ACR+300				+
VANDERVELDE2011 ACR-10 0.3507 0.1121 1.42 [1.14, 1.77] + VANDERVELDE2011 ACR10-29 0.7227 0.1289 2.06 [1.60, 2.65] + VANDERVELDE2011 ACR30-299 0.94 0.1184 2.56 [2.03, 3.23] + VANDERVELDE2011 ACR+300 1.7192 0.2853 5.58 [3.19, 9.76] + 19.7.4 eGFR 60-74 VANDERVELDE2011 ACR-10 0 0.1075 1.00 [0.81, 1.23] + VANDERVELDE2011 ACR-10 0 0.1075 1.00 [0.81, 1.23] + VANDERVELDE2011 ACR-10 0 0.4318 0.1446 1.54 [1.16, 2.04] + VANDERVELDE2011 ACR-300 1.3863 0.1765 4.00 [2.83, 5.65] + 19.7.5 eGFR 75-89 - - + + + VANDERVELDE2011 ACR-10 0.0198 0.1114 1.02 [0.82, 1.27] + + VANDERVELDE2011 ACR-10 0.0198 0.1141 1.02 [0.82, 1.27] + + + VANDERVELDE2011 ACR10-29 0.2927 0.1342 1.34 [1.03, 1.74] + + + + + VANDERVELDE2011 ACR10-29 0.4447	19.7.3 eGFR 45-59				
VANDERVELDE2011 ACR10-29 0.7227 0.1281 1.111, 111, 111, 111 VANDERVELDE2011 ACR10-29 0.7227 0.1282 2.06 [1.60, 2.65] + VANDERVELDE2011 ACR30-299 0.94 0.1184 2.56 [2.03, 3.23] + VANDERVELDE2011 ACR+300 1.7192 0.2853 5.58 [3.19, 9.76] + 19.7.4 eGFR 60-74 VANDERVELDE2011 ACR-10 0 0.1075 1.00 [0.81, 1.23] + VANDERVELDE2011 ACR-10 0 0.4318 0.1446 1.54 [1.16, 2.04] + VANDERVELDE2011 ACR10-29 0.4318 0.1326 2.01 [1.55, 2.61] + VANDERVELDE2011 ACR-10 0.198 0.1114 1.02 [0.82, 1.27] + VANDERVELDE2011 ACR-10 0.0198 0.1114 1.02 [0.82, 1.27] + VANDERVELDE2011 ACR-10 0.0198 0.1141 1.02 [0.82, 1.27] + VANDERVELDE2011 ACR-10 0.1988 0.1266 1.82 [1.42, 2.33] + VANDERVELDE2011 ACR10-29 0.4447 0.1838 4.76 [3.32, 6.82] + 19.7.6 eGFR 90-104 VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] +		0 3507	0 1121	1 42 [1 14 1 77]	+
VANDERVELDE2011 ACR30-299 0.94 0.1184 2.56 [2.03, 3.25] + VANDERVELDE2011 ACR+300 1.7192 0.2853 5.58 [3.19, 9.76] + 19.7.4 eGFR 60-74 VANDERVELDE2011 ACR+10 0 0.1075 1.00 [0.81, 1.23] + VANDERVELDE2011 ACR10-29 0.4318 0.1446 1.54 [1.16, 2.04] + VANDERVELDE2011 ACR10-29 0.6981 0.1326 2.01 [1.55, 2.61] + VANDERVELDE2011 ACR+300 1.3863 0.1765 4.00 [2.82, 1.27] + VANDERVELDE2011 ACR+300 1.3863 0.1765 4.00 [2.82, 1.27] + VANDERVELDE2011 ACR+300 1.3863 0.1766 1.02 [0.82, 1.27] + VANDERVELDE2011 ACR+300 1.5602 0.1838 4.76 [3.32, 6.82] + VANDERVELDE2011 ACR+300 1.5602 0.1838 4.76 [3.32, 6.82] + 19.7.6 eGFR 90-104 VANDERVELDE2011 ACR+100 0 0 Not estimable + VANDERVELDE2011 ACR+300 1.4159 0.2549 4.12 [2.50, 6.79] + </td <td></td> <td></td> <td></td> <td></td> <td></td>					
VANDERVELDE2011 ACR+300 1.7192 0.2853 5.58 [3.19, 9.76] 19.7.4 eGFR 60-74 VANDERVELDE2011 ACR+10 0 0.1075 1.00 [0.81, 1.23] VANDERVELDE2011 ACR10-29 0.4318 0.1446 1.54 [1.16, 2.04] VANDERVELDE2011 ACR30-299 0.6981 0.1326 2.01 [1.55, 2.61] VANDERVELDE2011 ACR400 1.3863 0.1765 4.00 [2.83, 5.65] + 19.7.5 eGFR 75-89					+
19.7.4 eGFR 60-74 VANDERVELDE2011 ACR10 0 0.1075 1.00 [0.81, 1.23] VANDERVELDE2011 ACR10-29 0.4318 0.1446 1.54 [1.16, 2.04] VANDERVELDE2011 ACR30-299 0.6981 0.1326 2.01 [1.55, 2.61] + VANDERVELDE2011 ACR+300 1.3863 0.1765 4.00 [2.83, 5.65] + 19.7.5 eGFR 75-89					
VANDERVELDE2011 ACR-10 0 0.1075 1.00 [0.81, 1.23] VANDERVELDE2011 ACR10-29 0.4318 0.1446 1.54 [1.16, 2.04] VANDERVELDE2011 ACR30-299 0.6981 0.1326 2.01 [1.55, 2.61] VANDERVELDE2011 ACR+300 1.3863 0.1765 4.00 [2.83, 5.65] + 19.7.5 eGFR 75-89		1.7152	0.2000	0.00 [0.10, 0.70]	
VANDERVELDE2011 ACR10-29 0.4318 0.1446 1.54 [1.16, 2.04] + VANDERVELDE2011 ACR30-299 0.6981 0.1326 2.01 [1.55, 2.61] + VANDERVELDE2011 ACR+300 1.3863 0.1765 4.00 [2.83, 5.65] + 19.7.5 eGFR 75-89	19.7.4 eGFR 60-74				
VANDERVELDE2011 ACR30-299 0.6981 0.1326 2.01 [1.55, 2.61] + VANDERVELDE2011 ACR+300 1.3863 0.1765 4.00 [2.83, 5.65] + 19.7.5 eGFR 75-89 - - + + VANDERVELDE2011 ACR-10 0.0198 0.1114 1.02 [0.82, 1.27] + VANDERVELDE2011 ACR10-29 0.2927 0.1342 1.34 [1.03, 1.74] + VANDERVELDE2011 ACR30-299 0.5988 0.1266 1.82 [1.42, 2.33] + VANDERVELDE2011 ACR4300 1.5602 0.1838 4.76 [3.32, 6.82] + 19.7.6 eGFR 90-104 - - + + VANDERVELDE2011 ACR10 0 0 Not estimable + VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] + VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] + VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] + VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.44, 2.64] + VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.44, 2.64]	VANDERVELDE2011 ACR-10	0	0.1075	1.00 [0.81, 1.23]	+
VANDERVELDE2011 ACR+300 1.3863 0.1765 4.00 [2.83, 5.65] + 19.7.5 eGFR 75-89 + VANDERVELDE2011 ACR+10 0.0198 0.1114 1.02 [0.82, 1.27] + VANDERVELDE2011 ACR+029 0.2927 0.1342 1.34 [1.03, 1.74] + VANDERVELDE2011 ACR10-29 0.2927 0.1342 1.34 [1.03, 1.74] + VANDERVELDE2011 ACR10-29 0.5988 0.1266 1.82 [1.42, 2.33] + VANDERVELDE2011 ACR+300 1.5602 0.1838 4.76 [3.32, 6.82] + 19.7.6 eGFR 90-104 + + VANDERVELDE2011 ACR+0 0 0 Not estimable + VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] + VANDERVELDE2011 ACR10-29 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR+300 1.4159 0.2549 4.12 [2.50, 6.79] + 19.7.7 eGFR >105 + + + VANDERVELDE2011 ACR+10 0.1823 0.1525 1.20 [0.89, 1.62] + VAN	VANDERVELDE2011 ACR10-29	0.4318	0.1446	1.54 [1.16, 2.04]	+
19.7.5 eGFR 75-89 VANDERVELDE2011 ACR-10 0.0198 0.1114 1.02 [0.82, 1.27] VANDERVELDE2011 ACR10-29 0.2927 0.1342 1.34 [1.03, 1.74] VANDERVELDE2011 ACR10-29 0.5988 0.1266 1.82 [1.42, 2.33] + VANDERVELDE2011 ACR30-299 0.5988 0.1266 1.82 [1.42, 2.33] + VANDERVELDE2011 ACR+300 1.5602 0.1838 4.76 [3.32, 6.82] + 19.7.6 eGFR 90-104 + + VANDERVELDE2011 ACR+10 0 0 Not estimable VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] + VANDERVELDE2011 ACR10-29 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR10-29 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR+300 1.4159 0.2549 4.12 [2.50, 6.79] + 19.7.7 eGFR >105 + + + + VANDERVELDE2011 ACR-10 0.1823 0.1525 1.20 [0.89, 1.62] + + VANDERVELDE2011 ACR10-29 0.4824 0.1975 <	VANDERVELDE2011 ACR30-299	0.6981	0.1326	2.01 [1.55, 2.61]	+
VANDERVELDE2011 ACR-10 0.0198 0.1114 1.02 [0.82, 1.27] VANDERVELDE2011 ACR10-29 0.2927 0.1342 1.34 [1.03, 1.74] VANDERVELDE2011 ACR30-299 0.5988 0.1266 1.82 [1.42, 2.33] + VANDERVELDE2011 ACR+300 1.5602 0.1838 4.76 [3.32, 6.82] + 19.7.6 eGFR 90-104 + + VANDERVELDE2011 ACR+10 0 0 Not estimable + VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] + VANDERVELDE2011 ACR10-29 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR30-299 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR+300 1.4159 0.2549 4.12 [2.50, 6.79] + 19.7.7 eGFR >105 + + + + VANDERVELDE2011 ACR-10 0.1823 0.1525 1.20 [0.89, 1.62] + + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.39] + + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.	VANDERVELDE2011 ACR+300	1.3863	0.1765	4.00 [2.83, 5.65]	+
VANDERVELDE2011 ACR10-29 0.2927 0.1342 1.34 [1.03, 1.74] + VANDERVELDE2011 ACR30-299 0.5988 0.1266 1.82 [1.42, 2.33] + VANDERVELDE2011 ACR+300 1.5602 0.1838 4.76 [3.32, 6.82] + 19.7.6 eGFR 90-104 + + VANDERVELDE2011 ACR10 0 0 Not estimable + VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] + VANDERVELDE2011 ACR10-29 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR30-299 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR4300 1.4159 0.2549 4.12 [2.50, 6.79] + 19.7.7 eGFR >105 + + + VANDERVELDE2011 ACR10 0.1823 0.1525 1.20 [0.89, 1.62] + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.39] + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.97] +	19.7.5 eGFR 75-89				
VANDERVELDE2011 ACR10-29 0.2927 0.1342 1.34 [1.03, 1.74] + VANDERVELDE2011 ACR30-299 0.5988 0.1266 1.82 [1.42, 2.33] + VANDERVELDE2011 ACR+300 1.5602 0.1838 4.76 [3.32, 6.82] + 19.7.6 eGFR 90-104 + + VANDERVELDE2011 ACR10 0 0 Not estimable + VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] + VANDERVELDE2011 ACR10-29 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR30-299 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR4300 1.4159 0.2549 4.12 [2.50, 6.79] + 19.7.7 eGFR >105 + + + VANDERVELDE2011 ACR10 0.1823 0.1525 1.20 [0.89, 1.62] + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.39] + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.97] +	VANDERVELDE2011 ACR-10	0.0198	0.1114	1.02 [0.82, 1.27]	+
VANDERVELDE2011 ACR30-299 0.5988 0.1266 1.82 [1.42, 2.33] + VANDERVELDE2011 ACR+300 1.5602 0.1838 4.76 [3.32, 6.82] + 19.7.6 eGFR 90-104 VANDERVELDE2011 ACR-10 0 0 Not estimable VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] + VANDERVELDE2011 ACR10-29 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR30-299 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR30-299 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR4300 1.4159 0.2549 4.12 [2.50, 6.79] + 19.7.7 eGFR >105 - - + - VANDERVELDE2011 ACR-10 0.1823 0.1525 1.20 [0.89, 1.62] + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.39] + VANDERVELDE2011 ACR30-299 0.7129 0.1921 2.04 [1.40, 2.97] +					+
VANDERVELDE2011 ACR+300 1.5602 0.1838 4.76 [3.32, 6.82] + 19.7.6 eGFR 90-104 0 0 Not estimable VANDERVELDE2011 ACR10 0 0 Not estimable + VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] + VANDERVELDE2011 ACR10-29 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR30-299 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR4300 1.4159 0.2549 4.12 [2.50, 6.79] + 19.7.7 eGFR >105 + + + VANDERVELDE2011 ACR-10 0.1823 0.1525 1.20 [0.89, 1.62] + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.39] + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.97] +	VANDERVELDE2011 ACR30-299				+
VANDERVELDE2011 ACR-10 0 0 Not estimable VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] + VANDERVELDE2011 ACR30-299 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR+300 1.4159 0.2549 4.12 [2.50, 6.79] + 19.7.7 eGFR >105 VANDERVELDE2011 ACR-10 0.1823 0.1525 1.20 [0.89, 1.62] + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.39] + VANDERVELDE2011 ACR10-29 0.7129 0.1921 2.04 [1.40, 2.97] +					+
VANDERVELDE2011 ACR-10 0 0 Not estimable VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] + VANDERVELDE2011 ACR30-299 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR+300 1.4159 0.2549 4.12 [2.50, 6.79] + 19.7.7 eGFR >105 VANDERVELDE2011 ACR-10 0.1823 0.1525 1.20 [0.89, 1.62] + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.39] + VANDERVELDE2011 ACR10-29 0.7129 0.1921 2.04 [1.40, 2.97] +	19.7.6 eGFR 90-104				
VANDERVELDE2011 ACR10-29 0.4447 0.1691 1.56 [1.12, 2.17] + VANDERVELDE2011 ACR30-299 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR+300 1.4159 0.2549 4.12 [2.50, 6.79] + 19.7.7 eGFR >105 VANDERVELDE2011 ACR-10 0.1823 0.1525 1.20 [0.89, 1.62] + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.39] + VANDERVELDE2011 ACR10-29 0.7129 0.1921 2.04 [1.40, 2.97] +		0	0	Not estimable	
VANDERVELDE2011 ACR30-299 0.6678 0.1547 1.95 [1.44, 2.64] + VANDERVELDE2011 ACR+300 1.4159 0.2549 4.12 [2.50, 6.79] + 19.7.7 eGFR >105 + + VANDERVELDE2011 ACR-10 0.1823 0.1525 1.20 [0.89, 1.62] + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.39] + VANDERVELDE2011 ACR30-299 0.7129 0.1921 2.04 [1.40, 2.97] +		-	-		_
VANDERVELDE2011 ACR+300 1.4159 0.2549 4.12 [2.50, 6.79] + 19.7.7 eGFR >105					
19.7.7 eGFR >105 VANDERVELDE2011 ACR-10 0.1823 0.1525 1.20 [0.89, 1.62] + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.39] + VANDERVELDE2011 ACR30-299 0.7129 0.1921 2.04 [1.40, 2.97] +					
VANDERVELDE2011 ACR-10 0.1823 0.1525 1.20 [0.89, 1.62] + VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.39] + VANDERVELDE2011 ACR30-299 0.7129 0.1921 2.04 [1.40, 2.97] +	VANDERVELDEZUTT AGRT300	1.4109	0.2049	7.12 [2.30, 0.79]	
VANDERVELDE2011 ACR10-29 0.4824 0.1975 1.62 [1.10, 2.39] + VANDERVELDE2011 ACR30-299 0.7129 0.1921 2.04 [1.40, 2.97] +	19.7.7 eGFR >105				
VANDERVELDE2011 ACR30-299 0.7129 0.1921 2.04 [1.40, 2.97] +	VANDERVELDE2011 ACR-10	0.1823	0.1525	1.20 [0.89, 1.62]	<mark>†</mark> ₽-
VANDERVELDE2011 ACR30-299 0.7129 0.1921 2.04 [1.40, 2.97] +	VANDERVELDE2011 ACR10-29	0.4824	0.1975	1.62 [1.10, 2.39]	- * -
	VANDERVELDE2011 ACR30-299	0.7129	0.1921		+
	VANDERVELDE2011 ACR+300	1.2669	0.3465		-+-

0.002 0.1 1 10 500 Protective Predictive

I.3.3.1 Subgroup – age

Figure 60: Cardiovascular mortality at varying ACR levels for those <65 years and >65 years

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% Cl		d Ratio d, 95% Cl
20.7.1 ACR 10-29 <65yrs			, ,	,	,
VANDERVELDE2011(High risk	0.42526774	0.1456689	1.53 [1.15, 2.04]		
20.7.2 ACR 10-29 >65yrs					
VANDERVELDE2011(High risk	0.3852624	0.06270428	1.47 [1.30, 1.66]		+
20.7.3 ACR 30-299 <65 yrs					
VANDERVELDE2011(High risk	0.72754861	0.13140291	2.07 [1.60, 2.68]		
20.7.4 ACR 30-299 >65yrs					_
VANDERVELDE2011(High risk	0.72754861	0.10348153	2.07 [1.69, 2.54]		
20.7.6 ACR >/=300 <65yrs	4 = 4 = 2 = 2 = 2 4				
VANDERVELDE2011(High risk	1.51292701	0.11978527	4.54 [3.59, 5.74]		
20.7.7 ACR >/=300 >65yrs	4 22072404	0.00040670	2 70 [2 40 4 40]		+
VANDERVELDE2011(High risk	1.32972401	0.08818673	3.78 [3.18, 4.49]		•
				0.1 0.2 0.5 Protective	1 2 5 10 Predictive

Forest plots

Figure 61: Cardiovascular mortality stratified by eGFR for those <65 years and >65 years

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% C		l Ratio I, 95% Cl
9.1.1 eGFR 15-29 <65yrs			,,,	,-	,
ANDERVELDE2011 ACR-10			13.12 [1.80, 95.63]		
ANDERVELDE2011 ACR10-29			17.52 [4.59, 66.87]		
ANDERVELDE2011 ACR30-299 ANDERVELDE2011 ACR+300			13.00 [3.19, 52.97]		
ANDERVELDE2011 ACR+300	2.0101	0.4994	13.60 [5.11, 36.19]		•
9.1.2 eGFR 15-29 >65yrs					_
ANDERVELDE2011 ACR-10		0.3511	3.96 [1.99, 7.88]		- + -
ANDERVELDE2011 ACR10-29		0.4167	4.39 [1.94, 9.93]		+
ANDERVELDE2011 ACR30-299 ANDERVELDE2011 ACR+300		0.2577 0.3204	5.85 [3.53, 9.69] 6.24 [3.33, 11.69]		
ANDERVEEDEZOTT AGR+300	1.031	0.3204	0.24 [3.33, 11.09]		•
9.1.3 eGFR 30-44 <65yrs					_
ANDERVELDE2011 ACR-10		0.3029	3.06 [1.69, 5.54]		
ANDERVELDE2011 ACR10-29		0.7786	9.89 [2.15, 45.49] 4.55 [1.64, 12.62]		
ANDERVELDE2011 ACR30-299 ANDERVELDE2011 ACR+300		0.5206 0.2461	9.12 [5.63, 14.77]		·+
9.1.4 eGFR 30-44 >65yrs ANDERVELDE2011 ACR-10	0 7324	0.2168	2.08 [1.36, 3.18]		+
ANDERVELDE2011 ACR10-29		0.1932	2.95 [2.02, 4.31]		+
ANDERVELDE2011 ACR30-299		0.1697	4.03 [2.89, 5.62]		+
ANDERVELDE2011 ACR+300		0.2153	5.20 [3.41, 7.93]		+
9.1.5 eGFR 45-59 <65yrs ANDERVELDE2011 ACR-10	0.4511	0.1862	1.57 [1.09, 2.26]		+
ANDERVELDE2011 ACR-10 /ANDERVELDE2011 ACR10-29		0.3273	2.83 [1.49, 5.38]		+-
ANDERVELDE2011 ACR30-299	1.0986	0.415	3.00 [1.33, 6.77]		
ANDERVELDE2011 ACR+300		0.6152	7.48 [2.24, 24.98]		
9.1.6 eGFR 45-59 >65yrs					
ANDERVELDE2011 ACR-10	0.27	0.1859	1.31 [0.91, 1.89]		ŧ -
ANDERVELDE2011 ACR-10 ANDERVELDE2011 ACR10-29		0.1628	1.94 [1.41, 2.67]		- +
ANDERVELDE2011 ACR30-299		0.1533	2.62 [1.94, 3.54]		+
ANDERVELDE2011 ACR+300		0.1978	4.73 [3.21, 6.97]		+
9.1.7 eGFR 60-74 <65yrs					
ANDERVELDE2011 ACR-10	0	0.2277	1.00 [0.64, 1.56]	-	F
ANDERVELDE2011 ACR10-29	0.5008	0.221	1.65 [1.07, 2.54]		+
ANDERVELDE2011 ACR30-299	1.0006	0.328	2.72 [1.43, 5.17]		+
ANDERVELDE2011 ACR+300	1.9036	0.615	6.71 [2.01, 22.40]		
9.1.8 eGFR 60-74 >65yrs					
ANDERVELDE2011 ACR-10	0.0198	0.1501	1.02 [0.76, 1.37]	-	F
ANDERVELDE2011 ACR10-29		0.1942	1.39 [0.95, 2.03]		+
ANDERVELDE2011 ACR30-299		0.2626	1.69 [1.01, 2.83]		+
ANDERVELDE2011 ACR+300	1.3533	0.2128	3.87 [2.55, 5.87]		
l9.1.9 eGFR 75-89 <65yrs					
ANDERVELDE2011 ACR-10		0.1608	1.11 [0.81, 1.52]	-	-
ANDERVELDE2011 ACR10-29	0.7227	0.434	2.06 [0.88, 4.82]	-	
/ANDERVELDE2011 ACR30-299 /ANDERVELDE2011 ACR+300	1.6771	0.1899 0.302	2.22 [1.53, 3.22] 5.35 [2.96, 9.67]		' -
ANDERVEEDE2011 AOR+300	1.0771	0.502	0.00 [2.00, 0.07]		-
9.1.10 eGFR 75-89 >65yrs					
ANDERVELDE2011 ACR-10		0.1503			F #
/ANDERVELDE2011 ACR10-29 /ANDERVELDE2011 ACR30-299	0.1989 0.5423	0.2348	1.22 [0.77, 1.93] 1.72 [1.23, 2.41]]	+
ANDERVELDE2011 ACR30-299 ANDERVELDE2011 ACR+300		0.2429	4.70 [2.92, 7.57]		·+
9.1.11 eGFR 90-104 <65 yrs /ANDERVELDE2011 ACR-10	0	0	Not estimable		
ANDERVELDE2011 ACR-10 ANDERVELDE2011 ACR10-29		0.3812	2.09 [0.99, 4.41]		
ANDERVELDE2011 ACR30-299		0.2492	2.20 [1.35, 3.59]		+
ANDERVELDE2011 ACR+300		0.3174	6.24 [3.35, 11.62]		+
9.1.12 eGFR 90-104 >65yrs					
ANDERVELDE2011 ACR-10	0	0	Not estimable		
ANDERVELDE2011 ACR10-29		0.2275	1.39 [0.89, 2.17]	-	+-
ANDERVELDE2011 ACR30-299		0.2239	1.83 [1.18, 2.84]		+
ANDERVELDE2011 ACR+300	1.0886	0.4415	2.97 [1.25, 7.06]		
9.1.13 eGFR >105 <65yrs					
ANDERVELDE2011 ACR-10	0.239	0.2109	1.27 [0.84, 1.92]	-	ŧ-
ANDERVELDE2011 ACR10-29		0.3204	1.78 [0.95, 3.34]	-	+-
ANDERVELDE2011 ACR30-299	0.7178	0.4257	2.05 [0.89, 4.72]	1	
ANDERVELDE2011 ACR+300	1.5151	0.4402	4.55 [1.92, 10.78]		
9.1.14 eGFR >105 >65yrs					
ANDERVELDE2011 ACR-10	0.1989	0.2282	1.22 [0.78, 1.91]	-	t-
ANDERVELDE2011 ACR10-29	0.4886	0.2918	1.63 [0.92, 2.89]	1	+
ANDERVELDE2011 ACR30-299		0.2288	2.38 [1.52, 3.73]		+.
ANDERVELDE2011 ACR+300	1.7263	0.7277	5.62 [1.35, 23.40]		I
				0.001 0.1 1	10 10

I.3.3.2 Subgroup – diabetes

Figure 62: Cardiovascular mortality at varying ACR levels for those with and without diabetes

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% Cl
22.7.1 ACR 10-29 with		02		
FOX2012A	0.35767444	0.06863947	1.43 [1.25, 1.64]	+
22.7.2 ACR 10-29 with	nout diabetes			
FOX2012A	0.3220835	0.04641503	1.38 [1.26, 1.51]	+
22.7.3 ACR 30-299 wi	th diabetes			
FOX2012A	0.59332685	0.05658303	1.81 [1.62, 2.02]	+
22.7.4 ACR 30-299 wi	thout diabetes			
FOX2012A	0.54232429	0.06643726	1.72 [1.51, 1.96]	+
22.7.5 ACR >/=300 wi	th diabetes			
FOX2012A	0.89199804	0.10401385	2.44 [1.99, 2.99]	+
22.7.6 ACR >/=300 wi	thout diabetes			
FOX2012A	0.84586827	0.09874828	2.33 [1.92, 2.83]	+
				0.1 0.2 0.5 1 2 5 10 Protective Predictive

Forest plots

Figure 63: Cardiovascular mortality stratified by eGFR for those with and without diabetes

Forest plots

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% CI
21.1.1 eGFR <15 with dial FOX2012 A ACRunder10	betes 2.9907	1.2289	19.90 [1.79, 221.25]	
OX2012 A ACR10-29	2.9907	1.2289	Not estimable	
OX2012 A ACR30-299	0	0	Not estimable	
OX2012 A ACRover300	3.0727	0.7836	21.60 [4.65, 100.34]	_
21.1.2 eGFR <15 without	diabetes			
OX2012 A ACRunder10	2.2649	0.7328	9.63 [2.29, 40.49]	
FOX2012 A ACR10-29 FOX2012 A ACR30-299	2.7279 2.1353	0.3597 0.2643	15.30 [7.56, 30.97] 8.46 [5.04, 14.20]	
OX2012 A ACR30-299	2.1353	0.2043	11.90 [7.62, 18.58]	· · ·
21.1.3 eGFR 15-29 with di FOX2012 A ACRunder10	1.411	0.4344	4.10 [1.75, 9.61]	_
OX2012 A ACR10-29	1.2208	0.396	3.39 [1.56, 7.37]	- -
OX2012 A ACR30-299	1.7299	0.3873	5.64 [2.64, 12.05]	
OX2012 A ACRover300	2.0744	0.2486	7.96 [4.89, 12.96]	→
21.1.4 eGFR 15-29 withou	it diabetes			
OX2012 A ACRunder10	1.6938	0.2853	5.44 [3.11, 9.52]	
FOX2012 A ACR10-29 FOX2012 A ACR30-299	1.9629 1.209	0.421 0.1831	7.12 [3.12, 16.25] 3.35 [2.34, 4.80]	
OX2012 A ACR30-299 OX2012 A ACRover300	2.1872	0.3705	8.91 [4.31, 18.42]	
21.1.5 eGFR 30-44 with di	abotos			
OX2012 A ACRunder10	0.7514	0.1598	2.12 [1.55, 2.90]	+
OX2012 A ACR10-29	0.9123	0.2193	2.49 [1.62, 3.83]	-+-
OX2012 A ACR30-299	1.2865	0.1889	3.62 [2.50, 5.24]	+
OX2012 A ACRover300	1.7174	0.1588	5.57 [4.08, 7.60]	+
21.1.6 eGFR 30-44 withou			_	
OX2012 A ACRunder10	0.9203	0.1033	2.51 [2.05, 3.07]	±
FOX2012 A ACR10-29 FOX2012 A ACR30-299	1.0953 1.2585	0.1876 0.1241	2.99 [2.07, 4.32] 3.52 [2.76, 4.49]	
OX2012 A ACR30-299 OX2012 A ACRover300	1.2585	0.1241 0.2361	3.52 [2.76, 4.49] 5.21 [3.28, 8.28]	-
21.1.7 eGFR 45-59 with di	abetes			
OX2012 A ACRunder10	0.2852	0.1206	1.33 [1.05, 1.68]	+
OX2012 A ACR10-29	0.5596	0.1478	1.75 [1.31, 2.34]	+
OX2012 A ACR30-299	0.8198	0.1475	2.27 [1.70, 3.03]	+
OX2012 A ACRover300	1.1756	0.151	3.24 [2.41, 4.36]	
21.1.8 eGFR 45-59 withou				
OX2012 A ACRunder10	0.4187	0.0798	1.52 [1.30, 1.78]	* _
FOX2012 A ACR10-29 FOX2012 A ACR30-299	0.7839 0.9439	0.0833 0.1461	2.19 [1.86, 2.58] 2.57 [1.93, 3.42]	+
OX2012 A ACRover300	1.3191	0.1606	3.74 [2.73, 5.12]	+
21.1.9 eGFR 60-74 with di	abetes			
OX2012 A ACRunder10	0.2231	0.0841	1.25 [1.06, 1.47]	+
OX2012 A ACR10-29	0.4447	0.1296	1.56 [1.21, 2.01]	+
OX2012 A ACR30-299 OX2012 A ACRover300	0.9282	0.1199 0.1441	2.53 [2.00, 3.20] 3.21 [2.42, 4.26]	+
		0.1441	0.21 [2.72, 4.20]	
21.1.10 eGFR 60-74 witho FOX2012 A ACRunder10	out diabetes 0.131	0.0669	1.14 [1.00, 1.30]	.
OX2012 A ACRUIDEITO	0.3988	0.1234	1.49 [1.17, 1.90]	+
OX2012 A ACR30-299	0.7747	0.0732	2.17 [1.88, 2.50]	+
OX2012 A ACRover300	0.8671	0.1482	2.38 [1.78, 3.18]	+
21.1.11 eGFR 75-89 with o	diabetes			
OX2012 A ACRunder10	0.03922071		1.04 [0.88, 1.23]	<u>†</u> _
OX2012 A ACR10-29		0.14081179 0.12175015	1.70 [1.29, 2.24] 1.79 [1.41, 2.27]	+
OX2012 A ACR30-299 OX2012 A ACRover300		0.17471645	2.69 [1.91, 3.79]	-
21.1.12 eGFR 75-89 witho				
FOX2012 A ACRunder10		0.05319537	1.01 [0.91, 1.12]	+
OX2012 A ACR10-29	0.37843644	0.09582629	1.46 [1.21, 1.76]	+
OX2012 A ACR30-299 OX2012 A ACRover300		0.08963278 0.11234059	1.80 [1.51, 2.15] 2.53 [2.03, 3.15]	1 +
		5.11234059	2.03 [2.03, 3.15]	
21.1.13 eGFR 90-104 with		~	Not optime to	
OX2012 A ACRunder10 OX2012 A ACR10-29	0.24686008	0 0.15212186	Not estimable 1.28 [0.95, 1.72]	
OX2012 A ACR10-29	0.55388511	0.1566483	1.74 [1.28, 2.37]	<mark>+</mark>
OX2012 A ACRover300		0.23812108	3.03 [1.90, 4.83]	-+-
21.1.14 eGFR 90-104 with	out diabetes			
OX2012 A ACRunder10	0	0	Not estimable	
OX2012 A ACR10-29		0.10836883	1.62 [1.31, 2.00]	11
OV0040 A AODOO 000		0.11456393 0.23950125	1.79 [1.43, 2.24] 3.39 [2.12, 5.42]	™
OX2012 A ACR30-299 OX2012 A ACRover300			[, 0]	
OX2012 A ACRover300	lahataa		1.19 [0.76, 1.86]	-
FOX2012 A ACRover300 21.1.15 eGFR >105 with d		0.22877469		- -
FOX2012 A ACRover300 21.1.15 eGFR >105 with d FOX2012 A ACRunder10	0.17395331		1.93 11.12. 3.33	
FOX2012 A ACRover300 21.1.15 eGFR >105 with d FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR10-29 FOX2012 A ACR30-299	0.17395331 0.65752 1.09861229	0.27765373 0.35706583	1.93 [1.12, 3.33] 3.00 [1.49, 6.04]	-+-
FOX2012 A ACRover300 21.1.15 eGFR >105 with d FOX2012 A ACRunder10 FOX2012 A ACR10-29	0.17395331 0.65752 1.09861229	0.27765373		
FOX2012 A ACRover300 21.1.15 eGFR >105 with d FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR10-29 FOX2012 A ACR30-299	0.17395331 0.65752 1.09861229 1.62334082	0.27765373 0.35706583	3.00 [1.49, 6.04]	
FOX2012 A ACRover300 21.1.15 eGFR >105 with d FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR30-290 21.1.16 eGFR >105 without FOX2012 A ACRunder10	0.17395331 0.65752 1.09861229 1.62334082 ut diabetes 0.19885086	0.27765373 0.35706583 0.51162386 0.11176408	3.00 [1.49, 6.04] 5.07 [1.86, 13.82] 1.22 [0.98, 1.52]	*- *-
FOX2012 A ACRover300 21.1.15 eGFR >105 with d FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR30-299 FOX2012 A ACR0ver300 21.1.16 eGFR >105 withous FOX2012 A ACRunder10 FOX2012 A ACRUNder10 FOX2012 A ACR10-29	0.17395331 0.65752 1.09861229 1.62334082 ut diabetes 0.19885086 0.5988365	0.27765373 0.35706583 0.51162386 0.11176408 0.23868206	3.00 [1.49, 6.04] 5.07 [1.86, 13.82] 1.22 [0.98, 1.52] 1.82 [1.14, 2.91]	+- + + +
FOX2012 A ACRover300 21.1.15 eGFR >105 with d FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR30-299 FOX2012 A ACR30-299 FOX2012 A ACR30-290 21.1.16 eGFR >105 without FOX2012 A ACRunder10	0.17395331 0.65752 1.09861229 1.62334082 ut diabetes 0.19885086 0.5988365 1.38629436	0.27765373 0.35706583 0.51162386 0.11176408	3.00 [1.49, 6.04] 5.07 [1.86, 13.82] 1.22 [0.98, 1.52]	+- + + +
FOX2012 A ACRover300 21.1.15 eGFR >105 with d FOX2012 A ACRunder10 FOX2012 A ACR10-29 FOX2012 A ACR30-299 FOX2012 A ACR00-299 FOX2012 A ACR00-290 FOX2012 A ACR00-290	0.17395331 0.65752 1.09861229 1.62334082 ut diabetes 0.19885086 0.5988365 1.38629436	0.27765373 0.35706583 0.51162386 0.11176408 0.23868206 0.17834893	3.00 [1.49, 6.04] 5.07 [1.86, 13.82] 1.22 [0.98, 1.52] 1.82 [1.14, 2.91] 4.00 [2.82, 5.67]	

National Clinical Guideline Centre 2014

I.3.3.3 Subgroup – hypertension

Figure 64: Cardiovascular mortality at varying ACR levels for those with and without hypertension

			Hazard Ratio	Hazard Ratio
Study or Subgroup		SE	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
24.7.1 ACR 10-29 with	h hypertension			
MAHMOODI2012B	0.3220835	0.04641503	1.38 [1.26, 1.51]	+
24.7.2 ACR 10-29 with	hout hypertension			
MAHMOODI2012B		0.07695187	1.50 [1.29, 1.74]	+
24.7.3 ACR 30-299 wi				
MAHMOODI2012B	0.58221562	0.06366993	1.79 [1.58, 2.03]	+
24.7.4 ACR 30-299 wi	thout hypertension			
MAHMOODI2012B	0.71294981	0.08115695	2.04 [1.74, 2.39]	+
24 7 5 ACB > /200 wi	th hypertension			
24.7.5 ACR >/=300 wi				
MAHMOODI2012B	0.84586827	0.08047782	2.33 [1.99, 2.73]	+
24.7.6 ACR >/=300 wi	ithout hypertension			
MAHMOODI2012B	1.1817272	0.17355421	3.26 [2.32, 4.58]	-+-
				0.1 0.2 0.5 1 2 5 10
				Protective Predictive

Forest plots

Figure 65: Cardiovascular mortality stratified by eGFR for those with and without hypertension

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% CI
25.1.1 eGFR <15 with hypertension	on			
MAHMOODI2012 B ACRunder10	0	0	Not estimable	
MAHMOODI2012 B ACR10-29 MAHMOODI2012 B ACR 30-299	2.0015 2.1483	0.5069 0.3639	7.40 [2.74, 19.99] 8.57 [4.20, 17.49]	
MAHMOODI2012 B ACRover300	2.0477	0.2628	7.75 [4.63, 12.97]	-+-
25.1.2 eGFR <15 without hyperter	nsion			
AHMOODI2012 B ACRunder10	0.9555	1.0532	2.60 [0.33, 20.49]	
MAHMOODI2012 B ACR10-29	3.4965		33.00 [10.50, 103.72]	
MAHMOODI2012 B ACR 30-299 MAHMOODI2012 B ACRover300	2.1506 2.6462	0.6157 0.5089	8.59 [2.57, 28.71] 14.10 [5.20, 38.23]	
25.1.3 eGFR 15-29 with hypertens MAHMOODI2012 B ACRunder10	1.0852	0.34	2.96 [1.52, 5.76]	
MAHMOODI2012 B ACR10-29	0.8544	0.2828	2.35 [1.35, 4.09]	
MAHMOODI2012 B ACR 30-299	1.8532	0.1527	6.38 [4.73, 8.61]	+
MAHMOODI2012 B ACRover300	1.8532	0.1527	6.38 [4.73, 8.61]	+
25.1.4 eGFR 15-29 without hypert				
MAHMOODI2012 B ACRunder10 MAHMOODI2012 B ACR10-29	1.9373 2.4765	0.2661 0.7702	6.94 [4.12, 11.69] 11.90 [2.63, 53.84]	
MAHMOODI2012 B ACR 30-299	2.9285	0.6404	18.70 [5.33, 65.61]	
MAHMOODI2012 B ACRover300	4.2986		73.60 [15.20, 356.37]	— -
25.1.5 eGFR 30-44 with hypertens	ion			
MAHMOODI2012 B ACRunder10	0.6575	0.0769	1.93 [1.66, 2.24]	+
MAHMOODI2012 B ACR10-29	1.0473	0.1558	2.85 [2.10, 3.87]	1
MAHMOODI2012 B ACR 30-299 MAHMOODI2012 B ACRover300	1.3083 1.679	0.1208 0.1232	3.70 [2.92, 4.69] 5.36 [4.21, 6.82]	*
		0.1232	5.50 [4.21, 0.62]	-
25.1.6 eGFR 30-44 without hypert MAHMOODI2012 B ACRunder10	ension 1.4563	0.1201	4.29 [3.39, 5.43]	+
MAHMOODI2012 B ACR10-29	1.6696	0.2458	5.31 [3.28, 8.60]	+
MAHMOODI2012 B ACR 30-299	1.6601	0.3272	5.26 [2.77, 9.99]	-+-
MAHMOODI2012 B ACRover300	2.2762	0.4884	9.74 [3.74, 25.37]	
25.1.7 eGFR 45-59 with hypertens				
MAHMOODI2012 B ACRunder10	0.3001	0.0517	1.35 [1.22, 1.49]	<u>*</u>
MAHMOODI2012 B ACR10-29 MAHMOODI2012 B ACR 30-299	0.5933 0.802	0.0824 0.0844	1.81 [1.54, 2.13] 2.23 [1.89, 2.63]	1
MAHMOODI2012 B ACRover300	1.2528	0.1883	3.50 [2.42, 5.06]	+
25.1.8 eGFR 45-59 without hypert	ension			
MAHMOODI2012 B ACRunder10	0.5423	0.135	1.72 [1.32, 2.24]	+
MAHMOODI2012 B ACR10-29	0.9746	0.2117	2.65 [1.75, 4.01]	+
MAHMOODI2012 B ACR 30-299 MAHMOODI2012 B ACRover300	1.5195 2.1691	0.1661 0.2107	4.57 [3.30, 6.33] 8.75 [5.79, 13.22]	*
		0.2107	0.70 [0.79, 10.22]	
25.1.9 eGFR 60-74 with hypertens		0.0250	1 02 10 06 4 441	
MAHMOODI2012 B ACRunder10 MAHMOODI2012 B ACR10-29	0.0296 0.3148	0.0359 0.0676	1.03 [0.96, 1.11] 1.37 [1.20, 1.56]	l.
MAHMOODI2012 B ACR 30-299	0.7419	0.0702	2.10 [1.83, 2.41]	+
MAHMOODI2012 B ACRover300	1.0403	0.1522	2.83 [2.10, 3.81]	+
25.1.10 eGFR 60-74 without hyper				
MAHMOODI2012 B ACRunder10	0.207	0.0955	1.23 [1.02, 1.48]	t.
MAHMOODI2012 B ACR10-29 MAHMOODI2012 B ACR 30-299	0.2927 1.2442	0.1919 0.1337	1.34 [0.92, 1.95] 3.47 [2.67, 4.51]	•
MAHMOODI2012 B ACRover300	1.4974	0.3324	4.47 [2.33, 8.58]	
25.1.11 eGFR 75-89 with hyperten	sion			
MAHMOODI2012 B ACRunder10	-0.02020271		0.98 [0.92, 1.04]	<u> </u>
	0.25464222	0.0630695	1.29 [1.14, 1.46]	<u> </u>
MAHMOODI2012 B ACR 30-299 MAHMOODI2012 B ACRover300		0.10145638 0.12707746	1.83 [1.50, 2.23] 2.54 [1.98, 3.26]	+
25.1.12 eGFR 75-89 without hyper	rtension		-	
MAHMOODI2012 B ACRunder10		0.06255335	1.04 [0.92, 1.18]	+
MAHMOODI2012 B ACR10-29		0.15937777	1.64 [1.20, 2.24]	<u>+</u>
MAHMOODI2012 B ACR 30-299 MAHMOODI2012 B ACRover300		0.13704636 0.26367122	2.25 [1.72, 2.94] 6.17 [3.68, 10.34]	* _+
			0.11 [0.00, 10.04]	
25.1.13 eGFR 90-104 with hyperte MAHMOODI2012 B ACRunder10	nsion 0	0	Not estimable	
MAHMOODI2012 B ACR10-29		0.11991972	1.48 [1.17, 1.87]	+
MAHMOODI2012 B ACR 30-299	0.51282363	0.09731818	1.67 [1.38, 2.02]	+
MAHMOODI2012 B ACRover300	0.98581679	0.14932398	2.68 [2.00, 3.59]	+
25.1.14 eGFR 90-104 without hype		~	Not the - th	
MAHMOODI2012 B ACRunder10 MAHMOODI2012 B ACR10-29	0.43178242	0 0.10238489	Not estimable 1.54 [1.26, 1.88]	+
MAHMOODI2012 B ACR 30-299	0.58778666		1.80 [1.23, 2.63]	 -
MAHMOODI2012 B ACRover300	2.04122033	0.4528087	7.70 [3.17, 18.70]	
25.1.15 eGFR >105 with hypertens	sion			
MAHMOODI2012 B ACRunder10	0.27763174	0.14165145	1.32 [1.00, 1.74]	h .
MAHMOODI2012 B ACR10-29	0.24686008	0.157521	1.28 [0.94, 1.74]	<u>†</u> _
MAHMOODI2012 B ACR 30-299 MAHMOODI2012 B ACRover300	0.94000726 0.85015093	0.17406991 0.3199076	2.56 [1.82, 3.60] 2.34 [1.25, 4.38]	* - * -
25.1.16 eGFR >105 without hypert MAHMOODI2012 B ACRunder10		0.12948224	1.16 [0.90, 1.50]	h -
MAHMOODI2012 B ACR10-29	0.68813464	0.22514422	1.99 [1.28, 3.09]	+-
MAHMOODI2012 B ACR 30-299	1.69927862 2.59525471	0.27673846 0.3276729	5.47 [3.18, 9.41] 13.40 [7.05, 25.47]	
			1.3 40 17 05 25 471	
AHMOODI2012 B ACRover300	2.59525471	0.5270723	10.10 [1.00, 20.11]	

I.3.4 Acute kidney injury

Figure 66: Occurrence of acute kidney injury at different ACR levels

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% CI
26.7.2 ACR 30-299				
GANSEVOORT2011(High risk)	0.99325177	0.10448887	2.70 [2.20, 3.31]	+
26.7.4 ACR >/=300				
GANSEVOORT2011(High risk)	2.00148	0.15139661	7.40 [5.50, 9.96]	+
				0.01 0.1 1 10 100 Protective Predictive

Figure 67: Occurrence of acute kidney injury stratified by eGFR

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% Cl		d Ratio d, 95% Cl
26.1.1 eGFR 15-29			, ,	,	<u> </u>
GANSEVOORT2011 ACRunder10	2.50959926	0.42000788	12.30 [5.40, 28.02]		│ _
GANSEVOORT2011 ACR10-29	0.47000363	00	1.60 [0.00, Not estimable]		↓ →
GANSEVOORT2011 ACR30-299	3.2308044	0.16805554	25.30 [18.20, 35.17]		+
GANSEVOORT2011 ACRover300	2.61739583	∞	13.70 [0.00, Not estimable]		
26.1.2 eGFR 30-44					
GANSEVOORT2011 ACRunder10	2 07944154	0.20053562	8.00 [5.40, 11.85]		
GANSEVOORT2011 ACR10-29		0.17714417	7.50 [5.30, 10.61]		-
GANSEVOORT2011 ACR30-299		0.12466849	14.30 [11.20, 18.26]		+
GANSEVOORT2011 ACRover300		0.39925582	26.90 [12.30, 58.83]		│ -
26.1.3 eGFR 45-59					
GANSEVOORT2011 ACRunder10		0.17771076	1.70 [1.20, 2.41]		 +
GANSEVOORT2011 ACR10-29		0.15166173	3.50 [2.60, 4.71]		+
GANSEVOORT2011 ACR30-299		0.12164051	6.60 [5.20, 8.38]		+
GANSEVOORT2011 ACRover300	2.56494936	0.14940248	13.00 [9.70, 17.42]		+
26.1.4 eGFR 60-74					
GANSEVOORT2011 ACR30-299	1.02961942	0.35365302	2.80 [1.40, 5.60]		
GANSEVOORT2011 ACRover300	1.84054963	0.19486818	6.30 [4.30, 9.23]		+
26.1.5 eGFR 75-89					
GANSEVOORT2011 ACR30-299	0.58778666	0.16603489	1.80 [1.30, 2.49]		 - + −
GANSEVOORT2011 ACRover300		0.24771262	5.20 [3.20, 8.45]		
26.1.6 eGFR 90-104					
GANSEVOORT2011 ACR30-299	0.74193734	0.24468464	2.10 [1.30, 3.39]		 -
GANSEVOORT2011 ACRover300	1.22377543	0.45271403	3.40 [1.40, 8.26]		
26.1.7 eGFR>105					
GANSEVOORT2011 ACR30-299	0.78845736	0.30925864	2.20 [1.20, 4.03]		
GANSEVOORT2011 ACRover300	1.33500107	0.5881126	3.80 [1.20, 12.03]		
				0.01 0.1	1 10 100
					Predictive

Forest plots

I.3.5 Incidence rates

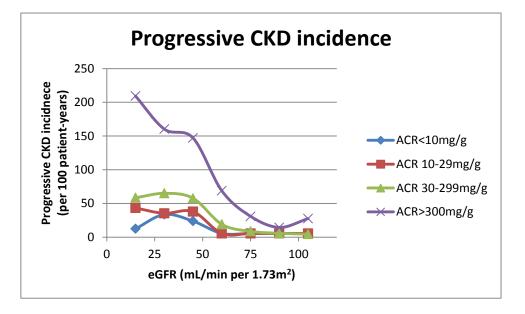


Figure 68: Unadjusted incidence rates of progressive CKD per 1000 patient-years

Source: Gansevoort et al.²¹⁸ - High risk cohorts

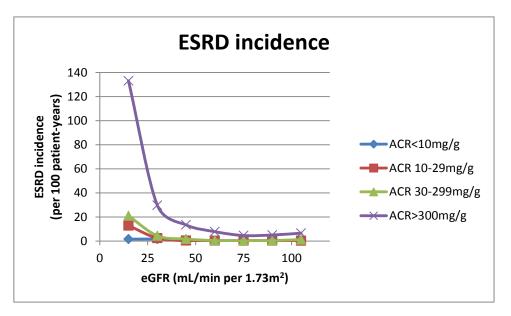


Figure 69: Unadjusted incidence rates of end stage renal disease per 1000 patient-years

Source: Gansevoort et al.²¹⁸ - High risk cohorts

Forest plots

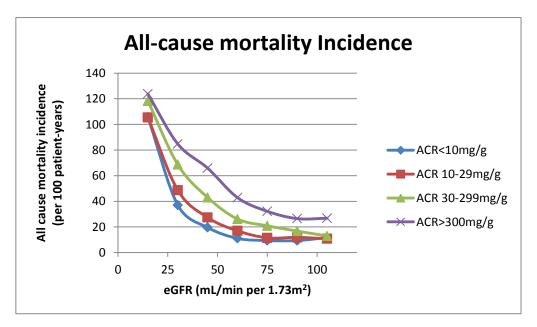
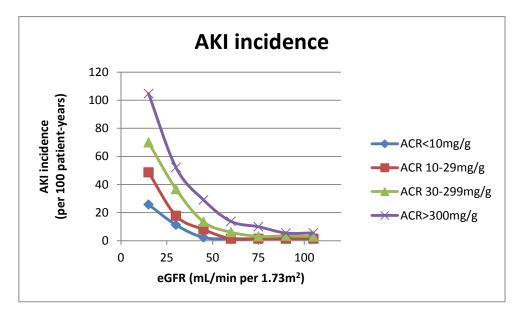



Figure 70: Unadjusted incidence rates of all-cause mortality per 1000 patient-years

Figure 71: Unadjusted incidence rates of acute kidney injury per 1000 patient-years

Source: Gansevoort et al.²¹⁸ - High risk cohorts

Forest plots

I.4 Cause of CKD – risk of adverse outcomes

NB. 'Favours' indicates lower risk in that group.

I.4.1 Diabetes

I.4.1.1 All-cause mortality

Figure 72: Risk of all-cause mortality in those with compared to those without diabetes, stratified by eGFR

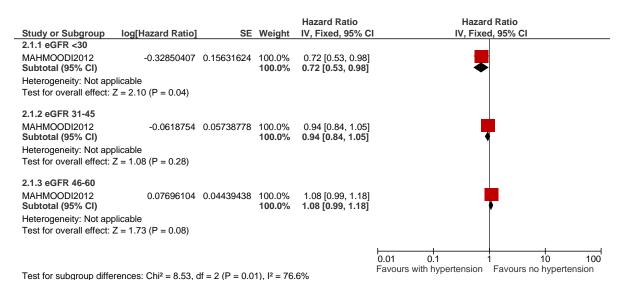
Study or Subgroup	log[Hazard Ratio]	SE Weight	Hazard Ratio IV, Fixed, 95% C	Hazard Ratio IV, Fixed, 95% CI
1.1.1 eGFR <30		/ Weight	11, 11, 11, 10, 10, 10	
FOX2012 Subtotal (95% CI)	0.33647224 0.1048202	28 9.0% 9.0%	1.40 [1.14, 1.72] 1.40 [1.14, 1.72]	-
Heterogeneity: Not app	licable			
Test for overall effect: 2	Z = 3.21 (P = 0.001)			
1.1.2 eGFR 31-45				
FOX2012 Subtotal (95% CI)	0.3435897 0.049352	76 40.7% 40.7%	1.41 [1.28, 1.55] 1.41 [1.28, 1.55]	•
Heterogeneity: Not app Test for overall effect: 2				
1.1.3 eGFR 46-60				
FOX2012	0.36464311 0.0443943		1.44 [1.32, 1.57]	
Subtotal (95% CI)		50.3%	1.44 [1.32, 1.57]	•
Heterogeneity: Not app Test for overall effect: 2				
Total (95% CI)		100.0%	1.42 [1.34, 1.51]	•
Heterogeneity: Chi ² = 0	0.13, df = 2 (P = 0.94); l ² = 0%		- / -	0.01 0.1 1 10 100
	Z = 11.23 (P < 0.00001)			Favours with diabetes Favours without diabetes
Test for subgroup difference	rences: $Chi^2 = 0.13$, $df = 2$ (P = 0	0.94), l ² = 0%	0	

I.4.1.2 Cardiovascular mortality

Figure 73: Risk of cardiovascular mortality in those with compared to those without diabetes, stratified by eGFR

			Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE Weight	IV, Fixed, 95% C	I IV, Fixed, 95% CI
1.2.1 eGFR <30				
FOX2012	0.32930375 0.199584		1.39 [0.94, 2.06]	
Subtotal (95% CI)		5.7%	1.39 [0.94, 2.06]	•
Heterogeneity: Not app				
Test for overall effect: 2	Z = 1.65 (P = 0.10)			
1.2.2 eGFR 31-45				
FOX2012	0.27763174 0.10713		1.32 [1.07, 1.63]	
Subtotal (95% CI)		19.6%	1.32 [1.07, 1.63]	
Heterogeneity: Not app				
Test for overall effect: 2	2 = 2.59 (P = 0.010)			
1.2.3 eGFR 46-60				
FOX2012	0.3852624 0.054914	61 74.7%	1.47 [1.32, 1.64]	
Subtotal (95% CI)	0.0002024 0.004914	74.7%	1.47 [1.32, 1.64]	•
Heterogeneity: Not app	licable	/0		, ,
Test for overall effect: 2				
	= 7.02 (1 < 0.00001)			
Total (95% CI)		100.0%	1.43 [1.31, 1.57]	♦
	.83, df = 2 (P = 0.66); l ² = 0%			
Test for overall effect: 2				0.01 0.1 1 10 100
	rences: $Chi^2 = 0.83$, df = 2 (P =	0.66), $l^2 = 0\%$	6	Favours with diabetes Favours without diabetes
	2	•••••	-	

I.4.1.3 Progression of CKD (ESRD)


Figure 74: Risk of end stage renal disease in those with compared to those without diabetes, stratified by eGFR

			Hazard Ratio	Hazard Ratio			
Study or Subgroup Ic	og[Hazard Ratio]	SE Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% CI			
1.3.1 eGFR <30							
FOX2012	0.54812141 0.30048	685 82.9%	1.73 [0.96, 3.12]	+ -			
Subtotal (95% CI)		82.9%	1.73 [0.96, 3.12]	\bullet			
Heterogeneity: Not applica	able						
Test for overall effect: Z =	1.82 (P = 0.07)						
1.3.2 eGFR 31-45							
FOX2012	0.66268797 0.66203		1.94 [0.53, 7.10]				
Subtotal (95% CI)		17.1%	1.94 [0.53, 7.10]				
Heterogeneity: Not applica	able						
Test for overall effect: Z =	1.00 (P = 0.32)						
1.3.3 eGFR 46-60							
FOX2012	0	0	Not estimable				
Subtotal (95% CI)	C C	0	Not estimable				
Heterogeneity: Not applica	able						
Test for overall effect: Not							
Total (95% CI)		100.0%	1.76 [1.03, 3.02]	◆			
Heterogeneity: Chi ² = 0.02, df = 1 (P = 0.87); l ² = 0%							
Test for overall effect: Z =	2.07 (P = 0.04)	0.01 0.1 1 10 100 Favours with diabetes Favours without diabetes					
Test for subgroup differen	ces: Chi ² = 0.02, df = 1 (P =						

I.4.2 Hypertension

I.4.2.1 All-cause mortality

Figure 75: Risk of all-cause mortality in those with compared to those without hypertension, stratified by eGFR

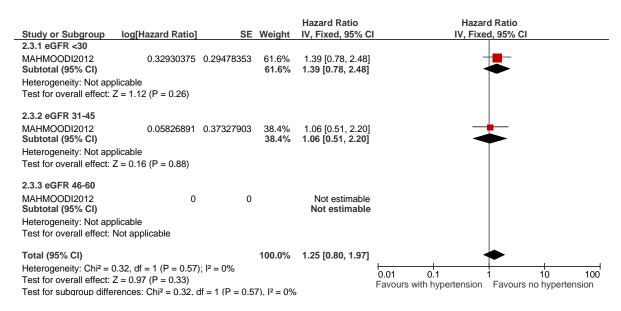


Figure 76: Risk of cardiovascular mortality in those with compared to those without hypertension, stratified by eGFR

Study or Subgroup	log[Hazard Ratio]	SF	Weight	Hazard Ratio IV, Fixed, 95% C		d Ratio d, 95% Cl
2.2.1 eGFR <30	log[nazara nado]	02	morgine	11,11,200,00700		
MAHMOODI2012 Subtotal (95% CI)	-0.24846136	0.21678112	7.2% 7.2%	0.78 [0.51, 1.19] 0.78 [0.51, 1.19]		-
Heterogeneity: Not app Test for overall effect: 2						
2.2.2 eGFR 31-45						
MAHMOODI2012 Subtotal (95% CI)	0.09531018	0.0801982	52.4% 52.4%	1.10 [0.94, 1.29] 1.10 [0.94, 1.29]		★
Heterogeneity: Not app Test for overall effect: 2						
2.2.3 eGFR 46-60						
MAHMOODI2012 Subtotal (95% CI)	0.19885086	0.09135282	40.4% 40.4%	1.22 [1.02, 1.46] 1.22 [1.02, 1.46]		■
Heterogeneity: Not app Test for overall effect: 2						
Total (95% CI) Heterogeneity: Chi ² = 3 Test for overall effect: 2 Test for subgroup differ	Z = 1.94 (P = 0.05)		100.0% 6), l ² = 46.	1.12 [1.00, 1.25] 1%	0.01 0.1 Favours with hypertension	1 10 100 Favours no hypertension

1.4.2.2 Progression of CKD (ESRD)

Figure 77: Risk of ESRD in those with compared to those without hypertension, stratified by eGFR

Glomerular disease 1.4.3

1.4.3.1 Progression of CKD (ESRD or dialysis)

Reference group: IgA nephropathy

Figure 78: Risk of end stage renal disease stratified by type of glomerular disease on compared to IgAN

Study or Subgroup	log[Hazard Ratio]	SE.	Weight	Hazard Ratio			d Ratio d, 95% Cl	
1.1.1 MN versus IgAN	<u> </u>	36	weight	IV, FIXeu, 95 /		IV, FIXed	1, 95 /0 CI	
MORANNE2008 Subtotal (95% CI)		1.10179792		2.60 [0.30, 22.53 2.60 [0.30, 22.53				
Heterogeneity: Not app	olicable							
Test for overall effect:	Z = 0.87 (P = 0.39)							
1.1.2 FSGS versus Ig	AN							
MORANNE2008 Subtotal (95% CI)	1.94591015	0.63917652		7.00 [2.00, 24.50 7.00 [2.00, 24.50				-
Heterogeneity: Not app	olicable							
Test for overall effect:								
					0.01 Favours	0.1 MN or ESGS	1 10 Favours IdAl	100
Test for subaroup diffe	rences: $Chi^2 = 0.60$	₩ – 1 (P – 0 4	4) l ² – 09	6	Favours	MN or FSGS	Favours IgA	N

Test for subgroup differences: $Chi^2 = 0.60$, df = 1 (P = 0.44), $l^2 = 0\%$

Reference group: minimal change disease

Figure 79: Risk of dialysis stratified by type of glomerular disease compared to minimal change disease

Study or Subgroup	log[Hazard Ratio]	SE Weight	Hazard Ratio IV, Fixed, 95% C	Hazard Ratio IV, Fixed, 95% Cl
2.1.1 Membranous ne	<u> </u>	SE weight	IV, FIXEU, 95% C	
CHOU2012 LEE2013 Subtotal (95% CI)	0.78845736 0.62998 1.45861502 0.46750 0.73, df = 1 (P = 0.39); l ² = 0%	0386 64.5% 100.0%	4.30 [1.72, 10.75]	
2.1.2 IgA nephropathy CHOU2012 LEE2013 Subtotal (95% CI) Heterogeneity: Chi ² = 1 Test for overall effect: 2	1.62924054 0.38458 1.11514159 0.22561 .33, df = 1 (P = 0.25); l ² = 259	492 74.4% 100.0%	3.05 [1.96, 4.75]	•
2.1.3 Focal segmenta	alomerulosclerosis			
CHOU2012 LEE2013 Subtotal (95% CI)	1.7681496 0.32983 1.4861397 0.28870 0.41, df = 1 (P = 0.52); l ² = 0%	0783 56.6% 100.0%	4.42 [2.51, 7.78]	* *
2.1.4 Membranoprolif LEE2013 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: 2			34.65 [9.54, 125.85] 34.65 [9.54, 125.85]	*
Test for subgroup diffe	rences: $Chi^2 = 12.11 \text{ df} = 3.(P)$	P = 0 007) I² −	75.2% Fav	0.001 0.1 1 10 1000 ours MN / IgAN / FSGS Favours MCD

Test for subgroup differences: $Chi^2 = 12.11$, df = 3 (P = 0.007), $I^2 = 75.2\%$

MCD = minimal change disease, MN = membranous nephropathy, IgAN = IgA nephropathy, FSGS = focal segmental glomerulosclerosis

Reference group: minimal change disease

Figure 80: Risk of mortality stratified by type of glomerular disease compared to minimal change disease

			Hazard Ratio	Hazard Ratio		
Study or Subgroup	log[Hazard Ratio]	SE Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl		
2.2.1 Membranous ne						
CHOU2012	1.24703229 0.35072					
LEE2013 Subtotal (95% CI)	0.3435897 0.19084	479 77.2% 1 00.0%	1.41 [0.97, 2.05] 1.73 [1.25, 2.41]			
()	5.12, df = 1 (P = 0.02); l² = 80%		1110 [1120, 2141]	•		
Test for overall effect:)				
2.2.2 IgA nephropath	W.					
CHOU2012	0.66782937 0.70469	625 0.6%	1.95 [0.49, 7.76]			
LEE2013	0.07696104 0.05480		1.08 [0.97, 1.20]			
Subtotal (95% CI)	0.07090104 0.00400	100.0%		•		
· ,	0.70, df = 1 (P = 0.40); l ² = 0%			ľ		
Test for overall effect:	Z = 1.47 (P = 0.14)					
2.2.3 Focal segmenta	al glomerulosclerosis					
CHOU2012	1.39624469 0.44768	726 14.7%	4.04 [1.68, 9.72]			
LEE2013	0.3435897 0.18561					
Subtotal (95% CI)		100.0%	1.65 [1.18, 2.30]	◆		
0 ,	4.72, df = 1 (P = 0.03); l ² = 79%	5				
Test for overall effect:	Z = 2.90 (P = 0.004)					
2.2.4 Membranoproli	ferative glomerulosclerosis					
LEE2013	0.58778666 0.31543			+ 		
Subtotal (95% CI)		100.0%	1.80 [0.97, 3.34]	◆		
Heterogeneity: Not app						
Test for overall effect:	Z = 1.86 (P = 0.06)					
			1			
Test for subgroup differences: Chi ² = 13.23, df = 3 (P = 0.004), l ² = 77.3% Favours MN / IgAN / FSGS Favours MCD						

Forest plots

MCD = minimal change disease, MN = membranous nephropathy, IgAN = IgA nephropathy, FSGS = focal segmental glomerulosclerosis

1.4.4 Acute kidney injury

Acute tubular necrosis, acute renal failure or CKD versus control 1.4.4.1

Figure 81: Risk of progression to CKD stage 4

o		07		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% CI
1.2.1 Acute tubular ne	()				
AMDUR2009 Subtotal (95% CI)	1.89311196	0.29151358		6.64 [3.75, 11.76] 6.64 [3.75, 11.76]	
Heterogeneity: Not app	plicable				
Test for overall effect:	Z = 6.49 (P < 0.00001	I)			
1.2.2 Acute renal failu	ure (ARF)				
AMDUR2009 Subtotal (95% CI)	1.39376638	0.07340168	100.0% 100.0%	4.03 [3.49, 4.65] 4.03 [3.49, 4.65]	
Heterogeneity: Not app Test for overall effect:)1)			
1.2.3 CKD					
AMDUR2009 Subtotal (95% CI)	1.87180218	0.01919525	100.0% 100.0%	6.50 [6.26, 6.75] 6.50 [6.26, 6.75]	
Heterogeneity: Not app	plicable				
Test for overall effect:	Z = 97.51 (P < 0.0000	01)			
				Fai	0.01 0.1 1 10 100
Test for subgroup diffe	rences: $Chi^2 = 39.73$	df = 2 (P < 0)	00001). I ²	= 95.0%	ours ATN, ARF or CKD Favours control

Test for subaroup differences: $Chi^2 = 39.73$, df = 2 (P < 0.00001), $l^2 = 95.0\%$

Figure 82: Risk of all-cause mortality

Study or Subgroup	leg[Hererd Detie]	CE Weight	Hazard Ratio	Hazard Ratio
Study or Subgroup 1.3.1 Acute tubular no	log[Hazard Ratio] ecrosis (ATN)	SE Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
AMDUR2009 Subtotal (95% CI)	0.09531018 0.08565	5508 100.0% 100.0%	1.10 [0.93, 1.30] 1.10 [0.93, 1.30]	-
Heterogeneity: Not app Test for overall effect:				
1.3.2 Acute renal failu	ure (ARF)			
AMDUR2009 Subtotal (95% CI)	0.11332869 0.02330	0147 100.0% 100.0%	1.12 [1.07, 1.17] 1.12 [1.07, 1.17]	
Heterogeneity: Not app Test for overall effect:	plicable Z = 4.86 (P < 0.00001)			
1.3.3 CKD				
AMDUR2009 Subtotal (95% CI)	0.18232156 0.00857	7522 100.0% 100.0%	1.20 [1.18, 1.22] 1. 20 [1.18 , 1. 22]	
Heterogeneity: Not app Test for overall effect:	olicable Z = 21.26 (P < 0.00001)			
Tost for subgroup diffe	rences: Chi2 – 8.56, df – 2./P	- 0 01) 12 - 76	Favo	0.1 0.2 0.5 1 2 5 10 urs ATN, ARF or CKD Favours control

Test for subgroup differences: $Chi^2 = 8.56$, df = 2 (P = 0.01), l² = 76.6%

Chronic kidney disease

Forest plots

I.4.4.2 Stages of AKI stratified by eGFR level

Risk of In-hospital mortality

Figure 83: People without AKI or AKI stage 1-3, stratified by eGFR, compared to those with no AKI eGFR >60 ml/min/1.73 m²

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% CI
2.1.1 eGFR >60			,,	
PANNU2011 No AKI	0	0	Not estimable	
PANNU AKI Stage1	1.09527339	0.07327457	2.99 [2.59, 3.45]	+
PANNU AKI Stage 2	2.11384297	0.09154617	8.28 [6.92, 9.91]	+
PANNU AKI Stage 3	2.36273902	0.09707454	10.62 [8.78, 12.85]	+
2.1.2 eGFR 45-59				
PANNU2011 No AKI	0.01980263	0.04167323	1.02 [0.94, 1.11]	+
PANNU AKI Stage1	1.07158362	0.07516705	2.92 [2.52, 3.38]	+
PANNU AKI Stage 2	2.01889504	0.11759118	7.53 [5.98, 9.48]	+
PANNU AKI Stage 3	2.08069076	0.13731307	8.01 [6.12, 10.48]	+
2.1.3 eGFR 30-44				
PANNU2011 No AKI	0.06765865	0.08827671	1.07 [0.90, 1.27]	+
PANNU AKI Stage1	1.0612565	0.07396349	2.89 [2.50, 3.34]	+
PANNU AKI Stage 2	2.00955541	0.11539202	7.46 [5.95, 9.35]	+
PANNU AKI Stage 3	2.12226154	0.15189679	8.35 [6.20, 11.25]	+
2.1.4 eGFR <30				
PANNU2011 No AKI	0.51282363	0.11232554	1.67 [1.34, 2.08]	+
PANNU AKI Stage1	1.07500242	0.07691137	2.93 [2.52, 3.41]	+
PANNU AKI Stage 2	1.90805992	0.15645909	6.74 [4.96, 9.16]	+
PANNU AKI Stage 3	1.54968791	0.13570664	4.71 [3.61, 6.15]	+

0.01 0.1 1 10 100 Favours eGFR <60 Favours no AKI, eGFR >6(

Risk of ESRD or all-cause mortality (after hospital discharge)

Figure 84: People without AKI, or AKI stage 1-3, stratified by eGFR, compared to those with no AKI eGFR >60 ml/min/1.73 m²

			Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% Cl	I IV, Fixed, 95% CI
2.5.1 eGFR >60				
PANNU2011 No AKI	0	0	Not estimable	
PANNU AKI Stage1	0.23111172	0.04660789	1.26 [1.15, 1.38]	+
PANNU AKI Stage 2	0.73236789	0.1059404	2.08 [1.69, 2.56]	+
PANNU AKI Stage 3	0.39204209	0.15605613	1.48 [1.09, 2.01]	+-
2.5.2 eGFR 45-59				
PANNU2011 No AKI	-0.03045921	0.03257788	0.97 [0.91, 1.03]	+ +
PANNU AKI Stage1	0.27002714	0.05332379	1.31 [1.18, 1.45]	+
PANNU AKI Stage 2	0.42526774	0.15012494	1.53 [1.14, 2.05]	+
PANNU AKI Stage 3	0.29266961	0.2087811	1.34 [0.89, 2.02]	++-
2.5.3 eGFR 30-44				
PANNU2011 No AKI	0.05826891	0.0348574	1.06 [0.99, 1.13]	+ · · · · · · · · · · · · · · · · · · ·
PANNU AKI Stage1	0.21511138	0.04739564	1.24 [1.13, 1.36]	+
PANNU AKI Stage 2	0.68813464	0.13746391	1.99 [1.52, 2.61]	+
PANNU AKI Stage 3	1.00795792	0.19764722	2.74 [1.86, 4.04]	
2.5.4 eGFR <30				
PANNU2011 No AKI	0.51282363	0.11232554	1.67 [1.34, 2.08]	+
PANNU AKI Stage1	0.55961579	0.04572133	1.75 [1.60, 1.91]	+
PANNU AKI Stage 2		0.15484605	3.40 [2.51, 4.61]	
PANNU AKI Stage 3	1.39624469		4.04 [3.42, 4.77]	+
				0.01 0.1 1 10 100
				Favours eGFR <60 Favours no AKI, eGFR >6

I.4.4.3 No prior CKD

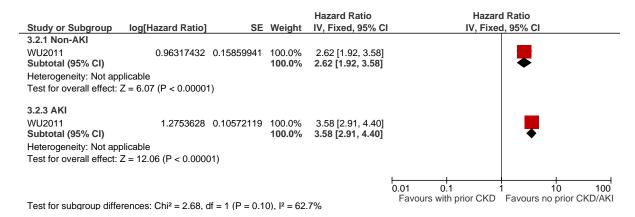
Figure 85: Risk of dialysis in people without CKD stratified by stages of AKI compared to no AKI

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% C	Hazard Ratio IV, Fixed, 95% CI
4.1.1 AKI RIFLE -R	<u> </u>			, , , , , , , , , , , , , , , , , , , ,	,,
WU2011	0.73716407	0.39165172	31.5%		
Subtotal (95% CI)			31.5%	2.09 [0.97, 4.50]	
Heterogeneity: Not app					
Test for overall effect: 2	Z = 1.88 (P = 0.06)				
4.1.2 AKI RIFLE-I					
WU2011	1,16002092	0 46990864	21.9%	3.19 [1.27, 8.01]	— —
Subtotal (95% CI)			21.9%		
Heterogeneity: Not app	licable				
Test for overall effect: 2	Z = 2.47 (P = 0.01)				
4.1.3 AKI RIFLE-F					
WU2011	3.10682632	0 32158138	46 7%	22.35 [11.90, 41.98]	
Subtotal (95% CI)	0.10002002	0.02100100		22.35 [11.90, 41.98]	
Heterogeneity: Not app	licable				
Test for overall effect: 2)			
	Υ.	,			
Total (95% CI)			100.0%	6.93 [4.50, 10.66]	◆
Heterogeneity: Chi ² = 2	5.35, df = 2 (P < 0.00	0001); l ² = 92%	6		
Test for overall effect: 2	Z = 8.81 (P < 0.00001)			Favours AKI RIFLE R/I/F Favours no prior CKD/AKI
Test for subaroup differ	rences: Chi ² = 25.35.	df = 2 (P < 0.0	00001), l ²	² = 92.1%	

AKI RIFLE grading: R= risk, I = injury, F = failure

Figure 86: Risk of mortality in people without CKD stratified by stages of AKI compared to no AKI

Study or Subgroup	log[Hazard Ratio]	SE Weight	Hazard Ratio IV, Fixed, 95% C	Hazard Ratio IV, Fixed, 95% CI
4.2.2 AKI RIFLE -R WU2011 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: 2		59 43.1% 43.1%	1.62 [1.45, 1.81] 1.62 [1.45, 1.81]	
4.2.4 AKI RIFLE-I WU2011 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: 2	0.87962675 0.067827 licable Z = 12.97 (P < 0.00001)	716 30.0% 30.0%	2.41 [2.11, 2.75] 2.41 [2.11, 2.75]	•
4.2.5 AKI RIFLE-F WU2011 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: 2	1.11841492 0.071475 licable Z = 15.65 (P < 0.00001)	519 27.0% 27.0%	3.06 [2.66, 3.52] 3.06 [2.66, 3.52]	•
Test for overall effect: 2	2.22, df = 2 (P < 0.00001); l ² = Z = 20.82 (P < 0.00001) ences: Chi ² = 52.22, df = 2 (P ·		2.17 [2.01, 2.33] = 96.2%	0.01 0.1 1 10 100 Favours AKI RIFLE R/I/F Favours no prior CKD/AKI

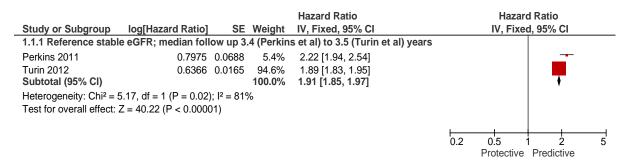

AKI RIFLE grading: R= risk, I = injury, F = failure

I.4.4.4 Prior CKD

Figure 87: Risk of long term dialysis in people with CKD stratified by presence of AKI compared to those without prior CKD or AKI

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% Cl	Hazard IV, Fixed	
3.1.1 Non-AKI			mongini	,		,
WU2011 Subtotal (95% CI)	3.95124372	0.36156346	100.0% 1 00.0%	52.00 [25.60, 105.62] 52.00 [25.60, 105.62]		-
Heterogeneity: Not appl	icable					
Test for overall effect: Z	= 10.93 (P < 0.0000	01)				
3.1.3 AKI						
WU2011 Subtotal (95% CI)	4.81137102	0.31106079		122.90 [66.80, 226.11] 122.90 [66.80, 226.11]		
Heterogeneity: Not appl	icable					
Test for overall effect: Z	= 15.47 (P < 0.0000)1)				
					0.001 0.1 1	10 1000
Test for subgroup different	ences: Chi² = 3.25, c	lf = 1 (P = 0.0	7), l² = 69	.3%	Favours with prior CKD	Favours no prior CKD/AKI

Figure 88: Risk of mortality in people with CKD stratified by presence of AKI compared to those without prior CKD or AKI


I.5 Frequency of Monitoring

I.5.1 Risk of progression

Figure 89: All-cause mortality (by one-year change in kidney function)

			Hazard Ratio	ŀ	lazard	Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI	IV,	Fixed	l, 95% CI	
2.1.1 Certain drop (Refer	rence stable eGFR;	median follow	v up 3.5 years)				
Turin 2012 eGFR ≥90	0.49469624	0.04213679	1.64 [1.51, 1.78]			+	
Turin 2012 eGFR 60-89	0.61518564	0.02544528	1.85 [1.76, 1.94]			+	
Turin 2012 eGFR 45-59	0.5988365	0.0318083	1.82 [1.71, 1.94]			+	
Turin 2012 eGFR 30-44	0.72270598	0.04125183	2.06 [1.90, 2.23]			+	
Turin 2012 eGFR 15-29	0.72754861	0.07415085	2.07 [1.79, 2.39]			+	
2.1.2 Uncertain drop (Re	ference stable eGFF	R; median foll	ow up 3.5 years)				
Turin 2012 eGFR ≥90	-0.32850407	0.02916299	0.72 [0.68, 0.76]		+		
Turin 2012 eGFR 60-89	-0.01005034	0.01570011	0.99 [0.96, 1.02]		- t		
Turin 2012 eGFR 45-59	0.19885086	0.03014796	1.22 [1.15, 1.29]			+	
Turin 2012 eGFR 30-44	0.21511138	0.04739564	1.24 [1.13, 1.36]			+	
Turin 2012 eGFR 15-29	0.49469624	0.12247879	1.64 [1.29, 2.08]				
2.1.3 Uncertain rise (Ref	erence stable eGFR	; median follo	w up 3.5 years)				
Turin 2012 eGFR 60-89	0.59332685	0.02602219	1.81 [1.72, 1.90]			+	
Turin 2012 eGFR 45-59	-0.02020271	0.02671885	0.98 [0.93, 1.03]		- +		
Turin 2012 eGFR 30-44	-0.17435339	0.03781088	0.84 [0.78, 0.90]		+		
Turin 2012 eGFR 15-29	-0.16251893	0.07070853	0.85 [0.74, 0.98]		+		
2.1.4 Certain rise (Refere	ence stable eGFR; m	nedian follow	up 3.5 years)				
Turin 2012 eGFR 60-89	1.45628673	0.03955207	4.29 [3.97, 4.64]				+
Turin 2012 eGFR 45-59	0.43825493	0.0305202	1.55 [1.46, 1.65]			+	
Turin 2012 eGFR 30-44	0.19062036	0.03489999	1.21 [1.13, 1.30]			+	
Turin 2012 eGFR 15-29	-0.07257069	0.0458928	0.93 [0.85, 1.02]		+		
				├ ─── ├			
				0.2 0.5		2	5
				Prote	ective	Predictive	

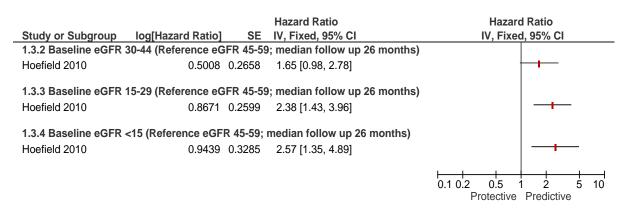

Figure 90: All-cause mortality

Figure 91: All-cause mortality (by eGFR subgroup) Reference group eGFR ≥105 ml/min/1.73 m²

Study or Subgroup	log[Hazard Ratio]	Hazard Ratio SE IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% Cl
	90-104 (Reference eGFR ≥105;	, ,	
Amin 2013	-0.17435339 0.123044	,	-+-
1.2.2 Baseline eGFR	75-89 (Reference eGFR ≥105; ı	median follow up 4 years)	
Amin 2013	-0.12783337 0.1167580	05 0.88 [0.70, 1.11]	-+-
1.2.3 Baseline eGFR	60-74 (Reference eGFR ≥105; ı	median follow up 4 years)	
Amin 2013	-0.08338161 0.1180272	24 0.92 [0.73, 1.16]	-+-
1.2.4 Baseline eGFR	45-59 (Reference eGFR ≥105; ı	median follow up 4 years)	
Amin 2013	0.207 0.12 ⁻	12 1.23 [0.97, 1.56]	
1.2.5 Baseline eGFR	30-44 (Reference eGFR ≥105; ı	median follow up 4 years)	
Amin 2013	0.3365 0.127	77 1.40 [1.09, 1.80]	-+-
1.2.6 Baseline eGFR	<30 (Reference eGFR ≥105; mo	edian follow up 4 years)	
Amin 2013	0.5539 0.144	48 1.74 [1.31, 2.31]	-+-
			0.1 0.2 0.5 1 2 5 10 Protective Predictive

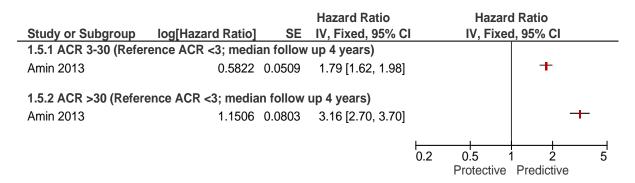

Figure 92: All-cause mortality (by eGFR subgroup) Reference group eGFR 45-59 ml/min/1.73 m²

Figure 93: All-cause mortality by eGFR subgroup eGFR 25-29 ml/min/1.73 m²

			Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
1.4.2 Baseline eGFR	15-24 (Reference eG	FR 25-29; me	dian follow up 31 months)	
Levin 2008	0.22314355	0.09876954	1.25 [1.03, 1.52]	+
1.4.3 Baseline eGFR	<15 (Reference eGFI	R 25-29; medi	ian follow up 31 months)	
Levin 2008	0.94000726	0.16024214	2.56 [1.87, 3.50]	-+-
				0.1 0.2 0.5 1 2 5 10 Protective Predictive

Figure 94: All-cause mortality (by level of proteinuria) Reference ACR <3

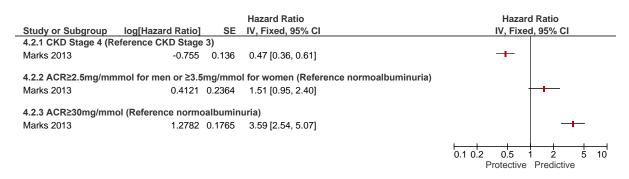
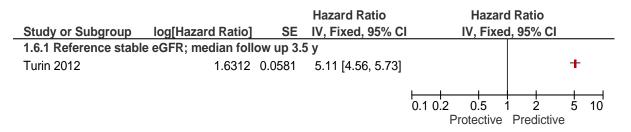
Figure 95: Progression of CKD – ESRD (by one- year change in kidney function) Reference = stable eGFR

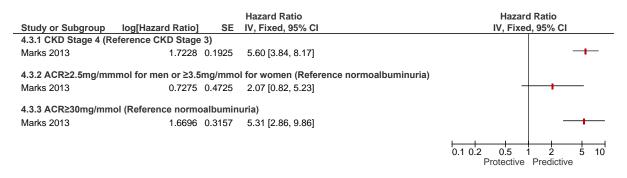
Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% CI
2.3.1 Certain drop (Refer	rence stable eGFR; I	median follow	up 3.5 years)	
Turin 2012 eGFR ≥90	1.5019	0.1857	4.49 [3.12, 6.46]	
Turin 2012 eGFR 60-89	1.6487	0.1416	5.20 [3.94, 6.86]	-+-
Turin 2012 eGFR 45-59	1.7174	0.1551	5.57 [4.11, 7.55]	-+-
Turin 2012 eGFR 30-44	1.3913	0.1196	4.02 [3.18, 5.08]	
Turin 2012 eGFR 15-29	1.579	0.097	4.85 [4.01, 5.87]	+
2.3.2 Uncertain drop (Re	ference stable eGFF	R; median foll	ow up 3.5 years)	
Turin 2012 eGFR ≥90	0.07696104	0.20687375	1.08 [0.72, 1.62]	 -
Turin 2012 eGFR 60-89	0.67294447	0.17901399	1.96 [1.38, 2.78]	-
Turin 2012 eGFR 45-59	0.62057649	0.178855	1.86 [1.31, 2.64]	- -
Turin 2012 eGFR 30-44	0.83724752	0.14751604	2.31 [1.73, 3.08]	
Turin 2012 eGFR 15-29	1.07500242	0.14619915	2.93 [2.20, 3.90]	-+
2.3.3 Uncertain rise (Ref	erence stable eGFR	; median follo	w up 3.5 years)	
Turin 2012 eGFR 60-89	-0.96758403	0.30258909	0.38 [0.21, 0.69]	— + —
Turin 2012 eGFR 45-59	-0.43078292	0.26063011	0.65 [0.39, 1.08]	
Turin 2012 eGFR 30-44	-0.86750057	0.24468464	0.42 [0.26, 0.68]	— + —
Turin 2012 eGFR 15-29	-1.38629436	0.26063011	0.25 [0.15, 0.42]	
2.3.4 Certain rise (Refere	ence stable eGFR; m	nedian follow	up 3.5 years)	
Turin 2012 eGFR 60-89	-0.46203546	0.345618	0.63 [0.32, 1.24]	
Turin 2012 eGFR 45-59	-0.54472718	0.27249607	0.58 [0.34, 0.99]	
Turin 2012 eGFR 30-44	-1.04982212	0.21421508	0.35 [0.23, 0.53]	- +
Turin 2012 eGFR 15-29	-1.71479843	0.20687375	0.18 [0.12, 0.27]	- i
				0.1 0.2 0.5 1 2 5 10 Protective Predictive

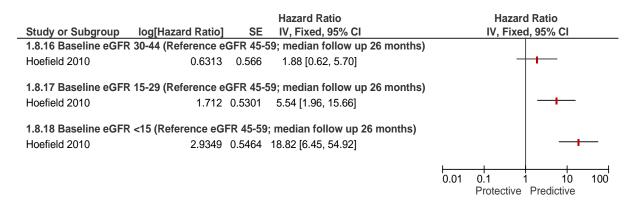
Figure 96: Progression of CKD (sustained drop of eGFR by 15 or to 10ml/min/1.73m²)(CKD Stage 3 and 4)

			Hazard Ratio		Hazar	d Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI		IV, Fixe	d, 95% Cl	
4.1.1 CKD Stage 4 (R	eference CKD Stage	3)					
Marks 2013	-0.0408	0.1059	0.96 [0.78, 1.18]		-		
4.1.2 ACR≥2.5mg/mm	nmol for men or ≥3.5	mg/mmo	l for women (Reference normoalbuminuri	a)			
Marks 2013	0.5306	0.2362	1.70 [1.07, 2.70]				
4.1.3 ACR≥30mg/mm	ol (Reference normo	albumin	uria)				
Marks 2013	1.1442	0.1792	3.14 [2.21, 4.46]				-
				H		↓	
				0.2	0.5 Protective	1 2 Predictive	5

Figure 97: Progression (sustained 25% reduction in eGFR and CKD stage change)(CKD Stage 3 and 4)


Figure 98: Progression of CKD – ESRD. Reference = stable eGFR


Figure 99: Progression of CKD – ESRD by eGFR subgroup. Reference eGFR ≥105 ml/min/1.73 m²

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% Cl
		-	5; median follow up 4 years)	
	`		, ,	
Amin 2013	0.4121	0.3436	1.51 [0.77, 2.96]	
1.7.10 Baseline eGFR	R 75-89 (Reference eG	6FR ≥10	5; median follow up 4 years)	
Amin 2013	0.6043		1.83 [0.97, 3.45]	-+-
1.7.11 Baseline eGFR	R 60-74 (Reference eG	GFR ≥10	5; median follow up 4 years)	
Amin 2013	1.0508	0.3158	2.86 [1.54, 5.31]	+
1.7.12 Baseline eGFF	R 45-59 (Reference eG	6FR ≥10	5; median follow up 4 years)	
Amin 2013	1.78	0.3068	5.93 [3.25, 10.82]	
1.7.13 Baseline eGFF	R 30-44 (Reference eG	GFR ≥10	5; median follow up 4 years)	
Amin 2013	2.9167	0.2997	18.48 [10.27, 33.25]	
1.7.14 Baseline eGFF	R <30 (Reference eGF	R ≥105;	median follow up 4 years)	
Amin 2013	4.4332	0.3022	84.20 [46.57, 152.25]	-+-
				0.005 0.1 1 10 200 Protective Predictive

Figure 100: Progression of CKD – RRT (CKD Stage 3 and 4)

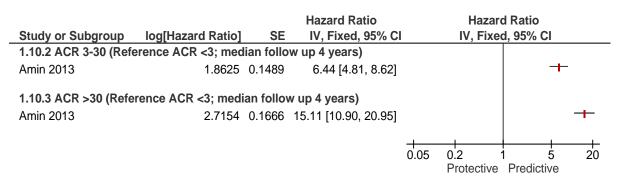

Figure 101: Progression of CKD – RRT (by eGFR subgroup) Reference eGFR 45-59 ml/min/1.73 m²

Figure 102: Progression of CKD – RRT (by eGFR subgroup) Reference eGFR 25-29 ml/min/1.73 m²

		Hazard Ratio	Hazard Ratio	
Study or Subgroup	log[Hazard Ratio] SE	IV, Fixed, 95% CI	IV, Fixed, 95% C	I
1.9.20 Baseline eGF	R 15-24 (Reference eGFR 25-2	9; median follow up 31 months)	
Levin 2008	0.6627 0.0585	1.94 [1.73, 2.18]	+	
1.9.21 Baseline eGF	R <15 (Reference eGFR 25-29)	; median follow up 31 months)		
Levin 2008	2.0176 0.0887	7.52 [6.32, 8.95]		+
			0.1 0.2 0.5 1 2 Protective Predicti	5 10 ve

Figure 103: Progression of CKD - ESRD (by level of proteinuria) Reference ACR <3

Figure 104: Progression of CKD - RRT (by level of proteinuria) Reference no proteinuria

			Hazard Ratio	Hazaro	d Ratio
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% Cl	IV, Fixe	d, 95% Cl
1.11.5 UPE >0.3 to ≤1	.0g/24h (Reference no p	orotei	nuria; median follow up 11.6 months)		
de Goeij 2012	0.5306 0.2	2458	1.70 [1.05, 2.75]		
1.11.6 UPE >1.0 to ≤3	.0g/24h (Reference no p	orotei	nuria; median follow up 11.6 months)		
de Goeij 2012	0.6259 0.2	2393	1.87 [1.17, 2.99]		- -
1.11.7 UPE >3.0 to ≤6	5.0g/24h (Reference no p	orotei	nuria; median follow up 11.6 months)		
de Goeij 2012	0.9632 0.2	2548	2.62 [1.59, 4.32]		-
1.11.8 UPE >6.0g/24h	(Reference no proteinu	uria; n	nedian follow up 11.6 months)		
de Goeij 2012	0.9243 0	.282	2.52 [1.45, 4.38]		
				0.1 0.2 0.5 Protective	1 2 5 10 Predictive

UPE = urinary protein excretion; a UPE of 0.5g/24h is approximately equivalent to an ACR of 30mg/mmol and a UPE of 1.0g/24h is approximately equivalent to an ACR of 70mg/mmol.

Figure 105: Progression of CKD – ESRD by age and eGFR subgroups

Study or Subgroup log 1.11.1 Age 65-79 years (Ref	[Hazard Ratio] erence age 50-	Hazard Ratio IV, Fixed, 95% CI follow up 7.8 years)		d Ratio d, 95% Cl	
1.11.2 Baseline eGFR >60 Van Pottelbergh 2012	0.9123	0.0167	2.49 [2.41, 2.57]		t
1.11.3 Baseline eGFR 45-60 Van Pottelbergh 2012		0.0322	2.78 [2.61, 2.96]		+
1.11.4 Baseline eGFR 30-45 Van Pottelbergh 2012	-0.3567	0.0619	0.70 [0.62, 0.79]	+	
1.11.5 Baseline eGFR 15-30 Van Pottelbergh 2012	-0.5447	0.177	0.58 [0.41, 0.82]	-+	
1.11.6 Age 80+ years (Refer	ence age 50-64	l; mean f	ollow up 7.8 years)		
1.11.7 Baseline eGFR >60 Van Pottelbergh 2012	1.4884	0.0483	4.43 [4.03, 4.87]		+
1.11.8 Baseline eGFR 45-60 Van Pottelbergh 2012		0.0871	2.55 [2.15, 3.02]		-+-
1.11.9 Baseline eGFR 30-45 Van Pottelbergh 2012	-0.6539	0.097	0.52 [0.43, 0.63]	-+-	
1.11.10 Baseline eGFR 15-3 Van Pottelbergh 2012		0.1356	0.30 [0.23, 0.39]	-+	
				0.2 0.5 Protective	1 2 5 Predictive

I.5.2 Probability of progression

Figure 106: Probability of mortality at different time points by eGFR subgroup versus reference group (eGFR ≥105 ml/min/1.73 m²)

	Lower prob				Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
3.7.1 6 months						
Amin 2013 eGFR 90-104	0	9158	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR 75-89	0	10354	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR 60-74	0	8917	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR 45-59	0	5383	0	5714	0.00 [-0.00, 0.00]	
Amin 2013 eGFR 30-44	26	2555	0	5714	0.01 [0.01, 0.01]	+
Amin 2013 eGFR ≤29	7	680	0	5714	0.01 [0.00, 0.02]	
3.7.2 12 months						
Amin 2013 eGFR 90-104	0	9158	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR 75-89	0	10354	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR 60-74	0	8917	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR 45-59	54	5383	0	5714	0.01 [0.01, 0.01]	+
Amin 2013 eGFR 30-44	51	2555	0	5714	0.02 [0.01, 0.03]	+
Amin 2013 eGFR ≤29	20	680	0	5714	0.03 [0.02, 0.04]	
3.7.3 18 months						
Amin 2013 eGFR 90-104	92	9158	57	5714	0.00 [-0.00, 0.00]	+
Amin 2013 eGFR 75-89	104	10354	57	5714	0.00 [-0.00, 0.00]	+
Amin 2013 eGFR 60-74	89	8917	57	5714	0.00 [-0.00, 0.00]	+
Amin 2013 eGFR 45-59	108	5383	57	5714	0.01 [0.01, 0.01]	+
Amin 2013 eGFR 30-44	77	2555	57	5714	0.02 [0.01, 0.03]	+
Amin 2013 eGFR ≤29	41	680	57	5714	0.05 [0.03, 0.07]	
3.7.4 24 months						
Amin 2013 eGFR 90-104	92	9158	57	5714	0.00 [-0.00, 0.00]	+
Amin 2013 eGFR 75-89	104	10354	57	5714	0.00 [-0.00, 0.00]	+
Amin 2013 eGFR 60-74	178	8917	57	5714	0.01 [0.01, 0.01]	+
Amin 2013 eGFR 45-59	161	5383	57	5714	0.02 [0.01, 0.03]	+
Amin 2013 eGFR 30-44	102	2555	57	5714	0.03 [0.02, 0.04]	-
Amin 2013 eGFR ≤29	54	680	57	5714	0.07 [0.05, 0.09]	

-0.05 0 0.0250.05 Lower probability Greater probability

Figure 107: Probability of mortality at different time points by eGFR subgroup versus reference group (eGFR ≥44-59 ml/min/1.73 m²)

	eGFR subgroups		Reference (eGFR 44-59)		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
3.2.1 6 months						
Hoefield 2010 eGFR 30-44	4	431	0	238	0.01 [-0.00, 0.02]	 -
Hoefield 2010 eGFR 15-29	19	481	0	238	0.04 [0.02, 0.06]	+
Hoefield 2010 eGFR ≤14	9	175	0	238	0.05 [0.02, 0.09]	
3.2.2 12 months						
Hoefield 2010 eGFR 30-44	17	431	2	238	0.03 [0.01, 0.05]	
Hoefield 2010 eGFR 15-29	38	481	2	238	0.07 [0.04, 0.10]	+-
Hoefield 2010 eGFR ≤14	16	175	2	238	0.08 [0.04, 0.13]	
3.2.3 18 months						
Hoefield 2010 eGFR 30-44	26	431	10	238	0.02 [-0.02, 0.05]	-+
Hoefield 2010 eGFR 15-29	63	481	10	238	0.09 [0.05, 0.13]	-+ -
Hoefield 2010 eGFR ≤14	28	175	10	238	0.12 [0.06, 0.18]	-
3.2.4 24 months						
Hoefield 2010 eGFR 30-44	39	431	12	238	0.04 [0.00, 0.08]	⊢ ∎−
Hoefield 2010 eGFR 15-29	77	481	12	238	0.11 [0.07, 0.15]	-+ -
Hoefield 2010 eGFR ≤14	35	175	12	238	0.15 [0.08, 0.22]	
						-0.2 -0.1 0 0.1 0.2 Lower probability Greater probability

Figure 108: Probability of mortality at different time points by eGFR subgroup versus reference group (eGFR 25-29 ml/min/1.73 m²)

	eGFR subgroups		Reference (eGFR 25-29)		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events To		M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
3.5.1 6 months						
Levin 2008 eGFR 15-24	0	1905	0	1679	0.00 [-0.00, 0.00]	•
Levin 2008 eGFR ≤14	6	647	0	1679	0.01 [0.00, 0.02]	+
3.5.2 12 months						
Levin 2008 eGFR 15-24	57	1905	34	1679	0.01 [-0.00, 0.02]	
Levin 2008 eGFR ≤14	32	647	34	1679	0.03 [0.01, 0.05]	
3.5.3 18 months						
Levin 2008 eGFR 15-24	76	1905	50	1679	0.01 [-0.00, 0.02]	+ - -
Levin 2008 eGFR ≤14	65	647	50	1679	0.07 [0.05, 0.10]	-+
3.5.4 24 months						
Levin 2008 eGFR 15-24	133	1905	84	1679	0.02 [0.00, 0.04]	
Levin 2008 eGFR ≤14	84	647	84	1679	0.08 [0.05, 0.11]	
						-0.1 -0.05 0 0.05 0.1 Lower probability Greater probability

Figure 109: Probability of ESRD at different time points by eGFR subgroup versus reference group (eGFR ≥105 ml/min/1.73 m²)

	Lower prol	bability	Reference (eGFR		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
3.9.1 6 months						
Amin 2013 eGFR 90-104	0	9158	0	5714	0.00 [-0.00, 0.00]	
Amin 2013 eGFR 75-89	0	10354	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR 60-74	0	8917	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR 45-59	0	5383	0	5714	0.00 [-0.00, 0.00]	
Amin 2013 eGFR 30-44	0	2555	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR ≤ 29	34	680	0	5714	0.05 [0.03, 0.07]	+
3.9.2 12 months						
Amin 2013 eGFR 90-104	0	9158	0	5714	0.00 [-0.00, 0.00]	(
Amin 2013 eGFR 75-89	0	10354	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR 60-74	0	8917	0	5714	0.00 [-0.00, 0.00]	(
Amin 2013 eGFR 45-59	0	5383	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR 30-44	26	2555	0	5714	0.01 [0.01, 0.01]	+
Amin 2013 eGFR ≤ 29	68	680	0	5714	0.10 [0.08, 0.12]	+
3.9.3 18 months						
Amin 2013 eGFR 90-104	0	9158	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR 75-89	0	10354	0	5714	0.00 [-0.00, 0.00]	
Amin 2013 eGFR 60-74	0	8917	0	5714	0.00 [-0.00, 0.00]	
Amin 2013 eGFR 45-59	0	5383	0	5714	0.00 [-0.00, 0.00]	
Amin 2013 eGFR 30-44	26	2555	0	5714	0.01 [0.01, 0.01]	+
Amin 2013 eGFR ≤29	102	680	0	5714	0.15 [0.12, 0.18]	+
3.9.4 24 months						
Amin 2013 eGFR 90-104	0	9158	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR 75-89	0	10354	0	5714	0.00 [-0.00, 0.00]	•
Amin 2013 eGFR 60-74	0	8917	0	5714	0.00 [-0.00, 0.00]	1
Amin 2013 eGFR 45-59	54	5383	0	5714	0.01 [0.01, 0.01]	E.
Amin 2013 eGFR 30-44	51	2555	0	5714	0.02 [0.01, 0.03]	+
Amin 2013 eGFR ≤29	136	680	0	5714	0.20 [0.17, 0.23]	

-0.2 -0.1 0 0.1 0.2 Lower probability Greater probability

Figure 110: Probability of RRT at different time points by eGFR subgroup versus reference group (eGFR ≥44-59 ml/min/1.73 m²)

	eGFR subg	roups	Reference (eGFR 44-59)		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
3.1.1 6 months						
Hoefield 2010 eGFR 30-44	0	431	0	238	0.00 [-0.01, 0.01]	•
Hoefield 2010 eGFR 15-29	5	481	0	238	0.01 [-0.00, 0.02]	+
Hoefield 2010 eGFR ≤14	19	175	0	238	0.11 [0.06, 0.16]	-+-
3.1.2 12 months						
Hoefield 2010 eGFR 30-44	0	431	0	238	0.00 [-0.01, 0.01]	•
Hoefield 2010 eGFR 15-29	14	481	0	238	0.03 [0.01, 0.05]	+
Hoefield 2010 eGFR ≤14	53	175	0	238	0.30 [0.23, 0.37]	
3.1.3 18 months						
Hoefield 2010 eGFR 30-44	4	431	2	238	0.00 [-0.01, 0.02]	+
Hoefield 2010 eGFR 15-29	19	481	2	238	0.03 [0.01, 0.05]	+
Hoefield 2010 eGFR ≤14	75	175	2	238	0.42 [0.35, 0.49]	
3.1.4 24 months						
Hoefield 2010 eGFR 30-44	9	431	5	238	-0.00 [-0.02, 0.02]	+
Hoefield 2010 eGFR 15-29	29	481	5	238	0.04 [0.01, 0.07]	+
Hoefield 2010 eGFR ≤14	81	175	5	238	0.44 [0.37, 0.52]	
					-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						0.5 -0.25 0 0.25 0.5 Lower probability Greater probability

Figure 111: Probability of RRT at different time points by eGFR subgroup versus reference group (eGFR 25-29 ml/min/1.73 m²)

	eGFR subg	jroups	Reference (eGFR	25-29)	Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
3.4.1 6 months						
Levin 2008 eGFR 15-24	19	1905	0	1679	0.01 [0.01, 0.01]	• • • • • • • • • • • • • • • • • • •
Levin 2008 eGFR ≤14	65	647	0	1679	0.10 [0.08, 0.12]	+
3.4.2 12 months						
Levin 2008 eGFR 15-24	191	1905	50	1679	0.07 [0.05, 0.09]	+
Levin 2008 eGFR ≤14	207	647	50	1679	0.29 [0.25, 0.33]	+
3.4.3 18 months						
Levin 2008 eGFR 15-24	381	1905	101	1679	0.14 [0.12, 0.16]	+
Levin 2008 eGFR ≤14	311	647	101	1679	0.42 [0.38, 0.46]	+
3.4.4 24 months						
Levin 2008 eGFR 15-24	476	1905	168	1679	0.15 [0.13, 0.17]	+
Levin 2008 eGFR ≤14	362	647	168	1679	0.46 [0.42, 0.50]	+
					-0.5	-0.25 0 0.25 0.5

-0.5 -0.25 0 0.25 0.5 Lower probability Greater probability

Figure 112: Probability of mortality at different time points by ACR subgroup versus reference group (ACR <3mg/mmol)

	ACR subg	roups	ups Reference (ACR <3mg/mmol) F		Risk Difference	Risk Difference	
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% Cl	M-H, Fixe	d, 95% Cl
3.6.1 6 months							
Amin 2013 ACR 3-35mg/mmol	0	6632	0	35046	0.00 [-0.00, 0.00]		
Amin 2013 ACR ≥35mg/mmol	11	1083	0	35046	0.01 [0.00, 0.02]		+-
3.6.2 12 months							
Amin 2013 ACR 3-35mg/mmol	66	6632	0	35046	0.01 [0.01, 0.01]		+
Amin 2013 ACR ≥35mg/mmol	22	1083	0	35046	0.02 [0.01, 0.03]		
3.6.3 18 months							
Amin 2013 ACR 3-35mg/mmol	133	6632	350	35046	0.01 [0.01, 0.01]		+
Amin 2013 ACR ≥35mg/mmol	54	1083	350	35046	0.04 [0.03, 0.05]		-+
3.6.4 24 months							
Amin 2013 ACR 3-35mg/mmol	199	6632	701	35046	0.01 [0.01, 0.01]		+
Amin 2013 ACR ≥35mg/mmol	76	1083	701	35046	0.05 [0.03, 0.07]		— —
						-0.05 -0.025 0 Lower probability	0.025 0.05 Greater probability

Figure 113: Probability of ESRD at different time points by ACR subgroup versus reference group (ACR <3mg/mmol)

	ACR subg	roups	Reference (ACR <3r	ng/mmol)	Risk Difference	Risk Difference	
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl	
3.8.1 6 months							
Amin 2013 ACR 3-35mg/mmol	0	6632	0	35046	0.00 [-0.00, 0.00]		
Amin 2013 ACR ≥35mg/mmol	32	1083	0	35046	0.03 [0.02, 0.04]	+	
3.8.2 12 months							
Amin 2013 ACR 3-35mg/mmol	66	6632	0	35046	0.01 [0.01, 0.01]	+	
Amin 2013 ACR ≥35mg/mmol	54	1083	0	35046	0.05 [0.04, 0.06]		
3.8.3 18 months							
Amin 2013 ACR 3-35mg/mmol	66	6632	0	35046	0.01 [0.01, 0.01]	+	
Amin 2013 ACR ≥35mg/mmol	87	1083	0	35046	0.08 [0.06, 0.10]	-+	
3.8.4 24 months							
Amin 2013 ACR 3-35mg/mmol	133	6632	0	35046	0.02 [0.02, 0.02]	+	
Amin 2013 ACR ≥35mg/mmol	108	1083	0	35046	0.10 [0.08, 0.12]	-+	

-0.1 -0.05 0 0.05 0.1 Lower probability Greater probability

Figure 114: Probability of RRT at different time points by ACR subgroup versus reference group (ACR <35mg/mmol)

	ACR subgroups		Reference (ACR<35mg	ı/mmol)	Risk Difference	Risk Difference	
Study or Subgroup	Events	Total	Events Total		M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl	
3.3.1 6 months							
Lorenzo 2010 ACR 35-170	2	107	0	90	0.02 [-0.01, 0.05]	+	
Lorenzo 2010 ACR ≥170	4	136	0	90	0.03 [-0.00, 0.06]	+	
3.3.2 12 months							
Lorenzo 2010 ACR 35-170	11	107	1	90	0.09 [0.03, 0.15]	-+-	
Lorenzo 2010 ACR ≥170	20	136	1	90	0.14 [0.07, 0.20]		
3.3.3 18 months							
Lorenzo 2010 ACR 35-170	15	107	2	90	0.12 [0.05, 0.19]		
Lorenzo 2010 ACR ≥170	48	136	2	90	0.33 [0.24, 0.42]		
3.3.4 24 months							
Lorenzo 2010 ACR 35-170	25	107	3	90	0.20 [0.11, 0.29]	│ _	
Lorenzo 2010 ACR ≥170	71	136	3	90	0.49 [0.40, 0.58]	-+-	
						-0.5 -0.25 0 0.25 0.5 Lower probability Greater probability	

I.6 Progression of CKD after acute kidney injury

I.6.1 Risk of ESRD or CKD progression with an episode of AKI

Figure 115: Risk of progression to CKD stage 3

			Hazard Ratio	Hazaro	d Ratio
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI	IV, Fixe	d, 95% Cl
JONES2012	1.3403 0.156	67	3.82 [2.81, 5.19]	0.1 0.2 0.5	
				Favours AKI	Favours no AKI

Figure 116: Risk of progression to CKD stage 4 (control group = people with acute admission for MI or pneumonia with no ARF or ATN)

			Hazard Ratio	Hazaro	d Ratio
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI	IV, Fixed	d, 95% Cl
1.2.1 Acute tubular n	ecrosis (ATN)				
AMDUR2009	1.89311196	0.29151358	6.64 [3.75, 11.76]		
1.2.2 Acute renal failu	ure (ARF)				
AMDUR2009	1.39376638	0.07340168	4.03 [3.49, 4.65]		+
1.2.3 CKD with ATN o	or ARF				
AMDUR2009	1.87180218	0.01919525	6.50 [6.26, 6.75]		t
			Бал		5 20
			Fave	ours ATN, ARF or CKD	Favours control

National Clinical Guideline Centre 2014

Figure 117: Risk of progression to CKD stage 4 in people with diabetes

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI		d Ratio d, 95% Cl
1.1.1 All patients			, ,		,
THAKAR2011	0.7031 0	.0645	2.02 [1.78, 2.29]		+
1.1.2 Baseline eGFR <	:60				
THAKAR2011	0.4762	0.117	1.61 [1.28, 2.02]		-+
1.1.3 Baseline eGFR 6	0-90				
THAKAR2011	0.8459 0	.0961	2.33 [1.93, 2.81]		-+
1.1.4 Baseline eGFR >	90				
THAKAR2011	0.8198 0	.1505	2.27 [1.69, 3.05]		-+
				0.2 0.5	
				•	Favours DM and no AKI

Figure 118: Risk of progression to CKD stage 4 or ESRD (composite outcome)

			Hazard Ratio	Hazard Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI	IV, Fixed, 95% CI	
LO2009	3.3358	0.1462	28.10 [21.10, 37.43]	+	_
				0.02 0.1 1 10 5	50
				Favours AKI Favours no AKI	

 ${\rm LO2009^{395}}$ only looked at dialysis requiring AKI and defined ESRD as CKD stage 5

Figure 119: Risk of ESRD or doubling of serum creatinine (*referent group = no AKI, normal proteinuria and eGFR≥60ml/ min/1.73m²)

			Hazard Ratio	Hazaro	l Ratio
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI	IV, Fixed	l, 95% Cl
2.3.1 Baseline eGFR ≥60mI	_/ min/1.73m2				
JAMES2010A Normal P/U	3.4012 0	0.1139	30.00 [24.00, 37.50]		+
JAMES2010A Mild P/U	3.6636 0	0.1512	39.00 [29.00, 52.45]		+
JAMES2010A Heavy P/U	4.6728 0	0.1679	107.00 [76.99, 148.69]		+
2.3.2 Baseline eGFR 45-59.	9mL/ min/1.73m2				
JAMES2010A Normal P/U	3.0445 0	0.1387	21.00 [16.00, 27.56]		+
JAMES2010A Mild P/U	3.1355 0	0.1852	23.00 [16.00, 33.07]		+
JAMES2010A Heavy P/U	4.4659 0).1728	87.00 [62.01, 122.07]		+
2.3.3 Baseline eGFR 30-44.	9mL/ min/1.73m2				
JAMES2010A Normal P/U	3.1781 0	0.1468	24.00 [18.00, 32.00]		+
JAMES2010A Mild P/U	3.4965 0	0.1625	33.00 [24.00, 45.38]		+
JAMES2010A Heavy P/U	4.382 0	0.1641	80.00 [58.00, 110.35]		+
2.3.4 Baseline eGFR 15-29.	9mL/ min/1.73m2				
JAMES2010A Normal P/U	3.912 0	0.1676	50.00 [36.00, 69.44]		+
JAMES2010A Mild P/U	4.3307 0	0.1744	76.00 [53.99, 106.97]		+
JAMES2010A Heavy P/U	5.4381 0	0.1695	230.00 [164.99, 320.64]		+
				0.005 0.1	10 200
				•••••	Favours no AKI*

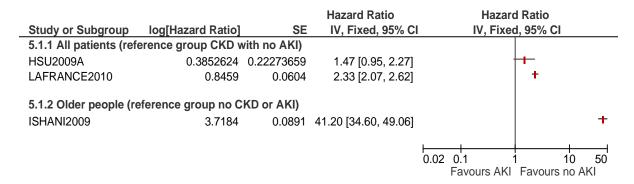
P/U=Proteinuria

Figure 120: Risk of ESRD in people with no prior CKD

	Le efficience de De Cell	05	Hazard Ratio	Hazard Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	IV, Fixed, 95% CI	IV, Fixed, 95% CI	
2.4.1 All patients					
WALD2009	2.7434	0.2431	15.54 [9.65, 25.02]		-+-
2.4.2 Older people					
ISHANI2009	2.5649	0.1041	13.00 [10.60, 15.94]		+
				0.05 0.2 1 5 Favours AKI Favours r	20 no AKI

WALD2009⁷⁰⁶ defined ESRD as chronic dialysis beginning .30 days after discharge and lasting \geq 90 days. Mean age 62 years. ISHANI2009³⁰⁴ defined ESRD as enrolment in the ESRD program. Excluded people <67 years; mean age 79.2

Figure 121: Risk of ESRD in mixed population (CKD and no CKD) at baseline


		Hazard Ratio	Hazard Ratio
Study or Subgroup Id	og[Hazard Ratio] S	E IV, Fixed, 95% CI	IV, Fixed, 95% CI
2.5.1 All patients (all AK	I)		
WALD2009	1.1725 0.091	4 3.23 [2.70, 3.86]	+
2.5.2 All patients underg	joing coronary angiogra	aphy (mild AKI)	
JAMES2011B	1.4231 0.296	4.15 [2.32, 7.42]	
2.5.3 All patients underg	joing coronary angiogra	aphy (moderate to severe A	AKI)
JAMES2011B	2.463 0.311	1 11.74 [6.38, 21.60]	
2.5.4 Older people (all A	KI)		
ISHANI2009	1.9081 0.067	9 6.74 [5.90, 7.70]	+
			0.02 0.1 1 10 50 Favours AKI Favours no AKI
JAMES2011B 2.5.4 Older people (all A	2.463 0.311 KI)	1 11.74 [6.38, 21.60]	0.02 0.1

 $WALD2009^{706}$ defined ESRD as chronic dialysis beginning .30 days after discharge and lasting ≥ 90 days. Mean age 62 years.

JAMES2011B³⁰⁹ defined ESRD as dialysis dependence or renal transplant. Mean age no AKI=62.6 years; mild AKI=68.0 years; moderate to severe AKI= 67.4 years.

ISHANI2009³⁰⁴ defined ESRD as enrolment in the ESRD program. Excluded people <67 years; mean age 79.2 years.

Figure 122: Risk of ESRD in people with CKD

HSU2009²⁸⁵ only looked at dialysis requiring AKI and defined ESRD as start of RRT in people who did not develop ESRD within 30 days of discharge. Mean age 66.6 years AKI group: 73.5 years in no AKI group.

LAFRANCE2010³⁶⁶ defined ESRD as start of chronic dialysis initiation. Mean age 69.8

ISHANI2009³⁰⁴ defined ESRD as enrolment in the ESRD program. Excluded people <67 years; mean age 79.2 years.

Figure 123: Risk of ESRD in older people after small increases in serum creatinine

Study or Subgroup	log[Hazard Ratio]	SE	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% Cl
4.1.1 Serum creatinin	M		,,	
NEWSOME2008	0.3716 0.096	66	1.45 [1.20, 1.75]	+
4.1.2 Serum creatinin	e increase 0.2 mg/dL			
NEWSOME2008	0.678 0.100	61	1.97 [1.60, 2.43]	+
4.1.3 Serum creatinin	e increase 0.3-0.5mg/dL			
NEWSOME2008	0.8587 0.084	44	2.36 [2.00, 2.78]	+
4.1.4 Serum creatinin	e increase 0.6-3.0mg/dL			
NEWSOME2008	1.1817 0.090	05	3.26 [2.73, 3.89]	+
				0.1 0.2 0.5 1 2 5 10 Favours AKI Favours no AKI

I.7 Low protein diet

I.7.1 Low protein diet compared to higher protein diet in people with CKD

Figure 124: Progression of CKD (measured by end stage renal disease requiring RRT) (Hazard ratios)

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% C	Hazard Ratio IV, Fixed, 95% Cl
1.1.1 48 months				, ,	
Cianciaruso 2008 Subtotal (95% CI)	-0.0202	0.218979	100.0% 1 00.0%	0.98 [0.64, 1.51] 0.98 [0.64, 1.51]	
Heterogeneity: Not app Test for overall effect: 2					
1.1.2 11 years					
Klahr 1994 (MDRD) Subtotal (95% CI)	-0.1165338	0.1162804	100.0% 1 00.0%	0.89 [0.71, 1.12] 0.89 [0.71, 1.12]	
Heterogeneity: Not app Test for overall effect: 2					
					0.1 0.2 0.5 1 2 5 10 Favours low protein diet Favours higher protein

Figure 125: Progression of CKD (measured by end stage renal disease requiring RRT)

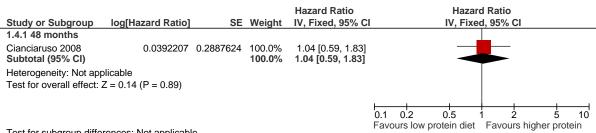

	Low protei	n diet	Higher prote	in diet		Risk Ratio	Risk	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fix	ed, 95% Cl
1.2.1 24 months								
Williams 1991 Subtotal (95% CI)	1	31 31	1	29 29	100.0% 1 00.0%	0.94 [0.06, 14.27] 0.94 [0.06, 14.27]		
Total events Heterogeneity: Not app	1 licable	51	1	25	100.070	0.04 [0.00, 14.21]		
Test for overall effect: Z	Z = 0.05 (P =	0.96)						
1.2.2 48 months								
Rosman 1989 Subtotal (95% CI)	7	74 74	3	77 77	100.0% 1 00.0%	2.43 [0.65, 9.04] 2.43 [0.65, 9.04]	_	
Total events Heterogeneity: Not app			3					
Test for overall effect: 2	2 = 1.32 (P =	0.19)						
							0.05 0.2 Favours low protein diet	1 5 2

Figure 126: Progression of CKD (measured by change in GFR)

	Low p	orotein	diet	Higher	protein	diet		Mean Difference	Mean Difference
Study or Subgroup	Mean	-	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	IV, Fixed, 95% CI
1.3.1 12 months (fina	l values,	ml/mir	n/1.73m	2)					
Meloni 2004 Subtotal (95% CI)	41.8	2.4	44 44	38.3	3.8	45 45	100.0% 1 00.0%	3.50 [2.18, 4.82] 3.50 [2.18, 4.82]	
Heterogeneity: Not app Test for overall effect:		(P < 0.0	00001)						
1.3.2 12 months (ml/n	nin/year))							
Meloni 2002 Subtotal (95% CI)	-6.15	1.61	35 35	-6.26	1.84		100.0% 100.0%	0.11 [-0.71, 0.93] 0.11 [-0.71, 0.93]	
Heterogeneity: Not app Test for overall effect:		(P = 0.3	79)					• • •	
1.3.3 12 months (ml/n	nin/mon	th)							
Brouhard 1990 Subtotal (95% CI)	-0.28	0.15	8 8	-0.68	0.4		100.0% 100.0%	0.40 [0.09, 0.71] 0.40 [0.09, 0.71]	•
Heterogeneity: Not app Test for overall effect:		(P = 0.0	01)						
1.3.4 30-36 months (n	nl/min/m	onth)							
Zeller 1991 Subtotal (95% CI)	-0.25	0.09	20 20	-1.06	0.32	15 15	100.0% 100.0%	0.81 [0.64, 0.98] 0.81 [0.64, 0.98]	•
Heterogeneity: Not app Test for overall effect:		(P < 0.0	00001)						
1.3.5 48 months (ml/n	nin/mon	th)							
Cianciaruso 2008 Subtotal (95% CI)	-0.19	0.48	200 200	-0.18	0.46	192 1 92		-0.01 [-0.10, 0.08] -0.01 [-0.10, 0.08]	.
Heterogeneity: Not app Test for overall effect:		(P = 0.8	33)						
									-10 -5 0 5 10 Favours higher protein Favours low protein diet

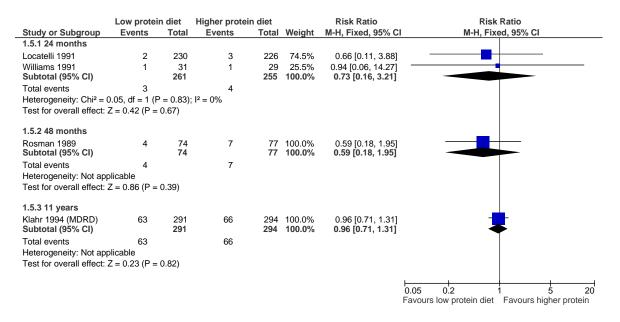

National Clinical Guideline Centre 2014

Figure 127: Mortality (all-cause and cardiovascular) (Hazard ratios)

Test for subgroup differences: Not applicable

Mortality (all-cause and cardiovascular) Figure 128:

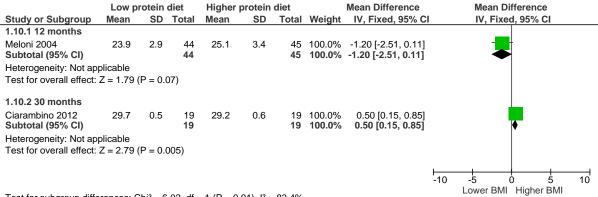

Compliance (measured by actual protein intake) 12-18 months Figure 129:

Figure 130: Compliance (measured by actual protein intake) – 18-36 months

	Low	protein	diet	Highe	r protein	diet		Mean Difference	Mean	Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	I IV, Fix	ed, 95% Cl
1.8.2 18-24 months										
Williams 1991 Subtotal (95% CI)	0.69	0.115	31 31	1.14	0.283	29 29	100.0% 100.0%	-0.45 [-0.56, -0.34] -0.45 [-0.56, -0.34]		
Heterogeneity: Not app	olicable									
Test for overall effect:	Z = 7.97	(P < 0.0	00001)							
1.8.3 24-36 months										
Klahr 1994 (MDRD)	0.77	0.12	286	1.11	0.14	292	87.8%	-0.34 [-0.36, -0.32]		
Zeller 1991 Subtotal (95% CI)	0.72	0.06	20 306	1.08	0.1	15 307	12.2% 100.0%	-0.36 [-0.42, -0.30] -0.34 [-0.36, -0.32]	Ŧ	
Heterogeneity: Chi ² = 0 Test for overall effect:	,									
									⊢ <u></u> -1 -0.5	0 0.5

Figure 131: Nutritional status (measured by change in BMI)

Test for subgroup differences: $Chi^2 = 6.02$, df = 1 (P = 0.01), l² = 83.4%

Figure 11: Health related quality of life

	Low pr	rotein	diet	Higher	protein	diet		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.6.1 SF-36 MCS									
Ciarambino 2012	36.8	0.5	19	49	0.6	19	70.4%	-12.20 [-12.55, -11.85]	
Subtotal (95% CI)			19			19	70.4%	-12.20 [-12.55, -11.85]	
Heterogeneity: Not app	plicable								
Test for overall effect:	Z = 68.09	(P < 0	0.00001)						
1.6.2 SF-36 PCS									
Ciarambino 2012	37	0.8	19	48	0.9	19	29.6%	-11.00 [-11.54, -10.46]	
Subtotal (95% CI)			19			19	29.6%	-11.00 [-11.54, -10.46]	•
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 39.82	(P < 0	0.00001)						
Total (95% CI)			38			38	100.0%	-11.84 [-12.14, -11.55]	•
Heterogeneity: Chi2 =	13.28, df =	= 1 (P	= 0.000	3); l ² = 92 ⁴	%				
Test for overall effect:	Z = 78.79	(P < 0	.00001))					-20 -10 0 10 20 Favours higher protein Favours low protein di
Test for subgroup diffe	erences: C	hi² = 1	3.28, df	= 1 (P = 0	0.0003)	l ² = 92.	5%		avours nigher protein Favours low protein di

I.8 Self-management

I.8.1 Self-management support systems

Figure 132: Progression of CKD (eGFR)

	Self m	Self management			Usual care			Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV, Fixed	, 95% CI	
Chen 2011	29.11	20.61	27	15.72	10.67	27	100.0%	13.39 [4.64, 22.14]				
Total (95% CI)			27			27	100.0%	13.39 [4.64, 22.14]			\blacklozenge	
Heterogeneity: Not app Test for overall effect: 2		(P = 0.00	03)							25 0 Isual care	2 Favours s	50 50 gement

Figure 133: Dialysis

	Self manage	ement	Usual o	are	Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	CI M-H, Fixed, 95% CI
Barrett 2011	2	238	1	236	100.0%	1.98 [0.18, 21.72]]
Total (95% CI)		238		236	100.0%	1.98 [0.18, 21.72]	
Total events	2		1				
Heterogeneity: Not ap	plicable						
Test for overall effect: $Z = 0.56$ (P = 0.58)						F	Favours self management Favours usual care

Figure 134: Mortality all cause

	Self manage	ment	Usual o	are		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% Cl
Barrett 2011	7	238	2	236	57.2%	3.47 [0.73, 16.53]	
Chen 2011	0	27	1	27	42.8%	0.33 [0.01, 7.84]	
Total (95% CI)		265		263	100.0%	2.13 [0.60, 7.50]	
Total events	7		3				
Heterogeneity: Chi ² =	1.70, df = 1 (P	= 0.19);	l² = 41%				0.005 0.1 1 10 200
Test for overall effect:	Z = 1.18 (P = 0).24)				Fa	avours self management Favours usual care

Figure 135: Mortality cardiovascular

	Self manage	ement	Usual o	are		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	CI M-H, Fixed, 95% CI
Barrett 2011	2	238	2	236	100.0%	0.99 [0.14, 6.98]	
Total (95% CI)		238		236	100.0%	0.99 [0.14, 6.98]	
Total events	2		2				
Heterogeneity: Not ap Test for overall effect:).99)				F	0.01 0.1 1 10 100 Favours self management Favours usual care

Figure 136: Hospitalisation all cause

	Experime	ental	Contr	Control		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% Cl
Chen 2011	5	27	12	27	100.0%	0.42 [0.17, 1.02]	
Total (95% CI)		27		27	100.0%	0.42 [0.17, 1.02]	\bullet
Total events	5		12				
Heterogeneity: Not ap Test for overall effect:		= 0.06)				F	0.01 0.1 1 10 100 avours self management Favours usual care

Figure 137: Adherence to treatments

	Self manage				Risk Ratio		Risk Ra	atio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	;	M-H, Fixed,	95% CI	
Williams 2012	24	36	25	39	100.0%	1.04 [0.75, 1.45]				
Total (95% CI)		36		39	100.0%	1.04 [0.75, 1.45]		-		
Total events	24		25							
Heterogeneity: Not ap Test for overall effect:		.82)				F	0.2 0. avours self mana		2 avours us	5 ual care

Blood pressure – combined renin-angiotensin-aldosterone system 1.9 antagonists

ACE inhibitors versus placebo I.9.1

Progression of CKD – measured by change in eGFR 1.9.1.1

Figure 138: ACE inhibitor vs.placebo in people with CKD and diabetes - Hazard ratio

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% (Hazard Ratio CI IV, Fixed, 95% CI
10.1.1 Time to event Lewis 1993 Subtotal (95% CI)	-0.35667494	0.1324061	100.0% 1 00.0%	0.70 [0.54, 0.91 0.70 [0.54, 0.9 1]	
Heterogeneity: Not app Test for overall effect: 2					
					0.1 0.2 0.5 1 2 5 10 Favours ACE inhibitor Favours placebo

ACE inhibitor vs.placebo in people with CKD and diabetes - Mean difference Figure 139:

	ACE	inhibi	tor	Pla	acebo			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Ahmad 1997 (type 2 DM)	119	12	46	119	15.5	44	0.4%	0.00 [-5.74, 5.74]	_
Ahmad 2003 (type 1 DM)	126	15	37	121	20.1	36	0.2%	5.00 [-3.15, 13.15]	+
Lebovitz 1994 (macro- a)	-0.533	0.84	28	-0.785	1.07	18	43.4%	0.25 [-0.33, 0.84]	•
Lebovitz 1994 (micro-a)	-0.003	0.74	17	-0.416	0.88	21	55.8%	0.41 [-0.10, 0.93]	· · · · · · · · · · · · · · · · · · ·
Nankervis 1998	82	33	17	90	26.2	14	0.0%	-8.00 [-28.84, 12.84]	
Total (95% CI)			145			133	100.0%	0.35 [-0.04, 0.73]	
Heterogeneity: Chi ² = 2.05,	df = 4 (P	= 0.73	$(3); I^2 = 0$)%					-50 -25 0 25 50
Test for overall effect: $Z = 1$.77 (P =	0.08)							Favours placebo Favours ACE inhibitor

Progression of CKD – Occurrence of end stage renal disease 1.9.1.2

Figure 140:

ACE inhibitor vs.placebo in people with non-diabetic CKD- Hazard ratio

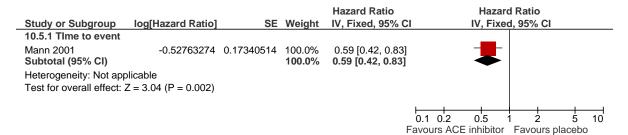

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95%		d Ratio d, 95% Cl
10.3.1 Time to event						
GISEN 1997	-0.61618614	0.26698763	69.1%	0.54 [0.32, 0.91	ıj — <mark>—</mark> —	
Ruggenenti 1999 Subtotal (95% CI)	-1.04982212	0.39937435	30.9% 1 00.0%	0.35 0.16, 0.77 0.47 0.31, 0.73		
Heterogeneity: $Chi^2 = 0$,	-				
Test for overall effect:	Z = 3.38 (P = 0.0007)					
					0.1 0.2 0.5 Favours ACE inhibitor	1 2 5 10 Favours placebo

Figure 141: ACE inhibitor vs.placebo in people with CKD and diabetes - Relative risk

	ACE inh	ibitor	Place	bo		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
Lewis 1993	20	205	31	200	68.1%	0.63 [0.37, 1.07]	
Marre 2004	4	2443	10	2469	21.6%	0.40 [0.13, 1.29]	
Tong 2006 (type 2 DM)	4	18	5	20	10.3%	0.89 [0.28, 2.81]	
Total (95% CI)		2666		2689	100.0%	0.61 [0.39, 0.95]	•
Total events	28		46				
Heterogeneity: Chi ² = 0.9	1, df = 2 (P	= 0.63)	; l ² = 0%				
Test for overall effect: Z =	= 2.21 (P =	0.03)					0.01 0.1 1 10 100 avours ACE inhibitor Favours placebo

I.9.1.3 All-cause mortality

Figure 142: ACE inhibitor vs.placebo in people with CKD (mixed population with and without diabetes) – Hazard ratio

Figure 143: ACE inhibitor vs.placebo in people with CKD - Relative risk

	ACE		Placel			Risk Ratio	Risk Ratio
Study or Subgroup				Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
10.6.1 Non-diabetic CKD (up	o to 2 years	s follow	/-up)				
Ruggenenti 1999	1	99	0	87	0.1%	2.64 [0.11, 63.98]	
GISEN 1997	2	78	1	88	0.1%	2.26 [0.21, 24.41]	
Subtotal (95% CI)		177		175	0.2%	2.40 [0.36, 16.14]	
Total events	3		1				
Heterogeneity: Chi ² = 0.01, df	[•] = 1 (P = 0.	94); l² =	= 0%				
Test for overall effect: Z = 0.9	0 (P = 0.37)					
10.6.4 CKD with Diabetes (u	p to 2 year	s follo	w up)				
Lewis 1993	8	205	14	200	2.1%	0.56 [0.24, 1.30]	+
Marre 2004	334	2443	324	2469	47.8%	1.04 [0.90, 1.20]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)		2648		2669	49.9%	1.02 [0.89, 1.18]	•
Total events	342		338				
Heterogeneity: Chi ² = 2.04, df	= 1 (P = 0.	15); l ² =	= 51%				
Test for overall effect: Z = 0.3	0 (P = 0.77)					
10.6.5 CKD (mixed population	on with/wit	hout d	iabetes,	follow	up=5 yeaı	rs))	
Solomon 2006 (GFR <45)	13	79	20	78	3.0%	0.64 [0.34, 1.20]	
	50	619		570	44.00/		
Solomon 2006 (GFR 45-60)	56	019	72	579	11.0%	0.73 [0.52, 1.01]	
	56 102	1360	72 104	579 1316	11.0% 15.7%	0.73 [0.52, 1.01] 0.95 [0.73, 1.23]	
Solomon 2006 (GFR 60 -74)	102		104				1
Solomon 2006 (GFR 60 -74) Solomon 2006 (GFR 75)	102	1360	104	1316	15.7%	0.95 [0.73, 1.23]	
Solomon 2006 (GFR 60 -74) Solomon 2006 (GFR 75) Subtotal (95% CI)	102	1360 2098	104	1316 2156	15.7% 20.2%	0.95 [0.73, 1.23] 0.95 [0.76, 1.20]	•
Solomon 2006 (GFR 60 -74) Solomon 2006 (GFR 75) Subtotal (95% CI) Total events	102 128 299	1360 2098 4156	104 138 334	1316 2156	15.7% 20.2%	0.95 [0.73, 1.23] 0.95 [0.76, 1.20]	•
Solomon 2006 (GFR 45-60) Solomon 2006 (GFR 60 -74) Solomon 2006 (GFR 75) Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3.03, df Test for overall effect: Z = 1.63	102 128 299 5 = 3 (P = 0.	1360 2098 4156 39); l ² =	104 138 334	1316 2156	15.7% 20.2%	0.95 [0.73, 1.23] 0.95 [0.76, 1.20]	•
Solomon 2006 (GFR 60 -74) Solomon 2006 (GFR 75) Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3.03, df	102 128 299 5 = 3 (P = 0.	1360 2098 4156 39); l ² =	104 138 334	1316 2156	15.7% 20.2% 49.9%	0.95 [0.73, 1.23] 0.95 [0.76, 1.20]	
Solomon 2006 (GFR 60 -74) Solomon 2006 (GFR 75) Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3.03, df Test for overall effect: Z = 1.63 Total (95% CI)	102 128 299 5 = 3 (P = 0.	1360 2098 4156 39); l ² =	104 138 334	1316 2156 4129	15.7% 20.2% 49.9%	0.95 [0.73, 1.23] 0.95 [0.76, 1.20] 0.88 [0.76 , 1.03]	
Solomon 2006 (GFR 60 -74) Solomon 2006 (GFR 75) Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3.03, df Test for overall effect: Z = 1.63 Total (95% CI) Total events	102 128 299 5 = 3 (P = 0. 3 (P = 0.10 644	1360 2098 4156 39); l ² =) 6981	104 138 334 = 1%	1316 2156 4129	15.7% 20.2% 49.9%	0.95 [0.73, 1.23] 0.95 [0.76, 1.20] 0.88 [0.76 , 1.03]	
Solomon 2006 (GFR 60 -74) Solomon 2006 (GFR 75) Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3.03, df Test for overall effect: Z = 1.63 Total (95% CI)	102 128 299 5 = 3 (P = 0. 3 (P = 0.10 644 5 = 7 (P = 0.	1360 2098 4156 39); l ² =) 6981 33); l ² =	104 138 334 = 1%	1316 2156 4129	15.7% 20.2% 49.9%	0.95 [0.73, 1.23] 0.95 [0.76, 1.20] 0.88 [0.76 , 1.03]	0.01 0.1 1 10 Favours ACEI Favours place

I.9.1.4 Cardiovascular mortality

Figure 144: ACE inhibitor vs.placebo in people with CKD (with or without diabetes) – Hazard ratio

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% C	I	Hazard Rat IV, Fixed, 95		
10.7.1 Time to event								
Mann 2001 Subtotal (95% CI)	-0.52763274	0.21121602	100.0% 1 00.0%	0.59 [0.39, 0.89] 0.59 [0.39, 0.89]				
Heterogeneity: Not app Test for overall effect: 2								
					0.1 0.2	0.5 1	2 5	10

Favours ACE inhibitor Favours placebo

Figure 145: ACE inhibitor vs.placebo in people with CKD - Relative risk

	ACE inh	ibitor	Place	bo		Risk Ratio		Risk Ratio	•
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95%	CI I	M-H, Random, 9	95% CI
10.8.1 CKD without diabetes									
Asselbergs 2004	5	431	3	433	1.2%	1.67 [0.40, 6.96	5]		
Subtotal (95% CI)		431		433	1.2%	1.67 [0.40, 6.96]		
Total events	5		3						
Heterogeneity: Not applicable									
Test for overall effect: Z = 0.71	(P = 0.48)								
10.8.4 CKD with diabetes									
Marre 2004	141	2443	133	2469	47.7%	1.07 [0.85, 1.35	5]		
Subtotal (95% CI)		2443		2469	47.7%	1.07 [0.85, 1.35]	•	
Total events	141		133						
Heterogeneity: Not applicable									
Test for overall effect: Z = 0.59	(P = 0.56)								
10.8.5 CKD (mixed populatio	n with/with	nout dia	betes)						
Solomon 2006 (GFR <45)	11	79	14	78	4.8%	0.78 [0.38, 1.60	0		
Solomon 2006 (GFR 45-60)	28	619	36	579	10.9%	0.73 [0.45, 1.18	;]		
Solomon 2006 (GFR 60 -74)	46	1352	49	1324	16.2%	0.92 [0.62, 1.36]		
Solomon 2006 (GFR 75)	61	2103	53	2120	19.2%	1.16 [0.81, 1.67	1		
Subtotal (95% CI)		4153		4101	51.1%	0.94 [0.75, 1.17]]	•	
Total events	146		152						
Heterogeneity: Tau ² = 0.00; Ch	ni² = 2.67, c	f = 3 (P	= 0.45);	$^{2} = 0\%$					
Test for overall effect: Z = 0.55	(P = 0.58)								
Total (95% CI)		7027		7003	100.0%	1.01 [0.86, 1.18	1	•	
Total events	292		288						
Heterogeneity: Tau ² = 0.00; Ch	ni² = 3.81, c	f = 5 (P	= 0.58);	² = 0%					2 5 1
Test for overall effect: Z = 0.09	(P = 0.93)						0.1 0.2	0.5 1 E inhibitor Favo	
Test for subgroup differences:	Chi ² = 1.15	, df = 2	(P = 0.56), $I^2 = 0$	%		Favours ACI	= IIIIIDILOI Favo	Juis placebo

I.9.1.5 Cardiovascular events

Figure 146: ACE inhibitor vs.placebo in people with non-diabetic CKD - Hazard ratio

				Hazard Ratio		Hazard Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% C	I IV	, Fixed, 95%	CI
10.9.1 Time to event							
Mann 2001 MI	-0.24846136	0.18761813	37.2%	0.78 [0.54, 1.13]			
Mann 2001 Revasc.	-0.04082199	0.16115243	50.4%	0.96 [0.70, 1.32]			
Mann 2001 Stroke Subtotal (95% CI)	-0.18632958	0.32380747	12.5% 1 00.0%	0.83 [0.44, 1.57] 0.87 [0.70, 1.09]	-	•	
Heterogeneity: Chi ² = 0 Test for overall effect:	, , ,	; l ² = 0%					
						5 1 2	5 10

0.1 0.2 0.5 1 2 5 10 Favours ACE inhibitor Favours placebo

Figure 147: ACE inhibitor vs.placebo in people with CKD (with diabetes unless stated) - Relative risk

	ACE inhi	bitor	Placel	00		Risk Ratio	Risk Ratio
Study or Subgroup	Events		Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% Cl
10.10.1 Any event - non-	diabetic C	KD					
GISEN 1997	1	78	1	88	0.4%	1.13 [0.07, 17.74]	
Ruggenenti 1999	1	99	0	87	0.2%	2.64 [0.11, 63.98]	
Subtotal (95% CI)		177		175	0.6%	1.67 [0.22, 12.93]	
Total events	2		1				
Heterogeneity: Chi ² = 0.16			$I^2 = 0\%$				
Test for overall effect: Z =	0.49 (P = 0).62)					
10.10.3 Myocardial infar	ction						
Marre 2004	52	2443	59	2469	25.0%	0.89 [0.62, 1.29]	
O'Hare 2000 Ramipril 5	1	33	1	46	0.4%	1.39 [0.09, 21.49]	_
Subtotal (95% CI)		2476		2515	25.3%	0.90 [0.62, 1.29]	•
Total events	53		60				
Heterogeneity: Chi ² = 0.10), df = 1 (P	= 0.75);	l ² = 0%				
Test for overall effect: Z =	0.58 (P = 0).56)					
10.10.4 Heart failure							
Marre 2004	76	2443	91	2469	38.5%	0.84 [0.63, 1.14]	+
Subtotal (95% CI)		2443		2469	38.5%	0.84 [0.63, 1.14]	•
Total events	76		91				
Heterogeneity: Not application	able						
Test for overall effect: Z =	1.11 (P = 0).27)					
10.10.5 Stroke							
Marre 2004	89	2443	84	2469	35.5%	1.07 [0.80, 1.44]	+
Subtotal (95% CI)		2443	51	2469	35.5%	1.07 [0.80, 1.44]	
Total events	89		84				ĺ
Heterogeneity: Not application			• ·				
Test for overall effect: Z =).65)					
Total (95% CI)		7539		7628	100.0%	0.94 [0.79, 1.13]	•
Total events	220		236]
Heterogeneity: Chi ² = 1.8 ⁴		= 0.87).					
Test for overall effect: Z =							
Test for subgroup differen	``	,	0 (D	0.05	2 00/	ł	Favours ACE inhibitor Favours placebo

I.9.1.6 Change in proteinuria

Progression to clinical proteinuria

Figure 148: ACE inhibitor vs.placebo in people with CKD and diabetes - Hazard ratio

Study or Subgroup	log[Hazard Ratio]	SE	Weiaht	Hazard Ratio IV, Fixed, 95% C	1		d Ratio d, 95% Cl		
10.11.1 Time to event	<u> </u>			, , , , , , , , , , , , , , , , , , , ,			,		
Laffel 1995 (type 1 DM) Subtotal (95% CI)	-1.2039728	0.56052677	100.0% 1 00.0%	0.30 [0.10, 0.90] 0.30 [0.10, 0.90]					
Heterogeneity: Not applica Test for overall effect: Z =									
					⊢ 0.01	0.1) 100	+

Favours ACE inhibitor Favours placebo

Figure 149: ACE inhibitor vs.placebo in people with CKD (with diabetes unless stated) - Relative risk

	ACE inh		Place			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
10.12.1 <1 year							
Muirhead 1999 Subtotal (95% CI)	1	29 29	3	31 31	2.8% 2.8%	0.36 [0.04, 3.23] 0.36 [0.04, 3.23]	
Fotal events	1		3				
Heterogeneity: Not applicat							
Test for overall effect: Z = 0	0.92 (P = 0.3	36)					
10.12.2 <2 years							
D'Hare 2000 Ramipril 5	4	44	5	46	4.7%	0.84 [0.24, 2.91]	
Penno 1998	3	41	6	34	6.3%	0.41 [0.11, 1.54]	
/iberti 1994	4	44	12	44	11.5%	0.33 [0.12, 0.95]	
Subtotal (95% CI)		129		124	22.5%	0.46 [0.24, 0.90]	•
Fotal events	11		23				
Heterogeneity: Chi ² = 1.27,	df = 2 (P =	0.53); l ²	² = 0%				
Test for overall effect: Z = 2	.26 (P = 0.0	02)					
10.12.4 >3years							
Ahmad 1997 (type 2 DM)	4	46	12	44	11.8%	0.32 [0.11, 0.91]	
Ahmad 2003 (type 1 DM)	3	37	11	36	10.7%	0.27 [0.08, 0.87]	
Jerums 2004	2	11	7	15	5.7%	0.39 [0.10, 1.53]	
Ravid 1993	6	49	19	45	19.0%	0.29 [0.13, 0.66]	_
Subtotal (95% CI)		143		140	47.1%	0.30 [0.18, 0.51]	◆
Total events	15		49				
Heterogeneity: Chi ² = 0.20,	df = 3 (P =	0.98); l	$^{2} = 0\%$				
Test for overall effect: Z = 4	.44 (P < 0.0	00001)					
10.12.5 Non-diabetic CKD	(2.5years	follow ι	ib)				
Ruggenenti 1999	15	99	27	87	27.6%	0.49 [0.28, 0.86]	- -
Subtotal (95% CI)		99		87	27.6%	0.49 [0.28, 0.86]	\bullet
Total events	15		27				
Heterogeneity: Not applicat	ole						
Test for overall effect: Z = 2	.50 (P = 0.0	D1)					
Total (95% CI)		400		382	100.0%	0.39 [0.28, 0.54]	•
Fotal events	42		102		/0		•
Heterogeneity: Chi ² = 3.18,		0.92) - 14				1	⊢
101010g01101ty. 0111 = 0.10,		0.02/,1	- 070				

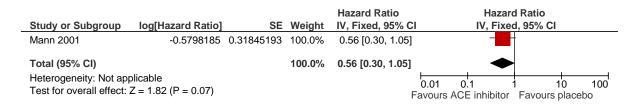
Albumin excretion rate / 24hours

Figure 150: ACE inhibitor vs.placebo in people with CKD and diabetes - Standardised mean difference

	AC	E inhibi	tor	Р	lacebo		:	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
10.13.1 <2 years									
Lebovitz 1994-1 Subtotal (95% CI)	2.53	3.1	26 26	4.36	4.4	18 18	16.2% 16.2%	-0.49 [-1.10, 0.12] -0.49 [-1.10, 0.12]	•
Heterogeneity: Not applica	ble								
Test for overall effect: Z =	1.57 (P =	0.12)							
10.13.2 <3 years									
Nankervis 1998 Subtotal (95% CI)	3.2	3.4	17 17	4.8	2.5	14 14	12.7% 12.7%	-0.51 [-1.23, 0.21] -0.51 [-1.23, 0.21]	•
Heterogeneity: Not applica Test for overall effect: Z =		0.16)							
10.13.3 >3 years									
Ahmad 1997 (type 2 DM)	28.8	84.96	46	122.4	129.6	44	25.3%	-0.85 [-1.28, -0.42]	•
Ahmad 2003 (type 1 DM)	33	31.5	37	215	212.6	36	21.2%	-1.19 [-1.69, -0.69]	+
Ravid 1993 Subtotal (95% CI)	0.14	0.104	49 132	0.31	0.167	45 125	24.6% 71.1%	-1.22 [-1.67, -0.78] -1.08 [-1.34, -0.81]	₩
Heterogeneity: Tau ² = 0.00 Test for overall effect: Z =				= 0.43);	l ² = 0%				
Total (95% CI)			175			157	100.0%	-0.91 [-1.20, -0.62]	•
Heterogeneity: Tau ² = 0.04 Test for overall effect: Z = Test for subgroup difference	6.17 (P <	0.0000	1)	,					-10 -5 0 5 10 Favours ACE inhibitor Favours placebo

I.9.1.7 Regression to normoalbuminuria

Figure 151: ACE inhibitor vs.placebo in people with CKD and diabetes - Relative risk


	ACE inhi	bitor	Placel	oo		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
10.14.1 <2 years							
O'Hare 2000 Ramipril 5	9	44	2	46	11.1%	4.70 [1.08, 20.57]	
Penno 1998	19	41	11	34	68.5%	1.43 [0.80, 2.58]	
Subtotal (95% CI)		85		80	79.6%	1.89 [1.09, 3.27]	◆
Total events	28		13				
Heterogeneity: Chi ² = 2.32,	df = 1 (P	= 0.13);	l ² = 57%				
Test for overall effect: $Z = 2$	2.28 (P = 0	.02)					
10.14.2 <3 years							
Crepaldi 1998	4	30	1	28	5.9%	3.73 [0.44, 31.41]	
Subtotal (95% CI)		30		28	5.9%	3.73 [0.44, 31.41]	
Total events	4		1				
Heterogeneity: Not applicat	ole						
Test for overall effect: $Z = 1$.21 (P = 0	.23)					
10.14.3 >3years							
Jerums 2004	1	11	3	15	14.5%	0.45 [0.05, 3.81]	
Subtotal (95% CI)		11	-	15	14.5%	0.45 [0.05, 3.81]	
Total events	1		3				
Heterogeneity: Not applicat	ble						
Test for overall effect: $Z = 0$.47)					
Total (95% CI)		126		123	100.0%	1.79 [1.08, 2.97]	•
Total events	33		17			- / -	
Heterogeneity: $Chi^2 = 4.26$,		= 0 23).					
Test for overall effect: $Z = 2$			0070				0.01 0.1 1 10 100
Test for subgroup difference		,	- 2 (P -	0 35) 1	2 - 4 4%		Favours placebo Favours ACE inhibitor
	00. On -	2.00, UI	- 2 (1 =	0.007.1	/0		

Chronic kidney disease

Forest plots


1.9.1.8 Hospitalisation (due to heart failure)

Figure 152: ACE inhibitor vs.placebo in people with CKD (with and without diabetes) - Hazard ratio

1.9.1.9 Hospitalisation (for non-fatal myocardial infarction, heart failure, peripheral vascular disease or cerebrovascular accident).

Figure 153: ACE inhibitor vs.placebo in people with CKD (without diabetes)

I.9.2 ARB versus placebo

I.9.2.1 Progression of CKD – measured by change in eGFR

Figure 154: ARB vs.placebo in people with CKD and diabetes - Hazard ratio

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% Cl
Brenner 2001	-0.26136476	0.11054848	100.0%	0.77 [0.62, 0.96]	
Total (95% CI)			100.0%	0.77 [0.62, 0.96]	•
Heterogeneity: Not app Test for overall effect: 2					0.1 0.2 0.5 1 2 5 10 Favours ARB Favours placebo

Figure 155: ARB vs.placebo in people with non-diabetic CKD - Mean difference

		ARB		Р	lacebo			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Li 2006	72.36	34.2	54	63.39	34.79	55	2.3%	8.97 [-3.98, 21.92]	- <u>-</u>
Shen 2012	44.1	7.7	112	39.1	7.4	114	97.7%	5.00 [3.03, 6.97]	
Total (95% CI)			166			169	100.0%	5.09 [3.14, 7.04]	•
Heterogeneity: Chi ² =		•	,		6				-20 -10 0 10 20
Test for overall effect:	z = 5.12	(P < (0.00001)					Favours placebo Favours ARB

I.9.2.2 Progression of CKD – Occurrence of end stage renal disease

Figure 156: ARB vs.placebo in people with CKD (with and without diabetes) - Hazard ratio

Study or Subgroup	leg[Henerd Detie]	6F	Maight	Hazard Ratio	Hazard Ratio
Study or Subgroup 8.3.1 IgA nephropathy	log[Hazard Ratio]	3E	Weight	IV, Fixed, 95% C	IV, Fixed, 95% Cl
Li 2006	-1.60943791	1.1748099	0.4%	0.20 [0.02, 2.00]	
Subtotal (95% CI)	-1.00343731	1.1740099	0.4%	0.20 [0.02, 2.00]	
Heterogeneity: Not app	licable				-
Test for overall effect: 2	Z = 1.37 (P = 0.17)				
8.3.2 CKD with diabet	es				
Brenner 2001	-0.34249031	0.11205747	42.4%	0.71 [0.57, 0.88]	-
lmai 2011	0.07696104	0.16603489	19.3%	1.08 [0.78, 1.50]	+
Lewis 2001 Subtotal (95% CI)	-0.27443685	0.14677926	24.7% 86.4%	0.76 [0.57, 1.01] 0.80 [0.68, 0.93]	•
Heterogeneity: Chi ² = 4	1.52, df = 2 (P = 0.10)); l² = 56%			
Test for overall effect: 2					
8.3.3 CKD with diabet	es or cardiovascula	ar disease			
Mann 2009 Subtotal (95% CI)	0.25464222	0.20097527	13.2% 13.2%	1.29 [0.87, 1.91] 1 .29 [0.87, 1.91]	-
Heterogeneity: Not app	licable				
Test for overall effect: 2					
Total (95% CI)			100.0%	0.84 [0.73, 0.97]	•
Heterogeneity: Chi ² = 1	1.05, df = 4 (P = 0.03	3); l² = 64%			0.01 0.1 1 10 100
Test for overall effect: 2	(,				Favours ARB Favours placebo
Test for subgroup difference	rences: Chi ² = 6.54, c	df = 2 (P = 0.0)	4), l ² = 69	.4%	

I.9.2.3 All-cause mortality

Figure 157: ARB vs.placebo in people with CKD (with and without diabetes) - Hazard ratio

				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% C	IV, Fixed, 95% CI
8.4.1 CKD with diabe	tes				
Imai 2011	-0.01005034	0.31879562	5.3%	0.99 [0.53, 1.85]	
Lewis 2001	-0.17435339	0.14677926	25.0%	0.84 [0.63, 1.12]	
Subtotal (95% CI)			30.3%	0.86 [0.67, 1.12]	•
Heterogeneity: Chi ² =	0.22, df = 1 (P = 0.64)	; l² = 0%			
Test for overall effect:	Z = 1.09 (P = 0.27)				
8.4.2 Non-diabetic Cl	KD (with heart failure	e)			
Anand 2009	0.00995033	0.08799614	69.7%	1.01 [0.85, 1.20]	🗯
Subtotal (95% CI)			69.7%	1.01 [0.85, 1.20]	•
Heterogeneity: Not ap	plicable				
Test for overall effect:	Z = 0.11 (P = 0.91)				
Total (95% CI)			100.0%	0.96 [0.83, 1.11]	•
Heterogeneity: Chi ² =	1.17, df = 2 (P = 0.56)	; l² = 0%			0.1 0.2 0.5 1 2 5 10
Test for overall effect:	Z = 0.51 (P = 0.61)				Favours ARB Favours placebo
Test for subgroup diffe	erences: Chi² = 0.95, d	lf = 1 (P = 0.3	3), l² = 0%)	

Figure 158: ARB vs.placebo in people with CKD (with and without diabetes) - Relative risk

	ARB	Placeb	0		Risk Ratio	Risk Ratio
Study or Subgroup	Events Tot	al Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
8.5.1 CKD with diabet	tes					
Brenner 2001 Subtotal (95% CI)	158 74 74	8 155 8	762 762	55.9% 55.9%	1.04 [0.85, 1.26] 1.04 [0.85, 1.26]	\$
Total events Heterogeneity: Not app Test for overall effect: 2		155).71)				
8.5.2 CKD (with and v	,	,				
Tobe 2011 Subtotal (95% CI)	133 72 72		751 751	44.1% 44.1%	1.11 [0.89, 1.39] 1.11 [0.89, 1.39]	- -
Total events Heterogeneity: Not app Test for overall effect: 2		123).34)				
Total (95% CI)	147	7	1513	100.0%	1.07 [0.92, 1.24]	•
Total events Heterogeneity: Chi ² = 0 Test for overall effect: 2 Test for subgroup diffe	Z = 0.92 (P = 0).36)		.64), l ² = 0	%	0.2 0.5 1 2 5 Favours ARB Favours placebo

I.9.2.4 Cardiovascular mortality

Figure 159:	ARB vs.placebo in people with CKD and diabetes - Hazard ratio

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% CI
Berl 2003	0.07696104	0.20687375	91.2%	1.08 [0.72, 1.62]	
Imai 2011	1.03318448	0.667166	8.8%	2.81 [0.76, 10.39]	
Total (95% CI)			100.0%	1.17 [0.80, 1.73]	•
Heterogeneity: $Chi^2 = 1.87$, df = 1 (P = 0.17); l ² = 47% Test for overall effect: Z = 0.81 (P = 0.42)					0.01 0.1 1 10 100 Favours ARB Favours placebo

Figure 160: ARB vs.placebo in people with CKD (with and without diabetes) - Relative risk

	ARE	3	Placel	00		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
Tobe 2011	88	729	83	751	100.0%	1.09 [0.82, 1.45]	
Total (95% CI)		729		751	100.0%	1.09 [0.82, 1.45]	-
Total events	88		83				
Heterogeneity: Not ap Test for overall effect:		P = 0.5	4)				0.2 0.5 1 2 5 Favours ARB Favours placebo

I.9.2.5 Cardiovascular events

Figure 161: ARB vs.placebo in people with CKD and diabetes - Hazard ratio

Study or Subgroup	log[Hazard Ratio]	SF	Weight	Hazard Ratio IV, Fixed, 95% C	Hazard Ratio IV, Fixed, 95% CI
8.8.2 Myocardial infar		02	Weight	TV, TIXEU, 3370 O	
Berl 2003	-0.10536052	0.20687375	22.8%	0.90 [0.60, 1.35]	
lmai 2011 Subtotal (95% CI)	-0.7985077	0.71877199	1.9% 24.7%	0.45 [0.11, 1.84] 0.85 [0.58, 1.26]	•
Heterogeneity: Chi ² = 0 Test for overall effect: 2		; l ² = 0%			
8.8.3 Revascularisation	on				
Berl 2003	-0.22314355	0.25010987	15.6%	0.80 [0.49, 1.31]	
lmai 2011 Subtotal (95% CI)	-1.04982212	0.43230277	5.2% 20.8%	0.35 [0.15, 0.82] 0.65 [0.43, 0.99]	
Heterogeneity: $Chi^2 = 2$	2 74 df – 1 (P – 0 10)	· l² – 63%	20.0 /0	0.05 [0.45, 0.99]	•
Test for overall effect:		, 1 = 0070			
8.8.4 Cerebrovascula	r accident				
Berl 2003	0.00995033	0.25727343	14.7%	1.01 [0.61, 1.67]	
Subtotal (95% CI) Heterogeneity: Not app	alicable		14.7%	1.01 [0.61, 1.67]	
Test for overall effect:					
8.8.5 Congestive hear	rt failure				
Lewis 2001	-0.32850407	0.16603489	35.4%	0.72 [0.52, 1.00]	
Subtotal (95% CI)	-liaah la		35.4%	0.72 [0.52, 1.00]	•
Heterogeneity: Not app Test for overall effect: 2					
8.8.6 Stroke					
Imai 2011	-0.31471074	0.4710105	4.4%	0.73 [0.29, 1.84]	
Subtotal (95% CI)			4.4%	0.73 [0.29, 1.84]	-
Heterogeneity: Not app Test for overall effect: 2					
Total (95% CI)			100.0%	0.77 [0.64, 0.94]	•
Heterogeneity: Chi ² = 5	,	; l ² = 0%			0.01 0.1 1 10 100
Test for overall effect:	()		4) 12 004		Favours ARB Favours placebo
Test for subgroup diffe	rences: $Chi^2 = 2.17$, c	$\mu T = 4 (P = 0.7)$	1), $I^2 = 0\%$)	

Figure 162:

ARB vs.placebo in people with CKD and diabetes - Relative risk

	ARE		Place			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
8.9.1 Any event							
Parving 2001	9	194	17	201	8.0%	0.55 [0.25, 1.20]	
Subtotal (95% CI)		194		201	8.0%	0.55 [0.25, 1.20]	
Total events	9		17				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 1.50 (I	P = 0.13	3)				
8.9.2 Amputation due	e to periph	neral va	ascular d	isease			
Imai 2011	42	282	67	284	31.9%	0.63 [0.45, 0.89]	
Subtotal (95% CI)		282		284	31.9%	0.63 [0.45, 0.89]	\bullet
Total events	42		67				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 2.58 (I	P = 0.0	10)				
8.9.3 Myocardial infa	rction						
Brenner 2001	89	748	127	762	60.1%	0.71 [0.56, 0.92]	
Subtotal (95% CI)		748		762	60.1%	0.71 [0.56, 0.92]	\bullet
Total events	89		127				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 2.63 (I	P = 0.0	09)				
Total (95% CI)		1224		1247	100.0%	0.67 [0.55, 0.82]	◆
Total events	140		211				
Lateregeneity Chi2	0.60, df = 2	2 (P = 0).74); l ² =	0%			0.2 0.5 1 2
Heterogeneity: Chi ² =		•	, ,				0.2 0.5 1 2
Test for overall effect:	Z = 3.91 (I	P < 0.0	001)				Favours ARB Favours place

I.9.2.6 Occurrence of AKI

Figure 163: ARB vs.placebo in people with CKD and diabetes - Relative risk

	ARE	3	Place	bo		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Imai 2011	1	282	1	284	100.0%	1.01 [0.06, 16.02]	
Total (95% CI)		282		284	100.0%	1.01 [0.06, 16.02]	
Total events	1		1				
Heterogeneity: Not app	olicable						-+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
Test for overall effect: 2	Z = 0.01 (P = 1.0	0)				Favours ARB Favours placebo

I.9.2.7 Change in proteinuria

Figure 164: ARB vs.placebo in people with CKD and diabetes (unless stated) – progression to clinical proteinuria, macroalbuminuria or overt nephropathy

	ARE	3	Placel	00		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
8.11.1 General non-diabetic	CKD						
Mann 2009 Subtotal (95% CI)	28	286 286	49	273 273	20.9% 20.9%	0.55 [0.35, 0.84] 0.55 [0.35, 0.84]	•
Total events	28		49				
Heterogeneity: Not applicable Test for overall effect: $Z = 2.7$		06)					
8.11.2 General							
Parving 2001 (150mg)	29	389	30	201	16.5%	0.50 [0.31, 0.81]	
Parving 2001 (300mg) Subtotal (95% CI)	10	194 583	30	201 402	12.3% 28.8%	0.35 [0.17, 0.69] 0.43 [0.29, 0.64]	•
Total events	39		60				•
Heterogeneity: $Chi^2 = 0.75$, df Test for overall effect: $Z = 4.1$							
	. (,					
8.11.3 Normotensive							
Makino 2008-1 (NT) 40mg	17	114	41	120	16.7%	0.44 [0.26, 0.72]	
Makino 2008-1 (NT) 80mg	13	117	41	120	16.9%	0.33 [0.18, 0.57]	
Muirhead 1999 (val 160mg) Subtotal (95% CI)	1	62 293	3	31 271	1.7% 35.2%	0.17 [0.02, 1.54] 0.37 [0.26, 0.54]	•
Total events	31		85				
Heterogeneity: $Chi^2 = 1.10$, df Test for overall effect: $Z = 5.2$	· ·	,,	= 0%				
8.11.4 Hypertensive							
Makino 2008-2 (HT) 40mg	7	58	18	54	7.8%	0.36 [0.16, 0.80]	
Makino 2008-2 (HT) 80mg	5	51	18	54	7.3%	0.29 [0.12, 0.73]	
Subtotal (95% CI)		109		108	15.1%	0.33 [0.18, 0.60]	◆
Total events	12		36				
Heterogeneity: Chi ² = 0.11, df			= 0%				
Test for overall effect: Z = 3.6	4 (P = 0.0	003)					
Total (95% CI)		1271		1054	100.0%	0.42 [0.34, 0.52]	♦
Total events	110		230				
Heterogeneity: Chi ² = 4.39, df			= 0%				0.01 0.1 1 10 100
Test for overall effect: $Z = 7.9$	· ·	,					Favours ARB Favours placebo
Test for subaroup differences	: Chi² = 2.	50. df =	3 (P = 0.	48), l² =	= 0%		·

Figure 165: ARB vs.placebo in people with CKD (with and without diabetes) –final values

		ARB		-	lacebo			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
8.12.1 General - non-diabet	ic CKD								
Li 2006	1.23	1.25	54	1.97	1.67	55	18.9%	-0.50 [-0.88, -0.12]	-
Shen 2012	0.99	0.48	112	1.64	0.5	114	21.4%	-1.32 [-1.61, -1.03]	
Subtotal (95% CI)			166			169	40.3%	-0.92 [-1.73, -0.11]	•
Heterogeneity: Tau ² = 0.31; 0	Chi² = 11	I.41, df	= 1 (P :	= 0.000	7); l² = 9	91%			
Test for overall effect: Z = 2.2	23 (P = 0	0.03)							
8.12.2 Normotensive - with	diabete	s							
Makino 2008-1 (NT) 40mg	113	122.1	117	219	180.2	120	22.1%	-0.68 [-0.95, -0.42]	-
Makino 2008-1 (NT) 80mg	0	0	0	0	0	0		Not estimable	
Subtotal (95% CI)			117			120	22.1%	-0.68 [-0.95, -0.42]	♦
Heterogeneity: Not applicable	е								
Test for overall effect: Z = 5.	12 (P < 0	0.00001)						
8.12.3 Hypertensive - with	diabetes	6							
Makino 2008-2 (HT) 40mg	136	124.3	58	204	140.3	54	19.0%	-0.51 [-0.89, -0.13]	-
Makino 2008-2 (HT) 80mg	112	113.7	51	204	140.3	54	18.5%	-0.71 [-1.11, -0.32]	-
Subtotal (95% CI)			109			108	37.6%	-0.61 [-0.88, -0.33]	♦
Heterogeneity: Tau ² = 0.00;	Chi² = 0.	53, df =	1 (P =	0.47); l	² = 0%				
Test for overall effect: Z = 4.3	36 (P < 0	0.0001)							
Total (95% CI)			392			397	100.0%	-0.76 [-1.08, -0.44]	•
Heterogeneity: Tau ² = 0.10;	Chi ² = 18	3.18, df	= 4 (P =	= 0.001); l ² = 78	3%			
Test for overall effect: $Z = 4.0$									-10 -5 Ó Ś
Test for subgroup differences				-0.75	12 - 00	~			Favours ARB Favours placebo

Figure 166: ARB vs.placebo in people with CKD and diabetes – change scores

		ARB		Pla	aceb	D		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Lewis 2001	-1.1	1.7	574	-0.3	4.3	565	100.0%	-0.80 [-1.18, -0.42]	
Total (95% CI)			574			565	100.0%	-0.80 [-1.18, -0.42]	•
Heterogeneity: Not ap Test for overall effect:		2 (P <	0.0001)				-	-4 -2 0 2 4 Favours ARB Favours placebo

1.9.2.8 Regression to normoalbuminuria

Figure 167: ARB vs.placebo in people with CKD and diabetes

	ARB		Place	00		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% Cl
8.13.1 < 2 years non-diabet	ic CKD						
Shen 2012 Subtotal (95% CI)	16	112 112	0	114 114	18.2% 18.2%	33.58 [2.04, 553.10] 33.58 [2.04, 553.10]	
Total events	16		0				
Heterogeneity: Not applicable	Э						
Test for overall effect: Z = 2.4	46 (P = 0.0	1)					
8.13.2 < 2 years with diabet	es						
Makino 2008-1 (NT) 40mg	9	58	1	54	23.6%	8.38 [1.10, 63.96]	
Makino 2008-1 (NT) 80mg Subtotal (95% CI)	10	51 109	1	54 108	23.7% 47.2%	10.59 [1.41, 79.79] 9.43 [2.25, 39.49]	•
Total events	19		2				
Heterogeneity: Tau ² = 0.00; 0	Chi ² = 0.03	, df = 1	I (P = 0.8)	7); l² =	0%		
Test for overall effect: Z = 3.0	07 (P = 0.0	02)					
8.13.3 2 years with diabetes	6						
Parving 2001 (150mg) Subtotal (95% CI)	113	389 389	42	201 201	34.5% 34.5%	1.39 [1.02, 1.90] 1 .39 [1.02 , 1 .90]	•
Total events	113		42				
Heterogeneity: Not applicable	Э						
Test for overall effect: Z = 2.0	08 (P = 0.0	4)					
Total (95% CI)		610		423	100.0%	6.14 [1.09, 34.65]	-
Total events	148		44				
Heterogeneity: Tau ² = 2.23; C	Chi² = 13.1	5, df =	3 (P = 0.	004); l²	= 77%		0.001 0.1 1 10 1000
Test for overall effect: Z = 2.0	05 (P = 0.0	4)					Favours placebo Favours ARB
Test for subgroup differences	s: Chi ² = 1	1.19, d	f = 2 (P =	0.004)	, l ² = 82.19	%	

I.9.3 Spironolactone versus placebo

I.9.3.1 All-cause mortality

Figure 168: Spirinolactone vs.placebo in people with CKD and diabetes

	Spironolad	tone	Place	bo		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% (CI M-H, Fixed, 95% CI
van der Meiracker 2006	0	24	2	28	100.0%	0.23 [0.01, 4.61]	
Total (95% CI)		24		28	100.0%	0.23 [0.01, 4.61]	
Total events	0		2				
Heterogeneity: Not applic							
Test for overall effect: Z =	0.96 (P = 0.3	34)				I	Favours spironolactone Favours placebo

I.9.4 ACE inhibitor versus ARB

I.9.4.1 Progression of CKD – measured by change in eGFR

Figure 169: ACE inhibitor vs.ARB in people with non-diabetic CKD (IgA nephropathy)

		ACEI			ARB			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	I IV, Fixed, 95% CI
11.1.2 >48 months Losartan	100mg								
Woo 2009 (L100mg; E10mg)	42.3	26.6	40	40.2	27.6	43	22.5%	2.10 [-9.56, 13.76]	
Woo 2009 (L100mg; E20mg)	41.3	27.9	61	40.2	27.6	43	26.2%	1.10 [-9.72, 11.92]	
Subtotal (95% CI)			101			86	48.7%	1.56 [-6.37, 9.49]	
Heterogeneity: Chi ² = 0.02, df =	= 1 (P = ().90):	$ ^2 = 0\%$						
Test for overall effect: $Z = 0.39$			- / -						
11.1.3 >48 months Losartan 2	200mg								
Woo 2009 (L200mg; E10mg)	42.3	26.6	40	59.1	31.8	63	23.6%	-16.80 [-28.18, -5.42]	
Woo 2009 (L200mg; E20mg)	41.3	27.9	61	59.1	31.8	63	27.7%	-17.80 [-28.32, -7.28]	
Subtotal (95% CI)			101			126	51.3%	-17.34 [-25.07, -9.61]	\bullet
Heterogeneity: Chi ² = 0.02, df =	= 1 (P = 0).90);	$ ^2 = 0\%$						
Test for overall effect: Z = 4.40									
Total (95% CI)			202			212	100.0%	-8.14 [-13.67, -2.60]	•
Heterogeneity: Chi ² = 11.22, df	= 3 (P =	0.01)	$l^2 = 73$	3%					
Test for overall effect: $Z = 2.88$									-100 -50 0 50 10 Favours ARB Favours ACEI
Test for subgroup differences:	•	'	f = 1 (P	= 0.00	08) I2	= 91 19	6		Favours AKB Favours ACEI

1.9.4.2 Progression of CKD – Occurrence of end stage renal disease

Figure 170: ACE inhibitor vs.ARB in people with CKD

	ACE inhil	oitor	ARB	5		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
11.2.1 CKD with type II diabet	tes						
Fernandez 2013 Subtotal (95% CI)	6	35 35	5	28 28	15.0% 15.0%	0.96 [0.33, 2.82] 0.96 [0.33, 2.82]	
Total events	6		5				T
Heterogeneity: Not applicable	-		-				
Test for overall effect: $Z = 0.07$	(P = 0.94)						
11.2.2 IgA nephropathy (Losa	artan 100mg)					
Woo 2009 (L100mg; E10mg)	9	40	9	43	23.4%	1.07 [0.47, 2.43]	_ + _
Woo 2009 (L100mg; E20mg)	19	61	9	43	28.4%	1.49 [0.75, 2.97]	+
Subtotal (95% CI)		101		86	51.8%	1.30 [0.77, 2.20]	◆
Total events	28		18				
Heterogeneity: Chi ² = 0.35, df =	= 1 (P = 0.55); I ² = 0	%				
Test for overall effect: Z = 0.98	(P = 0.33)						
11.2.3 IgA nephropathy (Losa	artan 200mg)					
Woo 2009 (L200mg; E10mg)	9	40	7	63	14.6%	2.02 [0.82, 5.00]	
Woo 2009 (L200mg; E20mg)	19	61	7	63	18.6%	2.80 [1.27, 6.19]	
Subtotal (95% CI)		101		126	33.2%	2.46 [1.36, 4.46]	•
Total events	28		14				
Heterogeneity: Chi ² = 0.28, df =	= 1 (P = 0.60); I ² = 0	%				
Test for overall effect: $Z = 2.96$	(P = 0.003)						
Total (95% CI)		237		240	100.0%	1.64 [1.14, 2.36]	•
Total events	62		37				
Heterogeneity: Chi ² = 4.02, df =	= 4 (P = 0.40); l² = 0	%			0.0	01 0.1 1 10 10
Test for overall effect: Z = 2.64	(P = 0.008)						s ACE inhibitor Favours ARB
Test for subgroup differences:	Chi² = 3.46, (df = 2 (P = 0.18),	$ ^2 = 42$	2.2%	1 40001	

I.9.4.3 All-cause mortality

Figure 171: ACE inhibitor vs.ARB in people with CKD and diabetes

I.9.4.4 Cardiovascular mortality

Figure 172: ACE inhibitor vs.ARB in people with CKD and diabetes

	ACE	9	ARE	3		Risk Ratio	Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fix	ed, 95% C	;	
Barnett 2004	2	130	3	120	100.0%	0.62 [0.10, 3.62]				
Total (95% CI)		130		120	100.0%	0.62 [0.10, 3.62]				
Total events	2		3							
Heterogeneity: Not app Test for overall effect:		P = 0.5	9)				 0.1 0urs ACEI	H H 1 10 Favours	-	100 B

1.9.4.5 Cardiovascular events

Figure 173: ACE inhibitor vs.ARB in people with CKD and diabetes

or 1 o 1	ACE inhi		ARE		M	Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Iotal	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
11.5.1 Any event							_
Barnett 2004	19	130 130	24	120 120	100.0% 1 00.0%	0.73 [0.42, 1.26]	
Subtotal (95% CI)	10	130		120	100.0%	0.73 [0.42, 1.26]	
Total events	19		24				
Heterogeneity: Not ap	•	0.00					
Test for overall effect:	Z = 1.12 (P	= 0.26)					
11.5.2 Heart failure							
Barnett 2004	7	130	9	120	100.0%	0.72 [0.28, 1.87]	
Subtotal (95% CI)		130		120	100.0%	0.72 [0.28, 1.87]	
Total events	7		9				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.68 (P	= 0.50)					
11.5.3 Myocardial inf	arction						
Barnett 2004	6	130	9		100.0%	0.62 [0.23, 1.68]	
Subtotal (95% CI)		130		120	100.0%	0.62 [0.23, 1.68]	
Total events	6		9				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.95 (P	= 0.34)					
11.5.4 Stroke							
Barnett 2004	6	130	6	120	100.0%	0.92 [0.31, 2.78]	
Subtotal (95% CI)		130		120	100.0%	0.92 [0.31, 2.78]	
Total events	6		6				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.14 (P	= 0.89)					
						0.0*	
						•••	ACE inhibitor Favours ARB

Test for subgroup differences: $Chi^2 = 0.29$, df = 3 (P = 0.96), $I^2 = 0\%$

1.9.4.6 Change in proteinuria

Progression to macroalbuminuria

Figure 174: ACE inhibitor vs.ARB in people with CKD and type II diabetes

	ACE	9	ARE	3		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Muirhead 1999 (val 160mg)	1	62	1	29	100.0%	0.47 [0.03, 7.22]	
Total (95% CI)		62		29	100.0%	0.47 [0.03, 7.22]	
Total events	1		1				
Heterogeneity: Not applicable Test for overall effect: Z = 0.54	(P = 0.5	9)					0.01 0.1 1 10 100 Favours ACEI Favours ARB

Change from baseline

	A	CEI			ARB			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
11.7.1 High dose ARB (Losart	an 200m	ıg)							
Woo 2009 (L200mg; E10mg)	1.7	0.9	40	1.2	0.8	63	44.0%	0.59 [0.19, 1.00]	
Woo 2009 (L200mg; E20mg) Subtotal (95% CI)	1.7	1	61 101	1.2	0.8	63 1 26	56.0% 1 00.0%	0.55 [0.19, 0.91] 0.57 [0.30, 0.84]	
Heterogeneity: $Chi^2 = 0.02$, $df = Test$ for overall effect: $Z = 4.14$			l² = 0%	6					
11.7.2 Standard dose ARB (Lo	osartan ⁻	100n	ng)						
Woo 2009 (L100mg; E10mg)	1.7	0.9	40	1.6	0.9	43	45.1%	0.11 [-0.32, 0.54]	
Woo 2009 (L100mg; E20mg) Subtotal (95% CI)	1.7	1	61 101	1.6	0.9	43 86	54.9% 1 00.0%	0.10 [-0.29, 0.49] 0.11 [-0.18, 0.40]	
Heterogeneity: $Chi^2 = 0.00$, df = Test for overall effect: Z = 0.72			l² = 0%	6					
								-	-1 -0.5 0 0.5 1 Fayours ACEL Fayours ARB
Test for subgroup differences: C	Chi ² = 5.2	25, df	f = 1 (P	= 0.02), l ² =	80.9%			

Figure 176: ACE vs.ARB in people with CKD with IgA nephropathy or type II diabetes (pooled doses)

		ACEI			ARB			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
11.7.2 CKD and type II diabet	es								
Fernandez 2013	0.68	0.42	35	1.01	0.57	28	71.3%	-0.66 [-1.17, -0.15]	—— — ——
Tutuncu 2001 Subtotal (95% CI)	35.41	19.59	12 47	41.33	21.08	12 40		-0.28 [-1.09, 0.52] -0.55 [-0.98, -0.12]	
Heterogeneity: Chi ² = 0.61, df =	= 1 (P = 0	0.43); l²	= 0%						
Test for overall effect: Z = 2.51	(P = 0.0	1)							
11.7.3 IgA nephropathyPoole	ed								
Woo 2009 (L100mg; E20mg)	1.7	1	40	1.6	0.9	43	46.8%	0.10 [-0.33, 0.54]	
Woo 2009 (L200mg; E20mg) Subtotal (95% CI)	1.7	1	40 80	1.2	0.8	63 1 06	53.2% 1 00.0 %	0.56 [0.16, 0.97] 0.35 [0.05, 0.64]	
Heterogeneity: Chi ² = 2.31, df =	= 1 (P = 0	0.13); l ²	= 57%						
Test for overall effect: Z = 2.32	(P = 0.0)	2)							
Tast for subgroup differences:		40 df	1 (D	0.000	7) 12 (1 20/			-1 -0.5 0 0.5 1 Favours ACEI Favours ARB

Test for subgroup differences: $Chi^2 = 11.42$, df = 1 (P = 0.0007), I² = 91.2%

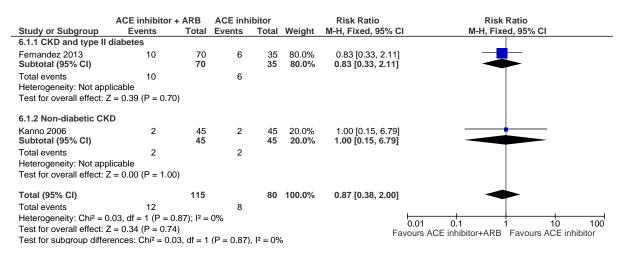
Figure 177: ACE vs.ARB in people with IgA nephropathy or type II diabetes (subgroup by drug)

	ACE	E inhibi	or		ARB		5	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
11.8.1 IgA nephropathy (Losa	rtan 200)mg vs	enalap	ril 20m	ig)				
Noo 2009 (L200mg; E20mg) Subtotal (95% CI)	1.7	1	40 40	1.2	0.8	63 63	100.0% 1 00.0%	0.56 [0.16, 0.97] 0.56 [0.16, 0.97]	
Heterogeneity: Not applicable									
Test for overall effect: Z = 2.73	(P = 0.0	06)							
11.8.2 IgA nephropathy (Losa	rtan 10)mg vs	enalap	ril 20m	ig)				
Noo 2009 (L100mg; E20mg) Subtotal (95% CI)	1.7	1	40 40	1.6	0.9	43 43	100.0% 1 00.0%	0.10 [-0.33, 0.54] 0.10 [-0.33, 0.54]	
Heterogeneity: Not applicable Fest for overall effect: Z = 0.47	(P = 0.6	4)							
11.8.3 Type II diabetes (Losar	tan 50m	ig vs er	alapril	5mg)					
Futuncu 2001 Subtotal (95% CI)	35.41	19.59	12 12	41.33	21.08		100.0% 1 00.0%	-0.28 [-1.09, 0.52] -0.28 [-1.09, 0.52]	
Heterogeneity: Not applicable Fest for overall effect: Z = 0.68	(P = 0.4	9)							
11.8.4 Type II diabetes (Irbesa	irtan 60	0mg vs	lisino	oril 40n	ng)				
Fernandez 2013 Subtotal (95% CI)	0.68	0.42	35 35	1.01	0.57	28 28	100.0% 1 00.0%	-0.66 [-1.17, -0.15] - 0.66 [-1.17, -0.15]	
Heterogeneity: Not applicable									-
Test for overall effect: Z = 2.54	(P = 0.0	1)							
								_	<u> </u>
								Four	-1 -0.5 0 0.5 ours ACE inhibitor Favours AF
Test for subgroup differences: C	Chi² = 14	.34, df :	= 3 (P =	= 0.002), $I^2 = 79$	9.1%		Favo	AGE INTIDIOL FAVOURS AN

1.9.4.7 Regression to normoalbuminuria

Figure 178: ACE inhibitor vs.ARB in people with CKD and type II diabetes

	ACE inh	ibitor	ARE	3		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Tutuncu 2001	10	12	8	12	100.0%	1.25 [0.78, 2.01]	
Total (95% CI)		12		12	100.0%	1.25 [0.78, 2.01]	•
Total events	10		8				
Heterogeneity: Not ap Test for overall effect:		9 = 0.36)					0.01 0.1 1 10 100 Favours ARB Favours ACE inhibit


1.9.4.8 Hospitalisation (due to heart failure)

1.9.4.9 Hospitalisation (for non-fatal myocardial infarction, heart failure, peripheral vascular disease or cerebrovascular accident).

1.9.5 ACE inhibitor plus ARB versus ACE inhibitor

I.9.5.1 Progression of CKD – Occurrence of end stage renal disease

Figure 179: ACE inhibitor plus ARB vs.ACE inhibitor in people with CKD (with and without diabetes)

I.9.5.2 All-cause mortality

Figure 180: ACE inhibitor plus ARB vs.ACE inhibitor in people with CKD and type II diabetes

	ACE inhibitor	+ ARB	ACE inh	ibitor		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% CI
Fernandez 2013	6	70	2	35	100.0%	1.50 [0.32, 7.05]	
Total (95% CI)		70		35	100.0%	1.50 [0.32, 7.05]	
Total events	6		2				
Heterogeneity: Not ap Test for overall effect:		1)				Fa	0.01 0.1 1 10 100 avours ACE inhibitor+ARB Favours ACE inhibitor

I.9.5.3 Change in proteinuria

Figure 181: ACE inhibitor plus ARB vs.ACE inhibitor in people with or without diabetes– final values in urinary protein loss

	ACE in	hibitor +	ARB	ACI	E inhibi	tor	5	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
6.3.1 CKD and type II	diabetes								
Fernandez 2013	1.04	0.33	70	0.68	0.42	35	62.1%	0.99 [0.56, 1.41]	
Tutuncu 2001 Subtotal (95% CI)	40.7	29.52	10 80	35.41	19.59	12 47	16.1% 78.2%	0.21 [-0.63, 1.05] 0.83 [0.45, 1.21]	_ + _
Heterogeneity: Chi ² = 2 Test for overall effect: 2	,	•		62%					
6.3.2 Non-diabetic CK	D								
Kanno 2006 Subtotal (95% CI)	0.55	0.16	45 45	1.21	0.17	45 45	21.8% 21.8%	-3.96 [-4.69, -3.24] -3.96 [-4.69, -3.24]	→
Heterogeneity: Not app	licable								
Test for overall effect:		(P < 0.00	001)						
Total (95% CI)			125			92	100.0%	-0.22 [-0.56, 0.12]	•
Heterogeneity: Chi2 = 1	134.80, df :	= 2 (P < 0	0.00001)	; l ² = 99	9%				
Test for overall effect: 2	Z = 1.27 (F	P = 0.20	,					Fa	-10 -5 0 5 avours ACE inhibitor+ARB Favours ACE inhibitor
Test for subaroup diffe	rences: Cr	$hi^2 = 132$	19. df =	1 (P < 0	.00001)	$ ^2 = 9$	9.2%	Γċ	avours AGE INTIDIOITARD Favours AGE INTIDIOI

1.9.5.4 Regression to normoalbuminuria

Figure 182: ACE inhibitor plus ARB vs.ACE inhibitor in people with type II diabetes

	ACE inhibitor	+ ARB	ACE inh	ibitor		Risk Ratio	Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixe	ed, 95% Cl	
Tutuncu 2001	7	10	10	12	100.0%	0.84 [0.52, 1.36]	-	-	
Total (95% CI)		10		12	100.0%	0.84 [0.52, 1.36]			
Total events	7		10						
Heterogeneity: Not app Test for overall effect:		7)					 0.1 ACE inhibitor	1 1 Favours AC	0 100 E inhibitor+AF

I.9.6 ACE inhibitor plus ARB versus ARB

I.9.6.1 Progression of CKD – Occurrence of end stage renal disease

Figure 183: ACE inhibitor plus ARB vs.ARB in people with type II diabetes

	ACE inhibitor	+ ARB	ARE	3		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	
Fernandez 2013	10	70	5	28	14.2%	0.80 [0.30, 2.13]		
Fried 2013	27	724	43	724	85.8%	0.63 [0.39, 1.00]	-	
Total (95% CI)		794		752	100.0%	0.65 [0.43, 1.00]	•	
Total events	37		48					
Heterogeneity: Chi ² = 0	0.19, df = 1 (P = 0	.66); l ² =	0%				0.01 0.1 1 10	100
Test for overall effect: 2	Z = 1.97 (P = 0.05	5)				Favour	s ACE inhibitor+ARB Favours AR	

I.9.6.2 All-cause mortality

Figure 184:

ACE inhibitor plus ARB vs.ARB in people with type II diabetes

	ACE inhibitor	+ ARB	ARE	3		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Fernandez 2013	6	70	1	28	2.3%	2.40 [0.30, 19.04]	<u> </u>
Fried 2013	63	724	60	724	97.7%	1.05 [0.75, 1.47]	
Total (95% CI)		794		752	100.0%	1.08 [0.77, 1.51]	•
Total events	69		61				
Heterogeneity: Chi ² = 0	0.60, df = 1 (P = 0).44); l ² =	0%			H	0.01 0.1 1 10 100
Test for overall effect:	Z = 0.46 (P = 0.6	5)					0.01 0.1 1 10 100 ACE inhibitor+ARB Favours ARB

Forest plots

I.9.6.3 Cardiovascular events

Occurrence of myocardial infarction, heart failure or stroke

Figure 185: ACE inhibitor plus ARB vs.ARB in people with type II diabetes

	ACE inhibitor	+ ARB	ARE	3		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Fried 2013	134	724	136	724	100.0%	0.99 [0.79, 1.22]	
Total (95% CI)		724		724	100.0%	0.99 [0.79, 1.22]	
Total events	134		136				
Heterogeneity: Not app	olicable						
Test for overall effect:	Z = 0.13 (P = 0.89	9)				Favour	0.01 0.1 1 10 100 s ACE inhibitor+ARB Favours ARB

I.9.6.4 Occurrence of AKI

Figure 186: ACE inhibitor plus ARB vs.ARB in people with type II diabetes

	ACE inhibitor					Risk Ratio	Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fix	ed, 95% Cl	
Fried 2013	130	724	80	724	100.0%	1.63 [1.25, 2.10]			
Total (95% CI)		724		724	100.0%	1.63 [1.25, 2.10]		•	
Total events	130		80						
Heterogeneity: Not app	olicable						0.01 0.1	1 10	100
Test for overall effect:	est for overall effect: $Z = 3.68$ (P = 0.0002)					Favours	s ACE inhibitor+ARB		

I.9.6.5 Change in proteinuria

Figure 187: ACE inhibitor plus ARB vs.ARB – final values in urinary protein loss in people with type II diabetes

	ACE inhibitor + ARB ARB Std.						Std. Mean Difference		Std. Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV, F	ixed, 959	% CI	
Fernandez 2013	1.04	0.33	70	1.01	0.57	28	78.6%	0.07 [-0.37, 0.51]					
Tutuncu 2001	40.7	29.52	10	41.33	21.08	12	21.4%	-0.02 [-0.86, 0.82]			+		
Total (95% CI)			80			40	100.0%	0.05 [-0.34, 0.44]			•		
Heterogeneity: Chi ² = 0	,	•	4); I ² = 0	1%					-10	-5	0	5	10
Test for overall effect: 2	2 = 0.26 (F	r = 0.79						Favou	rs ACE	inhibitor+A	RB Fav	ours ARB	

1.9.6.6 Regression to normoalbuminuria

Figure 188: ACE inhibitor plus ARB vs.ARB in people with type II diabetes

	ACE inhibitor	+ ARB	ARE	3		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Tutuncu 2001	7	10	8	12	100.0%	1.05 [0.59, 1.86]	
Total (95% CI)		10		12	100.0%	1.05 [0.59, 1.86]	
Total events	7		8				
Heterogeneity: Not ap	plicable					_	
Test for overall effect:	Z = 0.17 (P = 0.8	7)					Favours ARB Favours ACE inhibit

Forest plots

I.9.7 ACE inhibitor versus ACE inhibitor

I.9.7.1 Change in proteinuria

Percentage change

Figure 189: Perindopril (6.6mg/day) vs.trandolapril (1.8mg/day) in people with non-diabetic CKD (final achieved doses)

	Perindopril		Trar	ndolap	ril		Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Matsuda 2003	-60	27.1	15	-53	27.1	15	100.0%	-7.00 [-26.39, 12.39]	
Total (95% CI)			15			15	100.0%	-7.00 [-26.39, 12.39]	-
Heterogeneity: Not ap Test for overall effect:		(P = 0).48)						-100 -50 0 50 100 Favours perindopril Favours trandolapril

I.9.8 ARB versus ARB: Telmisartan versus valsartan

I.9.8.1 Progression of CKD – measured by change in eGFR

Figure 190: Telmisartan (80mg) vs.valsartan (160mg) in people with CKD and type II diabetes

	Telmisartan			Telmisartan Valsartan					n		Mean Difference	Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	I IV, Fixed, 95% CI							
Galle 2008	45.8	22.7	428	46.5	22.3	429	100.0%	-0.70 [-3.71, 2.31]								
Total (95% CI)			428			429	100.0%	-0.70 [-3.71, 2.31]	-							
Heterogeneity: Not ap Test for overall effect:			0.65)						-10 -5 0 5 10 Favours telmisartan Favours valsartan							

I.9.8.2 Progression of CKD – Occurrence of end stage renal disease

Figure 191: Telmisartan (80mg) vs.valsartan (160mg) in people with CKD and type II diabetes

	Telmisa	nisartan Valsartan				Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
Galle 2008	7	428	8	429	100.0%	0.88 [0.32, 2.40]	
Total (95% CI)		428		429	100.0%	0.88 [0.32, 2.40]	
Total events	7		8				
Heterogeneity: Not app Test for overall effect:		P = 0.80))				Image: 100 millionImage: 100 million0.010.1110100Favours telmisartanFavours valsartan

I.9.8.3 All-cause mortality

Figure 192: Telmisartan (80mg) vs.valsartan (160mg) in people with CKD and type II diabetes

	Telmisartan					Risk Ratio	Risk F	latio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed	d, 95% Cl
Galle 2008	15	428	8	429	100.0%	1.88 [0.81, 4.39]	+	—
Total (95% CI)		428		429	100.0%	1.88 [0.81, 4.39]		
Total events	15		8					
Heterogeneity: Not app	olicable						0.01 0.1 1	10 100
Test for overall effect:	Z = 1.46 (F	P = 0.14)				••••	Favours valsartan

I.9.8.4 Cardiovascular mortality

Figure 193: Telmisartan (80mg) vs.valsartan (160mg) in people with CKD and type II diabetes

	Telmisartan		Valsar	tan		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
Galle 2008	8	428	6	429	100.0%	1.34 [0.47, 3.82]	
Total (95% CI)		428		429	100.0%	1.34 [0.47, 3.82]	-
Total events	8		6				
Heterogeneity: Not ap Test for overall effect:		P = 0.59))				Image: 100 minipageImage: 100 minipage0.010.11100 minipage100 minipageFavours telmisartanFavours valsartan

1.9.8.5 Cardiovascular events

Telmisartan (80mg) vs.valsartan (160mg) in people with CKD and type II diabetes Figure 194:

	Telmisa		Valsart			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% Cl
12.5.1 Any event							
Galle 2008 Subtotal (95% CI)	31	428 428	34		100.0% 1 00.0%	0.91 [0.57, 1.46] 0.91 [0.57, 1.46]	
Total events	31		34				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.38 (F	^D = 0.71)				
12.5.2 First hospitali	sation for	coronai	ry revaso	ularisa	ation		
Galle 2008 Subtotal (95% CI)	3	428 428	5		100.0% 100.0%	0.60 [0.14, 2.50] 0.60 [0.14, 2.50]	
Total events	3		5				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.70 (F	P = 0.48)				
12.5.3 First hospitali	sation for	heart fa	ilure				
Galle 2008	7	428	6		100.0%	1.17 [0.40, 3.45]	
Subtotal (95% CI)		428		429	100.0%	1.17 [0.40, 3.45]	-
Total events	7		6				
Heterogeneity: Not ap	•	- -	、 、				
Test for overall effect:	Z = 0.28 (F	^y = 0.78)				
12.5.4 First hospitali		• •					
Galle 2008	2	428 428	2		100.0% 1 00.0%	1.00 [0.14, 7.08] 1.00 [0.14, 7.08]	
Subtotal (95% CI)	2	420	2	429	100.0%	1.00 [0.14, 7.06]	
Total events Heterogeneity: Not ap			2				
Test for overall effect:	•	^D = 1.00)				
12.5.5 First hospitali	sation for	unstabl	e angina				
Galle 2008	4	428	5		100.0%	0.80 [0.22, 2.97]	
Subtotal (95% CI)		428	Ũ	429	100.0%	0.80 [0.22, 2.97]	
Total events	4		5				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.33 (F	P = 0.74)				
12.5.6 Myocardial inf	arction						
Galle 2008	4	428	11		100.0%	0.36 [0.12, 1.14]	
Subtotal (95% CI)		428		429	100.0%	0.36 [0.12, 1.14]	
Total events	4		11				
Heterogeneity: Not ap Test for overall effect:		P = 0.08)				
			,				
12.5.7 Stroke			_			0 0 / K · · ·	
Galle 2008	11	428	5		100.0%	2.21 [0.77, 6.29]	
Subtotal (95% CI)	4.4	428	F	429	100.0%	2.21 [0.77, 6.29]	
Total events Heterogeneity: Not ap	11 nlicable		5				
Test for overall effect:	•	⊃ _ ∩ 14)				
i coli or crai ciell.	2 - 1.40 (F	- 0.14	1				

I.9.8.6 Change in proteinuria

Figure 195:Change in final albumin excretion rate, mg/day (Final doses: telmisartan
48mg/day, valsartan 116 mg/day) in people with CKD and type II diabetes

	Telr	Telmisartan									Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI			
Arai 2008	57.2	27.1	20	66	27.7	20	100.0%	-8.80 [-25.78, 8.18]				
Total (95% CI)			20			20	100.0%	-8.80 [-25.78, 8.18]	-			
Heterogeneity: Not ap Test for overall effect:		? (P = 0).31)						-100 -50 0 50 100 Favours telmisartan Favours valsartan			

I.9.9 ARB versus ARB: Losartan versus telmisartan

I.9.9.1 Progression of CKD – measured by change in eGFR

Figure 196: Losartan (100mg) vs.telmisartan (80mg) in people with CKD and type II diabetes

	Los	Losartan			nisart:	an		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	I IV, Fixed, 95% CI
Bakris 2008	-6.5	1.1	441	-6.49	1.1	419	100.0%	-0.01 [0.16, 0.14]	
Total (95% CI)			441			419	100.0%	-0.01 [-0.16, 0.14]	
Heterogeneity: Not app Test for overall effect:		(P =	0.89)						-0.5 -0.25 0 0.25 0.5 Favours telmisartan Favours losartan

I.9.9.2 All-cause mortality

Figure 197: Losartan (100mg) vs.telmisartan (80mg) in people with CKD and type II diabetes

	Losart	an	Telmisa	rtan		Risk Ratio		Ris	k Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	l	M-H, Fi	xed, 95% Cl		
Bakris 2008	13	441	2	419	100.0%	6.18 [1.40, 27.20]					
Total (95% CI)		441		419	100.0%	6.18 [1.40, 27.20]					
Total events	13		2								
Heterogeneity: Not ap					0.01	0.1) 10			
Test for overall effect:	P = 0.02	2)				Favo	ours losartar	Favours t	elmisart	an	

I.9.9.3 Cardiovascular morbidity or mortality

Figure 198:

Losartan (100mg) vs.telmisartan (80mg) in people with CKD and type II diabetes

	Losart	an	Telmisa	rtan		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% CI
Bakris 2008	37	441	21	419	100.0%	1.67 [1.00, 2.81]	t de la constante de
Total (95% CI)		441		419	100.0%	1.67 [1.00, 2.81]	◆
Total events	37		21				
Heterogeneity: Not app Test for overall effect:		P = 0.0	5)				III0.010.1110Favours losartanFavours telmisartan

I.9.9.4 Change in proteinuria

Figure 199: Change in urinary albumin excretion, mg/day (Final doses: losartan 71.3mg/day, telmisartan 48mg/day) in people with CKD and type II diabetes

	Lo	sartar	ı	Teln	nisarta	an		Mean Difference		Mea	n Differe	nce	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl		IV,	Fixed, 95 ^o	% CI	
Arai 2008	74.2	31.5	20	57.2	27.1	20	100.0%	17.00 [-1.21, 35.21]				-	
Total (95% CI)			20			20	100.0%	17.00 [-1.21, 35.21]					
Heterogeneity: Not ap Test for overall effect:		6 (P = 0	0.07)						-100 Fav	-50 ours losai	0 tan Fav	50 50 ours telmi	100 sartan

I.9.10 ARB versus ARB: Losartan versus valsartan

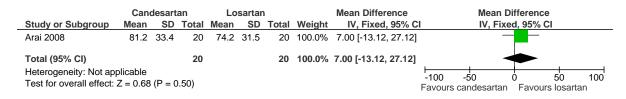
I.9.10.1 Change in proteinuria

Figure 200: Change in final albumin excretion rate, mg/day (Final doses: losartan 71.3mg/day, valsartan 116mg/day) in people with CKD and type II diabetes

	Lo	sartar	n	Va	sartar	n		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Arai 2008	74.2	31.5	20	66	27.7	20	100.0%	8.20 [-10.18, 26.58]	
Total (95% CI)			20			20	100.0%	8.20 [-10.18, 26.58]	•
Heterogeneity: Not ap Test for overall effect:		(P = 0).38)						-100 -50 0 50 100 Favours losartan Favours valsartan

I.9.11 ARB versus ARB: Candesartan versus telmisartan

I.9.11.1 Change in proteinuria


Figure 201: Change in final albumin excretion rate, mg/day (Final doses: candesartan 10.2mg/day, telmisartan 48mg/day) in people with CKD and type II diabetes

	Can	desart	an	Teln	nisarta	an		Mean Difference	Mean D	ifference	•	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixe	d, 95% C		
Arai 2008	81.2	33.4	20	57.2	27.1	20	100.0%	24.00 [5.15, 42.85]			_	
Total (95% CI)			20			20	100.0%	24.00 [5.15, 42.85]			•	
Heterogeneity: Not ap Test for overall effect:	•	(P = 0).01)						 -50 candesartan	0 Favour:	50 s telmis	100 artan

I.9.12 ARB versus ARB: Candesartan versus losartan

I.9.12.1 Change in proteinuria

Figure 202: Change in final albumin excretion rate, mg/day (Final doses: candesartan 10.2mg/day, losartan 71.3mg/day) in people with type II diabetes

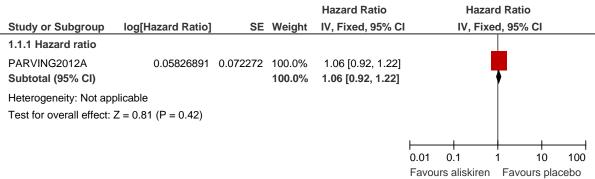
Figure 203: Percentage change in urinary protein excretion rate (Final doses: candesartan 7.8mg/day, losartan 81mg/day) in people with non-diabetic CKD

	Can	desart	an	Lo	sartar	n		Mean Difference		Mean Di	fference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	1	IV, Fixed	l, 95% Cl		
Matsuda 2003	-49	20.6	17	-36	15.5	15	100.0%	-13.00 [-25.55, -0.45]					
Total (95% CI)			17			15	100.0%	-13.00 [-25.55, -0.45]		•			
Heterogeneity: Not ap Test for overall effect:		(P = 0	0.04)						-100 Favours c	-50 (andesartan) 5 Favours Ic	•	100 n

Candesartan vs.valsartan in people with CKD and type II diabetes

Figure 204: Change in final albumin excretion rate, mg/day (Final doses: candesartan 10.2mg/day, valsartan 116mg/day)

	Can	desart	an	Va	Isartar	ı		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	I IV, Fixed, 95% CI
Arai 2008	81.2	33.4	20	66	27.7	20	100.0%	15.20 [-3.82, 34.22]	+
Total (95% CI)			20			20	100.0%	15.20 [-3.82, 34.22]	
Heterogeneity: Not ap Test for overall effect:		(P = 0).12)						-100 -50 0 50 100 Favours candesartan Favours valsartan


Forest plots

I.9.13 Direct renin inhibitor versus placebo

I.9.14 Aliskiren (300mg) versus placebo on a background of ACE inhibitor or ARB in people with type II diabetes and micro / marcoalbuminuria Progression of CKD – measured by change in eGFR

I.9.14.1 All-cause mortality

Figure 205: All-cause mortality (aliskiren 300mg) on a background of ACE inhibitor / ARB

Test for subgroup differences: Not applicable

I.9.14.2 Cardiovascular mortality

Figure 206: Cardiovascular mortality (aliskiren 300mg) on a background of ACE inhibitor / ARB

				Hazard Ratio		Ha	azard Rat	io	
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% C		IV, I	Fixed, 95	% CI	
1.2.1 Hazard ratio									
PARVING2012A	0.14842001	0.09655381	100.0%	1.16 [0.96, 1.40]					
Subtotal (95% CI)			100.0%	1.16 [0.96, 1.40]			•		
Heterogeneity: Not app	olicable								
Test for overall effect:	Z = 1.54 (P = 0.12)								
									400
					0.01	0.1	1	10	100
					Favo	urs aliski	ren Fav	ours pla	cebo

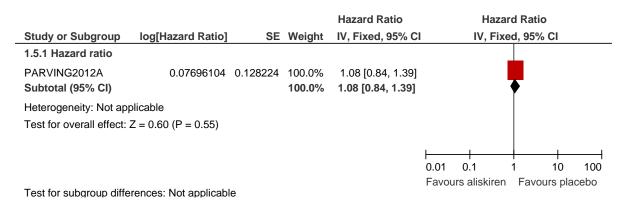
Test for subgroup differences: Not applicable

I.9.14.3 Cardiovascular events

Figure 207: Cardiovascular events (aliskiren 300mg) on a background of ACE inhibitor / ARB

				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% C	I IV, Fixed, 95% CI
1.3.1 Cardiac arrest w	ith resuscitation				
PARVING2012A	0.87546874 (0.42178253	3.8%	2.40 [1.05, 5.49]	
Subtotal (95% CI)			3.8%	2.40 [1.05, 5.49]	\bullet
Heterogeneity: Not app	licable				
Test for overall effect: 2	Z = 2.08 (P = 0.04)				
1.3.2 Myocardial infar	ction (fatal or non-fat	tal)			
PARVING2012A	0.03922071 (0.11507879	51.0%	1.04 [0.83, 1.30]	•
Subtotal (95% CI)			51.0%	1.04 [0.83, 1.30]	•
Heterogeneity: Not app	licable				
Test for overall effect: 2	Z = 0.34 (P = 0.73)				
1.3.3 Stroke (fatal or r	non-fatal)				
PARVING2012A	0.19885086 (0.12228431	45.2%	1.22 [0.96, 1.55]	•
Subtotal (95% CI)			45.2%	1.22 [0.96, 1.55]	◆
Heterogeneity: Not app	licable				
Test for overall effect: 2	Z = 1.63 (P = 0.10)				
Total (95% CI)			100.0%	1.15 [0.98, 1.36]	•
Heterogeneity: Chi ² = 4	.04, df = 2 (P = 0.13);	l² = 50%			
Test for overall effect: 2	Z = 1.74 (P = 0.08)				0.01 0.1 1 10 100
Test for subaroup differ	rences: Chi² = 4.04, df	= 2 (P = 0.13	3), I ² = 50.	.5%	Favours aliskiren Favours placebo

1.9.14.4 Hospitalisation (due to heart failure)


Figure 208: Unplanned hospitalisation due to heart failure (aliskiren 300mg) on a background of ACE inhibitor / ARB

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% C	I		izard Ra ⁻ Fixed, 95		
1.4.1 Hazard ratio									
PARVING2012A Subtotal (95% CI)	-0.03045921	0.09831015	100.0% 100.0%	0.97 [0.80, 1.18] 0.97 [0.80, 1.18]			•		
Heterogeneity: Not app	plicable								
Test for overall effect:	Z = 0.31 (P = 0.76)								
					 				
					0.01	0.1	1	10	100
Test for sub-mound diffe	N 1 1 1				Favo	urs aliskir	en Fav	ours pla	cebo

Test for subgroup differences: Not applicable

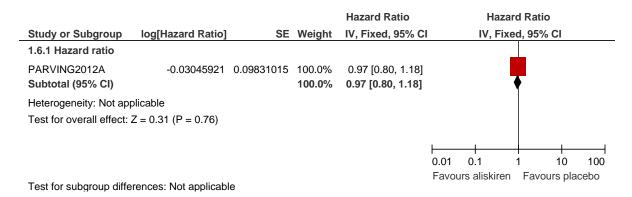
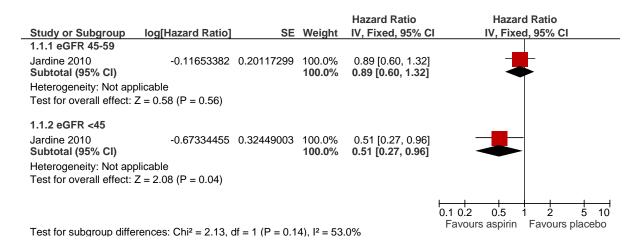

1.9.14.5 Progression of CKD: ESRD, death attributable to kidney failure or loss of kidney function (need for RRT with no dialysis or transplantation available or initiated)

Figure 209: ESRD, death attributable to kidney failure or loss of kidney function (aliskiren 300mg) on a background of ACE inhibitor / ARB

I.9.14.6 Progression of CKD: Doubling of baseline serum creatinine

Figure 210: Doubling of baseline serum creatinine (aliskiren 300mg) on a background of ACE inhibitor / ARB

National Clinical Guideline Centre 2014


Forest plots

I.10 Oral anticoagulants and antiplatelets

I.10.1 Aspirin (75mg/day) versus placebo

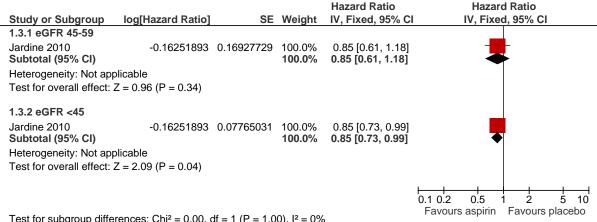
I.10.1.1 All-cause mortality

Figure 211: Aspirin versus placebo in people with hypertension and eGFR <60ml/min/1.73m², mean follow-up 3.8 years

I.10.1.2 Cardiovascular mortality

Figure 212: Aspirin versus placebo in people with hypertension and eGFR <60ml/min/1.73m², mean follow-up 3.8 years

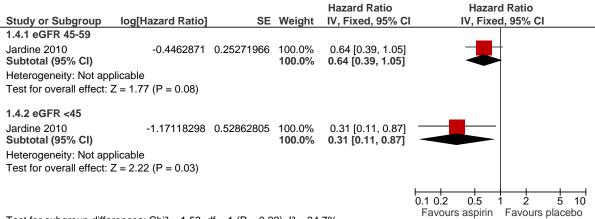
Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% C	Hazard Ratio IV, Fixed, 95% Cl
1.2.1 eGFR 45-59		<u> </u>	Weight	14,11200, 5570 0	
Jardine 2010 Subtotal (95% CI)	-0.08338161	0.27184404	100.0% 1 00.0%	0.92 [0.54, 1.57] 0.92 [0.54, 1.57]	*
Heterogeneity: Not app Test for overall effect:					
1.2.2 eGFR <45					
Jardine 2010 Subtotal (95% CI)	-1.02165125	0.48187702	100.0% 1 00.0%	0.36 [0.14, 0.93] 0.36 [0.14, 0.93]	
Heterogeneity: Not app	olicable				
Test for overall effect:	Z = 2.12 (P = 0.03)				
			0) 12 05	00/	0.1 0.2 0.5 1 2 5 10 Favours aspirin Favours placebo


Test for subgroup differences: $Chi^2 = 2.88$, df = 1 (P = 0.09), l² = 65.2%

Forest plots

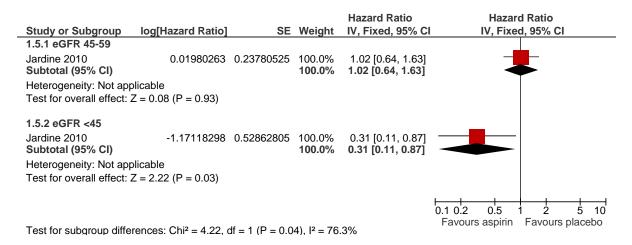
I.10.1.3 **Cardiovascular events**

Major cardiovascular event


Aspirin versus placebo in people with hypertension and eGFR <60ml/min/1.73m², Figure 213: mean follow-up 3.8 years

Test for subgroup differences: $Chi^2 = 0.00$, df = 1 (P = 1.00), $I^2 = 0\%$

Myocardial infarction

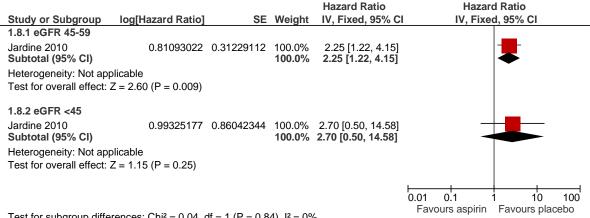

Aspirin versus placebo in people with hypertension and eGFR <60ml/min/1.73m², Figure 214: mean follow-up 3.8 years

Test for subgroup differences: $Chi^2 = 1.53$, df = 1 (P = 0.22), l² = 34.7%

Stroke

Aspirin versus placebo in people with hypertension and eGFR <60ml/min/1.73m², Figure 215: mean follow-up 3.8 years

1.10.1.4 Major bleeding (fatal, life-threatening, disabling or requiring hospital admission)

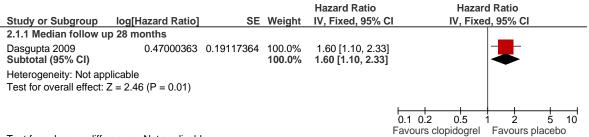

Aspirin versus placebo in people with hypertension and eGFR <60ml/min/1.73m², Figure 216: mean follow-up 3.8 years

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% C	Hazard Ratio I IV, Fixed, 95% CI
1.7.1 eGFR 45-59				· ·	
Jardine 2010 Subtotal (95% CI)	0.06765865	0.18814822	100.0% 1 00.0%	1.07 [0.74, 1.55] 1.07 [0.74, 1.55]	
Heterogeneity: Not app	plicable				
Test for overall effect:	Z = 0.36 (P = 0.72)				
1.7.2 eGFR <45 Jardine 2010 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect:		0.14572401	100.0% 1 00.0 %	1.61 [1.21, 2.14] 1.61 [1.21, 2.14]	
Test for subgroup diffe	rences: $Chi^2 = 2.95$	f = 1 (P = 0.0	9), l² = 66	1%	0.1 0.2 0.5 1 2 5 10 Favours aspirin Favours placebo

Test for subgroup differences: $Chi^2 = 2.95$, df = 1 (P = 0.09), $I^2 = 66.1\%$

I.10.1.5 Minor bleeding

Figure 217: Aspirin versus placebo in people with hypertension and eGFR <60ml/min/1.73m², mean follow-up 3.8 years

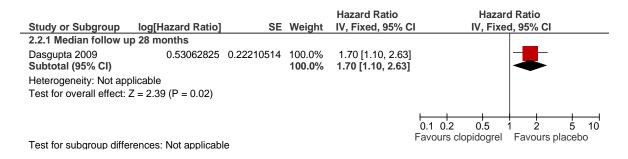


Test for subgroup differences: $Chi^2 = 0.04$, df = 1 (P = 0.84), l² = 0%

I.10.2 Clopidogrel (75mg/day) versus placebo

1.10.2.1 All-cause mortality

Clopidogrel versus placebo in people with CVD or multiple risk factors for CVD Figure 218: (median follow up 28 months) - subgroup analysis of people with diabetic nephropathy



Test for subgroup differences: Not applicable

Forest plots

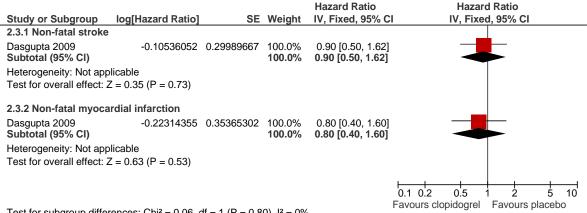

1.10.2.2 **Cardiovascular mortality**

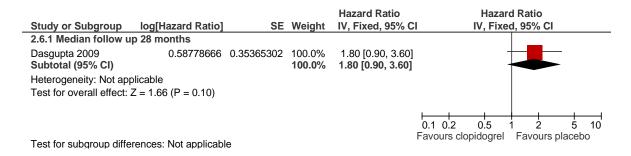
Figure 219: Clopidogrel versus placebo in people with CVD or multiple risk factors for CVD (median follow up 28 months) - subgroup analysis of people with diabetic nephropathy

1.10.2.3 **Cardiovascular events**

Clopidogrel versus placebo in people with CVD or multiple risk factors for CVD Figure 220: (median follow up 28 months) – subgroup analysis of people with diabetic nephropathy

Test for subgroup differences: $Chi^2 = 0.06$, df = 1 (P = 0.80), $I^2 = 0\%$

1.10.2.4 Hospitalisation


Figure 221: Clopidogrel versus placebo in people with CVD or multiple risk factors for CVD (median follow up 28 months) - subgroup analysis of people with diabetic nephropathy

				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
2.5.1 Median follow u	p 28 months				
Dasgupta 2009 Subtotal (95% CI)	-0.10536052	0.128224	100.0% 1 00.0%	0.90 [0.70, 1.16] 0.90 [0.70, 1.16]	
Heterogeneity: Not app	olicable				
Test for overall effect:	Z = 0.82 (P = 0.41)				
					0.1 0.2 0.5 1 2 5 10 avours clopidogrel Favours placebo
Test for subgroup diffe	rences: Not applicabl	е		Гс	avours clopidogrei Favours placebo

Forest plots

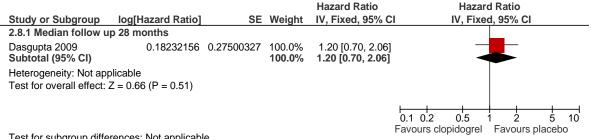
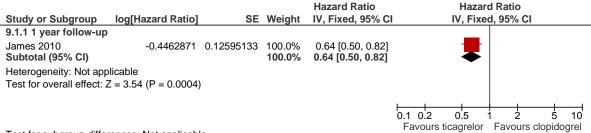

I.10.2.5 Major bleeding (GUSTO severe bleeding)

Figure 222: Clopidogrel versus placebo in people with CVD or multiple risk factors for CVD (median follow up 28 months) - subgroup analysis of people with diabetic nephropathy

Minor bleeding (GUSTO moderate bleeding) 1.10.2.6

Clopidogrel versus placebo in people with CVD or multiple risk factors for CVD Figure 223: (median follow up 28 months) – subgroup analysis of people with diabetic nephropathy

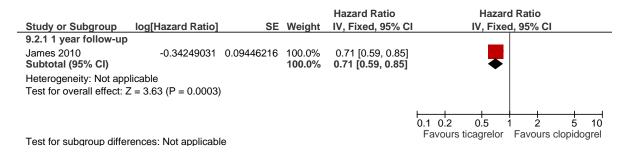


Test for subgroup differences: Not applicable

Ticagrelor (90mg twice daily) versus clopidogrel (75mg daily) 1.10.3

1.10.3.1 All-cause mortality

Figure 224: Ticagrelor versus clopidogrel in people with ST-segment elevation or non STsegment elevation acute coronary syndrome (1 year follow-up) eGFR<60ml/min/1.73m²(MDRD)



Test for subgroup differences: Not applicable

Forest plots

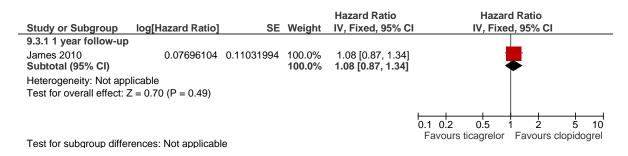
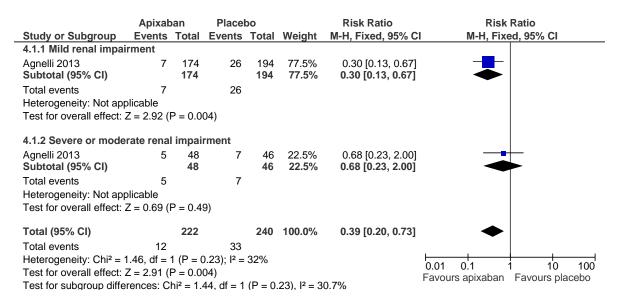

I.10.3.2 Cardiovascular mortality, myocardial infarction or stroke

Figure 225: Ticagrelor versus clopidogrel in people with ST-segment elevation or non STsegment elevation acute coronary syndrome (1 year follow-up) eGFR<60ml/min/1.73m²(MDRD)

I.10.3.3 Major bleeding (PLATO defined)

Figure 226: Ticagrelor versus clopidogrel in people with ST-segment elevation or non STsegment elevation acute coronary syndrome (1 year follow-up) eGFR<60ml/min/1.73m²(MDRD)



Forest plots

I.10.4 Apixaban versus placebo

I.10.4.1 All-cause mortality (or symptomatic recurrent VTE)

Figure 227: Apixaban 2.5mg versus placebo in people with symptomatic deep vein thrombosis or pulmonary embolism and renal impairment

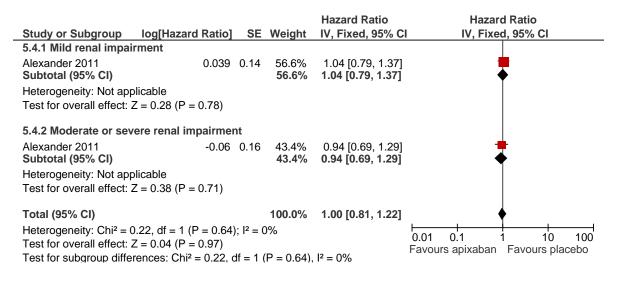


Figure 228: Apixaban 5mg versus placebo in people with symptomatic deep vein thrombosis or pulmonary embolism and renal impairment

	Apixab	an	Placebo			Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl	
5.1.1 Mild renal impai	irment							
Agnelli 2013	7	168	26	194	77.9%	0.31 [0.14, 0.70]		
Subtotal (95% CI)		168		194	77.9%	0.31 [0.14, 0.70]	\bullet	
Total events	7		26					
Heterogeneity: Not app	olicable							
Test for overall effect:	Z = 2.83 (I	P = 0.00	05)					
5.1.2 Severe or mode	rate renal	impai	rment					
Agnelli 2013	1	44	7	46	22.1%	0.15 [0.02, 1.16]		
Subtotal (95% CI)		44		46	22.1%	0.15 [0.02, 1.16]		
Total events	1		7					
Heterogeneity: Not app	olicable							
Test for overall effect:	Z = 1.81 (I	$P = 0.0^{\circ}$	7)					
Total (95% CI)		212		240	100.0%	0.28 [0.13, 0.58]	•	
Total events	8		33					
Heterogeneity: Chi ² = 0	0.43, df = ⁻			4				
Test for overall effect: $Z = 3.38$ (P = 0.0007)							Favours apixaban Favours placebo	,
Test for subgroup differences: $Chi^2 = 0.42$, df = 1 (P = 0.52), $I^2 = 0\%$								

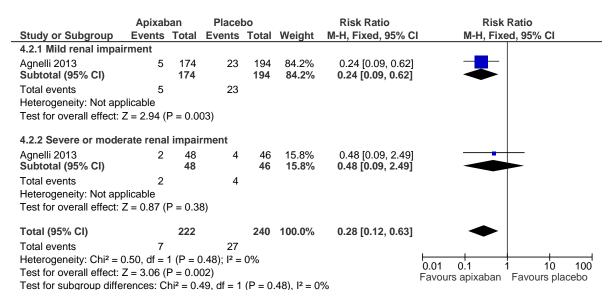

I.10.4.2 Cardiovascular mortality, MI, ischaemic stroke

Figure 229: Apixaban 5mg versus placebo in people with recent acute coronary syndrome and at least two additional risk factors for recurrent ischaemic events

I.10.4.3 Cardiovascular events (VTE or death due to VTE)

Figure 230: Apixaban 2.5mg versus placebo in people with symptomatic deep vein thrombosis or pulmonary embolism and renal impairment

Figure 231: Apixaban 5mg versus placebo in people with symptomatic deep vein thrombosis or pulmonary embolism and renal impairment

	Apixab	an	Placebo			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
5.2.1 Mild renal impai	rment						
Agnelli 2013	5	168	23	194	79.9%	0.25 [0.10, 0.65]	
Subtotal (95% CI)		168		194	79.9%	0.25 [0.10, 0.65]	\bullet
Total events	5		23				
Heterogeneity: Not app	olicable						
Test for overall effect:	Z = 2.87 (F	P = 0.0	04)				
5.2.2 Severe or mode	rate renal	impai	rment				
Agnelli 2013	0	44	5	46	20.1%	0.09 [0.01, 1.67]	
Subtotal (95% CI)		44		46	20. 1%	0.09 [0.01, 1.67]	
Total events	0		5				
Heterogeneity: Not app	olicable						
Test for overall effect:	Z = 1.61 (I	P = 0.1	1)				
Total (95% CI)		212		240	100.0%	0.22 [0.09, 0.54]	•
Total events	5		28				
Heterogeneity: Chi ² = ().41, df = [·]	1 (P = 0).52); l² =	0%			
Test for overall effect:	Z = 3.33 (F	P = 0.0	009)				0.001 0.1 1 10 1000 Favours apixaban Favours placebo
Test for subgroup diffe	rences: Cl	%	Favours apixabari Favours placebo				

1.10.4.4 Major bleeding or clinically relevant non-major bleeding

Figure 232: Apixaban 2.5mg versus placebo in people with symptomatic deep vein thrombosis or pulmonary embolism and renal impairment

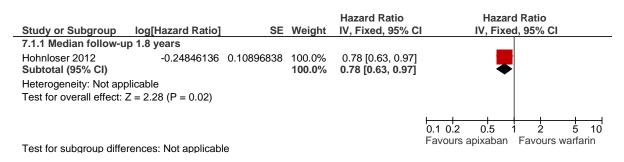
	Apixab	an	Placebo		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
4.3.1 Mild renal impai	4.3.1 Mild renal impairment						
Agnelli 2013	7	174	3	193	58.2%	2.59 [0.68, 9.85]	+-
Subtotal (95% CI)		174		193	58.2%	2.59 [0.68, 9.85]	
Total events	7		3				
Heterogeneity: Not app	licable						
Test for overall effect: 2	Z = 1.39 (l	P = 0.1	6)				
4.3.2 Severe or mode	rate rena	impai	rment				
Agnelli 2013	4	48	2	46	41.8%	1.92 [0.37, 9.97]	
Subtotal (95% CI)		48		46	41.8%	1.92 [0.37, 9.97]	
Total events	4		2				
Heterogeneity: Not app	licable						
Test for overall effect: 2	Z = 0.77 (I	P = 0.4	4)				
Total (95% CI)		222		239	100.0%	2.31 [0.82, 6.50]	
Total events	11		5				
Heterogeneity: Chi ² = 0).08, df = ⁻		0.01 0.1 1 10 100				
Test for overall effect: $Z = 1.58$ (P = 0.11)							Favours apixaban Favours placebo
Test for subgroup differences: $Chi^2 = 0.08$, df = 1 (P = 0.78), $I^2 = 0\%$							

Figure 233: Apixaban 5mg versus placebo in people with symptomatic deep vein thrombosis or pulmonary embolism and renal impairment

	Apixab	an	Placel	00		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
5.3.1 Mild renal impai	irment						
Agnelli 2013	7	168	3	193	59.1%	2.68 [0.70, 10.20]	
Subtotal (95% CI)		168		193	59.1%	2.68 [0.70, 10.20]	
Total events	7		3				
Heterogeneity: Not app	olicable						
Test for overall effect:	Z = 1.45 (P = 0.1	5)				
5.3.2 Severe or mode	rate rena	impai	rment				
Agnelli 2013	6	43	2	46	40.9%	3.21 [0.68, 15.05]	+
Subtotal (95% CI)		43		46	40.9%	3.21 [0.68, 15.05]	
Total events	6		2				
Heterogeneity: Not app	olicable						
Test for overall effect:	Z = 1.48 (P = 0.1	4)				
Total (95% CI)		211		239	100.0%	2.90 [1.06, 7.95]	-
Total events	13		5				
Heterogeneity: Chi ² = (0.03, df =	1 (P = 0).86); l² =	0%			
Test for overall effect:	Z = 2.06 (P = 0.0	4)				0.01 0.1 1 10 100
Test for subgroup diffe		%	Favours apixaban Favours placebo				

I.10.4.5 TIMI major bleeding

Figure 234: Apixaban 5mg versus placebo in people with recent acute coronary syndrome and at least two additional risk factors for recurrent ischaemic events


Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% Cl	Hazard Ratio IV, Fixed, 95% CI					
5.5.1 Mild renal impai	rment			· ·						
Alexander 2011 Subtotal (95% CI)	0.262	0.42	69.7% 69.7%	1.30 [0.57, 2.96] 1.30 [0.57, 2.96]	-					
Heterogeneity: Not app	olicable									
Test for overall effect: 2	Z = 0.62 (P = 0.53)									
5.5.2 Moderate or sev Alexander 2011	5.5.2 Moderate or severe renal impairment Alexander 2011 1.597 0.6373 30.3% 4.94 [1.42, 17.22]									
Subtotal (95% CI)	1.597	0.0375		4.94 [1.42, 17.22]						
Heterogeneity: Not app Test for overall effect: 2										
Total (95% CI)			100.0%	1.95 [0.98, 3.87]	•					
Heterogeneity: Chi ² = 3 Test for overall effect: 2 Test for subgroup diffe	Z = 1.90 (P = 0.06)	0.01 0.1 1 10 100 Favours apixaban Favours placebo								

Forest plots

I.10.5 Apixaban 2.5 or 5mg twice daily versus warfarin

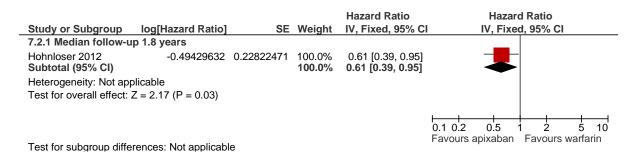

I.10.5.1 All-cause mortality

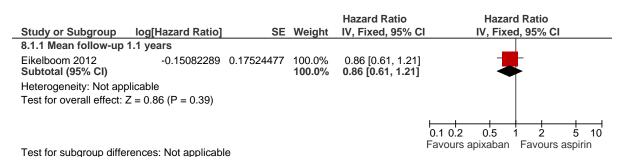
Figure 235: Apixaban versus warfarin in people with atrial fibrillation and eGFR ≤50ml/min/1.73m², median follow-up 1.8 years

I.10.5.2 Cardiovascular events (stroke and systemic embolism)

Figure 236: Apixaban versus warfarin in people with atrial fibrillation and eGFR ≤50ml/min/1.73m², median follow-up 1.8 years

I.10.5.3 Major bleeding

Figure 237: Apixaban versus warfarin in people with atrial fibrillation and eGFR ≤50ml/min/1.73m², median follow-up 1.8 years


Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% C		d Ratio d, 95% Cl
7.3.1 Median follow-u	ip 1.8 years					
Hohnloser 2012 Subtotal (95% CI)	-0.73396918	0.13279994	100.0% 1 00.0%	0.48 [0.37, 0.62] 0.48 [0.37, 0.62]		
Heterogeneity: Not ap	plicable					
Test for overall effect:	Z = 5.53 (P < 0.0000)	1)				
Test for subgroup diffe	erences: Not applicabl	e			0.1 0.2 0.5 Favours apixaban	1 2 5 10 Favours warfarin

Forest plots

I.10.6 Apixaban (5mg twice daily) versus aspirin (81-324mg daily)

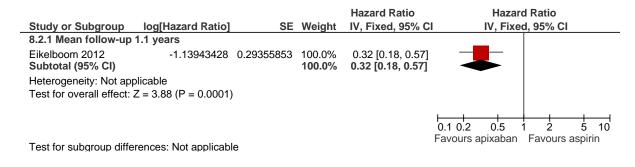

I.10.6.1 All-cause mortality

Figure 238: Apixaban versus aspirin in people with atrial fibrillation, a risk factor for stroke and eGFR 30-59 ml/min/1.73m², mean follow-up 1.1 years

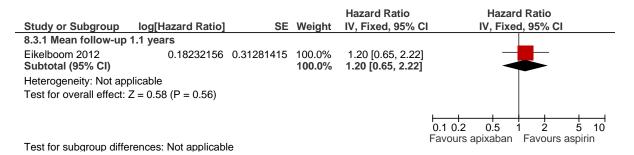
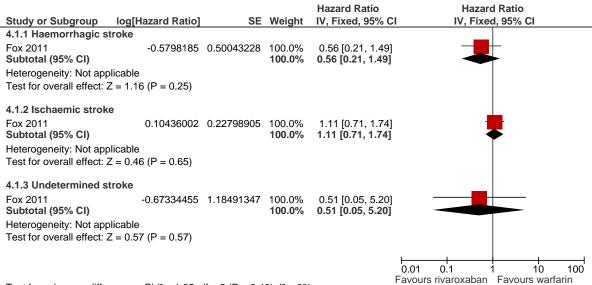

1.10.6.2 Cardiovascular events (stroke or systemic embolism)

Figure 239: Apixaban versus aspirin in people with atrial fibrillation, a risk factor for stroke and eGFR 30-59 ml/min/1.73m², mean follow-up 1.1 years

1.10.6.3 Major bleeding (major haemorrhage)

Figure 240: Apixaban versus aspirin in people with atrial fibrillation, a risk factor for stroke and eGFR 30-59 ml/min/1.73m², mean follow-up 1.1 years



Forest plots

I.10.7 Rivaroxaban (15mg/day) versus warfarin

I.10.7.1 Cardiovascular events

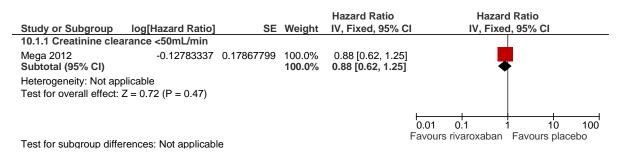
Figure 241: Rivaroxaban versus warfarin in people with atrial fibrillation at moderate to high risk of stroke and CrCl 30-49 ml/min, median follow up 1.9 years

Test for subgroup differences: $Chi^2 = 1.85$, df = 2 (P = 0.40), $I^2 = 0\%$

I.10.7.2 Major bleeding

Figure 242: Rivaroxaban versus warfarin in people with atrial fibrillation at moderate to high risk of stroke and CrCl 30-49 ml/min, median follow up 1.9 years

				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% C	I IV, Fixed, 95% CI
4.2.1 Intracranial hae	morrhage				
Fox 2011	-0.21072103	0.34739265	100.0%	0.81 [0.41, 1.60]	
Subtotal (95% CI)			1 00.0%	0.81 [0.41, 1.60]	
Heterogeneity: Not app	olicable				
Test for overall effect:	Z = 0.61 (P = 0.54)				
4.2.2 Haemoglobin dr	op, transfusion, clir	nical organ a	nd fatal bl	leeding	
Fox 2011	-0.05129329	0.14143667	100.0%	0.95 [0.72, 1.25]	
Subtotal (95% CI)			1 00.0%	0.95 [0.72, 1.25]	\bullet
Heterogeneity: Not app	olicable				
Test for overall effect:	Z = 0.36 (P = 0.72)				
					0.1 0.2 0.5 1 2 5 10
					Favours rivaroxaban Favours warfarin


Test for subgroup differences: $Chi^2 = 0.18$, df = 1 (P = 0.67), I² = 0%

Forest plots

I.10.8 Rivaroxaban versus placebo

I.10.8.1 Cardiovascular mortality, MI or stroke

Figure 243: Rivaroxaban versus placebo in people with a recent acute coronary syndrome

I.10.9 Dabigatran 110 or 150 mg twice daily versus warfarin

I.10.9.1 All-cause mortality

Figure 244: Dabigatran 110mg versus warfarin in people with atrial fibrillation and at least one other risk factor for stroke, median follow up 2 years.

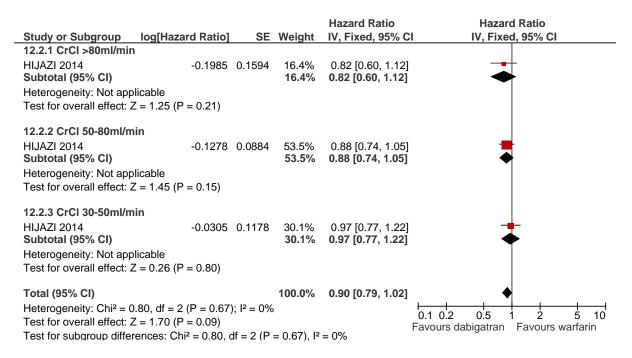
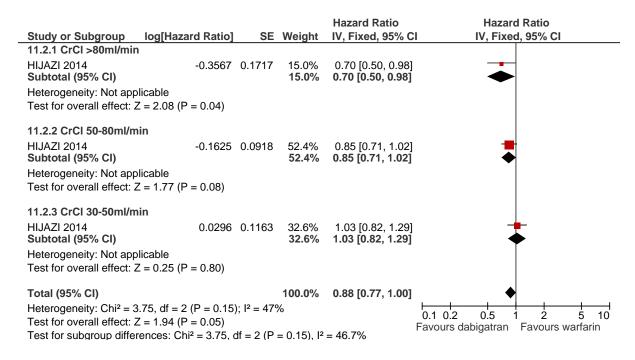
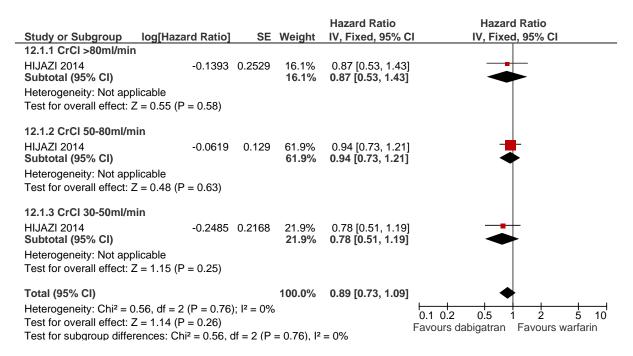
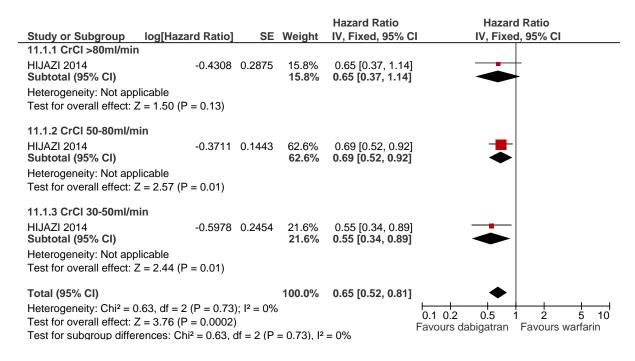




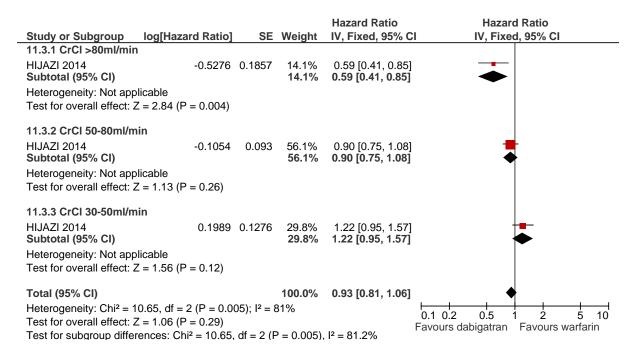
Figure 245: Dabigatran 150mg versus warfarin in people with atrial fibrillation and at least one other risk factor for stroke, median follow up 2 years.



I.10.9.2 Cardiovascular or cerebrovascular events

Figure 246: Dabigatran 110mg versus warfarin in people with atrial fibrillation and at least one other risk factor for stroke, median follow up 2 years.

Figure 247: Dabigatran 150mg versus warfarin in people with atrial fibrillation and at least one other risk factor for stroke, median follow up 2 years.



I.10.9.3 Major bleeding

Figure 248: Dabigatran 110mg versus warfarin in people with atrial fibrillation and at least one other risk factor for stroke, median follow up 2 years.

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% C	Hazard Ratio
12.3.1 CrCl >80ml/mir		52	weight	IV, I IACU, 5578 C	
HIJAZI 2014 Subtotal (95% CI)	-0.8916	0.2131	11.9% 11.9%	0.41 [0.27, 0.62] 0.41 [0.27, 0.62]	•
Heterogeneity: Not app	olicable				
Test for overall effect: 2	Z = 4.18 (P < 0.0001)				
12.3.2 CrCl 50-80ml/m					
HIJAZI 2014 Subtotal (95% CI)	-0.1985	0.0955	59.3% 59.3%	0.82 [0.68, 0.99] 0.82 [0.68, 0.99]	
Heterogeneity: Not app	olicable				
Test for overall effect: 2	Z = 2.08 (P = 0.04)				
12.3.3 CrCl 30-50ml/m	nin				
HIJAZI 2014	0.0198	0.1369	28.8%	1.02 [0.78, 1.33]	<u>+</u>
Subtotal (95% CI)			28.8%	1.02 [0.78, 1.33]	•
Heterogeneity: Not app					
Test for overall effect: 2	Z = 0.14 (P = 0.89)				
Total (95% CI)			100.0%	0.80 [0.70, 0.93]	•
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for subgroup differ	Z = 2.97 (P = 0.003)			l ² = 84.7%	0.1 0.2 0.5 1 2 5 10 Favours dabigatran Favours warfarin

Figure 249: Dabigatran 150mg versus warfarin in people with atrial fibrillation and at least one other risk factor for stroke, median follow up 2 years.

I.11 Asymptomatic hyperuricaemia

I.11.1 Allopurinol compared to usual care in people with CKD and asymptomatic hyperuricaemia

Figure 250:

Renal progression (eGFR final values)

	Allo	opurin	ol	Placebo	/Usual (care		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	I IV, Fixed, 95% CI
1.4.1 eGFR at 9 -12 m	onths 1	00mg							
Goicoechea 2010 Subtotal (95% CI)	41.1	13.2	57 57	35.6	13.4	56 56		5.50 [0.59, 10.41] 5.50 [0.59, 10.41]	
Heterogeneity: Not app	licable								
Test for overall effect: Z	Z = 2.20	(P = 0	0.03)						
1.4.2 eGFR at 9-12 mo	onths 30	00mg							
Kao 2011 Subtotal (95% CI)	0.2	6.9	27 27	0.2	5.5	26 26	100.0% 100.0%		
Heterogeneity: Not app	licable								
Test for overall effect: Z	Z = 0.00	(P = 1	.00)						
1.4.3 eGFR (MDRD4) a	at 24 mo	onths	100mg						
Goicoechea 2010 Subtotal (95% CI)	42.2	13.2	57 57	35.9	12.3	56 56		6.30 [1.60, 11.00] 6.30 [1.60, 11.00]	
Heterogeneity: Not app	licable								
Test for overall effect: Z	Z = 2.63	(P = 0).009)						
									-10 -5 0 5 10
								F	avour placebo/usual care Favours allopurinol

Figure 251: Renal progression (end stage renal disease requiring RRT)

	Allopu	rinol	Usual o	are		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% CI
Goicoechea 2010	1	57	1	56	50.7%	0.98 [0.06, 15.32]	· · · · · · · · · · · · · · · · · · ·
Siu 2006	1	25	1	26	49.3%	1.04 [0.07, 15.74]	
Total (95% CI)		82		82	100.0%	1.01 [0.15, 6.98]	
Total events	2		2				
Heterogeneity: Chi ² =	0.00, df = ⁻	1 (P = 0	.98); l² =	0%			0.05 0.2 1 5 20
Test for overall effect:	Z = 0.01 (I	P = 0.99	9)				Favours allopurinol Favours usual care

Figure 252: Cardiovascular events

	Allopu	Usual o	are		Risk Ratio	Risk Ratio								
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C			M-	H, Fix	ed, 95	% CI		
Goicoechea 2010	7	57	15	56	100.0%	0.46 [0.20, 1.04]		-			†			
Total (95% CI)		57		56	100.0%	0.46 [0.20, 1.04]		-			-			
Total events	7		15											
Heterogeneity: Not ap Test for overall effect:		P = 0.06	6)				⊢ 0.1 Fav		2 C s allopi	l 0.5 urinol	1 Favo	1 2 ours u	5 sual	10 care

Figure 253: Antihypertensive agents stopped

	Allopu	Ilopurinol Placebo/Usual				Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% CI
Kao 2011	5	27	2	26	65.0%	2.41 [0.51, 11.33]	
Siu 2006	1	23	1	19	35.0%	0.83 [0.06, 12.35]	
Total (95% CI)		50		45	100.0%	1.85 [0.50, 6.87]	
Total events	6		3				
Heterogeneity: Chi ² =	0.45, df = '	(P = 0)	.50); l ² = 0%				0.01 0.1 1 10 100
Test for overall effect:	Z = 0.92 (F	P = 0.36	6)			Fa	vour placebo/usual care Favours allopurinol

Figure 254: Antihypertensive agents commenced

	Allopu	rinol	Placebo/Usua	l care		Risk Ratio	Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-H, F	ixed, 95%	CI	
Kao 2011	2	27	5	26	82.3%	0.39 [0.08, 1.81]					
Siu 2006	1	23	1	19	17.7%	0.83 [0.06, 12.35]			•		
Total (95% CI)		50		45	100.0%	0.46 [0.12, 1.75]					
Total events	3		6								
Heterogeneity: Chi ² =							0.01	0.1	1	10	100
Test for overall effect:	Z = 1.14 (F	0.26 = ^ر	ö)				Fav	ours allopuring	Favou	placebo/	usual care

Figure 255: All-cause mortality

	Allopu	rinol	Placebo/Usua	al care		Peto Odds Ratio	Peto Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% Cl	Peto, Fixed, 95% Cl
Goicoechea 2010	0	57	2	56	66.5%	0.13 [0.01, 2.11]	_
Kao 2011	0	32	1	35	33.5%	0.15 [0.00, 7.46]	
Siu 2006	0	25	0	26		Not estimable	
Total (95% CI)		114		117	100.0%	0.14 [0.01, 1.32]	
Total events	0		3				
Heterogeneity: Chi ² =	0.00, df = ⁻	1 (P = 0	.96); l² = 0%				
Test for overall effect:	Z = 1.72 (I	P = 0.09))				0.005 0.1 1 10 200 Favours allopurinol Favour placebo/usual care

Figure 256: Hospitalisation

	Allopu	rinol	Usual o	are		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
Goicoechea 2010	12	57	22	56	100.0%	0.54 [0.29, 0.98]	
Total (95% CI)		57		56	100.0%	0.54 [0.29, 0.98]	
Total events	12		22				
Heterogeneity: Not ap Test for overall effect:		> = 0.04	4)				0.1 0.2 0.5 1 2 5 10 Favours allopurinol Favours usual care

I.12 Vitamin D supplements in the management of CKD-mineral and bone disorders

Figure 257: Mortality

	Vitamiı	ו D	Place	bo		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
Coyne 2006	2	107	1	113	49.0%	2.11 [0.19, 22.96]	
Hamdy 1995	4	89	1	87	51.0%	3.91 [0.45, 34.29]	
Total (95% CI)		196		200	100.0%	3.03 [0.62, 14.89]	
Total events	6		2				
Heterogeneity: Chi ² =	0.14, df = ⁻	1 (P = 0	0.71); l² =	0%			
Test for overall effect:	Z = 1.36 (I	^D = 0.1	7)				Favours vitamin D Favours placebo

Figure 258: Progression of CKD (GFR)

	Vitami	n D	Place	bo		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% CI
Coyne 2006	2	107	1	113	49.0%	2.11 [0.19, 22.96]	
Hamdy 1995	4	89	1	87	51.0%	3.91 [0.45, 34.29]	
Total (95% CI)		196		200	100.0%	3.03 [0.62, 14.89]	
Total events	6		2				
Heterogeneity: Chi ² = 0	0.14, df =	1 (P = 0	0.71); l² =	0%			0.01 0.1 1 10 100
Test for overall effect:	Z = 1.36 (Favours vitamin D Favours placebo				

Figure 259: Progression of CKD (creatinine clearance ml/min)

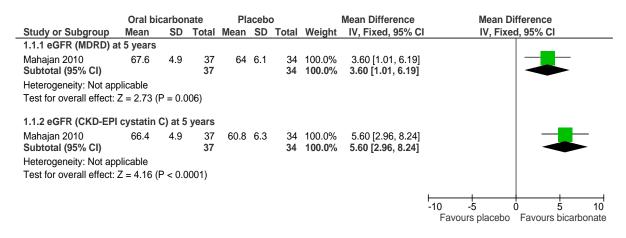
	Vit	amin I	D	PI	acebo			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Baker 1989	31.4	16.3	7	40.2	14.3	6	6.5%	-8.80 [-25.44, 7.84]	·
Hamdy 1995	-5.7	9.4	89	-4	18.7	87	93.5%	-1.70 [-6.09, 2.69]	
Total (95% CI)			96			93	100.0%	-2.16 [-6.40, 2.08]	•
Heterogeneity: Chi ² =			-20 -10 0 10 20						
Test for overall effect	t: $Z = 1.00$	(P = 0)).32)						Favours placebo Favours vitamin I

Figure 260: Hypercalcaemia

	Vitami	n D	Place	bo		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% CI
Coburn 2004	1	27	1	28	15.1%	1.04 [0.07, 15.76]	-
Coyne 2006	2	107	0	113	7.5%	5.28 [0.26, 108.68]	
Hamdy 1995	14	89	4	87	62.1%	3.42 [1.17, 9.99]	
Nordal 1988	8	14	0	14	7.7%	17.00 [1.07, 268.84]	
Patel 2011	0	12	0	12		Not estimable	
Przedlacki 1995	2	13	0	13	7.7%	5.00 [0.26, 95.02]	
Ritz 1995	0	24	0	21		Not estimable	
Total (95% CI)		286		288	100.0%	4.36 [1.91, 9.97]	◆
Total events	27		5				
Heterogeneity: Chi ² = 2	2.23, df =						
Test for overall effect:	Z = 3.50 (0.005 0.1 1 10 200 Favours vitamin D Favours placebo				

Figure 261: Cardiovascular events

	Vitamir	ו D	Place	bo		Peto Odds Ratio	Peto Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% C	I Peto, Fixed, 95% CI
Baker 1989	0	8	1	8	50.0%	0.14 [0.00, 6.82]	
Przedlacki 1995	0	13	1	13	50.0%	0.14 [0.00, 6.82]	
Total (95% CI)		21		21	100.0%	0.14 [0.01, 2.16]	
Total events	0		2				
Heterogeneity: Chi ² = (0.00, df = 1	1 (P = 1	1.00); l ² =	0%			
Test for overall effect:	. ,						0.002 0.1 1 10 500 Favours vitamin D Favours placebo


Figure 262: Fracture

	Vitamin	D	Placel	00		Peto Odds Ratio	Peto Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% C	Peto, Fixed, 95% Cl
Przedlacki 1995	0	13	1	12	100.0%	0.12 [0.00, 6.29]	
Total (95% CI)		13		12	100.0%	0.12 [0.00, 6.29]	
Total events	0		1				
Heterogeneity: Not app	plicable						+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
Test for overall effect:	Z = 1.04 (P	9 = 0.3	0)				Favours vitamin D Favours placebo

I.13 Oral bicarbonate supplements in the management of people with CKD and metabolic acidosis

I.13.1 Sodium bicarbonate versus placebo or usual care in the management of CKD

Figure 263: Progression of CKD (measured by change in eGFR)

Figure 264: Progression of CKD (measured by end stage renal disease requiring RRT)

	Oral bicarb	onate	Usual o	are		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
de Brito 2009	4	62	22	67	100.0%	0.20 [0.07, 0.54]	
Total (95% CI)		62		67	100.0%	0.20 [0.07, 0.54]	
Total events	4		22				
Heterogeneity: Not ap Test for overall effect:		0.002)					0.05 0.2 1 5 20 Favours bicarbonate Favours usual care

Figure 265: Hypertension (measured by use of antihypertenives)

	Oral bicarbo	onate	Usual c	are		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% CI	
1.4.1 Worsening hyp	ertension req	uiring ir	icrease ir	n thera	py at 2 ye	ars		
de Brito 2009 Subtotal (95% CI)	41	67 67	32	67 67	100.0% 1 00.0%	1.28 [0.94, 1.76] 1.28 [0.94, 1.76]		
Total events Heterogeneity: Not ap Test for overall effect:		0.12)	32					
	, , , , , , , , , , , , , , , , , , ,	,					0.5 1 2	5 10

Favours bicarbonate Favours usual care

Figure 266: Cardiovascular events (including chronic heart failure)

	Oral bicarbo	onate	Usual c	are		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% CI
1.5.1 Worsening oed	lema requiring	increas	se in loop	diuret	tics at 2 y	ears	
de Brito 2009 Subtotal (95% CI)	26	67 67	20	67 67	100.0% 1 00.0%	1.30 [0.81, 2.09] 1.30 [0.81, 2.09]	
Total events Heterogeneity: Not ap Test for overall effect:	•).28)	20				
							0.1 0.2 0.5 1 2 5 10 Favours bicarbonate Favours usual care

Figure 267: Alkalosis

	Oral bio	arbor	nate	Pla	acebo	o		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% (I IV, Fixed, 95% CI
1.6.1 Venous total ca	rbon diox	ide (m	M) at 5	years					
Mahajan 2010 Subtotal (95% CI)	26.4	0.6	37 37	26.1	0.8	34 34	100.0% 1 00.0%	0.30 [-0.03, 0.63] 0.30 [-0.03, 0.63]	
Heterogeneity: Not ap Test for overall effect:		P = 0.0	8)						H. J
									-1 -0.5 0 0.5 1 Favours bicarbonate Favours placebo

National Clinical Guideline Centre 2014

Excluded clinical studies

Appendix J: Excluded clinical studies

J.1 Measuring kidney function

Table 164: Studies excluded from the measuring kidney function clinical review

Reference	Reason for exclusion
Anderson 2012 ³⁵	No external validation of CRIC equation
Bevc 2011 ⁷⁰	Serum creatinine and cystatin C not internationally standardised
Bevc 2012 ⁷¹	Serum creatinine and cystatin C not internationally standardised
Bevc 2012B ⁶⁹	Serum creatinine and cystatin C not internationally standardised
Botev 2009 ⁹⁰	Serum creatinine not internationally standardised
Brown et al 2011 ⁹⁶	<100 per diagnoses (GFR >60 ml/min/1.73 m ² vs.GFR <60 ml/min/1.73 m ²)
Camargo 2011 ¹⁰¹	N<100
Carter 2011 ¹⁰⁶	No measured GFR
Cha 2010 ¹⁰⁹	Population does not match protocol (Korean population only)
Chudleigh 2009 ¹²⁵	Serum creatinine and cystatin C not internationally standardised
Dowling 2013 ¹⁶⁸	Serum creatinine not internationally standardised
Du 2012 ¹⁷³	Serum creatinine and cystatin C not internationally standardised
Earley 2012 ¹⁷⁸	Systematic review, not all studies match protocol. All studies included were checked separately to determine if met with inclusion criteria.
Ebert 2012 ¹⁷⁹	Abstract only
Eriksen 2010 ¹⁸⁷	Population does not match protocol (general population not people with suspected CKD)
Eriksen 2012 ¹⁸⁸	Index tests do not match protocol
Flamant 2012 ²⁰²	Abstract only
Fontsere 2006 ²⁰⁵	N<100
Froissart 2005 ²¹⁵	Serum creatinine not internationally standardised
Grubb 2012 ²³⁸	Serum cystatin C not internationally standardised, serum creatinine equation, Lund-Malmo, does not match protocol.
Hallan 2004 ²⁴¹	Serum creatinine not internationally standardised
Hojs 2008 ²⁷⁷	Index tests do not match protocol
Hossain 2012 ²⁸⁰	Serum creatinine not internationally standardised
Huang 2011 ²⁸⁷	N<100
Ibrahim 2005 ²⁸⁹	Serum creatinine not internationally standardised

Excluded clinical studies

Reference	Reason for exclusion
Kallner 2008 ³²⁵	Serum creatinine not internationally standardised.
Kallner 2008 ³²⁶	Serum creatinine not internationally standardised.
Lee 2009 ³⁷²	Serum creatinine not internationally standardised.
Levey 2006 ³⁷⁷	Only one equation that meets protocol in study.
Liu 2013 ³⁹³	Geographical, older Chinese peoole only
Ma 2007 ⁴⁰²	Serum creatinine and cystatin C not internationally standardised
MacIsaac 2006 ⁴⁰⁵	Serum creatinine and cystatin C not internationally standardised
MacIsaac 2007 ⁴⁰⁶	Serum creatinine and cystatin C not internationally standardised
MacIsaac 2012 ⁴⁰⁴	Abstract only
Marwyne 2011 ⁴²⁶	Serum creatinine and cystatin C not internationally standardised
Matsuo 2009 ⁴³³	Serum creatinine and cystatin C not internationally standardised
Mazza 2010 ⁴³⁵	Serum creatinine not internationally standardised
Nyman 2009 ⁴⁹⁵	Serum creatinine index tests do not match protocol and cystatin C not internationally standardised
Oh 2012 ⁵⁰⁹	Serum creatinine and cystatin C not internationally standardised
Padala et al 2012 ⁵¹⁵	Only one equation that meets protocol in study.
Pei 2012 ⁵³⁷	Serum creatinine and cystatin C not internationally standardised
Pei 2013 ⁵³⁶	Serum creatinine and cystatin C not internationally standardised
Poggio 2005 ⁵⁴⁹	Serum creatinine not internationally standardised
Praditpornsilpa 2011 ⁵⁵⁴	Population does not match protocol (Thai population only)
Rognant 2011 ⁵⁸²	Serum creatinine not internationally standardised
Saleem 2008 ⁶⁰⁰	Serum creatinine not internationally standardised
Segarra 2011 ⁶²¹	Only one equation that meets protocol in study.
Selistre 2012 ⁶²²	Serum creatinine not internationally standardised
Stevens 2011 ⁶⁵⁰	Only one equation that meets protocol in study.
Silveiro 2011 ⁶³⁵	<100 per diagnoses (GFR >60 ml/min/1.73 m ² vs.GFR <60 ml/min/1.73 m ²)
Tidman 2008 ⁶⁷⁴	Serum creatinine and cystatin C not internationally standardised
van Deventer 2011 ⁶⁹⁴	N<100
van Pottelbergh 2010 ⁶⁹⁷	Systematic review, not all studies match protocol. All studies included were checked separately to determine if met with inclusion criteria.
Xun 2010 ⁷²⁹	Geographical, older Chinese people only

Excluded clinical studies

J.2 Markers of kidney damage

Table 165: Studies excluded from the markers of kidney damage clinical review

Reference	Reason for exclusion
Bruno 2007 ⁹⁷	Creatinine not calibrated to the MDRD methodology
Cirillo 2012 ¹²⁹	Incorrect intervention (not a combination of measurements: MDRD vs.urinary ACR)
Clase 2011 ¹³²	Not a combination of markers, single marker multivariate model stratified by GFR
Conley 2012 ¹³⁶	Not a combination of markers, single marker multivariate model stratified by GFR
Matsushita 2012A ⁴³⁴	Not a combination of markers, single marker multivariate model stratified by GFR
Muntner 2011 ⁴⁶¹	Not a combination of markers, single marker multivariate model stratified by GFR
Nerpin 2011 ⁴⁸⁴	MDRD + urine albumin excretion rate (cystatin C measurement is not standardised)
Rifkin 2010 ⁵⁶⁹	Not a combination of markers
Smink 2012 ⁶³⁹	Not a combination of markers, single marker multivariate model stratified by GFR
Tonelli 2011 ⁶⁷⁹	Not a combination of markers
Waheed 2012A ⁷⁰⁵	Not a combination of markers, single marker multivariate model stratified by GFR

J.3 Classification of CKD

Table 166: Studies excluded from the classification of CKD clinical review

Reference	Reason for exclusion
Agarwal et al. 2008 ¹⁴	Lower quality study * – Regression with eGFR and proteinuria as factors
Agarwal et al. 2012 ¹⁵	Lower quality study* - Not stratified by eGFR
Aguilar et al. 2010 ²⁰	Lower quality study*
Alonso et al. 2011 ³⁰	Lower quality study*
Atta et al. 2009 ⁴⁵	Lower quality study* - Indirect population (people with diabetes)
Baek et al.2012 ⁴⁸	Lower quality study* - Retrospective cohort
Bello et al. 2011 ⁶⁴	Lower quality study* - Indirect population (general population)
Berhane et al. 2009 ⁶⁵	Abstract only
Blecker et al. 2011 ⁸⁴	Lower quality study* - Indirect population (general population)
Choi et al. 2010 ¹¹⁸	Population not in protocol (people with HIV)
Chronic Kidney Disease	Indirect population (general population)

National Clinical Guideline Centre 2014

Excluded clinical studies

Reference	Reason for exclusion
Prognosis Consortium 2010 ¹²³	
Deboer et al. 2009 ¹⁵⁴	Lower quality study* - Indirect population (people with diabetes)
Drion e al. 2012 ¹⁷¹	Lower quality study* - Indirect population (people with diabetes)
Foster et al. 2007 ²⁰⁶	Lower quality study*
Grams et al. 2010 ²³⁶	Lower quality study* - Indirect population (general population)
Groop et al. 2009 ²³⁷	Lower quality study* - Indirect population (people with diabetes)
Halbesma et al. 2008 ²⁴⁰	Indirect population (general population), comparison not in protocol (assessment of gender differences only)
Hallan et al. 2009 ²⁴⁴	Lower quality study* - Indirect population (general population)
Hayashi et al. 2010 ²⁵³	Lower quality study* - Indirect population (hypertensive)
Hsu et al. 2009 ²⁸⁵	Lower quality study* – Regression with eGFR and proteinuria as factors
Inker et al. 2011 ²⁹⁷	Lower quality study*
Jackson et al. 2009 ³⁰⁵	Lower quality study* - Indirect population (general population)
Le et al. 2012 ³⁶⁹	Lower quality study* - Indirect population (general population)
Leehey et al. 2005 ³⁷⁵	Lower quality study*
Lima et al. 2011 ³⁸⁸	Lower quality study* - Indirect population (stroke)
McManus et al. 2009 ⁴³⁹	Lower quality study* - Indirect population (outpatients with coronary artery disease)
McClellan et al. 2012 ⁴³⁷	Not relevant to protocol – focus on family history of ESRD
Mahmoodi et al. 2012 ⁴¹⁰	Indirect population (general population)
Meguro et al. 2009 ⁴⁴¹	Lower quality study* - Indirect population (diabetes)
Methven et al. 2011 ⁴⁴⁹	Lower quality study*
Murussi et al. 2007 ⁴⁶³	Lower quality study* - Indirect population (diabetes)
Ninomiya et al. 2009 ⁴⁸⁸	Lower quality study* - Indirect population (diabetes)
Norris et al. 2006 ⁴⁹¹	Lower quality study*
Obi et al. 2010 ⁵⁰³	Lower quality study* - Retrospective analysis
Ocak et al. 2010 ⁵⁰⁴	Lower quality study*
Ohare et al. 2010 ⁵⁰²	Lower quality study* - Indirect population (diabetes)
Ohashi et al. 2011 ⁵¹⁰	Lower quality study*
Sasso et al. 2012 ⁶⁰⁷	Lower quality study* - Indirect population (diabetes)
Shastri et al. 2011 ⁶²⁸	Lower quality study* - Indirect population (general population)
Solini et al. 2012 ⁶⁴²	Lower quality study* - Indirect population (diabetes)
Solomon et al. 2007 ⁶⁴⁴	Lower quality study* - Indirect population (chronic stable coronary disease)
Targher et al. 2011 ⁶⁶⁸	Lower quality study* - Indirect population (diabetes)
Vlek et al. 2009 ⁷⁰²	Lower quality study* - Indirect population (vascular disease)
Warnock et al. 2010 ⁷¹³	Lower quality study* - Indirect population (stroke)
Wu et al. 2012 ⁷²⁷	Lower quality study*
Yang et al. 2007 ⁷³¹	Lower quality study* - Indirect population (diabetes)

National Clinical Guideline Centre 2014

Excluded clinical studies

Reference	Reason for exclusion
Yang et al. 2008 ⁷³²	Lower quality study* - Indirect population (diabetes)
Yokoyama et al. 2011 ⁷³⁵	Abstract only
Yokoyama et al. 2012 ⁷³⁴	Lower quality study* - Indirect population (diabetes)
Yoshida et al. 2008 ⁷³⁶	Lower quality study* – Regression with eGFR and proteinuria as factors
Zambon et al. 2012 ⁷³⁷	Not relevant to protocol – compares sex differences only

* Lower quality study compared to IPD meta-analysis

J.4 Cause of CKD – risk of adverse outcomes

J.4.1 Glomerular disease

Study	Exclusion reason
Dumoulin et al. 2003 ¹⁷⁶	Does not meet review protocol.
Ekart et al. 2013 ¹⁸¹	Retrospective, only considers people who progressed to RRT.
Heeringa et al. 2007 ²⁵⁷	Does not meet review protocol.
Hladunewich et al. 2009 ²⁷⁰	Does not meet review protocol (analysis of nephrotic versus sub- nephrotic).
Hoefield et al 2013 ²⁷³	Does not meet review protocol, glomerular disease if the reference group.
Lee et al. 2012 ³⁷³	Compares high and low risk patients rather than types of glomerular disease or glomerular disease versus no glomerular disease.
Lv et al 2013 ⁴⁰¹	Systematic review – references checked for inclusion.

Table 167: Studies excluded from the clinical review – glomerular disease

J.4.2 Acute kidney injury

Table 168: Studies excluded from the clinical review – acute kidney injury

Study	Exclusion reason
Ahlstrom et al. 2005 ²¹	Not guideline population (people on dialysis)
Bagshaw et al. 2005 ⁴⁹	Does not meet review protocol.
Bedford et al. 2012 ⁶³	Editorial
Bucaloiu et al. 2012 ⁹⁸	Inappropriate study design (case control study)
Coca et al. 2011 ¹³⁵	Systematic review – references checked for inclusion.
Coca et al. 2012 ¹³⁴	Systematic review – references checked for inclusion.
Goldberg et al. 2008 ²³¹	Systematic review – references checked for inclusion.
Grams et al. 2010 ²³⁶	Does not meet review protocol.
Hsu et al. 2009 ²⁸⁴	All occurrences of AKI were when CKD was already present.

Excluded clinical studies

Study	Exclusion reason
Hsu et al. 2011 ²⁸⁶	Systematic review – references checked for inclusion.
Ishani et al. 2009 ³⁰⁴	Cohort starts with all people with ESRD rather than people with AKI who develop ESRD.
Liano et al. 2007 ³⁸⁷	Does not meet review protocol.
Lins et al. 2006 ³⁹²	Does not meet review protocol.
Loef et al. 2005 ³⁹⁸	Indirect population (post-operative).
Morgera et al. 2002 ⁴⁵⁷	Does not meet review protocol.
Siew et al. 2012 ⁶³⁴	Does not meet review protocol.

J.5 Frequency of monitoring

Reference	Reason for exclusion
Abdelhafiz et al 2012 ⁹	No UK loan locations- order cancelled
Alaly et al 2010 ²⁶	CKD in RA Veterans population only
Ali et al 2013 ²⁹	Does not match protocol
Altemtam et al 2012 ³¹	Does not match protocol
Astor2011 ⁴³	Does not match protocol
Babayev2013 ⁴⁶	No adjusted HR reported
Baek2012 ⁴⁸	Does not match protocol
Barbour et al 2010 ⁵⁷	Systematic review not all studies meet PICO, all studies assessed individually.
Berhane et al 2011 ⁶⁶	Does not match protocol
Boudville et al 2012 ⁹¹	Does not match protocol
Clark et al 2011 ¹³¹	Does not match protocol
Conley et al 2012 ¹³⁶	Does not match protocol
Erickson et al 2013 ¹⁸⁵	Does not match protocol; no adjusted HR reported - univariate analysis only.
Hallan et al 2009 ²⁴⁴	Does not match protocol
Hemmelgarn et al 2007 ²⁵⁹	Does not match protocol
Hemmelgarn et al 2010 ²⁶¹	Does not match protocol
Heras et al 2012 ²⁶⁴	Does not match protocol
Hoefield et al 2011 ²⁷²	Does not match protocol
Khatami et al 2007 ³³⁷	Does not match protocol
Khedr et al 2011 ³³⁸	Does not match protocol
Leehey et al 2005 ³⁷⁵	Does not match protocol
Li et al 2012 ³⁸⁵	Does not match protocol

Table 169: Studies excluded from the frequency of monitoring clinical review

Excluded clinical studies

Reference	Reason for exclusion
Madero et al 2007 ⁴⁰⁷	Does not match protocol
Molitch et al 2010 ⁴⁵⁵	Does not match protocol
Murussi et al 2007 ⁴⁶³	Does not match protocol
Nitsch et al 2013 ⁴⁸⁹	Does not match protocol
Obi et al 2010 ⁵⁰³	Does not match protocol
O'Hare et al 2012 ⁵⁰¹	Adjusted HR only reported for population after RRT started
Ohashi et al 2011 ⁵¹⁰	Does not match protocol. Hospitalised CKD only, therefore not monitoring in general population of people with CKD.
Othman et al 2009 ⁵¹⁴	Does not match protocol
Schmieder et al 2011 ⁶¹⁶	Indirect population (not CKD)
Selvin et al 2013 ⁶²³	Does not match protocol
Soares et al 2009 ⁶⁴¹	Not review population (paediatric)
Tangri et al 2011 ⁶⁶⁷	Does not match protocol
Tseng et al 2012 ⁶⁸³	Abstract only
Turin et al 2013 ⁶⁸⁴	No 95% CI reported
Unsal et al 2012 ⁶⁹¹	Does not match protocol
Vandervelde et al 2011 ⁶⁹³	Does not match protocol
Vupputuri et al 2011 ⁷⁰⁴	Does not match protocol; univariate analysis only.
Yoshida et al 2008 ⁷³⁶	Does not match protocol

J.6 Progression of CKD after acute kidney injury

Table 170: Studies excluded from the CKD progression after AKI clinical review

Reference	Reason for exclusion
Chawla 2011 ¹¹⁴	Incorrect study design (derivation of risk models for CKD4)
James 2010B ³¹⁰	Superseded by James 2011B ³⁰⁹ which also reports Hazard Ratios for same population.
Gansevoort 2011 ²¹⁸	AKI is the outcome studied not the risk factor for ESRD or CKD progression
Ponte 2008 ⁵⁵⁰	Incorrect study design (derivation of model to predict GFR during follow-up)
Schiffl 2006 ⁶¹³	Incorrect study design (case series)

Excluded clinical studies

J.7 Low protein diets

Study	Exclusion reason
Campbell 2008 ¹⁰²	Less than minimum duration
Di iorio 2003 ¹⁶⁴	Incorrect interventions
Dullaart 1993 ¹⁷⁵	Not guideline condition
Dussol 2005 ¹⁷⁷	Incorrect interventions
Fouque 2006 ²⁰⁷	Systematic review. Relevant studies included.
Hansen 2002 ²⁴⁶	Incorrect interventions
lhle 1989 ²⁹⁰	Incorrect interventions
Jungers 1987 ³²²	Incorrect interventions
Koya 2009 ³⁵⁶	Incorrect interventions
Malvy 1999 ⁴¹⁵	Incorrect interventions
Menon 2009 ⁴⁴⁸	Incorrect interventions
Mircescu 2007 ⁴⁵³	Incorrect interventions
Pan 2008 ⁵²²	Systematic review is not relevant to review question or unclear PICO
Pedrini 1996 ⁵³⁵	Systematic review : all studies included in Cochrane reviews
Pijls 2002 ⁵⁴⁸	Not guideline condition
Robertson 2007 ⁵⁷⁶	Systematic review. Relevant studies included.
Sanchez 2010 ⁶⁰²	Less than minimum duration
Tangri 2011 ⁶⁶⁷	Post hoc subgroup analysis
Teplan 2010 ⁶⁷¹	Abstract of post hoc analysis
Yasuda 2010 ⁷³³	Crossover study

J.8 Self-management

Table 172: Studies excluded from the clinical review

Reference	Reason for exclusion
Sabariego 2010 ⁵⁹⁸	Education program, not relevant to protocol.
Thomas 2013 ⁶⁷³	Not guideline population. Not relevant to protocol.

Excluded clinical studies

J.9 Blood pressure - combined renin-angiotensin-aldosterone system antagonists

Table 173: Excluded studies from clinical review: For people with CKD, what is the clinical and cost effectiveness of renin-angiotensin-aldosterone antagonists in the management of CKD?

Study	Exclusion reason
Agarwal 2011 ¹⁶	Not review population. Systematic review, subgroup with CKD, relevant papers included.
Agodoa 2001 ¹⁹	Incorrect interventions. ramipril vs. amlodipine
Anon 2000 ³	Not guideline condition
Appel 2010 ³⁷	Incorrect interventions
Atmaca 2006 ⁴⁴	Fewer than 30 people
Bakris 1992 ⁵³	Incorrect interventions. lisinopril vs. verampamil vs. diuretic
Bakris 1994 ⁵⁴	Fewer than 30 people
Barnett 2006 ⁵⁸	No additional material over Barnett 2004
Bhavsar 2011 ⁷³	Incorrect interventions
Bianchi 2006 ⁷⁴	Incorrect interventions. Open label study with 'conventional care' as comparator
Bianchi 2010 ⁷⁵	Incorrect interventions
Bichu 2009 ⁷⁶	Review not main trial
Bilous 2009 ⁷⁹	Not guideline condition
Bilous 2010 ⁸⁰	Not guideline condition
Blacklock 2011 ⁸³	All eligible studies included separately (includes some we excluded). Less than minimum duration
Bomback 2008 ⁸⁷	Not RCT
Brouwers 2011 ⁹⁵	Incorrect study design. non-randomised extension study
Capek 1994 ¹⁰³	Less than 30 people
Carella 1999 ¹⁰⁴	Crossover study
Casas 2005 ¹⁰⁷	Systematic review is not relevant to review question or unclear PICO. comparison is ACE inhibitors or ARB versus other antihypertensives
Chase 1993 ¹¹³	Fewer than 30 people
Chrysostomou 2006 ¹²⁴	Less than minimum duration
Cordonnier 1999 ¹³⁸	Fewer than 30 people
Daien 2012 ¹⁴⁸	Not guideline condition
Dalla 2004 ¹⁴⁹	Incorrect interventions. wrong comparison: ramipril vs. lercanidipine
Davidson 2011 ¹⁵²	Incorrect interventions
Epstein 2006 ¹⁸⁴	Less than minimum duration
Estacio 1996 ¹⁹²	Incorrect interventions. not our comparisons: enalapril vs. Nisoldipine
Estacio 1998 ¹⁹³	Incorrect interventions. not our comparisons: enalapril vs. Nisoldipine

Excluded clinical studies

_

Esta sia 4000 ¹⁹¹	
Estacio 1998 ¹⁹¹	Incorrect interventions. enalapril vs. nisoldipine
Estacio 2000 ¹⁹⁰	Incorrect interventions. enalapril vs. nisoldipine
Esteghamati 2013 ¹⁹⁴	Open label trial with participants who are already receving the study drugs.
Evans 2009 ¹⁹⁵	Abstract only
Evans 2012 ¹⁹⁶	Incorrect interventions
Fan 2006 ¹⁹⁸	Incorrect interventions
Fernandez-juarez 2006 ²⁰⁰	Less than minimum duration
Fried 2009 ²¹²	Inappropriate comparison. design only no outcomes
Furumatsu 2008 ²¹⁶	Incorrect interventions. spironolactone + ACE inhibitors + ARB vs. diuretic + ACE inhibitors + ARB
Garg 1998 ²²²	Not guideline condition. not all patients had CKD
Hansen 1994 ²⁴⁷	Fewer than 30 people
Hansen 1995 ²⁴⁸	Incorrect interventions. captopril + bendrofluazide vs. no treatment
Hellemons 2011 ²⁵⁸	Post hoc analysis - evaluates the slope of renal function loss. Less than minimum duration
Hirst 2012 ²⁶⁹	Not RCT
Horita 2006 ²⁷⁹	Incorrect interventions. intervention is temocapril (not on list)
Hou 2007 ²⁸¹	Incorrect interventions. 2 doses same drug versus drug not on list
Imai 2006 ²⁹⁶	Inappropriate comparison. design only no outcomes
Imai 2010 ²⁹³	Abstract only - all in Imai 2011A
Imai 2012 ²⁹⁵	Abstract only all in Imai 2011A
Jafar 2001 ³⁰⁷	Systematic review is not relevant to review question or unclear PICO. most studies wrong intervention/comparison
Jafar 2007 ³⁰⁶	Incorrect interventions. ordered in error
Jennings 2007 ³¹⁶	Not RCT
Jerums 2001 ³¹⁸	Fewer than 30 people
Jun 2011 ³²¹	Systematic review: methods are not adequate/unclear. review - not systematic
Kahvecioglu 2007 ³²⁴	Fewer than 30 people
Kent 2007 ³³⁵	Systematic review is not relevant to review question or unclear PICO. pooled analysis ACE inhibitors + antihypertensives vs. antihypertensives; not SR
Kim-mitsuyama 2013 ³⁴²	Incorrect interventions. Inappropriate comparison
Knudsen 2008 ³⁴⁷	Not guideline condition
Ko 2005 ³⁴⁸	Not guideline condition. not all patients had CKD
Kosmadakis 2010 ³⁵⁴	Fewer than 30 people
Kunz 2008 ³⁵⁹	Not RCT
Lea 2005 ³⁷⁰	Incorrect interventions. ramipril vs. metoprolol vs. amlodipine
Lee 2011 ³⁷⁴	Incorrect interventions. Comparator - usual antihypertensive therapy (i.e. no placebo)

Excluded clinical studies

Lizakowski 2013 ³⁹⁴	Crossover study. Less than minimum duration
Locatelli 1997 ³⁹⁷	Incorrect study design. non-randomised extension study
Lv 2012 ⁴⁰⁰	Not guideline condition
Maione 2007 ⁴¹³	Inappropriate comparison. design of study only - no outcomes
Maione 2011 ⁴¹²	Not RCT
Mann 2008 ⁴¹⁸	Not guideline condition
Mann 2013 ⁴¹⁹	Compares with dual therapy with monotherapy which could either be ramipril or telmisartan.
Marin 2001 ⁴²⁰	Incorrect interventions. wrong comparison - fosinopril vs. nifedipine
Marre 1987 ⁴²⁴	Less than minimum duration
Marre 1988 ⁴²³	Fewer than 30 people
Marre 1990 ⁴²²	Fewer than 30 people
Maschio 1996 ⁴²⁷	Incorrect interventions. benazepril
Maschio 1999 ⁴²⁸	Incorrect interventions. benazepril not listed
Mathiesen 1991 ⁴²⁹	Incorrect interventions. captopril + diuretic vs. no treatment
Mathiesen 1999 ⁴³⁰	Incorrect interventions. captopril + diuretic vs. no treatment
Matsuda 2003 ⁴³²	Less than minimum duration
Mehdi 2009 ⁴⁴²	Less than minimum duration
Mehler 2003 ⁴⁴³	Incorrect interventions. enalapril vs. nisoldipine
Mimura 2008 ⁴⁵²	Incorrect study design
Mori-takeyama 2008 ⁴⁵⁸	Incorrect interventions
Navaneethan 2009 ⁴⁸³	Systematic review, all relevant studies included.
O'donnell 1993 ⁴⁹⁶	Less than minimum duration
Ogawa 2007 ⁵⁰⁷	Incorrect interventions
Oguri 2009 ⁵⁰⁸	Fewer than 30 people
Parving 1989 ⁵²⁵	Incorrect interventions. no treatment control group
Parving 2001 ⁵²⁴	Non-English language
Parving 2001 ⁵²⁶	Incorrect interventions. no treatment control group
Parving 2008 ⁵²⁸	Less than minimum duration
Parving 2009 ⁵²⁹	Inappropriate comparison. design of study only no outcomes
Parving 2012 ⁵³⁰	Inappropriate comparison. baseline characteristics only no outcomes
Perkovic 2007 ⁵⁴⁰	Incorrect interventions. perindopril + indapamide vs. placebo + indapamide
Pham 2011 ⁵⁴⁵	Not RCT
Phillips 1993 ⁵⁴⁶	Less than minimum duration
Poulsen 2001 ⁵⁵³	Pooled data from 2 RCTs. 1 included. 1 excluded
552	No outcomes relevant to protocol (albuminuria during exercise)
Poulsen 2001 ⁵⁵²	
Poulsen 2001 ⁵⁵² Rahman 2006 ⁵⁶¹	Incorrect interventions

Excluded clinical studies

Ravid 1995 ⁵⁶⁵	Inappropriate comparison. no relevant outcomes
Ravid 1996 ⁵⁶⁴	Incorrect study design. non-randomised extension study
Remuzzi 1991 ⁵⁶⁸	Inappropriate comparison. no comparison reported - study design onl no outcomes
Rizos 2012 ⁵⁷⁴	Not RCT
Rizzoni 2005 ⁵⁷⁵	Not guideline condition
Romero 1993 ⁵⁸³	Less than minimum duration. Incorrect interventions
Ros-ruiz 2012 ⁵⁸⁴	Incorrect study design
Rossing 2005 ⁵⁸⁸	Less than minimum duration
Ruggenenti 1998 ⁵⁹³	Incorrect interventions. effect of CCB
Ruggenenti 1998 ⁵⁹⁵	Incorrect study design. non-randomised follow up study
Ruggenenti 2001 ⁵⁹⁶	Duplicates Gisen 1997 [ID2851] and Ruggenenti 1999 [2853]
Sano 1994 ⁶⁰⁵	Incorrect interventions. "no treatment" control group
Sano 1996 ⁶⁰⁴	Incorrect interventions. "no treatment" control. not placebo or RAAS
Sarafidis 2008 ⁶⁰⁶	Not RCT
Sato 2003 ⁶⁰⁸	Incorrect study design
Savage 1996 ⁶¹⁰	Incorrect study design. cohort study
Schjoedt 2005 ⁶¹⁴	Crossover study
Schjoedt 2006 ⁶¹⁵	Crossover study
Schrier 1996 ⁶¹⁷	Incorrect interventions. wrong comparison - enalapril vs. nisoldipine
Schrier 2002 ⁶¹⁸	Incorrect interventions. enalapril vs. nisoldipine
Sengul 2006 ⁶²⁴	Less than minimum duration
Shahinfar 2002 ⁶²⁶	No outcomes relevant to review protocol
Sharma 2011 ⁶²⁷	Systematic review - all papers included.
Shoda 2006 ⁶³²	Incorrect interventions
Stornello 1989 ⁶⁵⁴	Less than minimum duration
Stornello 1992 ⁶⁵⁵	Crossover study
Strippoli 2006 ⁶⁵⁷	Not RCT
Tamura 2008 ⁶⁶⁴	Incorrect interventions
Tan 2002 ⁶⁶⁵	Less than minimum duration
Tang 2012 ⁶⁶⁶	Incorrect study design
Toth 2010 ⁶⁸¹	Summary/commentary not original RCT
Trevisan 1995 ⁶⁸²	Less than minimum duration
Tylicki 2007 ⁶⁸⁹	Not guideline condition
Tylicki 2008 ⁶⁸⁸	Less than minimum duration
Vejakama 2012 ⁶⁹⁹	Not RCT
Wang 2009 ⁷¹¹	Not RCT
Winkelmayer 2006 ⁷²³	Age-specific subgroup analysis but not >75 years
Wright 2002 ⁷²⁵	Incorrect interventions

Excluded clinical studies

Zannad 2006 ⁷³⁸ Dialysis patients	Yanagi 2013 ⁷³⁰	Inappropriate comparison. Less than minimum duration
	Zannad 2006 ⁷³⁸	Dialysis patients

J.10 Oral anticoagulants and antiplatelets

Table 174: What is the efficacy and safety of antiplatelet and antithrombotic therapy

Exclusion reason	
Less than minimum duration. Outcomes only reported at 30 days.	
Incorrect study design. Trial rational and resign only.	
Inappropriate comparison. Simvastatin. Dialysis patients	
Duplicate of data reported in James et al. 2010	
No CKD subgroup. Not guideline condition	
Not guideline condition. No CKD subgroup.	
Not guideline condition. Inappropriate comparison. Incorrect interventions. Dabigatran versus enoxaparin. People aged over 75 or those with renal impairment. Not separated for analysis.	
Less than minimum duration	
Not guideline condition. Not review population. No CKD subgroup	
Not systematic review or RCT	
Summary of all subgroup analysis. Data reported in James et al.2010	
Not guideline condition. Not CKD subgroup	
Incorrect interventions. Fixed dose warfarin combined with aspirin - not relevant to clinical practice.	
Abstract	
Abstract	
Subgroup analysis of ROCKET AF only reporting Japanese trial data Data reported in Fox et al.	
Not guideline condition. Not review population. No CKD subgroup.	
Not guideline condition. Not CKD population; design of study only	
Abstract	
Abstract only - full paper included	
Not RCT	
Inappropriate comparison. Incorrect interventions	
Not guideline condition. Not review population. No CKD subgroup.	
Not guideline condition. No CKD subgroup	
Not RCT	
No CKD subgroup. Not guideline condition. Not review population	
Re-analysis of data presented in Fox et al Data analysis not relevant to protocol.	

Excluded clinical studies

Study	Exclusion reason
Poulsen 2012 ⁵⁵¹	Review - references checked for relevant studies.
Pride 2009 ⁵⁵⁶	Not guideline condition. Not review population. No CKD subgroup.
Saito 2011 ⁵⁹⁹	Aspirin versus no aspirin (not placebo). Inappropriate comparison. Incorrect interventions
Saltzman 2011 ⁶⁰¹	Inappropriate comparison. Incorrect interventions
Schulman 2013 ⁶¹⁹	Not guideline condition. No CKD subgroup
Steinhubl 2002 ⁶⁴⁹	Not guideline condition. Not review population
Suh 2011 ⁶⁵⁸	Not guideline condition. Not review population
Tobbia 2011 ⁶⁷⁵	Incorrect interventions. Abstract only.
Wallentin 2009 ⁷⁰⁹	Not guideline condition. No CKD subgroup
Wallentin 2013 ⁷¹⁰	Not guideline condition. No CKD subgroup
Weimar 2012 ⁷¹⁶	Not guideline condition. Not review population. No CKD subgroup.

J.11 Asymptomatic hyperuricaemia

Table 175: Studies excluded from the clinical review

Study	Exclusion reason
Agarwal 2011 ¹⁶	Abstract only and includes studie sthat do not match PICO
Momeni 2010 ⁴⁵⁶	Population does not match protocol

J.12 Vitamin D supplements in the management of CKD-mineral and bone disorders

Table 176: Studies excluded from the	Vitamin D clinical review
--------------------------------------	---------------------------

Study	Exclusion reason
Adachi 2011 ¹¹	Dialysis patients
Aggarwal 2011 ¹⁷	Less than minimum duration
Alborzi 2008 ²⁷	Less than minimum duration
Alvarez 2012 ³²	No outcomes relevant to the protocol
Bjorkman 2009 ⁸²	Systematic review is not relevant to review question or unclear PICO
Bosworth 2012 ⁸⁹	No outcomes relevant to the protocol
Chandra 2008 ¹¹²	Less than minimum duration
Cheng 2012 ¹¹⁶	Dialysis patients
Christiansen 1978 ¹²²	No outcomes relevant to the protocol
De boer 2010 ¹⁵³	abstract only
De zeeuw 2010 ¹⁵⁹	12% had eGFR >60 ml/min/1.73 m^2 . Not review population

Excluded clinical studies

Study	Exclusion reason
Dogan 2008 ¹⁶⁷	open label study
Drueke 2009 ¹⁷²	review not systematic
Fishbane 2009 ²⁰¹	eGFR 15-90 ml/min/1.73 m ² . Not review population
Garside 2007 ²²³	Intervention not in protocol (cinacalcet). Incorrect interventions
Giustia 2009 ²²⁸	abstract only
Kooienga 2009 ³⁵¹	No outcomes relevant to the protocol
Koshikawa 2002 ³⁵³	Dialysis patients
Kovesdy 2012 ³⁵⁵	Less than minimum duration
Krairittichai 2012 ³⁵⁷	Less than minimum duration
Moe 2010 ⁴⁵⁴	Less than minimum duration
Oksa 2008 ⁵¹¹	open label study
Palmer 2009 ⁵²¹	systematic review not all papers relevant. Systematic review is not relevant to review question or unclear PICO
Petchey 2009 ⁵⁴²	Protocol only
Petchey 2013 ⁵⁴⁴	No outcomes relevant to the protocol
Petchey 2013 ⁵⁴³	Abstract
Rix 2004 ⁵⁷³	Incomplete reporting of outcome
Rucker 2009 ⁵⁹⁰	Less than minimum duration
Singh 2007 ⁶³⁶	Less than minimum duration
Tamez 2012 ⁶⁶³	No outcomes relevant to the protocol
Wesseling-perry 2011 ⁷¹⁷	Not guideline condition
Wilkie 2009 ⁷¹⁹	Intervention not in protocol (cinacalcet). Incorrect interventions
Xu 2012 ⁷²⁸	Abstract of systematic review

J.13 Oral bicarbonate supplements in the management of people with CKD and metabolic acidosis

Study	Exclusion reason
Abramowitz 2013 ¹⁰	Study focus is muscle strength - no relevant outcomes
Disthabanchong 2010 ¹⁶⁶	Less than minimum duration
Goraya 2013 ²³²	Incorrect interventions. Comparison is not placebo or usual care
Susantitaphong 2012659	Systematic review: study designs inappropriate

Excluded economic studies

Appendix K: Excluded economic studies

K.1 Self-management

Table 178: Studies excluded from the economic review

Reference	Reason for exclusion
Wei2010 ⁷¹⁵	No health benefits measured and a non-OECD population (Taiwanese) population. Costing study; it was selectively excluded in favour of cost utility analysis.

K.2 Blood pressure - combined renin-angiotensin-aldosterone system antagonists

Reference	Title	Reason for exclusion	
Studies identified in current CG73 (2008) clinical guideline			
[Burgess2004] ⁹⁹	Burgess ED, Carides GW, Gerth WC, Marentette MA, Chabot I, Canadian Hypertension Society. Losartan reduces the costs associated with nephropathy and end- stage renal disease from type 2 diabetes: Economic evaluation of the RENAAL study from a Canadian perspective. Canadian Journal of Cardiology 2004 May 1; 20(6):613-618	This economic evaluation is set in Canada and is based on data from the RENAAL trial. [Brenner2001] It has been excluded because another study has been included which has a UK setting and which is also based on data from the RENAAL trial. [Vora2005]	
[Coyle2004] ¹⁴²	Coyle D, Rodby RA. Economic evaluation of the use of irbesartan and amlodipine in the treatment of diabetic nephropathy in patients with hypertension in Canada. Canadian Journal of Cardiology 2004 Jan; 20(1):71-79.	This economic evaluation is set in Canada and is based on data from the IDNT trial. [Lewis2001] It has been excluded because another study has been included which has a UK setting and which is also based on data from the IDNT trial. [Palmer2004]	
[Coyle2007] ¹⁴¹	Coyle D, Rodby R, Soroka S, Levin A, Muirhead N, de Cotret PR, Chen R, Palmer A. Cost effectiveness of Ibesartan 300mg Given early versus late in patients with Hypertension and a history of Type 2 diabetes and renal Disease: A Canadian Perspective. Clinical therapeutics. 2007; 29(7):1508-1523	This economic evaluation is set in Canada and is based on data from the IDNT trial. [Lewis2001] It has been excluded because another study has been included which has a UK setting and which is also based on data from the IDNT trial. [Palmer2004]	
[Garattini1997] ²¹⁹	Garattini L, Brunetti M, Salvioni F, Barosi M.	This economic evaluation is set in	

Table 179: Studies excluded from the economic review (study highlighted in green from CG 73)

Excluded economic studies

Reference	Title	Reason for exclusion
	Economic evaluation of ACE inhibitor treatment of nephropathy in patients with insulin-dependent diabetes mellitus in Italy. Pharmacoeconomics 1997 Jul; 12(1):67-75.	Italy and is based on data from the DNCSG trial. [Lewis1993] It has been excluded because another study has been included which has a UK setting and which is also based on data from the IDNT trial. [Hendry1997]
[Herman2003] ²⁶⁵	Herman WH, Shahinfar S, Carides GW, et al. Losartan reduces the costs associated with diabetic end-stage renal disease: the RENAAL study economic evaluation. Diabetes Care 2003 Mar;26(3):683-687	This economic evaluation is set in USA and is based on data from the RENAAL trial. [Brenner2001] It has been excluded because another study has been included which has a UK setting and which is also based on data from the RENAAL trial. [Vora2005]
[Palmer2006] ⁵¹⁷	Palmer AJ, Roze S, Valentine WJ, et al. Health economic implications of irbesartan plus conventional antihypertensive medications versus conventional blood pressure control alone in patients with type 2 diabetes, hypertension, and renal disease in Switzerland. Swiss Medical Weekly 2006 May 27;136(21-22):346-352.	This economic evaluation is set in Switzerland and is based on data from the IDNT trial. [Lewis2001] It has been excluded because another study has been included which has a UK setting and which is also based on data from the IDNT trial. [Palmer2004]
[Palmer2003] ⁵¹⁹	Palmer AJ, Annemans L, Roze S, Lamotte M, Rodby RA, Cordonnie DJ. An economic evaluation of irbesartan in the treatment of patients with type 2 diabetes, hypertension and nephropathy: cost-effectiveness of Irbesartan in Diabetic Nephropathy Trial (IDNT) in the Belgian and French settings. Nephrol Dial Transplant (2003) 18: 2059– 2066	This economic evaluation is set in Belgium and France and is based on data from the IDNT trial. [Lewis2001] It has been excluded because another study has been included which has a UK setting and which is also based on data from the IDNT trial. [Palmer2004]
[Rodby1996] ⁵⁸⁰	Rodby RA, Firth LM, Lewis EJ. An economic analysis of captopril in the treatment of diabetic nephropathy. The Collaborative Study Group. Diabetes Care 1996 Oct;19(10):1051-1061	This economic evaluation is set in USA and is based on data from the DNCSG trial. [Lewis1993] It has been excluded because another study has been included which has a UK setting and which is also based on data from the IDNT trial. [Hendry1997]
[Rodby2003] ⁵⁷⁹	Rodby RA, Chiou CF, Borenstein J, et al. The cost-effectiveness of irbesartan in the treatment of hypertensive patients with type 2 diabetic nephropathy. Clinical Therapeutics 2003 Jul; 25(7):2102-2119.	This economic evaluation is set in USA and is based on data from the IDNT trial. [Lewis2001] It has been excluded because another study has been included which has a UK setting and which is also based on data from the IDNT trial. [Palmer2004]
[Stafylas2007] ⁶⁴⁷	Stafylas PC, Sarafidis PA, Greka DM, Lasaridid AN. A cost-effectiveness analysis of	This economic evaluation is set in Greece. It has been excluded

Excluded economic studies

Reference	Title	Reason for exclusion
	Angiotensin-converting Enzyme Inhibitors and Angiotensin Receptor blockers in Diabetic Nephropathy. The Journal of Clinical Hypertension. 2007; 9 (10):751-759	because it does not present an incremental analysis. It uses average 'numbers needed to treat' with ACE inhibitors and ARBs to estimate the average costs to prevent one patient developing ESRD.
[Souchet2003] ⁶⁴⁵	Souchet T, Durand Z, I, Hannedouche T, et al. An economic evaluation of Losartan therapy in type 2 diabetic patients with nephropathy: an analysis of the RENAAL study adapted to France. Diabetes & Metabolism 2003 Feb; 29(1):29-35	This economic evaluation is set in France and is based on data from the RENAAL trial. [Brenner2001] It has been excluded because another study has been included which has a UK setting and which is also based on data from the RENAAL trial. [Vora2005]
[Szucs2004] ⁶⁶¹	Szucs TD, Sandoz MS, Keusch GW. The cost- effectiveness of losartan in type 2 diabetics with nephropathy in Switzerlandan analysis of the RENAAL study. Swiss Medical Weekly 2004 Aug 7;134(31-32):440-447	This economic evaluation is set in Switzerland and is based on data from the RENAAL trial. [Brenner2001] It has been excluded because another study has been included which has a UK setting and which is also based on data from the RENAAL trial. [Vora2005]
Studies identified in c	urrent clinical guideline update	
Adarkwah 2011 ¹³	Cost-effectiveness of Angiotensin-converting enzyme inhibitors for the prevention of diabetic nephropathy in The Netherlands - A Markov model.	Strategies compared were not applicable to review question.
Citarella 2009 ¹³⁰	Pharmacoeconomic consequences of losartan therapy in patients undergoing diabetic end-stage renal disease.	Abstract
De Portu 2011 ¹⁵⁷	Economic consequences of losartan therapy in patients undergoing diabetic end stage renal disease in EU and USA.	This economic evaluation is set in France and is based on data from the RENAAL trial. [Brenner2001] It has been excluded because another study has been included which has a UK setting and which is also based on data from the RENAAL trial. [Vora2005]
Kutscherauer2009 ³⁶²	Cost-effectiveness analysis of add-on aliskiren to losartan treatment for patients with type 2 diabetes, hypertension and nephropathy in the Czech patients from payor perspective.	Abstract
Nevarez 2010 ⁴⁸⁵	Economic evaluation of aliskiren in type 2 diabetes and hypertension patients with nephropathy in Mexico	Abstract

Cost-effectiveness analysis: cystatin C testing in the diagnosis of CKD

Reference	Title	Reason for exclusion
Rudakova 2009	Pharmacoeconomics of direct renin inhibitor	Abstract
591	aliskiren in hypertension treatment of	
	patients with type-2 diabetes and	
	nephropathy.	

K.3 Vitamin D supplements in the management of CKD-mineral and bone disorders

Table 180: Studies excluded from the economic review

Reference	Reason for exclusion
Nuijten 2009 ⁴⁹²	Selectively excluded. Setting- US perspective. The same study using a UK perspective was included.

Appendix L: Cost-effectiveness analysis: cystatin C testing in the diagnosis of CKD

L.1 Methods

L.1.1 Model overview

Estimated glomerular filtration rate (eGFR) is an estimate of kidney function routinely used in clinical practice because measuring GFR (mGFR) is impractical and costly. An eGFR of less than 60 mL/min/1.73m² on at least 2 occasions separated by >90 days defines Chronic Kidney Disease (CKD) stage 3 and below. Current practice in the UK is to estimate GFR from serum creatinine (SCr) using the isotope dilution mass spectrometry (IDMS) related MDRD (Modification of Diet in Renal Disease) equation.

The use of a marker of kidney damage (urinary albumin:creatinine Ratio, ACR) is also routinely used in clinical practice. The finding of an elevated urinary ACR (\geq 3 mg/mmol) defines CKD when the eGFR is \geq 60 mL/min/1.73m² and refines the classification of CKD regardless of kidney function, providing prognostic information at any level of eGFR.

The use of a universal threshold eGFR of 60 mL/min/1.73m² for the diagnosis of CKD in the absence of markers of significant kidney damage has been a source of controversy since the international 5 stage classification of CKD was first introduced. This is partly driven by the increasing inaccuracy of the estimating equations at higher GFR levels. Derivation of a newer estimating equation based on the CKD Epidemiology Consortium creatinine equation (CKD-EPI_{creat}) equation, has improved the accuracy of estimated GFR. Measurement of an additional marker of kidney function, cystatin C, has also been suggested to better define CKD using the CKD-EPI cystatin C equation (CKD-EPI _{cys}), or a combined equation using creatinine and cystatin, the CKD-EPI _{creat-cys}. It is proposed that use of these Cost-effectiveness analysis: cystatin C testing in the diagnosis of CKD

equations, particularly in the GFR range 45-59 mL/min/1.73 m², leads to more accurate diagnosis of CKD. Therefore the trade-offs are represented by the cost of the additional cystatin C measurements versus the cost of misdiagnosed patients (false positives) who are unnecessarily labelled as CKD and placed in a CKD management programme.

A significant number of patients will be affected by the choice of equation (~7% prevalence of CKD stages 3-5 in the general population using QICKD data). The guideline update literature review found no new evidence since the publication of CG73 on the cost-effectiveness of eGFR equations for this topic. As a consequence, the GDG has identified this topic as a high priority for an original economic analysis.

L.1.1.1 Comparators

Three diagnostic strategies for patients with suspected CKD (CKD-EPI_{creat} 45-59 and ACR <3) were devised to allow for differential use of diagnostic tests.

The strategies compared are:

- <u>CKD-EPI_{creat}</u>. In this strategy, no further testing is conducted and the person is diagnosed as having CKD stage 3a.
- <u>CKD-EPI_{cvs}</u>: In this strategy, eGFR is re-calculated using serum cystatin C and the CKD-EPI_{cys} equation.
- <u>CKD-EPI_{creat-cys}</u>: In this strategy, eGFR is re-calculated using serum cystatin C and serum creatinine and the combined CKD-EPI equation.

After reviewing the clinical evidence it was decided unnecessary to consider the MDRD equation since CKD-EPI_{creat} has both greater precision and less bias and is no more costly to administer.

L.1.1.2 Population

People with suspected CKD (CKD-EPI_{creat} eGFR 45-59 mL/min/1.73 m² and ACR <3), categorised into the following subgroups.

- 1) Adults 75+ years of age
- 2) Adults under 75 years of age
 - With and without hypertension

L.1.1.3 Time horizon, perspective, discount rates used

The time horizon was one year in the base case. The perspective was that of the UK NHS.

L.1.1.4 Outcomes

The main outcomes of the model are:

- Proportion of patients falsely diagnosed as having CKD (False positive FP)
- Proportion of patients falsely diagnosed as not having CKD (False Negative FN)
- NHS cost at 1 year

Cost-effectiveness analysis: cystatin C testing in the diagnosis of CKD

L.1.1.5 Deviations from NICE reference case

QALYs were not calculated. The GDG decided that the key outcome would be false positives avoided (not QALYs). This is because:

- a) Most people, especially older people, who are eGFR 45-59 mL/min/1.73 m² will not progress to later stages of CKD
- b) Although we use a GFR cut-off to diagnose CKD, kidney function is a continuum and therefore (before disease has progressed) the FP, TP, FN, FP will have (almost) identical quality of life.
- c) It was felt that a substantial proportion of FNs would be picked up by re-screening before significant disease progression.

Given the main outcome selected by the GDG was the number of FPs avoided, it was felt that cost savings should be estimated over a short time horizon 12 months. This means that the cost savings associated with cystatin C are conservatively estimated. This was subjected to sensitivity analysis.

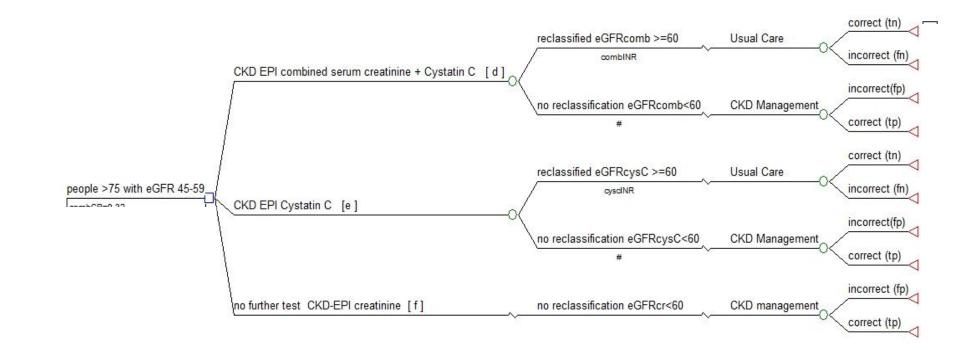
L.1.2 Approach to modelling

The model is a simple decision tree that categorises patients according to diagnostic outcomes (false positive (FP), true negative (TN), false negative (FN), and true positive (TP) results) – the model structure is presented in Figure 268.

L.1.3 Model inputs

Diagnostic accuracy data

The GDG requested data from studies in the guideline review for patients with CKD-EPI_{creat} 45-59 mL/min/1.73 m² and ACR<3mg/mmol. Data was sought from studies that contained both CKD-EPI_{creat} and CKD-EPI_{creat}. Data was received from the following studies:


- CKD-EPI derivation and validation cohorts²⁹⁹.
 - Age<75 Hypertension, No diabetes (n=142)
 - Age>75 No hypertension, No diabetes (n=150)
- Kilbride et al (2013) ^{341,341}
 - Age 75+ (n=81)

Since there was little data for older patients, this was supplemented with unpublished data from the AGES-Reykjavik study²⁹⁸, provided by the authors of the CKD-EPI study.

• Age 75+ (n=156)

As indicated for the younger cohort we were able to sub-divide between those with and without hypertension and the few patients with diabetes were excluded. For the older cohort few patients did not have hypertension and a substantial proportion did have diabetes but the numbers were too small to allow further disaggregation.

The data is shown in Table 181. The individual results of the two 75+ cohorts are not presented because some of the data is academic in confidence. However, we can confirm that the prevalence, sensitivity and specificity across those two cohorts were very similar, suggesting that aggregation is not unreasonable.

Table 181 Diagnostic data

Age 75+

	CKD-EPI _{cys}			NO. of CD		CKD-EPI _{creat-cys}			NO. of CD
	mGFR<60	mGFR>60		183		mGFR<60	mGFR>60		192
ТР	160	25	FP		ТР	173	29	FP	
FN	29	23	TN		FN	16	19	TN	
Total	189	48	237		Total	189	48	237	

Age<75 No hypertension

	CKD-EPI _{cysC}		CKD-EPI _{cysC} NO. of CD CKD-EPI _{creat-cys}						NO. of CD
	mGFR<60	mGFR>60		113		mGFR<60	mGFR>60		121
ТР	83	20	FP		ТР	96	25	FP	
FN	17	30	TN		FN	4	25	TN	
Total	100	50	150		Total	100	50	150	

Age<75 Hypertension

	CKD-EPI _{cys}	2		NO. of CD		CKD-EPI creat-cys			NO. of CD
	mGFR<60	mGFR>60		112		mGFR<60	mGFR>60		112
ТР	80	10	FP		ТР	85	15	FP	
FN	20	32	TN		FN	15	27	TN	
Total	100	42	142		Total	100	42	142	

CD=correct diagnoses, FN=false negative, FP=false positive, TN=true negative, TP=true positive. All mGFR values are measured in mL/min/1.73 m²

Resource use and cost

Diagnosis

In the base case it was assumed that the cystatin C test is requested at the same time as the confirmatory creatinine test, 3 months after the first abnormal eGFR reading. Manpower, equipment and storage costs for the different strategies were considered equal and excluded from this analysis. In terms of resources required, the only difference between GFR estimation methods is the chemical reagent required for the laboratory analysis. Due to the lack of published information on the costs of diagnostic tests, the GDG estimated that the cost of a serum creatinine reagent was £0.25 and serum cystatin C reagent was £2.50.

In sensitivity analysis we looked at alternative scenario where the cystatin C test was ordered after the results of the confirmatory creatinine test are known. In this scenario there are no costs associated with the CKD-EPI_{creat} strategy and for the other strategies we allocated the full cost of a serum creatine test assumed to be £3 plus another £3 for phlebotomy (SA3 and SA4).

Since there will be a number of false negative results from both cystatin C strategies, in a sensitivity analyses we added a re-test at 12 months including a test (£6) plus a 10 minute GP visit (£37) for patients who were classified as not having CKD (SA1 and SA4).

Cost-effectiveness analysis: cystatin C testing in the diagnosis of CKD

CKD management

The components of CKD management are described in Table 182. The unit costs of these components were taken from standard sources. Patients categorised as CKD-EPI_{cys} eGFR >60 mL/min/1.73 m² or CKD-EPI_{creat-cys} eGFR >60 mL/min/1.73 m² do not incur these CKD management costs. They only accrue diagnostic test costs. No additional costs were assumed for false negative patients.

Drugs

It was hypothesised that people with CKD and hypertension might receive more intensive antihypertensive therapy. We conducted a comparison of antihypertensive costs for patients with (eGFR 45-59 mL/min/1.73 m²) and without CKD (eGFR 60-89 mL/min/1.73 m²) using data from general practice³²⁹- Table 183. The Drug and CKD management costs were estimated only for one year in the base case. However, in a sensitivity analysis, they were assumed to continue for 5 years (SA2). The annual cost of antihypertensive medication was lower by 15% (£7.00) in the group with eGFR 60-89 ml/min/1.73 m², which is probably an under-estimate since CKD patients might also be on higher doses of individual drugs.

		Annual	
Component	Unit Cost	frequency	Source
GP visit 10 mins	£37.00	1	PSSRU 2012 ^{146,146}
GP nurse visit 10 mins	£7.50	1	PSSRU 2012 ^{146,146}
Biochemistry test	£3.00	1	NHS Reference Costs 2011-2012
Haematology test	£1.00	1	NHS Reference Costs 2011-2012
Phlebotomy	£3.00	1	NHS Reference Costs 2011-2012
Total cost	£51.50		

Table 182: Annual Incremental cost of CKD management

	Uni	it cost*		with eGFR 45-59 1.73 m ² (n=7,993)	Patients w ml/min/1 (n=25,001		Assumption*		
Angiotensin-converting- enzyme inhibitor	£	16.57	4884	61%	14263	57%	Weighted average of ramip 20mg/day, perindopril erbu		
Diuretic	£	11.47	5056	63%	12374	49%	bendroflumethiazide	2.5 mg daily	
Calcium channel blocker	£	12.78	4271	53%	12410	50%	amlodipine	5 mg once daily	
Beta blocker	£	15.38	4032	50%	9787	39%	bisoprolol	10mg daily	
Angiotensin receptor blocker	£	40.71	2322	29%	6083	24%	Weighted average of irbesartan 150mg/day, candesartan 4mg/day, losartan 50mg/day		
Alpha blocker	£	11.99	1391	17%	3551	14%	doxazosin	1 mg daily	
Drugs per patient				2.15		2.34			
Weighted average cost				£ 46.10		£ 39.10			

* Source : National Drug Tariff 2012⁴⁸⁶, Prescription Cost Analysis England 2012⁴⁸⁷.

Chronic kidney disease Error! No text of specified style in document.

Cost-effectiveness analysis: cystatin C testing in the diagnosis of CKD

L.1.4 Computations

Diagnostic Outcomes

For each equation patients were subdivided according to their estimated

	mGFR<60	mGFR>60
	True positive	False positive
eGFR<60	(TP)	(FP)
eGFR>60	False negative (FN)	True negative (TN)

All GFR values units are ml/min/1.73 m²

Using this data, we calculated the following:

 $Prevalence = \frac{TP + FN}{(FN + FP + TN + TP)} [Same for all equations]$

Specificity= $^{TN}/(TN + FP)$

Sensitvity= TP/(FN + TP)

Diagnostic odds ratio (DOR)= $\frac{TP/_{FN}}{FP/_{TN}}$

For the probabilistic analysis we calculate

TP=Sensitvity x prevalence

FN=(1-sensitvity) x prevalence

TN=Specificity x (1-prevalence)

FN=(1-specificity) x (1-prevalence)

Where the specificity, prevalence and DOR are each defined by a distribution (see Uncertainty, below) and the sensitivity is defined as⁶⁶⁰:

Sensitvity=
$$\frac{1}{\sqrt{1 + \frac{1}{DOR(\frac{1-specificity}{specificity})}}}$$

Costs

TP, FP=Test cost+drug cost+CKD management cost

TN, FN=Test cost only (+Re-test cost in sensitivity analysis)

Cost-effectiveness analysis: cystatin C testing in the diagnosis of CKD

L.1.5 Uncertainty

The base case model was built probabilistically to take account of the uncertainty around input parameter point estimates. A probability distribution was defined for each model input parameter which was varied. When the model was run, a value for each input was randomly selected simultaneously from its respective probability distribution. The model was run 10,000 times for the base case analyses and results were summarised.

We checked for convergence by plotting incremental cost on a graph for the probabilistic base case analysis. The incremental costs had converged by the 500th iteration.

The way in which distributions are defined reflects the nature of the data, so for example probabilities were given a beta distribution, which is bounded by zero and one, reflecting that a probability cannot be outside of this range. Probability distributions in the analysis were parameterised using error estimates from data sources.

Parameter	Type of distribution	Properties of distribution
Prevalence of 'true' CKD	Beta	Bounded between 0 and 1.
		Alpha=pN
Specificty		Beta=(1-p)N
		Where p=sample probability and N=sample size
Probability of being on a		(For specificity N=the number of true neatives plus false
drug		positives in the sample)
Natural log of the diagnostic odds ratio	normal	The DOR is bounded at zero.
(DOR)		The mean of the distribution=In(DOR).
		The standard error is defined as:
		$SEln(DOR) = \sqrt{\frac{1}{TP} + \frac{1}{FN} + \frac{1}{TN} + \frac{1}{FP}}$

Table 184: Description of the type and properties of distributions used in the probabilistic analysis

Prices were left deterministic (that is, they were not varied in the probabilistic analysis). The sensitivity is calculated as a function of the DOR and the specificity, which captures the inverse relationship between sensitivity and specificity^{224,660}.

In addition sensitivity analyses were undertaken to test the robustness of model assumptions. These sensitivity analyses were conducted deterministically (that is, based on the parameter point estimates rather than their distributions). In these, one or more inputs were changed and the analysis rerun to evaluate the impact on results.

Table 185: Prevalence and accuracy by cohort

	Prevalence	Sensitivity of eGFR CKD-EPI _{cys}	Specificity of eGFR CKD-EPI _{cys}	Sensitivity of eGFR CKD- EPI _{creat-cys}	Specificity of eGFR CKD- EPI _{creat-cys}
Age 75+	80%	85%	48%	92%	40%
Age<75 No hypertension	67%	83%	60%	96%	50%
Age<75 Hypertension	70%	80%	76%	85%	64%

Table 186: Base case results (probabilistic)

	D	Diagnostic outcomes		Mean costs (£)					
	Correct	FP	FN	Diagnosis	Additional drugs	CKD Care	Total		
Age75+									
CKD-EPI _{creat}	79.8%	20.2%	0%	0.25		51.50	51.75		
CKD-EPI _{cys}	76.6%	10.6%	12.9%	2.75		39.88	42.63		
CKD-EPI _{creat-cys}	80.5%	12.2%	7.3%	2.75		43.60	46.35		
Age<75 No hypertens	Age<75 No hypertension								
CKD-EPI _{creat}	67%	33%	0%	0.25	0	51.50	51.75		
CKD-EPI _{cys}	75%	13%	12%	2.75	0	35.36	38.11		
CKD-EPI _{creat-cys}	81%	17%	3%	2.75	0	41.55	44.30		
Age<75 Hypertension	Age<75 Hypertension								
CKD-EPI _{creat}	70%	30%	0%	0.25	7.00	51.50	58.75		
CKD-EPI _{cys}	79%	7%	14%	2.75	4.43	32.62	39.80		
CKD-EPI _{creat-cys}	79%	11%	11%	2.75	4.93	36.29	43.97		

790

FP=false positive, FN=false negative

	False Positives			False negatives			Cost (£)					
		Increme	ntal vs CKD-	EPIcreat		Increme	ntal vs CKD-E	Plcreat		Incre	mental vs	CKD-EPIcreat
			lower	upper			lower	upper			lower	
	%		95%	95%	%		95%	95%	Mean		95%	upper 95%
Age75+												
CKD-EPI _{creat}	20.2%				0.0%				51.75			
CKD-EPI _{cys}	10.6%	-9.7%	-13.8%	-6.3%	12.9%	12.9%	5.4%	24.4%	42.63	-9.12	-16.10	-4.05
CKD-EPI _{creat-cys}	12.2%	-8.0%	-11.8%	-4.9%	7.3%	7.3%	2.7%	15.7%	46.35	-5.40	-10.65	-1.80
Age<75 No hype	ertension											
CKD-EPI _{creat}	33.3%				0.0%				51.75			
CKD-EPI _{cys}	13.3%	-20.0%	-26.9%	-14.0%	12.1%	12.1%	4.9%	23.5%	38.11	-13.64	-17.60	-9.88
CKD-EPI _{creat-cys}	16.7%	-16.6%	-23.2%	-11.1%	2.7%	2.7%	0.7%	5.7%	44.30	-7.45	-10.99	-4.41
Age<75 Hyperte	nsion											
CKD-EPI _{creat}	29.6%				0.0%				58.75			
CKD-EPI _{cys}	7.0%	-22.5%	-29.6%	-16.1%	14.1%	14.1%	9.0%	20.2%	39.80	-18.94	-23.60	-14.39
CKD-EPI _{creat-cys}	10.6%	-19.0%	-25.7%	-13.0%	10.5%	10.5%	6.0%	16.0%	43.97	-14.77	-19.16	-10.56

Table 187: Base case results - incremental results (probabilistic)

Table 188: Sensitvity analysis (deterministic)

	Base case (probabilistic)	Base case (deterministic)	SA1	SA2	SA3	SA4
Age75+						
CKD-EPI _{creat}	51.75	51.75	51.75	257.75	51.50	51.50
CKD-EPI _{cys}	42.63	42.95	52.39	203.75	46.20	55.64
CKD-EPI _{creat-cys}	46.35	46.64	52.99	222.22	49.89	56.24
Age<75 No hypertension						
CKD-EPI _{creat}	51.75	51.75	51.75	257.75	51.50	51.50
CKD-EPI _{cys}	38.11	38.11	51.59	179.57	41.36	54.84
CKD-EPI _{creat-cys}	44.30	44.29	52.61	210.47	47.54	55.86
Age<75 Hypertension						
CKD-EPI _{creat}	58.75	58.75	58.75	292.74	58.50	58.50
CKD-EPI _{cys}	39.80	39.83	55.57	188.13	43.08	58.82
CKD-EPI _{creat-cys}	43.97	43.95	56.66	208.73	47.20	59.91

SA1=Sensitivity Analysis 1=The same as base case except that people that are CKD-EPI_{cys}>60 or CKD-EPI_{creat-cys}>60 are re-tested after 12 months incurring another test and a GP visit.

SA2=Sensitivity Analysis 2= The same as base case except that CKD drug and management costs are for 5 years (not 1 year)

SA3=Sensitivity analysis 3=The same as base case except that cystatin C test is ordered after the result of the follow-up creatinine test

SA4=Sensitivity analysis 4=The same as SA1 except that cystatin C test is ordered after the result of the follow-up creatinine test

Cost-effectiveness analysis: cystatin C testing in the diagnosis of CKD

L.2 Results

The prevalence of 'true CKD' (mGFR<60 ml/min/1.73 m²) was lower in the younger cohorts suggesting that the CKD-EPI creatinine equation is over-predicting CKD in these patients (Table 185). Sensitivity of the test was similar across the 3 cohorts but specificity was greater in the younger cohorts particularly in the hypertensive cohort, suggesting that the CKD-EPI creatinine equation is over-predicting in younger people much more so than the two cystatin-based equations. Across all 3 cohorts the combined equation was more sensitive but the cystatin C equation was more specific.

In all 3 cohorts, the cystatin c equation produced the fewest false positive results, which led to it being the lowest cost strategy – the cost of the test being more than offset by the subsequent reduction in drug and management costs (Table 186 and Table 187). In the cohort of older patients and the cohort of non-hypertensive patients, it was actually the combined equation that had the most accurate diagnoses since it had fewer false negative results due to its greater sensitivity.

If we consider CKD management costs over 5 years then the cost savings per patient tested compared with the creatinine test alone increase (Table 188) – for example, for younger patients without hypertension they increased from £14 to £78 per patient.

If we add the cost of a follow-up test (Table 188) to try and pick up false negatives after a year then CKD-EPI_{cys} is the least cost strategy for younger patients but not for older patients. However, if we increase the timeframe of CKD management costs to 2 or more years then CKD-EPI_{cys} is the lowest cost strategy for older patients as well.

If the cystatin C test is ordered after the results of the follow-up test are known (Table 188) then the CKD-EPI_{cys} is the least cost strategy but not if there is a follow-up test to try and pick up false negatives after a year. However, again, if we increase the timeframe of CKD management costs to 2 or more years then CKD-EPI_{cys} is the lowest cost strategy again.

L.3 Interpreting Results

L.3.1 Summary of results

Additional eGFR measurement for people with CKD-EPI_{creat} eGFR 45-59 ml/min/1.73 m² is cost saving and reduces the number of false positives compared to eGFR measurement with serum creatinine alone for all subgroups investigated. However, additional GFR estimation using cystatin C or cystatin C + creatinine for people with CKD-EPI_{creat} eGFR 45-59 ml/min/1.73 m² will also increase the number of false negatives identified.

L.3.2 Limitations and Interpretation

The GDG considered False Positives as the outcome of greatest concern because of the risks of medication and the unnecessary anxiety caused by over-diagnosis, which may have broader impacts on patients including life insurance premiums. The GDG assumed that False Negatives would not experience significant adverse effects as they would mostly be identified in the future according to other symptoms.

Cost-effectiveness analysis: cystatin C testing in the diagnosis of CKD

It would be difficult to estimate the longer-term cost and health impact of the different strategies, since this would depend on the progression of disease in the CKD negative patients (CKD-EPi_{creat} 45-59 and CKD-EPI_{creat cys}=60+ and ACR,3) and how that progression is affected by CKD management, which we believe is not known with any precision. But it is acknowledged that this is a limitation of the analysis. However, it is perhaps not a serious one since most false negatives would be subsequently identified before significant progression especially if there is re-testing of CKD-negative patients after 12 months, as in the sensitivity analysis. The analysis was assessed as partially applicable since it did not estimate quality-adjusted life-years.

The cost savings attributable to cystatin c testing were sensitive to some of the assumptions made. For example the addition of the cost of a re-test after 12 months to pick up patients previously given a false negative result meant that there were not net savings. But even in this scenario, when the conservative time horizon of 1 year was increased to 2 years then savings were apparent again. This means that re-testing at 1 year might be the optimal strategy. In the absence of re-testing at 1 year, the use of the CKD-EPI_{creat-cys} equation could be considered a reasonable option being the most accurate test and with much of the cost savings of the CKD-EPI_{cys} equation strategy. The analysis cannot definitively conclude which is more cost-effective CKD-EPI_{creat-cys} or CKD-EPI_{cys} since there is a trade-off between accuracy and cost.

The guideline's clinical review did not reveal strong evidence for differences in the relative accuracy of the different equations according to ethnicity or the presence of cardiovascular disease or diabetes or a history of acute kidney injury and therefore the findings of this analysis are likely to apply to all these subgroups. The cost savings we observed are only for people without diabetes. For those with diabetes, unless stage of CKD has significantly progressed, CKD management is unlikely to add to their NHS costs, since they will already be having regular contact with primary care and regular testing of kidney function. However, the GDG felt that a separate diagnostic testing strategy for patients with diabetes would be confusing and therefore a single recommendation was made for all the comorbidity subgroups.

L.3.3 Evidence statement

One original comparative cost analysis found that CKD-EPI_{cys} was less costly than CKD-EPI_{creat} and CKD-EPI_{creat-cys} for diagnosing CKD in people with CKD-EPI_{creat}45-59, ACR<3mg/mmol and without diabetes (magnitude of cost savings varied according to age group, comorbidity, time horizon and re-testing strategy). This analysis was assessed as partially applicable with minor limitations.

Appendix M: Cost-effectiveness analysis: Novel oral anticoagulants for people with CKD and nonvalvular atrial fibrillation

M.1 Methods

M.1.1 Model overview

The model evaluates the cost-effectiveness of apixaban or dabigatran compared with warfarin and aspirin based on the results of CKD subgroups from the ARISTOTLE²⁷⁵ and AVERROES¹⁸⁰ and RE-LY²⁶⁶ trials.

Population

People with both chronic kidney disease and non-valvular atrial fibrillation.

The trials subgrouped together patients with an eGFR below 50. Those with an eGFR below 25 were excluded from the trials.

Comparators

For this population (CKD and non-valvular atrial fibrillation) there was clinical effectiveness evidence for apixaban, dabigatran, rivaroxaban, aspirin and warfarin (see 10.3.3).

The evidence for **apixaban** showed survival benefit in the CKD subgroup as well as a reduction in stroke and systemic embolism and major bleeding compared with both warfarin and aspirin.

The evidence for **dabigatran** showed no survival benefit in the CKD subgroup although there was a reduction in stroke and systemic embolism.

The evidence for **rivaroxaban** was very low and low quality and did not demonstrate clearly clinical effectiveness:

- there was no clinically effective difference between 15mg rivaroxaban and warfarin in terms of reducing risk of ischemic stroke or haemoglobin drop, transfusion, clinical organ or fatal bleeding;
- the evidence suggested that rivaroxaban may be more effective in terms of reducing haemorrhagic stroke, undetermined stroke and intracranial haemorrhage, but there was uncertainty in the magnitude and direction of this effect.

Therefore only aspirin, warfarin and apixaban were included as comparators in the base case analysis. Dabigatran was considered only in a sensitivity analysis because of the lack of evidence of a

Chronic kidney disease

Cost-effectiveness analysis: Novel oral anticoagulants for people with CKD and non-valvular atrial fibrillation

survival benefit. Rivaroxaban was not included because of the general lack of evidence of effectiveness.

Time horizon, perspective, discount rates used

A lifetime horizon was taken.

The analysis follows the standard assumptions of the NICE reference case including discounting at 3.5% for costs and health effects, and incremental analysis.

M.1.2 Approach to modelling

Model structure

A simple life-table was constructed to estimate life expectancy (discounted and undiscounted) for each cohort (apixaban, aspirin and warfarin).

Key assumptions

- The hazard ratios from the trials were extrapolated to the lifetime horizon
- In each cohort the rates of major bleeding and stroke or systemic embolism from the trial were assumed to be constant over the lifetime.
- The difference in QALYs was derived chiefly from the difference in survival; quality of life was assumed to be the same, except that a disutility was applied to each episode of stroke or systemic embolism
- Costs included were:
 - o drugs
 - o anticoagulation clinic visits (warfarin)
 - $\circ \quad \text{treatment of major bleeding} \\$
 - o treatment of stroke or systemic embolism
 - other CKD treatment

Uncertainty

The base case model was built probabilistically to take account of the uncertainty around input parameter point estimates. A probability distribution was defined for each model input parameter which was varied. When the model was run, a value for each input was randomly selected simultaneously from its respective probability distribution; mean costs and mean QALYs were calculated using these values. The model was run 10,000 times for the base case analyses and results were summarised.

We checked for convergence by plotting summary estimates of cost-effectiveness (incremental net monetary benefit, INMB) on a graph for the probabilistic base case analysis. The INMB for apixaban vs warfarin had converged by the 500th iteration but the INMB for apixaban vs aspirin was only stable

by the 5000th iteration, reflecting the wider confidence intervals for the treatment effects for this comparision.

The way in which distributions are defined reflects the nature of the data, so for example utilities were given a beta distribution, which is bounded by zero and one, reflecting that a mean utility will not be outside this range. Probability distributions in the analysis were parameterised using error estimates from data sources. Where this was not possible assumptions were made.

Parameter	Type of distribution	Properties of distribution
Treatment effects (natural log of hazard ratio)	Normal	The mean of the distribution was calculated as follows: Mean = $ln(HR) - (SE)^2/2$
		The standard error (SE) of the natural log of the hazard raio was calculated by:
		SE = [In(HRupper CI) – In(HRlower CI)]/1.96*2
Utility	Beta	Bounded between 0 and 1. Derived from mean utility and its standard error, using the method of moments. Alpha and Beta values were calculated as follows: Alpha = mean ² *((1-mean)/SE ²)-mean Beta = Alpha*((1-mean)/mean)
Baseline rates	Gamma	Bounded at 0, positively skewed. Derived from mean and its standard error.
Disutility associated with		Alpha and Beta values were calculated as follows:
a stroke or systemic		Alpha = $(mean/SE)^2$
embolism		Beta = SE ² /Mean
Treatment costs		Where the standard error was unknown it was assumed
		that SE = mean/4 (as in TA275)

Table 189: Description of the type and properties of distributions used in the probabilistic analysis

The following variables were left deterministic (that is, they were not varied in the probabilistic analysis): the cost-effectiveness threshold (which was deemed to be fixed by NICE), drug prices and the mean age and sex distribution of the cohort.

In addition sensitivity analyses were undertaken to test the robustness of model assumptions. These sensitivity analyses were conducted deterministically (that is, based on the parameter point estimates rather than their distributions). In these, one or more inputs were changed and the analysis rerun to evaluate the impact on results.

M.1.3 Model inputs

Model inputs were based on clinical evidence identified in the systematic review undertaken for the guideline, supplemented by additional data from the economic models of the Apixaban NICE Technology Appraisal (TA275) and the NICE CKD clinical guideline (CG73)⁴⁷¹.

Initial cohort settings and baseline event rates were taken from the ARISTOTLE trial. Treatment effects were taken from both the ARISTOTLE and AVERROES trials (and for the dabigatran sensitivity analysis, the RE-LY trial).

Initial cohort settings

The ARISTOTLE trial²⁷⁵ did not report the age/sex distribution for the CKD-EPI_{creat}<50 ml/min/1.73m² cohort. Instead we used a mean age of 75 and 46% female, as these were the averages of the two other CKD cohorts defined in the trial (Table 190).

Table 190: Patient characteristics reported for ARISTOTLE CKD cohorts

	Cockroft-Gault ≤50ml/min/1.73m ²	Cystatin C estimated GFR ≤50ml/min/1.73m ²
Mean age	77.6	73.3
Female sex	53.3%	38.0%

The CKD cohort of the AVERRORES trial¹⁸⁰ had a similar age-sex distribution: mean age 75 and 49% female.

Baseline event rates (event rates for patients on warfarin)

The baseline rates for major bleeding and stroke or systemic embolism were taken from the warfarin arm of the ARISTOTLE trial²⁷⁵ (Table 191).

	Warfarin(a)	Hazard ratio - apixaban vs.warfarin(95 %Cl)(a)	Hazard ratio - apixaban vs.aspirin(95 %Cl)(b)	Hazard ratio - dabigatran 110mg vs.warfarin(95%Cl)(c)	Hazard ratio - dabigatran 150mg vs.warfarin(95%Cl)(c)
Death (all cause)	7.5%	0.78 (0.63, 0.96)	0.86 (0.61, 1.2)	0.97 (0.77, 1.24)	1.03 (0.82, 1.30)
Major bleeding	6.8%	0.48 (0.37, 0.64)	1.2 (0.65, 2.1)	1.02 (0.78, 1.33)	1.22 (0.95, 1.58)
Stroke or systemic embolism	2.1%	0.61 (0.39, 0.94)	0.32 (0.18, 0.55)	0.78 (0.51, 1.21)	0.55 (0.34, 0.89)

Table 191: Outcomes from trials (baseline rates per year and hazard ratios)

(a) The eGFR <50 ml/min/1.73m² (CKD-EPI_{creat}) cohort (n=2843) of the ARISTOTLE trial

(b) The eGFR <50 m/min/1.73m² (Cockcroft-Gault) cohort (n=1697) of the AVERROES trial

(c) The eGFR <50 m/min/1.73m² (CKD-EPI_{creat}) cohort (n=3374) of the RE-LY trial

For mortality we estimated a mortality ratio and applied it to the mortality rates for a cohort from the general population with a starting age of 75. We estimated the mortality ratio as follows:

1. We extracted the mortality rates for males and females age 75 for the England and Wales general population (source: ONS)

- 2. We estimated a weighted average of the two figures assuming 46% female: 2.9%
- 3. We divided the mortality rate from the warfarin cohort (Table 191) by the mortality from the England and Wales cohort: 7.5%/2.9%=2.6

We then multiplied this ratio with the age-specific mortality rates for England and Wales to get our baseline age-specific mortality for our life-table (Table 192).

75 0.029 0.075 76 0.033 0.085 77 0.037 0.094 78 0.041 0.106 79 0.046 0.119 80 0.053 0.135 81 0.059 0.151 82 0.067 0.192 84 0.085 0.216 85 0.095 0.243 86 0.106 0.271 87 0.120 0.307 88 0.134 0.344	
770.0370.094780.0410.106790.0460.119800.0530.135810.0590.151820.0670.171830.0750.192840.0850.216850.0950.243860.1200.307870.1340.134	
780.0410.106790.0460.119800.0530.135810.0590.151820.0670.171830.0750.192840.0850.216850.0950.243860.1200.307870.1340.134	
790.0460.119800.0530.135810.0590.151820.0670.171830.0750.192840.0850.216850.0950.243860.1200.307870.1340.134	
800.0530.135810.0590.151820.0670.171830.0750.192840.0850.216850.0950.243860.1060.271870.1200.307880.1340.304	
810.0590.151820.0670.171830.0750.192840.0850.216850.0950.243860.1060.271870.1200.307880.1340.344	
820.0670.171830.0750.192840.0850.216850.0950.243860.1060.271870.1200.307880.1340.344	
83 0.075 0.192 84 0.085 0.216 85 0.095 0.243 86 0.106 0.271 87 0.120 0.307 88 0.134 0.344	
840.0850.216850.0950.243860.1060.271870.1200.307880.1340.344	
85 0.095 0.243 86 0.106 0.271 87 0.120 0.307 88 0.134 0.344	
86 0.106 0.271 87 0.120 0.307 88 0.134 0.344	
870.1200.307880.1340.344	
88 0.134 0.344	
a	
89 0.154 0.394	
90 0.165 0.422	
91 0.178 0.457	
92 0.193 0.494	
93 0.221 0.567	
94 0.250 0.639	
95 0.275 0.704	
96 0.298 0.764	
97 0.324 0.830	
98 0.351 0.899	
99 0.372 0.952	
100 0.399 1.022	

Table 192: Baseline age-specific mortality

Relative treatment effects (apixaban vs.warfarin)

In the base case analysis we used for the relative treatment effects, the hazard ratios reported for the eGFR <50 ml/min/1.73m² (CKD-EPI_{creat}) cohort of the ARISTOTLE trial²⁷⁵ (Table 191).

However, the ARISTOTLE trial authors note that the treatment effects for mortality were quite different depending on how CKD is defined (see their Figure 1); when defining CKD using cystatin C they found no treatment effect at all for apixaban over warfarin (HR=1.0). They conclude that 'the findings in patients with different degrees of renal function are consistent with the results of the overall trial'. Therefore in a sensitivity analysis (SA1) we use the treatment effect for the overall trial cohort (hazard ratio=0.89), which is a more modest treatment effect than the base case (hazard ratio=0.78).

Relative treatment effects (apixaban vs.aspirin)

In the base case analysis we used for the relative treatment effects, the hazard ratios reported for the eGFR <50 ml/min/ $1.73m^2$ cohort of the AVERROES trial¹⁸⁰ (Table 191).

In a sensitivity analysis (SA1) we use the treatment effect for the overall trial cohort (hazard ratio=0.79), which is a bigger treatment effect than the base case (hazard ratio=0.86).

Relative treatment effects (dabigatran vs.warfarin)

In a sensitivity analysis we used for the relative treatment effects, the hazard ratios reported for the eGFR <50 ml/min/1.73m² cohort of the RE-LY trial²⁶⁶ (Table 191).Utilities

Utilities indicate health-related quality of life on a scale where 0 equates to no better than being dead and 1 is equal to full health. The NICE chronic kidney disease guideline model (CG73) used an estimate of 0.73 for CKD stage 3/4 and 0.60 for CKD Stage 5. For the apixaban model we used the higher estimate in the base case analysis and lower one, in a sensitivity analysis (SA2).

For a stroke / ststemic embolism event we used a utility of 0.675, taken from the NICE technology appraisal on apixaban for non-valvular atrial fibrillation (TA275). We multiplied this figure with the CKD utility to give a figure of 0.52 in the base case or put another way a disutility of 0.23.

A disutility was not applied to bleeding events.

Costs

Unit costs for CKD care were taken from the NICE CKD clinical guideline model (CG73) - Table 193. These costs included inpatient stays, nephrology outpatient visits, antihypertensive drugs and GP visits. The costs were inflated from 2006-7 prices to 2011-12 prices using the Hospital & Community Health Services Pay and Prices Index¹⁴⁶.

Anticoagulation, bleeding and stroke / systemic embolism costs were taken from the model of the NICE technology appraisal on apixaban for non-valvular atrial fibrillation (TA275). In sensitivity analyses we use more conservative estimates for CKD care cost (SA3) and stroke / systemic embolism event costs (SA4).

Table 193: Unit costs

	Base case	Notes	Source
Cost per year			

Chronic kidney disease

Cost-effectiveness analysis: Novel oral anticoagulants for people with CKD and non-valvular atrial fibrillation

	Base case	Notes	Source
Apixaban/dabigatran	802		TA275
Aspirin	26		TA275
Warfarin	44		TA275
Anticoagulation clinic	248		TA275
CKD care	3281	CKD Stage 3/4	CG73
CKD care – SA3	5119	CKD Stage 5	CG73
Cost per episode			
Major bleeding	1493	Weighted average of GI bleed admissions	TA275
Stroke or systemic embolism	4078	Acute care for systemic embolism	TA275
Stroke or systemic embolism – SA4	1658	Acute care for systemic embolism – conservative estimate	TA275

M.1.4 Computations

The model was constructed in Microsoft Excel and was evaluated by life table analysis.

Mortality rates were converted into probabilities using the following formulae:

	Where
Transition Probability $(P) = 1 - e^{-rt}$	r = selected rate
	t= cycle length (months)

For each year of the life table the life-years (LYs) are the average of the number of patients alive at the beginning of the year and the number alive at the end. The number of patients alive was discounted to reflect time preference (discount rate = 3.5%) using the following formula:

Patients Alive	Where:
Discounted total= $\frac{1 \operatorname{atents Anve}}{(1+r)^n}$	r = discount rate per
(1+7)	annum=3.5%
	n = time (years)

The discounted life-years were then summed across all the years of the life-table.

The (discounted) number of bleeding events for each treatment was the respective bleeding rate (see Table 191) multiplied by the number of (discounted) life-years. The number of episodes of stroke or systemic embolism was calculated in the same manner.

Discounted QALYs were estimated by multiplying the CKD utility with the number of discounted lifeyears and then subtracting the discounted number of stroke / systemic embolism events multiplied by the stroke / systemic embolism dis-utility (see Utilities, above).

Discounted costs were the discounted life-years multiplied by the anticoagulation and CKD treatment costs plus the discounted number of stroke / systemic embolism and bleeding events each multiplied by the episode cost (See Table 193).

M.1.5 Model validation

The model was systematically checked by the health economist undertaking the analysis; this included inputting null and extreme values and checking that results were plausible given inputs.

M.1.6 Estimation of cost effectiveness

The widely used cost-effectiveness metric is the incremental cost-effectiveness ratio (ICER). This is calculated by dividing the difference in costs associated with two alternatives by the difference in QALYs. The decision rule then applied is that if the ICER falls below a given cost per QALY threshold the result is considered to be cost effective. If both costs are lower and QALYs are higher the option is said to dominate and an ICER is not calculated.

 $ICER = \frac{Costs(B) - Costs(A)}{QALYs(B) - QALYs(A)}$

• Cost-effective if: ICER < Threshold

Where: Costs/QALYs(X) = total costs/QALYs for option X

NICE's report 'Social value judgements: principles for the development of NICE guidance' sets out the principles that GDGs should consider when judging whether an intervention offers good value for money. In general, an intervention was considered to be cost effective if either of the following criteria applied (given that the estimate was considered plausible):

- The intervention dominated other relevant strategies (that is, it was both less costly in terms of resource use and more clinically effective compared with all the other relevant alternative strategies), or
- The intervention costs less than £20,000 per quality-adjusted life-year (QALY) gained compared with the next best strategy.

M.2 Results

M.2.1 Base case

Of the three treatments, aspirin had the fewest major bleeding events but apixaban had the fewest stroke or systemic embolism events and the best survival with a gain of 0.62 QALYs compared with warfarin and 0.44 QALYs compared with aspirin (Table 194).

The incremental costs of apixaban were augmented by the cost of CKD care in additional months of life and only partially offset by the avoidance of INR monitoring and reduced events. The cost per QALY gained was £9,748 compared with aspirin and £14,637 compared with aspirin, indicating that apixaban is cost-effective for patients with CKD and non-valvular atrial fibrillation.

With a threshold of £20,000 per QALY gained, apixaban was ranked first in 62% of simulations, aspirin in 34% and warfarin in only 4% (Table 195).

Chronic kidney disease

Cost-effectiveness analysis: Novel oral anticoagulants for people with CKD and non-valvular atrial fibrillation

The analysis was assessed to have direct applicability and only minor limitations.

M.2.2 Sensitivity analyses

In the most conservative analysis, apixaban was slightly over the £20,000 per QALY threshold compared with warfarin (Table 196) at £20,840. In all other analyses, apixaban was cost-effective compared with warfarin. The results were most sensitive to the mortality treatment effect.

Likewise in the most conservative analysis, apixaban was slightly over the £20,000 per QALY threshold compared with aspirin (Table 196) at £22,598. In all other analyses, apixaban was cost-effective compared with aspirin. The results were most sensitive to the CKD utility.

For dabigatran 110mg the reduction in stroke or systemic embolism and very small gain in survival was not cost effective even at a threshold of £30,000 per QALY (it cost £43,700 per QALY gained). For dabigatran 150mg the very small increase in mortality and the increase in major bleeding meant that there were actually QALYs lost compared with warfarin.

Table 194: Base case results (probabilistic)

	Apixaban	Warfarin	Aspirin		Apixaban	vs Warfarin		Apixaban	vs Aspirin
Mean health outcomes (undiscounte	d)				L95%	U95%		L95%	U95%
Major bleeding events	0.27	0.48	0.22	-0.21	-0.30	-0.12	0.05	-0.13	0.17
Stroke / systemic embolism events	0.11	0.15	0.33	-0.04	-0.09	0.01	-0.22	-0.53	-0.06
Life years	8.23	7.07	7.49	1.16	0.17	2.19	0.74	-0.85	2.19
Mean health outcomes (discounted)									
Major bleeding events	0.22	0.41	0.19	-0.18	-0.25	-0.11	0.04	-0.11	0.14
Stroke / systemic embolism events	0.09	0.13	0.28	-0.04	-0.08	0.01	-0.19	-0.44	-0.05
Life years	6.83	6.00	6.30	0.84	0.12	1.56	0.54	-0.59	1.61
QALYs	4.97	4.35	4.53	0.62	0.10	1.14	0.44	-0.38	1.21
Mean costs (£, discounted)									
Drugs	5,481	263	161	5,218	4,551	5,911	5,320	4,666	6,003
Anticoagulation clinic	-	1,491	-	- 1,491	- 2,324	- 849	-	-	-
Annual CKD care	22,436	19,695	20,674	2,741	375	5,919	1,761	- 1,958	5,854
Major bleeding events	336	609	282	- 273	- 475	- 126	53	- 168	224
Stroke / systemic embolism events	363	521	1,124	- 159	- 372	27	- 762	- 1,958	- 176
Total	28,615	22,580	22,242	6,035	2,925	<i>9,</i> 785	6,373	582	11,904
Cost per QALY gained (£, discounted)				9,748	P(20k)	0.95	14,637	P(20k)	0.66
					p(30k)	0.98		p(30k)	0.75

Table 195: Ranking of strategies at a threshold of £20,000 per QALY gained (proportion of simulations)

Rank	Apixaban	Warfarin	Aspirin
1	62%	4%	34%
2	36%	27%	37%
3	2%	69%	29%

Table 196: Deterministic sensitivity analyses

	Apixaban vs Warfarin			Apixaban vs Aspirin		
	Incremental	QALYs	Cost per QALY	Incremental	QALYs	Cost per QALY
	cost (£)	gained	gained (£)	cost (£)	gained	gained (£)
Base case (probabilistic)	6,035	0.62	9,748	6,373	0.44	14,637
Base case (deterministic)	5,949	0.60	9,855	6,324	0.40	15,687
SA1: mortality effect from whole trial population	4,110	0.28	14,460	6,902	0.58	11,912
SA2: Lower CKD utility	5,949	0.50	11,951	6,324	0.34	18,692
SA3: higher CKD cost	7,445	0.60	12,333	7,239	0.40	17,959
SA4: Lower Stroke / systemic embolism event cost	6,043	0.60	10,012	6,729	0.40	16,694
SA5:Worst case scenario	4,907	0.24	20,840	7,645	0.34	22,598
	Dabigatran vs Warfarin					
SA6: Dabigatran 110mg vs Warfarin	3,366	0.08	43,729			
SA7: Dabigatran 150mg vs Warfarin	2,558	-0.05	Ineffective			

Appendix N: Research recommendations

National cillica Low-dose aspirin in preventing cardiovascular disease

Research question: For people with CKD at the highest risk of cardiovascular disease, what is the clinical effectiveness of low-dose aspirin compared with placebo for primary prevention of cardiovascular disease?

Why this is important: CKD is a common long-term condition and a powerful independent predictor of cardiovascular disease. The risks are increased as the estimated glomerular filtration rate (eGFR) decreases and level of albuminuria increases. Kidney Disease: Improving Global Outcomes (KDIGO) classifies people with CKD as being at moderate risk, high risk or very high risk of cardiovascular disease according to their eGFR and albumin:creatinine ratio (ACR). However, the current evidence base for reducing cardiovascular risk in the CKD population is very limited.

Table 197: Criteria for selecting high-priority research recommendations

PICO question	In people in people with CKD at high-risk and very-high risk of cardiovascular disease and end stage renal disease (as defined by the KDIGO 2012 classification of CKD) but without a history of pre-existing cardiovascular disease (primary prevention), what is the effect of low-dose aspirin compared with placebo in reducing cardiovascular events, mortality and improving health related quality of life and at what cost in terms of major bleeding?
Importance to patients or the population	A substantial body of evidence supports the use of aspirin in the secondary prevention of cardiovascular disease, but the data for primary prevention is conflicting. The evidence that CKD is a powerful risk factor for cardiovascular disease is incontrovertible. We know the risks are increased further at all categories of eGFR by the presence of albuminuria. However despite this wealth of epidemiological data we have very limited evidence on how to modify the risks. The absolute benefits of aspirin may be greater in a high-risk CKD population,

מו סחומהוווה

ר הוווו ה

ZUT4

	but the risks of haemorrhagic complications may also be higher, especially where the eGFR is significantly reduced. Conversely people with albuminuria and a preserved eGFR may be subject to greater benefit from antiplatelet agents as compared with the general population but without an increased risk of bleeding. Establishing this balance between the risks and benefits is therefore of critical importance to very large number of patients.
Relevance to NICE guidance	The answer to this question will allow NICE to make a definitive statement on the use of antiplatelet agents as primary prevention in people with CKD at high and very high risk of adverse outcomes.
Relevance to the NHS	CKD is a highly prevalent condition, affecting up to 13% of the population (all stages). The Kidney Disease Improving Global Outcomes (KDIGO) 2012 classification of CKD categorises people with CKD as being at moderate risk, high risk, or very high risk of cardiovascular disease and end-stage renal disease according to the level of both eGFR and ACR. It is estimated that almost 4% of the population are in the high-risk and very high-risk categories (eGFR<45ml/min/1.73m ² ; eGFR<60ml/min/1.73m ² and ACR>3mg/mmol; eGFR>60ml/min/1.73m ² and ACR>30mg/mmol). Epidemiological data suggest that approximately 80% of those with an eGFR<60ml/min/1.73m ² do not have a history of pre-existing cardiovascular disease, falling to 50% in those with an eGFR<30ml/min/1.73m ² . Establishing evidence for the primary prevention of cardiovascular disease is therefore of relevance to large number of patients. Aspirin is an inexpensive therapy with the potential to reduce amenable morbidity and mortality and increase amenable quality of life in people with CKD, whilst reducing healthcare costs.
National priorities	Reducing mortality considered amenable to healthcare is the overarching indicator of Domain 1 of the NHS Outcomes Framework. The Department of Health Cardiovascular Outcomes Strategy seeks to improve

R

R

	outcomes in people with or at risk of cardiovascular disease, and highlights the need to manage cardiovascular disease as a single family.
Current evidence base	The current evidence is considered in chapter 10.2.3. When used for secondary prevention aspirin reduces the risk of major cardiovascular events in the general population by 15 events per 1,000 patient-years. In primary prevention 0.6 events per 1,000 patient-years are prevented, but at the expense of 0.3 major bleeding events per 1,000 patient-years. Data in CKD is limited but suggestive of a benefit. In a subgroup analysis of the HOT trial, in people with an eGFR of 45-59ml/min/1.73m ² , 8 (-7 to 22) major cardiovascular events were prevented per 1,000 patient years with 4 (-2 to 10) major bleeds per 1,000 patient years; for those with an eGFR <45 ml/min/1.73m ² , 76 (31 to 121) events were prevented at a cost of 39 (5 to 72) bleeds. There was evidence of significant heterogeneity by eGFR. However this was a post-hoc analysis, only 2.9% of the population had an eGFR<45ml/min/1.73m ² , reporting of bleeding episodes was imprecise, and no data was provided on proteinuria.
Equality	CKD is particularly prevalent in older people, and the study design should recognise this.
Study design	A randomised double-blind placebo-controlled trial is required to address this question. Patients will ideally be recruited from primary care, as this is where most people with CKD are treated. Our recommendation is that people in the high risk and very high risk groups without a prior history of cardiovascular disease are included. Better evidence on how to measure risk in CKD may allow the inclusion criteria to be refined. The intervention is low dose (75mg) aspirin or placebo. For patients at increased risk of bleeding (e.g. eGFR<45ml/min/1.73m ²), consideration should be given to testing whether the administration of concomitant gastro-protection reduces the risks of bleeding. The end-points should include: major cardiovascular events (composite);

.

E

	 myocardial infarction; stroke; cardiovascular mortality; all-cause mortality; hospitalisation; health-related quality of life; major and minor bleeding. Subgroups should include people with diabetes, older people, and CKD stages.
Feasibility	CKD is highly prevalent, and the quality of general practice data in the UK, including albuminuria recording, is relatively high. Patients with CKD and albuminuria are likely to experience relatively high event rates. There should be no particular ethical or technical issues.
Other comments	The trial is most unlikely to attract commercial sponsors. However, given the size of the problem, the potential impact to patients and the NHS, and the favourable policy context, a high quality study addressing this question would be an appropriate target for NIHR funding.
Importance	This study is of high importance.

ZUT4

T/Q

ואמנוסחמו כווחוכמו שמומפווחפ כפחנרפ

2 Self-management

Research question: Does the provision of educational and supportive interventions to people with CKD by healthcare professionals increase patients' skills and confidence in managing their conditions and improve clinical outcomes?

Why this is important: CKD is a common long-term condition that frequently co-exists with other long-term conditions, including diabetes, cardiovascular disease and depression, and is associated with reduced quality of life. Through greater understanding of their conditions and provision of the information needed to support lifestyle change, people with CKD may be better able to live well with their long-term condition(s). Self-management may also improve their biomedical markers, for example, blood pressure.

People with earlier stage CKD (not considered here) may benefit from a similar approach to self-management to one which might be adopted in people with hypertension, diabetes and cardiovascular disease.

People with advanced CKD may benefit from education and support on particular issues, such as preparation for renal replacement, symptom management and specific dietary modifications. However, the current evidence base for self-management support in the CKD population is very limited.

Table 198: Criteria for selecting high-priority research recommendations

PICO question	In people with CKD stage 4 does the provision of educational and supportive interventions by healthcare professionals increase patients' skills and confidence in managing their conditions and improve outcomes (HRQOL, unplanned starts on renal replacement, hospitalisation, and achievement of biomedical targets) as compared to general (non-multidisciplinary) renal care? The interventions should include: health information and patient education; telephone support and access to a support group; and electronic support, which could be based on the Renal Patient View system (see study design, below, for references to examples of interventions). The control group will receive usual general (non-multidisciplinary) renal care (including blood pressure control and cardiovascular risk reduction, and treatment where present of renal anaemia and CKD mineral bone disorder).
Importance to patients or the population	CKD is a common long-term condition that frequently co-exists with other long- term conditions, particularly diabetes, cardiovascular disease and depression, and is associated with reduced quality of life. The more advanced stages are less common but CKD stage 4 still affects approximately 0.4% of the adult population. We need to know how best to support patients to take control of their conditions, in order to improve outcomes that matter to them.
Relevance to NICE guidance	The answer to this question will allow NICE to make a definitive statement on the use the use of self-management support systems in people with CKD.
Relevance to the NHS	A substantial proportion (up to 2%) of the NHS budget is spent to treating disease. Helping people to help themselves is therefore of great relevance to the health service.
National priorities	This question is of central relevance to Domain 2 of the NHS Outcomes

	Framework "Helping people to live well with a long-term condition". It could also impacts upon Domains 1 and 4.
Current evidence base	Quality of life is significantly impaired in people with CKD. For patients with advanced or progressive disease, unplanned starts on renal replacement are associated with worse clinical outcomes and greater costs. Both of these elements might be improved with a greater involvement of patients in their own care. However the evidence base for self-management in CKD is extremely limited.
Equality	CKD is particularly prevalent in older people and black and minority ethnic groups, and the study design should recognise this.
	It is also important that the research consider those with poor health literacy, low socio-economic status and address accessibility issues to self-management systems.
Study design	This question would be best answered with an individual patient level randomised control trial, or series of trials.
	The suggested study population is people with 4 CKD who are anticipated to be more than 1 year from requiring renal replacement
	The intervention would need to be carefully considered, and defining this should include the involvement of expert patients, but might include elements of:
	 Provision of health information (could include access to Renal Patient View-type system)
	 Education (both disease-specific and transferrable self-management skills)
	One-to-one support
	• Group support.
	Examples include: Chen SH, Tsai YF, Sun CY, Wu IW, Lee CC, Wu MS. The impact
	of self-management support on the progression of chronic kidney disease. A

prospective randomized controlled trial. Nephrol Dial Transplant. 2011
Nov;26(11):3560-6), and: Ong SW, Jassal SV, Porter E, Logan AG, Miller JA. Using an electronic self-management tool to support patients with chronic kidney disease (CKD): a CKD clinic self-care model. Semin Dial. 2013 Mar-Apr;26(2):195-202), which could include elements of the well-established Renal Patient View IT system (https://www.patientview.org/).
A matched control group should receive no intervention.
The end-points should include:

Measures of patient activation
Quality of life

- Symptom burden
- Unplanned starts on dialysis (Indicator for Quality Improvement LT13)
- Hospitalisation

And could include:

- Biomedical measures, e.g. phosphate, haemoglobin
- Progression of renal disease.

Preliminary work will be required to determine how to best measure patient activation and quality of life in this patient group.

Subgroups should include older people, BME groups and diabetes

FeasibilityYes – significant numbers of people have CKD 4, and would most easily be
recruited from secondary care.Preliminary work will be required to determine how to best measure patient
activation and quality of life in this patient group.

There should be no particular ethical or technical issues.

Other commentsUnlikely to be commercially funded.ImportanceThis study is of high importance.

Z N.3 Vitamin D supplements in people with hyperparathyroidism secondary to CKD

Research question: In people with hyperparathyroidism secondary to CKD, does treatment with vitamin D or vitamin D analogues improve patient-related outcomes?

Why this is important: Further research is needed to identify if use of vitamin D or vitamin D analogues improve outcomes in patients with CKD. Changes in bone mineral metabolism and alterations in calcium and phosphate homeostasis occur early in the course of CKD and progress as kidney function declines. Abnormalities of circulating hormone concentrations related to CKD mineral and bone disorder (CKD-MBD) include parathyroid hormone (PTH), 25-hydroxyvitamin D (25(OH)D), 1,25-dihydroxyvitamin D (1,25(OH)2D). At the tissue level there is down regulation of vitamin D receptors and resistance to the actions of PTH. The prevalence of hyperparathyroidism increases from 5.5% in those with a GFR>90 ml/min/1.73m² to 23%, 44% and 73% in people with GFRs 45-59, 30-44 and <30 ml/min/1.73m² respectively. 25-Hydroxyvitamin D deficiency is twice as prevalent in people with a GFR <30 ml/min/1.73m² compared with those with normal GFR^{297,381311,396310,394309,393308,392307,391302,382}. Decreased bone mass and changes in bone microarchitecture occur and progress early in CKD such that patients with CKD increasing the risk of bone fracture. Replacing vitamin D in people with CKD is known to reduce hyperparathyroidism but there is little data to suggest any benefit on clinical outcomes (including CKD progression (measured by change in eGFR), all-cause mortality, cardiovascular mortality, cardiovascular events, fractures and hypercalaemia). Potential benefits of vitamin D therapy in people with CKD include increased bone mineral density and muscle strength, reduced risk of falls and fractures and reduction in hyperparathyroidism. Potential adverse effects are hypercalcaemia and extraskeletal (vascular) calcification, and increased cardiovascular risk.

D

Table 199: Criteria for selecting high-priority research recommendations

PICO question	In people with hyperparathyroidism secondary to CKD, does treatment with
	vitamin D or vitamin D analogues improve patient-related outcomes?
	Population: Adults aged 18+ with GFR 15-60 ml/min/1.73m ² who are vitamin
	deficient and have secondary hyperparathyroidism.
	Intervention: Vitamin D or vitamin D analogue
	Comparison: placebo
	Outcomes:
	Composite outcome of falls and fracture risk
	Health related quality of life

	 Mortality (all cause) Cardiovascular events Adverse events (including progression of CKD and hypercalcaemia (defined as serum calcium >2.5mmol/L)) Hospitalisation Subgroup analysis: Black, minority and ethnic groups Older people aged >75years
Importance to patients or the population	CKD is common, vitamin D deficiency and secondary hyperparathyroidism develop early in the course of CKD and become increasingly prevalent at lower GFR levels. The prevalence of 25-hydroxy Vitamin D deficiency increasing from 9% in people with a GFR 60-89 to 27% in those with GFR<30 and the prevalence of hyperparathyroidism increasing from 9% to 74% in corresponding GFR groups. Observational data suggests an association between vitamin D deficiency and adverse patient related outcomes in people with CKD. To date there are no randomised controlled trial data comparing treatment with vitamin D and/or vitamin D analogues to no treatment in people with CKD in the prevention of adverse patient-related outcomes.
Relevance to NICE guidance	The answer to this question will allow NICE to make a definitive statement on the use of vitamin D and vitamin D analogues in the treatment of vitamin D deficiency and hyperparathyroidism in people with CKD
Relevance to the NHS	Vitamin D is cheap and vitamin D analogues are a relatively inexpensive therapy with the potential to reduce morbidity and mortality and increase quality of life in people with CKD, whilst reducing healthcare costs. Falls and fractures are expensive to the NHS and result in increased institutionalisation and increased

National prioritiesReducing mortality considered amenable to healthcare and enhancing quality of
life in people with long term conditions are 2 key domains in the NHS outcomes

consumption of healthcare resources.

	framework pertinent to this question.
Current evidence base	Native vitamin D obtained predominantly from exposure to sunlight undergoes hydroxylation in the liver and kidney to form activated vitamin D. It is known that as GFR declines activation of vitamin D is reduced. Abnormalities in circulating activated vitamin D, parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF-23) are linked to an increased risk renal bone disease and bone fractures
	It is recommended that patients with vitamin D deficiency should be given cholecalciferol or ergocalciferol. (R1, section 1.5). However, there is insufficient and inconclusive evidence to support the routine use of nutritional or active vitamin D supplements for the management of renal bone disease in people with CKD (GFR 15-60). There is moderate evidence of harm, in the form of hypercalcaemia, in people treated with active vitamin D. Evidence found was of moderate to low quality mainly due to imprecision, missing data, as well as unclear allocation, concealment and randomisation processes. Publication dates ranged from 1988 (over twenty five years old) through to 2011. Some of the studies had a small patient population and many of the included studies were in people with secondary hyperparathyroidism. Overall the GDG considered that the follow-up periods in the reviewed studies were too short to show any long- term effects and were not powered to show reduction in falls or fracture.
Equality	Subgroup analysis has been specified because Vitamin D deficiency is more prevalent in black and Asian ethnic minorities for reasons which are only partially understood. Vitamin D deficiency is also more prevalent in older people and institutionalised people.
Study design	Randomised placebo controlled trial
Feasibility	Patients could be recruited from both primary and secondary care. As both CKD and vitamin D deficiency and secondary hyperparathyroidism are prevalent

	recruitment targets should be feasible. The main issue however would be to power the study to show a reduction in patient related outcomes such as reduction in falls or fractures.
Other comments	For simple vitamin D therapy and common analogues the trial is unlikely to attract commercial sponsors. However, given the size of the problem, the potential impact to patients and the NHS, and the favourable policy context, a high quality study addressing this question would be an appropriate target for NIHR funding.
Importance	High: the research is relevant to the recommendations in this guideline and has potential overlap with other NICE guidance (hyperphosphataemia and osteoporosis).

N.4 Uric acid lowering agents

Research question: In people with CKD who are at high risk of progression, what is the clinical and cost effectiveness of uric acid lowering agents on the progression of CKD and on mortality?

Why this is important: CKD is a common long-term condition and both a low eGFR and raised ACR are powerful independent predictors of cardiovascular disease and progression to costly renal replacement therapy.

Uric acid excretion by the kidney involves different but related mechanisms: filtration, tubular reabsorption and tubular secretion. Urate is freely filtered at the glomerulus and then predominantly reabsorbed in the proximal tubule through an active anion-exchange process. Most urinary uric acid excreted is then derived from subsequent tubular secretion and uric acid accumulates as renal function diminshes.

Observational data have suggested that uric acid is an independent predictor of both progression and new incidence of CKD. It has also been proposed that elevated uric acid may have a role in initiating hypertension, arteriolosclerosis, insulin resistance and hypertriglyceridaemia. Hyperuricaemia is also associated with type 2 diabetes. It is difficult to infer causation from the observational data; is hyperuricaemia nephrotoxic or a marker of reduced eGFR? Is the relationship due to residual confounding?

The current randomised evidence for reducing uric acid in CKD patients is very limited and of poor quality, especially relating to the major outcomes of end stage kidney disease needing renal replacement therapy and mortality.

 Table 200: Criteria for selecting high-priority research recommendations:

PICO question	For adults with CKD at high risk of progression does treatment with uric acid lowering therapy (allopurinol, febuxostat) reduce the risk of progression (primarily to end stage renal disease (ESRD) and mortality compared with placebo, and is this approach cost effective? Population: People with CKD at high risk of progression (people with cardiovascular disease, proteinuria, acute kidney injury, hypertension, diabetes, those who smoke, people of African, African–Caribbean or Asian family origin, those with chronic use of NSAIDs or those with untreated urinary outflow tract obstruction) Interventions: Allopurinol,febuxostat Comparators: placebo Outcomes: Mortality Progression (defined as ESRD) Progression (defined as change in eGFR) Change in antihypertensive use Health related quality of life
Importance to patients or the population	There is a body of evidence which supports the graded positive association of uric acid with progression of CKD (though not all studies find this) but it is unclear if this relationship is causative and whether reduction of uric acid would have benefits. There is some evidence of association with cardiovascular disease and mortality. There are a limited number of effective interventions to reduce risk of progression of CKD, primarily use of RAAS antagonists in patients with

ועמנוטרומו כווחוכמו שעומפווחפ כפחנרפ בטדא

	proteinuria and control of hypertension. Progression of CKD leads to cumulative morbidity, increasing risks of mortality, decrement in quality of life and function, and once ESKD is reached often need for costly renal replacement therapy. Given the shortage of kidneys for transplantation there are prolonged waits to receive a donor kidney, and a reliance on dialysis which is onerous, costly and has poor outcomes compared to the age matched general population. The major outcome for patents with CKD is cardiovascular mortality. Hence strategies to reduce the risks of both progression and cardiovascular disease in CKD are key. The absolute benefits of uric acid lowering will be greater in those at high risk of progression assuming there is a causal relationship. Factors associated with risk of progression are ACR, blood pressure, lower eGFR, as well as gender (male greater), younger age and ethnicity (greater south Asian, Black). There are few potential harms of treatment with allopurinol or febuxostat, these are chiefly related to allergy and certain specific drug interactions.
Relevance to NICE guidance	The answer to this question will allow NICE to make a definitive statement on the use of uric acid lowering agents to prevent progression and reduce mortality in patients with CKD.
Relevance to the NHS	Allopurinol is a relatively inexpensive therapy with the potential to reduce morbidity and mortality and increase quality of life in people with CKD, whilst reducing healthcare costs, notably dialysis costs.
National priorities	Reducing mortality considered amenable to healthcare is the overarching indicator of Domain 1 of the NHS Outcomes Framework.
Current evidence base	The current evidence is considered in paper 3 Asymptomatic hyperuricaemia GDG3 Dec 2012 3 RCTs of allopurinol vs.control/placebo were found in CKD patients, all were small and single centre (total patients 217) , of low quality, varying dose and follow-up duration was too short (<3 years). Bose et al NDT 2013 undertook a systematic review and meta-analysis of RCTs of

ועמנוטחמו כווחוכמו סטומפווחפ כפחורפ בטדק

	uric acid lowering. 8 RCTs of allopurinol vs.placebo were included. There was no effect on progression in 5 trials reporting data on end of treatment GFR, however meta-analysis of 3 trials reporting creatinine data favoured uric acid lowering therapy. There were scant data on ESKD and mortality and the authors concluded that adequately powered randomised trial were required to evaluate the benefits and risks of uric acid lowering therapy in people with CKD.
Equality	Minority ethnic groups (Indo Asian, Black) and males are at higher risk of progression. Socio-economic status maybe too.
Study design	A randomised double-blind placebo-controlled trial is required to address this question. Patients could be recruited from primary care and secondary care. Inclusion: adults with CKD at high risk of progression (eGFR <45, ACR>30 mg/mmol, existing rate of progression above accepted age-related decline, diabetes, hypertension). Patients with symptomatic hyperuricaemia (acute gout and chronic tophaceous gout would be excluded. The intervention is Allopurinol 100 mg daily or Febuxostat 40 mg daily in those intolerant of Allopurinol versus placebo. The end-points should include: progression (change in kidney function), change in proteinuria, incident end stage kidney disease/start of renal replacement therapy, major cardiovascular events (composite); myocardial infarction; stroke; cardiovascular mortality; all-cause mortality; hospitalisation; health-related quality of life; change in serum uric acid concentration, use of hypertensive agents and change in blood pressure.
Feasibility	CKD is common, and hyperuricaemia is increasingly prevalent as GFR declines below 60 ml/min. The quality of general practice data in the UK, including albuminuria recording, are relatively high facilitating identification of people with CKD. Patients with low eGFR and albuminuria are likely to experience relatively high progression rates. There should be no particular ethical or technical issues.

Other comments	The trial is most unlikely to attract commercial sponsors. However, given the size of the problem, the potential impact to patients and the NHS, and the favourable policy context, a high quality study addressing this question would be an appropriate target for NIHR funding.
Importance	This study is of high importance .

National cillical galaeille centre Renin-angiotensin-aldosterone system antagonists in people over 75 years

Research question: For people aged over 75 years with CKD, what is the clinical effectiveness of renin-angiotensin-aldosterone system (RAAS) antagonists?

Why this is important: RAAS antagonists are among the most commonly used drugs. They are recommended for people with CKD to reduce the rate of disease progression and mortality. The evidence for the use of RAAS antagonists is not specific to older people, so these recommendations are the same for all adults, regardless of age. However, there is a clinical suspicion that older people have a higher incidence of adverse effects from using RAAS antagonists, and uncertainty as to the balance of benefits and harm of using these agents in older people.

Table 201: Criteria for selecting high-priority research recommendations:

PICO question	In people over the age of 75 years with CKD who satisfy currently-recommended criteria for the use of RAAS-antagonists (with hypertension and ACR<30mg/mmol), what is the effect of use of these agents, compared to an alternative hypertension treatment regime, on important measurable outcomes (e.g. CKD progression, cardiovascular events, acute kidney injury, hospitalisation and health related quality of life) and mortality?
Importance to patients	RAAS antagonists are recommended in the following circumstances relevant to
or the population	older people with CKD:
	 diabetes and urine ACR≥3 mg/mmol
	 hypertension and urine ACR ≥30 mg/mmol
	• urine ACR ≥70 mg/mmol
	• resistant hypertension (where treatment with 3 or more drugs is

ZUT4

required)

- step 2 treatment for hypertension in those aged >55 years
- chronic heart failure
- post myocardial infarction.

Most of these recommendations are based on evidence from studies which either exclude or contain a small minority of older people.

Old people are at greater risk of adverse effects from RAAS-antagonists than are younger people. The most important adverse effect is acute kidney injury (AKI) which may arise from the haemodynamic effects of RAAS antagonists in the presence of renovascular disease (which is common in older people), or as a consequence of hypotension from over-treatment of hypertension, or as a result of impairment of RAAS-dependent renal compensatory mechanisms which then fail to function adequately when the individual is affected by dehydration, sepsis or hypotension.

AKI can be fatal and often leads to permanent loss of renal function.

The effect of RAAS antagonists on the incidence and severity of AKI in old people with CKD is not known. Neither is it known if the benefits of these agents in CKD, clearly demonstrable in younger patients, extend into old age.

Current recommendations for use of RAAS antagonists in CKD take no account of age. It is therefore possible that, by following current recommendations based on evidence in younger people, older people come to harm.

Relevance to NICE If use of RAAS antagonists was shown to be associated with poorer outcomes in older people with CKD, NICE would be justified in stratifying guidance according to age (as in NICE guidance for management of hypertension 2011).

Relevance to the NHS CKD is common, particularly in older age groups. If RAAS antagonists were shown to be inappropriate in older people with CKD, the likely impact of a revised recommendation would be:

> Reduced prescriptions of RAAS antagonists in favour of cheaper •

guidance

	alternatives
	Reduced need for monitoring renal function
	Reduced acute admissions with AKI or other adverse effects
	These changes to practice would all save financial and manpower resources
National priorities	Reduction in AKI is a national priority (National Service Framework for Renal Services part 2 (2005) and NCEPOD report "Adding Insult to Injury" 2009).
	Improving medical care of older people is the subject of a government white paper "Caring for our future: reforming care and support" (2012).
	With a growing population of older people, improving quality of care in this age group is included in the declared health delivery strategies of nearly every commissioning body.
Current evidence base	There is limited evidence avialble for those aged over 75. This was highlighted in CG73 and has been noted in the footnotes of the recommendations of the current guideline recommendations. The recommendations are largely based on extrapolated evidence from younger populations, as there is absence of evidence for this older age group specifically.
Equality	This research may allow recommendations to become more responsive to the specific needs of older individuals. The study design may need to take account of racial differences in response to RAAS antagonists.
Study design	Primary research is required. The study populations should consist of people over the age of 75 years with one of the following:-
	diabetes and urine ACR≥3 mg/mmol
	 hypertension and urine ACR ≥30 mg/mmol
	• urine ACR ≥70 mg/mmol.
	Outcomes following treatment with RAAS antagonists should be investigated in one or several double-blind placebo-controlled clinical trials. Primary end-points
	should include hard outcomes such as all-cause mortality, cardiovascular events
	and progression to end-stage renal disease. Other relevant outcomes include

	rate of progression of CKD, quantification of proteinuria, hospital admission rate, incidence of AKI, falls and measures of quality of life.
Feasibility	This study should be highly feasible delivering useful outcomes in a short time- frame. The high prevalence of CKD in people aged over 75 facilitates recruitment. The interventions under investigation are already embedded in current practice and the important outcomes are common in this age group. Costs should therefore be acceptable. There are no particular ethical or technical issues.
Other comments	Since this research takes standard treatments as comparators, funding is unlikely to be forthcoming from a commercial source. Methodological problems include the need for risk stratification by comorbidity, which is a common problem in studies concentrating on older individuals. There will be a need for primary care engagement.
Importance	This research is of high importance. CKD is a common condition especially in older people. There is an unresolved clinical impression that the risks of using RAAS antagonists in old people may lead to significant morbidity and inappropriate use of health resources. Guideline-driven use of RAAS antagonists is one of only a handful of interventions for CKD which are included in the Quality Outcomes Framework (QOF). It is therefore important that the impact of this intervention on older people is fully understood and that subsequent guidance is properly evidenced.

Appendix O: Changes to recommendations from 2008 guideline

General changes

New recommendations 1.1.1 – 1.1.16: Clarification to terminology of GFR based on whether it is estimated, measured, based exclusively on serum creatinine results or cystatinC results (see introduction to the investigating CKD section for further details)

New recommendations 1.3.4, 1.6.3 - 1.6.14: Modified 'ACE inhibitor/ARB therapy' to use the term 'renin angiotensin system antagonists' so as to include renin inhibitors (the 3 classes of renin-angiotensin system antagonists are ACEi, ARBs and direct renin inhibitors).

New recommendations 1.6.12-1.6.14: The term 'plasma' was changed to 'serum' for consistency.

Table 202: Changes to recommendations from 2008 guideline

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
R1 1.1.1	Whenever a request for serum creatinine measurement is made, clinical laboratories should report an estimate of GFR (eGFR) using a prediction equation (see recommendation 1.1.2) in addition to reporting the serum creatinine result	Recommendation 1.1.1 in NICE guideline Whenever a request for serum creatinine measurement is made, clinical laboratories should report an estimate of glomerular filtration rate (eGFRcreatinine) using a prediction equation (see recommendation 1.1.2) in addition to reporting the serum creatinine result. ^a [2014]
R2 1.1.2	Use the IDMS (isotope dilution mass spectrometry)-traceable simplified MDRD (modification of diet in renal disease) equation to estimate GFR, using creatinine assays with calibration traceable to a standardised reference material. Ideally use creatinine assays that are specific and zero biased compared with IDMS (for example, enzymatic assays). When non-specific assays are used (for example, Jaffe assays), employ appropriate assay-specific adjustment factors to minimise between- laboratory variation (for example, those provided by national external quality assessment schemes).	 Replaced by recommendation 1.1.2 in NICE guideline Clinical laboratories should: use the Chronic Kidney Disease Epidemiology Collaboration (CKD EPI) creatinine equation to estimate GFRcreatinine, using creatinine assays with calibration traceable to standardised reference material use creatinine assays that are specific (for example, enzymatic assays) and zero-biased compared with isotope dilution mass spectrometry (IDMS) participate in a UK national external quality assessment scheme for creatinine. [new 2014]

^a eGFRcreatinine may be less reliable in certain situations (for example, acute kidney injury, pregnancy, oedematous states, muscle wasting disorders, and in people who are malnourished or have had an amputation) and has not been well validated in certain ethnic groups (for example, in people of Asian family origin).

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
R3 1.1.3	Where indicated, apply a correction factor for ethnicity to reported GFR values (multiply eGFR by 1.21 for African-Caribbean ethnicity[4])	Replaced by recommendation 1.1.3 Apply a correction factor to GFR values estimated using the CKD-EPI creatinine equation for people of African–Caribbean or African family origin (multiply eGFR by 1.159). [new 2014]
R4 1.1.4	Interpret reported values of eGFR 60 ml/min/1.73 m ² or more with caution, bearing in mind that estimates of GFR become less accurate as the true GFR increases.	Evidence reviewed but no change to recommendation 1.1.12 Interpret eGFR values of 60 ml/min/1.73 m ² or more with caution, bearing in mind that estimates of GFR become less accurate as the true GFR increases. [2014]
R5 1.1.5	Where eGFR is simply reported as 60 ml/min/1.73 m ² or more, use a rise in serum creatinine concentration of more than 20% to infer significant reduction in renal function.	Replaced by recommendation 1.1.11 If GFR is greater than 90 ml/min/1.73 m ² , use an increase in serum creatinine concentration of more than 20% to infer significant reduction in kidney function. [new 2014]
R6 1.1.6	Where a highly accurate measure of GFR is required (e.g. during monitoring of chemotherapy and in the evaluation of renal function in potential living donors), consider a gold standard measure (inulin, 51Cr- EDTA, 125I-iothalamate or iohexol).	Wording modified from 'gold standard' to 'reference standard' to highlight that there are a number of ways of direct measurement of GFR and that each of these methods is subject to variation and has limitations. Recommendation 1.1.16: Where a highly accurate measure of GFR is required – for example, during monitoring of chemotherapy and in the evaluation of renal function in potential living donors – consider a reference standard measure (inulin, ⁵¹ Cr-EDTA, ¹²⁵ I-iothalamate or iohexol). [2008]
R7 1.1.7	In cases where there are extremes of muscle mass (e.g. body builders, amputees, muscle wasting disorders) interpret the eGFR with caution. (Reduced muscle mass will lead to overestimation and increased muscle mass to under-estimation).	Recommendation remains the same, although updated in line with NICE house style: Changes made to update NICE house style: 'cases' changed to 'people' and amputees changed to people who have had an amputation. Recommendation 1.1.4: In people with extremes of muscle mass – for example, in bodybuilders, people who have had an amputation or people with muscle wasting disorders – interpret eGFRcreatinine with caution. (Reduced muscle mass will lead to overestimation and increased muscle

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
		mass to underestimation of the GFR.) [2008]
R8 1.1.8	Advise people not to eat any meat in the 12 hours before having a blood test for GFR estimation. Avoid delaying the despatch of blood samples to ensure that they are received and processed by the laboratory within 12 hours of venepuncture.	Recommendation remains the same, although updated in line with NICE house style: Recommendation 1.1.5: Advise people not to eat any meat in the 12 hours before having a blood test for eGFRcreatinine. Avoid delaying the despatch of blood samples to ensure that they are received and processed by the laboratory within 12 hours of venepuncture. [2008]
R9 1.1.9	An eGFR result less than 60 ml/min/1.73 m^2 in a person not previously tested should be confirmed by repeating the test within 2 weeks. Make an allowance for biological and analytical variability of serum creatinine (± 5%) when interpreting changes in eGFR.	Recommendation remains the same, although updated in line with NICE house style: Recommendation 1.1.13: Confirm an eGFR result of less than 60 ml/min/1.73 m ² in a person not previously tested by repeating the test within 2 weeks. Allow for biological and analytical variability of serum creatinine (±5%) when interpreting changes in eGFR. [2008]
R10 1.1.17	 When testing for the presence of haematuria, use reagent strips rather than urine microscopy. Evaluate further if there is a result of 1+ or more. Do not use urine microscopy to confirm a positive result. 	 Recommendation remains the same. Recommendation 1.1.23: When testing for the presence of haematuria, use reagent strips rather than urine microscopy. Evaluate further if there is a result of 1+ or more. Do not use urine microscopy to confirm a positive result. [2008]
R11 1.1.10	Do not use reagent strips to identify proteinuria unless they are capable of specifically measuring albumin at low concentrations and expressing the result as an ACR.	Recommendation remains the same. Recommendation 1.1.17: Do not use reagent strips to identify proteinuria unless they are capable of specifically measuring albumin at low concentrations and expressing the result as an ACR. [2008]
R12 1.1.11	To detect and identify proteinuria, use urine ACR in preference, as it has greater sensitivity than PCR for low levels of proteinuria. For quantification and monitoring of proteinuria, PCR can be used as an	Recommendation remains the same, although updated in line with NICE house style, and added ACR category. Recommendation 1.1.18: To detect and identify proteinuria, use urine ACR

Old No	Old recommendation wording	Peacon for deletion /Peacon for editing / Destination in new suidaling
	alternative. ACR is the recommended method for people with diabetes.	Reason for deletion/Reason for editing/ Destination in new guideline in preference to protein:creatinine ratio (PCR), because it has greater sensitivity than PCR for low levels of proteinuria. For quantification and monitoring of levels of proteinuria of ACR 70 mg/mmol or more, PCR can be used as an alternative. ACR is the recommended method for people with diabetes. [2008, amended 2014]
R13 1.1.12	For the initial detection of proteinuria, if the ACR is 30 mg/mmol or more (this is approximately equivalent to PCR 50 mg/mmol or more, or a urinary protein excretion 0.5 g/24 h or more) and less than 70 mg/mmol (approximately equivalent to PCR less than 100 mg/mmol, or urinary protein excretion less than 1 g/24 h) this should be confirmed by a subsequent early morning sample. If the initial ACR is 70 mg/mmol or more, or the PCR 100 mg/mmol or more, a repeat sample need not be tested.	Recommendation amended to: Recommendation 1.1.19: For the initial detection of proteinuria, if the ACR is between 3 mg/mmol and 70 mg/mmol, this should be confirmed by a subsequent early morning sample. If the initial ACR is 70 mg/mmol or more, a repeat sample need not be tested. [2008, amended 2014] The criteria for clinically significant proteinuria have been changed from an ACR of 30 mg/mmol to 3 mg/mmol. Although this question was not directly included in the update, the change came from evidence reviewed for the markers of kidney damage and classification of CKD sections. The GDG agreed that the risk of adverse outcomes is a continuum and starts at an ACR well below 30mg/mmol. The equivalences to PCR and urinary protein excretion were removed as the evidence showed that ACR was more accurate.
R14 1.1.13	In people without diabetes consider clinically significant proteinuria to be present when the ACR is 30 mg/mmol or more (this is approximately equivalent to PCR 50 mg/mmol or more, or a urinary protein excretion 0.5 g/24 h or more).	Recommendation 1.1.20: Regard a confirmed ACR of 3 mg/mmol or more as clinically important proteinuria. The criteria for clinically significant proteinuria have been changed from an ACR of 30 mg/mmol to 3 mg/mmol. Although this question was not directly included in the update, the change came from evidence reviewed for the markers of kidney damage and classification of CKD sections. The GDG agreed that the risk of adverse outcomes is a continuum and starts at an ACR well below 30mg/mmol. There is a general move away from the term 'microalbuminuria' (ACR between 3-30mg/mmol) and the GDG wanted the

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
		latest recommendations to reflect this.
R15 1.1.14	In people with diabetes consider microalbuminuria (ACR more than 2.5 mg/mmol in men and ACR more than 3.5 mg/mmol in women) to be clinically significant.	Replaced with recommendation 1.1.20: Regard a confirmed ACR of 3 mg/mmol or more as clinically important proteinuria. The criteria for clinically significant proteinuria have been changed from an ACR of 30 mg/mmol to 3 mg/mmol. Although this question was not directly included in the update, the change came from evidence reviewed for the markers of kidney damage and classification of CKD sections. The GDG agreed that the risk of adverse outcomes is a continuum and starts at an ACR well below 30mg/mmol. There is a general move away from the term 'microalbuminuria' (ACR between 3-30mg/mmol) and the GDG wanted the latest recommendations to reflect this.
		Additionally it was no longer felt appropriate to have different criteria for gender. The GDG were not aware of any evidence on which the gender differences were based.
R16 1.1.15	All people with diabetes, and people without diabetes with a GFR less than 60 ml/min/1.73 m ² , should have their urinary albumin/protein excretion quantified. The first abnormal result should be confirmed on an early morning sample (if not previously obtained).	 Recommendation 1.1.21: Quantify urinary albumin or urinary protein loss as in recommendation 1.1.18 for: people with diabetes people without diabetes with a GFR of less than 60 ml/min/1.73 m². [2008, amended 2014] Addition of bullet points and clarification of wording to make the recommendation clearer. The wording was changed from 'urinary albumin/protein excretion' to 'urinary albumin or urinary protein loss' as protein is lost rather than excreted. The second part of the original recommendation (regarding confirming on an early morning sample) was removed as it is already covered in recommendation 1.1.19

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
		A reference to recommendation 1.1.18 was added regarding whether to use ACR or PCR.
R17 1.1.16	Quantify by laboratory testing the urinary albumin/protein excretion of people with an eGFR 60 ml/min/1.73 m ² or more if there is a strong suspicion of CKD (see also recommendation 1.1.22).	Recommendation 1.1.22: Quantify by laboratory testing the urinary albumin or urinary protein loss of people with a GFR of 60 ml/min/1.73 m ² or more if there is a strong suspicion of CKD (see also recommendation 1.1.28). [2008] The wording was changed from 'urinary albumin/protein excretion' to 'urinary albumin or urinary protein loss' as protein is lost rather than excreted.
R18 1.4.1	 Offer a renal ultrasound to all people with CKD who: have progressive CKD (eGFR decline more than 5 ml/min/1.73 m² within 1 year, or more than 10 ml/min/1.73 m² within 5 years) have visible or persistent invisible haematuria have symptoms of urinary tract obstruction have a family history of polycystic kidney disease and are aged over 20 have stage 4 or 5 CKD are considered by a nephrologist to require a renal biopsy. 	 The first bullet point was modified to reflect the updated guideline definition of progression based on the evidence reviewed in the frequency of monitoring section (see recommendation 1.3.5). Recommendation 1.2.5: Offer a renal ultrasound scan to all people with CKD who: have accelerated progression of CKD (see recommendation 1.3.3) have visible or persistent invisible haematuria have symptoms of urinary tract obstruction have a family history of polycystic kidney disease and are aged over 20 years have a GFR of less than 30 ml/min/1.73 m2 (GFR category G4 or G5) are considered by a nephrologist to require a renal biopsy. [2008, amended 2014]
R19 1.4.2	Advise people with a family history of inherited kidney disease about the implications of an abnormal result before a renal ultrasound scan is arranged for them.	No changes to the recommendation. Recommendation 1.2.6: Advise people with a family history of inherited kidney disease about the implications of an abnormal result before a renal

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
		ultrasound scan is arranged for them. [2008]
R20 1.2.1	Use the suffix '(p)' to denote the presence of proteinuria when staging CKD.	Deleted Recommendation deleted as recommendation 1.2.1 recommends using both GFR and ACR to stage CKD and so use of additional 'p' is not required.
R21 1.2.2	For the purposes of this classification define proteinuria as urinary ACR 30 mg/mmol or more, or PCR 50 mg/mmol or more (approximately equivalent to urinary protein excretion 0.5 g/24 h or more).	Recommendation 1.1.20: Regard a confirmed ACR of 3 mg/mmol or more as clinically important proteinuria. [2008, amended 2014] The criteria for clinically significant proteinuria have been changed from an ACR of 30 mg/mmol to 3 mg/mmol. Although this question was not directly included in the update, the change came from evidence reviewed for the markers of kidney damage and classification of CKD sections. The GDG agreed that the risk of adverse outcomes is a continuum and starts at an ACR well below 30mg/mmol. There is a general move away from the term 'microalbuminuria' (ACR between 3-30mg/mmol) and the GDG wanted the latest recommendations to reflect this The equivalences to PCR and urinary protein excretion were removed as the evidence showed that ACR was more accurate.
R22 1.2.3	 Stage 3 CKD should be split into two subcategories defined by: GFR 45–59 ml/min/1.73m² (stage 3A), and GFR 30–44 ml/min/1.73m² (stage 3B) 	Deleted Recommendation deleted as this is now in common use and so recommendation not felt to be necessary. Also re-iterated in recommendation 1.2.1.
R23 1.2.4	At any given stage of CKD, management should not be influenced solely by age*. *In people aged over 70 years, an eGFR in the range 45–59 ml/min/1.73 m ² , if stable over time and without any other evidence of kidney damage, is unlikely to be associated with CKD-related complications.	Changed the recommendation to be more active and changed the word 'influenced' to 'determine' to improve the clarity of the recommendation. Recommendation 1.2.2: Do not determine management of CKD solely by age. [new 2014]
R24	Monitor GFR in people prescribed drugs known to be nephrotoxic such	Recommendation 1.1.27: Monitor GFR at least annually in people

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
1.1.21	as calcineurin inhibitors and lithium. Check GFR at least annually in people receiving long-term systemic non-steroidal anti-inflammatory drug (NSAID) treatment.	prescribed drugs known to be nephrotoxic, such as calcineurin inhibitors (for example, cyclosporin or tacrolimus), lithium and non-steroidal anti- inflammatory drugs (NSAIDs). [2008, amended 2014] The frequency of monitoring was added for nephrotoxic drugs based on the British National Formulary which no longer indicates a difference in monitoring needs between NSAIDs and other nephrotoxic drugs. Annual monitoring was agreed by the GDG as appropriate for all of these drugs. Examples of calcineurin inhibitors were added for clarification.
R25 1.1.22	 Offer people testing for CKD if they have any of the following risk factors: diabetes hypertension cardiovascular disease (ischaemic heart disease, chronic heart failure, peripheral vascular disease and cerebral vascular disease) structural renal tract disease, renal calculi or prostatic hypertrophy multisystem diseases with potential kidney involvement – for example, systemic lupus erythematosus family history of stage 5 CKD or hereditary kidney disease opportunistic detection of haematuria or proteinuria. 	 Replaced by recommendation 1.1.28 with addition of acute kidney injury from the new evidence review Offer testing for CKD using eGFRcreatinine and ACR to people with any of the following risk factors: diabetes hypertension acute kidney injury (see recommendation 1.3.9) cardiovascular disease (ischaemic heart disease, chronic heart failure, peripheral vascular disease or cerebral vascular disease) structural renal tract disease, renal calculi or prostatic hypertrophy multisystem diseases with potential kidney involvement - for example, systemic lupus erythematosus family history of end-stage kidney disease (GFR category G5) or hereditary kidney disease opportunistic detection of haematuria. [new 2014]^b

^b This recommendation has been updated. However, the bullet points shaded in grey were not reviewed for this update and so we will not be able to accept comments on these.

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
R26 1.1.23	In the absence of the above risk factors, do not use age, gender or ethnicity as risk markers to test people for CKD. In the absence of metabolic syndrome, diabetes or hypertension, do not use obesity alone as a risk marker to test people for CKD.	Recommendation 1.1.29: Do not use age, gender or ethnicity as risk markers to test people for CKD. In the absence of metabolic syndrome, diabetes or hypertension, do not use obesity alone as a risk marker to test people for CKD. [2008, amended 2014] The initial part of the sentence 'In the absence of the above risk factors' was removed. The 2008 recommendation implied that if risk factors were present that age, gender and ethnicity could be considered as risk factors. The GDG did not find any evidence for this and agreed that rewording the recommendation promotes equality.
R27 1.5.1	 Take the following steps to identify progressive CKD. Obtain a minimum of three GFR estimations over a period of not less than 90 days. In people with a new finding of reduced eGFR, repeat the eGFR within 2 weeks to exclude causes of acute deterioration of GFR – for example, acute kidney injury or initiation of ACE inhibitor/ARB therapy. Define progression as a decline in eGFR of more than 5 ml/min/1.73 m² within 1 year, or more than 10 ml/min/1.73 m² within 5 years. Focus particularly on those in whom a decline of GFR continuing at the observed rate would lead to the need for renal replacement therapy within their lifetime by extrapolating the current rate of decline. 	 New recommendation 1.3.3 was made to define accelerated progression of CKD. Recommendation 1.3.3: Define accelerated progression of CKD as: a sustained decrease in GFR of 25% or more and a change in GFR category within 12 months or a sustained decrease in GFR of 15 ml/min/1.73 m2 per year. [new 2014] First two bullet points of the original recommendation were separated out as recommendation 1.3.4 to provide emphasis on the process to identify progressive CKD. Recommendation: 1.3.4: Take the following steps to identify the rate of progression of CKD: Obtain a minimum of 3 GFR estimations over a period of not less than 90 days. In people with a new finding of reduced GFR, repeat the GFR within 2 weeks to exclude causes of acute deterioration of GFR – for example,

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
		acute kidney injury or initiation of renin–angiotensin system antagonist therapy.
		The third bullet point was updated as recommendation 1.3.5 based on evidence derived from the frequency of monitoring review which identified thresholds for progression.
		Recommendation 1.3.5: Be aware that people with CKD are at increased risk of progression to end-stage kidney disease if they have either of the following:
		 a sustained decrease in GFR of 25% or more over 12 months or a sustained decrease in GFR of 15 ml/min/1.73 m² or more over 12 months.
		The GDG made a separate recommendation (1.3.6) from the fourth bullet point to give it additional focus, and clarified the wording according to NICE house style.
		Recommendation 1.3.6: When assessing CKD progression, extrapolate the current rate of decline of GFR and take this into account when planning intervention strategies, particularly if it suggests that the person might need renal replacement therapy in their lifetime.
R28 1.5.2	 Work with people who have risk factors for progression of CKD to optimise their health. These risk factors are: cardiovascular disease proteinuria hypertension 	Replaced by recommendation 1.3.7. 'Acute kidney injury' was added based on the 2014 evidence review. Modified wording for ethnicity based on NICE house style. Clarified that not all urinary outflow tract obstructions are risk factors, only those that are untreated (treatment will eliminate the risk of CKD progression). Recommendation 1.3.7: Work with people who have any of the following

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
	 smoking black or Asian ethnicity chronic use of NSAIDs urinary outflow tract obstruction. 	 risk factors for CKD progression to optimise their health: cardiovascular disease proteinuria acute kidney injury hypertension diabetes smoking African, African–Caribbean or Asian family origin chronic use of NSAIDs untreated urinary outflow tract obstruction. [new 2014]
R29 1.5.3	In people with CKD the chronic use of NSAIDs may be associated with progression and acute use is associated with a reversible fall in GFR. Exercise caution when treating people with CKD with NSAIDs over prolonged periods of time. Monitor the effects on GFR, particularly in people with a low baseline GFR and/or in the presence of other risks for progression.	Recommendation remains the same, although updated in line with NICE house style. Recommendation 1.3.8: In people with CKD the chronic use of NSAIDs may be associated with progression and acute use is associated with a reversible decrease in GFR. Exercise caution when treating people with CKD with NSAIDs over prolonged periods of time. Monitor the effects on GFR, particularly in people with a low baseline GFR and/or in the presence of other risks for progression. [2008]
R30 1.6.1	 People with CKD in the following groups should normally be referred for specialist assessment: stage 4 and 5 CKD (with or without diabetes) higher levels of proteinuria (ACR 70 mg/mmol or more, approximately equivalent to PCR 100 mg/mmol or more, or urinary protein excretion 1 g/24 h or more) unless known to be due to diabetes and already appropriately treated 	The first bullet point was amended to give GFR values rather than the stages to help clarify the criteria. In the second bullet point the equivalence to PCR value was removed to ensure consistency of ACR use. In the fourth bullet point the definition of progression was amended to the 2014 definition (see recommendation 1.3.5). The fifth bullet point was amended to cross reference the current NICE

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
	 proteinuria (ACR 30 mg/mmol or more, approximately equivalent to PCR 50 mg/mmol or more, or urinary protein excretion 0.5 g/24 h or more) together with haematuria rapidly declining eGFR (more than 5 ml/min/1.73 m² in 1 year, or more than 10 ml/min/1.73 m² within 5 years) hypertension that remains poorly controlled despite the use of at least four antihypertensive drugs at therapeutic doses (see 'Hypertension: management of hypertension in adults in primary care' [NICE clinical guideline 34]) people with, or suspected of having, rare or genetic causes of CKD suspected renal artery stenosis. 	 guideline on hypertension. Recommendation 1.5.2: People with CKD in the following groups should normally be referred for specialist assessment: GFR less than 30 ml/min/1.73 m² (GFR category G4 or G5), with or without diabetes ACR 70 mg/mmol or more, unless known to be caused by diabetes and already appropriately treated ACR 30 mg/mmol (ACR category A3) or more, together with haematuria sustained decrease in GFR of 25% or more and a change in GFR category or sustained decrease in GFR of 15 ml/min/1.73 m² or more within 12 months hypertension that remains poorly controlled despite the use of at least 4 antihypertensive drugs at therapeutic doses (see also Hypertension [NICE clinical guideline 127]) known or suspected rare or genetic causes of CKD suspected renal artery stenosis. [2008, amended 2014]
R31 1.6.2	Consider discussing management issues with a specialist by letter, email or telephone in cases where it may not be necessary for the person with CKD to be seen by the specialist.	No changes made to the recommendation. Recommendation 1.5.3: Consider discussing management issues with a specialist by letter, email or telephone in cases where it may not be necessary for the person with CKD to be seen by the specialist. [2008]
R32 1.6.3	Once a referral has been made and a plan jointly agreed, it may be possible for routine follow-up to take place at the patient's GP surgery rather than in a specialist clinic. If this is the case, criteria for future referral or re-referral should be specified.	The text '(between the person with CKD or their carer and the healthcare professional)' was added to clarify who the plan should be agreed by. Recommendation 1.5.4: Once a referral has been made and a plan jointly agreed (between the person with CKD or their carer and the healthcare

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
		professional), it may be possible for routine follow-up to take place at the patient's GP surgery rather than in a specialist clinic. If this is the case, criteria for future referral or re-referral should be specified. [2008]
R33 1.6.4	Take into account the individual's wishes and comorbidities when considering referral.	No change to recommendation wording, but this recommendation was put first in the section on referral criteria to give it more prominence. Recommendation 1.5.1: Take into account the individual's wishes and comorbidities when considering referral. [2008]
R34 1.6.5	People with CKD and renal outflow obstruction should normally be referred to urological services, unless urgent medical intervention is required – for example, for the treatment of hyperkalaemia, severe uraemia, acidosis or fluid overload.	No change to recommendation: Recommendation 1.5.5: People with CKD and renal outflow obstruction should normally be referred to urological services, unless urgent medical intervention is required – for example, for the treatment of hyperkalaemia, severe uraemia, acidosis or fluid overload. [2008]
R35 1.7.1	Encourage people with CKD to take exercise, achieve a healthy weight and stop smoking.	No change to the recommendation. Recommendation 1.4.6: Encourage people with CKD to take exercise, achieve a healthy weight and stop smoking. [2008]
R36 1.7.2	Where the clinician in discussion with the patient has decided that dietary intervention to influence progression of CKD is indicated, an appropriately trained professional should discuss the risks and benefits of dietary protein restriction, with particular reference to slowing down the progression of disease versus protein-calorie malnutrition.	Replaced by recommendation 1.4.9 after review of the evidence on low protein diets Recommendation 1.4.9: Do not offer low-protein diets (dietary protein intake less than 0.6–0.8 g/kg/day) to people with CKD. [new 2014]
R37 1.7.3	Where dietary intervention is agreed this should occur within the context of education, detailed dietary assessment and supervision to ensure malnutrition is prevented.	No change to the recommendation Recommendation 1.4.8: Where dietary intervention is agreed this should occur within the context of education, detailed dietary assessment and supervision to ensure malnutrition is prevented. [2008]
R38 1.7.4	Offer dietary advice to people with progressive CKD concerning potassium, phosphate, protein, calorie and salt intake when indicated.	Protein was removed because this was subject to a new evidence review. The GDG reworded the recommendation to state that advice should be

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
		appropriate to the severity of CKD because 'progressive CKD' was considered to be ambiguous as it could refer to anyone with CKD. Recommendation 1.4.7: Offer dietary adviceabout potassium, phosphate, calorie and salt intake appropriate to the severity of CKD. [2008, amended 2014]
R39 1.8.1	In people with CKD aim to keep the systolic blood pressure below 140 mmHg (target range 120–139 mmHg) and the diastolic blood pressure below 90 mmHg[6]	The text 'Existing hypertension guidelines such as the NICE hypertension guideline (NICE clinical guideline 34) give a range rather than just an upper limit and clinicians find this clear guidance useful.' was removed from the footnote because the current NICE guideline on hypertension does not provide ranges of blood pressure. Recommendation 1.6.1: In people with CKD aim to keep the systolic blood pressure below 140 mmHg (target range 120–139 mmHg) and the diastolic blood pressure below 90 mmHg. ^c [2008]
R40 1.8.2	In people with CKD and diabetes, and also in people with an ACR 70 mg/mmol or more (approximately equivalent to PCR 100 mg/mmol or more, or urinary protein excretion 1 g/24 h or more) aim to keep the systolic blood pressure below 130 mmHg (target range 120–129 mmHg) and the diastolic blood pressure below 80 mmHg[6].	The PCR equivalence values were removed as the evidence suggests that ACR is more accurate. The text 'Existing hypertension guidelines such as the NICE hypertension guideline (NICE clinical guideline 34) give a range rather than just an upper limit and clinicians find this clear guidance useful.' was removed from the footnote because the current NICE guideline on hypertension does not provide ranges of blood pressure. Recommendation 1.6.2: In people with CKD and diabetes, and also in people with an ACR of 70 mg/mmol or more, aim to keep the systolic blood

^c The GDG searched for and appraised evidence on blood pressure control, and did not set out to establish definitive safe ranges of blood pressure in CKD. The evidence presented in the full guideline does not therefore include safety of low blood pressure, but some such evidence does exist. The GDG set out a range of blood pressure targets, given in these recommendations, which in their clinical experience will inform good practice in CKD.

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
		pressure below 130 mmHg (target range 120–129 mmHg) and the diastolic blood pressure below 80 mmHg ^d . [2008]
R41 1.8.3	When implementing blockade of the renin-angiotensin system, start treatment with an ACE inhibitor first then move to an ARB if the ACE inhibitor is not tolerated.	Deleted Recommendation deleted as the evidence reviewed highlighted drugs should not be used together.
R42 1.8.4	Offer ACE inhibitors/ARBs to people with diabetes and ACR more than 2.5 mg/mmol (men) or more than 3.5 mg/mmol (women) irrespective of the presence of hypertension or CKD stage[7].	 Replaced by recommendation 1.6.3: Offer a low-cost renin-angiotensin system antagonist to people with CKD and: diabetes and an ACR of 3 mg/mmol or more (ACR category A2 or A3) hypertension and an ACR of 30 mg/mmol or more (ACR category A3) an ACR of 70 mg/mmol or more (irrespective of hypertension or cardiovascular disease).^e [new 2014]
R43 1.8.5	Offer ACE inhibitors/ARBs to non-diabetic people with CKD and hypertension and ACR 30 mg/mmol or more (approximately equivalent to PCR 50 mg/mmol or more, or urinary protein excretion 0.5 g/24 h or more)[7]	 Replaced by recommendation 1.6.3: Offer a low-cost renin-angiotensin system antagonist to people with CKD and: diabetes and an ACR of 3 mg/mmol or more (ACR category A2 or A3)

^d The GDG searched for and appraised evidence on blood pressure control, and did not set out to establish definitive safe ranges of blood pressure in CKD. The evidence presented in the full guideline does not therefore include safety of low blood pressure, but some such evidence does exist. The GDG set out a range of blood pressure targets, given in these recommendations, which in their clinical experience will inform good practice in CKD.

^e The evidence to support these criteria is limited in people aged over 70 years.

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
		 hypertension and an ACR of 30 mg/mmol or more (ACR category A3) an ACR of 70 mg/mmol or more (irrespective of hypertension or cardiovascular disease). [new 2014]
R44 1.8.6	Offer ACE inhibitors/ARBs to non-diabetic people with CKD and ACR 70 mg/mmol or more (approximately equivalent to PCR 100 mg/mmol or more, or urinary protein excretion 1 g/24 h or more) irrespective of the presence of hypertension or cardiovascular disease[7]	 Replaced by recommendation 1.6.3: Offer a low-cost renin-angiotensin system antagonist to people with CKD and: diabetes and an ACR of 3 mg/mmol or more (ACR category A2 or A3) hypertension and an ACR of 30 mg/mmol or more (ACR category A3) an ACR of 70 mg/mmol or more (irrespective of hypertension or cardiovascular disease). [new 2014]
R45 1.8.7	Offer non-diabetic people with CKD and hypertension and ACR less than 30 mg/mmol (approximately equivalent to PCR less than 50 mg/mmol, or urinary protein excretion less than 0.5 g/24 h) a choice of antihypertensive treatment according to the NICE guidance on hypertension (NICE clinical guideline 34) to prevent or ameliorate progression of CKD.	Replaced by recommendation 1.6.5 Follow the treatment recommendations in Hypertension (NICE clinical guideline 127) for people with CKD, hypertension and an ACR of less than 30 mg/mmol (ACR categories A1 and A2), if they do not have diabetes. [new 2014]
R46 1.8.8	When using ACE inhibitors/ARBs, titrate them to the maximum tolerated therapeutic dose before adding a second-line agent.	This recommendation was deleted. Recommendation deleted as the evidence reviewed highlighted drugs should not be used together.
R47 1.8.9	 To improve concordance, inform people who are prescribed ACE inhibitors or ARB therapy about the importance of: achieving the optimal tolerated dose of ACE inhibitor/ARB, and monitoring eGFR and serum potassium in achieving this safely. 	 Recommendation 1.6.6: To improve concordance, inform people who are prescribed renin-angiotensin system antagonists about the importance of: achieving the optimal tolerated dose of renin-angiotensin system antagonists and

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
		 monitoring eGFR and serum potassium in achieving this safely. [2008]
R48 1.8.10	In people with CKD, measure serum potassium concentrations and estimate the GFR before starting ACE inhibitor/ARB therapy. Repeat these measurements between 1 and 2 weeks after starting ACE inhibitor/ARB therapy and after each dose increase.	No changes made to the recommendation Recommendation 1.6.7: In people with CKD, measure serum potassium concentrations and estimate the GFR before starting renin–angiotensin system antagonists. Repeat these measurements between 1 and 2 weeks after starting renin–angiotensin system antagonists and after each dose increase. [2008]
R49 1.8.11	ACE inhibitor/ARB therapy should not normally be started if the pretreatment serum potassium concentration is significantly above the normal reference range (typically more than 5.0 mmol/litre).	The recommendation was amended for clarity and to reduce the uncertainty implied by changing 'significantly above the normal reference range' to 'greater than 5.0 mmol/litre'. Recommendation 1.6.8: Do not routinely offer a renin—angiotensin system antagonist to people with CKD if their pre-treatment serum potassium concentration is greater than 5.0 mmol/litre. [2008, amended 2014]
R50 1.8.12	When hyperkalaemia precludes the use of ACE inhibitors/ARBs, assessment, investigation and treatment of other factors known to promote hyperkalaemia should be undertaken and the serum potassium concentration rechecked.	No change to the recommendation. Recommendation 1.6.9: When hyperkalaemia precludes use of renin-angiotensin system antagonists, assessment, investigation and treatment of other factors known to promote hyperkalaemia should be undertaken and the serum potassium concentration rechecked. [2008]
R51 1.8.13	Concurrent prescription of drugs known to promote hyperkalaemia is not a contraindication to the use of ACE inhibitors/ARBs, but be aware that more frequent monitoring of serum potassium concentration may be required.	No change to the recommendation. Recommendation 1.6.10: Concurrent prescription of drugs known to promote hyperkalaemia is not a contraindication to the use of renin-angiotensin system antagonists, but be aware that more frequent monitoring of serum potassium concentration may be required. [2008]
R52	Stop ACE inhibitor/ARB therapy if the serum potassium concentration	No change to the recommendation.

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
1.8.14	rises to 6.0 mmol/litre or more and other drugs known to promote hyperkalaemia have been discontinued.	Recommendation 1.6.11: Stop renin-angiotensin system antagonists if the serum potassium concentration increases to 6.0 mmol/litre or more and other drugs known to promote hyperkalaemia have been discontinued. [2008]
R53 1.8.15	Following the introduction or dose increase of ACE inhibitor/ARB, do not modify the dose if either the GFR decrease from pretreatment baseline is less than 25% or the plasma creatinine increase from baseline is less than 30%.	No change to the recommendation. Recommendation 1.6.12: Following the introduction or dose increase of renin-angiotensin system antagonists, do not modify the dose if either the GFR decrease from pretreatment baseline is less than 25% or the serum creatinine increase from baseline is less than 30%. [2008]
R54 1.8.16	If there is a fall in eGFR or rise in plasma creatinine after starting or increasing the dose of ACE inhibitor/ARB, but it is less than 25% (eGFR) or 30% (serum creatinine) of baseline, the test should be repeated in a further 1–2 weeks. Do not modify the ACE inhibitor/ARB dose if the change in eGFR is less than 25% or the change in plasma creatinine is less than 30%.	No change to the recommendation. Recommendation 1.6.13: If there is a decrease in eGFR or increase in serum creatinine after starting or increasing the dose of renin-angiotensin system antagonists, but it is less than 25% (eGFR) or 30% (serum creatinine) of baseline, repeat the test in 1–2 weeks. Do not modify the renin-angiotensin system antagonist dose if the change in eGFR is less than 25% or the change in serum creatinine is less than 30%. [2008]
R55 1.8.17	 If the change in eGFR is 25% or more or the change in plasma creatinine is 30% or more: investigate other causes of a deterioration in renal function such as volume depletion or concurrent medication (for example, NSAIDs) if no other cause for the deterioration in renal function is found, stop the ACE inhibitor/ARB therapy or reduce the dose to a previously tolerated lower dose, and add an alternative antihypertensive medication if required. 	 No change to the recommendation. Recommendation 1.6.14: If the eGFR change is 25% or more, or the change in serum creatinine is 30% or more: investigate other causes of a deterioration in renal function, such as volume depletion or concurrent medication (for example, NSAIDs) if no other cause for the deterioration in renal function is found, stop the renin-angiotensin system antagonist or reduce the dose to a previously tolerated lower dose, and add an alternative antihypertensive medication if required. [2008]

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
R56 1.8.18	Where indicated, the use of ACE inhibitors/ARBs should not be influenced by a person's age as there is no evidence that their appropriate use in older people is associated with a greater risk of adverse effects.	Recommendation deleted. Content of the recommendation is already covered in recommendation 1.2.2.
R57 1.8.19	The use of statin therapy for the primary prevention[9] of cardiovascular disease (CVD)[9],[10]in people with CKD should not differ from its use in people without CKD and should be based on existing risk tables for people with and without diabetes. It should be understood that the Framingham risk tables significantly underestimate risk in people with CKD.	Replaced by recommendation 1.6.15. The NICE 'Lipid modification' guideline provides guidance on the use of statins in people with CKD and a reference to this guideline was considered appropriate. Recommendation 1.6.15:Follow the recommendations in Lipid modification (NICE clinical guidelin) for the use of statins in CKD.
R58 1.8.20	Offer statins to people with CKD for the secondary prevention of CVD irrespective of baseline lipid values.	Replaced by recommendation 1.6.15. The NICE 'Lipids modification' guideline provides guidance on the use of statins in people with CKD and a reference to this guideline was considered appropriate. Recommendation 1.6.15:Follow the recommendations in Lipid modification (NICE clinical guideline) for the use of statins in CKD.
R59 1.8.21	Offer antiplatelet drugs to people with CKD for the secondary prevention of CVD. CKD is not a contraindication to the use of low dose aspirin but clinicians should be aware of the increased risk of minor bleeding in people with CKD given multiple antiplatelet drugs.	Replaced by recommendation 1.6.16: Offer antiplatelet drugs to people with CKD for the secondary prevention of cardiovascular disease, but be aware of the increased risk of bleeding. [new 2014]
R60 1.8.22	There is insufficient evidence to recommend the routine use of drugs to lower uric acid in people with CKD who have asymptomatic hyperuricaemia.	This is not a recommendation.
R61 1.1.18	When there is the need to differentiate persistent invisible haematuria in the absence of proteinuria from transient haematuria, regard two out of three positive reagent strip tests as confirmation of persistent invisible haematuria.	Recommendation remains the same, although updated in line with NICE house style. Recommendation 1.1.24: When there is the need to differentiate persistent invisible haematuria in the absence of proteinuria from transient

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

/ U4

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
		haematuria, regard 2 out of 3 positive reagent strip tests as confirmation of persistent invisible haematuria. [2008]
R62 1.1.19	Persistent invisible haematuria, with or without proteinuria, should prompt investigation for urinary tract malignancy in appropriate age groups.	Recommendation remains the same, although updated in line with NICE house style. Recommendation 1.1.25: Persistent invisible haematuria, with or without proteinuria, should prompt investigation for urinary tract malignancy in appropriate age groups. [2008]
R63 1.1.20	Persistent invisible haematuria in the absence of proteinuria should be followed up annually with repeat testing for haematuria, proteinuria/albuminuria (see recommendations above), GFR and blood pressure monitoring as long as the haematuria persists.	Recommendation remains the same, although updated in line with NICE house style. Recommendation 1.1.26: Persistent invisible haematuria in the absence of proteinuria should be followed up annually with repeat testing for haematuria (see recommendations 1.1.24 and 1.1.25), proteinuria or albuminuria, GFR and blood pressure monitoring as long as the haematuria persists. [2008]
R64 1.9.1	The routine measurement of calcium, phosphate, parathyroid hormone (PTH) and vitamin D levels in people with stage 1, 2, 3A or 3B CKD is not recommended.	No change to the recommendation, except to use GFR categories instead of stages. Recommendation 1.7.1: Do not routinely measure calcium, phosphate, parathyroid hormone (PTH) and vitamin D levels in people witha GFR of 30 ml/min/1.73 m2 or more (GFR category G1, G2 or G3). [2008]
R65 1.9.2	Measure serum calcium, phosphate and PTH concentrations in people with stage 4 or 5 CKD (GFR less than 30 ml/min/1.73 m ²). Determine the subsequent frequency of testing by the measured values and the clinical circumstances. Where doubt exists seek specialist opinion.	No change to the recommendation except to use GFR categories instead of stages. Recommendation 1.7.2: Measure serum calcium, phosphate and PTH concentrations in people witha GFR of less than 30 ml/min/1.73 m2 (GFR category G4 or G5). Determine the subsequent frequency of testing by the measured values and the clinical circumstances. Where doubt exists, seek specialist opinion. [2008]

	Old recommendation wording	Person for deletion (Person for editing (Pertination in now guideling
Old No R66 1.9.3	Old recommendation wordingOffer bisphosphonates if indicated for the prevention and treatment of osteoporosis in people with stage 1, 2, 3A or 3B CKD.	Reason for deletion/Reason for editing/ Destination in new guidelineNo change to the recommendation, except to use GFR categories instead of stages.Recommendation 1.7.3: Offer bisphosphonates if indicated for the prevention and treatment of osteoporosis in people witha GFR of 30 ml/min/1.73 m2 or more (GFR category G1, G2 or G3). [2008]
R67 1.9.4	 When vitamin D supplementation is indicated in people with CKD offer: cholecalciferol or ergocalciferol to people with stage 1, 2, 3A or 3B CKD 1-alpha-hydroxycholecalciferol (alfacalcidol) or 1,25- dihydroxycholecalciferol (calcitriol) to people with stage 4 or 5 CKD. 	Replaced by recommendations 1.7.5 and 1.7.6: Recommendation 1.7.5: Offer colecalciferol or ergocalciferol to treat vitamin D deficiency in people with CKD and vitamin D deficiency. [new 2014] Recommendation 1.7.6: If vitamin D deficiency has been corrected and symptoms of CKD-mineral and bone disorders persist, offer alfacalcidol (1-alpha-hydroxycholecalciferol) or calcitriol (1-25-dihydroxycholecalciferol) to people witha GFR of less than 30 ml/min/1.73 m2 (GFR category G4 or G5). [new 2014]
R68 1.9.5	Monitor serum calcium and phosphate concentrations in people receiving 1-alpha-hydroxycholecalciferol or 1,25- dihydroxycholecalciferol supplementation.[11]	Evidence reviewed but no change to the recommendation. Recommendation 1.7.7: Monitor serum calcium and phosphate concentrations in people receiving alfacalcidol or calcitriol supplements. [2014]
R69 1.9.6	If not already measured, check the haemoglobin level in people with stage 3B, 4 and 5 CKD to identify anaemia (Hb less than 11.0 g/dl, see 'Anaemia management in people with chronic kidney disease' [NICE clinical guideline 39]). Determine the subsequent frequency of testing by the measured value and the clinical circumstances.	Modified link to Anaemia management in CKD guideline. Recommendation 1.7.8: If not already measured, check the haemoglobin level in peoplewith a GFR of less than 45 ml/min/1.73 m2 (GFR category G3b, G4 or G5) to identify anaemia (haemoglobin less than 110 g/litre (11.0g/dl), see Anaemia management in people with chronic kidney disease [NICE clinical guideline 114]). Determine the subsequent frequency of testing by the measured value and the clinical circumstances. [2008]
R70	Offer people with CKD education and information tailored to the stage	No change to recommendation, except to replace the term 'stage' with

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
1.3.1	and cause of CKD, the associated complications and the risk of progression.	'severity'. Recommendation 1.4.1: Offer people with CKD education and information tailored to the severity and cause of CKD, the associated complications and the risk of progression. [2008]
R71 1.3.2	 When developing information or education programmes, involve people with CKD in their development from the outset. The following topics are suggested. What is CKD and how does it affect people? What questions should people ask about their kidneys when they attend clinic? What treatments are available for CKD, what are their advantages and disadvantages and what complications or side effects may occur as a result of treatment/medication? What can people do to manage and influence their own condition? In what ways could CKD and its treatment affect people's daily life, social activities, work opportunities and financial situation, including benefits and allowances available? How can people cope with and adjust to CKD and what sources of psychological support are available? When appropriate, offer information about renal replacement therapy (such as the frequency and length of time of dialysis treatment sessions or exchanges and pre-emptive transplantation) and the preparation required (such as having a fistula or peritoneal catheter). Conservative management may be considered where appropriate. 	 The second bullet point (What questions should people ask about their kidneys when they attend clinic?) was changed to simplify and recognise that the provision of services has changed. Recommendation 1.4.2: When developing information or education programmes, involve people with CKD in their development from the outset. The following topics are suggested. What is CKD and how does it affect people? What questions should people ask about their kidneys? What treatments are available for CKD, what are their advantages and disadvantages and what complications or side effects may occur as a result of treatment/medication? What can people do to manage and influence their own condition? In what ways could CKD and its treatment affect people's daily life, social activities, work opportunities and financial situation, including benefits and allowances available? How can people cope with and adjust to CKD and what sources of psychological support are available? When appropriate, offer information about renal replacement therapy (such as the frequency and length of time of dialysis treatment sessions or exchanges and pre-emptive transplantation) and the preparation required (such as having a fistula or peritoneal catheter).

Old No	Old recommendation wording	Reason for deletion/Reason for editing/ Destination in new guideline
		• Conservative management and when it may be considered . [2008]
R72 1.3.3	Offer people with CKD high quality information or education programmes at appropriate stages of their condition to allow time for them to fully understand and make informed choices about their treatment.	No change to the recommendation, except to replace the term 'stage' with 'severity'. Recommendation 1.4.3: Offer people with CKD high-quality information or education programmes as appropriate to the severity of their condition to allow time for them to fully understand and make informed choices about their treatment. [2008]
R73 1.3.4	Healthcare professionals providing information and education programmes should ensure they have specialist knowledge about CKD and the necessary skills to facilitate learning.	No change to the recommendation. Recommendation 1.4.4: Healthcare professionals providing information and education programmes should ensure they have specialist knowledge about CKD and the necessary skills to facilitate learning. [2008]
R74 1.3.5	Healthcare professionals working with people with CKD should take account of the psychological aspects of coping with the condition and offer access to appropriate support – for example, support groups, counselling or a specialist nurse.	No change to the recommendation. Recommendation 1.4.5: Healthcare professionals working with people with CKD should take account of the psychological aspects of coping with the condition and offer access to appropriate support – for example, support groups, counselling or a specialist nurse. [2008]

Appendix P: Deleted content from 2008 guideline

Preface

Chronic kidney disease (CKD) is of growing importance in the UK. The NHS is increasingly focussing on prevention and on the early detection and treatment of potentially progressive disease, whilst the prevalence of risk factors for CKD, such as diabetes, obesity and hypertension is rising. It is therefore a great pleasure to introduce this timely new guideline on CKD from the National Collaborating Centre for Chronic Conditions (NCC-CC) and the National Institute for Health and Clinical Excellence (NICE).

The recommendations you will read here are the result of a thorough review of the published research. The field of renal medicine has a complex evidence base, and enormous thanks are due to the Guideline Development Group for their hard work and attention to detail, and to the NCC-CC Technical Team who worked enthusiastically alongside them. As for all our guidelines, full evidence tables summarising the clinical evidence base, and full details of the health economic modelling, are available from the Royal College of Physicians' website. Readers involved in research in this field, and those who want to find the full rationale behind a particular recommendation, will find this an invaluable resource.

The Department of Health, in commissioning this guideline, was clear that the focus was to be on early detection and management. This is the area in which the guideline can deliver its greatest potential benefit, through delaying progression of disease and thus reducing the need for dialysis or transplantation. The key priority recommendations singled out in the guideline reflect this emphasis. They present clear criteria for testing for CKD, suspecting progressive CKD, and referring people for specialist assessment, all of which should be useful in primary care. Recommendations are also provided on starting treatment once proteinuria has been assessed.

In common with other guideline topics in chronic conditions, there are some areas in CKD which remain in need of good quality research to inform difficult clinical decisions. The GDG have not shirked from addressing these questions and their expertise informed debates which led to some forward-thinking recommendations, for example those dealing with testing for proteinuria. For many practitioners a change in practice will be required as a result, but great effort has been taken to explain the rationale for this change within the guideline, and to demonstrate that the necessary effort is worthwhile.

As healthcare professionals in primary care take on an increasing role in the management of CKD, it is hoped that this guideline will be a single useful and accessible reference promoting a consistent high quality of care and hence improved quality of life for longer for people with CKD.

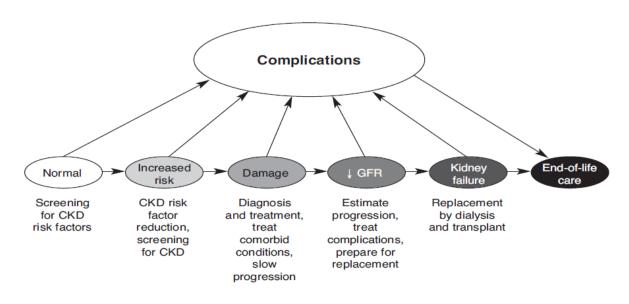
Dr Bernard Higgins MD FRCP

Director, National Collaborating Centre for Chronic Conditions

P.1 Section 1: Introduction

P.1.1 Section 1.1: Background

Publication of the second part of the Renal National Service Framework (NSF)¹⁶¹ served to emphasise the change in focus in renal medicine from treatment of established kidney disease to earlier identification and prevention of kidney disease. Allied to this is the knowledge that late referral of people with advanced kidney disease to nephrology services from both primary and secondary care is still at least as high as 30%, engendering increased mortality and morbidity^{41,300,323,368,562,625} and precluding assessment and preparation of those for whom conservative management is more appropriate.


Over 2% of the total NHS budget is spent on renal replacement therapy (dialysis and transplantation) for those with established renal failure.³⁶ Strategies aimed at earlier identification and (where possible) prevention of progression to established renal failure are therefore clearly required. Equally importantly, population studies have shown that people with diagnosed chronic kidney disease (CKD) have a far greater likelihood of cardiovascular death than progression to established renal failure.^{169,229,319,333} Furthermore, the majority of people with CKD are asymptomatic and may not even be aware that they have any form of kidney problem.

The challenge is to:

- identify people with or at risk of developing CKD
- determine who needs intervention to minimise cardiovascular risk and to determine what that intervention should comprise
- determine who will develop progressive kidney disease and/or complications of kidney disease and how they may be identified and managed to reduce/prevent these outcomes
- determine who needs referral for specialist kidney care.

This requires adoption of an overall health approach (Figure 269) and an integrated care strategy involving public awareness, professional education, policy influence, and improved care delivery systems all under-pinned by research.

Figure 269: Chronic kidney disease: an overall health approach

GFR = glomerular filtration rate.

A key component of the integrated care strategy is development of clinical guidelines which synthesise a scientific understanding of the disease in terms of:

- the disease prevalence
- the ability to identify the disease and the people at risk
- a knowledge of best therapies and strategies
- the ability to deliver effective therapies in the right place at the right time with the right tools.

In March 2006 the Joint Specialty Committee of the Royal College of Physicians of London and the Renal Association, together with representatives from the Royal College of General Practitioners, the Association for Clinical Biochemistry, the Society for District General Hospital Nephrologists, the British Geriatric Society, the Professional Advisory Council of Diabetes UK and the National Kidney Federation produced guidelines for the identification, management and referral of adult people with CKD.⁵⁸⁹ Two further national strategies promoting identification of CKD were implemented in April 2006: the automatic reporting of an estimated glomerular filtration rate (eGFR) whenever a serum creatinine measurement is requested of any clinical chemistry laboratory¹⁶³ and the introduction of 4 renal domains in the Quality and Outcomes Framework (QOF) subsequently updated in April 2008 (Table 203)⁷ These national strategies have raised questions that this guideline attempts to answer whilst addressing the challenges detailed above.

Table 203: Quality and Outcomes Framework Guidance Chronic Kidney Disease Indicator Set (updated April 2008)

	The practice can produce a register of patients aged 18 years and over with CKD (US
Indicator 1	National Kidney Foundation: Stage 3–5 CKD)

Source: Reprinted by permission from Macmillan Publilshers Ltd: Lodney International, Levey AS, Atkins R, Coresh J et al. Chronic kidney disease as a global health problem: approaches and initiatives – a position statement from Kidney Disease Improving Global Outcomes. Kidney IOnterational 2007; 72(3): 247-259. Copyright 2007³⁷⁶

Indicator 1	The practice can produce a register of patients aged 18 years and over with CKD (US National Kidney Foundation: Stage 3–5 CKD)
Indicator 2	The percentage of patients on the CKD Register whose notes have a record of blood pressure in the previous 15 months
Indicator 3	The percentage of patients on the CKD Register in whom the last blood pressure reading, measured in the previous 15 months, is 140/85 or less
Indicator 5	The percentage of patients on the CKD Register with hypertension and proteinuria who are treated with an angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) (unless a contraindication or side effects are recorded)

P.1.2 Section 1.2: Definition

The Renal NSF adopted the US National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF-KDOQI) classification of CKD. This classification divides CKD into five stages (Table 204) defined by evidence of kidney damage and level of renal function as measured by glomerular filtration rate (GFR). Stages 3–5 may be defined by GFR alone, whilst stages 1 and 2 also require the presence of persistent proteinuria, albuminuria, haematuria or structural abnormalities. Stage 5 CKD may be described as established renal failure (also called end stage renal failure (ESRD)), and is CKD which has progressed so far that renal replacement therapy (regular dialysis treatment or kidney transplantation) may be required to maintain life. Established renal failure is an irreversible, longterm condition. A small number of people with established renal failure may choose conservative management only.

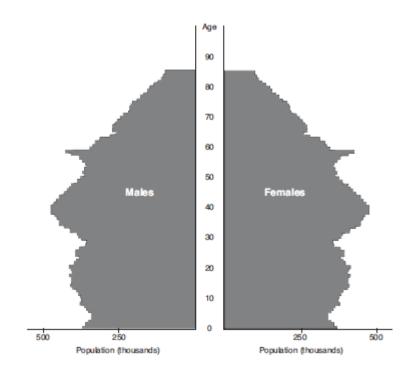
The classification of CKD into 5 stages has been widely adopted but as understanding of the epidemiology of CKD has developed, it has been criticised as not being sufficiently sophisticated for clinical needs. For example, longitudinal population studies have suggested that stage 3 should be subdivided into 3A and 3B. Other studies, underlining the importance of proteinuria/albuminuria as an independent risk factor for adverse outcomes in CKD, suggest the adoption of a '(p)' suffix in the different stages. This evidence and the changes to the classification that the evidence suggests will be considered further in the relevant sections of the guideline.

Stage	Description	GFR (ml/min/1.73m ²)
1	Kidney damage with normal or increased GFR	≥90
2	Kidney damage with mild reduction in GFR	60–89
3*	Moderate reduction in GFR	30–59
4	Severe reduction in GFR	15–29
5	Kidney failure	<15 (or dialysis)

Table 204: NKF-KDOQI stages of chronic kidney disease

* This guideline recommends splitting this into 3A and 3B – see classification section.

CKD is defined as either kidney damage (proteinuria, haematuria or anatomical abnormality) or GFR <60 ml/min/ $1.73m^2$ present on at least 2 occasions for \geq 3 months.

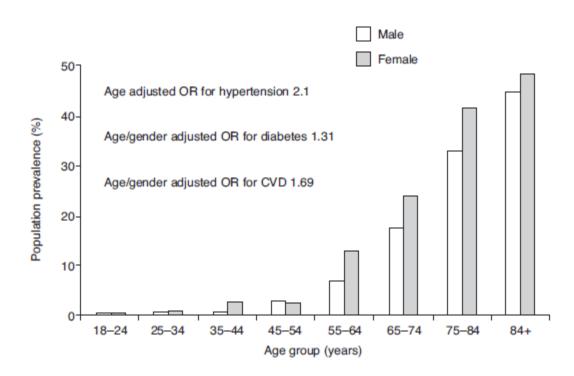

P.1.3 Section 1.3: Burden of disease

CKD is increasingly recognised as a public health problem and is usually characterised by an asymptomatic period, which is potentially detectable. Tests for detecting CKD are both simple and

freely available and there is evidence that treatment can prevent or delay progression of CKD, reduce or prevent development of complications, and reduce the risk of cardiovascular disease (CVD). There is considerable overlap between CKD, diabetes and CVD and the risk of developing CKD increases with increasing age. In assessing the burden of disease it is important to understand the characteristics of our population.

The UK is an ageing and growing population. Since 1971 the population has increased by 7.7% and since 2001 by 0.5% per annum such that the UK population in 2005 numbered 60,209,500 people.⁵⁰⁵ The mean age of the population in 1971 was 34.4 years and that had increased to 38.8 years with 16% of the population over 65 years of age in 2005 (Figure 270). The population is also gaining weight; 67% of men and 58% of women are overweight. The population prevalence of diabetes is 4%; 11.3% of the population are hypertensive; and although smoking rates have decreased, 24% of the population aged over 16 are smokers (25% of men and 23% of women). It is unsurprising that CVD remains prevalent: 3.6% of the population have coronary heart disease, 1.5% cerebrovascular disease, and 0.4% congestive heart failure.

Figure 270: Age and gender distribution of the UK population in 2005


Source: Office for National Statistics website: www.ons.gov.uk. Crown copyright material is reproduced with the permission of the Controller Office of Public Sector Information (OPSI). Reproduced under the terms of the Click-Use Licence.

Data from the UK Renal Registry³⁶ indicate that there were 41,776 adult patients alive on renal replacement therapy (RRT) in the UK at the end of 2005, a prevalence for adults of 694 per million population (pmp). Addition of the 748 children under age 18 on RRT gives a total prevalence of 706 pmp. There was a 5.0% annual increase in the prevalence of people on RRT in the 38 renal units participating in the Registry since 2000. In 2005, the mean percentage of patients referred late (less than 90 days before dialysis initiation) was still 30%, unchanged from the value in 2000.

Whilst the UK Renal Registry provides accurate estimates of numbers of people undergoing RRT, this cannot be seen as a surrogate for the number of people with stage 5 CKD, as the mean GFR of those starting RRT is 7.5 ml/min/1.73m².

Information relating to the UK population prevalence of stage 3–5 CKD comes from a large primary care study (practice population 162,113) suggesting an age standardised prevalence of stage 3–5 CKD of 8.5% (10.6% in females and 5.8% in males). In these people the age- and gender-adjusted odds ratio for hypertension was 2.1 (95% Cl 2.0–2.2), for diabetes 1.33 (95% Cl 1.21–1.41) and for CVD 1.69 (95% Cl 1.59–1.79).⁶⁵³ The prevalence of CKD rose dramatically with age (Figure 271).

Figure 271: Adult CKD prevalence in the UK: age-standardised prevalence of stage 3-5 ≈ 8.5%

Source: (Reprinted by permission from Macmillan Publishers Ltd: Kidney International (Stevens PE, O'Donoghue DJ, de Lusignan S et al. Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney International 2007; 72(1):92–99).⁶⁵³ Copyright 2007.

Although we have very little information about the total burden of CKD in the UK, data from the National Health and Nutrition Examination Surveys (NHANES)^{108,139} in the USA not only gives a guide to the likely overall population prevalence, but also suggests that the prevalence is increasing. Comparison of the prevalence of CKD in NHANES 1988–1994 with NHANES 1999–2004 showed an increase in population prevalence from 10.03 to 13.07%.¹⁴⁰ The overall prevalence among men increased from 8.2% to 11.1% and in women from 12.1% to 15.0%. The increased prevalence was partly explained by the increase in a number of CKD risk factors, including an ageing population and an increase in obesity, diagnosed diabetes and hypertension. It is important to note that the NHANES studies included only non-institutionalised people, and the prevalence of CKD in nursing homes is likely to be significantly higher.

UK population studies have demonstrated that the risk of cardiovascular death in people with diagnosed CKD far outweighs the risk of progression. A retrospective cohort study found that only 4% of 1076 individuals progressed to end stage kidney disease over a 5.5 year follow-up period whilst 69% had died at the end of follow-up; the cause of death was cardiovascular in 46% of cases.¹⁶⁹ Similarly, a prospective cohort study of 3240 individuals with a median GFR of 28.5 ml/min/1.73m² not known to renal services found that mortality was 39.5% after a median follow-up period of 31.3 months. The cause of death was cardiovascular in 39.7% of cases. Only 8.3% of individuals sustained a decline in GFR greater than 5 ml/min/1.73m²/year during the period of follow-up.³¹⁹ This remarkable burden of cardiovascular disease in people with CKD, and the relative lack of progression, has been confirmed in a number of observational studies^{229,333} and is further illustrated by results from the New Opportunities for Early Renal Intervention by Computerised Assessment (NEOERICA) project where 50% of those with a stage 4 and 5 CKD had coexistent CVD which increased in prevalence as GFR decreased.⁶⁵³ The magnitude of other comorbidities such as diabetes, hypertension and significant anaemia also increased with more advanced kidney dysfunction (Table 205).

GFR	<30	30–44	45–59	>60
(ml/min/1.73m ²)	N=525	N=2475	N=8731	N=26531
All CVD (%)	50.7	42.7	27.1	14.8
Diabetes (%)	23.0	16.1	12	9.4
Hypertension (%)	87.8	86.6	71.4	47.1
Haemoglobin (Hb) <11 g/dl (%)	10.0	4.1	2.9	2.7

Table 205: NEORICA: Comorbidity stratified by GFR

Source: Adapted and reprinted by permission from Macmillan Publishers Ltd: Kidney International (Stevens PE, O'Donoghue DJ, de Lusignan S et al. Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney International 2007; 72(1):92–99).⁶⁵³ Copyright 2007.

The study of unreferred CKD by John et al. demonstrated that 85% of those with advanced kidney dysfunction were unknown to renal services.³¹⁹ The NEOERICA study serves to underline this but also demonstrates that CKD is still largely unrecognised: only 2.1% of those with a GFR less than 60 ml/min/1.73m² had a coded diagnosis of renal disease.

A national programme to identify vulnerability to vascular diseases was announced by the Secretary of State for Health in April 2008 following initial results from modelling work carried out by the Department of Health. This work suggested that a vascular check programme would prevent 4000 people a year from developing diabetes and could also detect at least 25,000 cases of diabetes or kidney disease earlier.

It has long been recognised that the prevalence of established renal failure is higher amongst the black and minority ethnic communities in comparison to Caucasian populations.⁵⁸¹ The predominant reasons for this include the increased prevalence of Type 2 diabetes in South Asians and hypertension in African Caribbeans, together with diseases particular to certain communities such as chronic interstitial nephritis in South Asians and focal glomerulosclerosis in African Caribbeans. However, there is a relative lack of knowledge concerning the prevalence of earlier stages of CKD in black and ethnic minority populations in comparison to Caucasians. In the United States, the racial disparity in the incidence of established renal failure among black compared with white populations

is not reflected in the prevalence of less severe degrees of impaired kidney function.⁴³⁶ Similar findings have been reported from the NHANES III data. It has been suggested that the reasons for this disparity lie with racial differences in the rate of progression to established renal failure. The ABLE projects (A Better Life through Education and Empowerment) in the UK have also demonstrated that kidney disease in South Asians and African Caribbeans may deteriorate more rapidly to established renal failure.³⁴⁰ In the long term, the ABLE study aims to identify the reasons for this faster deterioration.

P.2 Section 2: Methodology

P.2.1 Section 2.1: Aim

The aim of the National Collaborating Centre for Chronic Conditions (NCC-CC) is to provide a userfriendly, clinical, evidence-based guideline for the National Health Service (NHS) in England and Wales that:

- offers best clinical advice for the early identification and management of CKD in adults in primary and secondary care
- is based on best published clinical and economic evidence, alongside expert consensus
- takes into account patient choice and informed decision-making
- defines the major components of NHS care provision for CKD
- details areas of uncertainty or controversy requiring further research and
- provides a choice of guideline versions for different audiences.

P.2.2 Section 2.2: Scope

The guideline was developed in accordance with a scope which detailed the remit of the guideline originating from the Department of Health and specified those aspects of CKD care to be included and excluded.

Prior to the commencement of the guideline development, the scope was subjected to stakeholder consultation in accordance with processes established by the National Institute for Health and Clinical Excellence (NICE).⁴⁷⁷ The full scope is shown in Appendix B.

P.2.3 Section 2.3: Audience

The guideline is intended for use by the following people or organisations:

- all healthcare professionals
- people with CKD and their carers
- patient support groups
- commissioning organisations and
- service providers.

P.2.4 Section 2.4: Involvement of people with CKD

The NCC-CC was keen to ensure the views and preferences of people with CKD and their carers informed all stages of the guideline. This was achieved by:

- having a person with CKD and a carer as patient representatives on the guideline development group
- consulting the Patient and Public Involvement Programme (PPIP) housed within NICE during the pre-development (scoping) and final validation stages of the guideline project and
- the inclusion of patient groups as registered stakeholders for the guideline.

P.2.5 Section 2.5: Guideline limitations

Guideline limitations are as follows:

- NICE clinical guidelines usually do not cover issues of service delivery, organisation or provision (unless specified in the remit from the Department of Health).
- NICE is primarily concerned with health services and so recommendations are not provided for social services and the voluntary sector. However, the guideline may address important issues in how NHS clinicians interface with these sectors.
- Generally, the guideline does not cover rare, complex, complicated or unusual conditions.
- It is not possible in the development of a clinical guideline to complete extensive systematic literature review of all pharmacological toxicity. NICE expects the guidelines to be read alongside the summaries of product characteristics.

P.2.6 Section 2.6: Other work relevant to the guideline

Related NICE public health guidance comprises:

- 'Brief interventions and referral for smoking cessation in primary care and other settings'.⁴⁷⁴ Related NICE clinical guidelines are:
- 'Anaemia management in chronic kidney disease'⁴⁷³
- 'Hypertension: management of hypertension in adults in primary care'⁴⁷⁵
- 'Type 2 diabetes: the management of type 2 diabetes (update)' 480
- 'Lipid modification: cardiovascular risk assessment: the modification of blood lipids for the primary and secondary prevention of cardiovascular disease'⁴⁷⁸
- 'Osteoporosis: assessment of fracture risk and the prevention of osteoporotic fractures in individuals at high risk'.⁴⁷⁹

P.2.7 Section 2.8: The process of guideline development

Evidence tables are available on-line at http://www.rcplondon.ac.uk/pubs/brochure.aspx?e=257

7. Agreeing the recommendations

The GDG employed formal consensus techniques to:

- ensure that the recommendations reflected the evidence base
- approve recommendations based on lesser evidence or extrapolations from other situations
- reach consensus recommendations where the evidence was inadequate and
- debate areas of disagreement and finalise recommendations.

The GDG also reached agreement on:

- recommendations as key priorities for implementation
- key research recommendations and
- algorithms.

In prioritising key recommendations for implementation, the GDG took into account the following criteria:

- high clinical impact
- high impact on reducing variation in practice
- more efficient use of NHS resources and
- allowing the patient to reach critical points in the care pathway more quickly.

Audit criteria for this guideline will be produced by NICE following publication in order to provide suggestions of areas for audit in line with the key recommendations for implementation.

8. Structuring and writing the guideline

The guideline is divided into sections for ease of reading. For each section the layout is similar and contains:

- Clinical introduction: sets a succinct background and describes the current clinical context
- Methodological introduction: describes any issues or limitations that were apparent when reading the evidence base
- Evidence statements: provides a synthesis of the evidence-base and usually describes what the evidence showed in relation to the outcomes of interest
- Health economics: presents, where appropriate, an overview of the cost effectiveness evidencebase, or any economics modelling
- From evidence to recommendations: sets out the GDG decision-making rationale, providing a clear and explicit audit trail from the evidence to the evolution of the recommendations
- Recommendations: provides stand alone, action-orientated recommendations
- Evidence tables: The evidence tables are not published as part of the full guideline but are available online at http://www.rcplondon.ac.uk/pubs/brochure.aspx?e=257. These describe comprehensive details of the primary evidence that was considered during the writing of each section.
- 9. Writing the guideline

The first draft version of the guideline was drawn up by the technical team in accordance with the decisions of the GDG, incorporating contributions from individual GDG members in their expert areas and edited for consistency of style and terminology. The guideline was then submitted for a formal public and stakeholder consultation prior to publication. The registered stakeholders for this guideline are detailed on the NICE website, www.nice.org.uk. Editorial responsibility for the full guideline rests with the GDG.

The different versions of the guideline are shown in Table 206.

Table 206: Different versions of the guideline

Full version	Details the recommendations, the supporting evidence base and the expert considerations of the GDG. Published by the NCC-CC. Available at http://www.rcplondon.ac.uk/pubs/brochure.aspx?e=257
NICE version	Documents the recommendations without any supporting evidence. Available at http://www.rcplondon.ac.uk/pubs/brochure.aspx?e=257
'Quick reference guide'	An abridged version. http://www.rcplondon.ac.uk/pubs/brochure.aspx?e=257
'Understanding NICE guidance'	A lay version of the guideline recommendations http://www.rcplondon.ac.uk/pubs/brochure.aspx?e=257

10. Updating the guideline

Literature searches were repeated for all of the evidence-based questions at the end of the GDG development process allowing any relevant papers published up until 8 February 2008 to be considered. Future guideline updates will consider evidence published after this cut-off date.

Two years after publication of the guideline, NICE will ask a National Collaborating Centre to determine whether the evidence base has progressed significantly to alter the guideline recommendations and warrant an early update. If not, the guideline will be considered for update approximately four years after publication.

P.2.8 Section 2.9: Disclaimer

Healthcare providers need to use clinical judgement, knowledge and expertise when deciding whether it is appropriate to apply guidelines. The recommendations cited here are a guide and may not be appropriate for use in all situations. The decision to adopt any of the recommendations cited here must be made by the practitioner in light of individual patient circumstances, the wishes of the patient, clinical expertise and resources.

The NCC-CC disclaims any responsibility for damages arising out of the use or non-use of these guidelines and the literature used in support of these guidelines.

P.2.9 Section 2.10: Funding

The National Collaborating Centre for Chronic Conditions was commissioned by the National Institute for Health and Clinical Excellence to undertake the work on this guideline.

P.3 Section 3: Key messages of the guideline

P.3.1 Section 3.1: Key priorities for implementation

 To detect and identify proteinuria, use albumin:creatinine ratio (ACR) in preference, as it has greater sensitivity than protein:creatinine ratio (PCR) for low levels of proteinuria. For quantification and monitoring of proteinuria, PCR can be used as an alternative. ACR is the recommended method for people with diabetes.

Offer ACEI/ARBs to non-diabetic people with CKD and hypertension and ACR \geq 30 mg/mmol (approximately equivalent to PCR \geq 50 mg/mmol, or urinary protein of \geq 0.5 g/day).

Stage 3 CKD should be split into two subcategories defined by:

- GFR 45–59 ml/min/1.73m² (stage 3A)
- GFR 30–44 ml/min/1.73m² (stage 3B).

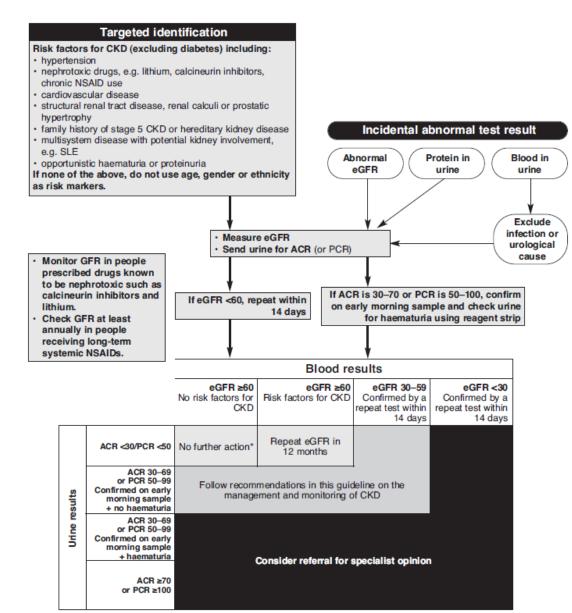
People with CKD should usually be referred for specialist assessment if any of the following apply:

- stage 4 and 5 CKD (with or without diabetes)
- heavy proteinuria (ACR ≥70 mg/mmol, approximately equivalent to PCR ≥100 mg/mmol, or urinary protein excretion ≥1 g/24 h) unless known to be due to diabetes and already appropriately treated
- proteinuria (ACR \ge 30 mg/mmol, approximately equivalent to PCR \ge 50 mg/mmol, or urinary protein excretion \ge 0.5 g/24 h) together with haematuria
- rapidly declining eGFR (>5 ml/min/1.73m² in one year, or >10 ml/min/1.73m² within 5 years)
- hypertension that remains poorly controlled despite the use of at least 4 anti-hypertensive drugs at therapeutic doses (see NICE clinical guideline 34, 'Hypertension: management of hypertension in adults in primary care')
- a rare or genetic cause of CKD, or the suspicion of one
- suspected renal artery stenosis.

Offer people testing for CKD if they have any of the following risk factors:

- diabetes (types 1 and 2)
- hypertension
- cardiovascular disease (ischaemic heart disease, chronic heart failure, peripheral vascular disease and cerebral vascular disease)
- structural renal tract disease, renal calculi or prostatic hypertrophy
- multi-system diseases with potential kidney involvement, e.g. SLE
- family history of stage 5 CKD or hereditary kidney disease.

Take the following steps to identify progressive CKD:


- Obtain a minimum of three glomerular filtration rate (GFR) estimations are required over a period of not less than 90 days
- in people with a new finding of reduced eGFR, repeat the estimated glomerular filtration rate (eGFR) within 2 weeks to exclude causes of acute deterioration of GFR, e.g. acute kidney injury or initiation of angiotensin-converting enzyme inhibitor (ACEI)/angiotensin receptor blocker (ARB) therapy
- define progression as a decline in eGFR of >5 ml/min/1.73m² within one year, or >10 ml/min/1.73m² within 5 years
- focus particularly on those in whom a rate of decline of GFR continuing at the observed rate would lead to the need for renal replacement therapy within their lifetime by extrapolating the current rate of decline.

In people with CKD, aim to keep the systolic blood pressure below 140 mmHg (target range 120–139 mmHg) and the diastolic blood pressure below 90 mmHg.

P.3.2 Section 3.2: Algorithms

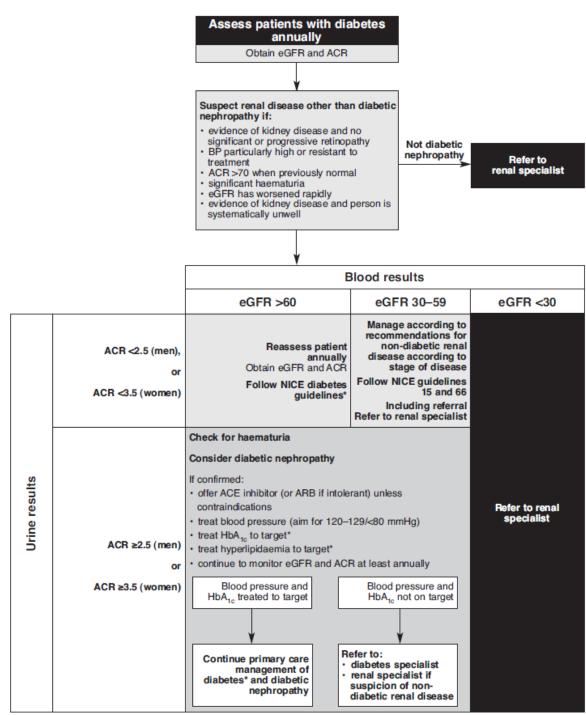

	Pro	gression of CKD		
	s	tages of CKD		
Stage 1 and 2	Stage 3A	Stage 3B	Stage 4	Stage 5
Early identification (see section Offer people testing for CKD if the Diabetes Hypertension If neither diabetes nor hyperten Cardiovascular disease (ischaet peripheral vascular disease and Receiving drugs known to be ne Structural renal tract disease, re Mutil:system diseases with pote Family history of stage 5 CKD of Opportunistic haematuria or pro	y have any of the following sion are present, do not use mic heart disease, chronic h cerebral vascular disease) phrotoxic, e.g. lithium, calci nal calculi or prostatic hype ntial kidney involvement, e., r hereditary kidney disease telinuria in the absence of a	o obesity as a risk marker eart failure, neurin inhibitors, chronic NS rtrophy g. SLE urological cause	AID use	
 If none of these are present, do Identify and delay progression 		nicity as risk markers		
Identify those at risk of progressic ethnicity; chronic use of NSAIDS; Exclude causes of acute deteriora Assess rate of progression by rep Use ACEI/ARB therapy in people: • with diabetes and ACR >2.5 mg • with non-diabetic CKD and hype Control BP to target: • 120–139/<90 mmHg in non diat	urinary outflow tract obstruc- tion in GFR by repeating ef eating eGFR measurement /mmol (men) or >3.5 mg/mr entension and ACR ≥30 mg/metic people with ACR <30 n	tion) AFR within 14 days three times over a period of nol (women) irrespective of t nmol or PCR ≥50 mg/mmol ng/mmol	not less than 90 days and	then annually
 120–129/<80 mmHg in people v Use therapies to reduce proteinur 		CR is ≥70 mg/mmol		
Manage diabetes according NICE		d CG66		
Prevent and treat osteoporosis in If vitamin D supplementation is in offer cholecalciferol or ergocalci offer 1\archydroxycholecalciferol	ficated in people with CKD: ferol to people with stage 1	2, 3A or 3B CKD	-	CKD
			ological support (see se	
Information about the ways in	which CKD and the treatme	treatments are available for What complications or side e What people Int may affect people's daily l	ould ask about their kidney CKD, what are their advan ffects may occur as a resul can do to manage and influ ife, social activities, work o ituation, including benefits adjust to CKD and sources	tages and disadvantages to f treatment/medication portunities and finance and allowances availabt of psychological support
Refer for specialist assessment ACR ≥70 mg/mmol or PCR ≥100 i ACR ≥30 mg/mmol or PCR ≥50 m Rapidly declining eGFR (>5 ml/mi Hypertension that remains poorly People with, or suspected of havin Suspected renal artery stenosis All people with stage 4 or 5 CKD	ng/mmol unless explained t g/mmol together with haem n/1.73m ² in one year, or >1 controlled despite the use of	aturia 0 ml/min/1.73m ² within 5 yea f at least 4 anti-hypertensive	urs)	S
		Identify anaemia - check h	ations (see sections 13 a naemoglobin (stage 3B, 4, a e and PTH (stage 4 and 5	and 5 CKD)
			Education about treatm CKD and preparation for Importance of: • informed choice • timely access placement • timely RRT • end-of-life care	or RRT (see section 1

Figure 3.1 Investigations and interventions at different stages of CKD. This algorithm should be used as an aide memoire in primary care to trigger various investigations and interventions relevant for people in different stages of CKD. Stages of CKD are shown from left to right and activities appear as horizontal bands, some of which are more relevant to early or late disease, as indicated by their positioning and by the graded shading. BP = blood pressure; NSAID = non-steroidal anti-inflammatory drug; PTH = parathyroid hormone.

*See pages 33 and 147 for management of isolated invisible haematuria.

Figure 3.2 Identification, diagnosis and referral of patients with CKD but without diabetes. eGFR is expressed as ml/min/1.73m². Albumin:creatinine ratio (ACR) and protein:creatinine ratio (PCR) are expressed as mg/mmol.

*See NICE clinical guidelines on type 1 diabetes (http://:www.nice.org.uk/CG15) and type 2 diabetes (http://:www.nice.org.uk/CG66).

Figure 3.3 Diagnosis and referral of patients with CKD and diabetes. eGFR is expressed as ml/min/1.73m². Albumin:creatinine ratio (ACR) is expressed as mg/mmol.

P.4 Section 4: Investigation of CKD

P.4.1 Section 4.1: Measurement of kidney function

P.4.1.1 Section 4.1.1: Clinical introduction

The glomerular filtration rate (GFR) is equal to the sum of the filtration rates in all of the functioning nephrons and is the best index of overall kidney function. Knowledge of GFR is essential for the diagnosis and management of CKD and is a translatable concept. Because a normal GFR is roughly 100 ml/min/1.73m², we can explain kidney function to patients and carers in terms of a percentage of normal – a more easily understandable concept than GFR.

The gold standard methods of estimating GFR require measurement of an ideal filtration marker. These markers should be freely filtered by the glomerulus, should not be bound to plasma proteins, must be excreted unchanged and not be subject to either tubular secretion or absorption. Commonly used markers include inulin, 51Cr-EDTA, 125I-iothalamate and iohexol. Gold standard methods of assessing GFR are technically demanding, expensive, time consuming and unsuitable for widespread identification of CKD in the 'at risk' population.

At the other end of the accuracy scale lies measurement of serum creatinine, which is a universally available endogenous test of kidney function. Although easy and cheap to measure, creatinine is subject to non-renal and analytical influences which make it insufficiently sensitive to detect moderate CKD on its own. Measurement of 24-hour urinary creatinine clearance improves the accuracy but is also subject to the same non-renal and analytical influences compounded by inaccuracies in urine collection, to say nothing of the inconvenience associated with 24-hour urine collections. An alternative and more accurate endogenous marker is cystatin C, a 13 kDa cationic protein produced by all nucleated cells. Serum cystatin C levels are chiefly determined by GFR. Potential limitations of cystatin C as a marker of GFR include lack of assay standardisation, the requirement for a dedicated analytical system, and increased costs relative to serum creatinine (approximately £3/assay compared to <£0.10/assay).

A further alternative is to measure serum creatinine and estimate GFR using an equation which corrects for some of the more significant non-renal influences. This approach is known to be more sensitive for the detection of CKD than serum creatinine and more accurate than creatinine clearance.

So what have previous guideline groups recommended? The SIGN guidelines⁶²⁰ recommended use of prediction equations in place of 24-hour creatinine clearance or serum creatinine alone and preferred prediction equations to cystatin C on the grounds of practical and resource considerations. The Modification of Diet in Renal Disease (MDRD) equation was preferred to the Cockcroft-Gault formula. The UK CKD guidelines and the UK consensus conference recommended use of the 4-variable MDRD equation using zero biased creatinine methods.^{39,662} Others (KDOQI, CARI and KDIGO) ^{5,105,376,482} have recommended that serum creatinine should not be used alone to assess kidney function, that creatinine assays should be traceable to a reference creatinine method, and that an estimated GFR should be reported by laboratories alongside the serum creatinine measurement using the 4-variable MDRD equation.

What is the best diagnostic test to measure renal function in routine clinical practice?

P.4.1.2 Section 4.1.2: Methodology

Due to the large volume of studies in this area, studies were included if the sample size was greater than 100, gold standard tests were used as the reference test, and bias, accuracy, sensitivity, specificity, positive and negative predictive values, test correlation, or diagnostic accuracy (area under the receiver–operator curve (ROC)) outcomes were reported. For studies comparing the MDRD predictive equation with other equations, the serum creatinine measurements had to be calibrated to the MDRD laboratory reference standard. Two exceptions to the sample size cut-off were the studies that evaluated the GFR equations in older people.^{100,367} Publications that reported on the accuracy of tests in dialysis or renal replacement patients were excluded.

Five studies^{77,121,250,254,276} that evaluated the accuracy of serum cystatin C were rejected because gold standard tests were not used as the comparator or because creatinine (the MDRD equation) was not calibrated properly to the MDRD laboratory reference values.

Nine studies^{88,100,250,276,367,409,570,571,646} that evaluated the accuracies of predictive equations in estimating GFR were rejected due to methodological limitations or because the serum creatinine measurements were not calibrated to the MDRD assay as determined by isotope-dilution mass spectrometry.

Five studies^{215,241,289,377,549} assessing the accuracies of the MDRD equation and the Cockcroft-Gault equation in predicting the glomerular filtration rate were included. These were conducted in large sample sizes (N=219 to 2095) and were quite heterogeneous in terms of the population studied: older populations, diabetic nephropathy, mild renal impairment, moderate renal impairment, or healthy populations. Differences in performances of the equations may be explained by the different populations in which the equations were derived, and multiple sources of measurement variation when measuring creatinine.

P.4.1.3 Section 4.1.3: Health economics methodology

No health economics papers were found to review.

The estimated reagent costs for some of the tests were presented to the GDG. Cystatin C was the most expensive followed by the creatinine-based technology. However these costs do not take into account all overheads. Furthermore, there are economies of scale if reagents are used in large quantities.

P.4.1.4 Section 4.1.4: Evidence statements

Cystatin C concentration versus predictive equations (MDRD or Cockcroft-Gault)

Two cross-sectional studies^{250,276} that compared cystatin C to the MDRD and Cockcroft-Gault equations were rejected because the serum creatinine measurements were not calibrated to the MDRD assay.

Comparisons of predictive equations for estimating GFR

Five studies compared the performances of the Cockcroft-Gault and the MDRD equations in predicting GFR. The values of several diagnostic parameters are summarised in Table 207.

Study	Evidence level	N	Bias (ml/min /1.73m ²)	Sensitivity (%)	Specificity (%)	Accuracy (P30)	Test correlation with gold standard
215	16 +	2095 (CKD + kidney donors)	MDRD -0.99 ml/min/ 1.73m ² , p=0.001 CG 1.94 ml/min/ 1.73m ² , p<0.0001 Bias was greater for MDRD equation (-6.2 ml/min/1.73m ²) than the Cockcroft- Gault equation (-0.3 ml/min/1.73m ²) in patients with a measured GFR > 90 ml/min/1.73m ² . The MDRD equation was less biased than the Cockcroft- Gault equation in patients with stage 3, 4, or 5 CKD.	MDRD (78.9%), CG (67.6%) in stage 4 CKD MDRD (64.8%) CG (43%) in stage 5 CKD	Both MDRD and Cockcroft- Gault equations had similar specificities across the 5 stages of CKD (approx. 90%).	MDRD 92% CG 88% in people with GFR > 60 ml/min/1. 73m ² People with GFR <60 ml/min/1. 73m ² (82% MDRD versus 69% Cockcroft- Gault).	MDRD (r=0.910) Cockcroft- Gault (r=0.894)

Study	Evidence level	N	Bias (ml/min /1.73m ²)	Sensitivity (%)	Specificity (%)	Accuracy (P30)	Test correlation with gold standard
			equation was significantly less biased than the Cockcroft- Gault equation when patients were analysed by age (above or below 65 years) and gender (p<0.0001).				
241	1b +	219 (CKD + non- CKD)	MDRD 2275 arbitrary units vs.CG 630 arbitrary units	NR	NR	MDRD 62% vs.CG 48.8%, p <0.01	NR
289	11 +	1286 (type 1 diabetes)	MDRD – 22 vs.CG –6	NR	NR	When GFR >120 MDRD 97% CG 87%, p <0.001 When GFR <120 MDRD 82% CG 92%, p <0.001	NR
377	1b +	1628 (CKD)	MDRD 0.2 vs.CG -7.3 When GFR >90 MDRD -3.0 vs.CG -21.8	MDRD 97 vs.CG 85, p<0.001	MDRD 70 vs.CG 88, p<0.001	MDRD 90% (95% CI 89–91) vs.CG 60% (95% CI 58–62)	NR
549	1b +	828 (CKD) 457 (kidney donor)	MDRD -0.5 vs.CG 3.5, p < 0.001	NR	NR	MDRD 71% CG 60%, p <0.001	CKD group: MDRD (r=0.90) and CG (r=0.89). Kidney donor control group:

Study	Evidence level	N	Bias (ml/min /1.73m ²)	Sensitivity (%)	Specificity (%)	Accuracy (P30)	Test correlation with gold standard
							MDRD (r=0.36) CG (r=0.41)

NR= not reported

Test correlation

Regression analysis was used to determine the correlation between GFR measured by the gold standard test and GFR calculated using the MDRD or Cockcroft-Gault predictive equations. Two studies^{215,549} showed that both the MDRD and Cockcroft-Gault equations correlated highly with the measured GFR in people with CKD, often with no statistical difference between the correlation coefficients for the MDRD and Cockcroft-Gault equations. Both MDRD and Cockcroft-Gault equations correlated poorly with the gold standard test in renal donors. ⁵⁴⁹ (Level 1b +)

Bias

In diabetic populations²⁸⁹ and in CKD populations, ^{241,549} the MDRD equation often under-estimated the measured GFR. The Cockcroft-Gault equation often overestimated the GFR. (Level 1b +)

In CKD populations, the MDRD equation was superior to the Cockcroft-Gault equation in terms of bias.^{215,377,549} The MDRD equation slightly underestimated the measured GFR, while the Cockcroft–Gault equation significantly overestimated the GFR (–0.5 vs. 3.5 ml/min/1.73m², p < 0.001). The MDRD equation was also significantly less biased than the Cockcroft-Gault equation in the nondiabetic CKD (N=579) subgroup, the diabetic CKD (N=249) subgroup, and in people with a measured GFR <30 ml/min/1.73m² (N=546) (p <0.001 in each group). (Level 1b +)

The MDRD and Cockcroft-Gault equations were significantly more biased in people with GFR >60 ml/min/1.73m² (N=117). The MDRD equation underestimated the measured GFR, while the Cockcroft-Gault equation significantly overestimated the GFR (-3.5 vs. 7.9 ml/min/1.73m², p <0.001). In the kidney donor control group (N=459), the Cockcroft-Gault equation was superior to the MDRD equation in terms of bias (1.9 vs. -9.0 ml/min/1.73m², p <0.001).⁵⁴⁹ (Level 1b+)

Sensitivity and specificity

Two studies^{215,377} reported sensitivity and specificity outcomes for the MDRD and Cockcroft-Gault equations. The MDRD had higher sensitivity than the Cockcroft-Gault equation. Specificity was similar for the two predictive equations. (Level 1b+)

Accuracy (P30)

Five studies^{215,241,289,377,549} reported the percentage of estimated GFR values falling within 30% of the GFR values measured by the gold standard test. Generally, the MDRD equation was more accurate than the Cockcroft-Gault equation. (Level 1b+)

Area under the ROC

Area under the ROC values is a measure of the overall diagnostic accuracy or power of a test. The MDRD equation had significantly higher diagnostic accuracy (AUC=0.961) than the Cockcroft-Gault equation (AUC=0.942, p < 0.01). ³⁷⁷ (Level 1b+)

P.4.1.5 Section 4.1.5: From evidence to recommendations

The evidence suggests that in general the 4-variable MDRD performs better than the Cockcroft-Gault equation. However, in older people and in people with GFR greater than 60ml/min/1.73m² the MDRD is subject to bias and can underestimate GFR.

The GDG noted that serum creatinine is correlated with muscle mass and therefore estimation of GFR using prediction equations in people with extremes of muscle mass is subject to inaccuracy. In those with increased muscle mass GFR will be under estimated and in those with reduced muscle mass GFR will be over estimated.

Gold standard measures of GFR are time consuming and expensive to perform but where a highly accurate measurement of GFR is required, for example in assessment of kidney donors or for accurate calculation of dosing of potentially toxic chemotherapy, the evidence suggests that GFR estimated from prediction equations is insufficiently accurate.

The GDG agreed that significant changes in GFR are equally important in those individuals with GFR greater than 60 ml/min/1.73m². Where laboratories do not report levels of GFR greater than 60 ml/min/1.73m² the GDG considered that a rise in serum creatinine of greater than 20% should be considered significant.

Although the original MDRD equation included a correction factor for the American black population, there are no correction factors for other populations and in routine use the derived GFR is not corrected for any ethnicity other than African-Caribbean.

Although most laboratories would be capable of measuring cystatin C concentrations there is no evidence to suggest that it was more useful than using the MDRD, with the caveat that existing evidence comparing cystatin C and the MDRD failed to appropriately calibrate serum creatinine measurements to the method of the MDRD laboratory. Cystatin C measurement is also currently more expensive.

P.4.1.6 Section 4.1.6: RECOMMENDATIONS

R1 Whenever a request for serum creatinine measurement is made, clinical laboratories should report an estimate of GFR (eGFR) using a prediction equation (see recommendation R2) in addition to reporting the serum creatinine result.^f

R2 Use the isotope dilution mass spectrometry (IDMS)-traceable simplified MDRD equation to estimate GFR, using creatinine assays with calibration traceable to a standardised reference material.

[†] eGFR may be less reliable in certain situations (for example, acute renal failure, pregnancy, oedematous states, muscle wasting disorders, amputees and malnourished people) and has not been well validated in certain ethnic groups (for example, Asians and Chinese).

Ideally use creatinine assays that are specific and zero-biased compared to IDMS (e.g. enzymatic assays). When non-specific assays are used (e.g. Jaffe assays), employ appropriate assay-specific adjustment factors to minimise between-laboratory variation (e.g. those provided by national external quality assessment schemes).

R3 Where indicated, apply a correction factor for ethnicity to reported GFR values (multiply eGFR by 1.21 for African-Caribbean ethnicity).^g

R4 Interpret reported values of eGFR \geq 60 ml/min/1.73m² with caution, bearing in mind that estimates of GFR become less accurate as the true GFR increases.

R5 Where eGFR is simply reported as \geq 60 ml/min/1.73m², use a rise in serum creatinine concentration of >20% to infer significant reduction in renal function.

R6 Where a highly accurate measure of GFR is required (e.g. during monitoring of chemotherapy and in the evaluation of renal function in potential living donors), consider a gold standard measure (inulin, 51Cr-EDTA, 125I-iothalamate or iohexol).

R7 In cases where there are extremes of muscle mass (e.g. body builders, amputees, muscle wasting disorders) interpret the eGFR with caution. (Reduced muscle mass will lead to over-estimation and increased muscle mass to under-estimation).

P.4.2 Section 4.2 - Factors affecting the biological and analytical variability of GFR estimated from measurement of serum creatinine

P.4.2.1 Section 4.2.6: RECOMMENDATIONS

R8 Advise people not to eat any meat in the 12 hours before having a blood test for GFR estimation. Avoid delaying the despatch of blood samples to ensure that they are received and processed by the laboratory within 12 hours of venepuncture.

R9 An eGFR result below 60 ml/min/ $1.73m^2$ in a person not previously tested should be confirmed by repeating the test within 2 weeks. Make an allowance for biological and analytical variability of serum creatinine (±5%) when interpreting changes in eGFR.

P.4.3 Section 4.3 Detection of blood and protein in the urine

P.4.3.1 Section 4.3.3: Methodology

ACR and PCR have been shown to correlate with the 24-hour albumin or protein excretion rate. Proteinuria is defined as a 24-hour protein excretion rate ≥150 mg/24 h. Microalbuminuria is defined as a 24-hour albumin excretion rate of 30-300 mg/24 h. Macroalbuminuria is defined as a 24-hour albumin excretion rate of >300 mg/24 h. In these assays, albumin is measured with immunonephelometric methods. Protein is measured in turbidometric assays with Bradford reagents, benzethonium chloride, or pyrogallol red-molybdate.

^g In practice this correction factor should also be applied to those of African ethnicity.

P.4.3.2 Section 4.3.6: RECOMMENDATIONS

Haematuria

R10 When testing for the presence of haematuria, use reagent strips rather than urine microscopy.

- Evaluate further if there is a result of 1+ or more.
- Do not use urine microscopy to confirm a positive result.

Proteinuria

R11 Do not use reagent strips to identify proteinuria unless they are capable of specifically measuring albumin at low concentrations and expressing the result as an ACR .

R12 To detect and identify proteinuria, use urine albumin:creatinine ratio (ACR) in preference, as it has greater sensitivity than protein:creatinine ratio (PCR) for low levels of proteinuria. For quantification and monitoring of proteinuria, PCR can be used as an alternative. ACR is the recommended method for people with diabetes.

R13 For the initial detection of proteinuria, if the ACR is 30 mg/mmol or more (this is approximately equivalent to PCR 50 mg/mmol or more, or a urinary protein excretion 0.5g/24 h or more) and less than 70 mg/mmol (approximately equivalent to PCR less than 100 mg/mmol, or urinary protein excretion less than 1 g/24 h) this should be confirmed by a subsequent early morning sample. If the initial ACR is 70 mg/mmol or more, or the PCR 100 mg/mmol or more, a repeat sample need not be tested.

P.4.4 Section 4.4: Urinary albumin: creatinine and protein: creatinine ratios, and their relationship to 24-hour urinary protein

P.4.4.1 Section 4.4.1: Clinical introduction

Proteins normally excreted in the urine include albumin, low molecular weight immunoglobulin (filtered plasma proteins), and secreted tubular proteins. There is no consistent definition of proteinuria. The upper limit of normal excretion is approximately 150 mg/24 h, equivalent to a protein:creatinine ratio (PCR) of 15 mg/mmol (given an average daily urine creatinine excretion of 10 mmol), but the cut off for abnormal varies from laboratory to laboratory. By contrast, urinary albumin measurement provides a quantitative, relatively standardised measurement of excretion of the single most important protein in most nephropathies. The normal mean value for urine albumin excretion is 10 mg/day, microalbuminuria is defined as 30-300 mg/day or an albumin:creatinine ratio (ACR) of >2.5 mg/mmol in men and >3.5 mg/mmol in women. Macroalbuminuria is a urinary albumin excretion greater than 300 mg/day (ACR >30 mg/mmol).

Protein excretion displays considerable biological variability, and may be increased by urinary tract infection (UTI), upright posture, exercise, fever, and heart failure as well as by kidney disease. Biological variation of both measures is high, with lower variation generally being reported for an albumin:creatinine ratio (ACR) on an early morning urine (EMU) compared to PCR (e.g. 36% versus 48% respectively). There is a high correlation between total protein and albuminuria at high levels of protein excretion (so-called nephrotic range proteinuria, PCR >300 mg/mmol) but at low levels correlation is poor. This is because urine protein measurement in the normal range and at low levels is both imprecise and relatively non-specific. Albumin as a proportion of total protein is highly variable at normal and moderately increased levels of proteinuria.^{55,174,555,630}

The UK CKD Guidelines have defined proteinuria as a PCR of ≥45 mg/mmol or an ACR ≥30 mg/mmol but suggest that, in the absence of concomitant haematuria, this should not act as a trigger for active intervention until the PCR exceeds 100 mg/mmol (ACR >70 mg/mmol).⁶⁶² KDOQI guidelines define proteinuria as a PCR >23 mg/mmol (200 mg/g). The Welsh Renal NSF has defined proteinuria as a PCR of ≥100 mg/mmol, approximately equivalent to an excretion rate of 1000 mg/24 h.

In the most common types of CKD (i.e. that due to diabetes, hypertension and glomerular disease) and in kidney transplant recipients, albumin is both the most abundant protein in urine and a more sensitive marker of disease. The NKF-KDOQI guidelines therefore recommend urinary albumin measurement in preference to total protein when detecting and monitoring proteinuria. Conversely, the UK CKD guidelines and CARI guidelines have recommended urine PCR for non-diabetic kidney disease, with ACR being reserved for patients with diabetes.⁶⁶² The Welsh Renal NSF has adopted a similar position and this was endorsed by the UK consensus conference statement and by the Scottish Intercollegiate Guidelines Network.³⁹

P.4.4.2 Section 4.4.2: Methodology

Call for evidence: methodology

The unpublished manuscript by MacGregor et al. detailed a retrospective analysis of 6761 urine samples. Given that this manuscript was shared with the GDG as unpublished work in progress, there are some methodological limitations. The correlation between ACR (immunoturbidometric assay) and PCR (pyrogallol red or subsequently a benzethonium turbidometric assay) was assessed. The relationships between 24-h protein excretion and ACR or PCR were also analysed in a non-randomised subgroup for whom 24-hour protein had been collected (N=1739). Areas under the receiver-operator curves were determined, along with the thresholds of both ACR and PCR to detect a 24-hour protein excretion rate >1 g/day or >450 mg/day with sensitivity of 0.95.⁴⁰³

P.4.4.3 Section 4.4.7: RECOMMENDATIONS

R14 In people without diabetes consider clinically significant proteinuria to be present when the ACR is 30 mg/mmol or more (this is approximately equivalent to a PCR 50 mg/mmol or more, or urinary protein excretion 0.5 g/24 h or more).

R15 In people with diabetes consider microalbuminuria (ACR more than 2.5 mg/mmol in men and ACR more than 3.5 mg/mmol in women) to be clinically significant.

R16 All people with diabetes, and people without diabetes with a GFR less than 60 ml/min/1.73m², should have their urinary albumin/protein excretion quantified. The first abnormal result should be confirmed on an early morning sample (if not previously obtained).

R17 Quantify by laboratory testing the urinary albumin/protein excretion of people with an eGFR less than 60 ml/min/1.73m² if there is a strong suspicion of CKD (see also 4.2.7).

P.4.5 Section 4.5: Indications for renal ultrasound in the evaluation of CKD

P.4.5.1 Section 4.5.6: RECOMMENDATIONS

R18 Offer a renal ultrasound to all people with CKD who:

- have progressive CKD (eGFR decline >5 ml/min/1.73m² within one year or >10 ml/min/1.73m² within 5 years)
- have visible or persistent invisible haematuria
- have symptoms of urinary tract obstruction
- have a family history of polycystic kidney disease and are aged over 20
- have stage 4 or 5 CKD
- are considered by a nephrologist to require a renal biopsy.

R19 Advise people with a family history of inherited kidney disease about the implications of an abnormal result before a renal ultrasound scan is arranged for them.

P.5 Section 5: Classification and early identification

P.5.1 Section 5.1: The influence of GFR, age, gender, ethnicity and proteinuria on patient outcomes

P.5.1.1 Section 5.1.1: Clinical introduction

If we cannot prevent CKD then we want to minimise the associated adverse outcomes. To do this we need to know:

- what the adverse outcomes are
- at what level of GFR we should be alert to adverse outcomes and
- the impact of associated factors such as age, gender and presence or absence of proteinuria at any given level of GFR.

Large population studies have clearly suggested that the risk of death, hospitalisation and cardiovascular events rises exponentially at levels of GFR below 60 ml/min/1.73m².²²⁹ Other complications associated with reduced GFR, such as the increased potential for dose-related drug toxicity, are less obvious but equally important.

The National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF-KDOQI) stratified chronic kidney disease into five stages according to glomerular filtration rate and the presence of kidney damage:

- Stage 1: GFR >90 ml/min/1.73m² with other evidence of kidney damage (persistent microalbuminuria, persistent proteinuria, persistent haematuria, structural abnormalities of the kidneys demonstrated on ultrasound scanning or other radiological tests, or biopsy-proven chronic glomerulonephritis)
- Stage 2: GFR 60–89 ml/min/1.73m² with other evidence of kidney damage
- Stage 3: GFR 30–59 ml/min/1.73m²
- Stage 4: GFR 15–29 ml/min/1.73m²

• Stage 5: GFR <15 ml/min/1.73m².

CKD is common and its prevalence increases markedly with age, with a female predominance. However, the CKD classification is neither staged according to age and gender, nor according to level of proteinuria. All patients, regardless of age, gender and proteinuria or albuminuria are considered to have at least moderately severe CKD when their GFR is <60 ml/min/1.73m². However, we have some evidence that GFR reduces as a consequence of ageing,³⁹⁰ although the exact level of reduction is still a subject of debate, and reduced GFR is very common in certain older populations.²²¹ It has been suggested that the rate of progression of CKD in black and minority ethnic groups may be higher than in Caucasians.24 The ABLE projects in the UK have also suggested that kidney disease in people of South Asian and African-Caribbean ethnicity may deteriorate more rapidly to established renal failure.³⁴⁰ Long term, the ABLE study aims to identify the reasons for this faster deterioration.

The degree of proteinuria is a significant risk factor both for progression of CKD and for cardiovascular disease.^{40,267,301,345} We therefore need a better understanding of the prognostic significance of different levels of GFR, and of what other factors should be considered. Intuitively a 'one size fits all' approach to clinical decision making throughout the population is unlikely to be appropriate. This has already been recognised by the CARI (Caring for Australasians with Renal Impairment) guidelines which recommend that the suffix '(p)' should be applied to the corresponding CKD stage for all patients with proteinuria ≥1 g/day. The recently published SIGN (Scottish Intercollegiate Guidelines Network) guideline also makes the same recommendation, as did the UK consensus conference on early CKD which also recommended sub-classifying CKD stage 3 into 2 groups: 3A which defines a lower risk group with GFR 45–59 ml/min/1.73m², and 3B which defines a higher risk group with GFR 30–44 ml/min/1.73m².³⁹

At what level of GFR are patient outcomes significantly affected? Does this change with age? Gender? Ethnicity? Presence or absence of proteinuria?

P.5.1.2 Section 5.1.2: Methodology

Twenty-two longitudinal studies assessed the risks of all-cause mortality, cardiovascular disease, hospitalisation, renal disease progression, and the quality of life of adults with decreasing eGFR levels. Baseline characteristics were significantly different between groups with lower eGFR compared with higher eGFR. People with low eGFR were almost always older, more likely to be female, and had higher prevalence of diabetes and cardiovascular diseases. While statistical analyses in these studies have been adjusted for confounding variables such as age, gender, race, and several comorbidities, it is difficult to identify all variables which could potentially affect the size of the risk. These unknown variables make it impossible to assign cause and effect, and the confidence intervals were sometimes so wide that the associations with eGFR could be spurious.

Eight cohort studies examined the association between different eGFR levels and several outcomes of interest in populations with concomitant cardiovascular disease; specifically high-risk hypertension,⁵⁶¹ acute myocardial infarction,^{677,726} heart failure,²⁶⁸ acute coronary syndrome,³³⁶ coronary disease,⁶² coronary artery disease³⁶¹ and peripheral arterial disease.⁴⁹⁹ These studies ranged in sample size from 1015 to 31,897 and length of follow-up ranged from 1 to 6 years. The mean age of people with higher eGFR (typically >60 ml/min/1.73m²) ranged from 57 to 72 years, while the mean age range of those with lower eGFR (typically <60 ml/min/1.73m²) ranged from 62 to 83 years.

The study by Beddhu et al.was rejected due to missing patient baseline data, and lack of inclusion and exclusion criteria.

A very large US cohort study (N=1,120,295, follow-up 2.8 years, age range 47–71) examined ageadjusted risk of mortality, cardiovascular events, and hospitalisation in people with stage 3, 4, or 5 CKD compared to people with GFR >60 ml/min/1.73m².²²⁹ In another US cohort study, participants with CKD were age and sex matched with people without CKD (N=19,945 pairs, follow-up 4.5 years) and the risk of all-cause mortality was examined.²³⁹ The KEEP study assessed mortality and cardiovascular disease (N=37,153, median follow-up 16 months) in a self-selected population of people with diabetes, hypertension, or a family history of kidney disease, hypertension, or diabetes.⁴³⁸ Participants in the ARIC cohort (N=14,280) were assessed for incidence of peripheral arterial disease as a function of eGFR.⁷¹⁴

A UK cohort study (N=3249 unreferred, 2.6 years follow-up, mean age 82 years) examined the mortality outcomes of people who had not been referred to renal services with stage 4 or 5 CKD compared to eGFR 30–42 ml/min/1.73m².³¹⁹

Three cohort studies in diabetic adults examined the association of eGFR with renal disease progression and cardiovascular outcomes.^{464,534,640} A UK study of people identified from a diabetes register (N=3288, median follow-up 10.5 years) assessed all-cause mortality and mortality due to circulatory disease, ischaemic heart disease, or cerebrovascular disease in this population stratified by eGFR.⁴⁶⁴ The Patel et al. study (N=12,570, follow-up 3 years, range of groups' mean ages 64–72) reported mortality rates and kidney disease progression rates at different eGFR levels in a predominantly male diabetic cohort. This study was rejected as there was little statistical analysis of the results; only mortality rates were presented.

Quality of life outcomes such as cognitive impairment, frailty, and disability were assessed in postmenopausal women³⁶¹ or in older populations with varying levels of serum creatinine132 or eGFR.³⁶⁰

The effect of proteinuria or no proteinuria at a particular eGFR on the risk of ESRD was assessed in a Japanese population study (N=95,255, follow-up 7 years).³⁰³ The So et al. study investigated the effect of proteinuria on patient outcomes within several GFR ranges in a Chinese diabetic cohort (N=4421, follow-up 3.3 years, mean ages in higher versus lower eGFR ranges 57 and 69 years).

The effects of age and gender on mortality and kidney disease progression were examined in people with stage 3 CKD in a Norwegian population study (N=3027, median observation time 3.7 years, median age 75 years).¹⁸⁶ In a predominantly male cohort study (N=8,218,817, mean follow-up 3.17 years), people were stratified by age within decreasing ranges of eGFR and the effect of age on mortality was examined.⁴⁹⁸ In another analysis of this cohort (N=209,622, follow-up 4 years), people were stratified by eGFR and the risk of death or progression to ESRD was assessed with increasing age.⁵⁰⁰

There were no studies that assessed cardiovascular and renal outcomes as a function of race within different levels of renal function.

Table 208 summarises the association of GFR and mortality, cardiovascular risk, and renal disease progression in adults with varying severity of CKD.

P.5.1.3 Section 5.1.3: Health economics methodology

There were no health economics papers to review.

P.5.1.4 Section 5.1.4: Evidence statements

All-cause mortality

Three studies showed that the risk of all-cause mortality rose sharply in people with eGFR <45 ml/min/1.73m².^{229,268,677} Every 10 ml/min/1.73m² decrease in GFR from 75 ml/min/1.73m² was associated with a significantly higher risk of all-cause mortality (adjusted HR 1.09, 95% Cl 1.06–1.14, p <0.001).²⁶⁸ (Level 2+)

Cardiovascular mortality

Three studies showed that risk of cardiovascular mortality increased with declining renal function.^{268,464,677} The risk of circulatory disease mortality, ischaemic heart disease mortality, and cerebrovascular disease mortality all significantly increased with decreasing renal function.⁴⁶⁴ (Level 2+)

Cardiovascular events

Three studies showed NS risk of cardiovascular events in people with GFR 60–89 ml/min/1.73m² compared with eGFR >90 ml/min/1.73m².^{438,640,677} The risk of cardiovascular events significantly increased at eGFR <60 ml/min/1.73m².^{438,561,677,714} The risk of cardiovascular events rose sharply in people with eGFR <45 ml/min/1.73m².²²⁹ (Level 2+)

Frailty

People with chronic renal insufficiency (CRI) (N=648) had a significantly increased risk of frailty (adjusted odds ratio (OR) 1.76, 95% CI 1.28–2.41, p not stated) compared to people without CRI. The prevalence of frailty increased with decreasing GFR (p for trend <0.001) and was particularly high in those with GFR <40 ml/min/1.73m². Black ethnicity and female gender were associated with increased likelihood of frailty.⁶³¹ (Level 3)

Disability

There was NS risk of disability for people with CRI compared to people without CRI. Black race and female gender were associated with increased likelihood of disability.⁶³¹ (Level 3)

Cognitive impairment (3MS score <80)

The risk of cognitive impairment was significantly greater for people with eGFR 45–59 ml/min/1.73m² (adjusted OR 1.32, 95% CI 1.03–1.69) or eGFR <45 ml/min/1.73m² (adjusted OR 2.43, 95% CI 1.38–4.29, compared to people with GFR >60 ml/min/1.73m²).³⁶⁰ (Level 2+)

In postmenopausal women under 80 years old with established coronary artery disease, the risk of cognitive impairment was significantly higher at eGFR <30 ml/min/1.73m² compared to women with eGFR >60ml/min/1.73m² (adjusted OR 5.01, 95% CI 1.27–19.7). There was NS risk of cognitive

impairment at eGFR 45–49 or 30–44 ml/min/1.73m². A decline in eGFR of 10 ml/min/1.73m²/year was associated with an increased risk of cognitive impairment (adjusted OR 1.27, 95% CI 1.01– 1.59).³⁶¹ (Level 3)

Effect of age on all-cause mortality

When participants with various levels of CKD were age- and sex-matched with people without CKD (N=19,945 pairs, follow-up 4.5 years), the relative risk (RR) of mortality in people aged 60, 75 or 90 was relatively stable until eGFR decreased to 55 ml/min/ $1.73m^2$ when the risk of mortality increased in all three age groups (<60, 75 or 90 years). The risk of mortality was highest in those <60 years old. At eGFR <30 ml/min/ $1.73m^2$, the mortality risk increased sharply. Again the risk was highest in those <60 years of age.²³⁹ (Level 2+)

The risk of all-cause mortality at a certain eGFR decreased as age increased. An eGFR of 50– 59ml/min/1.73m² was still associated with an increased risk of death among all age groups under 65 years.⁴⁹⁸ (Level 3)

However, in a Norwegian cohort of people with stage 3 CKD stratified by age (≤ 69 years, 70–79 years, >79 years) each 10-year increment of age was associated with a significantly increased risk of all-cause mortality (HR 2.28, 95% CI 2.11–2.46, p <0.0001).¹⁸⁶ The risk of death increased with increasing age within each stratum of baseline eGFR.⁵⁰⁰ (Level 3)

Effect of age on renal failure

In people with stage 3 CKD, each 10-year increment of age was associated with a significantly decreased risk of renal failure (HR 0.75, 95% CI 0.63–0.89, p=0.0009).¹⁸⁶ The risk of ESRD decreased with increasing age within each stratum of baseline eGFR.⁵⁰⁰ (Level 3)

Effect of age on GFR decline

Each 10-year increment in age was associated with a decline in GFR (-0.38 ml/min/1.73m²/year, 95% CI -0.51 to -0.26, p <0.0001).¹⁸⁶ (Level 3)

Effect of gender on all-cause mortality

In people with CKD and acute coronary syndromes, men had a significantly increased risk of all-cause mortality compared to women (HR 1.185, 95% CI 1.116–1.259, p not stated.³³⁶ (Level 2+)

Women with stage 3 CKD had a significantly reduced risk of all-cause mortality compared with men with stage 3 CKD (HR 0.55, 95% CI 0.48–0.62, p < 0.0001).¹⁸⁶ (Level 3)

Unreferred women had a decreased risk of all-cause mortality compared to unreferred men (HR 0.73, 95% CI 0.65–0.82, p <0.001).³¹⁹ (Level 3)

Compared to males, females had a decreased risk of in-hospital death (adjusted OR 0.7, 95% CI 0.5– 1.5, p=0.012).⁷²⁶ (Level 2+)

Effect of gender on renal failure

Women with stage 3 CKD had a significantly reduced risk of renal failure compared with men with stage 3 CKD (HR 0.35, 95% CI 0.21–0.59, p<0.0001).¹⁸⁶ (Level 3)

Effect of gender on GFR decline

The decline in eGFR in men with stage 3 CKD was greater ($-1.39 \text{ ml/min}/1.73\text{m}^2$ /year) than in women ($-0.88 \text{ ml/min}/1.73\text{m}^2$ /year). Female gender was associated with an increased change in eGFR compared to men (+0.50 ml/min/1.73m²/year, 95% CI 0.20–0.81) p=0.001).¹⁸⁶ (Level 3)

Effect of proteinuria on all-cause mortality

The risk of death increased as eGFR decreased and proteinuria was present. In an age and sex matched cohort, the matched risk ratio was 2.09 (95% CI 1.71–2.55) for people with proteinuria and eGFR 60–89 ml/min/1.73m². For people with proteinuria and eGFR 30–59 ml/min/1.73m², the matched risk ratio was 2.73, 95% CI 2.23–3.35. For people with proteinuria and eGFR 15–29 ml/min/1.73m², the matched risk ratio was 6.96 (95% CI 4.63–10.46).²³⁹ (Level 2+)

Effect of proteinuria on cardiovascular events (ischemic heart disease, stroke, congestive heart failure, revascularisation procedures)

At a given eGFR, the presence of proteinuria significantly increased the risk of cardiovascular events.^{438,640} When eGFR was \geq 90 ml/min/1.73m², those with albuminuria had a significantly increased risk of cardiovascular events than those without albuminuria (HR 1.85, 95% CI 1.07–3.18, p=0.03). Similarly, people with GFR 60–89 ml/min/1.73m² with albuminuria had a significantly increased risk of cardiovascular events than those without albuminuria (HR 1.89, 95% CI 1.13–3.16, p=0.016).⁶⁴⁰ (Level: 2+ and 3)

Effect of proteinuria on ESRD

In a Japanese cohort study, proteinuria significantly increased the risk of ESRD (HR 4.19, 95% CI 3.76– 4.68, p<0.0001). For people with proteinuria and creatinine clearance (CrCl) 64.0–79.3 ml/min (N=727), the 7-year cumulative incidence of ESRD per 1000 subjects was 8.3, whereas it was only 0.04 in those without proteinuria (N=22,420). For people with proteinuria and CrCl 50.2–63.0 ml/min (N=807), the 7-year cumulative incidence of ESRD per 1000 subjects was 13.6, whereas it was only 0.7 in those without proteinuria (N=22,232). For people with proteinuria and CrCl <50.2 ml/min (N=1198), the 7-year cumulative incidence of ESRD per 1000 subjects was 86.8, whereas it was only 1.2 in those without proteinuria (N=21,878).³⁰³ (Level 2+)

Reference	Population	Reference GFR (ml/min/ 1.73m ²)	GFR 89–75 (95% CI)	GFR 74.9–60 (95% CI)	GFR 59– 45 (95% CI)	GFR 45–30 (95% CI)	GFR 29– 15 (95% CI)	GFR <15 (95% Cl)
Outcome: r	isk of all-cause	mortality						
499	Men with	≥ 60	-	-	1.32 (1.13,	1.53)	2.97 (2.39,	3.69)

Table 208: Association of adverse outcomes with declining GFR

Reference	Population	Reference GFR (ml/min/ 1.73m ²)	GFR 89–75 (95% CI)	GFR 74.9–60 (95% CI)	GFR 59– 45 (95% CI)	GFR 45–30 (95% CI)	GFR 29– 15 (95% CI)	GFR <15 (95% CI)
	peripheral vascular disease (N=5787)							
268	Heart failure (N=2680)	> 90	NS	NS	1.50 (1.12, 2.00), p=0.006	1.91 (1.4	2, 2.58), p<0	.001
336	Acute coronary syndrome (N=5549)	> 80	0.889 (0. 0.994) –c risk	795, lecreased	1.060 (1.00 1.115))8,	1.225 (1.17	75, 1.292)
677	Acute MI and LVEF ≤ 40% (N=2183)	≥ 75	-	NS	NS	1.81 (1.3	2, 2.48),	
640	Type 2 diabetes (N=4421)	≥90	NS		2.34 (1.16,	4.70)	9.82 (4.53, 21.0)	-
229	Kaiser Permanent e cohort (N= 1120295)	≥ 60	-	-	1.2 (1.1, 1.2)	1.8 (1.7- 1.9)	3.2 (3.1- 3.4)	5.9 (5.4- 6.5)
239	Kaiser Permanent e cohort (N=19945 sex, age matched pairs)	60-89	-	-	matched R (1.142, 1.5 p<0.0001		matched RR 3.335 (2.272, 4.896), p<0.0001	
319	People unreferred to renal services (N=3822)	30-42.8	-	-	-	-	1.41 (1.25, 1.60), p <0.001	3.12 (2.53, 3.83), p <0.001
438	Adults with DM, HYP, or family history of DM, HYP, or kidney disease (N=37153)	≥ 90	NS		NS		NS	

Reference	Population	Reference GFR (ml/min/ 1.73m ²)	GFR 89–75 (95% CI)	GFR 74.9–60 (95% CI)	GFR 59– 45 (95% Cl)	GFR 45–30 (95% CI)	GFR 29– 15 (95% CI)	GFR <15 (95% CI)
464	Adults with type 1 + type 2 diabetes (N=3288)	≥ 90	1.28 (1.0	2, 1.60)	2.58 (2.05,	3.25)	6.42 (4.25,	9.71)
Outcome: r	isk of cardiova	scular mortali	ty					
268	Heart failure (N=2680)	> 90	NS	NS	1.54 (1.22, 1.94), p<0.001	1.86 (1.4	7, 2.36, p<0.	001)
677	Acute MI and LVEF ≤ 40% (N=2183)	≥ 75	-	NS	NS	1.96 (1.3	9, 2.76)	
Outcome: r	isk of cardiova	scular events						
561	Hypertensi on + high risk for CVD (N=31897, ALL-HAT)	≥ 90	1.08 (1.0 p=0.027	1, 1.15),	1.35 (1.24,	1.46), p<0	.001	
677	Acute MI and LVEF ≤ 40% (N=2183)	≥ 75	-	Recurren t MI: NS heart failure: NS	Recurren t MI: 1.42 (1.03, 1.96) heart failure: NS	Recurren Heart fail		
640	Type 2 Diabetic (N=4421)	≥ 90	NS		NS		3.23 (1.74,5.9 9)	-
229	Kaiser Permanent e cohort (N= 1120295)	≥ 60	-	-	1.4 (1.4- 1.5)	2.0 (1.9- 2.1)	2.8 (2.6- 2.9)	3.4 (3.1- 3.8)
438	Adults with DM, HYP, or family history of DM, HYP, or kidney disease	≥ 90	NS		1.37 (1.13, p=0.001	1.67),	NS	

Reference	Population	Reference GFR (ml/min/ 1.73m ²)	GFR 89–75 (95% CI)	GFR 74.9–60 (95% CI)	GFR 59– 45 (95% Cl)	GFR 45–30 (95% CI)	GFR 29– 15 (95% CI)	GFR <15 (95% CI)
	(N=37153)							
Outcome: r	isk of hospitali							
229	Kaiser Permanent e cohort (N= 1120295)	≥ 60	-	-	1.1 (1.1- 1.1)	1.5 (1.5- 1.5)	2.1 (2.0- 2.2)	3.1 (3.1- 3.3)
Outcome: r	isk of ESRD							
Reference	Population	Reference GFR (ml/min/1. 73m ²)	GFR 89-75 (95% CI)	GFR 74.9-60 (95% CI)	GFR 59- 45 (95% CI)	GFR 45-30 (95% CI)	GFR 29- 15 (95% CI)	GFR < 15 (95% CI)
561	Hypertensi on + high risk for CVD (N=31897, ALL-HAT)	≥90	2.90 (1.90 p<0.001	0, 4.67),	20.33 (12.7	74, 32.42),	p<0.001	
640	Type 2 diabetes (N=4421)	≥90	NS		3.34 (2.06,	5.42)	27.3 (15.6, 47.8)	-
Outcome: r	isk of peripher	al arterial dise	ase					
Reference	Population	Reference GFR (ml/min/ 1.73m ²)	GFR 89-75 (95% CI)	GFR 74.9-60 (95% CI)	GFR 59- 45 (95% CI)	GFR 45-30 (95% CI)	GFR 29- 15 (95% CI)	GFR < 15 (95% Cl)
714	ARIC cohort (N=14280)	≥ 90	NS		1.58 (1.14,	2.17)		-

Shaded boxes indicate GFR spanning different GFR ranges.

ALL-HAT = Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial; ARIC = Atherosclerosis Risk in Communities; LVEF = left ventricular ejection; MI = myocardial infarction.

P.5.1.5 Section 5.1.5: From evidence to recommendations

There has been debate about the implications of having a reduced GFR and, in particular, whether a stable GFR that does not change over time is associated with adverse health outcomes.

Not all studies stratified patients according to whether or not they had diabetes and this may affect estimates of the risk of death.

The evidence suggested that if the GFR is less than 60 ml/min/ $1.73m^2$, then there is an increased risk of mortality which is seen in all age groups.

There was limited evidence about outcomes in older people. However, given that they are at increased absolute risk of mortality and cardiovascular events it was agreed that even small increases in relative risk in older people are of significance.

The GDG considered that the evidence suggested that the risk of mortality and cardiovascular events increased considerably when the GFR was less than 45 ml/min/1.73m². This led to the proposal to adopt the sub-division of stage 3 CKD into stages 3A and 3B, defined by an eGFR 45–59 ml/min/1.73m² and 30–44 ml/min/1.73m² respectively.

The GDG noted that although it has been suggested that the rate of progression of CKD in black and ethnic minority groups may be higher than in Caucasians, as yet there is no published evidence to support this.

It was noted that the presence of proteinuria was associated with a doubling of CVD risk and mortality at all levels of GFR. This led to the proposal to adopt the suffix '(p)' notation to denote the presence of proteinuria when staging CKD. Evidence from longitudinal population studies and from meta-analysis of progression risk and level of proteinuria suggested that an ACR \geq 30 mg/mmol should be used as a marker of the increased risk (roughly equivalent to a PCR \geq 50 mg/mmol or proteinuria values \geq 0.5 g/day).

The GDG agreed not to recommend age-related decision points for eGFR. However, it seemed clear that in people aged >70 years, an eGFR in the range 45–59 ml/min/1.73m², if stable over time and without any other evidence of kidney damage is unlikely to be associated with CKD-related complications.

P.5.1.6 Section 5.1.6: RECOMMENDATIONS

R20 Use the suffix '(p)' to denote the presence of proteinuria when staging CKD.

R21 For the purposes of this classification define proteinuria as urinary albumin:creatinine ratio (ACR) \geq 30 mg/mmol or PCR \geq 50 mg/mmol (approximately equivalent to urinary protein excretion \geq 0.5 g/24 hours).

R22 Stage 3 CKD should be split into two subcategories defined by:

- GFR 45–59 ml/min/1.73m² (stage 3A) and
- GFR 30–44 ml/min/1.73m² (stage 3B).

R23 At any given stage of CKD, management should not be influenced solely by age.^h

Stages of c	Stages of chronic kidney disease (updated)					
Stage ^(a)	GFR (ml/min/1.73m ²)	Description				
1	≥90	Normal or increased GFR, with other evidence of kidney damage				
2	60-89	Slight decrease in GFR, with other evidence of kidney damage				
3A	45-59	Moderate decrease in GFR, with or without other evidence of kidney				

^h In people aged >70 years, an eGFR in the range 45-59 ml/min/1.73m², if stable over time and without any other evidence of kidney damage, is unlikely to be associated with CKD-related complications.

3B	30-44	damage
4	15-29	Severe decrease in GFR, with or without other evidence of kidney damage
5	<15	Established renal failure

(a) Use the suffix (p) to denote the presence of proteinuria when staging CKD (recommendation R20)

P.5.2 Section 5.2: Who should be tested for CKD?

P.5.2.1 Section 5.2.7: RECOMMENDATIONS

R24 Monitor glomerular filtration rate (GFR) in people prescribed drugs known to be nephrotoxic, such as calcineurin inhibitors and lithium. Check GFR at least annually in people receiving long-term systemic non-steroidal anti-inflammatory drug (NSAID) treatment.

R25 Offer people testing for CKD if they have any of the following risk factors:

- diabetes
- hypertension
- cardiovascular disease (ischaemic heart disease, chronic heart failure, peripheral vascular disease and cerebral vascular disease)
- structural renal tract disease, renal calculi or prostatic hypertrophy
- multisystem diseases with potential kidney involvement, e.g. systemic lupus erythematosus (SLE)
- family history of stage 5 CKD or hereditary kidney disease
- opportunistic detection of haematuria or proteinuria.

R26 In the absence of the above risk factors, do not use age, gender, or ethnicity as risk markers to test people for CKD. In the absence of metabolic syndrome, diabetes or hypertension, do not use obesity alone as a risk marker to test people for CKD.

P.6 Section 6: Defining progression of CKD and the risk factors associated with progression

P.6.1 Section 6.1: Defining progression

P.6.1.1 Section 6.1.1: Clinical introduction

The Renal NSF adopted the US National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF-KDOQI) classification of CKD.⁴⁸² Whilst the beauty of this classification is its simplicity, this is also its weakness. The clinical features and course of CKD are dependent on a number of factors including the underlying cause, severity and associated conditions of the underlying cause.

Although the classification of CKD into 5 stages has been widely adopted, it has been criticised as not being sufficiently sophisticated for clinical needs. The existing classification is neither staged according to age, nor according to level of proteinuria. All patients, regardless of age, gender and proteinuria/albuminuria are considered to have at least moderately severe CKD when their GFR is <60 ml/min/1.73m². This guideline recommends that stage 3 should be subdivided into 3A and 3B, and that the suffix '(p)' in parenthesis be adopted in the different stages to underline the importance of proteinuria/albuminuria as an independent risk factor for adverse outcomes (Table 209).

Stage	Description	GFR (ml/min/1.73m ²)	Proteinuria
1	Kidney damage with normal or increased GFR	≥90	Use '(P)' to denote
2	Kidney damage with mild reduction in GFR	60–89	when significant
3A	Moderate reduction in GFR	45–59	proteinuria is present
3B	Moderate reduction in GrK	30–44	ACR ≥30 mg/mmol)
4	Severe reduction in GFR	15–29	
5	Kidney failure	<15 (or dialysis)	

Table 209: Modifications to existing stages of chronic kidney disease

CKD is defined as either kidney damage (proteinuria, haematuria or anatomical abnormality) or GFR <60 ml/min/1.73 m^2 present on at least 2 occasions for \geq 90 days.

A further criticism of the existing classification of CKD has been the suggestion that loss of GFR is a feature of ageing and that many people classified as stage 3 CKD are merely exhibiting a normal ageing process. The effects of normal ageing on renal function are controversial. Data from some studies suggest that the decline in GFR with increasing age may be largely attributable to comorbidities such as hypertension and heart failure. Loss of renal function may not, therefore, be an inevitable consequence of ageing.^{203,389,391} This was supported by studies demonstrating no or very little decline in GFR in the older population with longitudinal follow-up.²⁶⁰

P.6.1.2 Section 6.1.6: RECOMMENDATIONS

R27 Take the following steps to identify progressive CKD:

- Obtain a minimum of three glomerular filtration rate(GFR) estimations over a period of not less than 90 days.
- In people with a new finding of reduced eGFR, repeat the estimated glomerular filtration rate (eGFR) within 2 weeks to exclude causes of acute deterioration of GFR, eg acute kidney injury or initiation of ACEI/ARB therapy.
- Define progression as a decline in eGFR of >5 ml/min/1.73m² within one year, or >10 ml/min/1.73m² within 5 years.
- Focus particularly on those in whom a decline of GFR continuing at the observed rate would lead to the need for renal replacement therapy within their lifetime by extrapolating the current decline.

P.6.2 Section 6.2: Risk factors associated with progression of CKD

P.6.2.1 Section 6.2.5: From evidence to recommendations

Despite the lack of evidence for urinary outflow tract obstruction for progression of CKD, the GDG consensus was that obstruction to outflow would lead to progression of CKD. Therefore it was agreed that urinary outflow tract obstruction should be considered as a risk factor.

P.6.2.2 Section6.2.6: RECOMMENDATIONS

R28 Work with people who have risk factors for progression of CKD to optimise their health. These risk factors are:

- cardiovascular disease
- proteinuria
- hypertension
- diabetes
- smoking
- black or Asian ethnicity
- chronic use of non-steroidal anti-inflammatory drugs (NSAIDs)
- urinary outflow tract obstruction.

R29 In people with CKD the chronic use of NSAIDs may be associated with progression and acute use is associated with a reversible fall in glomerular filtration rate (GFR). Exercise caution when treating people with CKD with NSAIDs over prolonged periods of time. Monitor the effects on GFR, particularly in people with a low baseline GFR and/or in the presence of other risks for progression.

P.7 Section 7: Referral criteria

P.7.1 Section 7.1: Indications for referral to specialist care

P.7.1.1 Section 7.1.6: RECOMMENDATIONS

R30 People with CKD in the following groups should normally be referred for specialist assessment:

- stage 4 and 5 CKD (with or without diabetes)
- heavy proteinuria (ACR ≥70 mg/mmol, approximately equivalent to PCR ≥ 100 mg/mmol, or urinary protein excretion ≥1g/24 hours) unless known to be due to diabetes and already appropriately treated
- proteinuria (ACR ≥30 mg/mmol, approximately equivalent to PCR ≥ 50 mg/mmol, or urinary protein excretion ≥0.5 g/24 hours) together with haematuria
- rapidly declining eGFR (>5 ml/min/1.73m² in one year, or >10 ml/min/1.73m² within 5 years)
- hypertension that remains poorly controlled despite the use of at least 4 antihypertensive drugs at therapeutic doses (see also NICE clinical guideline 34, 'Hypertension: management of hypertension in adults in primary care')
- people with, or suspected of having rare or genetic causes of CKD
- suspected renal artery stenosis.

R31 Consider discussing management issues with a specialist by letter or telephone in some cases where it may not be necessary for the person with CKD to be seen by the specialist.

R32 Once a referral has been made and a plan jointly agreed, it may be possible for routine follow-up to take place at the patient's GP surgery rather than in a specialist clinic. If this is the case, criteria for future referral or re-referral should be specified.

R33 Take into account the individual's wishes and comorbidities when considering referral.

R34 People with CKD and renal outflow obstruction should be referred to urological services, unless urgent medical intervention is required, e.g. for treatment of hyperkalaemia, severe uraemia, acidosis or fluid overload.

P.8 Section 8: Self management

P.8.1 Section 8.1: Modification of lifestyle

P.8.1.1 Section 8.1.1: Clinical introduction

The increased prevalence of CKD has been linked to lifestyle-related factors such as hypertension and diabetic nephropathy (see NICE Clinical Guideline 34 'Management of hypertension in adults in primary care'; NICE Clinical Guideline 66 'Management of Type 2 diabetes'; NICE Clinical Guideline 15 'Diagnosis and management of Type 1 diabetes in children, young people and adults'; and NICE Clinical Guideline 43 'Obesity: the prevention, identification, assessment and management of overweight and obesity in adults and children'). ^{472,473,475,476} Smoking has been associated with more severe proteinuria and progression of renal failure. In rat models of CKD, exercise training has been shown to be renoprotective. ³⁴⁹ The association between obesity, smoking, physical activity and CKD therefore may be important. Equally there may be insufficient adjustment of potential confounders. Obesity leads to CKD through diabetes and hypertension but is it an independent risk factor for CKD? Similarly although it is suggested that smoking and physical inactivity contribute to progression of CKD, is this a direct or indirect effect, and is there a relationship to gender? ²⁴²

P.8.1.2 Section 8.1.6: RECOMMENDATIONS

R35 Encourage people with CKD to take exercise, achieve a healthy weight and stop smoking.

P.8.2 Section 8.2: Dietary intervention and renal outcomes

P.8.2.1 Section 8.2.1: Clinical Introduction

A real concern with respect to dietary protein restriction in people with CKD is the spontaneous reduction in dietary protein intake with declining GFR. Spontaneous dietary protein intakes were observed to fall from 1.1 g/kg/day for patients with creatinine clearances >50 ml/min to 0.85 g/kg/day at 25–50 ml/min, 0.70 g/kg/day at 10–25 ml/min and 0.54 g/kg/day at <10 ml/min.²⁹¹

The use of protein restricted diets for people with CKD has remained a controversial issue.³⁷⁸ In the 1960s people were often following the Giovanetti Diet, containing 20g high biological value protein to cover the essential amino acid requirements, but as dialysis became available its use has declined.²²⁷ In the 1980s there was a renewed interest in low protein, high energy diets as partially nephrectomised rats showed that protein restriction delayed the progression of renal disease. This led in 1985 to the National Institute of Health (NIH) in the USA commissioning a large multi-centre

study – the Modification of Diet in Renal Disease (MDRD) study³⁷⁸ – to investigate the effect of protein restriction on the progression of kidney disease. Although the results of this trial did not support severely protein restricted diets, the findings focussed on improvement in blood pressure control and the prevention of complications due to uraemia and malnutrition and dietary phosphorus restriction to prevent renal bone disease.³⁴³

P.8.2.2 Section 8.2.2: Methodology

The Pedrini et al. systematic review compared a low protein diet (LPD) with a usual diet (5 RCTs, N=1413, protein intake in the LPD group ranged from 0.4 to 0.6 g/kg/day, follow-up range 18–36 months) in people with nondiabetic moderate CKD (all participants analysed had a GFR <55 ml/min).⁵³⁵

The Foque et al. systematic review was an update on the Pedrini et al. analysis and it compared LPD with a usual diet (8 RCTs, N=1524, protein intake in the LPD group ranged from 0.3–0.6 g/kg/day, follow-up range 12–24 months) in people with nondiabetic CKD (5/8 studies were conducted in people with stage 4–5 CKD).²⁰⁷

The Roberston et al. systematic review compared LPD (0.3-0.8 g/kg/day protein intake) with a usual diet (protein intake 1-2 g/kg/day) in people with type 1 diabetic nephropathy (8 studies, N=322) or type 2 diabetic nephropathy (1 study, N=263). The mean follow-up ranged from 4.5 months to 4 years.⁵⁷⁶

Most of the trial pooled in these meta-analyses were conducted in people with stage 4–5 CKD. The effect of LPD compared with a usual protein diet on renal disease progression in adults with diabetic or nondiabetic nephropathy is summarised in Table 210 at the end of the evidence statements.

P.8.2.3 Section 8.2.4: Evidence statements

Renoprotective effects of low protein diets (LPDs) compared with usual protein diets (UPDs) in nondiabetic nephropathy

Protein intake was significantly lower in the LPD group compared with UPD, but compliance was a problem as few achieved the target protein level in the LPD group.^{207,535}

Low protein diets: risk of ESRD or death

There was a significant reduction in the occurrence of death or ESRD in people with nondiabetic renal disease on a LPD compared with those on a UPD.^{207,535} Sensitivity analysis showed that stricter LPD (0.3 to 0.6 g/kg/day) significantly reduced the risk of death or ESRD compared with a UPD, whereas there was NS difference in risk when the protein restriction was moderate (0.6 g/kg/day).²⁰⁷ (Level 1+)

Low protein diets: changes in GFR, creatinine clearance, or serum creatinine

There was no meta-analysis for this outcome. A beneficial effect on GFR change with a LPD was seen in 1 RCT²⁹⁰ and a possible beneficial effect was seen in the MDRD study.³⁴³ One RCT showed NS differences in creatinine clearance between LPD and UPD.⁷²² One RCT showed NS differences between LPD and UPD for serum creatinine increases,³⁹⁶ whereas another RCT⁵⁸⁷ showed a beneficial effect of a LPD on serum creatinine changes. (Level 1+)

Low protein diets: change in mid-arm circumference

This outcome was not assessed in either systematic review. Extraction of data from one included trial showed that there were NS differences between UPD group (N=32) and LPD group (N=33) for changes in mid-arm circumference.⁷²² (Level 1+)

Renoprotective effects of low protein diets compared with usual protein diets in diabetic nephropathy

The intended protein intake in the LPD group ranged from 0.3–0.8 g/kg/day, however compliance was low as the actual protein intake ranged from 0.6–1.1 g/kg/day.⁵⁷⁶

Low protein diets: risk of ESRD or death

The risk of ESRD or death (adjusted for baseline cardiovascular disease) was significantly lower in people with type 1 diabetes and nephropathy randomised to LPD compared with UPD (1 study, N=82).⁵⁷⁶ (Level 1+)

Change in GFR

In people with type 1 diabetes and nephropathy, there was NS improvement in GFR in those randomised to a LPD compared with UPD (7 RCTs, N=222). There was significant heterogeneity (I2=62%, p=0.01). In people with type 2 diabetes and nephropathy, there was a NS improvement in GFR in the LPD group compared with the UPD (1 RCT, N=160). Another RCT in people with type 2 diabetes and nephropathy (N=37) showed a similar decline in GFR in the LPD compared with the UPD group. In one RCT in which type 1 and type 2 diabetic people with nephropathy were combined (N=80), there were NS differences in GFR decline between those randomised to LPD compared with a UPD.⁵⁷⁶ (Level 1+)

Quality of life

No study assessed this outcome.

Nutritional status

Nine studies assessed nutritional status, but only 1 study found evidence of malnutrition as serum pre-albumin and albumin significantly decreased in the LPD group compared with the UPD group.⁵⁷⁶ Four studies showed NS differences between LPD or UPD groups for serum albumin.^{175,246,447,558} (Level 1+)

Changes in mid-arm circumference

This outcome was not assessed in the Robertson et al. meta-analysis. Extraction of data from a trial included in the meta-analysis showed that there were NS differences between LPD group (N=41) and UPD (N=41) for changes in mid arm circumference in people with type 1 diabetes and nephropathy.²⁴⁶ (Level 1+)

Table 210: Effect of a low protein diet (LPD) compared with a usual protein diet (UPD) on renal disease progression in adults with diabetic or nondiabetic nephropathy (95% confidence intervals)

Reference	Population	Outcome	LPD vs. UPD
535	Nondiabetic CKD: 5 RCTs, N=1413	ESRD or death	RR 0.67 (0.50-0.89), p=0.007 in favour of LPD
207	Nondiabetic CKD: 8 RCTs, N=1524	ESRD or death	RR 0.69 (0.56-0.86), p=0.0007 in favour of LPD
207	Nondiabetic CKD: 3 RCTs, N=1116	ESRD or death	RR 0.76 (0.54-1.05), p=0.1 NS LPD (0.6 g/kg/day) vs. UPD
207	Nondiabetic CKD: 5 RCTs, N=408	ESRD or death	RR 0.65 (0.49-0.86), p=0.002 LPD (0.3-0.6 g/kg/day) vs. UPD
535	Nondiabetic CKD: 2 RCTs, N=649	GFR change	Beneficial/possibly beneficial effect
535	Nondiabetic CKD: 1 RCT, N=65	Changes in creatinine clearance	NS
535	Nondiabetic CKD: 2 RCTs, N=704	Changes in serum creatinine	1 RCT=NS 1 RCT=benefit
576	Type 1 diabetic nephropathy: 1 RCT, N=82	ESRD or death	RR 0.23 (0.07-0.72), p=0.01 (adjusted for baseline CVD) in favour of LPD
576	Type 1 diabetic nephropathy: 7 RCTs, N=222	GFR change	WMD +0.14 ml/min/month (-0.06 to +0.34) NS Heterogeneity (p=0.01)
576	Type 2 diabetic nephropathy: 2 RCTs, N=197	GFR change	LPD: -0.4 ml/min/month UPD: -0.3 ml/min/month (NS, 1 RCT, N=160) LPD: -0.51 ml/min/month UPD: -0.52 ml/min/month (NS, 1 RCT, N=37)
576	Type 1 + type 2 diabetic nephropathy: 1 RCT, N=80)	GFR change	LPD: -0.48 ml/min/month UPD: -0.50 ml/min/month NS

WMD = weighted mean difference

P.8.2.4 Section 8.2.5: From evidence to recommendations

It was noted that the dietary protein intake often declines as people get older and that this is likely to occur in people with CKD.

It was noted that apart from the risks of malnutrition, low protein diets are usually unpalatable and are time consuming to adhere to as all portions must be weighed. These aspects are likely to affect the quality of life of people with CKD and therefore any recommendations about dietary restriction must have a sound evidence base.

The GDG also noted that adequate iron in the diet is important in CKD and restricting protein intake may adversely influence iron intake.

The GDG agreed that the studies combined in the meta-analysis by Pedrini et al. were too heterogeneous in terms of the severity of the underlying CKD for the analysis and conclusions to be appropriate. It was also noted that some of the studies were carried out at a time when the pharmacological management, particularly the use of ACE inhibitors, was likely to be different. The individual studies were examined and the GDG agreed that there was limited evidence that there may be a benefit of protein restriction in patients with stage 4 and 5 CKD, but the evidence did not point to an optimal protein intake.

P.8.2.5 Section 8.2.6: RECOMMENDATIONS

R36 Where the clinician in discussion with the patient has decided that dietary intervention to influence progression of CKD is indicated, an appropriately trained professional should discuss the risks and benefits of dietary protein restriction, with particular reference to retarding the progression of disease versus protein-calorie malnutrition.

R37 Where dietary intervention is agreed this should occur within the context of education, detailed dietary assessment and supervision to ensure malnutrition is prevented.

R38 Offer dietary advice to people with progressive CKD concerning potassium, phosphate, protein, calorie and salt intake when indicated.

P.9 Section 9: Blood pressure control

P.9.1 Section 9.1: Blood pressure control in people with CKD

P.9.1.1 Section 9.1.1: Clinical introduction

General aspects of blood pressure management will not be covered in this guideline but for advice relating to measuring blood pressure and lifestyle interventions to reduce blood pressure please see NICE clinical guideline 34 ('Hypertension: management of hypertension in adults in primary care'). Although the hypertension guideline did not recommend home monitoring recent data shows that self-measurement leads to less medication use than clinic blood pressure measurement without leading to significant differences in outpatient values of blood pressure.⁷⁰⁰

P.9.1.2 Section 9.1.5: From evidence to recommendations

Evidence relating to lifestyle advice (such as salt restriction) in blood pressure control can be found in the NICE clinical guideline 34 on hypertension.⁴⁷⁵

P.9.1.3 Section 9.1.6: RECOMMENDATIONS

R39 In people with CKD aim to keep the systolic blood pressure below 140 mmHg (target range 120– 139 mmHg) and the diastolic blood pressure below 90 mmHg.

R40 In people with diabetes and CKD or when the ACR is \geq 70 mg/mmol, (approximately equivalent to urinary protein excretion \geq 1.0 g/24 h) aim to keep the systolic blood pressure below 130 mmHg (target range 120–129 mmHg) and the diastolic blood pressure below 80 mmHg.

P.9.2 Section 9.2: Choice of anti-hypertensive agents for blood pressure control in people with CKD

P.9.2.1 Section 9.2.1: Clinical introduction

In general, different classes of anti-hypertensives reduce blood pressure to a similar degree, and a number of trials of anti-hypertensive therapy have shown that reduction of blood pressure reduces the risk of end stage kidney disease and of cardiovascular disease regardless of the class of agent employed.^{541,585,633,708,721} NICE recommends that for people newly diagnosed with hypertension, those younger than 55 years should be started on an ACE inhibitor or ARB, and those either over 55 years or of black ethnicity should be started on either a calcium-channel blocker or thiazide-type diuretic.⁴⁷⁵ Where blood pressure remains uncontrolled additional classes of anti-hypertensives such as alpha-blockers and beta-blockers are recommended. Hypertension is extremely common in people with CKD and the mean number of antihypertensive agents prescribed is associated with the stage of CKD, increasing as GFR falls.⁶⁵³

Existing guidelines are quite clear that certain anti-hypertensive agents have specific benefits in patients with additional comorbidities and it is well known that ACEI/ARBs have additional benefits over and above blood pressure control in people with diabetes. The UK CKD guidelines⁵⁸⁹ recommend that ACEI/ARBs should be used as first line therapy only for people with diabetic kidney disease and for those with proteinuria (urine PCR >100 mg/mmol) and this was endorsed by the UK consensus conference. Although the evidence is less clear in non-diabetic kidney disease with lesser degrees of proteinuria the Quality and Outcomes Framework requires the use of ACEI/ARBs in people with stage 3–5 CKD hypertension and proteinuria. The CARI guidelines¹⁰⁵ recommend that regimens including ACEI/ARBs are more effective in slowing progression of non-diabetic CKD, and that combination of ACEIs and ARBs slow progression more effectively than either single agent. They also conclude that ACEI/ARBs are more effective than beta-blockers and dihydropyridine calcium channel blockers.

What are the most appropriate antihypertensive drugs to reduce the risk of progression of CKD and to decrease mortality in adults with CKD?

P.9.2.2 Section 9.2.2: Methodology

Six systematic reviews^{107,307,316,335,359,657} and ten RCTs^{2,19,149,370,420,540,561,593,594,725} compared the use of ACE inhibitors and/or ARBs with placebo or other antihypertensive agents (alpha or beta blockers, calcium channel blockers, thiazide diuretics). Most trials used non-ACEI or non-ARB antihypertensive agents in both arms to achieve blood pressure control and to ascertain if ACEI or ARBs provided renoprotective effects beyond blood pressure control.

The sample sizes in these studies ranged from N=180 to 39485 and the duration of the trials ranged from 6 months to 6 years. The mean age of study participants was under sixty years of age, with the exception of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial

(ALLHAT) study,⁵⁶¹ in which the mean age was 67 or 70 in each treatment arm. The studies were also quite heterogeneous in terms of the population studied – diabetic nephropathy or nondiabetic CKD.

Two studies^{540,593} were rejected as important features such as the number of people in each trial arm, intention to treat analysis, baseline characteristics, or statistical power estimations were not provided. The study by Marin et al.⁴²⁰ was excluded as it was not blinded and was underpowered for the mortality outcome. A systematic review of ten RCTs³¹⁶ comparing combination therapy ACEI + ARB versus monotherapy (ACEI or ARB) in adults with diabetic nephropathy was rejected because the quality of each included trial was not assessed; the primary outcome (proteinuria change) had significant heterogeneity and there was no heterogeneity analysis for sub-group analyses. Studies included in meta-analysis were only 8–12 weeks long. There was wide variation in the dosage of ACEI and ARB, and few studies titrated to the maximum tolerated dose.

P.9.2.3 Section 9.2.3: Health economics methodology

Seven papers^{219,262,274,580,592,611,695} were included that evaluated ACEI (Table 211) and a further 10 papers^{99,142,265,516,516,517,579,645,661,703} evaluated ARBs (Table 212), all based on randomised controlled trials. Two more studies^{141,647} evaluated ACEI or ARB treatment based on meta-analysis of RCTs.

Most papers evaluated the drugs in the context of diabetic nephropathy.

Of the papers appraised, only 3 were UK-based. Studies which are not UK-based may not be easily transferable to a UK setting. However, the UK studies reached similar conclusions to the North American and European studies.

Study and country		Authors	Time horizon	Discount rate (% p.a.)	
	ACEI		(years)	Costs	Effects
DNCSG (diabetes)	Captopril				
UK		262	4	6	6
Italy		219	10	5	5
US		580	Lifetime	5	5
REIN (non-	Ramipril				
diabetes)					
US		592	Lifetime	5	5
Germany		611	3	5	5
AIPRI (various)	Benazepril				
Netherlands		695	10	5	5
US		274	7	5	5

Table 211: Summary of economic evaluations of ACEI to treat CKD

Table 212: Summary of economic evaluations of ARB to treat CKD

Study and country		Authors	Time horizon	Discount rate (% p.a.)	
	ARB		(years)	Costs	Effects
IDNT (diabetes)	Irbesartan				

Study and country	ARB	Authors	Time horizon	Discount rate (% p.a.)	
UK		516	10	6	1.5
US		579	3, 10 & 25	3	3
Switzerland		517	25	5	5
Canadian		142	25	3	3
Belgium and France		516	Lifetime	3	3
RENAAL (diabetes)	Losartan				
UK		703	Lifetime	3.5	3.5
US		265	3.5	3.5	NM
Switzerland		661	3.5	NM	NM
Canadian		99	4	NM	NM
France		645	5	NM	NM
NM= not modelled					

P.9.2.4 Section 9.2.4: Evidence statements

Renoprotective effects of ACE inhibitors or ARBs compared with placebo/no treatment

One systematic review ⁶⁵⁷ investigated the renoprotective effects of ACE inhibitors or ARBs compared to placebo or no treatment in adults with diabetic kidney disease.

Another systematic review (49 RCT, N=6181, trial durations 1–12 months) assessed changes in proteinuria in people with renal disease of various causes randomised to ARBs versus placebo, calcium channel blockers, or ACE inhibitors. It also assessed combination therapy (ACEI + ARB) versus ACEI or ARB monotherapy.³⁵⁹ In the combination therapy comparisons, few trials titrated the ACEI and ARB dosage to the maximum tolerated doses.

The Ramipril Efficacy in Nephropathy (REIN) RCT compared an ACE inhibitor (ramipril) with placebo in non-diabetic adults with CKD (N=352) stratified by baseline proteinuria: stratum one covered 1–2.9 g/24 h⁵⁹⁴ and stratum two \geq 3 g/24 h.² Both trial arms received non-ACEI antihypertensive agents to control blood pressure.

Risk of ESRD

There was a significant reduction in the risk of ESRD with ACEI (10 studies, N=6819, RR 0.60, 95% CI 0.39–0.93) or ARB (3 studies, N=3251, RR 0.78, 95% CI 0.67–0.91) compared with placebo or no treatment.⁶⁵⁷ (Level 1++)

In adults with non-diabetic CKD and baseline proteinuria 1–2.9 g/24 h, ramipril (ACE inhibitor) significantly reduced the risk of progression to ESRD by 56% compared to placebo.⁵⁹⁴ For adults with baseline proteinuria \geq 3 g/24 h, ramipril significantly reduced the risk of ESRD or doubling of serum creatinine (18/78 ramipril versus 40/88 placebo, p=0.04). A higher baseline urinary protein excretion rate was associated with a higher risk of reaching the combined endpoint in the placebo group, but not in the ramipril group.² (Level 1+)

Doubling of serum creatinine

There was NS reduction of the risk of doubling of serum creatinine for ACEI compared to placebo or no treatment. 657 (Level 1++)

There was a significant reduction in the risk of the doubling of serum creatinine with ARB compared with placebo/no treatment (3 studies, N=3251, RR 0.79, 95% CI 0.67–0.93).⁶⁵⁷ (Level 1++)

Progression from micro- to macroalbuminuria

ACEI (17 studies, N=2036, RR 0.45, 95% CI 0.29–0.69) or ARB (3 studies, N=761, RR 0.49, 95% CI 0.32–0.75) significantly reduced the risk of progression from micro- to macroalbuminuria compared with placebo. There was NS reduction in progression from micro- to macroalbuminuria for ACEI vs. ARB (1 study, N=41).⁶⁵⁷ (Level 1++)

In the REIN study, ramipril significantly reduced the risk of progression to overt proteinuria by 52% compared to placebo.⁵⁹⁴ (Level 1+)

Regression to normoalbuminuria

ACEI (16 studies, N=1910, RR 3.06, 95% CI 1.76–5.35) or ARB (2 studies, N=670, RR 1.42, 95% CI 1.05– 1.93) significantly increased regression from micro- to normoalbuminuria compared with placebo or no treatment. There was NS difference in regression to normoalbuminuria for ACEI compared with ARB.⁶⁵⁷ (Level 1++)

Changes in proteinuria

In adults with baseline proteinuria 1–2.9 g/24 h, median proteinuria increased from baseline by 15% in the placebo group and decreased by 13% in the ramipril group (p=0.003).⁵⁹⁴ In adults with baseline urinary protein excretion rate \geq 3 g/24 h, urinary protein excretion decreased from baseline by 35% and 55% at month 3 and month 36, respectively (p=0.002), while urinary protein excretion did not change in the placebo arm.² (Level 1+)

ARBs significantly decreased proteinuria compared with placebo (6 RCTs, N=2994, 5–12 month follow-up, ratio of means 0.66 (96% CI 0.63–0.69) or CCBs.³⁵⁹ (Level 1+)

Change in GFR

In adults with baseline urinary protein excretion 1–2.9 g/24 h, there was NS difference in the mean GFR decline per month in the ramipril versus the placebo group.⁵⁹⁴ In those with baseline urinary protein excretion \geq 3 g/24 h, the mean GFR decline was significantly slower in the ramipril group than the placebo group (0.53 vs. 0.88 ml/min per month, p=0.03).² (Level 1+)

Renoprotective effects of ACE inhibitors or ARBs compared to other antihypertensive agents

One meta-analysis¹⁰⁷ compared ACE inhibitors or ARBs against other antihypertensive drugs in adults with CKD. Trials of ACE inhibitors were not separated from trials of ARBs, thus confounding factors such as differences in drug tolerability could not be separated. Even with these caveats, this meta-

analysis was interesting as it provided sensitivity analyses in diabetic and non-diabetic populations. (Level 1+)

One RCT conducted in hypertensive diabetic adults with CKD compared an ACE inhibitor with a calcium channel blocker.¹⁴⁹ One RCT conducted in hypertensive nondiabetic populations with CKD compared an ACE inhibitor with a beta blocker.⁷²⁵ One RCT compared an ACE inhibitor with a thiazide diuretic conducted in a mixed diabetic/nondiabetic population with CKD.⁵⁶¹ (Level 1+)

Risk of ESRD

In the meta-analysis, ACEI or ARB use was associated with a significant reduction in the occurrence of ESRD compared with other antihypertensive drugs (13 trials (N=37,089, RR 0.87, 95% CI 0.75–0.99, p=0.04). When trials in diabetic and nondiabetic populations were separated from each other, there was NS difference between ACEI or ARB compared with other antihypertensive drugs ¹⁰⁷. (Level 1+)

In a nondiabetic population, there was no significant difference between ramipril and metoprolol in risk reduction for ESRD alone.⁷²⁵ (Level 1+)

Doubling of serum creatinine

There was NS reduction in the risk of doubling serum creatinine with ACEI or ARBs compared with other antihypertensive drugs (11 trials, N=3376).¹⁰⁷ (Level 1+)

Progression from micro- to macroalbuminuria

In a hypertensive diabetic population with microalbuminuria, there was NS difference in progression to macroalbuminuria between people treated with ramipril (ACEI) versus lercanidipine (calcium channel blocker).¹⁴⁹ (Level 1+)

Regression to normoalbuminuria

There was NS difference in regression to normoalbuminuria between people treated with ramipril (ACEI) versus lercanidipine (calcium channel blocker).¹⁴⁹ (Level 1+)

Changes in proteinuria

ACEI or ARBs showed a small reduction in urine albumin excretion compared with other antihypertensive treatments (44 trials, N=5266, mean difference -15.73, 95% CI -24.72 to -6.74, p=0.001). However, there was significant interstudy heterogeneity (p<0.0001) and small study bias (p=0.001).¹⁰⁷ In participants with diabetic CKD, a small reduction in urine albumin excretion was noted for ACEI or ARBs compared with other antihypertensive treatments (34 trials, N=4772, mean difference -12.68, 95% CI -21.68 to -2.74). In studies only including people without diabetes, ACEI or ARBs were associated with a significant reduction in albumin excretion compared with other antihypertensive agents (8 trials, N=414 mean difference -32.30, 95% CI -49.18 to -15.42).¹⁰⁷ (Level 1+)

In a hypertensive diabetic population with microalbuminuria (N=180), there was NS difference between albumin excretion rates in people treated with ramipril (ACEI) versus lercanidipine (calcium channel blocker).¹⁴⁹ (Level 1+)

ARBs significantly decreased proteinuria compared with calcium channel blockers (5 RCTs, N=1432, 5–12 month follow-up, ratio of means 0.62 (95% CI 0.55–0.70).³⁵⁹ (Level 1+)

ACEI + ARB combination therapy significantly decreased proteinuria compared with ARB monotherapy (7 RCTs, N=362, ratio of means 0.75, 95% CI 0.61–0.92).³⁵⁹ (Level 1+)

There was NS effect on proteinuria of ACEI versus ARB.³⁵⁹ (Level 1+)

Change in GFR

ACEI or ARBs had NS effect on GFR decline compared with other antihypertensive treatments.¹⁰⁷ (Level 1+)

By contrast, in a black nondiabetic hypertensive population, the mean GFR decline was significantly slower in the ramipril group (ACEI) than the metoprolol group (beta blocker) (1.81 vs. 2.42 ml/min $/1.73m^2$, p=0.007).⁷²⁵ (Level 1+)

Cardiovascular protection by ACE inhibitors or ARBs compared to placebo or no treatment: allcause mortality

There was NS decrease in the risk of all-cause mortality with ACEI or ARB or combination ACEI + ARB compared with placebo/no treatment. In a subgroup analysis of studies which used ACEI at the maximum tolerable dose compared with placebo/no treatment, there was a significant decrease in the risk of all-cause mortality (5 studies, N=2034, RR 0.78, 95% CI 0.61–0.98).⁶⁵⁷ (Level 1++)

In the REIN study, there was NS difference between ramipril and placebo for all-cause mortality. However, the study was underpowered for this outcome.² (Level 1+)

Nonfatal MI and fatal coronary heart disease

There was no significant difference between ramipril and placebo for non-fatal cardiovascular events.² (Level 1+)

Cardiovascular protection by ACE inhibitors or ARBs compared to other antihypertensive agents: all-cause mortality

There was NS difference between ramipril (ACEI) and metoprolol (beta blocker) for all-cause mortality.⁷²⁵ (Level 1+)

Nonfatal MI and fatal coronary heart disease

There was NS difference in the risk for MI or CHD between lisinopril (ACEI) or chlorthalidone (thiazide diuretic) for people with mild or moderate/severe renal impairment.⁵⁶¹ (Level 1+)

There was NS difference between ramipril (ACEI) and metoprolol (beta blocker) for cardiovascular events or cardiovascular mortality.⁷²⁵ (Level 1+)

Combined CVD: composite of nonfatal MI, fatal CHD, coronary revascularisation, hospitalised angina, stroke, fatal/hospitalised/treated non-hospitalised heart failure, peripheral arterial disease

People with mild (OR 1.09, 95% CI 1.02–1.17, p=0.015, N=13,259) or moderate/severe renal impairment (OR 1.12, 95% CI 1.01–1.25, p=0.038, N=4146) receiving lisinopril (ACEI) had a significantly increased chance of combined CVD than those receiving chlorthalidone (thiazide diuretic).⁵⁶¹ (Level 1+)

Stroke

There was NS difference in the risk for stroke between lisinopril or chlorthalidone for those with mild or moderate/severe renal impairment.⁵⁶¹ (Level 1+)

Heart failure

People with moderate/severe renal impairment receiving lisinopril had significantly increased odds of heart failure compared with those receiving chlorthalidone (OR 1.29, 95% CI 1.06–1.58, p=0.011).⁵⁶¹ (Level 1+)

Adverse events with ACE inhibitors or ARBs compared to placebo or no treatment: cough

ACEI use was associated with a significant increase in the risk of cough compared to placebo (10 studies, N=7087, RR 3.17, 95% CI 2.29–4.38). ARB or combination ACEI + ARB use were NS associated with cough compared with placebo.⁶⁵⁷ (Level 1++)

Hyperkalaemia

There was NS difference in the risk of hyperkalaemia for ACEI versus placebo/no treatment. There was a significant increase in the risk of hyperkalaemia with ARB compared with placebo (2 studies, N=2287, RR 5.41, 95% CI 1.87–15.65).⁶⁵⁷ (Level 1+)

Adverse events from ACE inhibitors or ARBs compared to other antihypertensive agents: cough

The proportion of patients reporting cough was significantly higher in those receiving ramipril (ACEI) than metoprolol (beta blocker) (54.9% vs. 41.5 %, p<0.05).⁷²⁵ (Level 1+)

Hyperkalaemia

There was no hyperkalaemia in people treated with ramipril (ACEI) versus lercanidipine (calcium channel blocker).¹⁴⁹ (Level 1+)

There was no significant difference in hyperkalaemia incidence between ramipril and metoprolol.⁷²⁵ (Level 1+)

Reno-protective effects of ACEI or ARBs in non-diabetic patients with urinary protein excretion of <1 g/day

There were two meta-analyses that used a database of patient-level data from 9 published and 2 unpublished RCTs comparing an ACEI with either placebo or active controls in non-diabetics.^{307,335} In

this database 40% of the included patients had proteinuria of <500 mg/day and 60% had proteinuria of \geq 500 mg/day.³³⁵

Three papers on one RCT (AASK trial) compared an ACEI with either a beta-blocker or a calcium channel blocker, in a population of African-American non-diabetic adults with CKD.^{19,370,725} One third of the patients included in this trial had a baseline PCR >0.22 (a value corresponding approximately to the threshold of 300 mg/day for clinically significant proteinuria) and the remaining two thirds had a PCR of ≤ 0.22 .¹⁹

Risk of ESRD

The unadjusted relative risk of developing ESRD was lower in the ACEI group, becoming significantly less than 1 at a baseline urinary protein excretion of >1.0 g/day. For people with baseline urinary protein excretion of <0.5 g/day the relative risk of ESRD was 1.01 (95% CI 0.44–2.32), and 0.66 (95% CI 0.28–1.56) for patients with baseline urinary protein excretion of 0.5–1.0 g/day.³⁰⁷ (Level 1+)

There was significant interaction between baseline urine protein and ACEI therapy (interaction p=0.003). The Kent et al. meta-analysis did not find any additional benefit of ACEI therapy among patients with proteinuria <500 mg/day, even amongst those at high risk for progression to ESRD. In people with urinary protein \geq 500 mg/day, a substantial treatment effect was seen across all risk groups.³³⁵ (Level 1+)

From the results of the AASK trial, the reduction in risk for developing the clinical outcomes of ESRD or a halving of GFR was 38% (95% CI 13–56%) for the ACEI vs. the calcium-channel blocker comparison group and among participants with a PCR >0.22, the reduction in risk of developing the clinical outcomes was 48% (95% CI 20–66%, p=0.003).¹⁹ Another analysis of this trial data found that the baseline level of urinary protein excretion was an independent predictor of change in GFR and the risk of developing ESRD.³⁷⁰ The risk of developing ESRD was found to be similar in all treatment groups: ACEI, calcium channel blocker and beta-blocker, although the magnitude of the change in GFR at 6 months was greater in the calcium channel blocker treatment group than the ACEI or beta-blocker treatment groups. (Level 1+)

Protein excretion rate

One RCT¹⁹ found a significantly greater reduction in proteinuria in the ACEI treated group compared with the control calcium channel blocker group both above and below a baseline PCR of 0.22. Among those with PCR <0.22, the rate at which participants developed PCR ≥0.22 was 56% (95% CI 37–69%) lower for the ACEI group than for the calcium-channel blocker group.¹⁹ (Level 1+)

One of the meta-analyses found a significantly greater mean decrease in proteinuria in the ACEI group than in the control group of 0.46 g/day (95% CI 0.33–0.59 g/day).³⁰⁷ (Level 1+)

Change in GFR

The analyses of the AASK trial all found the baseline proteinuria level to be a strong predictor of GFR decline, with higher baseline proteinuria levels associated with significantly greater declines in GFR.^{19,370,725} The Agodoa et al. study reported a significantly greater GFR decline over three years in the ACEI treated group compared with the calcium channel blocker group in patients who had a

baseline PCR of ≤ 0.22 . By contrast, the GFR decline was significantly slower in the ACEI group than the calcium channel blocker group in people who had a baseline PCR >0.22 (corresponding to a urinary protein excretion of >300 mg/day, p=0.006). (Level 1+)

A second paper found that baseline proteinuria did not influence the comparison of ACEI to betablocker with respect to GFR change.⁷²⁵ (Level 1+)

P.9.2.5 Section 9.2.5: Health economics evidence statements

ACE inhibitors

Economic evaluations based on the DNCSG study have looked at the costs and effects in several healthcare settings:

- In the US, Rodby et al.⁵⁸⁰ estimated an absolute direct cost saving of \$32,550 and indirect savings of \$84,390 per patient with type 1 diabetes over a lifetime; year of costing not stated. For type 2 diabetes, the direct cost savings totalled \$9900 per patient and \$45,730 for indirect costs. For type 1 diabetes patients, the estimated increase in life years was 0.2 over a 5 year period and 2.15 over a 31 year period with the use of captopril therapy compared with the placebo. The savings in dialysis years were 0.18 over 5 years and 0.72 over 31 years. For type 2 diabetes patients, the estimated average increase in life years was 1.04, and 0.29 dialysis years.
- In Italy, Garattini et al.²¹⁹ used a 10-year horizon, calculated direct costs savings of L8,450,965 per patient (total direct cost savings of 28%, 1993 values). Captopril was also more effective than placebo by resulting 20.01 discounted dialysis-years avoided (DYA) per 100 patients.
- In the UK, Hendry et al.²⁶² estimated that discounted cost savings associated with ACE inhibitor treatment over 4 years for a cohort of 1000 patients would total £0.95 million (year of costing not stated). Life years saved over 4 years for a cohort of 1000 patients treated with an ACE inhibitor was estimated to be 195.

Economic evaluations based on the REIN study:

- In the US, Ruggenenti et al.⁵⁹² estimated the difference in overall per year costs between ramipril and the control group was -\$2422 in the GFR model and -\$4203 in the events model. Both models constructed by the authors also predicted a reduced and delayed progression to ESRD and a prolonged patient survival in the ramipril group.
- In Germany, Schadlich et al.⁶¹¹ estimated incremental cost-effectiveness ratios (ICERs) for ramipril of approximately –DM76,700 for 1 year, –DM80,660 for 2 years and –DM81,900 for 3 years.

Economic evaluations based on the AIPRI study:

- In the Netherlands, van Hout et al.⁶⁹⁵ projected an overall savings of US\$4200 per patient over the 3-year period and when a 10-year time span was applied, similar results were shown with approximately US\$28,000 cost saving per patient comparing benazepril and placebo. It was also estimated that 51.2% of placebo patients and 63.3% pf patients treated with benazepril would never require dialysis at any point.
- In the US, Hogan et al.²⁷⁴ over 7 years of analysis, showed that patients randomised to antihypertensive treatment with concomitant benazepril therapy incurred on average incurred

lower medical costs than patients prescribed antihypertensive treatment without benazepril by US\$12,991 (1999 values) and obtained an additional 0.091 QALYs.

ARBs

Economic evaluations based on the IDNT study have looked at the costs and effects in several healthcare settings:

- Data for ESRD projections have been published for Belgium and France but not for the UK, USA or Canada. As the transition probabilities from the states progressing to ESRD were taken from the IDNT rather than country-specific data, the model produced the same projections for all countries. Over a 10-year time span the mean time to onset of ESRD was 8.23 years for irbesartan, 6.82 years for amlodipine and 6.88 years for the control. The mean cumulative incidence of ESRD over the 10-year time span was 45% for control, 49% for amlodipine and 36% for irbesartan. Although the UK and the USA (and Canada) were simulated using the same model and transition probabilities, it could be expected that the results might be the same for these countries.
- In summary, life expectancy was improved in the irbesartan group compared to amlodipine and control groups in all the papers reviewed. However, in the UK study by Palmer et al.⁵¹⁶ life expectancy projections were reported only in relative terms, comparing irbesartan to amlodipine and control. Treatment with irbesartan was projected to extend life further than that with either amlodipine or control.
- For cost analysis, irbesartan resulted in cost savings very early, usually within 2–3 years of treatment for all settings. In the UK, cost savings due to avoided or delayed ESRD were evident after 3 years compared to the amlodipine group and after 4 years compared to the control group.
- Based on the published evidences from various studies, it appears that irbesartan has a valuable role in reducing the huge clinical and economic burden associated with ESRD in patients with type 2 diabetes, hypertension and overt nephropathy.

Economic evaluations based on the RENAAL study have looked at the costs and effects in several healthcare settings. Treatment with losartan was associated with a reduced number of ESRD days by an average of 46.9 days per patient compared to the placebo and a net saving of:

- C\$6,554 in Canada⁹⁹
- US\$7,058 in the USA²⁶⁵
- €5,835 in France,⁶⁴⁵
- CHF6511 in Switzerland.⁶⁶¹

Also, the UK study projected £6622 net savings and the mean number of life years saved were 0.44 years.⁷⁰³

An economic evaluation based on the IDNT and IRMA-2 study has looked at the costs and effects in the Canadian healthcare setting.¹⁴¹ Treatment with irbesartan (early and late initiation of treatment) was compared to conventional care of people with hypertension and type 2 diabetes. The early irbesartan strategy was dominant over both the late irbesartan and conventional antihypertensive therapy strategies. Initiating irbesartan therapy during advanced overt nephropathy was dominant over conventional antihypertensive therapy. Late irbesartan treatment resulted in a mean of 0.16 life years gained and \$14,300 cost savings compared with conventional antihypertensive therapy. When

irbesartan treatment is initiated early, there is a mean of 0.45 life-years gained per patient and a cost saving of \$54,100 compared with starting irbesartan treatment later. The early irbesartan strategy was found to be cost-saving by year 5 compared with conventional treatment strategy and year 6 compared with the late irbesartan treatment strategy.

These economic evaluations using different time horizons suggest ARBs versus conventional therapy is cost saving for type 2 diabetes nephropathy patients, mainly because of the high costs of dialysis and transplantation.

An economic evaluation based on a meta-analysis of randomised studies investigated the effects of ACEI/ARB therapy on the incidence of ESRD in patients with diabetic nephropathy in both a Greek and a US healthcare setting⁶⁴⁷. ACEI or ARB therapy was compared with alternative treatment regimens that did not include these drugs. For patients receiving ACEI or ARBs, the net cost saving was more than \$2000 per patient in both settings, but these results were not statistically significant and there was heterogeneity between trials. The study demonstrates that treating patients with diabetic nephropathy with agents that block the renin-angiotensin system as part of the treatment regimen is cost effective, resulting in a 23% reduction in the incidence of ESRD and in net cost savings for the insurance system organisations.

Conclusion

All of the economic evaluations found that these drugs confer both health gains and net cost savings compared with conventional (non-ACE inhibitor) therapy, ie they are dominant therapies.

P.9.2.6 Section 9.2.6: From evidence to recommendations

When considering the evidence, the GDG noted that many of the studies combine people with types 1 and 2 diabetes and very few of the studies include older people. The GDG also noted that certain studies such as AASK were in defined populations and extrapolation of findings into the UK population should be viewed with caution.

When considering the evidence about the effects of ACEI/ARBs, the GDG noted that the beneficial effects appeared to be more closely related to the presence or absence of proteinuria rather than blood pressure control.

In order to confidently detect changes in the rate of decline of GFR the GDG agreed that studies must be of duration \geq 3 years.

The GDG agreed that the evidence of benefit of ACEI/ARBs in people with diabetes and micro- or macroalbuminuria was strong.

RCTs and meta-analyses of RCTs that have analysed cardiovascular outcomes in patients with CKD/proteinuria treated with renin-angiotensin blockade have shown significant reduction in cardiovascular outcomes in both diabetic nephropathy and nondiabetic nephropathy. Benefits in terms of reduction in proteinuria and reduction in progression of CKD have also been shown. RAS blockade confers benefit in reducing adverse cardiovascular events in patients with proteinuria when compared with control therapy; a similar benefit is seen in reducing the risk for heart failure in diabetic nephropathy and total cardiovascular outcomes in nondiabetic nephropathy patients. These

results might suggest that renin-angiotensin system blockade may be more beneficial in CKD patients with proteinuria.

On the basis of the evidence, the GDG agreed that the threshold level of proteinuria at which ACEI/ARBs should be recommended in non-diabetic people without hypertension was an ACR \geq 70 mg/mmol (approximately equivalent to urinary protein excretion of \geq 1 g/day). The threshold level of proteinuria at which ACEI/ARBs should be recommended in non-diabetic people with hypertension was an ACR of \geq 30 mg/mmol (approximately equivalent to urinary protein excretion of \geq 0.5 g/day).

It is possible that ACEI/ARB therapy in people with CKD without diabetes and with lower levels of proteinuria may also be beneficial but there is no evidence in this group at present. The GDG agreed that clinical trials examining the effects in these people were needed as a matter of urgency

The GDG agreed that there was no evidence to suggest an advantage of one particular ACE inhibitor over and above another or of ARB over and above an ACE inhibitor. There was also no evidence to suggest increased effectiveness of combining an ACE inhibitor with an ARB over and above the maximum recommended dose of each individual drug. However, the health economic evidence suggested increased cost-effectiveness for ACEIs versus ARBs, indicating an ACE inhibitor should first be prescribed, switching across to an ARB if the ACEI is not tolerated due to non-renal side affects.

P.9.2.7 Section 9.2.7: RECOMMENDATIONS

R41 When implementing blockade of the renin-angiotensin system, start treatment with an ACE inhibitor first then move to an ARB if the ACE inhibitor is not tolerated.

R42 Offer ACE inhibitors/ARBs to people with diabetes and ACR >2.5 mg/mmol (men) or >3.5 mg/mmol (women) irrespective of the presence of hypertension or CKD stage.

R43 Offer ACE inhibitors/ARBs to non-diabetic people with CKD and hypertension and ACR \ge 30 mg/mmol (approximately equivalent to PCR 50 mg/mmol or more, or urinary protein excretion of 0.5 g/24 h or more).

R44 Offer ACE inhibitors/ARBs to non-diabetic people with CKD and ACR 70 mg/mmol or more (approximately equivalent to PCR 100 mg/mmol or more, or urinary protein excretion of 1 g/24 h or more) irrespective of the presence of hypertension or cardiovascular disease.

R45 Offer non-diabetic people with CKD and hypertension and ACR less than 30 mg/mmol (approximately equivalent to PCR less than 50 mg/mmol, or urinary protein excretion less than 0.5 g/24 h) a choice of antihypertensive treatment according to NICE clinical guidance on hypertension (NICE clinical guideline 34) to prevent or ameliorate progression of CKD.

R46 When using ACE inhibitors/ARBs, titrate them to the maximum tolerated therapeutic dose before adding a second-line agent.ⁱ

R47 To improve concordance, inform people who are prescribed ACE inhibitors or ARB therapy about the importance of:

ⁱ There is insufficient evidence to recommend the routine use of spironolactone in addition to ACE inhibitor and ARB therapy to prevent or ameliorate progression of CKD.

- achieving the optimal tolerated dose of ACE inhibitor/ARB, and
- monitoring eGFR and serum potassium in achieving this safely.

P.9.3 Section 9.3: Practicalities of treatment with ACEI/ARBs in people with CKD

P.9.3.1 Section 9.3.6: RECOMMENDATIONS

R48 In people with CKD, measure serum potassium concentrations and estimate the GFR before starting ACEI/ARB therapy and repeat these measurements between 1 and 2 weeks after starting ACEI/ARB therapy and after each dose increase.

R49 ACEI/ARB therapy should not normally be started if the pre-treatment serum potassium concentration is significantly above the normal reference range (typically >5.0 mmol/l).

R50 When hyperkalaemia precludes use of ACEI/ARBs, assessment, investigation and treatment of other factors known to promote hyperkalaemia should be undertaken and the serum potassium concentration re-checked.

R51 Concurrent prescription of drugs known to promote hyperkalaemia is not a contraindication to the use of ACEI/ARBs but more frequent monitoring of serum potassium concentration may be required.

R52 Stop ACEI/ARB therapy if the serum potassium concentration rises to above 6.0 mmol/l and other drugs known to promote hyperkalaemia have been discontinued.

R53 Following the introduction or dose increase of ACEI/ARB, no modification of the dose is required if either the GFR decrease from pre-treatment baseline is <25% or the plasma creatinine increase from baseline is <30%.

R54 If there is a fall in eGFR or rise in plasma creatinine after starting or increasing the dose of ACEI/ARB, but it is less than 25% (eGFR) or 30% (serum creatinine) of baseline, the test should be repeated in a further 1–2 weeks. Do not modify the ACE/ARB dose if the change in eGFR <25% or change in plasma creatinine is <30%.

R55 If the eGFR change is \geq 25% or change in plasma creatinine is \geq 30%:

- investigate other causes of a deterioration in renal function such as volume depletion or concurrent medication (e.g. non-steroidal anti-inflammatory drugs (NSAIDS)
- if no other cause for the deterioration in renal function is found, stop the ACEI/ARB therapy or halve the dose to a previously tolerated lower dose, and add an alternative antihypertensive medication if required.

P.9.4 Section 9.4: Considerations of age in prescription of ACEI/ARB therapy

P.9.4.1 Section 9.4.1: Clinical introduction

Although there is much clinical evidence to support the use of ACE inhibitors and ARBs to delay progression of renal disease in people with chronic kidney disease, few studies include older people with CKD in the study population. The older population are also more prone to reduced volume status and sodium depletion, have greater comorbidity and are more likely to be taking concurrent

medications making them potentially more susceptible to the adverse effects of ACEI/ARBs. Indeed, there is a perception that ACEI or ARB treatment puts the older person at greater risk for adverse events such as acute kidney failure/injury, hypotension, falls, and reduced quality of life. Few studies have described the progression of CKD in older community based individuals, and none have confirmed the widely held belief that low GFR is associated with a rapid progression of kidney dysfunction in older people.^{85,260} Should we reconsider the role of renin-angiotensin system blockade to prevent progression of CKD in the context of the older population in which the burden of overt proteinuric nephropathies is believed to be lower than in other populations?

Is there a greater potential risk of further deterioration of renal function because of the high prevalence of renal stenotic atherosclerotic lesions and very frequent concomitant use of diuretics and nonsteroidal anti-inflammatory drugs?

P.9.4.2 Section 9.4.2: Methodology

An open-label RCT conducted in Japanese adults with nondiabetic, hypertensive renal disease (N=141, age range 60–75 years, mean age 67, mean follow-up 3.1 years) compared the effect of an ARB (candesartan) with conventional antihypertensive treatment on cardiovascular events in those with and without a previous history of cardiovascular disease.⁴⁶⁹ This small, open-label RCT was terminated after 3 years, due to the increasing prevalence of ARBs as physicians were switching from conventional treatment to ARBs.

One post-hoc analysis of the RENAAL trial (N=1513, mean follow-up 3.4 years) examined the effect of increasing age on the efficacy and safety of losartan versus placebo (conventional antihypertensive treatment).⁷²³ The trial participants had type 2 diabetes with nephropathy and were stratified by age: \leq 57 years (N = 505), age >57 to 65 years (N= 587), and age >65 years (N= 421). Although this study lacked the statistical power necessary to assess efficacy of losartan treatment in each of the three increasing age ranges, it did analyse the interaction between age and losartan treatment for the outcomes of death, hyperkalaemia, and adverse events such as acute renal failure. The oldest participant in the study was 74 years old, and thus this study lacks data on very elderly people.

A retrospective cohort analysis of people >65 years of age was conducted to investigate whether receiving an ACE inhibitor at hospital discharge following an acute myocardial infarction increased one year survival rates in people with poor renal function (serum creatinine >3 g/dl, N=1582) compared with people with better renal function (serum creatinine ≤3 mg/dl, N=19,320).²¹⁰ This study was limited by lacking data on protein excretion rate and the use of serum creatinine alone as an indicator of renal function.

P.9.4.3 Section 9.4.3: Health economics methodology No health economics papers were found to review.

P.9.4.4 Section 9.4.4: Evidence statements

All-cause mortality

The treatment effect of losartan on risk of death in a population with diabetic nephropathy did not significantly differ by age (p=0.695 adjusted for treatment group, region, proteinuria, albumin,

creatinine, haemoglobin). In all three age groups (people \leq 57 years, age >57 to 65 years, or >65 years) there was NS difference in risk of death between losartan and placebo.⁷²³ (Level 2+)

In a nondiabetic Japanese population with renal disease (N=141), no deaths occurred in the people without a past history of cardiovascular disease (treated with candesartan or conventional therapy).

- Four deaths occurred in the group with a past history of CVD treated with candesartan.
- Four deaths occurred in the group with a past history of CVD treated with conventional therapy (p value not stated).⁴⁶⁹72 (Level 1+)

Stroke

In people with nondiabetic, hypertensive renal disease, with or without a previous history of CVD, there was NS difference between candesartan and conventional treatment for the incidence of stroke.⁴⁶⁹ (Level 1+)

Myocardial infarction (MI)

In people with nondiabetic, hypertensive renal disease, with or without a previous history of CVD, there was NS difference between candesartan and conventional treatment for the incidence of MI.⁴⁶⁹ (Level 1+)

Congestive heart failure

In people with nondiabetic, hypertensive renal disease and a previous history of CVD, candesartan treatment (4/33) significantly decreased the incidence of congestive heart failure compared with conventional treatment (13/38, p<0.05). In people without a previous history of CVD, there was NS difference between candesartan and conventional treatment for the incidence of congestive heart failure.⁴⁶⁹ (Level 1+)

One-year survival following acute MI

The receipt of an ACE inhibitor at hospital discharge was associated with a 37% increase in 1-year survival for patients with poor renal function (serum creatinine >3 mg/dl, N=1582, mean age 72. HR 0.63, 95% CI 0.48–0.84, p value not stated). The receipt of an ACE inhibitor at hospital discharge was associated with a 16% increase in 1-year survival for patients with better renal function (serum creatinine \leq 3 mg/dl, N=19,320, mean age 75, HR 0.84, 95% CI 0.77-0.92, p value not stated).²¹⁰ (Level 2+)

Adverse events (acute renal failure or ESRD)

Older patients were no more susceptible to experiencing adverse events from losartan than younger people. In all three age groups (people \leq 57 years, age 57–65 years, or >65 years) there was NS difference in incidence of adverse events between losartan or placebo.⁷²³ (Level 2+)

Hyperkalaemia

Losartan was associated with a greater rate of hyperkalaemia. This effect was present in all age ranges. Thus, increasing age did not significantly increase the risk of hyperkalaemia from losartan.⁷²³ (Level 2+)

P.9.4.5 Section 9.4.5: From evidence to recommendations

It was noted that in the observational studies those with better renal function were more likely to receive ACEI/ARBs (60% versus only 30% in those with poor renal function) and this has the potential to bias the interpretation of these studies.

None of the people in the studies were over 75 years of age. Thus there is a lack of evidence for changes in the risk/benefit of ACEI/ARB therapy in people over this age; however, the GDG felt that in the absence of evidence of harm people above this age should not be denied the benefits of ACEI/ARB therapy.

P.9.4.6 Section 9.4.6: RECOMMENDATIONS

R56 Where indicated, the use of ACEI/ARBs should not be influenced by a person's age as there is no evidence that their appropriate use in older people is associated with a greater risk of adverse effects.

P.9.5 Section 9.5: The role of aldosterone antagonism in people with CKD

P.9.5.1 Section 9.5.1: Clinical introduction

Aldosterone is thought to contribute to progressive renal disease. Studies in experimental rat models showed that aldosterone may contribute to the progression of kidney disease and antagonists of aldosterone may reduce proteinuria and retard the progression of kidney disease independently of effects on blood pressure.^{577,578} Plasma aldosterone level was shown to correlate with the rate of progression of kidney disease and the increase in rate of kidney disease progression caused by high protein intake was attributable in part to aldosterone.^{263,586,707} Although ACEI/ARBs inhibit the reninangiotensin system, they do not efficiently decrease plasma aldosterone. Haemodynamic and humoral actions of aldosterone have important clinical implications for the pathogenesis of progressive renal disease and consequently may influence future antihypertensive strategies. Although ACEI/ARBs are effective in preventing disease progression there may be additional benefit from concurrent aldosterone-receptor blockade.¹⁸³ To date there has been limited research into the use of spironolactone, an aldosterone receptor antagonist, to reduce aldosterone escape during treatment with ACEI/ARBs in adults with CKD.

In adults with proteinuric or non-proteinuric CKD, does treatment with (a) spironolactone alone, (b) combinations of spironolactone and ACE inhibitors, (c) combinations of spironolactone and ARBs, or (d) combinations of spironolactone and ACE inhibitors and ARBs decrease mortality and reduce the risk of progression of CKD compared with placebo or other antihypertensive agents?

P.9.5.2 Section 9.5.2: Methodological introduction

There were no studies in a CKD population that compared spironolactone with alpha- or betablockers, calcium channel blockers, or diuretics. There were no studies that investigated spironolactone in adults with non-proteinuric CKD.

Three double-blind RCTs examined the effects of spironolactone in addition to treatment with ACE inhibitors and/or ARBs in adults with diabetic nephropathy^{588,692} and in a mixed population of diabetic and nondiabetic nephropathy.¹²⁴ One open label randomised study compared the addition of spironolactone to conventional ACEI and ARB therapy with conventional therapy alone in nondiabetic adults with proteinuric CKD.⁷⁴ One study that compared spironolactone with cilazapril (ACEI) in a diabetic population with proteinuric nephropathy was rejected because it lacked intention-to-treat analysis, and concealment and blinding were not stated.⁵⁶⁰

The results of these studies should be viewed with caution as the sample sizes were small (N= 21– 165) and duration of these trials (2 months–1 year) was short. None of the studies reported cardiovascular outcomes, mortality, or progression to ESRD.

P.9.5.3 Section 9.5.3: Health economics methodology

No health economics papers were found to review.

P.9.5.4 Section 9.5.4: Evidence statements

Renoprotective effects of spironolactone: reduction in proteinuria or albuminuria

In two RCTs conducted in diabetic adults with nephropathy concomitantly treated with ACE inhibitors or ARBs, spironolactone significantly reduced albuminuria compared with placebo.^{588,692} (Level 1+)

In a nondiabetic CKD population, addition of spironolactone to ACEI or ARB therapy resulted in a significant reduction in proteinuria. The reduction in proteinuria was significantly greater in people with GFR <60 ml/min/1.73m² than in people with GFR >60 ml/min /1.73m². By contrast, proteinuria did not change from baseline in people treated with ACEI or ARB therapy alone.⁷⁴ (Level 1+)

In an RCT conducted in a diabetic/nondiabetic mixed CKD population, the reduction in 24-hour urinary protein excretion was significantly greater in either the ramipril + spironolactone group or in the ramipril + irbesartan + spironolactone group, compared to the ramipril group. Compared with the ramipril + irbesartan group, there was a greater reduction in 24-hour urinary protein excretion in the ramipril + irbesartan + spironolactone group. There was NS difference in proteinuria reduction between ramipril + spironolactone group and ramipril + irbesartan + spironolactone group. The spironolactone groups. The spironolactone-induced decrease in proteinuria was similar regardless of presence of diabetes.¹²⁴ (Level 1+)

Change in GFR

In three studies,^{74,124,588} there was no significant difference in GFR decline in patients receiving spironolactone with ACEI or ARB therapy compared to the control (placebo or no treatment). (Level 1+)

By contrast, van den Meiracker et al. reported that spironolactone significantly decreased the eGFR compared to placebo. (Level 1+)

Toxicity of spironolactone: hyperkalaemia

Treatment with spironolactone in addition to ACEI and ARB therapy seemed to be associated with a higher incidence of hyperkalaemia, although these studies were probably too underpowered to detect a significant difference between treatment groups.

Four people receiving spironolactone + conventional therapy and two people receiving conventional therapy alone developed hyperkalaemia (no p value stated).⁷⁴ (Level 1+)

Three patients receiving spironolactone developed hyperkalaemia.¹²⁴ (Level 1+)

One patient treated with spironolactone was excluded from the study due to hyperkalaemia.⁵⁸⁸ (Level 1+)

Despite decreasing the dose of spironolactone from 50-25 mg/d, five patients treated with spironolactone were excluded from the study due to hyperkalaemia compared to only one patient in the placebo group (no p value stated).⁶⁹² (Level 1+)

P.9.5.5 Section 9.5.5: From evidence to recommendation

The GDG noted that all the evidence on this topic comes from short duration trials that are small and under powered. Very few of the trials reported on relevant outcomes such as cardiovascular events and none reported on progression of CKD.

Because of the limitations of trial design and their duration, the GDG agreed that a recommendation about the use of spironolactone should not be made based on the evidence regarding effects on proteinuria. Reference is made in a footnote to the recommendations on ACE inhibitors/ARBs.

The GDG noted that hyperkalaemia was more common in people treated with spironolactone.

P.10 Section 10: Reducing cardiovascular disease

P.10.1 Section 10.1: Statin therapy and reduction in proteinuria

P.10.2 Section 10.2: Lipid lowering in people with CKD

P.10.2.1 Section 10.2.1: Clinical introduction

The benefits of lipid-lowering therapy in people with pre-existing cardiovascular disease are clear and very well described.^{1,117,256} Although people with CKD are at increased risk of CVD and might

reasonably be expected to also benefit from the effects of lipid lowering therapy, the published randomised controlled trials have largely excluded people with most types of kidney disease. Furthermore the expected positive association between blood cholesterol levels and cardiovascular outcomes were not observed in studies conducted in people receiving haemodialysis.⁷¹² Studies in animal models suggest that treatment of dyslipidaemia should have beneficial effects on progression of CKD.^{330,331,497} A systematic review pooling the literature from all human studies that were conducted before 2000 (n=404 participants) suggested that similar benefits might accrue in humans. The studies included evaluated multiple classes of medications, including statins, fibric acid derivatives, and probucol.²¹³

The spectrum of dyslipidaemia in CKD is distinct from the general population and varies with stage of CKD and presence of diabetes and/or nephrotic syndrome. Plasma triglycerides start to increase early in CKD and show the highest concentrations in nephrotic syndrome and people receiving dialysis. HDL-cholesterol concentrations are generally reduced compared with people without CKD and the distribution of subfractions is different, leading to impairment in reverse cholesterol transport and promoting atherosclerosis. Although elevated plasma LDL-cholesterol, there are qualitative changes in the LDL subfractions with an increase in those that are highly atherogenic. Lipoprotein (a), a risk factor for CVD in the general population is also influenced by CKD. Levels rise early in CKD and are mostly influenced by the degree of proteinuria. The hallmarks of uraemic dyslipidaemia are hypertriglyceridaemia, increased remant lipoproteins, reduced HDL-cholesterol, increased apolipoprotein A-IV.³⁶³

The optimal targets for plasma lipids in people with CKD are not yet known. Statins are effective at lowering total and low-density lipoprotein (LDL)-cholesterol and fibrates reduce plasma triglyceride concentrations and raise HDL-cholesterol. Nicotinic acid appears most suited to the dyslipidaemia of CKD because it raises HDL-cholesterol, lowers lipoprotein (a), reduces triglycerides and shifts the LDL-cholesterol fraction to less atherogenic particles. SIGN guidelines recommend treatment with statins for people with stage 1−3 CKD and a predicted 10 year cardiovascular risk of ≥20%, irrespective of baseline lipid parameters. The CARI guidelines suggest that statins may retard progression of renal failure but make no specific recommendation. The UK CKD guidelines recommend that people with CKD and coronary disease should be treated according to existing guidelines and those who do not have evidence of coronary disease should be treated according to their estimated risk, using the Joint British Societies Guidelines (recognising that these guidelines specifically exclude CKD from their remit).

In adults with CKD and dyslipidaemia, do lipid lowering agents (statins, fibrates, fish oils) decrease cardiovascular disease risk and all-cause mortality compared with placebo or each other?

P.10.2.2 Section 10.2.2: Methodology

Hydroxymethyl glutaryl CoA reductase inhibitors (statins), fibric acid derivates (fibrates), and omega-3 fatty acids (fish oils) are antilipemic therapies that may reduce the risk of cardiovascular disease by decreasing triglyceride or LDL cholesterol levels and increasing HDL cholesterol levels. There were very few trials of antilipemic therapies in non-dialysis CKD populations. There were no head-to-head studies of the three antilipemic therapies in adults with CKD. There were no studies that examined the efficacy of omega-3 fatty acids to reduce the risk of cardiovascular disease in adults with CKD.

A post-hoc analysis of the Veterans' Affairs High-Density Lipoprotein Intervention RCT (VA-HIT: N=1046, follow-up 5.3 years),⁶⁷⁸ compared a fibrate (gemfibrozil) to placebo for cardiovascular outcomes in men with a history of coronary heart disease and creatinine clearance <75 ml/min. This study is limited by a lack of baseline proteinuria data, all the participants were men and the population did not include people with severe renal disease. Creatinine clearance overestimates GFR and it is likely that the participants identified as having chronic renal insufficiency could have had lower renal function than estimated. Also, the creatinine concentrations were not standardised between centres or calibrated against a reference standard.

A systematic review assessed cardiovascular outcomes, changes in GFR and 24-hour proteinuria in people with CKD randomised to statins or placebo/no treatment (50 studies, N=30,144, follow-up ranged from 2–60 months).⁶⁵⁶ Subgroup analysis was performed in people with pre-dialysis CKD (26 studies), people undergoing dialysis (11 studies) and renal transplant recipients (17 studies).

A post-hoc analysis of the Scandinavian Simvastatin Survival RCT (4S: N=2314, follow-up 5.5 years, mean age 60 years) compared cardiovascular outcomes in people with coronary heart disease, raised cholesterol, and GFR <60 ml/min/1.73m² randomised to placebo or simvastatin. This study lacked proteinuria data and cause of CKD. Estimated, rather than measured, GFR was used to assess renal function.¹¹⁹

P.10.2.3 Section 10.2.3: Health economics methodology

There were no health economics papers found to review.

P.10.2.4 Section 10.2.4: Evidence statements

Fibrates versus placebo: Primary endpoint: nonfatal MI or death from coronary disease (including fatal MI, sudden death, death during a coronary intervention, death from other coronary causes)

In men with CrCl \leq 75 ml/min (N=1046), gemfibrozil significantly reduced the risk of nonfatal MI or death from coronary disease compared to treatment with placebo (adjusted HR 0.74, 95% Cl 0.56– 0.96, p=0.02, NNT = 16).⁶⁷⁸ (Level 1+)

Secondary endpoints: major cardiovascular events (fatal coronary disease, nonfatal MI, or stroke)

In men with CrCl ≤75 ml/min (N=1046), gemfibrozil significantly reduced the risk of major cardiovascular events compared with placebo (adjusted HR 0.75, 95% Cl 0.59–0.96, p=0.02).⁶⁷⁸ (Level 1+)

There was NS difference between placebo and gemfibrozil⁶⁷⁸ for risk of:

- non-fatal myocardial infarction
- all-cause mortality
- stroke
- adverse events: myositis. (Level 1+)

Adverse events: creatinine > 0.5 mg/dl higher from baseline

The incidence of sustained elevations in serum creatinine (>0.5 mg/dl higher from baseline) was significantly higher among gemfibrozil recipients compared with placebo (5.9% vs. 2.8%, p=0.02).⁶⁷⁸ (Level 1+)

Adverse events: rhabdomyolysis

There were no cases of rhabdomyolysis in either the placebo or gemfibrozil group.⁶⁷⁸ (Level 1+)

Statins versus placebo

Refer to Table 213 for a summary of the efficacy of statins versus placebo in people with CKD.

Compared with placebo, statins significantly reduced the risk of:

- all-cause mortality^{119,656} (Level 1+)
- cardiovascular mortality⁶⁵⁶ (Level 1++)
- non-fatal cardiovascular events⁶⁵⁶ (Level 1++)
- major coronary events (coronary mortality, non-fatal acute MI, resuscitated cardiac arrest, definite silent MI).¹¹⁹ (Level 1+)

There were NS differences between statins and placebo for stroke.¹¹⁹ (Level 1+)

Adverse events

Rates of discontinuation of study drug therapy because of adverse events were similar in simvastatin and placebo groups.¹¹⁹ (Level 1+)

Study	Population	Outcome	N total participants	Effect size	Heterogeneity (% I2)
656	Pre-dialysis CKD (Stage 1-4)	All-cause mortality	18,781	RR 0.81 (95% Cl 0.74 to 0.89), p <0.001, mostly driven by Pravastatin	0 NS

				driven by Pravastatin Pooling Project	
119	GFR <75 ml/min/1.73m ² with coronary heart disease, raised low-density lipoprotein cholesterol (LDL-C)	All-cause mortality	2314	HR 0.69 (95% CI 0.54-0.89)	Not applicable
119	GFR <60 ml/min/1.73m ² with coronary heart disease, raised LDL-C	All-cause mortality	508	HR 1.232 (1.024- 1.117) [sic] NS [sic]	Not applicable

Study	Population	Outcome	N total participants	Effect size	Heterogeneity (% 12)
656	Pre-dialysis CKD (stage 1-4)	Cardiovascular mortality	18,085	RR 0.80 (95% CI 0.70 to 0.90), p <0.001, mostly driven by Pravastatin Pooling Project	0 NS
656	Pre-dialysis CKD (stage 1-4)	Non-fatal cardiovascular events	19,363	HR 0.851 (0.921- 1.128) [sic] NS	30.7 NS
119	GFR <60 ml/min/1.73m ² with coronary heart disease, raised LDL-C	Major coronary events	508	HR 0.65 (95% CI 0.46-0.92)	Not applicable
119	GFR <75 ml/min/1.73m ² with coronary heart disease, raised LDL-C	Major coronary events	2314	HR 0.67 (95% CI 0.56-0.79)	Not applicable

P.10.2.5 Section 10.2.5: From evidence to recommendations

The main reason for examining the evidence in this area was the anecdotal observation that in people on dialysis, statins do not appear to offer the benefits seen in other groups. This may be due to the fact that there is reduced long-term survival in this particular group of people and that this may mask any beneficial effect of statins.

The GDG discussed whether CKD itself should be considered a risk factor for cardiovascular disease and should influence the use of statins as primary preventative therapy. In the absence of evidence that CKD is a causal risk factor for cardiovascular disease it was decided that the GDG should recommend that the use of statins for primary prevention of cardiovascular disease should be determined using existing risk tables bearing in mind the fact that a different table should be used for people with diabetes⁴⁸⁰. It was further recommended that studies are needed to assess the effect of CKD on cardiovascular risk.

On the basis of the evidence of effect in secondary prevention of cardiovascular disease the GDG recommended that lipid lowering therapy should be prescribed in people who have experienced a cardiovascular event. The evidence showed that there was benefit from statins in all people not just those with elevated lipid concentrations.

The lack of statistically significant differences observed in subgroup analyses may be due to the small numbers of people in these groups and the consequent lack of statistical power.

The GDG noted that there is a large international multicentre trial in progress which addresses the effects of lipid lowering with simvastatin and ezetimibe on outcomes in people with CKD without established coronary heart disease.

The GDG concluded that there was no evidence that statins had detrimental effects on kidney function in people with CKD, but it was noted that there appeared to be an increase in creatinine concentrations in people prescribed fibrates.

P.10.2.6 Section 10.2.6: RECOMMENDATIONS

R57 The use of statin therapy for the primary prevention^j of CVD in people with CKD should not differ from its use in people without CKD and should be based on existing risk tables for people with and without diabetes. It should be understood that the Framingham risk tables significantly underestimate risk in people with CKD.^k

R60 Offer statins to people with CKD for the secondary prevention of CVD irrespective of baseline lipid values

P.10.3 Section 10.3: Antiplatelet therapy and anticoagulation in people with CKD

P.10.3.1 Section 10.3.1: Clinical introduction

People with CKD paradoxically have both thrombotic and bleeding tendencies. Bleeding symptoms are usually mild, correlate best with prolonged bleeding times, and tend to become more prevalent with increasing severity of CKD.^{234,559,648} Factors involved include anaemia, platelet defects, abnormal function of von Willebrand factor, uraemic toxins and endothelial factors, such as increased production of nitric oxide.^{189,233,450,567} The greater risk of thrombotic events has been attributed to higher levels of procoagulant activity in people with CKD. Described abnormalities include increased levels of thrombin concurrent with high levels of fibrinogen, and elevated levels of factors VII and VIII.

CKD is an independent risk factor for the development of generalised atherosclerosis and coronary artery disease, and is associated with a worse prognosis following cardiovascular events. People with CKD have a higher risk of morbidity and death related to cardiovascular disease than of progression to end stage renal failure. Large clinical trials in the general population have demonstrated that antiplatelet agents reduce the risk of cardiovascular events, and may improve patency rates following revascularisation therapy. What evidence is there that the benefits of antiplatelet therapy in people with CKD outweigh the potential risks of bleeding complications?

P.10.3.2 Section 10.3.2: Methodology

There were very few studies conducted in populations with non-ESRD CKD that assessed the safety and efficacy of antiplatelet agents (aspirin, clopidogrel, dipyramidole, glycoprotein IIb/IIIa inhibitors). There were no studies that investigated anticoagulants (warfarin) to prevent mortality and cardiovascular events in people with CKD.

¹ There is insufficient evidence to support the routine use of statins to prevent or ameliorate progression of CKD.

^k The use of statins for the primary prevention of CVD in people with CKD should be informed by the Study of Heart and Renal Protection (SHARP) reported in: Baigent C, Landry M. Study of heart and renal protection. Kidney International (2003); 63: S207–S210.

One post hoc analysis of the double blind Clopidogrel in Unstable Angina to Prevent Recurent Events RCT (CURE, N=12,253, mean follow-up 9 months) compared clopidogrel with placebo in patients with various levels of renal dysfunction and non-ST-segment elevation acute coronary syndrome (NSTEACS). Both trial arms received aspirin (75-325 mg/day).³³⁴

Three cohort studies investigated the effect of prescription of aspirin compared with nonprescription of aspirin on mortality in people with CKD and heart failure (HF) and coronary artery disease (CAD) (N=6427, 1 year follow-up)¹⁹⁷ or in people with acute MI and CKD (N=1342, 9.8 months follow-up)³⁵⁸ or in people with ACS and CKD (N=5549, 2 year follow-up).³³⁶

One cohort study investigated the effect of non-prescription of any antiplatelet agent (aspirin, clopidogrel, dipyridamole, or ticlopidine) on mortality within 6 months of hospital discharge in men with CKD undergoing coronary artery bypass grafting (CABG) (N=19,411).²²⁶

Renal function assessment was limited to one measurement of serum creatinine upon hospital admission in all of the cohort studies. The cohort studies are also limited by lack of data on treatment adherence.

The effect of antiplatelet agents on mortality, cardiovascular events, and adverse events in people with CKD and various baseline cardiovascular comorbidities is summarised in Table 214, at the end of the evidence statements.

P.10.3.3 Section 10.3.3: Health economics methodology

There were no health economics papers found to review.

/4

P.10.3.4 Section 10.3.4: Evidence statements

All-cause mortality: clopidogrel versus placebo

In people with NSTEACS and either GFR <64 ml/min or GFR 64–81.2 ml/min, there was NS difference in mortality for clopidogrel compared with placebo (both groups received aspirin).³³⁴ (Level 1+)

Aspirin versus non-prescription of aspirin

Two cohort studies of people discharged from hospital following acute MI³⁵⁸ or ACS³³⁶ showed that aspirin use was NS associated with death in people with mild (GFR 60–80 ml/min/1.73m²) or moderate (GFR 30–59 ml/min/1.73m²) CKD. In people with ACS and GFR <30 ml/min/1.73m², aspirin use was associated with a significantly increased risk of death.³³⁶ In people with acute MI and GFR 15–29 ml/min, aspirin significantly reduced mortality.³⁵⁸ (Level 2+)

In another cohort with renal disease, HF, and CAD, use of aspirin significantly reduced 1-year mortality in people with CrCl 30–59 ml/min compared with non-use of aspirin. The risk of death was NS different between people with CrCl <30 ml/min + HF + CAD for aspirin compared with non-use of aspirin.¹⁹⁷ (Level 2+)

Non-prescription of antiplatelet drugs (aspirin, clopidogrel, dipyridamole, or ticlopidine)

Non-prescription of antiplatelet agents was associated with significantly increased odds of mortality in men with GFR <60 ml/min + CABG.²²⁶ (Level 2+)

Cardiovascular death: clopidogrel versus placebo

In people with NSTEACS and GFR <64 ml/min or GFR 64–81.2 ml/min, there was NS difference in cardiovascular mortality for clopidogrel compared with placebo.³³⁴ (Level 1+)

Cardiovascular death, non-fatal MI, or stroke: clopidogrel versus placebo

Clopidogrel significantly decreased the risk of cardiovascular death, non-fatal MI, or stroke in people with GFR 64–81.2 ml/min + NSTEACS. Clopidogrel did NS reduce this outcome in people with GFR <64 ml/min.³³⁴ (Level 1+)

Bleeding: clopidogrel versus placebo

In people with NSTEACS and GFR <64 ml/min or GFR 64–81.2 ml/min, there was NS risk of either lifethreatening or major bleeding for clopidogrel compared with placebo. However, clopidogrel use was associated with a significantly increased risk of minor bleeds.³³⁴ (Level 1+)

Table 214: The effect of antiplatelet agents on mortality, cardiovascular events, and adverse eventsin people with CKD and various cardiovascular comorbidities (95% CI)

Reference	Comparison	Population	Ν	Outcome	Effect size
334	Clopidogrel vs. placebo (aspirin in both arms)	GFR <64 ml/min + NSTEACS	4087	All-cause mortality	RR 0.95 (0.78-1.16) NS
334	Clopidogrel vs. placebo (aspirin in both arms)	GFR 64-81.2 ml/min + NSTEACS	4075	All-cause mortality	RR 0.91 (0.68-1.21) NS
336	Aspirin use at hospital discharge	GFR <30 ml/min/1.73m ² + ACS	306	All-cause mortality	HR 1.232 (1.024- 1.117), p not stated
336	Aspirin use at hospital discharge	GFR 30-59 ml/min/1.73m ² + ACS	1795	All-cause mortality	HR 1.029 (0.988- 1.081) NS
336	Aspirin use at hospital discharge	GFR 60-80 ml/min/1.73m ² + ACS	2018	All-cause mortality	HR 0.851 (0.921- 1.128) NS
358	Aspirin versus no cardioprotective agents* at hospital discharge		70	All-cause mortality	HR 0.21 (0.08-0.53), p not stated
358	Aspirin versus no cardioprotective agents* at hospital discharge	GFR 30-59 ml/min/1.73m ² + MI	412	All-cause mortality	HR 0.65 (0.37-1.12) NS
358	Aspirin versus no cardioprotective agents* at	GFR 60-89 ml/min/1.73m ² + MI	612	All-cause mortality	HR 0.97 (0.50-1.86) NS

Reference	Comparison	Population	N	Outcome	Effect size
	hospital discharge				
197	Aspirin versus no aspirin at hospital discharge	CrCl < 30 ml/min + HF + CAD	466	1 year All-cause mortality	HR 0.84 (0.64-1.11) NS
197	Aspirin versus no aspirin at hospital discharge	CrCl 30-59 ml/min + HF + CAD	2047	1 year All-cause mortality	HR 0.81 (0.67-0.98), p not given
226	Non-prescription of antiplatelet drugs** within 6 months of hospital discharge	GFR <60 ml/min + CABG	3260	All-cause mortality within 6 months of hospital discharge	OR 1.90 (1.23-2.94), p=0.004
334	Clopidogrel vs. placebo (aspirin in both arms)	GFR <64 ml/min + NSTEACS	4087	Cardiovascular death, non-fatal MI, or stroke	RR 0.89 (0.76-1.05) NS
334	Clopidogrel vs. placebo (aspirin in both arms)	GFR 64-81.2 ml/min + NSTEACS	4075	Cardiovascular death, non-fatal MI, or stroke	RR 0.68 (0.56-0.84) p <0.05
334	Clopidogrel vs. placebo (aspirin in both arms)	GFR <64 ml/min + NSTEACS	4087	Cardiovascular Death	RR 0.95 (0.77-1.17) NS
334	Clopidogrel vs. placebo (aspirin in both arms)	GFR 64-81.2 ml/min + NSTEACS	4075	Cardiovascular Death	RR 0.85 (0.63-1.16) NS
334	Clopidogrel vs. placebo (aspirin in both arms)	GFR <64 ml/min + NSTEACS	4087	Life-threatening bleed	RR 0.89 (0.60-1.31) NS
334	Clopidogrel vs. placebo (aspirin in both arms)	GFR 64-81.2 ml/min + NSTEACS	4075	Life-threatening bleed	RR 1.23 (0.78-1.93) NS
334	Clopidogrel vs. placebo (aspirin in both arms)	GFR <64 ml/min + NSTEACS	4087	Major bleed	RR 1.37 (0.89-2.12) NS
334	Clopidogrel vs. placebo (aspirin in both arms)	GFR 64-81.2 ml/min + NSTEACS	4075	Major bleed	RR 1.78 (0.95-3.34) NS
334	Clopidogrel vs. placebo (aspirin in both arms)	GFR <64 ml/min + NSTEACS	4087	Minor bleed	RR 1.50 (1.21-1.86), p <0.05
334	Clopidogrel vs. placebo (aspirin in both arms)	GFR 64-81.2 ml/min + NSTEACS	4075	Minor Bleed	RR 1.61 (1.27-2.06), p <0.05

*Cardioprotective agent = aspirin, beta-blocker, or ACEI.

**Antiplatelet agents = aspirin, clopidogrel, dipyridamole or ticlopidine.

P.10.3.5 Section 10.3.5: From evidence to recommendations

Interpretation of the results of observational studies of the impact of aspirin may be confounded by the indications for aspirin prescription. The study participants had varying levels of kidney function and follow up was relatively short.

Use of aspirin was associated with a reduction in mortality in people with a GFR below 60 $ml/min/1.73m^2$ who had had a myocardial infarction.

The GDG agreed that there was no reason to believe that antiplatelet drugs were less effective for secondary prevention of cardiovascular events in people with CKD.

People with CKD are at increased risk of bleeding and this risk is increased by the use of one or more antiplatelet drugs. The evidence does not show a significant increase in the incidence of major bleeding but there is an increased risk of minor bleeding.

P.10.3.6 Section 10.3.6: RECOMMENDATION

R59 Offer antiplatelet drugs to people with CKD for the secondary prevention of CVD. CKD is not a contraindication to the use of low dose aspirin but clinicians should be aware of the increased risk of minor bleeding in people with CKD given multiple antiplatelet drugs.

P.11 Section 11: Asymptomatic hyperuricaemia

P.11.1 Section 11.1: Asymptomatic hyperuricaemia in people with CKD

P.11.1.1 Section 11.1.1: Clinical introduction

Uric acid is a product of purine metabolism. After glomerular filtration, uric acid is both reabsorbed and excreted in the proximal tubule. Hyperuricaemia may result from either increased production or decreased excretion of uric acid. Increased production may occur through enzyme defects, increased purine turnover (myeloproliferative disorders and certain forms of cancer), or from increased consumption in diet. In patients with renal disease there is decreased urinary uric acid excretion. Whether this gives rise to hyperuricaemia depends on the degree of gastrointestinal excretory compensation.⁶⁹⁸ It has been shown that increasing levels of uric acid are associated with significantly increased hazard ratios for CKD, but the associations with progressive CKD are less strong.^{120,204}

There is theoretical evidence to support the role for uric acid as both an initiator of CKD, and a factor involved in its progression. It has been proposed that an elevated uric acid may have a role in initiating hypertension, arteriolosclerosis, kidney disease, insulin resistance, and hypertriglyceridaemia. Once renal microvascular disease develops, the kidney will drive hypertension; once obesity develops fat-laden adipocytes will contribute to insulin resistance, and once kidney disease develops the kidney will also drive progression.⁴⁶⁵

Allopurinol decreases serum uric acid levels by inhibiting the enzyme xanthine oxidase. Experimental rat models have suggested that allopurinol treatment can prevent hyperuricaemia-induced functional and structural injury of the kidney. In animal models of established renal diseases, correction of the hyperuricemic state can significantly improve blood pressure control, decrease proteinuria, and decrease the amount of glomerulosclerosis, tubulointerstitial fibrosis, and vasculopathy.^{320,466,603}

Does lowering uric acid with (a) allopurinol, (b) uricosuric agents (probenecid, sulfinpyrazone), (c) rasburicase (urate oxidase), decrease morbidity and mortality in adults with CKD and hyperuricaemia?

P.11.1.2 Section 11.1.2: Methodology

In non-CKD populations, treatment of hyperuricaemia is only indicated if the patient has symptomatic arthritis. The literature was reviewed to determine if treatment with allopurinol, probenecid, sulfinpyrazone, or rasburicase decreases progression of CKD and mortality in people with CKD and hyperuricaemia. There was little evidence in this area. There were no studies assessing rasburicase, probenecid, or sulfinpyrazone in people with pre-dialysis CKD.

Only one open label RCT⁶³⁸ compared 12 months of allopurinol treatment (100–200 mg/day dose, N=25) with usual treatment (N=26) in adults (mean age 48 years) with CKD and hyperuricaemia. Both trial arms received lipid lowering and antihypertensive agents throughout the study. This study was excluded as it had several methodological limitations. It was a small study, open-labelled, did not present intention to treat analysis, and did not provide statistical power calculations. There was little information on what treatments the 'usual treatment' group received. It may be also be difficult to extrapolate the findings from this study to a UK population as it was conducted in a Chinese population.

P.11.1.3 Section 11.1.3: Health economics methodology

There were no health economics papers found to review.

P.11.1.4 Section 11.1.4: Evidence statements

There are no evidence statements.

P.11.1.5 Section 11.1.5: From evidence to recommendation

The GDG agreed that there was no evidence to support treatment of asymptomatic hyperuricaemia in people with CKD.

P.11.1.6 Section 11.1.6: RECOMMENDATION

R60 There is insufficient evidence to recommend the routine use of drugs to lower uric acid in people with CKD who have asymptomatic hyperuricaemia.

P.12 Section 12: Managing isolated invisible haematuria

P.12.1 Section 12.1: Isolated invisible (microscopic) haematuria

P.12.1.1 Section 12.1.6: RECOMMENDATIONS

R61 When there is the need to differentiate persistent invisible haematuria in the absence of proteinuria from transient haematuria, regard two out of three positive reagent strip tests as confirmation of persistent invisible haematuria.

R62 Persistent invisible haematuria, with or without proteinuria, should prompt investigation for urinary tract malignancy in appropriate age groups.

R63 Persistent invisible haematuria in the absence of proteinuria should be followed up annually with repeat testing for haematuria, proteinuria/albuminuria, glomerular filtration rate (GFR) and blood pressure monitoring as long as the haematuria persists.

P.13 Section 13: Specific complications of CKD – renal bone disease

P.13.1 Section 13.1: Monitoring of calcium, phosphate, vitamin D and parathyroid hormone levels in people with CKD

P.13.1.1 Section 13.1.6: Recommendations

R64 The routine measurement of calcium, phosphate, parathyroid hormone (PTH) and vitamin D levels in people with stage 1, 2, 3A or 3B CKD is not recommended.

R65 Measure serum calcium, phosphate and PTH concentrations in people with stage 4 or 5 CKD (glomerular filtration rate (GFR) <30 ml/min/1.73m²). Determine the subsequent frequency of testing by the measured values and the clinical circumstances. Where doubt exists seek specialist opinion.

P.13.2 Section 13.2: Risks and benefits of bisphosphonates for preventing osteoporosis in adults with CKD

P.13.2.1 Section 13.2.6: RECOMMENDATIONS

R66 Offer bisphosphonates if indicated for the prevention and treatment of osteoporosis in people with CKD stage 1, 2, 3A or 3B.

P.13.3 Section 13.3: Vitamin D supplementation in people with CKD

P.13.3.1 Section 13.3.1: Clinical introduction

Vitamin D is normally either ingested or synthesised in the skin under the influence of sunlight. It is then hydroxylated in the liver to form 25-hydroxyvitamin D (calcidiol) and then hydroxylated in the kidney to 1,25-dihydroxyvitamin D (calcitriol), which is the most active form. Vitamin D deficiency can therefore occur as a result of decreased intake or absorption, reduced sun exposure, increased hepatic catabolism, or decreased endogenous synthesis (via 25-hydroxylation in the liver and subsequent 1-hydroxylation in the kidney). Active vitamin D has a variety of actions on calcium, phosphate, and bone metabolism. By increasing intestinal calcium and phosphate reabsorption and increasing the effect of parathyroid hormone (PTH) on bone, in health vitamin D has the net effect of increasing the serum calcium and phosphate concentrations. Vitamin D deficiency or resistance interferes with these processes, sometimes causing hypocalcaemia and hypophosphataemia. Since hypocalcaemia stimulates the release of PTH, however, the development of hypocalcaemia is often masked. The secondary hyperparathyroidism, via its actions on bone and the kidney, partially corrects the hypocalcaemia but enhances urinary phosphate excretion, thereby contributing to the

development of hypophosphataemia. In people with CKD the kidney component of this loop is increasingly compromised as CKD advances.

As renal function declines, the hydroxylating activity of renal 1α -hydroxylase on 25-hydroxyvitamin D3 also decreases, resulting in decreased production of active vitamin D (1,25-dihydroxyvitamin D3) and decreased intestinal absorption of calcium. The decrease in calcium and active vitamin D3 alleviates the repression of parathyroid hormone (PTH) production, resulting in hyperproliferation of parathyroid cells. High PTH levels cause an increase in bone remodelling, leading to high bone-turnover (osteitis fibrosa), loss of bone density and structure. This excess bone remodelling liberates calcium and phosphorus from bone, resulting in hypercalcaemia and hyperphosphataemia and increasing the risk for vascular calcification.

Vitamin D supplementation in people with CKD should therefore be driven by the underlying metabolic abnormality. This in turn will depend on the stage of CKD but is complicated by the fact that in the population with the highest prevalence of CKD, the older population, vitamin D deficiency is common. Cutaneous vitamin D production and vitamin D stores decline with age coupled with the fact that intake is often low in older subjects. Furthermore, even in those with adequate vitamin D intake, achlorhydria, which is common in older people, limits vitamin D absorption. Nutritional forms of vitamin D include ergocalciferol and cholecalciferol, active forms of vitamin D include alfacalcidol, calcitriol and paricalcitol. Elderly patients are likely to be vitamin D deficient from diet, lack of sunlight and poor absorption for which they will need nutritional vitamin D, however as CKD progresses (particularly in stages 4 and 5) renal function is impaired to such a degree that active vitamin D may also be required.

What type of vitamin D supplementation, if any, should be used in adults with CKD?

P.13.3.2 Section 13.3.2: Methodology

Eight RCTs and one case series investigated the safety and efficacy of various natural and synthetic vitamin D metabolites to treat secondary hyperparathyroidism and to prevent bone loss in people with pre-dialysis CKD. Outcomes of interest included adverse events, fractures, changes in serum calcium, phosphorus, PTH, osteocalcin, alkaline phosphatase, GFR, and bone mineral density. All of these studies are limited by small sample sizes (N=25–220), and very few presented intention to treat analyses. There were no studies of acceptable methodological quality that compared different vitamin D metabolites head-to-head.

Four RCTs^{51,490,557,572} pr compared calcitriol supplementation to placebo in people with CKD. Two of these RCTs titrated the dose of calcitriol from 0.25 μ g/day up to 0.5 μ g/day.^{51,490} In the RCT of Przedlacki et al., treatment with calcitriol (0.25 μ g/day, N=13, 12 months follow-up) was compared with placebo (N=12) in people with eGFR < 51.2 ml/min. In the RCT of Ritz et al., a low dose of calcitriol (0.125 μ g/day, N=28, follow-up 1 year) was compared with placebo (N=24) in people with nondiabetic CKD and abnormal iPTH levels (iPTH >6 pmol/l on 3 separate occasions). The Baker et al. study (N=13, follow-up 12 months) was excluded due to small sample size, high dropout rate, and lack of baseline data comparison between the two trial arms.

One RCT compared 6 months of treatment with calcitrol (N=8, 1 μ g/day) or calcidiol (N=9, 4000 IU/day) in people with chronic renal failure.¹²² This study was rejected because there was no

indication of blinding, concealment, intention to treat, and statistical power to detect differences between the two groups.

Two RCTs investigated the effects of treatment with alfacalcidol (1- α -hydroxycholecalciferol) compared to placebo in people with mild to moderate CKD (creatinine clearance 10-60 ml/min).^{245,573} The Hamdy et al. RCT (N=89 alfacalcidol and N=87 placebo, 24 months follow-up) titrated the dose of alfacalcidol from 0.25 to 1 µg/day. Most of the participants had abnormal bone histology at baseline (NS difference between the trial arms). The smaller RCT of Rix et al. (N=36, 18 months follow-up) titrated alfacalcidol from 0.25 to 0.75 µg/day.

A pooled analysis of 3 RCTs with identical inclusion/exclusion criteria and different dosing regimens (3 times weekly or once daily) compared paricalcitol (N=107, 6 months follow-up, mean dose was 1.3 to 1.4 µg/day) with placebo (N=113) in people with CKD and hyperparathyroidism (iPTH \ge 150 pg/ml). Although this study was not a systematic review, it was included as an RCT (albeit pooled) due to lack of studies of non-dialysis CKD populations.¹⁴³

One retrospective case series examined changes in serum calcium, phosphate, iPTH, and adverse events before and after 6 months' treatment with ergocalciferol (vitamin D2) in men with stage 3 CKD and plasma iPTH >70 ng/l (N=44) or stage 4 CKD and plasma iPTH >110 ng/l (N=22).²⁵

P.13.3.3 Section 13.3.3: Health economics methodology

There were no health economics papers found to review.

P.13.3.4 Section 13.3.4: Evidence statements

Calcitrol versus placebo

Refer to Table 215 for summary of studies.

Serum calcium

One RCT showed that serum calcium significantly increased with calcitrol (0.25 titrated to 0.5 μ g/day) compared with placebo.⁴⁹⁰ (Level 1+)

Two RCTs showed NS changes in mean serum calcium in people taking calcitrol (0.25 μ g/day steady or 0.125 μ g/day) or placebo.^{557,572} (Level 1 +)

Serum phosphorus

Three RCTs showed that mean serum phosphate did NS change in either the placebo or calcitrol groups.^{490,557,572} (Level 1 +)

Serum parathyroid hormone (PTH)

Two RCTs showed that iPTH significantly decreased in people receiving calcitrol, whereas in the placebo groups, iPTH levels either increased significantly⁴⁹⁰ or did not significantly change.⁵⁵⁷ (Level 1 +)

One RCT showed that iPTH decreased from baseline in the calcitrol group whereas iPTH increased from baseline in those taking placebo (p<0.05 between placebo and calcitrol groups).⁵⁷² (Level 1 +)

Serum alkaline phosphatase (ALP)

Two RCTs showed that serum ALP decreased significantly in people taking calcitrol, whereas there were NS changes in ALP in people taking placebo.^{490,557} (Level 1 +)

Serum osteocalcin

One RCT showed that mean serum osteocalcin significantly decreased in the calcitrol group, whereas osteocalcin significantly increased in the placebo group.⁵⁵⁷ (Level 1 +)

Change in eGFR or creatinine clearance

Two RCTs showed that creatinine clearance or GFR significantly decreased in both the calcitrol and the placebo groups, but there were NS differences between the groups.^{490,557} (Level 1)

Bone mineral density (BMD)

BMD of the lumbar spine (L2–L4), femoral neck, and trochanter significantly increased in the calcitrol group. By contrast BMD of the lumbar spine (L2–L4), femoral neck, and trochanter significantly decreased in the placebo group (p<0.01 between groups).⁵⁵⁷ (Level 1+)

Indices of bone formation, remodelling and structure

There were NS changes in bone volume in placebo or calcitrol groups.⁴⁹⁰ (Level 1+)

Indices of bone formation, remodelling and structure (osteoid volume, osteoid thickness, osteoid surface, eroded surface, osteoclast surface, bone formation rate, mineralisation surface, and mineral apposition rate, singly labelled trabecular surfaces) significantly decreased in the calcitrol group, whereas there were NS changes in the placebo group.⁴⁹⁰ (Level 1+)

There were NS changes in doubly labelled trabecular surfaces in calcitrol or placebo groups. (Level 1+)

Adverse events

Hypercalcaemia (>2.6 mmol/l) was observed in 2/13 people receiving calcitrol and 0/12 receiving placebo. Hyperionised calcaemia (blood ionised Ca >1.29 mmol/l) occurred in 5/13 on calcitrol and 3/12 in the placebo group.⁵⁵⁷

There was no hypercalcaemia (>2.7 mmol/l on three consecutive occasions) in either calcitrol (0.125 μ g/day) or placebo groups.⁵⁷²

There was no hyperphosphataemia (>2.2 mmol/l on 3 consecutive occasions) in either calcitrol (0.125 μ g/day) or placebo groups.⁵⁷²

Hyperphosphataemia (P >1.5 mmol/l) occurred in 3/12 placebo and 10/13 randomised to calcitrol (NS between groups).⁵⁵⁷ (Level 1+)

Table 215: Summary of studies comparing calcitriol with placebo

190 Creatinine > 180 µmml/1 and stable renal function 8 14 14 Change iPTH [4g/l) Calcitriol 1.33 → 0.98 (26%), p < 0.01	Study	Population	Duration (months)	Calcitriol (N)	Placebo (N)	Outcome	Size effect
557 GFR <51.2 ml/min	490	μ mol/l and stable	8	14	14	-	(-26%), p <0.01 Placebo 0.94 \rightarrow 1.37,
572 Creatinine >1.4, net 23%) p NS 573 Creatinine >180, net in the second s	557	GFR <51.2 ml/min	12	13	12	-	calcitriol 150 \rightarrow
 Creatinine 51.4 if 2 28 24 Change IPTH (pmol/l) p not given p ot given p ot							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	572	mg/dl and <6.5 mg/dl and iPTH	12	28	24	-	p not given Placebo $14.0 \rightarrow 27.8$ p <0.05 between
490Creatinine >180 µmol/l and stable renal function81414Change Serum alkaline phosphatase (U/l)Calcitriol: 201 → 155 (-23%), p<0.05557GFR <51.2 ml/min,121312Change serum alkaline phosphatase (U/l)For 0.05 for between groups557GFR <51.2 ml/min,121312Change serum alkaline phosphatase (U/l)Calcitriol: 165.0 →143, p <0.05).	557	GFR <51.2 ml/min	12	13	12	Osteocalcin	(-24%), p <0.05 Placebo 24.6 \rightarrow 28.3
$ \begin{array}{c} 490 \\ 490 \\ 112 \\ 122 \\ 123 $	490	μ mol/l and stable	8	14	14	Serum alkaline phosphatase	(-23%), p<0.05 Placebo: $209 \rightarrow 200$ (-4%) NS. p <0.05 for between
Creatinine >180 8 15 15 Change in Calcitrioi: -5ml/min μmol/l and stable renal function CrCl (approx.), p <0.01	557		12	13	12	Serum alkaline phosphatase	→143, p <0.05).
⁵⁵⁷ GFR <51.2 ml/min 12 13 12 Change in Calcitriol: 21.5	490	μ mol/l and stable	8	15	15	-	(approx.), p <0.01 Placebo: -5ml/min (approx.), p <0.01
	557	GFR <51.2 ml/min	12	13	12	Change in	Calcitriol: 21.5

Study	Population	Duration (months)	Calcitriol (N)	Placebo (N)	Outcome	Size effect
					GFR	ml/min \rightarrow 18.7 ml/min, p <0.05) Placebo: 31.3 ml/min \rightarrow 26.3 ml/min, p <0.05 NS between treatments.
557	GFR <51.2 ml/min,	12	13	12	Change Bone Mineral Density (g/cm ²)	Calcitriol lumbar spine: 1.111 \rightarrow 1.133, p <0.001 Placebo lumbar spine: 1.214 \rightarrow 1.201, p <0.05 p <0.01 between groups Calcitriol femoral neck 0.806 \rightarrow 0.832, p <0.001. Placebo femoral neck 0.860 \rightarrow 0.845, p <0.05 p <0.001 between groups. Calcitriol: Ward's triangle NS Placebo: Ward's triangle 0.720 \rightarrow 0.702, p<0.05 Placebo: trochanter 0.708 \rightarrow 0.724, p<0.05

Study	Population	Duration (months)	Calcitriol (N)	Placebo (N)	Outcome	Size effect
490	Creatinine > 180 µmol/l and stable renal function	8	14	14	Change Bone volume	NS change placebo or calcitriol.
					Change Osteoid volume	calcitriol: 5% \rightarrow 3%, p<0.01
						Placebo: 8% \rightarrow 6%, NS
						p <0.01 between groups
			Change Osteoid thickness (μm)	calcitriol: $9.6 \rightarrow 6.1$, p <0.01) placebo : $9.0 \rightarrow 10$, NS		
				Change Osteoid surface	Calcitriol decreased, p <0.05	
					Placebo: NS change p <0.01 between	
						groups
				Change Eroded surface	Calcitriol decreased, p <0.05	
						Placebo: NS change
						p <0.05 between groups
					Change Osteoclast surface	Calcitriol decreased, p <0.01
						Placebo: NS change
					p <0.01 between groups	
			Change Bone formation	Calcitriol: decreased, p <0.01		
					rate	Placebo: NS change
						p <0.05 between groups

Study	Population	Duration (months)	Calcitriol (N)	Placebo (N)	Outcome	Size effect
					Change Mineral apposition rate (µm/day)	Calcitriol: 0.53 → 0.44, p <0.05. Placebo: 0.55 \rightarrow 0.50, NS

Alfacalcidol (1a-hydroxycholecalciferol) versus placebo

Refer to Table 216 at the end of the evidence statements for a summary of studies.

Serum calcium

Two RCTs showed that mean serum calcium increased significantly in people taking alfacalcidol, while there were NS changes in calcium in people taking placebo, p <0.001 between groups.^{245,573} (Level 1 +)

Serum phosphorus

Two RCTs showed that there were NS changes in serum P in the alfacalcidol or placebo groups.^{245,573} (Level 1+)

Serum parathyroid hormone (PTH)

The RCT of Hamdy et al. showed a NS decrease in iPTH with alfacalcidol treatment and a significant increase in iPTH in the placebo group. At 24 months, iPTH returned to baseline levels in those with alfacalcidol treatment. (Level 1+)

The RCT of Rix et al. showed a significant decrease in iPTH with treatment with alfacalcidol, whereas there were NS changes in iPTH in the placebo group, p < 0.05 between groups. (Level 1+)

Serum alkaline phosphatase (ALP)

Bone-specific ALP significantly decreased in the alfacalcidol group, whereas there was NS change in ALP in the placebo group.⁵⁷³ (Level 1+)

Serum osteocalcin

Osteocalcin significantly decreased in the alfacalcidol group, whereas there was NS change in osteocalcin in the placebo group. At the end of the study only 1 person in the alfacalcidol group had osteocalcin levels above the reference range (4.2–31.4 ng/ml), whereas 6 people in the placebo group had osteocalcin levels exceeding reference ranges.⁵⁷³ (Level 1+)

Change in creatinine clearance

Two RCTs showed that CrCl decreased significantly in both placebo and alfacalcidol groups, but there were NS differences between treatments.^{245,573} (Level 1+)

Bone mineral density (BMD)

There was a significant difference for BMD of the spine in the alfacalcidol versus placebo group (4.2%, p <0.05).⁵⁷³ (Level 1+)

There was a significant difference for BMD of the femoral neck in the alfacalcidol versus placebo group (4.9%, p <0.05).⁵⁷³ (Level 1+)

There were NS changes in total body BMD or forearm BMD in the placebo or the alfacalcidol groups.⁵⁷³ (Level 1+)

Indices of bone formation, remodelling and structure

In people with histological bone abnormalities at baseline (N=100), there were NS differences in bone volume in the placebo (N=45) or alfacalcidol (N=55). (Level 1+)

Osteomalacia improved in people taking alfacalcidol as the number of osteoid lamellae decreased whereas the number of osteoid lamellae increased in the placebo group, p=0.002 between groups. (Level 1+)

The proportion of people with bone abnormalities at the beginning of the study was similar between the placebo (73%) and alfacalcidol (76%) groups. After 24 months treatment, 54% of people taking alfacalcidol and 82% on placebo had bone abnormalities (no p given). (Level 1+)

Fibrosis significantly decreased in people taking alfacalcidol, while fibrosis increased in the placebo group, p=0.0002 between groups. (Level 1+)

Osteoid volume, osteoid surface, osteoblast surface, and osteoclast surface all decreased significantly in the alfacalcidol group, whereas there were NS changes in any of these parameters in the placebo group, p <0.05 between groups for each outcome. (Level 1+)

There were NS differences in mineral apposition rate between placebo or alfacalcidol groups. (Level 1+)

Bone formation rate decreased significantly in alfacalcidol group, but there was NS change in placebo and NS difference between groups. (Level 1+)

Bone resorption decreased in people taking alfacalcidol compared with placebo. The eroded bone surface significantly decreased in the alfacalcidol group while it increased in the placebo group, p=0.04 between groups. Also, alfacalcidol was associated with a significant decrease of active eroded surface compared with placebo, p=0.0006 between groups.²⁴⁵ (Level 1+)

Adverse events

Mild hypercalcaemia (>2.63 mmol/l on 2 occasions) was seen in 10/89 patients receiving alfacalcidol and 3/87 patients receiving placebo (p=0.09, NS). Severe hypercalcaemia (>3.00 mmol/l on 1 occasion) was observed in 4 people taking alfacalcidol and 0 people on placebo.²⁴⁵ (Level 1+)

Hypercalcaemia occurred in 1/18 people on alfacalidol.⁵⁷³ (Level 1+)

Mild GI disturbances were reported in 6/89 people on alfacalcidol and 1/87 on placebo.²⁴⁵ (Level 1+)

Pseudogout was reported by 2/89 people on alfacalcidol.^{245,245} (Level 1+)

Study	Population	Duration (months)	Alfacalcidol (N)	Placebo (N)	Outcome	Size effect
245	CrCl 15-50 ml/min, 75% had bone abnormalities	24	89	87	Change iPTH (pmol/l)	Alfacalcidol: -1.6 pmol/l, NS Placebo +7.3 pmol/l, p <0.001
573	CrCl 10-60 ml/min and Ca <1.35 mmol/l and P <2.0 mmol/l.	18	16	15	Change iPTH (%)	Alfacalcidol: -47%, p <0.05 Placebo NS p <0.05 between groups
573	CrCl 10-60 ml/min and Ca <1.35 mmol/l and P <2.0 mmol/l.	18	16	15	Change osteocalcin (%)	Alfacalcidol: -24%, p <0.05 Placebo: + 25%, NS p <0.05 between groups
573	CrCl 10-60 ml/min and Ca <1.35 mmol/l and P <2.0 mmol/l.	18	16	15	Change bone- specific alkaline phosphatase (%)	Alfacalcidol: -48% p <0.05 Placebo: NS
245	CrCl 15-50 ml/min, 75% had bone abnormalities	24	89	87	Change in CrCl:	Alfacalcidol : -5.7ml/min, Placebo: -4.0 ml/min NS between treatments
573	CrCl 10-60 ml/min and Ca <1.35 mmol/l and P <2.0 mmol/l.	18	16	15	Change in CrCl:	Decreased significantly in both placebo and alfacalcidol groups,

Table 216: Summary o	f studies comparing	alfacalcidol with placebo
----------------------	---------------------	---------------------------

Study	Population	Duration (months)	Alfacalcidol (N)	Placebo (N)	Outcome	Size effect
						NS between treatments.
573	CrCl 10-60 ml/min and Ca <1.35 mmol/l and P <2.0 mmol/l.	18	16	15	Change Bone Mineral Density	Alfacalcidol spine: +2.9% NS Placebo spine: - 1.1% change, NS Alfacalcidol versus placebo group (4.2%, p <0.05). Alfacalcidol femoral neck : +1.5%, NS Placebo femoral neck: -1.5%, NS Alfacalcidol versus placebo group (4.9%, p <0.05). NS changes in total body BMD in the placebo or the alfacalcidol
245	CrCl 15-50	24	55	45	Change Bone	the alfacalcidol groups Alfacalcidol: 1.22
	ml/min, 75% had bone abnormalities	2.1		13	volume	Placebo: 1.09 p=0.75 between groups
		24	55	45	Change Osteoid volume	Alfacalcidol : - 0.30, p <0.01
						Placebo: 0.09, NS

Study	Population	Duration (months)	Alfacalcidol (N)	Placebo (N)	Outcome	Size effect
						p=0.005 between groups
		24	55	45	Change Osteoid surface	Alfacalcidol: - 6.85, p<0.01 Placebo: +1.35,
						NS
						p=0.008 between groups
		24	55	45	Change Eroded surface	Alfacalcidol : - 3.76
						Placebo : +0.45 p=0.04 between groups
		24	55	45	Change Osteoclast surface	Alfacalcidol: - 0.30, NS) NS Placebo: +0.17
						p=0.002 between groups
		24	55	45	Change Bone formation rate	Alfacalcidol: -4.66, p <0.05
						Placebo: +0.51, p=0.15
						NS between groups
		24	55	45	Change Mineral apposition rate (µm/day)	NS changes in alfacalcidol or placebo and NS between groups (p=0.34)

Paricalcitol versus placebo

Refer to Table 217 for a summary of studies.

Serum calcium

Mean serum calcium increased slightly in people taking paricalcitol, while there were small decreases in serum calcium in the placebo group, NS between groups.¹⁴³ (Level 1+)

Serum phosphorus

There were NS changes in serum phosphate in the paricalcitol or placebo groups.¹⁴³ (Level 1 +)

Serum parathyroid hormone (PTH)

Serum iPTH decreased significantly from baseline to 6 months treatment with paricalcitol, whereas iPTH increased in the placebo group (p<0.001 between groups).¹⁴³ (Level 1+)

Serum alkaline phosphatase (ALP)

Bone-specific ALP significantly decreased from baseline to 6 months in the paricalcitol group, compared with a smaller decrease in bone ALP in the placebo group, p <0.001 between groups.¹⁴³ (Level 1+)

Serum osteocalcin

Serum osteocalcin significantly decreased in the paricalcitol group, compared with an increase in osteocalcin in the placebo group (p < 0.001 between groups).¹⁴³ (Level 1+)

Change in GFR

After 6 months, eGFR decreased in both placebo and paricalcitol groups, but there were NS differences between treatments.¹⁴³ (Level 1+)

Two consecutive reductions in iPTH ≥ 30% from baseline

Significantly more people taking paricalcitol achieved 2 consecutive \geq 30% decreases in serum iPTH from baseline compared with people taking placebo (p <0.001 between groups). Significantly more people taking paricalcitol achieved iPTH <110 ng/l compared with those on placebo.¹⁴³ (Level 1+)

Four consecutive reductions in iPTH ≥ 30% from baseline

Significantly more people taking paricalcitol achieved 4 consecutive \geq 30% decreases in serum iPTH from baseline compared with the placebo group (p <0.001 between groups).¹⁴³ (Level 1+)

Urinary deoxypryidinoline

There were NS differences between paricalcitol or placebo groups for changes in urinary deoxypryidinoline.¹⁴³ (Level 1+)

Urinary pyridinoline

Urinary pyridinoline decreased significantly in the paricalcitol group, compared with an increase in the placebo group (p=0.006 between groups).¹⁴³ (Level 1+)

Adverse events

Hypercalcaemia (2 consecutive Ca >2.62 mmol/l) occurred in 2 people on paricalcitol and no people on placebo (NS).

Hyperphosphataemia (2 consecutive PO4 >1.78 mmol/l) occurred in 11 people on paricalcitol and 13 people on placebo (NS).¹⁴³ (Level 1+)

Study	Population	Duration (months)	Paricalcitol (N)	Placebo (N)	Outcome	Size effect
143	3 pooled RCTs: CKD, iPTH ≥150 pg/ml, Ca 1.99- 2.40 mmol/l and PO4 ≤1.68 mmol/l.	6	101	108	Change iPTH (%)	Paricalcitol: - 45.2% (max) Placebo: +13.9% (max) p <0.001 between groups
			101	108	2 consecutive decreases ≥30% of iPTH	Paricalcitol: 91% Placebo : 13% p <0.001 between groups
			100	104	Change osteocalcin, ng/ml	Paricalcitol: -21.6 ng/ml Placebo: +10.7 ng/ml p <0.001 between groups
			101	107	Change Bone- specific alkaline phosphatase (Ig/I)	Paricalcitol : -7.89 μg/l Placebo: -1.44 μg/l, p <0.001 between groups
			82	93	Change in GFR:	Paricalcitol: -2.52 ml/min/1.73m ² , (- 10.4%) placebo : -1.57 ml/min/1.73m ² (- 6.95%) NS between treatments.

Before versus after treatment with ergocalciferol (vitamin D2)

Serum calcium

Mean serum calcium did NS change after 6 months treatment with ergocalciferol in the whole group (N=66), stage 3 CKD alone (N=44) or stage 4 CKD alone (N=22).²⁵ (Level 3)

Serum phosphate

Mean serum phosphate did NS change after 6 months treatment with ergocalciferol in the whole group, stage 3 CKD alone or stage 4 CKD alone.²⁵ (Level 3)

Serum parathyroid hormone (PTH)

In those with stage 3 CKD (N=44), iPTH significantly decreased after 6 months of ergocalciferol treatment (-22%, p < 0.005). In the stage 4 CKD group (N=22) there was NS change in iPTH.²⁵ (Level 3)

Adverse events

There were no cases of hypercalcaemia or hyperphosphataemia before or after ergocalciferol.²⁵ (Level 3)

P.13.3.5 Section 13.3.5: From evidence to recommendations

The classification in the BNF⁶ of the forms of vitamin D available as pharmacological supplementation can be confusing. Both preparations containing ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3) are listed under the heading 'ergocalciferol'.

Tablets of ergocalciferol combined with calcium are the cheapest form of vitamin D, but preparations of cholecalciferol combined with calcium are also cheaper than alfacalcidol and calcitriol. The GDG observed that cholecalciferol is the most commonly prescribed form used to treat simple vitamin D deficiency in primary care.

The GDG noted that the costs of 1-12-hydroxyvitamin D (alfacalcidol) and 1,25-dihydroxyvitamin D (calcitrol) are very similar.

There is no evidence as to whether one form of vitamin D is more effective than another as all the studies were comparisons with placebo and there were no trials that looked at 25-hydroxyvitamin D.

The GDG noted that all forms of vitamin D will suppress PTH secretion.

It was agreed that given the similar prevalence of vitamin D deficiency in people with stage 1, 2, 3A and 3B CKD it was most likely that the deficiency was related to poor dietary intake or limited sunlight exposure. Renal hydroxylation was likely to be normal in these people. They therefore recommended that ergocalciferol or cholecalciferol should be the first treatment used to treat vitamin D deficiency in these people.

Because of reduced renal hydroxylation in people with stage 4 and 5 CKD the GDG recommended that when vitamin D supplementation was necessary in these people, it should be with the 1-2-hydroxylated or, 1,25-dihydroxylated forms.

Although no statistically significant increase in the overall frequency of hypercalcaemia was observed in people with CKD given vitamin D, severe hypercalcaemia occurred in 4 people on calcitriol versus 0 people in the placebo group in one study of calcitriol. The GDG also noted that the BNF suggests that 'all people receiving pharmacological doses of vitamin D should have the plasma calcium concentration checked at intervals (initially weekly) and whenever nausea or vomiting are present'. The GDG recommended that further research should be undertaken on the occurrence of hypercalcaemia in people with CKD treated with different vitamin D preparations.

P.13.3.6 Section 13.3.6: RECOMMENDATIONS

R67 When vitamin D supplementation is indicated in people with CKD, offer:

• cholecalciferol or ergocalciferol to people with stage 1, 2, 3A or 3B CKD

 1-α-hydroxycholecalciferol (alfacalcidol) or 1,25-dihydroxycholecalciferol (calcitriol) to people with stage 4 or 5 CKD.

R68 Monitor serum calcium and phosphate concentrations in people receiving 1-12hydroxycholecalciferol or 1,25-dihydroxycholecalciferol supplementation.¹

P.14 Section 14: Specific complications of CKD – anaemia

P.14.1 Section 14.1: Anaemia identification in people with CKD

P.14.1.1 Section 14.1.1: Clinical introduction

NICE clinical guideline 39 ('Anaemia management in people with CKD')⁴⁷³ recommended that management of anaemia should be considered in people with anaemia of CKD when their haemoglobin (Hb) level is less than or equal to 11 g/dl. The guideline was written for people with a GFR <60 ml/min/1.73m² already known to have a haemoglobin level ≤11 g/dl but gave no recommendations about testing for anaemia.

P.14.1.2 Section 14.1.2: RECOMMENDATION

R69 If not already measured, check the haemoglobin level in people with stage 3B, 4 and 5 CKD to identify anaemia (Hb <11.0 g/dl – see NICE clinical guideline 39: 'Anaemia management in people with chronic kidney disease'). Determine the subsequent frequency of testing by the measured value and the clinical circumstances.

P.15 Section 15: Information needs

P.15.1 Section 15.1: Information, education and support for people with CKD and their carers

P.15.1.1 Section 15.1.6: RECOMMENDATIONS

R70 Offer people with CKD education and information tailored to the stage and cause of CKD, the associated complications and the risk of progression.

R71 When developing information or education programmes, involve people with CKD in their development from the outset. The following topics are suggested:

- What is CKD and how does it affect people?
- What questions should people ask about their kidneys when they attend clinic?
- What treatments are available for CKD, what are their advantages and disadvantages and what complications or side effects may occur as a result of treatment/medication?
- What can people do to manage and influence their own condition?
- In what ways could CKD and its treatment may affect people's daily life, social activities, work opportunities and financial situation, including benefits and allowances available?

¹ Detailed advice concerning management of bone and mineral disorders in CKD is beyond the scope of this guideline. Where uncertainty exists seek advice from your local renal service.

- How can people cope with and adjust to CKD and what sources of psychological support are available.
- When appropriate, offer information about renal replacement therapy (such as the frequency and length of time of dialysis treatment sessions or exchanges and pre-emptive transplantation), and the preparation required (such as having a fistula or peritoneal catheter).
- Conservative management may be considered where appropriate.

R72 Offer people with CKD high quality information or education programmes at appropriate stages of their condition to allow time for them to fully understand and make informed choices about their treatment

R73 Healthcare professionals providing information and education programmes should ensure they have specialist knowledge about CKD and the necessary skills to facilitate learning.

R74 Healthcare professionals working with people with CKD should take account of the psychological aspects of coping with the condition and offer access to appropriate support (for example, support groups, counselling or a specialist nurse).

P.15.2 Section 15.2: Available tools to aid identification and maximise effectiveness of treatment and management of CKD

Appendix Q: Deleted appendices from 2008 guideline

Q.1 Appendix A: Evidence-based clinical questions and literature searches

Table 218: Table of review questions with searching criteria for all questions reviewed for the 2008guideline

Question ID	Question wording	Study type filters used	Databases and years
TEST 1	What is the best diagnostic test to measure renal function in routine clinical practice?	Systematic reviews, RCTs, cohort studies, diagnostic studies	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
TEST 4	In adults with CKD, what is the biological and analytical variability in eGFR testing and what factors (including fasting) affect it?	No filters, i.e. all study types	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
TEST 3	What is the sensitivity and specificity of reagent strips for detecting protein and blood in the urine of patients?	Systematic reviews, RCTs, observational studies	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
TEST 2	What are the benefits in terms of accuracy and cost in measuring albumin:creatinine ratio versus protein:creatinine ratio to quantify proteinuria in adults with CKD?	Systematic reviews, RCTs, observational studies, diagnostic studies	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
ULTRA 1	What are the indications for renal ultrasound in adults with CKD?	No filters, i.e. all study types	Medline 1966–2008 Cochrane 1800–2008 US Guidelines Clearinghouse (2007) National Electronic Library for Health (2007) National Institute of Health and Clinical

Question ID	Question wording	Study type filters used	Databases and years
			Excellence Website (2007) Health Technology Assessment Website (2007)
OUTS 1	At what level of GFR are patient outcomes significantly affected? Does this change with age or gender or ethnicity or presence/absence of proteinuria?	Systematic reviews, RCTs, observational studies	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
IDENm 1	In adults, who should be tested for CKD?	Systematic reviews, RCTs, observational studies	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
PROG 1	What constitutes a significant decline in GFR?	No filters, i.e. all study types	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
RISK 2	Which factors are associated with progression of CKD? cardiovascular disease? acute kidney injury? obesity? smoking? urinary tract obstruction? ethnicity chronic use of NSAIDs	Systematic reviews, RCTs, observational studies	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
REFER 1	What are the criteria for referral to specialist care?	No filters, i.e. all study types	Medline 1966–2008 Cochrane 1800–2008 US Guidelines Clearinghouse (2007) National Electronic Library for Health (2007) National Institute of Health and Clinical Excellence Website (2007) Health Technology

		Study type	
Question ID	Question wording	filters used	Databases and years
			Assessment Website (2007)
LIFE 1	In adults with CKD, does improving lifestyle habits decrease progression of CKD?	No filters, i.e. all study types	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
DIET 1	Which dietary interventions are associated with improved renal outcomes in adults with CKD?	No filters, i.e. all study types	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
BP 1	In adults with proteinuric/nonproteinuric CKD, what are the optimal blood pressure ranges for slowing kidney disease progression, and for reducing cardiovascular disease risk and mortality?	Systematic reviews, RCTs, observational studies	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
HYPR 1	What are the most appropriate antihypertensive drugs to reduce the risk of progression of CKD and to decrease mortality in adults with CKD?	Systematic reviews, RCTs	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
MONIT 1	In adults with CKD commencing an ACE inhibitor or ARB, what parameters of renal function should be monitored and how often? (What action threshold should be used for stopping treatments with an ACE inhibitor/ARB)?	Systematic reviews, RCTs, observational studies	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
RISK 1	In adults with CKD does the risk:benefit ratio of ACE inhibitors or ARBs change with increasing age?	Systematic reviews, RCTs, observational studies	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
HYPR 2	In adults with proteinuric or non-proteinuric CKD, does treatment with a) spironolactone alone, b) combinations of spironolactone and ACE inhibitors, c) combinations of spironolactone and ARBs, or d) combinations of spironolactone and ACE inhibitors and ARBs decrease mortality and reduce the risk of progression of CKD compared with placebo or other antihypertensive agents?	Systematic reviews, RCTs	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008

Question ID	Question wording	Study type filters used	Databases and years
STAT 1	In adults with CKD and proteinuria, do statins decrease proteinuria and decrease the risk of progression of CKD compared with other treatments or placebo?	Systematic reviews, RCTs	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
LIPID 1	In adults with CKD and dyslipidaemia, do lipid lowering agents (statins, fibrates, fish oils) decrease cardiovascular disease risk and all-cause mortality compared with placebo or each other?	Systematic reviews, RCTs	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
ANTI 1	In adults with CKD, does antiplatelet and anticoagulant therapy reduce cardiovascular morbidity and mortality compared with placebo?	Systematic reviews, RCTs	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
URIC 1	Does lowering uric acid with a) allopurinol b) uricosuric agents (probenecid, sulfinpyrazone) c) rasburicase (urate oxidase), decrease morbidity and mortality in adults with CKD and hyperuricaemia?	Systematic reviews, RCTs	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
HAEM 1	What are the adverse outcomes associated with isolated microscopic haematuria and how should it be managed in adults with CKD?	No filters, i.e. all study types	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
BONE 1	When should serum calcium, vitamin D, phosphate and intact parathyroid hormone levels be routinely measured in adults with CKD?	Systematic reviews, RCTs, observational studies	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
BONE 2	What are the risks and benefits of bisphosphonates for preventing osteoporosis in adults with CKD?	No filters, i.e. all study types	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
BONE 3	Which type of vitamin D supplementation, if any, should be used in CKD?	Systematic reviews, RCTs	Medline 1966–2008 Embase 1980–2008 Cochrane1800–2008 Cinahl 1982–2008
EDUC 1	What information, education, and support are needed for CKD patients and their carers to understand and cope with the diagnosis,	No filters, i.e. all study types	Medline 1966–2008 Embase 1980–2008

Question ID	Question wording	Study type filters used	Databases and years
Question ID	Question wording	miters used	Databases and years
	treatment and outcome of CKD?		Cochrane1800–2008
			Cinahl 1982–2008
TOOLS 1	What tools for community management are	No filters, i.e.	Medline 1966–2008
	needed for GPs and primary care workers to	all study types	Embase 1980–2008
	manage CKD?		Cochrane1800–2008
			Cinahl 1982–2008
NOTE The fine	Laut off data for all coarches was 9 February 2009		

NOTE: The final cut-off date for all searches was 8 February 2008.

Q.2 Appendix B: Scope of the guideline (2008)

Institute for Health and Clinical Excellence

National Institute for Health and Clinical Excellence

SCOPE

1 Guideline title

Chronic Kidney Disease: Early identification and management of chronic kidney disease in adults in primary and secondary care.

1.1 Short title

Chronic Kidney Disease

2 Background

- (a) The National Institute for Health and Clinical Excellence ('NICE' or 'the Institute') has commissioned the National Collaborating Centre for Chronic Conditions to develop a clinical guideline on chronic kidney disease for use in the NHS in England and Wales. This follows referral of the topic by the Department of Health (see Appendix). The guideline will provide recommendations for good practice that are based on the best available evidence of clinical and cost effectiveness.
- (b) The Institute's clinical guidelines will support the implementation of National Service Frameworks (NSFs) in those aspects of care where a Framework has been published. The statements in each NSF reflect the evidence that was used at the time the Framework was prepared. The clinical guidelines and technology appraisals published by the Institute after an NSF has been issued will have the effect of updating the Framework. The NSF for Renal Services (2005) is of particular relevance to this guideline.
- (c) NICE clinical guidelines support the role of healthcare professionals in providing care in partnership with patients, taking account of their

CKD Final Workplan and Scope January 2007

individual needs and preferences, and ensuring that patients (and their carers and families, where appropriate) can make informed decisions about their care and treatment.

3 Clinical need for the guideline

- a) Chronic kidney disease (CKD) implies some abnormality of kidney structure and/or function, may sometimes be progressive, and is often long-term and irreversible. In an important minority of people, CKD will develop into established renal failure (ERF), necessitating treatment by dialysis and/or a kidney transplant (collectively known as renal replacement therapy, RRT) for continued survival. For a small minority of people with significant associated comorbidity conservative management (i.e. all supportive treatment up to but not including RRT) may be more appropriate.
- b) There is increasing evidence that if CKD is detected early on, the complications associated with CKD and progression to established renal failure can be delayed or even prevented through appropriate interventions. Regular testing of high-risk groups (people with diabetes, hypertension, cardiovascular disease or known kidney disease, and the elderly) can give an early indication of renal damage, thus allowing the delivery of interventions at an early stage. However, the diagnosis is often delayed or missed because of lack specific symptoms until CKD is at an advanced stage.
- c) The majority of people with CKD do not progress to end stage renal failure, but they are at an increased risk of developing cardiovascular disease (CVD), and of hospitalisation and death. Factors associated with progression of CKD and with increased cardiovascular risk are similar and targeting of these risk factors may both reduce CVD in people with CKD and reduce progression of CKD to end stage renal failure.
- d) The most recent Renal Registry Report (2005) shows that in 2004, the number of people in England receiving RRT was estimated as over

CKD Final Workplan and Scope January 2007

30,700 (620 per million population) 45% of whom have a functioning kidney transplant. Since 2000, there has been a 22% increase in the number of people receiving RRT (an average increase of 4.9% every year). Despite a wealth of literature detailing the increased hospitalisation, cost and mortality associated with late referral of people with advanced CKD to a nephrology service, late referral from both primary and secondary care is still at least as high as 30%. Late referral also precludes adequate assessment and preparation of those for whom conservative management is more appropriate.

e) Treatment with dialysis or kidney transplantation is very expensive; over 2% of the total NHS budget is spent on RRT. Significant costs and poor clinical outcomes are associated with the late referral of people with ERF needing RRT. Therefore, identification of people at earlier stages of CKD, appropriate management and earlier referral of those who would benefit from specialist renal services would lead to an increase in both economic and clinical effectiveness.

4 The guideline

- a) The guideline development process is described in detail in two publications which are available from the NICE website (see 'Further information'). The guideline development process: an overview for stakeholders, the public and the NHS describes how organisations can become involved in the development of a guideline. Guideline development methods: information for National Collaborating Centres and guideline developers provides advice on the technical aspects of guideline development.
- b) This document is the scope. It defines exactly what this guideline will (and will not) examine, and what the guideline developers will consider. The scope is based on the referral from the Department of Health (see Appendix).
- c) The areas that will be addressed by the guideline are described in the following sections.

CKD Final Workplan and Scope January 2007

Page 3 of 8

4.1 Population

4.1.1 Groups that will be covered

- a) The guideline will offer best practice advice on the care of adults with a diagnosis of CKD and their referral to specialist nephrology services.
- b) The guideline will cover the general management of CKD resulting from a variety of causes including:
 - Diabetes
 - Hypertension & cardiovascular disease
 - Glomerulonephritis
 - Renovascular disease
 - Genetic causes
 - · Obstructive uropathy
 - Drug-induced renal disease

4.1.2 Groups that will not be covered

- a) Children (aged <16 years).
- People receiving RRT (management of end-stage renal failure by dialysis or kidney transplant)
- People with acute kidney injury and rapidly progressive glomerulonephritis

4.2 Healthcare setting

 a) Primary and secondary NHS healthcare, including referral to tertiary care.

4.3 Clinical management

The guideline will cover:

CKD Final Workplan and Scope January 2007

Page 4 of 8

- a) Early detection / identification of people with chronic kidney disease (including diagnostic tests).
- b) Management of chronic kidney disease. For example this might include management of:
 - Hypertension and lipids, specific to CKD
 - Proteinuria/albuminuria
 - Progressive kidney disease
 - Renal bone disease
 - Acidosis
 - Hyperuricaemia

And will incorporate

- · The utility of specific pharmacological interventions
- Non-pharmacological interventions (such as dietary intervention, smoking cessation and exercise)

And will encompass

- monitoring of CKD
- Specific conditions such as diabetes
- c) Timely and appropriate referral to specialist services (including criteria for referral)
- d) Tools for community management of CKD.
- e) Support for people/carers in diagnosis and self management of CKD through the provision of information, advice and education.
- f) The guideline will be sensitive to ethnic issues

CKD Final Workplan and Scope January 2007

Page 5 of 8

The guideline will not cover:

- g) The treatment of each of the specific causes of CKD, such as glomerular and tubulointerstitial disease, or nephrotic syndrome
- h) h) Management of pregnancy in women with CKD
- i) i) Management of anaemia in people with CKD

4.4 Status

4.4.1 Scope

This is the consultation draft of the scope. The consultation period is 30th August to 27th September 2006.

The guideline will cross refer where appropriate to the following NICE guidance.

- Cinacelcet hydrochloride for the treatment of secondary hyperparathyroidism in patients with end stage renal disease on maintenance dialysis therapy' *NICE technology appraisal*. Expected date of publication January 2007.
- 'Type 1 diabetes: diagnosis and management of type 1 diabetes in children, young people and adults'. *NICE clinical guideline no.15* (2004). Available from www.nice.org.uk/CG015
- 'Hypertension: the management of hypertension in adults in primary and secondary care'. NICE clinical guideline no. 34 (2006). Available from <u>www.nice.org.uk/CG034</u>
- 'Anaemia management in people with chronic kidney disease (CKD)'.
 NICE clinical guideline. Expected date of publication September 2006.
- Type 2 diabetes: the management of type 2 diabetes (update)'. NICE clinical guideline. Expected date of publication February 2008.

 'Osteoporosis: assessment of fracture risk and the prevention of osteoporotic fractures in individuals at high risk'. NICE clinical guideline. Publication date to be confirmed.

4.4.2 Guideline

The development of the guideline recommendations will begin in October 2006.

5 Further information

Information on the guideline development process is provided in:

- The guideline development process: an overview for stakeholders, the public and the NHS
- Guideline development methods: information for National Collaborating
 Centres and guideline developers

These booklets are available as PDF files from the NICE website (<u>www.nice.org.uk/guidelines</u>process). Information on the progress of the guideline will also be available from the website.

CKD Final Workplan and Scope January 2007

Appendix – Referral from the Department of Health

The Department of Health asked the Institute to develop a guideline:

'To prepare a clinical guideline for the NHS in England on the early identification, early management and timely referral of adult patients with chronic kidney disease in primary and secondary care.'

Q.3 Appendix C : Cost-effectiveness analysis: Model to determine the cost effectiveness of CKD case finding among people at high risk

Q.3.1 Objectives

- To evaluate which is the most cost-effective strategy to measure renal function in routine clinical practice.
- To determine which high-risk group for CKD should be tested.

Q.3.1.1 Related clinical questions

IDEN 1 In adults who should be tested for CKD?

TEST 3 What is the sensitivity and specificity of reagent strips for detecting protein and blood in urine of patients?

TEST 1 What is the best test to measure renal function in routine clinical practice?

TEST 2 What are the benefits in terms of accuracy and cost in measuring albumin:creatinine ratio versus protein:creatinine ratio to quantify proteinuria in adults with CKD?

RISK 2 What factors are associated with progression of CKD? Which of the following are a risk factor for progression in adults with CKD?

- o diabetes mellitus
- o hypertension
- o proteinuria/albuminuria
- o cardiovascular disease
- o age
- o acute kidney injury
- o chronic use of NSAIDs
- o obesity

- o smoking
- o urinary tract obstruction
- o ethnicity

OUTS 1 At what level of GFR are patient outcomes significantly affected? Does this change with age or gender or ethnicity or presence/absence of proteinuria?

TEST 4 In adults with CKD, what is the biological and analytical variability in GFR testing and what factors (including fasting) affect it?

Q.3.2 Methods

Q.3.2.1 Study population

The case for testing people with diabetes for CKD is already well established: NICE guidelines recommend regular testing and economic evaluations have found testing to be cost-effective. ^{92,282,339,472,480} Therefore we developed models for two other high-risk groups.

- Model 1 Non-diabetic, hypertensive adults
- Model 2 Non-diabetic, non-hypertensive adults (age ≥55)

The model was run for different age-sex groups. Other populations, such as people with a family history of ESRD, were not explicitly considered, since their epidemiology is not as well known as in people with hypertension and diabetes. However, a sensitivity analysis was conducted to determine the cost-effectiveness of testing at different levels of prevalence.

Q.3.2.2 Comparators

The GDG identified the following testing strategies:

- 1. No testing strategy
- 2. Reagent 1 Strategy: GFR + Proteinuria Reagent strip test
 - a. positive strip \rightarrow ACR;
 - b. negative strip \rightarrow No further testing
- 3. Reagent 2 Strategy: GFR + Proteinuria Reagent strip test
 - a. positive strip \rightarrow ACR;
 - b. negative strip $\rightarrow 2^{nd}$ Reagent Strip test
 - i. positive 2^{nd} strip \rightarrow ACR;
 - ii. negative 2^{nd} strip \rightarrow No further testing
- 4. ACR strategy: GFR + ACR

In both models the no testing strategy involved natural progression of CKD. But under the testing strategies, for true positives the progression is slowed and mortality reduced due to treatment with ACE inhibitors or ARBs.

Direct comparison of PCR with ACR in terms of diagnostic sensitivity and specificity was not possible since these two tests cannot meaningfully be compared against the same reference standard. However, a sensitivity analysis was conducted to find the level of sensitivity of PCR (relative to ACR) that would make PCR the more cost-effective strategy.

Q.3.2.3 Model structure and analytical methods

The cost-effectiveness was estimated using a decision tree (Figure 272 to Figure 275) that was constructed using TreeAge software. A Markov model (Figure 276) was plugged at the end of the decision tree to calculate the long term outcomes of the treatment received by patients diagnosed with CKD. Markov models have the advantage that they can measure outcomes, where events (such as change in CKD stage) can take place at any time over a long period of time. Such models also identify the number of events at each timepoint, which facilitates the discounting of cost and health outcomes to future values.

Two earlier models,^{92,282} have evaluated early identification of CKD but not from a UK perspective (see sections 4.2.3 and 4.2.5 of the full guideline). These models have informed the development of our model.

The model follows the NICE reference case,⁴⁷⁷ as follows. The costs were measured from the perspective of the National Health Services (NHS) and Personal Social Services (PSS). Health outcome was measured in terms of quality-adjusted-life-years (QALYs), where one QALY is equal to one year of full health. An annual discount rate of 3.5% was used for both costs and effects.

Figure 272: Decision tree arm for the 'no testing strategy'

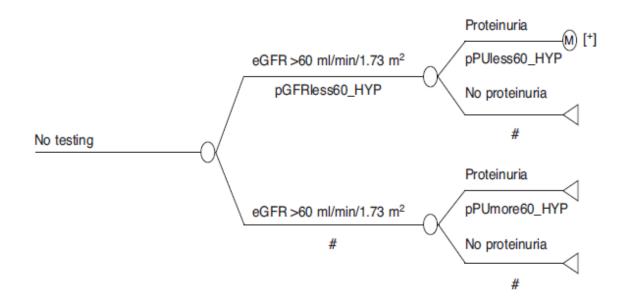


Figure 273: Decision tree arm for the 'reagent 2 strategy'

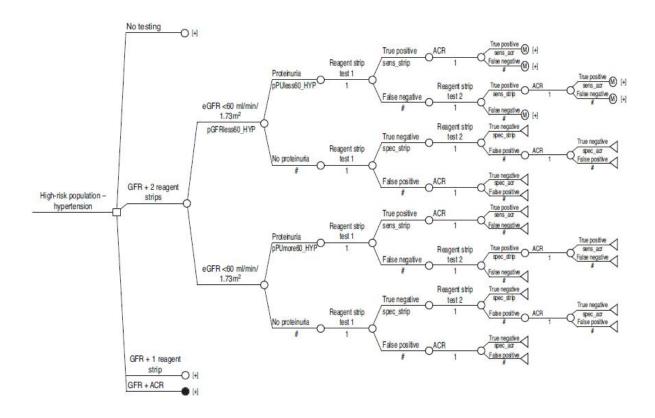
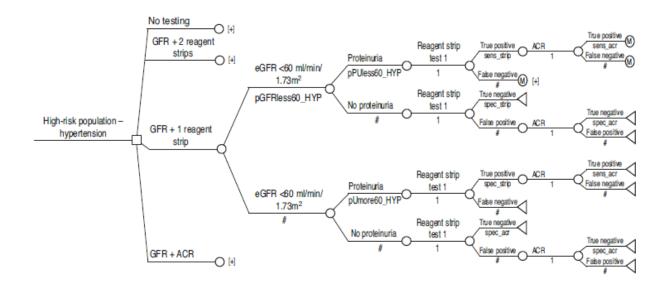



Figure 274:

Decision tree arm for the 'reagent 1 strategy'

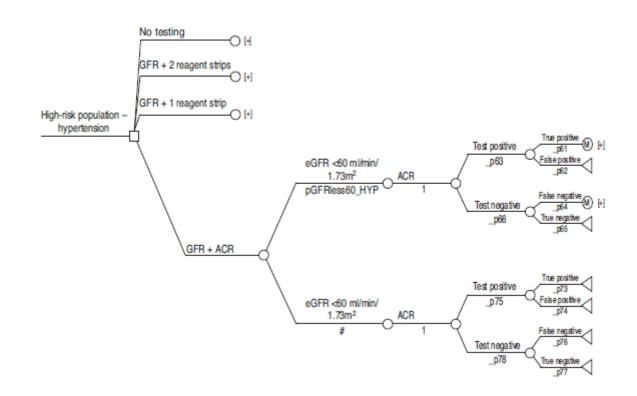
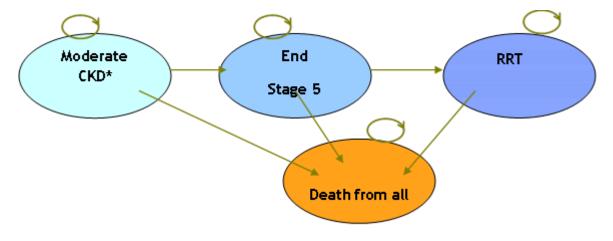



Figure 276: Markov model for patients diagnosed with CKD and proteinuria.

* Health state at time of diagnosis.

Assumptions used in the model's base case analysis

- For the purposes of the model, the GFR estimation was assumed to be 100% sensitive and specific. The 100% specificity is based on the assumption that false positives will be eliminated because we recommend that a positive test is followed by a second eGFR.
- In the base case analysis, the ACR was assumed to be 100% sensitive and specific. The 100% specificity is based on an assumption that false positives will be eliminated by a second measurement to quantify albuminuria / proteinuria. Alternative values for the sensitivity of ACR were tested by sensitivity analysis.
- Health gain was based on the prescription of high dose ACE inhibitor / ARB therapy on diagnosis of CKD. These drugs reduce mortality and slow down the progression of disease.
- Health gain and long-term costs were estimated only for those patients who have both CKD (eGFR <60) and proteinuria. This was a simplification made to speed up the development of the model, but the model should still capture most of the costs and health benefits as long as eGFR and ACR are relatively specific.
- In the absence of diagnosis of CKD (unscreened, false negatives, and true negatives), patients are not prescribed ACE inhibitor / ARB therapy. They receive no CKD treatment until renal replacement therapy (in the discussion below, we consider the impact of relaxing this assumption).

The decision model sought to capture the following effects:

- Health effects
 - Health gain is based on the prescription of high dose ACE inhibitor / ARB therapy on diagnosis of CKD. These are known to reduce mortality and slow down the progression of disease.
 - o Some of the screened patients have increased length of life due to ACE inhibitor / ARB therapy
 - Quality of life will be improved by ACE inhibitor / ARB therapy slowing the progression of disease
 - o With the ACR strategy, the gains will be greater than reagent strip strategy, since ACR is more sensitive and will detect more eligible cases
- Cost effects
 - Testing strategies will increase spending in the short-term (including staff time, test costs & drug costs). A range of cost estimates obtained from NHS laboratories was used in a two-way sensitivity analysis.
 - o In the longer term, some costs will be reduced because ACE inhibitor / ARB therapy slows progression of disease
 - o Also, in the longer term, some costs will be increased because patients survive for longer with ACE inhibitor / ARB therapy

Q.3.2.4 Data Sources

Disease prevalence

The prevalence of renal insufficiency (GFR estimated from serum creatinine) and proteinuria/macroalbuminuria (from a random ACR) was determined in different age categories in various adult screening groups in the cross-sectional NHANES III study..^{220,222} A total of 14,622 adults that represented the American non-institutionalised population were included in this study.

Age	People who do not have diabetes but do have hypertension	People who neither have diabetes nor hypertension
20-39	4.4%	2.1%
40-59	6.7%	4.3%
60-79	19.6%	9.1%
80+	31.5%	21.5%

Table 220: NHANES III^{220,222} prevalence of macroalbuminuria (ACR >38 mg/mmol) by age.

	People who do not have diabetes but do have hypertension		People who neither have diabetes nor hypertension	
Age	GFR< 60 ml/min/1.73m ²	GFR ≥60	GFR<60	GFR ≥60
20-39	12.8%	0.5%	0.4%	0.2%
40-59	7.0%	1.3%	0.1%	0.2%
60-79	4.7%	1.0%	0.2%	0.9%
80+	6.7%	3.8%	3.0%	0.1%

The prevalence of 'cases', those that will be treated with high dose ACEI/ARB therapy after diagnosis, is calculated as the prevalence of GFR <60 ml/min/1.73m² multiplied by the prevalence of macroalbuminuria. So for example:

- In people with hypertension aged 60, the prevalence of cases is 19.6% x 4.7% = 0.921%
- In people who do not have hypertension, aged 60, the prevalence of cases is 9.1% x 0.2% = 0.018%

Diagnostic accuracy

Estimates regarding the sensitivity and specificity of the reagent strip test and ACR were decided upon following consideration of previous models, the CKD guideline reviews of clinical evidence and GDG member expert opinion.

For the purposes of the model, the GFR estimation is assumed to be 100% sensitive and specific. The sensitivity and specificity of ACR was also assumed to be 100% in the base case analysis. For both GFR and ACR a second test was costed following an initial positive test.

The sensitivity (92%) and specificity (62%) of the reagent strip test were averages from the two studies^{523,609} in the clinical review that measured sensitivity and specificity with a cut-off of 0.3g/l (equivalent to 0.5g/day), the threshold that was identified as most clinically relevant by the GDG.

Effectiveness of ACE inhibitor / ARB therapy

A systematic review of ACE inhibitor treatment for non-diabetic nephropathy (mainly people with hypertension) reported a relative risk reduction in progression to end-stage renal disease of 31% (95% CI 6–49%) compared with no ACE inhibitor treatment (N=1860).³⁰⁷ The review did not contain evidence with regard to the effects on mortality. For this we turned to the Cochrane review on ACE inhibitor treatment in diabetic nephropathy.(N=3215).⁶⁵⁷ The relative risk reduction for death was 22% (95% CI 2–39%).

These relative risk reductions were assumed to apply to true positive patients in both models (both with and without hypertension).

It was assumed that a proportion of patients would be put on ARBs because they could not tolerate ACE inhibitors. For this proportion we used 6% (the proportion of patients experiencing cough after ACEI therapy).⁶⁵⁷ It was assumed that patients on ARB therapy would experience the same treatment effects as those on ACEI therapy; only drug costs would differ. Mortality associated with adverse events is incorporated in the estimates of overall mortality. Morbidity due to adverse events is difficult to quantify; the trial data does not suggest that there is major morbidity.

Progression to ESRD

To estimate progression to ESRD we followed the method of one of the previously published models,^{282,283} using the following data:

- Annual rate of progression in patients with no diabetes, no hypertension and no proteinuria, from the Okinawa screening study³⁰² with a sample of 2485 and 7 years, 9 months of follow up = 0.004061 = -ln(1-(77/2485))/7.75
- Probability of progression in first 12 months in patients with no diabetes, no hypertension and no proteinuria, calculated from the annual rate above = 0.004053 = 1-exp(-0.004061)
- Relative risk of progression: proteinuria vs.no proteinuria = 3.858 (sourced from the Okinawa screening study³⁰²)
- Relative risk of progression: hypertension vs.normotension in people with proteinuria = 2.08 (sourced from Jafar et al.'s 2003 meta-analysis³⁰⁸)
- Relative risk of progression: ACE inhibitors vs.no ACE inhibitors = 0.69 (sourced from Jafar et al.'s 2001 meta-analysis³⁰⁷)

We used the following annual transition probabilities in the model:

- Hypertension and proteinuria untreated (Z) = b*c*d = 0.033
- Hypertension and proteinuria treated (Y) = Z*e = 0.022
- Normotension and proteinuria untreated (X) = b*c = 0.016
- Normotension and proteinuria treated (W) = X*e = 0.011

For the tested true positive participants, a 31% reduction in progression from stage 3A/3B/4 to stage 5 was assumed. This was based on a relative risk of 0.69 reported by Jafar et al. 2001, a meta-analysis on 1860 non-diabetic patients who were mainly hypertensive.

Progression from ESRD to RRT

We were aware that not everyone with ESRD receives renal replacement therapy and did not want to over-estimate the cost savings in RRT. We tentatively estimated progression from ESRD to RRT as follows:

- •incidence of RRT in England per million population = 104 per million (UK Renal Registry 2006)³⁶
- •population of England = 55 million
- new cases of RRT in England per year = 5720 (= a*b)
- • prevalence of ESRD = 0.07% (Optimal Renal Care UK⁷¹⁸)
- • cases of ESRD in England = 38,500 (= d*b).

We estimate the annual progression probability from ESRD to RRT to be c/e = 5720/38,500 = 0.149

Mortality

Age	CKD stage 3A/3B/4	CKD stage 5
18 - 44	2.14	5.86
45 - 54	1.83	4.47
55 - 64	1.64	4.29
65 - 74	1.32	3.82
75 - 84	1.22	3.68
85+	1.14	3.6

Table 221: Hazard ratio for death according to CKD stage and age (O'Hare et al.⁴⁹⁸)

All-cause mortality rates were calculated using the hazard ratio for death for CKD patients stratified by age and GFR.⁴⁹⁸ To get the age-specific death rates for the model, these ratios were multiplied with the age-specific death rates for the general population in England and Wales.²³⁵

For the true positives, the mortality rate was reduced by 22%, attributable to ACE inhibitor / ARB therapy.

Costs

Direct costs of medical care related to CKD and hypertension were included. All costs were in 2006–7 UK pounds sterling. The costs of testing incorporated initial GFR estimation, reagent strip testing and/or ACR estimation and GP practice nurse time costs (see Table 222).

It was assumed that following a GFR test result, high-risk individuals would be requested to visit the GP surgery to provide a urine sample for urinalysis. They may be attended to by either the practice nurse or health care assistant. Therefore a single visit to a GP practice nurse is accounted for in testing strategies 3 and 4. In strategy 2, a second visit is costed if the first urinalysis is negative.

Following the review and recording of results, action may involve no further assessment or may contribute to a follow-up appointment with GP or practice nurse or a referral to specialist care.

Table 222: Base case unit costs.^{145,162}

Unit costs		Reference
Haematology	£ 2.78	NHS Reference Costs, 2006
Biochemistry	£ 2.03	NHS Reference Costs, 2006
ACR (Albumin-to-Creatinine Ratio)	£ 3.10 *	Brighton Laboratory
Phlebotomy	£ 2.96	NHS Reference Costs, 2006
Bayer 10SG Multistix Reagent Strip Tests	£ 0.21/ strip	Reference cost for Kent and Medway
PTH assay	£15.00	Reference cost for Kent and Medway
25-hydroxy Vitamin D assay	£15.00	Reference cost for Kent and Medway
GP Care - Per surgery consultation lasting 10.0 minutes	£25.00	PSSRU 2006
Nurse (GP Practice) per consultation/procedure	£8.00	PSSRU 2006
Ultrasound	£75.14	NHS Reference Costs, 2006
Nephrology Outpatient : First attendance	£242.47	NHS Reference Costs, 2006
Nephrology Outpatient: Follow up attendance	£135.84	NHS Reference Costs, 2006

* Alternative values were tested in a two-way sensitivity analysis, discussed below.

Drug costs

Costs of antihypertensive drug therapy were based on prices quoted in the British National Formulary.⁶ The baseline drug regimen adopted for hypertensive patients was a calcium channel blocker and thiazide diuretic. These drugs are the most widely prescribed for hypertension.²¹¹

Table 223: Drug costs - Hypertension with untreated CKD.

Drug	Dose/schedule	Proportion of patients (a)	unit cost per 28 tab pack (b)	Cost/year (c = 13.04*b)	Weighted average cost per patient per year (d = a*c)
Bendroflumethiazide	2.5 mg od	100 %	£1.43	£18.64	£18.64
Amlodipine	10 mg qd	100 %	£3.08	£40.15	£40.15
Total drug cost of hypert	£58.79				

Total drug cost of hypertension and CKD treatment

The costs of full-dose ACE inhibitor / ARB therapy for CKD treatment in people with hypertension and people with neither diabetes nor hypertension are represented in Table 224and Table 225. The drug costs are different for those with neither diabetes nor hypertension, inasmuch as there are no drug costs for hypertension other than ACE inhibitor / ARB therapy for the true positives.

Table 224: Drug costs – hypertension with treated CKD.

DRUG	dose/schedule	proportion of patients (a)	unit cost per 28 tab pack (b)	Cost/year (c = 13.04*b)	Weighted average cost per patient per year (d = a*c)
Bendroflumethiazide	2.5 mg od	100 %	£1.43	£18.64	£18.64
Amlodipine	10 mg qd	100 %	£3.08	£40.15	£40.15
Ramipril	10mg	94 % *	£3.16	£41.19	£38.72
Irbesartan	300mg od	6 % *	£16.91	£220.43	£13.23
Total drug cost of hypertension and CKD treatment					£110.74

*0.06 based on Strippoli et al.

Table 225: Drug costs – no hypertension, no diabetes, treated CKD.

DRUG	dose/schedule	proportion of patients (a)	unit cost per 28 tab pack (b)	Cost/year (c=13.04 X b)	Weighted average cost per patient per year (d=a x c)
Ramipril	10mg	94 % *	£3.16	£41.19	£38.72
Irbesartan	300mg od	6 % *	£16.91	£220.43	£13.23
Total drug cost of hypertension and CKD treatment					£51.95

*0.06 based on Strippoli et al. 2006 – see text.

GP care costs

The number of visits per year was determined by whether they or not they are diagnosed with hypertension or CKD (Table 226). People were assumed to have pathology tests at £7.78 per year¹⁶² regardless of whether or not they are diagnosed with hypertension.

Table 226: General practitioner care costs.

	GP visits per patient per year*	GP visit costs (£) per patient per year
Non-diabetic, hypertensive - treated	6	£150
Non-diabetic, hypertensive - un treated	4	£100
Non-diabetic, non- hypertensive - treated	4	£100
Non-diabetic, non-hypertensive - untreated	2	£50

* The number of GP visits per year made by people with hypertension and CKD, was sourced from the Australian CKD model.^{282,283} For the people without hypertension, the number of visits was assumed.

** The cost of a GP visit was £25.^{145,146}

Specialist nephrology outpatient care costs

Using the NEOERICA database, Klebe et al.³⁴⁶ estimated the outpatient nephrology service use and costs for people with CKD stage 3–5 not receiving renal replacement therapy, assuming that the guidelines of the Royal College of Physicians and Renal Association are followed.³⁴⁶ This analysis of a UK database identified the proportion of patients within each CKD stage that would require nephrology referral, nephrology follow up and further investigations in the form of ultrasound scans and blood tests for anaemia, parathyroid hormone concentration, vitamin D estimation etc. The use of services was divided according to resources required on diagnosis of CKD as well as the annual use after diagnosis. The numbers of visits per year, by CKD stage³⁴⁶ were multiplied by the NHS reference cost for a nephrology outpatient visit.¹⁶² Pathology tests were taken from the costing study.³⁴⁶ The costs for CKD stage 3–4 was weighted according to the prevalence of CKD stage 3 and 4.^{220,222}

Table 227: Specialist nephrology outpatient care costs according to CKD stage.

	CKD stage 3-4	CKD stage 5
On diagnosis (referral costs +	£ 185.52	£ 756.23
diagnostic tests : lab + ultrasound)		
Annual costs (follow up + lab tests)	£ 415.41	£ 438.63

Cost of inpatient care

	Relative risk of a	Relative risk of admission (compared with the general population)				
CKD stage 3–4			1.8			
CKD stage 5			3.1			
		Mean adn	nissions per year			
	Age15-44	Age 45–64	Age 65–74	Age 75+		
General Population	0.20	0.24	0.45	0.75		
CKD stage 3–4	0.36	0.44	0.83	1.35		
CKD stage 5	0.63	0.75	1.42	2.33		
		Cost per year				
	Age15-44	Age 45–64	Age 65–74	Age 75+		
CKD stage 3–4	£340	£408	£1339	£2193		
CKD stage 5	£587	£703	£2306	£3776		

Table 228: Cost of hospitalisation according to age and CKD stage – any cause.^{162,505,672}

A general hospital admission rate was calculated for England and Wales, and combined with the hazard ratio for any hospital admission according to CKD stage (from Go et al.^{229,230}) produced an admission rate by CKD stage. Using reference costs for general renal disorder admissions that were differentiated by age, the cost of inpatient admissions according to age and stage were calculated.

Cost of renal replacement therapy

According to the 2006 UK Renal Registry Report,³⁶ haemodialysis was the first modality of RRT in 76% of patients, peritoneal dialysis in 21% and transplant in 3%. The cost of RRT was weighted according to these proportions.

The cost of a renal transplant used in the model was £20,000 in the first year and £6500 per year for the years following transplantation (Palmer et al.^{518,690}). These costs include hospitalisation, drugs and treatment of complications.

	Haemodialysis HD (main unit) Cost £	Haemodialysis HD (satellite unit) Cost £	Automated Peritoneal Dialysis (APD) Cost £	Continuous perambulatory Peritoneal Dialysis (CPD) Cost £
Direct nursing	7969	7071	371	357
other nursing activities	2132	1905	1995	1995
disposables	10,952	10,952	14,152	9772
medical supervision	1117	1026	901	901
dialysis machines	720	720	924	-
machine maintenance	766	583	766	-
anaemia therapy	3740	3328	2140	2140
hospital transport	2438	1905	114	114
overheads	5188	5179	290	290
Total cost	35,022	32,669	21,655	15,570
Total cost on HD/PD	33,845		18,613	
Proportion on HD/PD	76%		21%	

Table 229: cost of dialysis.^{36,47}

Utilities

A Utility score of 0.734 was used for CKD stages 3 and 4. It was sourced from the Australian model.^{282,283} This score captures the utility for hypertensive patients on therapy. The Australian model used utility-based quality of life scores derived from data collected in the Australian Diabetes and Lifestyle study (Ausdiab).^{110,111} A cross-sectional study of 11,246 non-institutionalised Australians aged 25 years or older.

A Utility score of 0.603 was used for patients in CKD stage 5 and on RRT (de Wit et al.^{154,158}). This study assessed the health-related quality of life (HRQOL) of 135 haemodialysis and peritoneal dialysis patients.

Q.3.3 Results for model 1: hypertension but no diabetes

Q.3.3.1 Base case analysis

The base case consisted of opportunistic case finding in women with hypertension aged 60 years who present to primary care with a GFR <60 ml/min/1.73m² and previously undetected proteinuria. The number of years in each stage of CKD, on RRT and QALYs resulting from each strategy is presented in Table 230. The ACR strategy picks up the most number of cases and has the highest QALYs. The 'reagent 1 strategy' finds the least amount of cases compared to the 'reagent 2 strategy' and the 'ACR strategy'.

Table 230: Base case results (women aged 60 with hypertension but not diabetes): health outcomes per case.

	No testing	Reagent 1	Reagent 2	ACR
Mean years in CKD Stage 3-4	15.44	18.22	18.44	18.46
Mean years in CKD Stage 5 (no RRT)	2.14	1.83	1.81	1.81
Mean years in CKD Stage 5 (RRT)	2.01	1.63	1.60	1.60
Mean life years	19.59	21.68	21.85	21.86
Cases found (as a proportion of the tested population)	0%	0.848%	0.915%	0.921%

The costs of testing were highest in the 'reagent 2 strategy' as were overall costs. The costs of RRT were highest in the no testing strategy.

For the hypertensive population, the base case analysis, the key result is that testing is cost-effective for all ages and that ACR after GFR is the most cost-effective strategy (Table 231 and Table 232). The incremental cost-effectiveness thresholds were below £20,000 per QALY gained. The 'ACR strategy' dominates the 'reagent 2 strategy': that is, the ACR strategy is cheaper and more effective.

Table 231: Model 1 base case results (women aged 60 with hypertension but not diabetes).	•
--	---

Strategy	Cost	Effectiveness	Increment C/E (ICER)
With all options			
No testing	£506.7	0.0923 QALY	
Reagent 1	£516.7	0.0996 QALY	1,362/QALY
ACR	£517.8	0.1005 QALY	1,327/QALY
Reagent 2	£521.9	0.1004 QALY	(Dominated)
Without dominated options (simple or	r extended)		
No testing	£506.7	0.0923 QALY	
ACR	£517.8	0.1005 QALY	1,358/QALYs

Table 232: Model 1 base case results: cost-effectiveness by age and sex.

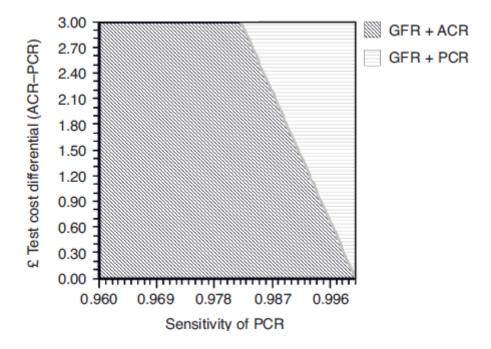
	Men	Women
Age 20	The 'ACR strategy' dominates the 'no testing strategy'	The 'ACR strategy' dominates the 'no testing strategy'
Age 40	The 'ACR strategy' dominates the 'no testing strategy'	The 'ACR strategy' dominates the 'no testing strategy'
Age 60	The 'ACR strategy' is cost-effective	The 'ACR strategy' is cost-effective
Age 80	The 'ACR strategy' is cost-effective	The 'ACR strategy' is cost-effective
*cost-effective	ness threshold=£20,000 per QALY gained	

One-way sensitivity analysis (women aged 60 with hypertension) Q.3.3.2

There were no important differences in the results of the sensitivity analysis for men and women. Therefore the results of the base case are reported. We conducted threshold analyses to see how extreme a value a parameter would have to take before the optimal strategy switched.

Prevalence and test accuracy

The prevalence of GFR <60 ml/min/1.73m² was varied between 0 and 100%. At a prevalence as low as 1.4%, the 'ACR strategy' remained cost-effective with an ICER of £30,000 per additional QALY gained.


At a prevalence of proteinuria as low as 0.4 % the 'ACR strategy' had an ICER of £24,000 per additional QALY gained.

The sensitivity of ACR testing was varied between 0 and 100%. Only if the sensitivity is below 11% is the 'ACR strategy' not cost-effective compared with no testing.

Two-way sensitivity analysis (ACR vs.PCR) Q.3.3.3

A 5th strategy ('PCR strategy') was added to the model. This strategy involved a combination of testing eGFR and then PCR. The reagent costs of PCR were assumed to be cheaper than that of the ACR by 40p per test. When PCR was assumed to be both as sensitive and as specific as ACR, the 'PCR strategy' proved to be most cost-effective. The 'PCR strategy' dominated the 'ACR strategy'. However, at PCR sensitivities less than 99.8%, the 'ACR strategy' is more cost effective (assuming as before that ACR is 100% sensitive and specific). Figure 277 shows when the 'ACR strategy' becomes cost-effective given different levels of PCR sensitivity and differential cost. The greater the difference in price between ACR and PCR, the lower the sensitivity of PCR has to be for the 'ACR strategy' to still be cost-effective.

NB: Sensitivity of ACR=100% No testing, GFR + 2 reagent strips, GFR + 1 reagent strip do not appear in the graph as they were not cost-effective

Q.3.3.4 Other sensitivity analyses

Progression rates

Even at a 0.01% rate of progression to ESRD, the 'ACR strategy's ICER was still only £12,000/QALY compared to the 'no testing strategy'.

If we assume that every patient who progresses to ESRD is automatically placed on RRT, the ACR strategy still proves.

Effectiveness of treatment

When the treatment effect of ACE inhibitor / ARB therapy on progression is varied while keeping the treatment effect on mortality constant (RR=0.78), the results are insensitive. Even with no effect of ACE inhibitor / ARB therapy on progression, the 'ACR strategy' is marginally cost-effective at £22,000 per QALY gained.

If we assume no treatment effect on mortality (applying a mortality rate of an untreated CKD population), then if the relative risk reduction on progression is decreased below 11%, the 'ACR strategy' ceases to be cost-effective.

When the treatment effect on mortality is varied between 0 and 100% reduction, while keeping the treatment effect on progression to ESRD constant (RR= 0.69) the 'ACR strategy' is most cost-effective throughout.

Cost of RRT

The annual cost of renal replacement therapy was varied between £5000 and £100,000. At an annual cost as low as £5000 for RRT, the 'ACR strategy' remained cost effective at £9000 per additional QALY gained. At the other extreme, at an annual cost of £100,000 the 'ACR strategy' dominated the other strategies.

Cost of drugs

If all patients with CKD were placed on the more expensive drug (high dose ARB instead of high dose ACE inhibitor), the 'ACR strategy' is still the most cost effective with an ICER of £4,000 per QALY gained.

Nurse practitioner time costs

The cost per consultation was varied between £0 and £25 (equivalent to the cost of an 8 minute GP consultation). Even if the testing time costs were free, the 'ACR strategy' remains the most cost-effective at £9000 per additional QALY compared with the 'reagent 2 strategy'.

Specialist outpatient care

The effect of the costs of specialist care were explored by setting the costs at high and low estimates, using the interquartile range from the NHS reference costs. At the high estimate, the 'ACR strategy' was still the most cost effective.

RRT mortality

The mortality rate while on RRT was also explored. The model proved to be insensitive to changes in this rate. At a mortality hazard ratio of 5 the 'ACR strategy' has an ICER of £6000/QALY.

Q.3.4 Results for model 2: neither diabetes nor hypertension

Q.3.4.1 Base case analysis

Of the four strategies, the 'ACR strategy' detected the most cases (GFR <60 ml/min/1.73m² and macro-albuminuria) and yielded the most QALYs (Table 234) – this is not surprising since the ACR test was assumed to be 100% sensitive and specific. The testing strategies yielded some cost savings in terms of reduced renal replacement therapy. But, due to the low prevalence of cases in the population, these savings were small compared with the costs of testing. The most costly strategy was 'reagent 2' followed by 'ACR', 'reagent 1' and least costly was 'no testing'. None of the testing strategies were cost-effective compared with not testing for the base case (55-year old women): all three testing strategies cost more than £400 000 per QALY gained (Table 234). Indeed testing wasn't cost-effective for any age group except age 80 where the prevalence was highest and reduction in mortality greatest (Table 235).

Table 233: Base case results (women aged 55 with neither diabetes nor hypertension): healthoutcomes per patient tested.

	Mean			
	No testing	Reagent 1	Reagent 2	ACR
Years in CKD stage 3-4	21.41	24.25	24.48	24.50
Years in CKD stage 5 (no RRT)	1.50	1.24	1.22	1.22
Years in CKD stage 5 (RRT)	1.69	1.33	1.30	1.29
Life-years	24.60	26.82	27.00	27.01
Cases found	0.0000%	0.0040%	0.0043%	0.0043%

Table 234: Model 2 base case results: cost per QALY gained

Strategy	Cost	Effectiveness	Incremental C/E (ICER)
All strategies			
No testing strategy	£1.9	0.00050 QALY	
Reagent 1 strategy	£16.9	0.00053 QALY	489,899 /QALY
ACR strategy	£18.3	0.00054 QALY	411,726 /QALY
Reagent 2 strategy	£21.8	0.00054 QALY	(Dominated)
Without dominated options (simple or extended)		
No testing strategy	£1.9	0.00050 QALY	
ACR strategy	£18.3	0.00054 QALY	482,082 /QALY

Table 235: Model 2 base case results: cost-effective strategy by age and sex.

	Males	Females
Age 20	No testing was cost-effective	No testing was cost-effective

	Males	Females	
Age 40	No testing was cost-effective	No testing was cost-effective	
Age 55	No testing was cost-effective	No testing was cost-effective	
Age 65	No testing was cost-effective	No testing was cost-effective	
Age 70	No testing was cost-effective	No testing was cost-effective	
Age 75	No testing was cost-effective	No testing was cost-effective	
Age 80	ACR was Cost-effective at £11,000 /QALY compared with no testing	ACR was Cost-effective at £11,000 /QALY compared with no testing	

*cost-effectiveness threshold=£20,000 per QALY gained

Q.3.4.2 One-way sensitivity analysis

It is only at a 96% prevalence of GFR <60 ml/min/1,73m² that the 'ACR strategy' becomes costeffective for both males and females aged 55.

One-way sensitivity analysis revealed that only if the prevalence of proteinuria was increased twofold to 3%, would the 'ACR strategy' be cost-effective for females aged 55.

The 'ACR strategy' was not cost-effective even if ACE inhibitor / ARB therapy was 100% effective in preventing mortality or progression to ESRD.

Q.3.5 Discussion

Q.3.5.1 Summary

People with hypertension and no diabetes

The base case analysis indicates that testing adults of various ages with hypertension with a single ACR test is highly cost-effective. The initial use of ACR is more cost-effective than ACR after a positive reagent strip test. The results were not sensitive to changes in any individual model parameter.

The results are not sensitive to the individual treatment effect of ACE inhibitor / ARB therapy on progression or the effect of ACE inhibitor / ARB therapy on mortality. But when both parameters were covaried, testing and consequent treatment was not always cost-effective.

The model shows that ACR is more cost-effective than PCR if it is more sensitive than the PCR test at selecting appropriate patients for ACE inhibitor / ARB treatment (by more than 0.2% sensitivity if the cost differential is purely comprised of reagent cost differences). There is no clinical evidence to support or refute this, since ACR and PCR have not been compared to the same appropriate reference standard. However the GDG concluded that the required difference in sensitivity was small and plausible given biochemical reasons to suggest that albuminuria is more useful in predicting progression (these are discussed in sections 4.3 and 4.4 of the full guideline).

People with no hypertension and no diabetes

Base case analysis indicates that testing of non-hypertensive, non-diabetic adults at ages 55–79 is not cost-effective. At age 80, testing appeared to be cost-effective.

Q.3.5.2 Limitations

Limitations that potentially bias in favour of testing

Reduction in all-cause mortality due to treatment with high dose ACE inhibitor / ARB therapy is not proven (except for diabetic populations), although the evidence is suggestive of a treatment effect.

The model assumes that without testing, patients who progress rapidly are not detected until they require RRT. Clearly some patients will be picked up before RRT due to incidental testing but we believe this number would be small compared to the number of 'crash landers' that are diagnosed at the RRT stage.

Compliance with medication might be less than observed in trials and therefore effectiveness might be over-estimated but this is difficult to quantify.

In the base case analysis, ACR is assumed to be 100% sensitive and 100% specific. The results were not sensitive to the sensitivity of ACR. However, even in the sensitivity analysis, the model does not measure the health impact or long-term costs of false positives. We believe these to be very small effects as a consequence of repeat testing after a positive test result.

In the base case analysis we include the costs and health effects of ACE inhibitor / ARB treatment for all patients. We acknowledge that a large proportion of patients may be on low dose ACE inhibitor. The cost-effectiveness for this group is difficult to quantify but may not be very different from other patients. This is because, although such patients are likely to get less health gain from treatment they are also likely to incur less incremental cost.

Limitations that potentially bias in favour of no testing

Benefits of early diagnosis other than from ACE inhibitor / ARB therapy are not captured. We assume that patients diagnosed at stage 3 or 4 receive specialist nephrological care, yet the benefits of this care are not included.

A number of questions were not addressed by the model

The model essentially evaluates testing at one time point only. It does not evaluate repeat testing of negatives or monitoring of positives.

The model does not evaluate testing for CKD risk factors, such as testing for hypertension.

The model does not evaluate testing of high-risk groups other than people with hypertension, such as long-term users of potentially nephrotoxic drugs, for whom the incidence of CKD is not known.

Q.3.6 Conclusions

The model suggests that case-finding among high-risk groups is cost-effective. Use of albumin:creatinine ratio, without prior reagent strip, appears to be the most cost-effective option

Q.4 Appendix D: GDG members' declarations of interest

Name	Personal pecuniary interest	Personal family interest	Non-personal pecuniary interest	Personal non- pecuniary interest
BAKHSHI Lina	None	None	None	None
BENETT Ivan	42 GlaxoSmithKline shares	None	None	None
CROWE Emily	None	None	None	None
DODWELL Miranda	None	None	None	None
DUNN Robert	None	None	- National Advocacy Officer - National Kidney Federation	None
FORREST Caroline	None	None	None	None
GOLDBERG Lawrence	None	None	None	None
HALPIN David	Received fees for lectures and sitting on advisory boards and have received travel expenses and accommodation to attend scientific meetings from GlaxoSmithKline (GSK), Astra Zeneca, Boehringer Ingelheim, Pfizer and Altanapharma	None	My department has undertaken commercial research trials for GSK, Astra Zeneca, Boehringer Ingelheim, SR Pharma, Almirall and Novartis	None
HARRIS Kevin	 Member of Baxter Medical Advisory Board 2006/7 (non-specific) Member of Genzyme Medical Advisory Board 2006/7 (non-specific) Member of Shire Medical Advisory Board 2006 (non-specific) Member of Novartis Medical Advisory Board 2006 (non-specific) Lecture for BMS/Sanofi, Pfizer, GSK, Boehringer Ingelheim on CKD (non-specific) 	None	 Departmental funding for bone management nurse (Genzyme) Unrestricted educational grant from Fresenuis Support for clinical fellowship from Baxter Support for part time clerical post from Amgen Departmental reimbursement for my time to be a 	 Current chair for the Clinical Services Committee of the Renal Association Clinical Vice President Elect of the Renal Association

		Personal		
	Personal pecuniary	family	Non-personal	Personal non-
Name	interest	interest	pecuniary interest	pecuniary interest
			member of the Optimal CKD Management Programme Board (ended September 2006)	
JOHN Ian	None	None	None	None
LAMB Edmund	None	None	None	None
MCINTRYE Natasha	 Evening workshop for Pfizer on GPs and CKD management Evening workshop for Bristol Myers Squibbs (BMS) on primary care and CKD management Global nurse advisory board for Hoffman Roche Masterclass for Roche Working as a consultant on a six month project for Riche but not as an employee 	None	None	None
OMARJEE Suffiya	None	A family member conducts drug trial research for several drug companies in the field of gastroenterol ogy in South Africa.	None	None
O'RIORDAN Shelagh	None	None	None	None
RODERICK Paul	Advisor to GlaxoSmithKline regarding drug nephrotoxicity	None	Grant funding from Pfizer for a research fellow	None
STEPHENS David	None	None	None	None
STEVENS Paul	Honoraria for lectures and attendance at	None	Roche UK research grant for	None

Name	Personal pecuniary interest international meetings for Ortho Biotech, Bayer, Amgen, Pfizer and Hoffman La Roche	Personal family interest	Non-personal pecuniary interest developing an expert system for the management of chronic kidney disease	Personal non- pecuniary interest
SUTTON Jaim	None	None	None	None
TOK Meiyin	None	None	None	None

Clinical evidence tables from 2008 guideline

NaLIOIIAI CUIT Factors affecting the biological and analytical variability of GFR estimated from measurement of serum creatinine (2014 guideline – chapter 5.2)

Table 236: Ref ID: 4124 [Ford et al. 2008]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Ford L, Berg J. Delay in separating blood samples affects creatinine measurement using the Roche kinetic Jaffe method. 2008.	Case series Evidence level: 3 1 centre, UK	N volunteers = 10 N outpatient s = 113	Inclusion: volunteers and outpatients Exclusion: not stated Population baseline characteristics: Volunteers (N=10) age 27-55 years; 90% Caucasian, 10% Asian, 50% male Outpatients (N=113): age 18- 88 years, 52%	Effect of delay in centrifugation of blood samples on creatinine concentration determined by Kinetic Jaffe reaction (Roche kit). N=10 volunteers N=113 outpatients Procedure: Un-separated Blood experiment: 10 volunteers each provided 7 blood samples (clotted). Samples were kept at RT exposed to light until centrifugation at 0.5 h, 4 h, 8 h, 16 h, 24 h, 36, and 48 h-post collection. All samples were assayed for creatinine with the kinetic Jaffe Roche method standardised against IDMS.	Timely centrifugation of blood samples on creatinine concentration N=10 volunteers N=113 outpatients	Not applicable	Change in creatinine concentration with delay in centrifugation of blood sample Change in GFR with delay in centrifugation of blood sample	Not stated

IIICal

סטוטפוווופ כפווני א דעז

	Study	Number of	Patient			Length of	Outcome	Source of
Reference	type	patients	characteristics	Intervention	Comparison	follow-up	measures	funding
			Caucasian, 39%	Separated Serum experiment: 10				
			Asian, 8% Afro-	outpatients each provided a				
			Caribbean, 44%	blood sample that was allowed to				
			male	clot and then centrifuged after				
				0.5h. The separated (centrifuged)				
				serum was then left at RT				
				exposed to light and aliquots				
				were taken for analysis (kinetic				
				Jaffe, Roche) at 0.5, 4, 8, 16, 24,				
				36, and 48 h.				
				24-h Delay Study: Clotted blood				
				samples were collected in				
				duplicate from N=113				
				outpatients. The first sample was				
				centrifuged at 0.5h, while the				
				second clotted sample was left				
				un-separated for 24-h at RT, then				
				centrifuged and analysed by				
				kinetic Jaffe (Roche).				
				Creatinine Enzymatic methods:				
				10 duplicate samples from the				
				24-h study with the largest				
				difference between creatinine				
				concentration for samples				
				separated after 0.5 h and a delay				
				of 24-h were analysed with an				
				enzymatic creatinine assay				
				(VITROS 5)				

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Effect size:								
Baseline = 0.5 h	delay in cen	trifugation of	clotted blood.					
Effect of delaye	d centrifuga	tion of blood	samples on creatinin	e concentration (determined by kine	etic Jaffe, Roche):			
Delayed centrifu	ugation of cl	otted blood sa	amples (N=10 volunte	ers) resulted in a significant increase	in creatinine concentra	ation after 16 h (p<0.001). By 48-l	h, creatinine
concentrations	had increase	d above the b	oaseline (centrifugatio	n after 0.5h) by mean 29% (range 21	-63%). Mean CV for the	e seven measure	s for each volunt	eer was
11.3% (range 8.	1-16.2%)							

There was NS change in creatinine concentrations in centrifuged (separated) serum samples left at RT for 0.5, 4, 8, 16, 24, 36, and 48 h. Mean CV for each sample was 4.87% (range 2.38-7.81%)

From the 24-h delay experiment (N=113 outpatients), creatinine concentration significantly increased from baseline (mean 85 micromol/l) to 24-h delay (mean 95 micromol/l, 11% increase, p<0.0004) in centrifugation of blood samples. Similar results were seen for males, females, and different ethnicities.

Effect of delayed centrifugation of blood samples on the eGFR (MDRD)

With a 16 h delay in centrifugation, 4/7 volunteers with baseline Stage 1 CKD had changed to Stage 2. By 36 h delay in centrifugation, 7/7 volunteers had changed from Stage 1 to Stage 2 CKD. Three volunteers with baseline Stage 2 CKD did not fall to Stage 3 regardless of length of delay in centrifugation.

From the 24-h delay experiment (N=113 outpatients), eGFR significantly decreased from baseline (mean eGFR 85 ml/min/1.73m²) to 24-h delay (mean eGFR 75 ml/min/1.73m², 13% decrease, p<0.0001) in centrifugation of blood samples. Similar results were seen for males, females, and different ethnicities.

From the 24-h delay experiment (N=113 outpatients), the CKD staging of 32% of the participants changed after a 24-h delay in centrifugation of blood samples. 26% went from Stage 1 CKD to Stage 2 and 6% went from Stage 2 to Stage 3 CKD.

Effect of delayed centrifugation of blood samples on creatinine concentration (determined by Enzymatic method, VITROS):

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			• •	es; mean 29.4% increase in creatinine og the enzymatic method (mean decr		•	rifugation, range	2 19.7 –

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Fraser CG, Williams P. Short-term biological variation of plasma analytes in renal disease. Clin Chem. 1983; 29(3):508-510. Ref ID: 3967	Case series Evidence level: 3	N = 9 patients with CKD (3 mild, 3 moderate, 3 severe CKD) 1 centre, Australia	Inclusion criteria: sequentially recruited adults with CKD Exclusion criteria : none stated Population baseline characteristics: Not stated	Biological variability of serum creatinine in adults with CKD N=9 Procedure: Blood samples were collected at 0, 0.25, 0.5, 1, 2, 4, 6, 8, 10, 12, 16, 24, 36, and 48 h after administration of 150 mg oral dose or ranitidine. Samples were promptly centrifuged, aliquoted into 3 separate aliquots and frozen in liquid nitrogen. Serum creatinine concentration determined in an Astra discrete analyser in a single day (calibrated twice). The first aliquot of all samples from a single subject were placed in random order and analysed in a single batch containing quality-control materials (Wellcomtrol Unassayed and Monitrol II.X Control). The Astra was recalibrated and the second aliquot of all samples from a single subject was analysed the same way.	n/a	Not applicable	Biological variation in serum creatinine measurements	Not stated

Table 237: Ref ID: 3967 [Fraser et al. 1983]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Effect size								
The CV for serur	n creatinine f	for all nine sub	pjects with CKD on all o	occasions was 61.9% (mean 190.4 micr	omol/l; SD 117.	8 micromol/l).		

Biological Variation in serum creatinine concentration

- The average analytical variation was 0.1% of the total variance.
- The average intra-individual biological variation of creatinine measurements was 1.1% of the total variance.
- The average inter-individual variation for serum creatinine was 98.8% of the total variance.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Holzel WG. Intra- individual variation of some analytes in serum of patients with chronic renal failure. Clin Chem. 1987; 33(5):670-673. Ref ID: 3971	Case series Evidence level: 3	N = 24 healthy volunteers N=17 patients with CKD 1 centre, Germany	Inclusion criteria: sequentially recruited healthy adults or adults with CKD. Exclusion criteria : none stated Population baseline characteristics: Healthy adults: Age range 20-50 years, mean age 33.5 years (female) and 41.8 years (male), CKD group: 65% glomerulonephritis, 29% chronic pyelonephritis, 6% gouty CKD; serum creatinine range: 255-1125 micromol/l.	Biological variability of serum creatinine in adults with CKD N=17 Procedure: Blood samples were taken from healthy subjects once a week for 8 weeks. Blood was taken from CKD patients 8 times during 3 weeks and at 4, 8, and 12 weeks after the first collection. Blood samples were drawn after an o/n fast from resting subjects, and samples were centrifuged within 1 hour, and the serum was aliquoted and frozen. Serum creatinine concentration determined with Jaffe method on a continuous flow analyzer. Samples were analysed in duplicate within a single run, in random order. Every tenth sample was a control sample.	Biological variability of serum creatinine in healthy adults N=24	Not applicable	Biological variation in creatinine measurements	Not stated

Table 238: Ref ID: 3971 [Holzel et al. 1987]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
				Analyses of blood samples for people with CKD were restricted to blood samples taken within first 3 weeks as CKD process was stable at that time.				

Within-run analytical coefficient of variation for creatinine was 3.3% (in a concentration range of 40-110 micromol/I).

Biological Variation in creatinine concentration

The intra-individual biological variation of creatinine measurements was significantly higher in people with CKD (N=17, CV=5.3%) than in healthy subjects (N=24, CV=2.7%, p<0.01). The ratios of CV for CKD to healthy patients was 1.93 (p<0.01).

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטדא

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Holzel WG. Intra- individual variation of some analytes in serum of patients with insulin- dependent diabetes mellitus. Clin Chem. 1987; 33(1):57-61. Ref ID: 3970	Case series Evidence level: 3	N = 24 healthy volunteers N=27 patients with insulin- dependent diabetes 1 centre, Germany	Inclusion criteria: sequentially recruited healthy adults or adults with insulin- dependent diabetes Exclusion criteria : none stated Population baseline characteristics: Healthy adults: Age range 20-50 years, mean age 33.5 years (female) and 41.8 years (male), IDDM group: Age range 18- 52 years, mean age 31.8 years (females) and 38.7 years (males)	Biological variability of serum creatinine in adults with IDDM N=27 Procedure: Blood samples were taken from subjects once a week for 8 weeks after an o/n fast from resting subjects, and samples were centrifuged within 1 hour, and the serum was aliquoted and frozen in liquid nitrogen. Serum creatinine concentration determined with Jaffe method on a continuous flow analyzer. Samples were analysed in duplicate within a single run, in random order. Every tenth sample was a control sample.	Biological variability of serum creatinine in healthy adults N=24	Not applicable	Biological variation in creatinine measurements	Not stated

Table 239: Ref ID: 3970 [Holzel et al. 1987]

Effect size

Within-run analytical coefficient of variation for creatinine was 3.3% (in a concentration range of 40-110 micromol/l).

Biological Variation in creatinine concentration

The intra-individual biological variation of creatinine measurements was significantly higher in women with insulin-dependent diabetes (N=11, CV=6.53%) than in

Defenence	Study	Number of	Patient	Internetica	Commentione	Length of	Outcome	Source of
Reference	type	patients	characteristics	Intervention	Comparison	follow-up	measures	funding
healthy women (N=14, CV=2	.81%, p<0.01).	The ratios of CV for IDD	M to healthy women was 2.32 (p<0.0	01).			
The intra-individ	ual biologica	l variation of c	reatinine measurements	s was significantly higher in men with	h insulin-depen	dent diabetes (N	l=16, CV=5.88%) than	in healthy
men (N=10_CV=3	2 64% n<0 0	1) The ratios	of CV for IDDM to health	y men was 2.23 (p<0.01).				

Table 240: Ref ID: 697	[Jacobsen et al. 1979]
------------------------	------------------------

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Jacobsen FK, Christensen CK, Mogensen CE et al. Postprandial serum creatinine increase in normal subjects after eating cooked meat. Proceedings of the European Dialysis & Transplant Association. 1979; 16:506- 12, 1979.:506- 512. Ref ID: 697	Case series Evidence level: 3	N = 6 1 centre in Denmark	Inclusion criteria: sequentially recruited healthy medical students. Exclusion criteria : not stated Population baseline characteristics: Not stated	 Experiment 1: Meat meal N=6 Experiment 2: Raw beef meal N=6 Procedure: Experiment 1: After o/n fasting, participants were given a light, non-meat containing breakfast. Participants had a meat-containing lunch containing 500 g goulash (250-300 g beef) and 5 hours later a non-meat supper. Blood samples were taken before and after breakfast, before lunch, and then every hour after lunch until 10 pm. Several days later Experiment 1 was repeated and all 6 participants were given a non-meat lunch. Experiment 2: Participants were given one of the following meals: 300g raw beef, 300g friend beef, 300g boiled beef ingested with the cooking water, 500g goulash (250-300g beef), 500g 	Experiment 1: Non-meat meal N = 6 Experiment 2: Cooked Beef meals N=6	Not applicable	Change in creatinine concentratio n	Not stated

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

	Study	Number of	Patient			Length of	Outcome	Source of
Reference	type	patients	characteristics	Intervention	Comparison	follow-up	measures	funding
				stew (250-300g pork). Blood samples				
				were taken before ingestion of the				
				meal and 3 hours after the meal.				
				Serum creatinine concentration				
				determined by Jaffe reaction on an				
				autoanalyser. 39 samples also assayed				
				for creatinine concentration with ion				
				exchange method ("true creatinine").				

Change in creatinine concentration (kinetic Jaffe method)

Experiment 1: Following a cooked meat goulash lunch (N=6), the mean serum creatinine concentration significantly increased from baseline (86 micromol/L, preprandial) to 175 micromol/L, 3 hours postprandially, p< 0.001). By contrast, following a non-meat lunch, a small increase in serum creatinine was observed 1 hour postprandially, but the serum creatinine concentration was relatively unchanged throughout the time course.

A high correlation between serum creatinine determined by autoanalyser and by ion exchange was observed (N=39 samples).

Experiment 2: Ingestion of a raw beef meal did NS affect serum creatinine levels.

By contrast ingestion of any type of cooked beef meal (fried, boiled, goulash beef, or stew pork) resulted in a significant increase in serum creatinine. For example, ingestion of fried beef resulted in an increase from baseline serum creatinine 84 micromol/L to 110 micromol/L 3 hours postprandially (p<0.01). Ingestion of boiled beef + cooking water resulted in a significant elevation in serum creatinine from 87 micromol/L to 163 micromol/L postprandially (p<0.001).

Note: Authors suggest serum creatinine measured after fasting or to instruct patient to avoid meat meals prior to creatinine measurements.

ועמרוסדומו כוודווכמו שמומפוודופ כפדונרפ

ZUT4

Table 241: Ref ID: 3920 [Mayersohn et al. 1983]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Mayersohn M, Conrad KA, Achari R. The influence of a cooked meat meal on creatinine plasma concentration and creatinine clearance. British Journal of Clinical Pharmacology. 1983; 15(2):227-230. Ref ID: 3920	Case series Evidence level: 3	N = 6 1 centre, USA	Inclusion criteria: sequentially recruited healthy male adults. Exclusion criteria: not stated Population baseline characteristics: Age range 26-38 years, mean age 31, mean weight 73 kg, weight range 65-82 kg	Meat breakfast N=6 Procedure: Day 1: All participants were given a light, non-meat containing breakfast: 3 participants had a breakfast containing high amounts of non- meat protein (62g) and 3 subjects had a breakfast of low non-meat protein (11.5g). Subjects had non-meat protein lunch and dinner. Day 2: Each subject ate a breakfast containing 225g of boiled beef. Lunch and dinner the same as Day 1. Fluids were ad libitum. On days 1 and 2, blood samples were taken before and at several time intervals after breakfast. Serum creatinine concentration determined by HPLC (daily calibration curves determined). Creatinine clearance determined from timed urine collections.	Non-meat breakfast N = 6	Not applicable	Change in creatinine concentrat ion	Not stated

Effect size

Change in creatinine concentration (HPLC method)

Following a cooked meat breakfast (N=6), the mean serum creatinine concentration significantly increased from baseline (52% increase, range 36-65%). By contrast, following either a high or low non-meat protein breakfast (control), serum creatinine remained stable (%coefficient of variation: 2.2 to 4.3%).

CrCl did NS change in response to a cooked meat breakfast.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding		
Note: Authors suggest serum creatinine measured after fasting or to instruct patient to avoid meat meals prior to creatinine measurements.										

Table 242: Ref ID: 3965 [Pasternack et al. 1971]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Pasternack A, Kuhlback B. Diurnal variations of serum and urine creatine and creatinine. Scand J Clin Lab Invest. 1971; 27(1):1- 7. Ref ID: 3965	Case series Evidence level: 3	N healthy volunteers = 9 N paralysed volunteers = 4 1 centre in Finland	Inclusion criteria: sequentially recruited healthy volunteers or paralysed (for greater than 3 years, breathing with respirators and severe muscular atrophy) Exclusion criteria : not stated Population baseline characteristics: Age range 22-45 years	non-fasting over 24 hours N=9 Procedure: Participants fasted for 10 hours prior to the first blood sample taken. Blood samples and urine collections were taken at 7:00, 13:00, 19:00, and at 7:00 the following morning. Meals (cooked meat, potatos, vegetables, bread) were eaten at 11:00 and 16:00, water and other beverages freely taken throughout. Normal activity was allowed from 8:00 to 22:00. In the control experiment, the same participants (excluding paralysed subjects) fasted for 34 hours and blood and urine samples taken as before. During this time, normal activity and water intake was allowed. Serum creatinine concentration determined using picrate method and Lloyd's reagent (103% recovery). Duplicate creatinine determinations differed by 1.12%.	Fasting over 34 hours N = 9	Not applicable	Change in creatinine concentratio n	Not stated

Change in creatinine concentration

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding		
In non-fasting healthy subjects (N=9) or in paralysed subjects (N=4), the creatinine concentration increased significantly during the day, peaking at 19:00 (p<0.001). The										
creatinine concentration then decreased after 19:00 to 7:00 the next morning.										
In fasting subject	s (N=9), the	re was a small	but significant decrea	se in creatinine concentration between 7:00 a	and 13:00 (p<0.0	2) and there v	was no increase	in serum		

creatinine during the rest of the time course. Fasting abolished the diurnal variation in creatinine concentration.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Pinto JR, Bending JJ, Dodds RA et al. Effect of low protein diet on the renal response to meat ingestion in diabetic nephropathy. European Journal of Clinical Investigation. 1991; 21(2):175-183. Ref ID: 423	Case series Eviden ce level: 3	N = 10 1 centre, Guy's Hospital, London, UK	Inclusion criteria: proteinuric (protein excretion > 0.5g/24-h persistent for at elast 1 year) insulin-dependent diabetic adults with diabetic adults with diabetic retinopathy. None were taking ACE inhibitors. 7 were taking antihypertensive drugs Exclusion criteria : cardiac failure, clinical/biochemical sign of non-diabetic nephropathy Population baseline characteristics:	Meat meal on low protein diet N=10 Procedure: Participants were randomly allocated to a 3-week period on a normal protein diet or a low protein diet (isocaloric with normal protein diet and containing 0.5g/kg body weight per day of protein; half from animal and half from vegetable sources) . At the end of 3 weeks, all patients returned to normal protein diets for 1 week and then switched over to the alternative protein diet for another 3 weeks. Diet assessment from a detailed dietary history and 3-day weighted food record. At the end of each diet period, patients' GFR measured by inulin clearance before and after a protein meal, consisting of 80g animal protein provided as lean cooked beef. Serum creatinine measurements made at baseline, at the end of	Meat meal on normal protein diet N = 10	Not applicable	Change in serum creatinine concentration	Not stated

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			Age range 26-38 years, mean age 31, mean weight 73 kg, weight range 65-82 kg	each diet period, and before and after a meat meal given at the end of each diet period. Serum creatinine determined on multichannel autoanalyser.				

Protein intake was 45% lower on low protein diet compared with the normal protein diet (p<0.001).

Change in creatinine concentration

Following a cooked meat meal (N=10), the mean serum creatinine concentration significantly increased from baseline (167 micromol/L) to 180 micromol/L in 2 hours (p<0.001) in people on a normal protein diet.

Following a cooked meat meal (N=10), the mean serum creatinine concentration significantly increased from baseline (152 micromol/L) to 161 micromol/L in 2 hours (p<0.02) in people on a low protein diet.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Preiss DJ, Godber IM, Lamb EJ et al. The influence of a cooked- meat meal on estimated glomerular filtration rate. Ann Clin Biochem. 2007; 44(Pt 1):35-42. Ref ID: 3921	Case series Evidence level: 3	Total N = 32 No. ITT 1 centre in UK	Inclusion criteria: sequentially recruited Caucasian volunteers (healthy and outpatients) age > 18 years. Exclusion criteria : vegetarianism, any reason for not eating a meat diet, renal dialysis, renal transplantation receipients, Population baseline characteristics: Age range 18-86 years, median age 54.5, 47% male	Meat meal N=32 Procedure: A preprandial blood sample was taken 4 hours after a light, non-cooked meat containing breakfast. Participants had either a meat-containing meal (normal helping)or a vegetarian meal. Blood samples were taken after (1-2 hours postprandially and 3-4 hours postprandially). 3 determinations of creatinine concentration by kinetic Jaffe (Beckman Coulter LX20), ID-MS chromatograghy, and enzymatic method (Roche Integra Analyser). eGFR determined from kinetic Jaffe creatinine concentration with IDMS version of MDRD equation. Serum cystatin C concentration was also determined (nephelometric immunoassay).	Vegetarian meal N = 23	Not applicable	Change in eGFR Change in creatinine concentratio n Change in cystatin C concentratio n	Not required

Change in creatinine concentration (kinetic Jaffe method)

	Study	Number of	Patient			Length of	Outcome	Source of
Reference	type	patients	characteristics	Intervention	Comparison	follow-up	measures	funding
Following a co	ooked meat	lunch (N=32), th	e median serum creatinir	e concentration significantly increased from	om baseline (pr	eprandial) by	20.5 micromol/	L 1-2 hours
		1) and by 18.5 m	icromol/L 3-4 hours post	orandially (p<0.0001). Similar results were	seen when ser	um creatinine	was measured	by ID-MS, and
enzymatic me	thods.							
Maximal post	prandial ser	um creatinine co	oncentrations were reach	ed by 18 people at the 1-2 h time and by 1	L2 people at the	e 3-4 hour tim	e.	
•	-	•	• • •	ange in median serum creatinine concent		eline (preprar	ndial) to 1-2 hou	urs
postprandially	y or 3-4 hou	rs post prandiall	y. Similar results were see	en when serum creatinine was measured e	enzymatically.			
a								
				oncentration and MDRD equation)		2		
				tly decreased from baseline (preprandial)	by 24.5 ml/min	/1.73 m ⁻ 1-2 ł	nours postprand	dially (p<
0.0001) and b	y 20 mi/mir	1/1./3 m 3-4 no	urs postprandially (p<0.00	JO1).				
By contract f		ogotarian lunch ((N-22) there was a small	but significant increase in eGFR from base	olino (propropdi	ial) to 1 2 hou	rs postprandiall	v (1 0
•	-	-	estprandially (3.5 ml/min/	•	enne (prepranu	iai) to 1-2 iiou	i s postpranulan	y (1.0
,,	,p	,						
Following a m	leat meal, 1	1 people change	d from a pre-prandial eGI	$R > 59 ml/min/1.73 m^2$ to a post prandial	eGFR of < 60 m	l/min/1.73 m	² . Effectively, er	roneously
placing them								
Change in cys	tatin C cond	centration						
Following a co	ooked meat	lunch (N=32), th	ere was NS change in me	dian serum cystatin C before and after a m	neat lunch			
Following a ve	egetarian lui	nch (N=23), ther	e was NS change in media	in serum cystatin C concentration from ba	seline (prepran	dial) to 3-4 ho	ours post prandi	ally.

Chronic kidney disease Error! No text of specified style in document.

Note: did not sample past 4 hours, no quantification of the amount of meat eaten (although a "normal" portion size), did not evaluate all the dietary constituents of the meals. Authors suggest eGFR measured after fasting or to instruct patient to avoid meat meals prior to eGFR measure.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Rapoport A, Husdan H. Endogenous creatinine clearance and serum creatinine in the clinical assessment of kidney function. Can Med Assoc J. 1968; 99(9):149- 156. Ref ID: 3976	Case series Evidence level: 3	N patients admitted for investigatio n of kidney disease, hypertensio n or kidney stones = 89 1 centre in Canada	Inclusion criteria: patients admitted for investigation of kidney disease, hypertension or kidney stones Exclusion criteria :heart failure, hyperglycemia, glycosuria, ketonuria Population baseline characteristics: 55% male, Age range 14-58 years	Creatinine concentration following fasting in the morning N=72 Procedure: Blood specimens were drawn in the morning after an o/n fast and again at 4 pm. Participants ate their normal meals and pursued normal hospital activities, while avoiding strenuous exercise. Serum creatinine concentration determined using the Jaffe method.	Creatinine concentratio n following usual meals in the late afternoon N = 72	Not applicable	Change in creatinine concentratio n	Ontario heart foundation, Toronto Western Hospital Medical Research Fund

Change in creatinine concentration

In patients with inulin clearance \geq 90 ml/min (N=38), the serum creatinine concentration was significantly greater in the afternoon than in the morning (after an o/n fast) (mean difference 0.087 mg/100ml, p<0.001). Similarly, patients with baseline serum creatinine concentration \leq 1.4 mg/100ml (N=49) had a significantly greater serum creatinine concentration in the afternoon than in the morning (mean difference 0.092 mg/100ml, p<0.001).

By contrast, there was NS difference in serum creatinine concentration between morning and afternoon in patients with inulin clearance < 90 ml/min (N=34, mean difference 0.035 mg/100ml). Similarly, there was NS difference in serum creatinine concentration between morning and afternoon in patients with baseline serum

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding		
creatinine concentration > 1.4 mg/100ml (N=23, mean difference 0.000 mg/100ml).										

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Shepherd J, Warner M, Kilpatrick E. Stabilty of creatinine with delayed separation of whole blood and implications for eGFR. Ann Clin Biochem. 2007; 44:1-4. Ref ID: 3922		N healthy volunteers = 5 N patients = 24 1 centre in UK	Inclusion criteria: sequentially recruited non-fasting volunteers (healthy and outpatients) age 27-64 years. Exclusion criteria : not stated Population baseline characteristics: Not stated	Effect of delay in centrifugation of blood samples on creatinine concentration determined by Kinetic Jaffe reaction. N=5 N=24 Procedure: Each subject provided six blood samples. Samples were kept at RT until centrifugation at 15 min, 4 h, 8 h, 14 h, 24 h, and 31 h-post collection. All samples were assayed for creatinine with 3 different kinetic Jaffe methods: Beckman DXC 800, Bayer Advia, Roche Modular P-800. The samples were also assayed for creatinine with 2 enzymatic assays: Roche- Modular P-800 enzymatic assay and Vitros 5.1 enzymatic assay. The between batch CV for each method was < 2% at a level of 100	Effect of delay in centrifugatio n of blood samples on creatinine concentratio n determined by enzymatic methods N=5 N=24	Not applicabl e	Change in eGFR with delay in centrifugatio n of blood sample Change in creatinine concentratio n with delay in centrifugatio n of blood sample	Not stated

Table 246: 3922 [Shepherd et al. 2007]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
				micromol/L. 24 patients provided two blood samples each. One sample of each pair was promptly centrifuged and assayed for creatinine (within 1 hour of receipt) by the kinetic Jaffe (DXC 800 autoanalyser). The other sample was left at RT and centrifuged up to 28 h later. eGFR was determined on each sample.				

Effect of delayed centrifugation of blood samples on creatinine concentration:

Using 3 different kinetic Jaffe methods (Beckman, Bayer Advia, Roche), the creatinine concentration remained stable in blood (N=5 healthy volunteers, 30 samples total) up to 14 hours before centrifugation. A 24-h delay in centrifugation resulted in significant increases in creatinine concentration (mean difference Beckman DXC + 19.7 micromol/l ; Boyer Advia + 6.2 micromol/l, p<0.025).

Analysis of 24 pairs of blood samples taken from 24 patients showed NS difference in creatinine concentration before 10 h delay in centrifugation (p=0.46). Significant increases in creatinine concentration were seen after 10-24 h delay in centrifugation (P<0.001) (Beckman kinetic Jaffe method).

By contrast, the creatinine concentration remained stable, regardless of the delay in centrifugation, when assayed with enzymatic methods (N=5 healthy volunteers, 30 samples total; Roche, Vitros enzymatic methods).

Effect of delayed centrifugation of blood samples on the eGFR (determined from kinetic Jaffe Beckman DXC 800)

In 21 patients where the delay in centrifugation exceeded 10 h, the eGFR significantly decreased (p<0.001). This resulted in a change in CKD classification in 4 of these cases.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Note: authors recon	nmend cent with the Jai	rifugation of bl	ood samples within 10 ho	ours of receipt. Enzymatic methods	show less variat	ion, indicatir	ng that the insta	oility of

5.2 Detection of blood and protein in the urine (2014 guideline – chapter 5.3)

Table 247: Ref ID: 309 [Agarwal et al. 2002]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Agarwal R, Panesar A, Lewis RR. Dipstick proteinuria: Can it guide hypertensio n managemen t? American Journal of Kidney Diseases. 2002; 39(6):1190- 1195. Ref ID: 309	Cross- sectional Diagnostic test: 1b + Single site renal clinic Indianapolis, USA	N =332	Inclusions: adults attending the renal clinic at the R.L. Roudebush Veterans Administration Hospital Exclusion: not stated Baseline population: Mean age: 66 years, 5% females, 39% hypertensive nephrosclerosis, 34% diabetic nephropathy, 10% glomerulonephritis, 3% renal obstruction, 3% unknown, 11% other causes of renal disease, average serum creatinine 2.7 mg/dl, CrCl (CG) 48 ml/min, mean BP 141/73 mm Hg, 56% taking ACE inhibitors or ARB	Multistix 10 SG (Bayer) reagent strip N= 332 Protocol: spot urine samples tested with Multistix 10 SG reagent strip (recorded as 0 to + 4) or quantitative method. Specific gravity was also recorded. Reagent strips were read on Clinitek 200+ automated reader.	Protein:creatinine ratio (PCR) of spot urine sample N= 332 Protocol: Total protein measured by a turbidometric assay using benzethonium chloride at 550 nm with a Hitachi analyzer. Creatinine measured by modified Jaffe reaction (Boehringer Mannheim). Urine protein:creatinine ratios were calculated.	N/A	Sensitivity Specificity Area under ROC	Not stated

Effect size

Increasing specific gravity of urine predicted a decreasing protein:creatinine ratio.

Sensitivity

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding			
• At a cutoff of	of protein:creati	nine ratio ≥ 1g,	/g creatinine, a Multistix reager	nt strip result of +1 gave	a sensitivity of 96%.						
• At a cutoff of	 At a cutoff of protein:creatinine ratio ≥ 1g/g creatinine, a Multistix reagent strip result of +3 gave a sensitivity of 100%. 										
• At a cutoff of protein:creatinine ratio \geq 3g/g creatinine, a Multistix reagent strip result of +1 gave a sensitivity of 100%.											
 At a cutoff of protein:creatinine ratio ≥ 3g/g creatinine, a Multistix reagent strip result of +4 gave a sensitivity of 94%. 											
Specificity											
• At a cutoff of	of protein:creati	nine ratio ≥ 1g,	/g creatinine, a Multistix reager	nt strip result of +1 gave	a specificity of 60%.						
• At a cutoff of	of protein:creati	nine ratio ≥ 1g,	/g creatinine, a Multistix reager	nt strip result of +3 gave	a specificity of 87%.						
 At a cutoff of protein:creatinine ratio ≥ 3 g/g creatinine, a Multistix reagent strip result of +1 gave a specificity of 46%. 											
• At a cutoff o			, 0 , 0								

Area under ROC

- At a cutoff of protein:creatinine ratio \geq 1g/g creatinine, Multistix reagent strips had a significantly high diagnostic accuracy [AUC=0.945 (95% CI 0.922 to 0.966)]
- At a cutoff of protein:creatinine ratio \geq 3g/g creatinine, Multistix reagent strips had a significantly high diagnostic accuracy [AUC=0.905 (95% CI 0.874 to 0.935)]

Note: population was mostly older males, reagent strips were read by an automated reader, and visual interpretation of reagent strip could change sensitivity/specificity.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Arm JP, Peile EB, Rainford DJ et al. Significance of dipstick haematuria. 1. Correlation with microscopy of the urine. Br J Urol. 1986; 58(2):211- 217. Ref ID: 3903	Study type Cross- sectional Diagnostic test 1b+	N participant s = 100 Total N samples = 900 No. ITT 825 1 centre in UK	Inclusion criteria: adults admitted to hospital (not consecutively) with suspicion of hematuria Exclusion criteria : people unable to remain on the hospital ward for several days Population baseline characteristics: None stated	N-Multistix-SG reagent strip N samples = 825 Procedure: patients provided 3 urine samples/day for three days (9 samples/patient). Each sample was tested with N- Multistix-SG reagent strip and an aliquot was examined by phase contrast microscopy. Abnormal RBC count was defined as ≥ 10 RBC/microL	phase- contrast microscopy of un-spun urine N samples= 825	Not applicable	Sensitivity Specificity PPV NPV (Calculated by EC)	Not stated

When the reagent strip gave a negative result, 24.4% of the samples were found to be positive by microscopy (\geq 10 RBC/microL) PPV: When the reagent strip registered a "trace" result, 81.7% of the samples were found to be positive by microscopy (\geq 10 RBC/microL) PPV: When the reagent strip registered a "+" result, 100% of the samples were found to be positive by microscopy (\geq 10 RBC/microL)

Calculated by EC: Sensitivity: 84.1%

Specificity: 84.5%

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
PPV = 90%								
NPV = 75.6%								

Table 249: Ref ID: 158 [I	Brown et al. 1995]

-	tudy ype	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Brown MA, Cr Buddle ML. see Inadequacy of stu dipatick proteinuria in Dia hypertensive tee	Cross ectional tudy Diagnostic est .b+	N=230 Consecutiv e patients	Inclusion criteria: pregnant women with hypertension, admitted to hospital for management of their hypertensive disorder.Exclusion criteria: not mentionedNo baseline criteria reported.True proteinuria considered as ≥ 300 mg/day	Urinalysis using Multistix 10SG (Bayer Diagnostics) Three were done on a morning midstream urine sample before and after the 24 hour urine collection and on a well mixed aliquot of the 24 hour urine sample. 'Nil' and 'trace' proteinuria were considered to be negative.	24 hour urine protein measured by a benzethonium chloride turbidometric method (protein excretion ≥300mg/day considered proteinuria) Urine creatinine measured by the Jaffe method, Hitachi 911 autoanalyser (Boerhinger Mannheim)	n/a	PPV NPV	Division of Medicine, St Georges Hospital, Australia

Positive and negative predictive values of the three urine dipstick analyses compared with the 24 hour urine protein estimation in pregnant women with hypertensive disorders:

	PPV (%)	NPV (%)
Before 24 hour urine collection	86	38
After 24 hour urine collection	46	88
On aliquot from 24 hour urine collection	60	87

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Number of true pos	tives 70/230	(30.4%)						
	-			of 8 hypertensive pregna	nt women. A 24-hour colle	ction should fo	ollow a '1+' or '	2+' finding to
be certain about the	e presence or	absence of pro	teinuria.					
Assessment of poter investigators (on the				nded to each other. Asses	ssment of dipstick done by	midwifery staf	f or by one of t	:he

Reference	Study type	Number of patients	Patient chara	cteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Chan RWY, Chow KM, Tam LS et al. Can the urine dipstick test reduce the need for microscopy for assessment of systemic lupus erythematosus disease activity? Journal of Rheumatology. 2005; 32(5):828-831. Ref ID: 385	Study type Cross- section al Diagno stic test 1b+	Total N = 269 No. ITT 269 No. centres 1 centre in Hong Kong, China	Inclusion crite adults with sy lupus eryther (SLE) Exclusion crite stated Population be characteristic N Mean Age, years (range) % Female Mean SLE Activity Index score	eria: not	Hemastix reagent strip N samples = 269 Procedure: Patients were assessed for SLE Activity Index by an independent clinician. Spot urine sample collected and immediately tested with Hemastix (Bayer) and the result was scored as negative, nonhemolysed trace, nonhemolysed moderate, trace, small, moderate, or large for RBC. An aliquot of the same sample was removed for phase- contrast microscopy (400 x magnification) of the urinary sediment by an independent examiner blinded to the Hematsix test result.	phase-contrast microscopy of urinary sediment N samples= 269 Hematuria defined as ≥ 5 RBC/high power field. Urinary casts defined as the presence of heme-granular or RBC casts at 100X magnification.	Not applicable	Sensitivity Specificity Positive predictive value Negative predictive value Area under the ROC curve	Chinese Universit y of Hong Kong research grants

Ref ID: 385 [Chan et al. 2005]

Effect size

Microscopic examination: 63/269 = 23% had hematuria and 21/269 = 8% had urinary casts

Hematuria Detection:

D - (Study	Number of		lut months.	6	Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding
 Hemastix reage 	ent strip ide	entified 159/26	59 (59%) as having trace or	r more RBC.				
 Sensitivity: 98% 	6							
• Specificity: 53%	b							
Positive Predict	tive Value:	39%						
Negative Predi	ctive Value	: 99%						
Area Under the	ROC (whe	n trace RBC wa	as defined as the cut-off):	0.97				
Urinary cast dete	ection							
-		reagent strip	result was defined as trace	e or more RBC,				
-	e Hemastix			e or more RBC,				
When a positiv	e Hemastix letection o	r urinary casts:	: 91%	e or more RBC,				
When a positivSensitivity for c	e Hemastix letection o letection o	r urinary casts: r urinary casts:	: 91%	e or more RBC,				
 When a positiv Sensitivity for c Specificity for c 	e Hemastix letection o letection o tive Value:	r urinary casts: r urinary casts: 12%	: 91%	e or more RBC,				

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Cortes-Sanabria L, Martinez-Ramirez HR, Hernandez JL, Rojas-Campos E, Canales-Munoz JL, Cueto-Manzano AM. Utility of the Dipstick Micraltest II in the screening of microalbuminuria of diabetes mellitus type 2 and essential hypertension. Revisita de Investigacion Clinica 2006; 58(3): 190-197	Cross- sectional study Diagnostic test 1b + 3 health care units, Mexico	N=245	 Mexican patients attending 3 primary health care units were randomly selected. Inclusion criteria: patients with type 2 diabetes with or without hypertension, patients with essential hypertension without diabetes type 2, of any age, sex and time since diagnosis. Exclusion criteria: cardiac failure, renal tract disease, acute febrile illnesses, urinary tract infection, hematuria, abnormal urinary sediment, any level of proteinuria in urinalysis and transitory albuminuria, secondary hypertension, serum creatinine ≥ 2 mg/dl. 	Micraltest II dipstick (Roche diagnostics GmbH, Germany) performed on a first morning urine sample, ready by one investigator	24-h Nephelometry (Behring Nephelometer Analyzer II, Behring diagnostics GmbH, Germany) performed on a 24 hr urine collection, to which had been added the remainder of the first morning sample on which the Micraltest II had been performed.	n/a	Sensitivity Specificity PPV NPV Area under ROC	Not stated

Performance of Micraltest II in compared with 24-h nephelometry in diabetic and hypertensive patients:

	Type 2 Diabetics (N=166)	Hypertensives (N=79)
Prevalence of albuminuria	42%	5%

Reference	Study type	Number of patients	Patien	t characteristics	Intervention	Comp	arison	Length of follow-up	Outcome measures	Source of funding
Sensitivity				83%			75%			
Specificity				96%			95%			
PPV				95%			43%			
NPV				88%			99%			
Pearson correlation	n coefficient			0.81 (p<0.0001)			0.43 (p<0.0	001)		
Mean area under R	Mean area under ROC curve (95% CI)			0.91 (0.85-0.96)			0.85 (0.60-1.10)			
Best cut-off point v	alue			30.5 mg/L			28.2 mg/L			

Sensitivity and PPV of the test increased with duration of diabetes and hypertension, as this increases the prevalence of albuminuria.

Assessment of bias

Blind comparison of test with reference standard.

Patients apparently selected randomly but no mention of methods used for this.

Reference	Study type	Number of patients	Patient charact	eristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Gai M,Cross- sectionalMotta D,sectionalGiunti S etDiagnostical.DiagnosticComparisontest: 1b+between 24-Single nephrologyhSingle nephrologyproteinuria, urinarySingle nephrologyprotein/crea tinine ratioSingle 	sectional Diagnostic test: 1b+ Single nephrology laboratory,	Sectional Diagnostic Sest: 1b+ Single hephrology aboratory,	with different ki	nrology lab from artment pril, 2003. tated	Multistix 10 SG (Bayer) reagent strip Protein:Creatinine Ratio (PCR) N= 297 Protocol: second midstream morning urine samples were	24-hour protein excretion N= 297 Protocol: patients submitted a 24-h timed urine collection and protein	N/A	Test correlation Sensitivity Specificity Area under ROC	Not stated
			Mean age, years (range)	51.7 (14-89)					
	plas crea mici	median plasma creatinine, micromol/l (range)	106 (44-946)	collected and tested with Multistix reagent strip. Multistix detects albumin at 0, 15, 30, 100, and ≥ 300 mg/dl; sensitivity range 15- 30 mg/dl. Reagent strips were read on Clinitek 200. Protein:creatinine ratio of the urine	was measured using the pyrogallol red- molybdate method				
negative patients.		% chronic nephropathy	38						
Scandinavia n Journal of Clinical & Laboratory	icandinavia n Journal of Clinical &		% glomerulonep hritis/vasculiti s		23				
Investigation			%	8.5	sample was				

Table 251: Ref ID: 3859 [Gai et al. 2006]

Reference	Study type	Number of patients	Patient characte	eristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
. 2006; 66(4):299- 308. Ref ID: 3859	Study type	patients	 Patient character nephrolithiasis % hypertensive nephropathy % acute pyelonephritis % chronic pyelonephritis 	8 7.5 6.5	determined on the Synchron CX9 ALX by measuring protein concentration (pyrogallol red- molybdate method) and creatinine by the Jaffe method (picric acid under alkaline	Comparison	Τοποιν-αμ	measures	Turrunig
		% other	8.5	conditions)					

Effect size

The overall prevalence of proteinuria was 62.3% (median 0.56 g/24-h; range 0.010-16.99 g/24-h)

0.150 g/24-h was the cut-off used to discriminate between physiological and pathological proteinuria.

Test correlation:

Compared to the reference test (24-h protein), there was a significantly high correlation with protein:creatinine ratio (R=0.82, p<0.0001).

Compared to the reference test (24-h protein), there was a significantly high correlation (but lower than that of PCR) with Multistix reagent strip testing (R=0.75, p<0.0001)

The correlation between PCR and Multistix reagent strip testing was R=0.72, p<0.0001.

Sensitivity

Compared with 24-h protein (cut-off 0.150 g/24-h), Multistix reagent strip testing had a sensitivity of 49.2%. Compared with 24-h protein (cut-off 0.150 g/24-h), protein:creatinine ratio had a sensitivity of 91.4%.

Specificity

Compared with 24-h protein (cut-off 0.150 g/24-h), Multistix reagent strip testing had a specificity of 93.8%.

ועמרוסדומו כוודווכמו שמומפוודופ כפדונרפ

ZUT4

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Compared with 24-h protein (cut-off 0.150 g/24-h), protein:creatinine ratio had a specificity of 75%.								
Area under RO	С							
Using the 24-h protein as a reference, the protein:creatinine ratio had significantly higher diagnostic accuracy [AUC=0.840 (95% CI 0.791 to 0.889)] compared with								
Multistix reagent strip testing [AUC=0.778 (95% CI 0.722 to 0.834), p<0.0001].								

Note: authors favour PCR over reagent strips.

Table 252: Ref ID: 3864 [Gilbert et al. 1997]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Gilbert RE, Akdeniz A, Jerums G. Detection of microalbuminuria in diabetic patients by urinary dipstick. Diabetes Research and Clinical Practice 1997; 35: 57-60	Cross- sectional Diagnostic test 1b+ 1 centre: Australia	N=411	Consecutive diabetic outpatients recruited for the study, at an endocrinology unit in Australia. No further detail given on the patient population. No exclusion criteria mentioned.	Micral-Test II (Boehringer- Mannheim, Mannheim, Germany) Both tests performed on a 24-hr urine specimen collected from each patient.	Urinary albumin concentration as determined by radioimmunoassay (using a double antibody method with a detection limit of 16 µg/l and intra- and inter assay coefficients of variation of 1.8 and 7.6% respectively, for a concentration of 20 mg/l).	n/a	Sensitivity Specificity PPV False positives False negatives	Boehringe r Mannhei m

Effect size

Performance of Micral-Test II in detecting UAC>20 mg/l compared with radioimmunoassay detection in diabetic patients:

Sensitivity	93%
Specificity	93%
PPV	89%
False positives	7%
False negatives	7%
Area under ROC curve	0.95

In this study prevalence of microalbuminuria 28% and abnormal albuminuria (micro-and macroalbuminuria) 39%.

Change in the prevalence of abnormal albuminuria to ~20% would decrease the PPV of the Micral-Test II to 81%.

Assessment of potential bias:

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Each Micral-Test II strip read by two scientists independently with 99% agreement.								
Do not mention if comparison between test and reference is blind.								

Table 253: Ref ID: 3937 [Highby et al. 1995]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Higby K, Suiter CR, Siler-Khodr T. A comparison between two screening methods for detection of microproteinuria. American Journal of Obstetrics and Gynaecology 1995; 173: 1111-1114	Cross sectional study Diagnostic test 1b+ 2 teaching institutions in Texas, USA	N=401 given N=690 specimens	 Inclusion criteria: low and high risk patients seen for prenatal care Exclusion criteria: not mentioned Baseline characteristics: not mentioned 	Multistix 10SG (minimum threshold 15 mg/dl) Micro-bumintest (Miles Diagnostic Division) (minimum threshold 4 mg/dl)	24 hour urine protein (measured with a pyrogallol red- molybdate complex reaction)	n/a	Sensitivity Specificity PPV NPV	Not mentione d.
Effect size:								

Validation of thresholds for both tests (N=690)

	Micro-bumintest (≥4 mg/dl)	Multistix 10SG (≥15 mg/dl)						
Sensitivity	87	36						
Specificity	99	97						
PPV	81	68						
NPV	99	88						
Likelihood ratios for both tests:	Likelihood ratios for both tests:							
	LR for a positive result	LR for a negative result						
Micro-bumintest	66.6	0.134						
Multistix 10SG	10.42	0.658						

	Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Dipstick tests were done in a blinded manner by the same investigator to eliminate interobserver variability. Do not mention if dipstick and 24 hour urine	Assessment of potential bias:								
	Dipstick tests were done in a blinded manner by the same investigator to eliminate interobserver variability. Do not mention if dipstick and 24 hour urine sample were								
blinded.									

Table 254: Ref ID: 173: [Meyer et al. 1994]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Meyer NI, Mercer BM, Friedman SA, Sibai BM. Urinary dipstick protein: a poor predictor of absent or severe protein. American Journal of Obstetrics and Gynaecology 1994; 170: 137- 141	Cross- sectional study, retrospective record review. Diagnostic test. 1b+ Recruited from hospital admissions in USA	N=300	 Inclusion criteria: pregnant women with hypertensive disease in pregnancy who had a minimum of 2 urine dipstick protein determinations at least 6 hours apart as well as a 24 hour urine collection. Exclusion criteria: if samples were collected postpartum. Baseline characteristics: Mean age 23.2 (SD 6.3) years 	Urine dipstick (not specified which)	24 hour total urinary protein excretion	n/a	Sensitivity Specificity PPV NPV Accuracy	Not mentione d
Effect size:								
Result			Urine dipstick ≥ 1+ Protein excretion ≥ 300 mg/24hr			Urinary dipstick ≥ 3+ Protein excretion ≥ 300 mg/24hr		
Sensitivity			67		75			
Specificity			74		81			
PPV			92	92				
NPV			34		96			

Conclusions: A dipstick of negative to trace should not be used to rule out significant proteinuria (NPV 34%). Urine dipstick values of 3+ to 4+ should not be used to diagnose severe pre-eclampsia as their PPV is only 36%

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Assessment of pote	ential bias: Not m	entioned wheth	er the assessments were blinded to eacl	h other. Selection	bias in record rev	iew.		

Table 255: Ref ID: 3936 [Paruk et al. 1997]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Paruk F, Moodley J, Daya PKS, Meineke K. Screening for proteinuria in hypertensive disorders of pregnancy. Journal of Obstetrics and Gynaecology 1997; 17 (6): 528- 530	Cross- sectional study Diagnostic test 1b + Inpatients recruited from a tertiary public sector hospital	N=150	Inclusion criteria: pregnant patients with hypertensive disorder (defined as a diastolic blood pressure ≥90 mmHg documented on 2 separate occasions at least 4 hours apart). Exclusion criteria: not mentioned Baseline characteristics: Mean age 26.6 (SD 6.6) years Systolic BP 143 (SD 12) mmHg Diastolic BP 95 (SD 5) mmHg Gestation 30 (SD 5) weeks	Dipstix analysis (Multistix- AMES) performed at random and at 6 and 12 hours into the 24 hour urine collection a 5ml aliquot was collected	24 hour urine protein (Beckman Synchron)	n/a	Sensitivity Specificity PPV NPV Accuracy	Not mentione d

Effect size:

Urine dipstick compared with 24 hour urine analysis (%)

Number of true positives: 84/150 (56%)

Result	Random dipstick	Hour 6 dipstick
Sensitivity	84	84.5
Specificity	61	90.1
PPV	57	84.5
NPV	86	90.0

		Number of				Length of	Outcome	Source of
Reference	Study type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding
Accuracy			69		87.9			
Conclusions: random urinary dipstick is unreliable in sc			in screening for proteinuria in hyperten	sive disorders of preg	nancy. A 6-hr co	llection is mu	ch more accura	ate.
Assessment of pote	ntial bias: Do n	ot report if co	nparison between test and reference is l	lind, or if random and	d 6 hour test we	ere blinded or i	ndependent o	of each
other.								

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Pugia MJ, Wallace JF, Lott JA et al. Albuminuria and proteinuria in hospitalized patients as measured by quantitative and dipstick methods. Journal of Clinical Laboratory Analysis. 2001; 15(5):295-300. Ref ID: 523	Cross- sectional Diagnostic test: 1b+ 4 hospital study: USA	N total =666	Inclusions: hospitalised patients or healthy volunteers Exclusion: not stated Baseline population: Not stated	Multistix PRO (Bayer) reagent strip N= 666 Protocol: urine samples were collected and tested within 1 hour (or frozen if analysis was delayed) with reagent strip or quantitative method. Specimens were measured in duplicate with Multistix PRO. Multistix PRO detects \geq 80 mg/l albumin and \geq 300 mg/l protein and ACR \geq 80 mg/g creatinine or PCR \geq 300 mg/g creatinine. Dipsticks were read on Clinitek 50 reflectometer.	Immunonephelo metric measure of albumin Total protein measured by pyrogallol red method Creatinine measured by rate-Jaffe N= 666	N/A	Positive Predictive Value (PPV) Negative Predictive Value (NPV)	Not stated

Table 256: Ref ID: 523 [Pugia et al. 2001]

Effect size

Cut-off values albumin ≤ 80 mg/l Cut-off values protein ≤ 300 mg/l Cut-off values ACR ≤ 80 mg/g creatinine Cut-off values PCR ≤ 300 mg/g creatinine

ואמנוטרומו כווחוכמו שעומפווחפ כפרונרפ בטב4

Reference	Study type	Numbe patients	-	Patie chara	nt cteristics	Intervention		Compari	son	-	th of w-up	Outcome measures	Source of funding
Diagnostic Accuracy of Multistix PRO compared to quantitative analysis for albumin, protein, ACR, and PCR													
Population			N		PPV (albumin)	NPV (albumin)	PPV (ACR)	NPV (ACR)	PPV (protein)	NPV (protein)	PPV (PCR)	NPV (PCR)
Healthy volunte	ers		129		-	100	-	100	-		100	-	100
General Hospita	I population		310		82	99	84	89	67		95	84	87
Kidney disease			113		84	97	86	100	72		91	92	93
Diabetics			80		75	100	83	100	46		100	83	98
Cardiovascular I	Disease		48		82	100	85	87	79		95	96	91
Cancer			31		43	100	43	100	57		89	71	94

84 samples were dilute (creatinine ≤ 250 mg/l) and assay of albumin or protein in dilute urine samples is unreliable, even when the ratio to creatinine is used. More dilute samples were identified by Multistix PRO than by quantitative methods.

Table 257: Ref ID: 135 [Saudan et al. 1997]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Saudan PJ, Brown MA, Farrell T, Shaw L. Improved methods of assessing proteinuria in hypertensive pregnancy. British Journal of Obstetrics and Gynaecology 1997; 1.4: 1159-1164	Cross- sectional study Diagnostic test 1b+	N=103 samples	Inclusion criteria: pregnant women admitted to hospital or pregnancy day assessment unit Exclusion criteria: not mentioned Baseline characteristics: not mentioned	Multistix 10SG (Bayer Diagnostics, Australia) Automated urinalysis (Clinitek 100 Ames)	Urine protein concentratio n Urine protein creatinine ratio	n/a	Sensitivity Specificity PPV NPV	Division of Medicine and South path Pathology services, St Georges hospital.

Effect size:

Visual dipstick urinalysis compared with urine protein concentration measurement

	Negative/trace	1+ (0.3g/L)	2+ (1g/L)	3+/4+ (≥3g/L)	Overall
Sensitivity		100	100	100	100
Specificity		62	85	98	55
PPV		24	53	93	
NPV	100				

Other analyses in this study were of the automated urinalysis compared with the urine protein concentration and urine protein concentration compared with a 24 hour urine collection, but these results are not presented here.

Assessment of bias: do not mention if recruitment was random or consecutive. Also no mention of whether assessments of samples were blinded.

Table 258: Ref ID: 3881 [Waugh et al. 2001]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Waugh J, Bell SC, Kilby M, Lambert P, Shennan A, Halligan A. Effect of concentration and biochemical assay on the accuracy of urine dipsticks in hypertensive pregnancies. Hypertension in Pregnancy 2001; 20(2): 205-217	Cross sectional Diagnostic test 1b+ 1 centre, Leicester, UK	N=197	Pregnant women presenting for assessment of hypertension in pregnancy or as referrals to a hypertension clinic, > 20 weeks gestation, hypertension defined as SBP > 140 mm Hg DBP > 90 mm Hg on two occasions or DBP > 110 mm Hg on one occasion No exclusion criteria reported Baseline data: mean age was 27 years (range 18-36 years), 36 weeks gestation, 87% Caucasian, Median SBP 145 mm Hg, median DBP 90 mm Hg	BM-Test-5L test strips (Boehringer Mannheim UK, East Sussex) applied to a 10 ml aliquot of thoroughly mixed 24-hr urine collection	Benzethoniu m Chloride assay Bradford assay Both performed on an aliquot of thoroughly mixed 24-hr urine collection	n/a	Sensitivity Specificity PPV NPV Prevalence of proteinuria	Not stated

Effect size

Using the dipstick, proteinuria is defined as \geq 1+ where the threshold of sensitivity is set as 0.3 mg/ml.

In the assays, the definition of significant proteinuria based on total protein excretion in 24h is most commonly accepted as $\geq 0.3g/24h$.

Prevalence of proteinuria:

	≥0.3mg/ml (95% Cl)	≥0.3g/24h (95% Cl)
Dipstick	16.2% (11.4-22.2)	
Benzethonium Chloride1	54.3% (47.1-61.4)	70.1% (63.1-76.4)
Bradford assay1	21.8% (16.3-28.3)	24.9% (19.0-31.5)

Chronic kidney disease Error! No text of specified style in document.

	Study	Number of				Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding

1Using both definitions of a true positive result for proteinuria, these prevalences were significantly different from that generated by the dipstick test.

Comparison of performance of dipstick urine analysis with Benzethonium Chloride and Bradford assay based on the definition of a true positive result for proteinuria used in the assays:

	≥0.3 g/24h		≥0.3 mg/ml	
	Benzethonium Chloride	Bradford assay	Benzethonium Chloride	Bradford assay
Sensitivity	22.5% (15.8-30.3)	57.1% (42.2-71.2)	29.0% (20.6-38.5)	69.8% (53.9-82.8)
Specificity	98.3% (90.9-99.9)	97.3% (93.2-99.3)	98.9% (94.0-99.9)	98.7% (95.4-99.8)
NPV	35.2% (27.9-43.0)	87.3% (81.2-91.9)	53.9% (46.0-61.7)	92.1% (86.9-95.7)
PPV	96.9% (83.8-99.9)	87.5% (71.0-96.5)	96.9% (83.8-99.9)	93.8% (79.2-99.2)

Assessment of bias:

Dipstick test performed by one trained observer.

Not mentioned if reference test was blinded to dipstick result.

Table 259: Ref ID: 459: Konta et al. 2007

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Konta T, Hao Z, Takasaki S, Abiko H, Ishikawa M, Takahashi T, Ikeda A, Ichikawa K, Kato T, Kawata S, Kubota I. Clinical utility of trace proteinuria for microalbuminuria screening in the general population. Clin Exp Nephrology 2007; 11: 51-55	Cross sectional study Diagnostic test II + Japanese cross- sectional health survey	N=2321 N=2401 in original study, N=80 excluded for incomplete data	Patients recruited from the general population of Takahata, Japan. Sampling and recruitment methods, inclusion criteria not described in this paper. Exclusion criteria: patients with incomplete data, women menstruating. Baseline characteristics Men 44.5% Mean age 64 years Range (40-87 years)	Urinalysis by dipstick (Ames Multistix, Bayer Diagnostic, Victoria, Australia) Reagent strip and reference test (ACR) determined on an early morning spot urine specimen, collected after an overnight fast. Results of reagent strip recorded as - , trace, 1+, 2+, 3+.	Urinary albumin:cre atinine ratio (ACR) Urine albumin determined by immunoturb idometry Serum creatinine measured by an enzymatic method.	n/a	Prevalence of microalbumin uria in dipstick trace proteinuria Sensitivity Specificity PPV NPV Analysis by subgroups: gender, age, presence of co-morbid conditions	Japanese society for the Promotion of Science and the Ministry of Education, Science, Sports and Culture, Japan.
Effect size Albuminuria defined	I as ACR ≥ 30 mg/	g creatinine						
Overall dipstick diag	nostic performan	ce						
			Dipstick testDipstick testTrace proteinuria defined as positive for albuminuriaConventional definition for albuminuria			for albuminuria o	of ≥ 1+	

23.3

37.1

Sensitivity %

ואמנוטרומו כווחוכמו שעומפווחפ כפרונרפ בטב4

Reference	Study type	Number of patients	Patient charact	eristics	Interventio	on	Compariso	Length of n follow-up	Outcome measures	Source of funding
Specificity %			97.3				98.9			
PPV %		71.4				79.8	79.8			
NPV %			89.5				87.7			
Dipstick diagnosti strip)	c performance: Sub	ogroup analyses. V	Values are perfor	mance calculate	d by new def	finition "	trace protein	uria" (conventic	nal definition \geq	1+ on reagent
	Men	Wom	en	40-59 years	>6	0 years		Diabetes (N=20)	1) Hypertensi	ion (N=1323)
Sensitivity %	53.2 (34.5)	22.2 (13.0)	43.7 (28.2)	33	.1 (19.3)		45.1 (33.8)	37.0 (24.1)	
Specificity %	98.4 (99.5)	96.5 (98.5)	95.6 (98.2)	98	.3 (99.4)		97.9 (98.5)	97.7 (99.1))
PPV %	86.7 (93.7)	51.3 (58.5)	50.0 (60.6)	80	.5 (86.9)		91.4 (92.3)	80.6 (87.8)	1
NPV %	91.4 (88.5)	88.1 (87.1)	94.4 (93.1)	87	.1 (84.9)		76.5 (73.1)	85.8 (83.6))

Potential sources of bias:

Not mentioned if there was blinding of in comparison of dipstick and reference standard.

Table 260: Ref ID: 341 [Chandhoke et al. 1988]

Reference	Study type Evidence level	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Chandhoke PS, McAninch JW. Detection and significance of microscopic hematuria in patients with blunt renal trauma. Journal of Urology. 1988; 140(1):16-18.	Study type Cross-sectional Diagnostic test 1b- Poor methodology No detail on blinding, or when the two tests were done, or in what order. No presentation of sensitivity/specificit y in the results section (only in the abstract)	Total N = 339 No. ITT 339 No. centres 1 centre in California, USA	Inclusion criteria: adults with blunt renal trauma who underwent subsequent renal imaging (excretory urography or CT and/or angiography) Exclusion criteria: not stated Population baseline characteristics:None stated	Chemstrip 8 reagent strip N samples = 339 Procedure: Urine sample obtained by voiding or Foley catheterisation was tested with Chemstrip 8 reagent strip for presence of RBC.	phase- contrast microscopy of urinary sediment N samples= 339	Not applicable	Sensitivity	Not stated

Effect size:

Chemstrip 8 reagent strip for detecting microscopic hematuria:

> 97.5% Sensitivity

> 97.5% specificity

Chronic kidney disease Error! No text of specified style in document.

Table 261: Ref ID: 174 [Gleesone et al. 1993]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Gleeson MJ, Connolly J, Grainger R et al. Comparison of reagent strip (dipstick) and microscopic haematuria in urological out-patients. British Journal of Urology. 1993; 72(5:Pt 1):t- 6. Ref ID: 174	Cross-sectional Diagnostic test: II – (no gold standard test comparison: not phase contrast but light microscopy, poor methodology, no detail on blinding, when the 2 tests were performed, little detail on test population) Single center study: Dublin, Ireland	N =1000	Inclusions: urological outpatient urine samples between July- Nov., 1990 Exclusion: not stated Baseline population: No detail given only that 570 males and 258 females (mean age 50 years) provided urine samples	 B.M. dipstick (Boehringer Mannheim GmbH) N= 1000 Protocol: midstream urine samples collected and tested with BM reagent strip for red blood cells (RBC) with results reported as negative, trace, +1, +2, +3, or +4. 	Light microscopy for RBC to detect haematuria N= 1000 Protocol: Light microscopy of un- spun urine sample. Haematuria defined as ≥ 5 RBC/microL on a Kova Glasstic Slide.	N/A	Sensitivity Specificity	Not stated

Effect size

Sensitivity of reagent strip to detect haematuria: 86%

Specificity of reagent strip to detect haematuria: 85%

Note: authors acknowledge that they did not use phase contrast microscopy as the gold standard. Standard light microscopy can miss RBC, but they note that phase contrast microscopy is not readily available (1993).

Q.5.3.1 What are the benefits in terms of accuracy and cost in measuring albumin:creatinine ratio versus protein:creatinine ratio to quantify proteinuria in adults with CKD?

Table 262: Ref ID: 269 [Chaiken et al.1997]

Reference Stu		Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Khawaja R, BardCrossedM et al. Utility ofseduntimed urinarybiacalbuminDiacmeasurements inbiacalbuminuria inbiack NIDDMblacks.NoDiabetes Care.cen1997; 20(5):709-1	b ross- ectional Piagnostic est b +	Total N = 123 No. ITT 123	Inclusion criteria: Black patients with NIDDM attending the diabetic clinic at Kings County Hospital, Chicago, USA, from Sept. 1993 to May 1995. Patients were normotensive or hypertensive (≥140/90 mm Hg or mean arterial pressure ≥ 106)) Exclusion criteria: None stated. Population baseline characteristics: Provided for the whole study (218, but not for the 123 patients that provided both a 24-h and random urine sample).	Random urinary albumin:creatinine ratio No. of patients 123 Procedure: The random urine sample was provided on the day that the 24-h urine collection was brought to the clinic. Urinary creatinine was measured by a modified Jaffe reaction (by Slot). Urinary albumin concentration was assayed with the Diagnostics Products double-antibody albumin kit.	24-h urinary albumin excretion No. of patients 123 Procedure: 123 patients provided a 24-h urine collection.	Not applicable	Test correlation	Not stated

Ē

IIIIICai

פחומפוווופ

רהווו ה

LUT4

		Number of				Length of	Outcome	Source of		
Reference	Study type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding		
Effect size:										
Test Correlation										
In the total populat	ion (N=123), th	nere was a sign	ificantly high correlation between	random urine albumin:crea	tinine ratio and	24-h albumin ex	cretion rate (r=0.96, p		
=0.0001). In subgro	up analysis of	patients with cl	inical proteinuria (albumin:creatir	nine ratio >300 microgram/n	ng) (N=7), the c	orrelation betwe	een random ui	rine		
albumin:creatinine ratio and 24-h albumin excretion rate was significantly high (r=0.92, p=0.003). In subgroup analysis of patients with microalbuminuria										
(albumin:creatinine ratio 30 to 300 microgram/mg) (N=26), the correlation was much lower (r=0.55, p=0.005). In patients with an albumin:creatinine ratio < 30										
microgram/mg (normal range) (N=90), the correlation between random urine albumin:creatinine ratio and 24-h albumin excretion rate was lower (r=0.59, p<0.0001).										

Table 263: Ref ID:48: [Gansevoort et al. 2005]

Reference	Study type	Number of patients	Patient characteristic	s	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Gansevoort RT, Verhave JC, Hillege HL et al. The validity of screening based on spot morning urine samples to detect subjects with microalbuminuria in the general population. Kidney International - Supplement. 2005;(94):S28- S35.	Study type Cross- sectional Diagnostic test 1b + No. centres 1, Netherland s	Total N = 2527 No. ITT 2527	Inclusion criteria: A repopulation of Netherla recruited for the PREV (Prevention of Renal a End-stage Disease). Exclusion criteria: Uria infection, Type 1 diaba pregnancy, proteinuria Population baseline characteristics: N total % Male Mean age, years Mean weight, kg % Caucasian % CVD history % Type 2 diabetics Median spot morning albumin:creatinine ratio, mg/g	ands /END trial and Vascular nary tract etes,	Spot morning urinary albumin:creatinin e ratio No. of patients 2527 Procedure: Patients provided a spot morning urine sample. Urinary creatinine was measured by an automatic enzymatic method (Kodak Ektachem dry chemistry).	24-h urinary albumin excretion No. of patients 2527 Procedure: On average 77 days after providing the spot morning urine sample, subjects were instructed to collect 24-h urine on two consecutive days. Measurements of urinary volume, albumin, and creatinine were	Not applicable	Sensitivity Specificity Area under the ROC	Not stated.

UGR

Reference	Study type	Number of patients	Patient characteristic	s	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			Median 24-h urinary albumin excretion rate, mg/24-h	7.0		performed on each collection. Urinary albumin excretion was determined by nephelometry. Urinary albumin excretion rate was calculated as the average of the two consecutive 24-h urine collections.			
Effect size									
Urine test to identif rate > 30 mg/24-h	y albumin excr	retion % Se	nsitivity (95% Cl)		% Specificity (95% Cl)	Area under	the Curve	
Spot morning urine albumin:creatinine ratio > 30 mg/g		inine 49.0	49.0 (71.1 -56.9)		98.7 (98.2-99.1)		Not stated		
Spot morning urine ratio > 9.9 mg/g (di			(82.4 – 92.8)		87.5 (86.2 -88.9)		0.93		

A spot morning albumin:creatinine ratio > 30 mg/g had a low sensitivity and high specificity (49% and 98.7%, respectively) of predicting an albumin excretion rate of > 30 mg/24-h. Furthermore, by dropping the cutoff to 9.9 mg/g (the value on the ROC curve that intersects the 100% sensitivity, 100% specificity diagonal), the sensitivity increased but the specificity decreased (87.6% and 87.5%, respectively).

Reference	Study type	Number of patients	Patient characteristics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
C, Mullee MA et al. Microalbuminuria in diabetes: A population study of the prevalence and an assessment of three screening tests. Diabetic	Study type Cross- sectional Diagnostic test 1b + No. centres Not stated; Poole, UK	Total N = 842 No. ITT 311	Inclusion criteria: 842 (patients registered at 4 were interviewed by a observer (WG). Patient classified as insulin dep diabetics if they had do ketoacidosis or been co treated with insulin, ex break of 1 month. All o diabetics were classifie insulin dependent diab Exclusion criteria: Urin infection, proteinuria Population baseline characteristics: N total N Insulin dependent diabetics N Insulin dependent diabetics Age range, years	10 local GPs single s were bendent ocumented ontinuously acept for a ther d as non- etics.	 2 interventions 2 interventions Random urinary albumin:creatinine ratio Overnight urinary albumin:creatinine ratio No. of patients 311 Procedure: Patients provided freshly voided midstream random urine samples. These were assayed for proteinuria (excluded) and UTI (excluded). An aliquot of each 	Timed overnight urinary albumin excretion No. of patients 311 Procedure Patients provided timed overnight urine collections within 2 weeks of the interview with WG. Urinary albumin was	Not applicable	Test correlation Sensitivity Specificity Predictive value	Wessex Regional Health Authority Research Fund, the Bournemou th Lions, Wellcome Foundation, and Bayer UK Limited.

Reference	Study type	Number of patients	Patient characteristics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			Duration of diabetes, years	0-58	sample was frozen for later (3 months) measurement of albumin and creatinine. Urinary albumin was measured by a micro-ELISA technique and creatinine was measured by a modified Jaffe method. Caveat: Compliance with submitting overnight timed urine sample was poor (59%) and after exclusions for UTI and proteinuria, this gave data for only 311/842 patients.	measured by a micro- ELISA technique			

Effect size

Test Correlation

In 311 patients, there was a significant correlation between random urine albumin:creatinine ratio and overnight albumin excretion rate (Kendall's correlation

				Number						
Reference Study type patients Patient characteristics Intervention Comparison follow-up measures funding				of				Length of	Outcome	Source of
	R	eference	Study type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding

coefficient tau-b, r=0.32, p < 0.001). Kendall's tau-b (a non-parametric assessment of the correlation) was used because the distribution of results was not normal.

Comparing the overnight albumin excretion rate to overnight albumin:creatinine ratio (N=446), there was a significantly higher correlation (Kendall's correlation coefficient tau-b, r=0.71, p < 0.001).

Urine test to identify albumin excretion rate > 30 microgram/min	Number of samples	Sensitivity (%)	Specificity (%)	Predictive Value (%)
Random albumin:creatinine ratio > 3.0 mg/mmol	311	80	81	12
Overnight albumin:creatinine ratio > 3.5 mg/mmol	441	88	99	72
Overnight albumin:creatinine ratio > 2.0 mg/mmol	441	96	100	35

A random albumin:creatinine ratio > 3.0 mg/mmol had a sensitivity and specificity (80% and 81%, respectively) of predicting an albumin excretion rate of > 30 microgram/min. It had a poor predictive value of only 12%.

An overnight albumin:creatinine ratio > 3.5 mg/mmol had a sensitivity and specificity (88% and 99%, respectively) of predicting an albumin excretion rate of > 30 microgram/min. It had a better predictive value of 72%. Furthermore, by dropping the cutoff to 2.0 mg/mmol, the sensitivity and specificity increases (96% and 100%, respectively), but the predictive value is lower (35%).

The authors favour the use of measuring the albumin: creatinine ratio in an early morning urine sample. They are equating overnight with early morning.

Table 265: Ref ID: 516 [Hutchison et. al. 1988]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Hutchison AS, O'Reilly DSJ, MacCuish AC. Albumin excretion rate, albumin concentration, and albumin/creatinine ratio compared for screening diabetics for slight albuminuria. Clinical Chemistry. 1988; 34(10):2019- 2021.	Study type Cross- sectional Diagnostic test 1b + No. centres 1 Glasgow, Scotland	Total N = 261 No. ITT 261	Inclusion criteria Diabetic patients attending the diabetic clinic at Glasgow Royal Infirmary. No deliberate selection process used. Exclusion criteria Clinical nephropathy (persistent proteinuria defined as Albustix- positive, urine protein excretion > 500 mg/24 h) Population baseline characteristics: Not stated.	Overnight (First morning) urinary albumin:creatinine ratio No. of patients 261 Procedure Patients were asked to note the time of their last micturition before retiring and then to collect all of the next urine sample passed, again noting the time. An aliquot of this was considered equivalent to the first morning urine specimen. Specimens were stored at 4ºC and	Timed overnight urinary albumin excretion No. of patients 261 Procedure Same as for intervention.	Not applicable	Test correlation Sensitivity Specificity Positive Predictive value Negative Predictive value	Not stated

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטב4

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
				were analysed				
				within 4 weeks.				
				Urinary creatinine				
				was measured by				
				a modified Jaffe				
				reaction on an				
				AutoAnalyzer II.				
				Between batch CV				
				was < 4%. Urinary				
				albumin				
				concentration was				
				measured with a				
				competitive				
				binding				
				radioimmunoassay				

Test Correlation

In 261 patients, there was a high correlation between first morning urine albumin:creatinine ratio and overnight albumin excretion rate (r=0.921, p not given).

Urine test to identify albumin excretion rate > 30 microgram/min	Sensitivity (%)	Specificity (%)	Positive Predictive Value (%)	Negative Predictive Value (%)
First morning albumin:creatinine ratio > 3.0 mg/mmol	96.8	93.9	68.2	99.5

Sensitivity is the proportion of AERs > 30 correctly identified by the screening test.

Specificity is the proportion of AERs < 30 correctly excluded by the test.

Positive predictive vale is the proportion of true positives in the sample.

ואמרוסדומו כוונדוכמו סמומפוונדפ כפרות פ

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Negative predictive	value is the prop	ortion of true	negatives in the sample.					
The authors favour	the use of measu	ring the album	in:creatinine ratio in an early mo	orning urine sample. They	are equating ov	vernight with ea	arly morning.	
The authors favour	the use of measu	ring the album	in:creatinine ratio in an early mo	orning urine sample. They	are equating ov	vernight with ea	arly morning.	
The authors favour	the use of measu	ring the album	iin:creatinine ratio in an early mo	orning urine sample. They	are equating ov	ernight with ea	arly morning.	
The authors favou	the use of measu	ring the album	iin:creatinine ratio in an early mo	orning urine sample. They	are equating ov	ernight with ea	arly morning.	

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Jafar TH, Chaturvedi N, Hatcher J et al. Use of albumin creatinine ratio and urine albumin concentration as a screening test for albuminuria in an Indo-Asian population.[see comment]. Nephrol Dial Transplant. 2007; 22(8):2194-2200. Ref ID: 4121	Study type Cross- sectional Diagnostic test 1b + multicentre: Pakistan	Total N = 577	<pre>Inclusion criteria: adults ≥ 40 years old sampled from four randomly selected communities in Karachi Exclusion criteria : pregnancy, heavy exercise (> 1h on the day of the urine collection), mentally incompetent, bed-ridden people Population baseline characteristics: Median AER = 4.8 mg/day Median ACR = 5.0 mg/g N=314 women N=263 men</pre>	Random urinary albumin:creatinine ratio No. of patients 577 Procedure The spot morning urine sample was collected within 2 days of the 24-h urine collection. Laboratory tests (fasting blood glucose, serum and 24-h urine creatinine, urine albumin), BP, and health questionnaire given to each subject.	24-h urinary albumin excretion (UAE) No. of patients 577	Not applicable	Sensitivity Specificity AUC P30	Wellcome Trust UK

Effect size

Albuminuria defined as UAE \geq 30 mg/24-h. Prevalence of albuminuria in the Indo-Asian sample was 11.8%

P30:

The proportion of estimates of ACR within 30% of the UAE was 33%

Area Under the ROC:

бб 2

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding			
		•		intervention	companison	ionow-up	measures	Tunung			
	For men, the AUC for ACR to detect albuminuria was 0.90 (95% CI 0.86 to 0.93) For women, the AUC for ACR to detect albuminuria was 0.86 (95% CI 0.82 to 0.89)										
Sensitivity											
For men, the sensit	ivity for ACR (at a	cut-off of 30 mg	g/g) to detect albuminuria was	60%							
For women, the se	nsitivity for ACR (a	t a cut-off of 30	mg/g) to detect albuminuria	was 46%							
Specificity:											
For men, the specif	For men, the specificity for ACR (at a cut-off of 30 mg/g) to detect albuminuria was 97%										
For women, the specificity for ACR (at a cut-off of 30 mg/g) to detect albuminuria was 95%											
The positive predic	tive value for albu	minuria in those	e with high ACR (≥ 30 mg/g) w	as 72%							
The negative predic	ctive value for alb	uminuria in thos	e with high ACR (≥ 30 mg/g) w	/as 95%							

Chronic kidney disease Error! No text of specified style in document.

Reference	Study type	Number of patients	Patient characteristi	cs	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Rodby RA RRS. The urine protein to creatinine ratio as a predictor of 24-hour urine protein excretion in type 1 diabetic patients with nephropathy. The Collaborative Study Group. American journal of kidney diseases : the official journal of the National Kidney Foundation. 1995; 26(6):904- 909.	Study type Cross- sectional Diagnost ic test 1b +	Total N = 229 No. ITT 229 No. centres Not stated; US.	Inclusion criteria: 22 diabetic adults with of nephropathy and clirr proteinuria screened participation in the Collaborative Study O clinical trial of "Angio Converting Enzyme In in Type I Diabetic Nephropathy" Exclusion criteria No Population baseline characteristics: Most elsewhere (Bain et al N Mean duration of insulin dependence, years Mean urinary protein excretion (SD), g/24 Mean serum	byert hical for Group's otensin- nhibition t stated	Urinary protein:creatinine ratio No. of patients 229 Procedure: Patients provided random urine samples at the clinic. Protein concentration was determined using the Ponceau S/trichlororoacetic acid method calibrated against a human serum albumin standard. Creatinine concentration was measured by the modified Jaffe rate method on a Beckman Creatinine Analyzer II. The urine protein:creatinine ratio	24-h urinary protein excretion No. of patients 229 Procedure: 177 patients provided 24 hour urine collections the day before the scheduled clinic visit. Urine collection began immediately after completion of the first morning void and urine samples were then collected for 24 h, including the final void at the completion of the 24 h period.	Not applicable	Test correlation Precision	US Public Health Service and Bristol- Myers Squibb Pharmace utical Research Institute

Table 267: Ref ID: 957 [Rodby et al. 1995]

Reference	Study type	Number of patients	Patient characteristic	cs	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			mg/dL	(1.0)	dividing the urinary				
			Mean age (SD), years	37 (8)	protein concentration by the urine creatinine				
			% men	52	concentration.				

Effect size

Test Correlation

In 229 patients, log-log transformation of the data showed a high correlation between random urine protein:creatinine ratio and 24 h urinary protein excretion rate (r=0.90, p not reported). The slope of the regression line (m=0.9) was almost identical to the line of unity (m=1), therefore protein:creatinine ratio was an excellent estimate of 24 h urinary protein excretion.

Precision

Standard deviation around the regression line increased as the protein:creatinine ratio increased. The confidence intervals are large and increase as the protein:creatinine ratio increases. This means that the protein:creatinine ratio becomes a less precise predictor of 24 h urinary protein excretion in the higher ranges of urinary protein excretion.

-	Study type	Number of patients	Patient characteristics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Gaspari F, Perna A et al. Cross sectional longitudinal study of spot morning urine protein: Creatinine ratio, 24 hour urine protein excretion rate, glomerular filtration rate, and end stage renal failure in chronic renal disease in patients without	Study type Cross- section al Diagno stic test 1b + No. centres 1 centre in Italy	Total N = 177 No. ITT 177	Inclusion criteria 177 no adults with CKD and per clinical proteinuria (> 1 at least 3 months) scree participation in the Ram Efficacy in Nephrology (study. Exclusion criteria Overt failure, urinary tract info Population baseline characteristics: N (entered REIN) Mean protein:creatinine ratio (SD) Mean urinary protein excretion (SD), g/24 % glomerular disease % APKD or interstitial nephritis % other/unknown cause CKD	rsistent g/24 h for ened for hipril REIN) heart	Urinary protein:creatinine ratio No. of patients 177 Procedure 177 patients provided spot morning urine samples at the clinic. Protein concentration was determined with a Synchron CX5 Beckman Analyzer. Creatinine concentration was measured by the Jaffe method on a Beckman Creatinine Analyzer II. The urine protein:creatinine	24-h urinary protein excretion No. of patients 177 Procedure 177 patients provided 24 hour urine collections the day before the scheduled clinic visit. Urine collection began immediately after completion of the first morning void and urine samples were then collected for 24 h, including the final void at the completion of the 24 h period.	Not applicable	Test correlation	Hoechst Marion Roussel supporte the REIN trial

Table 268: Ref ID: 655 [Ruggenenti et al. 1998]

Reference	Study type	Number of patients	Patient characteristics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			Mean age (SD), years	51.5 (14.1)	ratio was obtained by dividing the urinary				
			% men	80.6	protein concentration by the urine creatinine concentration.				

Effect size

Test Correlation

In 177 patients, the correlation between spot morning urine protein:creatinine ratio and 24 h urinary protein excretion rates was highly significant (p=0.0001). Log-log transformation of the data showed a high correlation between spot morning urine protein:creatinine ratio and 24 h urinary protein excretion rate (r=0.932, p < 0.0001). The slope of the regression line (m=0.948) was almost identical to the line of unity (m=1), therefore protein:creatinine ratio is an excellent estimate of 24 h urinary protein excretion.

Table 269: Ref ID: 590	[Marshall et al. 1986]
Tubic 205. Net 10. 550	

Reference	Study type	Number of patients	Patient characte	ristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Marshall SM, Alberti KGMM. Screening for early diabetic nephropathy. Annals of Clinical Biochemistry. 1986; 23(2):195-197.	Study type Cross- sectional Diagnostic test II + No. centres Not stated; Newcastle upon Tyne, UK	Total N = 129 No. ITT= 129	Inclusion criteria Diabetic patients negative to Albus Exclusion criteria Not stated. Population base characteristics: N provided. N total N Insulin dependent diabetics N Insulin dependent diabetics	s with urine stix (proteinuria). a	First morning urinary albumin:creatinin e ratio No. of patients 129 Procedure Patients provided first morning urine samples which were frozen until assayed. Urinary albumin was measured bysensitive raioimmunoassay and creatinine was measured by a modified Jaffe method on a Beckman Astra multichannel	Timed overnight urinary albumin excretion No. of patients 129 Procedure Timed overnight urine collections were collected and frozen until assayed. Albumin excretion rate was calculated from the volume and duration of the urine sample.	Not applicable	Specificity	Northern Counties Kidney Research Fund and Novo Laboratories Limited.

Reference	Study type	Number of patients	Patien	t characte	ristics	Intervention analyzer.	Comp	parison	Length of follow-up	Outcome measures	Source of funding
Effect size						,					
Urine test to identify albumin excretion rate > 30 microgram/min				Sensitivity (%)			Specificity (%)				
Overnight albur	nin:creatinine rat	io ≥ 3.5 mg/mr	nol	98				63			
Overnight albur	nin:creatinine rat	io ≥ 4.5 mg/mr	nol	96				72			

An overnight albumin:creatinine ratio > 3.5 mg/mmol had a sensitivity and specificity (98% and 63%, respectively) of predicting an albumin excretion rate of > 30 microgram/min. Furthermore, by raising the cutoff to 4.5 mg/mmol for the albumin:creatinine ratio, the sensitivity decreased , while the specificity increased (96% and 72%, respectively).

The authors favour the use of measuring the albumin:creatinine ratio in an early morning urine sample and using a cutoff of > 3.5 mg/mmol to predict and albumin excretion rate > 30 microgram/min. This was due to the better sensitivity at this cutoff value than at 4.5 mg/mmol. However, there are more false positives generated with a cut-off > 3.5 and this could put an extra burden on lab staff.

Call for Evidence: What is the equivalence between urinary albumin:creatinine ratios and 24 hour urinary protein excretion and urinary

Chronic kidney disease Error! No text of specified style in document.

Table 270: Ref ID: 3996 [MacGregor et al. 2007]

protein:creatinine ratio?

Reference	Study type	Number of patients	Patient characteris	tics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
MacGregor MS, Traynor JP, O'Reilly DSJ et al. Assessing proteinuria in chronic kidney disease: protein- creatinine ratio versus albumin- creatinine	Study type Retrospective analysis of laboratory database Diagnostic Test 1b + Scotland Aim: To compare ACR	N = 6761	Inclusion criteria: A 18 years old with C attending a hospita kidney clinic. Exclusion criteria: o urine samples prior Nov. 1999, children years old Population baselin characteristics: N	KD I data on to < 18 e 6761	Urinary protein:creatinine ratio (PCR) Urinary albumin:creatinine ratio (ACR) N= 6761 Procedure Database (Proton, UK) searched for patients who had an ACR and PCR measured on the same date. The most recent paired results were used. Urine	24-h urinary protein excretion also ACR vs.PCR N= 6761	N/A	Test correlation AUC Sensitivity Specificity	Not stated
ratio. 2007. Ref ID: 3996	and PCR from same urine sample		Median eGFR, ml/min/1.73 m ²	40	albumin was assayed with an anti-human albumin antiserum immunoturbidometric assay.				
	sample	ampie	Mean age (SD), years	60 (17)	Urine total protein was assayed				
			% men	50.7	pyrogallol red. Urine creatinine				
			% unknown cause	26.8	concentration was determined with reaction rate Jaffe.				

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Atkins RC, Briganti EM, Zimmet PZ et al. Association between albuminuria and proteinuria in the general population: the AusDiab Study. Nephrol Dial Transplant. 2003; 18(10):2170- 2174. Ref ID: 3995	Study type Cross- sectional study Diagnosti c test II + (no gold standard, unable to assess blinding) Australia Aim: To compare ACR and PCR from same urine sample	N = 10596	Inclusion criteria: a representative sample of non-institutionalised people 25 years of age or older in Australia was drawn from 42 randomly selected urban and non- urban areas. Exclusion criteria: not stated Population baseline characteristics: Albuminuria was seen in 6.8% of the sample. Proteinuria was seen in 2.4% of the sample. Of people with proteinuria, 91% had albuminuria and 9% had a normal ACR. Of people with albuminuria, 32% had proteinuria and 68% had	Urinary albumin:creatinine ratio (ACR) N= 10596 Procedure: Participants completed a health questionnaire, had a clinical exam, and laboratory tests to examine diabetes status, CV risk, and renal function. Random urine samples were analysed at a central laboratory and measured for urine albumin (rate nephrelometry, Beckman array, CV < 3.1%) and urine protein (pyrogallol red molybdate , Olympus AU600 autoanalyser, CV < 4.1%). Urine creatinine was measured (modified	Urinary protein:creatini ne ratio (PCR) N= 10596	N/A	Test correlation Sensitivity Specificity NPV NPV	Commonweal th Dept. of Health and Aged Care, Australian State Govts., Eli Lilly, Roche, Merck, Knoll, Smithkline Beecham, Pharmacia and Upjohn, BioRad, Quantas

Table 271: Ref ID: 3995 [Atkins et al. 2003]

Reference	Study	Number of	Patient characteristics	Intervention	Composison	Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	intervention	Comparison	follow-up	measures	funding
			a normal PCR. People	kinetic Jaffe, Olympus				
			with proteinuria or	AU600 autoanalyser, CV				
			albuminuria were	< 1.1%). Proteinuria was				
			significantly older, had	defined as				
			higher prevalences of	protein:creatinine ratio ≥				
			diabetes and	0.20 mg/mg or a protein				
			hypertension compared	excretion rate \geq 250				
			with those with neither	mg/day. Albuminuria				
			proteinuria nor	was defined as a urine				
			albuminuria.	albumin:creatinine ratio				
				≥ 30mg/g.				

Chronic kidney disease Error! No text of specified style in document.

Effect size

Test Correlation

Albuminuria was significantly correlated with proteinuria [log ACR versus log PCR: beta = 1.21 (95% CI 1.18 to 1.26), p <0.001, R2 = 72.1%, N samples =10596]. The graph showed convergence to the line of unity between ACR and PCR with increasing PCR, suggesting increased proportion of albumin at higher levels of total protein excretion. However, there was scatter of ACR (below the line of unity) at lower levels of PCR.

The ratio of urine albumin: total protein significantly increased with increasing degrees of proteinuria from 0.21 for those with PCR 0-0.20 mg/mg up to 0.73 for people with PCR > 0.80 mg/mg (p < 0.001).

The correlation between albuminuria and proteinuria was significantly greater in people > 60 years compared with people < 60 years; diabetics versus non-diabeteics; hypertensives vs.non-hypertensives, BMI > 30 vs.BMI < 30 and GFR < 60 versus GFR > 60.

Sensitivity and specificity

To detect proteinuria (a PCR \ge 0.20 mg/mg), albuminuria (ACR \ge 30 mg/g) had a sensitivity of 91.7% (95% CI 87.7 to 94.5%) and a specificity of 95.3% (95% CI 94.9 to 95.7%).

		Study	Number of				Length of	Outcome	Source of
I	Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding

Positive and Negative Predictive Values:

To detect proteinuria (a PCR \ge 0.20 mg/mg), albuminuria (ACR \ge 30 mg/g) had a PPV of 32.4% (95% CI 29.0 to 35.8%) and a NPV of 99.8% (95% CI 99.7 to 99.9%).

Authors conclude that testing for albuminuria rather than proteinuria is supported. However, among people with known renal disease, total protein measures may provide better diagnostic/prognostic information (as among people with proteinuria, 9% tested negative for albuminuria).

Table 272: Ref ID: 3988 [Ballantyne et al. 1993]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Ballantyne FC, Gibbons J, O'Reilly DS. Urine albumin should replace total protein for the assessment of glomerular proteinuria. Ann Clin Biochem. 1993; 30 (Pt 1):101-103. Ref ID: 3988	Diagnostic Study II + 1 centre, UK Aim: To compare albumin to protein from the same 24- h urine sample	N = 235	Inclusion criteria: all 24-h urine samples referred to Institute of Biochemistry, Royal Infirmary, Glasgow, for urinary protein analysis. Exclusion criteria: not stated Population	urinary albumin (mg/l) in a 24-h urine sample N= 235 Procedure 24-h urine samples were assayed for protein with salicylsulphonic acid precipitation (to estimate the dilution factor for quantitative protein or albumin measurements). Urine albumin concentration (immunoturbidometric assay using human albumin antiserum/PEG, Encore centrifugal	urinary total protein in a 24-h urine sample (mg/l) N= 235	N/A	Test correlatio n	Not stated

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			baseline	analyser) and urine total protein				
			characteristics:	(Ponceau S, trichloroacetic acid				
			most samples	precipitation, NaOH resolubilisation,				
			came from a	read on a spectrophotometer at A560				
			specialist renal	nm) were assayed from each urine				
			unit	sample.				

Effect size

Within-run CV for total protein assay (N=10) was 3.0% at 0.22g/l and 2.4% at 0.5 g/l. Between day CV for total protein was 6.2% at 0.24 g/l and 2.8% at 0.66 g/l. Within-run CV for albumin assay (N=18) was 3.4% at 10 mg/l and 2.4% at 75 mg/l. Between day CV for albumin was 5.1% at 17 mg/l and 5.1% at 103 mg/l. N=235 urine samples screened positive for protein with salicylsulphonic acid.

Test Correlation

Albumin was plotted against total protein (log-log transformed) and the regression equation was albumin = 0.537 (total protein) - 9.472. The coefficient of correlation was high (r=0.924, p<0.001), indicating good agreement between total protein and albumin.

Albumin was also estimated in urines which tested negative for protein by salicylsulphonic acid precipitation. In all these samples, albumin concentration was < 100 mg/l and in most cases it was < 20 mg/l.

Authors conclude that there is good agreement between total protein and albumin overall and suggest replacing total protein measurements with albumin. measurements.

Note: no indication of blinding. Little description of the source of the urine samples.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Newman DJ, Thakkar H, Medcalf EA et al. Use of urine albumin measuremen t as a replacement for total protein. Clin Nephrol. 1995; 43(2):104- 109. Ref ID: 7	Diagnostic Study II + 1 centre, UK Aim: To compare albumin to protein from the same 24- h urine sample	N = 167	 Inclusion criteria: all 24- h urine samples referred to Dept. of Clinical Biochemistry for urinary protein analysis over a 4 month period. Exclusion criteria: not stated Population baseline characteristics: Source of urine sample: 45% renal transplant recipients, 14% obstetrics, 23% general medicine, 18% general renal investigations 	24-h urinary albumin excretion (AER) N= 167 Procedure 24-h urine samples were centrifuged, and assessed with Albustix reagent strip to estimate the amount of dilution required to assay albumin and protein. Urine albumin concentration (latex particle enhanced immunoturbidometric assay, Monarch 2000 centrifugal analyser) and urine total protein (biuret, following trichloroacetic acid) and creatinine (direct Jaffe) were assayed from each urine sample.	24-h urinary total protein excretion (TPER) N= 167	N/A	Test correlation	Du Pont de Nemours Internatio nal SA, Geneva

Table 273: Ref ID: 7 [Newman et al. 1995]

Effect size

Albustix gave no false negative results, but several elevated results when compared with urine albumin or total protein.

In samples with total protein excretion < 250 mg/24-h (N=73), 46 (63%) of the samples had a urine albumin excretion > 25 mg/24-h (the upper reference limit obtained from healthy subjects)

2	Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding		
	Test Correlatio	on									
ואמרוסנוקו כוונווכקו פתומבוונוב	gave the equat	ion AER = TPER	(0.71) -118. Th	is indicated that albumin for	ion rate (AER) was plotted against tota med 71% of the total protein (in the ra d TPER, although most data points fell	ange 0-17000 m	g/l total prote	in). The coeffi	icient of		
ה רהוות ה 2014	For samples with total protein in the range 0-3000 mg/l (N=116), comparison of AER with TPER gave a regression equation of AER = TPER (0.51) + 7.5. The correlation coefficient (r=0.68) was low indicating poor agreement between AER and TPER in this range (0-3000 mg/l total protein). Most data points fell below the line of identity showing that AER was less at a given TPER.										
Ŧ	Authors conclu	ide that there is	good agreeme	nt between AER and TPER ov	verall and suggest replacing total prote	ein measuremen	ts with album	in measureme	ents.		
	Note: no indica	ation of blinding	. Method of tot	al protein determination no	t automated and could be more precis	se.					
Q.5.4	Managing isc	lated invisibl	e haematuri	a (2014 guideline - cha	pter 5.5)						
	Table 274: Ref ID: 4080 [Yamagata et al. 2002]										

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Yamagata K,	Prospe	N isolated	Inclusion: Japanese men	Long-term follow-up of	N/A	6.35 years	Diminished urinary	Disease
Takahashi H,	ctive	microscopi	with confirmed abnormal	men with		(range	abnormalities(four	Control
Tomida C et al.	case	с	urinary findings (+1 result	asymptomatic		1.03 to	consecutive	Division,
Prognosis of	series	haematuri	on a reagent strip urinalysis	microscopic		14.6 years)	negative reagent	Ministry of
asymptomatic		a = 412	for haematuria and > 5	haematuria			strip results for	Health
hematuria and/or	Evidenc		RBC/hpf by microscopy)	N=404			haematuria)	and

Chronic kidney disease Error! No text of specified style in document.

	Study	Number of				Length of		Source of
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	Outcome measures	funding
proteinuria in men.	e level:	8/412 = 2%	identified in a mass					Welfare,
High prevalence of	3	lost to	screening between 1983	Procedure: Medical			Deterioration of	Japan
IgA nephropathy		follow-up	and 1996 in Hitachi, Japan	history, BP, blood			renal function	University
among proteinuric	Japan			tests, USS of kidney			(serum creatinine >	of
patients found in			Exclusion criteria: people	and bladder were			2.0 mg/dl)	Tsukuba
mass screening.			with < 1 year follow-up	assessed at baseline.				grant
Nephron. 2002;				Urinalysis repeated at			Development of	
91(1):34-42. Ref ID:			Population baseline	least twice/year, and			proteinuria (chronic	
4080			characteristics: not stated	symptoms and medical			nephritic	
				history recorded.			syndrome):	

Chronic kidney disease Error! No text of specified style in document.

Effect size:

41% (165/404) showed persistent haematuria

Diminished urinary abnormalities:

- Of 404 men with asymptomatic microscopic haematuria followed-up for > 1 year (mean follow-up 6.35 years), 46.5% had transient haematuria. The disappearance rate for haematuria was 34.1% (95% CI 29.4 to 39.7%).
- In men with asymptomatic microscopic haematuria, normotensive men were significantly more likely to see diminished urinary abnormalities compared with hypertensive men [rate ratio 4.393 (95% CI 1.616 to 11.944, p=0.0037]

Development of proteinuria (chronic nephritic syndrome):

• 38/404 (9%) men with asymptomatic haematuria developed proteinuria (chronic nephritic syndrome) during follow-up.

Deterioration of renal function (serum creatinine > 2.0 mg/dl)

• 0.7% of men with asymptomatic haematuria had a deterioration of renal function (creatinine > 2.0 mg/dl) during follow-up. The renal function deterioration rate for asymptomatic haematuria was 3.0% over 10 years.

	Study	Number of				Length of		Source of
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	Outcome measures	funding
glomerulonephritis			renal biopsies and 13/17 were age distribution varied significa			ere diagnosed	l as mesangial prolifera	tive
Who should be tes	sted for C	CKD (2014 g	uideline chapter 6.2)					

Table 275: Borch-Johnsen et al. 1992

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Borch-Johnsen K, Norgaard K, Hommel E et al. Is diabetic nephropathy an inherited complication? Kidney Int. 1992; 41(4):719-722. Ref ID: 11	Case series Evidence level: 3 Denmark The study aimed to investigate the concordanc e rates for the presence or	N= 49 probands N=45 siblings of the probands	 Nephropathy patients recruited from a specialised hospital diabetes care unit, non nephropathy patients recruited form hospital files in Denmark. Inclusion criteria: Diabetes onset before age of 40 years, unbroken record of insulin treatment, diabetes duration ≥ 10 years. Exclusion criteria: Sibling-pairs where the sibling had diabetes mellitus for < 5 years, no clinical or laboratory evidence of kidney or renal tract disease other than diabetic 	Diabetic siblings of diabetic Probands with nephropathy (AER > 0.5 g/24-h) N= 21	Diabetic Siblings of diabetic probands without nephropathy (AER < 20 mg/24-h) N= 30	n/a	HbA1c, 24 hour urinary albumin excretion, serum creatinine	Not mentione d

אמרוסנושו רוונוורשו המומהוווה רהנותה דסד∓ 14

Reference Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
absence of renal involvemen t in the diabetic siblings of insulin dependent diabetics		glomerulosclerosis. Baseline characteristics: There were significant differences between proband groups wrt: baseline HbA1c (p<0.02) which was lower in the group without nephropathy, more patients in the nephropathy group were on hypertensive medication (p<0.0001) and had a higher serum creatinine level (p<0.0001)					

Chronic kidney disease Error! No text of specified style in document.

Incidence of nephropathy based on the nephropathy status of the proband

	Proband with clinical nephropathy	Proband without clinical nephropathy	р
Median AER (mg/24 hr)	79 (8-558)	14 (3-400)	<0.03
Sibling nephropathy	33% (7/21)	10% (3/30)	0.035
Sibling incipient or overt nephropathy (Urinary albumin excretion >100 mg/24 hrs)	43% (9/21)	13% (4/30)	0.017
Odds ratio	4.9 (1.3; 19.1)		

Diabetic siblings of people with diabetic nephropathy have a significantly increased risk of incipient or overt nephropathy compared to diabetic siblings of people without nephropathy [OR 4.9 (95% CI 1.3 to 19.1)].

Within the individual sib-pair, there was a significant positive correlation between the glycosylated haemoglobin A1c value of proband and sibling (r=0.47; p<0.001)

Table 276: Chadban et al. 2003

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Chadban SJ, Briganti EM, Kerr PG et al. Prevalence of kidney damage in Australian adults: The AusDiab kidney study. Journal of the American Society of Nephrology. 2003; 14(7:Suppl 2):Suppl-8. Ref ID: 3869	Cross- sectional population study AusDiab Australian population study Evidence Level: 3	N=11247	Inclusion criteria: a representative sample of non-institutionalised people 25 years of age or older in Australia was drawn from 42 randomly selected urban and non-urban areas. Exclusion criteria: not stated Baseline Characteristics: 97% Caucasian, 5.7% Asian, 0.8% Aboriginal and Torres Strait Islanders	Prevalence of proteinuria, hematuria or GFR < 60 ml/min/1.73m ² In Australia. Procedure: Participants completed a health questionnaire, had a clinical exam, and laboratory tests to examine diabetes status, CV risk, and renal function. Serum creatinine was measured in all participants (Jaffe) and creatinine clearance was calculated with the Cockcroft-Gault equation. Impaired renal function was defined as GFR < 60 ml/min/1.73m ² . Protein:creatinine ratio (Jaffe method and pyrogallol red molybdate) from a morning spot urine sample was determined.	Effect of increasing age, effect of gender, effect of hypertension, diabetes	N/A	Proteinuri a Hematuri a GFR < 60 ml/min/1. 73m ²	Commonw ealth Dept. of Health and Aged Care, Australian State Govts., Eli Lilly, Roche, Merck, Knoll, Smithkline Beecham, Pharmacia and Upjohn, BioRad, Quantas

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
				Proteinuria was defined as				
				protein:creatinine ratio ≥				
				0.20 mg/mg. Hematuria				
				was defined as positive if				
				reagent strip testing of				
				morning urine sample was ≥				
				+1 and microscopy showed				
				≥ 10000 RBC/microL.				

Error! No text of specified style in document.

Chronic kidney disease

Effect size:

OR adjusted for age, sex, diabetes, hypertension

In this Australian sample (N=11247), the prevalence of proteinuria (protein:creatinine ratio \geq 0.20 mg/mg) was 2.4%. The prevalence of hematuria (reagent strip \geq +1 and microscopy \geq 10000 RBC/microL) was 4.6%. The prevalence of renal impairment (GFR < 60 ml/min/1.73m²) was 11.2%.

Using proteinuria and hematuria data, the prevalence of Stage 1 CKD in Australia was 0.9%, Stage 2 was 2.0%, Stage 3 was 10.9%, Stage 4 was 0.3%, Stage 5 was 0.003%.

Age as a risk factor for Renal Impairment (GFR < 60 ml/min/1.73m²)

54% of people \geq 65 years old had GFR < 60 ml/min/1.73m² compared with 2.5% of subjects 45-64 years old. People \geq 65 years old had a significantly increased risk of renal impairment (GFR < 60 ml/min/1.73m²) compared with people < 65 years old [adjusted OR 101.5 (95% Cl 61.4 to 162.9), p<0.001]

Gender as a risk factor for Renal Impairment (GFR < 60 ml/min/1.73m²)

Females had a significantly higher risk of renal impairment than males [adjusted OR 1.3 (95% CI 1.0 to 1.7), p=0.012]

Diabetes as a risk factor for Renal Impairment (GFR < 60 ml/min/1.73m²)

People with diabetes had NS risk of renal impairment than people without diabetes [adjusted OR 0.9 (95% CI 0.7 to 1.1), p=0.308]

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Hypertension a	s a risk factor for R	enal Impairment ((GFR < 60 ml/min/1.73m ²)					
People with hyp	ertension had a sig	nificantly higher r	isk of renal impairment com	pared with normotensive peop	ole [adjusted OR	1.4 (95% CI 1.2	2 to 1.6), p<0.0	001]
Age as a risk fac	tor for Proteinuria	(protein:creatinii	ne ratio ≥ 0.20 mg/mg) :					
	of proteinuria incre 1.9 to 3.2), p<0.000		ing age. People ≥ 65 years o	ld had a significantly increased	risk of proteinu	ria than people	e < 65 years ol	d [adjusted
Gender as a risl	factor for Protein	uria (protein:crea	tinine ratio ≥ 0.20 mg/mg)					
Men and wome	n had similar preva	lences of proteinu	iria.					
Diabetes as a ri	sk factor for Protei	nuria (protein:cre	atinine ratio ≥ 0.20 mg/mg					
People with dia	petes had a significa	antly higher risk o	f proteinuria than people wi	thout diabetes [adjusted OR 2.	5 (95% Cl 1.8 to	3.5), p<0.001]		
Hypertension a	s a risk factor for P	Proteinuria (protei	in:creatinine ratio ≥ 0.20 m	g/mg)				
People with hyp	ertension had a sig	nificantly greater	risk of proteinuria than peo	ple with normotension [adjuste	ed OR 3.1 (95% C	Cl 2.3 to 4.1), p	<0.001]	
Age as a risk fac	tor for Hematuria	(reagent strip tes	ting of morning urine samp	le was ≥ +1 and microscopy sh	owed ≥ 10000 R	BC/microL.)		
Hematuria incre	ased with increasir	ng age (p<0.001 fo	r trend).					
Gender as a risl	factor for Hematu	ıria (reagent strip	testing of morning urine sa	mple was ≥ +1 and microscop	y showed ≥ 1000	0 RBC/microL	.)	
Females had a s	ignificantly higher r	isk of hematuria t	han males [adjusted OR 3.9	(95% CI 2.8 to 5.3), p<0.001]				
Diabetes as a ri	sk factor for Hemat	turia (reagent stri	p testing of morning urine s	ample was ≥ +1 and microsco	py showed ≥ 100	000 RBC/micro	oL.)	
				without diabetes [adjusted Of				

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Hypertension a	s a risk factor for He	maturia (reagen	t strip testing of morning u	rine sample was ≥ +1 and micro	oscopy showed 2	≥ 10000 RBC/m	icroL.)	
				otensive people (5.0% vs.4.5%,				
Note: Limitations –Cross-sectional analysis.								

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Coresh J, Astor BC, Greene T et al. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003; 41(1):1-12. Ref ID: 3872	Cross- sectional population study NHANES III US population study Evidence Level: 3	N=15600	Inclusion criteria: a general health survey was conducted in USA in 1988-1994 of non- institutionalised adults 20 years or older. Random selection using a stratified cluster method. Exclusion criteria: CKD stage 5 Baseline Characteristics: not applicable	Prevalence of CKD in USA Procedure: Non-Hispanic blacks, elderly, and American Mexicans were deliberately over-sampled. Participants completed a health questionnaire and had a clinical exam. Serum creatinine was measured in all participants and GFR was calculated with the MDRD equation re-calibrated to the MDRD laboratory. CKD was defined according to GFR and staged according to KDOQI. Albumin:creatinine ratio determination (by Jaffe method and solid phase fluorescent immunoassay assay of albumin) from a random urine sample was determined. A subset of participants (N=1241) was used to estimate the persistence of microalbuminuria within 2 months of the first examination.	Effect of increasing age, effect of gender, effect of hypertension , diabetes, ethnicity	N/A	CKD defined by KDOQI stratificati on of GFR	National Institutes of Health, National Kidney Foundatio n, General Research Center

Table 277: Coresh et al., 2003

Effect size

	a. I	Number of		,		Length of	Outcome	Source of
Reference	Study type	patients	Patient characteristics	Intervention/ exposure	Comparison	follow-up	measures	funding
OR adjusted for	age, sex, diabetes,	hypertension,	hypertension medication.					
		•	•	ml/min/1.73 m ²) was 31.2%. The pre	valence of mod	erate CKD (GF	R 30-59 ml/m	in/1.73 m ²)
was 4.3% and th	he prevalence of sev	ere CKD (GFR	15-29 ml/min/1.73 m ²) wa	as 0.2%.				
Using microalbu	uminuria data, the p	revalence of S	tage 1 CKD in the USA was	s 3.3%, Stage 2 was 3.0%, Stage 3 was	5 4.3%, Stage 4 v	vas 0.2%, and	Stage 5 was 0	.2%. The
overall prevaler	nce of CKD in USA wa	as 11%.						
	ctor for CKD:							
Age as a risk fac								

Gender as a risk factor for CKD:

The prevalence of decreased kidney function was higher in women than men, but this difference disappeared after adjustment for age.

Hypertension as a risk factor for CKD:

People with hypertension (N=4893) had a greater risk of CKD than people without hypertension (N=14372). Among hypertensive people, people taking antihypertensive medication had the highest prevalence of decreased kidney function (this may reflect the severity or duration of hypertension in this subgroup). For example, 17.5% of hypertensive people taking antihypertensive agents (N=2553) and 7.9% of hypertensive people not taking medication (2340) had moderate CKD (GFR 30-59 ml/min/1.73m2) compared to 1.5% of non-hypertensive people (N=10707).

Diabetes as a risk factor for CKD:

People with diabetes (N=1211) had a higher prevalence of decreased kidney function than people without diabetes (N=14372). 40% of people with diabetes had mild CKD (GFR 60-89 ml/min/1.73m2) whereas 31% of people without diabetes had mild CKD (GFR 60-89 ml/min/1.73m2). 14% of people with diabetes had moderate CKD (GFR 30-59 ml/min/1.73m2) whereas 3.7% of people without diabetes had moderate CKD (GFR 30-59 ml/min/1.73m2).

		Number of				Length of	Outcome	Source of
Reference	Study type	patients	Patient characteristics	Intervention/ exposure	Comparison	follow-up	measures	funding
Ethnicity as a risk fa	actor for CKD							
Non-Hispanic black people (N=4163) were significantly less likely to have mild CKD (GFR 60-89 ml/min/1.73m2) compared to non-Hispanic white people (N=6635)								
[adjusted OR 0.37 (95% CI (0.32 to 0.43)].								
Non-Hispanic black	people (N=4163) were signific	cantly less likely to have m	oderate CKD (GFR 30-59 ml/min/1.73	m2) compared	to non-Hispan	ic white peop	le (N=6635)
[adjusted OR 0.56 (9	95% CI (0.44 to 0).71)].						
There was NS differ	ence in prevaler	nce of severe (CKD (GFR 15-29 ml/min/1.	73m2) in Non-Hispanic black or white	e people [adjuste	ed OR 1.10 (95	5% CI (0.51 to	2.37)].
Note: Limitations –	Cross-sectional a	analysis.						

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Coresh J, Selvin E, Stevens LA et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007; 298(17):2038- 2047. Ref ID: 22	Cross- sectional population study NHANES US population study Evidence Level: 3	NHANES 1988-1994 N= 15488 NHANES 1999-2004 N=13233	Inclusion criteria: a general health survey was conducted in USA in 1988-1994 and again in 1999-2004 of non- institutionalised adults 20 years or older. Random selection using a stratified cluster method. Exclusion criteria: Stage 5 CKD, people with missing creatinine values Baseline Characteristics: not applicable	Prevalence of CKD in USA ascertained by NHANES 1999-2004 Procedure: Non-Hispanic blacks, elderly, and American Mexicans were deliberately over-sampled. Participants completed a health questionnaire and had a clinical exam. Serum creatinine was measured in all participants and GFR was calculated with the simplified MDRD equation re-calibrated to the MDRD laboratory. CKD was defined according to GFR and staged according to KDOQI. Albumin:creatinine ratio determination (by Jaffe method and solid phase fluorescent immunoassay assay of albumin) from a random urine sample was	Prevalence of CKD in USA ascertained by NHANES 1988-1994	N/A	CKD defined by KDOQI stratificatio n of GFR	National Institute of Diabetes, and Digestive and Kidney Diseases

Table 278: Coresh et. al 2007

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
				determined. A subset of participants from NHANES 1988-1994 (N=1241) was used to estimate the persistence of microalbuminuria within 2 months of the first examination.				

Effect size

This paper compares prevalence of CKD in the USA determined in NHANES 1988-1994 compared with NHANES 1999-2004.

The prevalence of diabetes, hypertension, high BMI increased from NHANES 1988-1994 to NHANES 1999-2004.

Mean ACR also increased from NHANES 1988-1994 (mean ACR 25.4 mg/g; N=14319) to NHANES 1999-2004 (mean ACR 28.6 mg/g; N=12216).

Prevalence of CKD significantly increased in the USA from NHANES 1988-1994 to NHANES 1999-2004:

	NHANES 1988-1994 (N	N=15488)	NHANES 1999-2004	l (N=13233)	
	N	Prevalence (%)	Ν	Prevalence (%)	P-value (between 2 NHANES studies)
$GFR \ge 90 \text{ ml/min/1.73 m}^2$	8600	51.9	5891	40.7	<0.001
GFR 60-89 ml/min/1.73 m ²	5751	42.4	5946	51.2	<0.001
GFR 30-59 ml/min/1.73 m ²	1088	5.4	1316	7.7	<0.001
GFR 15-29 ml/min/1.73 m ²	49	0.21	80	0.35	0.02
Normal ACR (< 30 mg/g)	12655	91.8	10636	90.5	0.01
Microalbuminuria (ACR 30- 299 mg/g)	1353	7.1	1315	8.2	0.01
Macroalbuminuria (ACR ≥ 300 mg/g)	311	1.1	265	1.3	0.37 NS

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exp	osure	Comparison	Length of follow-up	Outcome measures	Source of funding
Stage 1 CKD *		Not stated	1.71	Not stated	1.78		NS		
Stage 2 CKD *		Not stated	2.70	Not stated	3.24		Stated as s	ignificant, no p	given
Stage 3 CKD		Not stated	5.42	Not stated	7.69		Stated as s	ignificant, no p	given
Stage 4 CKD		Not stated	0.21	Not stated	0.35		Stated as s	ignificant, no p	given
Stage 5 CKD		N/A	N/A	N/A	N/A		N/A		
Total CKD		Not stated	10.03	Not stated	13.07		Stated as s	ignificant, no p	given

* based on persistent albuminuria

The prevalence of CKD increased with increasing age and this was a similar trend in the two NHANES studies. Approx 47% of people > 70 years old had CKD (NHANES 1999-2004) compared with 37% of people > 70 years old (NHANES 1988-1994)

The prevalence of GFR < 60 ml/min/1.73 m² was significantly higher in the NHANES 1999-2004 study compared with the NHANES 1988-1994 study even after adjustment for age, race, sex, diabetes, hypertension, BMI [adjusted OR 1.43 (95% CI 1.24 to 1.63), p<0.001].

Age, race, sex, diabetes, hypertension, and BMI explained the entire increase in the prevalence of albuminuria in NHANES 1999-2004 compared with NHANES 1988-1994.

Note: Limitations –Cross-sectional analysis; GFR measured from creatinine, not iothalamate or other gold standard, MDRD predictive equation has greater imprecision and bias at greater GFR (could misclassify mild kidney disease), persistence of albuminuria calculated from small data set, and assumed to be the same across the 2 surveys

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Drey N, Roderick P, Mullee M et al. A population-based study of the incidence and outcomes of diagnosed chronic kidney disease. American Journal of Kidney Diseases. 2003; 42(4):677- 684. Ref ID: 695	Cross- sectional population study UK population study Evidence Level: 3	N=404541	Inclusion criteria: new cases of CKD in Southampton and South-west Hampshire health authority identified in 1992- 1994 from chemical pathology databases at Southampton University hospitals NHS. CKD was defined as a serum creatinine value > 1.7 mg/dl or >150 micromol/l persisting for six months or more. Exclusion criteria: cases before 1992, serum creatinine decreases to < 1.7 mg/dl within 6 months, electoral wards that referred < 80% of their patients for inpatient treatment in S&SWH HA, cases not resident in Southampton and South- west Hampshire health authority Baseline Characteristics: a mostly Caucasian UK population	Incidence of CKD Procedure: a dataset of demographic, laboratory, diagnostic and prescription variables were extracted from patient records. A deprivation score was assigned to each patient according to area of residence (postcode).	Incidence of CKD with increasing age, effect of gender, effect of socioeconomi c deprivation	N/A	CKD	National Health Service South West Regional Health Authority

Table 279: Drey et al., 2003

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Effect size:		patiento			companioon	ionon up	incubules	14114118
There were 4228 r	ew cases of kidr	iey disease ide	ntified in 1992-1994.					
			ne value > 1.7 mg/dl or >150 micro			the study popu	lation was 17	'01 per
million population	(95% Cl 1613 to	1793 pmp). Fc	or people < 80 years old, the incider	nce was 1071 pmp (95% Cl 1	1001 to 1147).			
Age as a risk facto	r for CKD:							
-		nine value > 1.	7 mg/dl or >150 micromol/l) increa	ased with increasing age. 74	% of CKD cases (792/1076 defi	nite CKD case	s) were
identified in peopl	$e \ge 70$ years old.							
Gender as a risk fa	ctor for CKD:							
			n (650/1076 definite CKD cases). Th	ne man:woman rate ratio wa	as 1.6 (95% CI 1.4	4 to 1.8). The J	preponderan	ce of men
with CKD was signi	ficant in all ages	> 40 years of a	age.					
Socioeconomic de	privation as a ris	k factor for CKI	٦.					
				f CKD companyed to the own	nell menuletien f		udia al uata ua	
		ownsend score	e =1) had a significantly lower risk c	or CKD compared to the over	rail population [0	directly standal	ruiseu rate ra	10 0.80

(95% Cl 0.69 to 0.93)]

People who were most deprived (Townsend score =5) had a significantly higher risk of CKD compared to the overall population [directly standardised rate ratio 1.17 (95% Cl 1.02 to 1.33)]

Note: Limitations – Relies on blood test alone to identify CKD and 1.7 mg/dl as the cut-off is arbitrary and not sensitive to reduced renal function. MDRD GFR would have perhaps been a better indicator of renal function. Cross-sectional analysis by retrospectively reviewing medical records. Although a UK study, it was a predominantly Caucasian sample -caution in applying to areas of high ethnic diversity.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Elsayed EF, Tighiouart H, Griffith J et al. Cardiovascular Disease and Subsequent Kidney Disease. Archives of Internal Medicine. 2007; 167(11):1130- 1136. Ref ID: 3940	case series Evide nce level: 3 USA	N total = 13826 N Subjects with CVD = 1787 N Subjects without CVD = 12039	Inclusion: patient data pooled from Atherosclerosis Risk in Communities (ARIC) and Cardiovascular Health Study (CHS). ARIC: people 45-64 years old recruited between 1987 and 1989 from 4 communities. CHS: subjects \geq 65 years old recruited between 1989 and 1990. Exclusion criteria: participants with missing data (including baseline or final creatinine measurements), people with baseline GFR < 15 ml/min/1.73 m ² Population baseline	Subjects with CVD N = 1787 Procedure: Baseline serum creatinine measured and calibrated to Third NHANES values. MDRD equation used to estimate GFR. Baseline cardiovascular disease (CVD) defined by stroke, angina, claudication, TIA, coronary angioplasty or bypass, or recognised or silent MI.	Subjects without CVD N = 12039 Procedure: As for intervention	Mean 9.3 years. 22% failed to provide last serum creatinine; these people were more likely to have CVD at baseline and had higher CVD risk factors. Authors suggest this exclusion would bias towards null hypothesis.	Kidney function decline (serum creatinine increase of at least 0.4 mg/dl between first and last visit) Kidney function decline (GFR decrease of at least 15 ml/min/1.73 m ² between first and last visit) Development of CKD (serum creatinine increase of at least 0.4 mg/dl from baseline level of < 1.4 mg/dl in men and < 1.2 mg/dl in women)	NIH, Amgen, National Heart, Lung, and Blood Institute

Table 280: Elsayed et al., 2007

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטב4

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			characteristics: Mean age 57.6 years. People with baseline CVD were significantly older (60 vs.57 years), had higher prevalence of diabetes and hypertension, and had lower baseline GFR (86 vs.90 ml/min/1.73 m ²) compared to people without CVD at baseline.				Development of CKD (GFR decrease of 15 ml/min/1.73 m ² level in people with baseline GFR > 60 ml/min/1.73 m ²)	

Error! No text of specified style in document.

Chronic kidney disea

Effect size:

Odds ratios (OR) adjusted for age, sex, race, education, study origin, diabetes, smoking, alcohol use, hypertension history, BMI, SBP, hematocrit, albumin level, HDL cholesterol, total cholesterol, baseline serum creatinine, baseline eGFR.

Effect of Cardiovascular disease on Kidney Function decline (serum creatinine increase of at least 0.4 mg/dl between first and last visit)

After a mean follow-up of 9.3 years, 128 of 1787 (7.2%) people with baseline cardiovascular disease had a decline in kidney function (serum creatinine increase of at least 0.4 mg/dl) compared with 392 of 12039 (3.3%) people without baseline CVD (p<0.001). People with decline in renal function were significantly older, more likely to have hypertension and diabetes, more likely to be African American, and had significantly higher baseline serum creatinine levels than those who did not experience renal function decline.

People with baseline cardiovascular disease (N=1787) had a significantly increased risk of a decline in renal function (serum creatinine increase of at least 0.4 mg/dl) compared with people without CVD at baseline (N=12039) [adjusted OR 1.70 (95% Cl 1.36 to 2.13), p<0.001).

Effect of Cardiovascular disease on Kidney Function decline (GFR decrease of at least 15 ml/min/1.73 m² between first and last visit) After a mean follow-up of 9.3 years, 607 of 1787 (34.0%) people with baseline cardiovascular disease had a decline in kidney function (GFR decrease of at least 15

	Study	Number of				Length of	Outcome	Source of			
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding			
ml/min/1.73 m ²) compared with 3909 of 12039 (32.5%) people without baseline CVD (p=0.22).											
•	People with baseline cardiovascular disease (N=1787) had a significantly increased risk of a decline in renal function (GFR decrease of at least 15 ml/min/1.73 m ²) compared with people without CVD at baseline (N=12039) [adjusted OR 1.28 (95% CI 1.13 to 1.46), p<0.001).										
Effect of Cardiovascu women)	lar disea	se on Developr	ment of CKD (serum creatin	nine increase of at least (0.4 mg/dl from b	baseline level of < 1	.4 mg/dl in men and	l < 1.2 mg/dl in			
-			n creatinine < 1.4 mg/dl in r pared with people without	-	-	-		CKD (serum			

Chronic kidney disease Error! No text of specified style in document.

Effect of Cardiovascular disease on Development of CKD (GFR decrease of at least 15 ml/min/1.73 m² level in people with baseline GFR > 60 ml/min/1.73 m²) People with baseline CVD had an increased risk of developing CKD (GFR decrease of at least 15 ml/min/1.73 m² level in people with baseline GFR > 60 ml/min/1.73 m²) compared with people without baseline CVD [adjusted OR 1.54 (95% CI 1.26 to 1.89), p<0.001).

Sensitivity Analyses:

Similar increased risk when analysis was restricted to ARIC or CHS cohorts separately.

Exclusion of people with heart failure: association still remained significant [OR 1.72 (1.12 to 2.62)].

Baseline ACE inhibitors use evaluated: CVD still associated with kidney function decline [OR 1.82 (1.20 to 2.76)] and ACE inhibitors use was protective [OR 0.30 (0.10 to 0.87)].

CVD defined as only MI or cardiac procedure: CVD still associated with decline in kidney function [OR 1.93 (1.45 to 2.59)].

Limitations: no baseline proteinuria data, ARIC study lacked data on ACE inhibitors use.

Table 281: Freedman et al., 1997

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Freedman BI, Soucie JM, McClellan WM. Family history of end- stage renal disease among incident dialysis patients. Journal of the American Society of Nephrology. 1997; 8(12):1942-1945. Ref ID: 1382	case series Evidenc e level: 3 US study	N ESRD total = 4289 N ESRD No family history ESRD =3433 N ESRD with family history of ESRD= 856	Inclusion criteria: patients ≥ 20 years old with ESRD initiating RRT in dialysis units in North Carolina, South Carolina, and Georgia during 1994 Exclusion criteria: Mendelian cause of ESRD (polycystic kidney disease, Alport syndrome), urological conditions, surgical nephrectomy, ethnicities other than black or white Baseline data: mean age 58.4 years, 79% > 45 years old, 62% African American, 40% ESRD associated with diabetes, 39% associated with hypertension, 10%	Assessed effect of race and cause of ESRD on odds of having a family history of ESRD. Procedure: Participation of patients initiating RRT was voluntary. A family history of ESRD was considered present if an incident ESRD patient reported having either a first- degree (parent, child, sibling) or second-degree (grandparent, aunt, uncle, grandchild, or half- sibling) relative with ESRD. ESRD defined at dialysis, kidney transplant, or death from kidney disease before dialysis was started. A standardised data-collection instrument was used to collect data on presence of ESRD in first and second degree relatives, total number of siblings and children. Age, sex, race, weight, height of patients, primary cause of ESRD, co morbidities,	N/A	N/A	A family history of ESRD	Not stated

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
			associated with	laboratory results at dialysis				
			chronic glomerular	initiation obtained from Centres				
			disease, 11% "other"	for Medicare and Medicaid				
			cause.	Services Form 2728.				

Effect size:

Odds ratios (OR) adjusted for race, gender, age, state of residence, cause of ESRD, education

856/4289 (20%) people with ESRD reported having a family history of ESRD.

In crude analysis, hypertension, diabetes, glomerulonephritis, black ethnicity were all associated with increased odds of a family history of ESRD.

Effect of Race on odds of a family history of ESRD

African American men with ESRD (N=1172) were significantly more likely to report a family history of ESRD than white men with ESRD (N=915) [adjusted OR 1.8 (95% CI 1.4 to 2.3)] Similar risk for African American women compared with white men.

Effect of Hypertension on odds of a family history of ESRD

People with ESRD and a history of hypertension (N=1658) were significantly more likely to report a family history of ESRD than people with ESRD due to "other" causes (N=461) [adjusted OR 1.5 (95% CI 1.1 to 2.1)]

Effect of diabetes on odds of a family history of ESRD

People with ESRD and a history of diabetes (N=1720) were significantly more likely to report a family history of ESRD than people with ESRD due to "other" causes (N=461) [adjusted OR 1.9 (95% CI 1.4 to 2.6)]

Effect of glomerulonephritis on odds of a family history of ESRD

People with ESRD due to glomerulonephritis (N=450) were significantly more likely to report a family history of ESRD than people with ESRD due to "other" causes (N=461) [adjusted OR 2.1 (95% CI 1.5 to 3.0)]

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding		
Note: authors concede th	nat in the Af	rican Americar	n index cases, 88% of the f	amily history data was correct (no o	comparable data	a from Caucasi	ian index), me	aning that		
the family history of ESRD data could have been overestimated, although authors doubt this overestimation could completely account for the increased odds of a										
family history of ESRD in	African Am	ericans compa	red with Caucasians.							

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Compari son	Length of follow-up	Outcome measures	Source of funding
Gelber RP, Kurth T, Kausz AT et al. Association between body mass index and CKD in apparently healthy men. American Journal of Kidney Diseases. 2005; 46(5):871- 880. Ref ID: 349	Prospec tive cohort study Physicia n's Health Study USA Evidenc e level: 2 +	N total = 11104 N BMI< 22.7 kg/m ² =2202 N BMI 22.7- 23.7 kg/m ² =2277 N BMI 23.8- 25.0 kg/m ² =2155 N BMI 25.1- 26.6 kg/m ² =2250 N BMI > 26.6 kg/m ² =2220	Inclusion criteria: Healthy male physicians participating in the Physicians' Health Study (PHS), a completed RCT of aspirin or beta carotene in the primary prevention of CVD and cancer. Exclusion criteria: History of CVD, cancer, current liver disease or renal failure/insufficiency, major illness Baseline characteristics: Overweight (BMI 25-29.9 kg/m ²) and obese (BMI > 30 kg/m ²) males were more likely to have hypertension, diabetes, or CVD, more likely to smoke, less physically active, and drank less alcohol than males with BMI < 25 kg/m ² .	Males with BMI 22.7-23.7 kg/m ² =2277 BMI 23.8-25.0 kg/m ² =2155 BMI 25.1-26.6 kg/m ² =2250 BMI > 26.6 kg/m ² =2220 Procedure: The follow-up blood sample assayed for creatinine (Jaffe method) and GFR calculated with MDRD equation. BMI was calculated from self-reported weight and height. Baseline and follow-up information on demographics, medical history, height, weight, health behaviour, medication use, newly diagnosed conditions assessed from annual self-reported questionnaires	Males with BMI < 22.7 kg/m ² =2 202	14 years	CKD (defined as GFR < 60 ml/min/1. 73m ²) at 14-year follow-up	National Cancer Institute and National Heart, Lung, and Blood Institute

Table 282: Gelber et al. 2005

	Study	Number of			Compari	Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention/ exposure	son	follow-up	measures	funding
Effect size								
Odds ratios (OR) a follow-up.	djusted for b	aseline age, smok	ing, alcohol intake, exercise, his	tory of MI before age 60, diabetes	s, hypertens	ion, elevated cho	olesterol, CVD) during
Of 11104 males, 1	377 (12%) ha	d a GFR < 60 ml/n	nin/1.73m ² and 4.4% had a crea	tinine level > 1.5 mg/dl after 14 ye	ears follow-u	ıp.		
BMI effects on ris	k of CKD							
The risk of develo	oing CKD (GFF	R < 60 ml/min/1.7	3m ²) increased with increasing I	BMI (p trend = 0.007)				
Compared to men 1.03 to 1.54)]	with BMI < 2	2.7 kg/m ² (N=220	2), men with BMI > 26.6 kg/m ²	(N=2220) had a significantly increa	ased risk of o	developing CKD	[adjusted OR	1.26 (95% (
Compared to men (95% CI 1.09 to 1.6		2.7 kg/m ² (N=220	2), men with BMI 25.1-26.6 kg/	'm ² (N=2250) had a significantly in	creased risk	of developing C	KD [adjusted]	OR 1.32
There was NS risk	of CKD for m	en with BMI 22.7-	23.7 (N=2277) or BMI 23.8-25.0	(N=2155)compared to men with	BMI < 22.7 k	g/m ² (N=2202)		
Each 1-unit increa	se in baseline	BMI was associat	ted with a 5% increase in CKD ris	sk [OR 1.05 (95% CI 1.03 to 1.07)].				
-				70)				

Compared to men who remained within ± 5% range of their baseline BMI (N=5670), men who had a > 10% increase in BMI (N=1669) had a significantly increased risk of CKD [OR 1.24 (95% CI 1.03 to 1.50)]

Assessment of bias: data was self-reported, creatinine values were not available at baseline so they could not confirm that participants were free of renal disease at baseline, confounding from other variables not taken into account/unknown, a male, predominantly Caucasian sample.

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Hallan SI, Coresh J, Astor BC et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol. 2006; 17(8):2275- 2284. Ref ID: 3871	Cross- sectional population study Norway HUNT II population study Evidence Level: 3	N=65181	Inclusion criteria: a general health survey was conducted in Nord- Trondelag county, Norway in 1995-1997. Adults 20 years or older. Exclusion criteria: CKD stage 5, menstruating women or people with UTI a week before measurement of ACR, Baseline Characteristics: mean age 50.2 years, 10% were 70 years of age or older, 44% hypertensive, 3.4% diabetic, 11% taking antihypertensive agents, 33% smokers, 8% had previous MI, stroke, or angina pectoris,	Prevalence of CKD in Norway Procedure: participants completed a health questionnaire and had a clinical exam. Serum creatinine was measured in all participants and GFR was calculated with the MDRD equation. CKD was defined according to GFR and staged according to KDOQI. A 5% random sample of the population submitted three consecutive morning urine samples for albumin:creatinine ratio determination (by Jaffe method and immunoturbidometric assay of albumin). People with 2 or 3 ACR determinations of 17-250 mg/g (men) or 25-355 mg/g (women) were classified as having persistent microalbuminuria. Macroalbuminuria was defined	Prevalence of CKD in USA Effect of increasing age, effect of gender, effect hypertension, diabetes	N/A	CKD	Not stated

Table 283: Hallan et al. 2006

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
				as 1 or more ACR measurements higher than the microalbuminuric range.				

Effect size:

In this Norwegian population (N=65181), the prevalence of mild CKD (GFR 60-89 ml/min/1.73m²) was 38.6%. The prevalence of moderate CKD (GFR 30-59 ml/min/1.73m²) was 4.5% and the prevalence of severe CKD (GFR 15-29 ml/min/1.73m²) was 0.2%.

Age as a risk factor for CKD:

The prevalence of CKD increased with increasing age. The prevalence of GFR < 60 ml/min/1.73m² was 50-100 times greater in people > 70 years old compared to people 20-39 years old.

Gender as a risk factor for CKD:

Women had a significantly higher risk of CKD than men [age-adjusted OR 1.5 (95% Cl 1.4 to 1.6)].

Hypertension as a risk factor for CKD:

20% of hypertensive people had moderate CKD (GFR 30-59 ml/min/1.73m²) compared to 2% of normotensive people. People with hypertension had a higher risk of CKD than people without hypertension [age-adjusted OR 1.5 (95% CI 1.3 to 1.6)].

Diabetes as a risk factor for CKD:

13.6% of diabetic people had moderate CKD (GFR 30-59 ml/min/1.73m²) compared to 4% of non-diabetic people. People with diabetes had a significantly higher risk of CKD than people without diabetes [age-adjusted OR 1.5 (95% CI 1.3 to 1.7)].

Comparison between Norway and USA prevalence of CKD:

The Norwegian prevalence of Stages 1-4 CKD was 10.2% (95% CI 9.2 to 11.2) and the American prevalence was 11.7%. However, progression to ESRD was much slower in Norwegians than in Americans. White Americans had a 2 times higher risk for ESRD compared to Norwegians

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
(mostly white). This	difference may	be due to hig	her rates of obesity in the Ai	merican participants (adjusted for	diabetes, hypert	ension, age).		

Note: Limitations – Cross-sectional analysis. Participants were volunteers, so may have selection bias (participation increased with increasing age) Although a European study, it was a predominantly Caucasian sample -caution in applying to areas of high ethnic diversity.

Table 284: Hallan et	al. 2006							
Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Hallan SI, Dahl K, Oien CM et al. Screening strategies for chronic kidney disease in the general population: follow- up of cross sectional health survey.[see comment]. BMJ. 2006; 333(7577):1047. Ref ID: 4109	Cross- sectional population study Norway HUNT II population study Evidence Level: 3	N asked to participate =92939 N = 65604 participated 70.6% participation rate	Inclusion criteria: a general health survey was conducted in Nord- Trondelag county, Norway in 1995-1997. Adults 20 years or older. Exclusion criteria: CKD stage 5, menstruating women or people with UTI a week before measurement of ACR, Baseline Characteristics: median age 49 years, 11% taking antihypertensive agents, 3.0% diabetic, 27% smokers, 37% family history of hypertension or diabetes, 7.9% CVD, mean GFR 94.6 ml/min/1.73 m ² , 4.7% GFR < 60 ml/min/1.73 m ²	Different screening strategies for detection of CKD (Stage 3-5) were compared in Norway GFR 45-59 ml/min/1.73 m ² (N= 2389) GFR 40-44 ml/min/1.73 m ² N=548 GFR < 30 ml/min/1.73 m ² N=120 Procedure: participants completed a health questionnaire and had a clinical exam. Serum creatinine was measured in all participants and calibrated to IDMS. GFR was calculated with the MDRD equation. CKD was defined according to GFR and staged according to KDOQI. ESRD	GFR > 60 ml/min/1.73 m ² N=62066	8 years	CKD Progressio n to ESRD Cardiovasc ular mortality	Not stated

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
				and death determined from registries. 9 Screening strategies for detection of CKD were compared				
Effect size:								
NNTS = number need	led to screen to	detect 1 case of C	KD stage 3-5.					
Comparison of screen	ning strategies to	o identify CKD Stag	es 3-5: Screen people with	hypertension (HYP) or diabetes	(DM) plus addit	onal factors		
Note that "/" means	"or" – HYP/DM/	'age >55 years mea	ins HYP or DM or age > 55 y	years				
Screening strategy			% found	% included	NNTS (95	% CI)		
HYP / DM			44.2	12.0	5.9 (5.7 to	o 6.2)		
HYP/ DM/family histo	ory of HYP or DN	Λ	59.8	41.8	15.3 (14.8	8 to 15.9)		
HYP/ DM/CVD			57.5	16.0	6.1 (5.9 to	o 6.3)		
HYP/ DM/obesity/sm	oking		73.8	50.0	15.8 (15.2	2 to 16.3)		
HYP/ DM/CVD/obesit	ty/smoking/ fam	nily history of HYP o	or DM 81.4	66.9	19.1 (18.5	5 to 19.8)		
HYP/ DM/age > 55 ye	ears		93.2	37.1	8.7 (8.5 to	9.0)		
UK CKD guidelines (H symptoms/autoimmu		oderate-severe low	ver UT 60.9	19.9	8.6 (8.2 to	9.0)		
US KDOQI (HYP/DM/	age > 60/autoim	nmune disease)	89.3	29.0	8.7 (8.4 to	9.0)		
ISN (screen everybod	ly)		100	100	20.6 (20.0) to 21.2)		

To achieve a high detection rate with low NNTS : screening people with HYP/DM/> 55 years old fulfils this as 93% of people with CKD Stage 3-5 are found and only 8.7 people must be screened to find 1 case of CKD.

Progression to ESRD

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
After a median fo	llow-up of 8 years, 5	1/65123 people p	progressed to ESRD. Incidence	ce rate was 0.04, 0.2, and 2.6 per	r 100 patient ye	ars for those v	with GFR 45-59	9, 30-44, and
< 30, respectively								
to Progression ES	RD influenced by GF	R:						
HR 1.0 for GFR 45	-59 ml/min/1.73 m ²	;						
HR 4.2 (95% CI 1.	5 to 11) for GFR 30-4	4 ml/min/1.73 m	2					
	0 to 156) for GFR < 3							
Also male sex di	abetes hypertension	age > 70 years s	ignificantly associated with	progression to FSRD				
	useres, hypertension		Binneantly associated with					
Cardiovascular D	aath.							
Cardiovascular D	eath:							

After a median follow-up of 8 years, 2604/65156 people died from cardiovascular causes. Incidence rate was 3.5 for GFR 45-59 ml/min/1.73 m², 7.4 for GFR 30-44 ml/min/1.73 m², and 10.1 for GFR < 30 ml/min/1.73 m²

Note: Limitations –Cross-sectional analysis. Participants were volunteers, so may have selection bias (participation increased with increasing age) Although a European study, it was a predominantly Caucasian sample -caution in applying to areas of high ethnic diversity. Also used 1 creatinine measure to classify people to levels of renal function.

Table	285:	Haroun	et al.	2003
-------	------	--------	--------	------

		Number of	Patient		_	Length of	Outcome	Source of
Reference	Study type	patients	characteristics	Intervention	Comparison	follow-up	measures	funding
Haroun MK, Jaar BG, Hoffman SC, Comstock GW, Klag MJ, Coresh J. Risk factors for chronic kidney disease: a prospective study of 23,534 men and women in Washington County, Maryland. Journal of the American Society of Nephrology 2003; 14: 2934-41	Case series (longitudinal study) USA Evidence level:3 Study examined the association between hypertension and smoking and future risk of CKD	N=23 534	Participants from the CLUE study, a cancer research project involving 26000 adult volunteers. Predominantly a white population. Exclusion criteria: acute renal failure, non- residents of Washington county, subjects with incomplete records.	N=143 cases of CKD. N=51 cases of ESRD N=92 death certificate cases Risk factors of interest: systolic and diastolic blood pressure, diabetes status, smoking status, years of education. BP categorised as optimal < 120 mmHg systolic or < 80 mmHg diastolic; normal = 120-129 mmHg systolic or 80-84 mmHg diastolic; high-normal = 130- 139 mmHg systolic or 85-89 mmHg diastolic; stage 1 hypertension = 140-159 mmHg systolic or 90-99 mmHg diastolic; stage 2 hypertension = 160-179 mmHg systolic or 100-109 mmHg diastolic; stage 3 or 4 hypertension ≥ 180 mmHg systolic or ≥ 110 mmHg	n/a	20 years	Developm ent of CKD identified by need for dialysis or death certificate notificatio n of kidney disease. (both these were confirmed by record review, via the health care financing administra tion (HCFA) database)	NIH

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Effect size:								
Of the population (N	=23 534), there were	a total of 143 c	ases of CKD (identifie	d by need for dialysis or death of	kidney disease).	51 cases of ES	SRD, 92 cases of	of CKD-
related death								
CKD cases were sign	ificantly more likely to	be older (p<0.	001), hypertensive (p	<0.001), report ever smoking ciga	rettes (p<0.05) a	and be less edu	ucated (p<0.00	01).
		_						
	risk of developing CK					r		
More men than won 0.8)]	nen developed CKD di	uring the 20 yea	ar study. Women had	a significantly decreased risk of d	eveloping CKD th	nan men ladju	sted HR 0.6 (9	5% CI 0.4 to
0.8/]								
Effect of Hypertensi	on on risk of developi	ing CKD						
The risk of developin	ng CKD increased as bl	ood pressure ir	creased.					
Men with stage 3 or	4 hypertension had a	significantly ind	creased risk of develo	ping CKD than men with optimal I	3P control [HR 9.	.7 (95% CI 1.2	to 75.6)].	
Women with Stage 2	hypertension had a s	significantly incl	reased risk of develop	ping CKD than women with optima	al BP control [HR	6.3 (95% CI 1	.3 to 29.0)].	
Women with Stage 3	3 or 4 hypertension ha	d a significantly	y increased risk of dev	eloping CKD than women with op	timal BP control	[HR 8.8 (95%	CI 1.8 to 43.0)].
Adjusted relative has	zard of CKD in CLUE po	opulation: adju	sted for age, cigarette	e smoking, treated diabetes, and g	gender (where ap	oplicable).		
Baseline risk factor		Men (95% CI)		Women (95% CI)		Total populat	ion (95% Cl)	
JNC-VI BP category*								
Optimal		1.0		1.0		1.0		
Normal		1.4 (0.2-12.1)		2.5 (0.5-12.0)		1.8 (0.5-6.5)		
High-normal		3.3 (0.4-25.6)		3.0 (0.6-14.4)		3.0 (0.9-10.3)		
Stage 1 hypertension	ı	3.0 (0.4-22.2)		3.8 (0.8-17.2)		3.2 (1.0-10.4)		
Stage 2 hypertension	า	5.7 (0.8-43.0)		6.3 (1.3-29.0)		5.7 (1.7-18.9)		

Chronic kidney disease Error! No text of specified style in document.

Reference	Study type	Number of patients	Patient characteristics	Inte	rvention	Comparison	Length of follow-up	Outcome measures	Source of funding
Stage 3 or 4 hyperte	nsion	9.7 (1.2-75.6)			8.8 (1.8-43.0)		8.8 (2.6-30.3)		
Treated diabetes, yes vs. no		5.0 (3-10)			10.7 (6-19)		7.5 (4.8-11.7)		
Current cigarette sm	oker, yes vs. no	2.4 (1.5-4))			2.9 (1.7-5)		2.6 (1.8-3.7)		
Gender, female vs. n	nale						0.6 (0.4-0.8)		

*For hypertension, p<0.001 in test for trend by BP category in all groups.

Effect of Diabetes on risk of developing CKD

People treated for diabetes were at a significantly increased risk of developing CKD compared with people who were not receiving treatment for diabetes [adjusted HR 7.5 (95% CI 4.8 to 11.7)] This increased risk was seen in both males [adjusted HR 5.0 (95% CI 3 to 10)] and females [adjusted HR 10.7 (95% CI 6 to 19)]

Effect of Smoking on risk of developing CKD

Current smokers had a significantly increased risk of CKD than non-current smokers [adjusted HR 2.6 (95% CI 1.8 to 3.7)]. This increased risk was seen in both males [adjusted HR 2.4 (95% CI 1.5 to 4)] and females [adjusted HR 2.9 (95% CI 1.7 to 5)]

Attributable risk

Baseline risk factor	Attributable risk per million population
JNC-VI BP category	
Normal	650
High-normal	1510
Stage 1 hypertension	2650 (23% of CKD risk)
Stage 2 hypertension	1820
Stage 3 or 4 hypertension	1150
Treated diabetes	1270
Smoking	3640 (31% of CKD risk)

ואמנוטרומו כווחוכמו שעומפווחפ כפחנרפ

LUT4

		Number of	Patient			Length of	Outcome	Source of	
Reference	Study type	patients	characteristics	Intervention	Comparison	follow-up	measures	funding	
Assessment of bias:									
Adult volunteers	s used in the study (seled	ction bias), only s	evere kidney disease	identified, milder forms of CKD we	ould not have be	een picked up	by the choser	n outcomes.	
BP, diabetes dia	gnosis and smoking state	us were all asses	sed at recruitment in	1974. No estimation of loss to foll	ow up.				
Could not estimate baseline CKD in the whole cohort. They tested a subset of cases (N=85) and controls (N=175) matched for age, race, gender, hypertension, diabetes.									
They report that	: 78/85 (92%) cases and	171/175 (98%) o	f controls had a serui	m creatinine < 1.5 mg/dl. no repea	ted measureme	nts of BP done	e during cours	e of study,	

poor identification of diabetes (by medication use in medical records), volunteers (selection bias)

Table	286:	Kurella	et al.	2005
-------	------	----------------	--------	------

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Kurella M, Lo JC, Chertow GM. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults.[see comment]. Journal of the American Society of Nephrology. 2005; 16(7):2134-2140. Ref ID: 433	Prospecti ve cohort study USA Evidence level: 2+	N=10 096	 Participants part of the Atherosclerosis Risk in Communities Study (ARIC) Inclusion criteria: Participants recruited randomly from 4 US communities, age 45-64 years, Exclusion criteria: Baseline CKD, baseline diabetes, participants with missing data for components of the metabolic syndrome, missing follow up serum creatinine measurements Baseline characteristics: Participants with metabolic syndrome were more likely to be slightly older (53 vs.54), to have coronary heart disease, less likely to use alcohol or have regular physical activity. Baseline eGFR was slightly higher and as expected BP, glucose, insulin and lipid measurements were significantly different between the groups. Those excluded from the original 	N=2110 Participants with the metabolic syndrome Serum creatinine measured at baseline and at 9 years follow-up. eGFR calculated using abbreviated MDRD equation. Metabolic syndrome defined as \geq 3 of the following: 1) waist measurement > 88 cm for women or >102 cm for men. 2) Triglycerides \geq 150 mg/dl. 3) HDL cholesterol < 50 mg/dl for women or <40 mg/dl for men. 4) BP \geq 130/ \geq 85	N=7986 Participants without the metabolic syndrome	9 years	Developm ent of CKD (defined as eGFR < 60ml/min/ 1.73m ² after baseline eGFR ≥ 60ml/min/ 1.73m ²)	Authors were supported by Atlantic philanthro pies, NIH, Am Soc Nephrolog y, John A Hartford Foundatio n.

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

	Study	Number of				Length of	Outcome	Source of						
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding						
			cohort were more likely to be black,	mmHg or the use										
			male, and to meet the criteria for the	of BP medications.										
			metabolic syndrome, they were on	5) fasting glucose										
			average 1 year older and had an eGFR	≥110 mg/dl										
			3ml/min/1.73m ² higher.											
Effect size														
Odds ratios (OR) ad	iusted for age	. gender. race.	education. BMI. alcohol and tobacco use	. coronary heart disea	se, physical activi	tv.								
	-	-		, ,		Ddds ratios (OR) adjusted for age, gender, race, education, BMI, alcohol and tobacco use, coronary heart disease, physical activity. N=691 (7%) developed CKD (GFR < 60 ml/min/1.73m ²) after 9 years follow-up.								
			D over 9 years of follow up:											
					Multivariable	adjusted								
	th 95% Cl of d		D over 9 years of follow up:		Multivariable 1.43 (1.18-1.7	-								
Odds Ratio (OR) wit	th 95% Cl of d		D over 9 years of follow up: Age, gender and race adjusted			-								
Odds Ratio (OR) wit	t h 95% Cl of d .73m ²	leveloping CKI	D over 9 years of follow up: Age, gender and race adjusted	5		-								
Odds Ratio (OR) wit	t h 95% Cl of d .73m ²	leveloping CKI	D over 9 years of follow up: Age, gender and race adjusted 1.53 (1.29-1.82)	s		3)	ted							
Odds Ratio (OR) wit	t h 95% Cl of d .73m ²	leveloping CKI	D over 9 years of follow up: Age, gender and race adjusted 1.53 (1.29-1.82) p by individual metabolic syndrome traits	s	1.43 (1.18-1.7	3) nd race adjus	ted							

As the number of traits increased, there was a significant stepwise increase in risk of developing CKD. Those with 5 criteria had an OR of 2.45 (95% CI: 1.32-4.54) for developing CKD compared to those with 0 traits.

1.27 (1.08-1.49)

1.99 (1.69-2.35)

1.11 (0.87-1.40)

1.19 (1.02-1.40)

2.19 (1.87-1.56)

1.17 (0.93-1.48)

Low HDL

Hypertension

Impaired fasting glucose

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
	•		developed hypertension. After adjusting f cantly higher RR: 1.24 (95% Cl: 1.01-1.51)		es and hypertens	sion, relative r	isk of develop	ing CKD in

Chronic kidney disease Error! No text of specified style in document.

Table	287:	Munter	et al.	2000
			···	

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Muntner P, Coresh J, Smith JC et al. Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney International. 2000; 58(1):293- 301. Ref ID: 1176	Case series (observation al study) USA Evidence level: 3 Aim is to determine the association of plasma lipids with loss of renal function and the clinical onset of mild renal insufficiency	N=12 728	Inclusion criteria: ARIC study cohort, age 45-64, sampled from 4 US communities using probability sampling techniques. Other inclusion criteria not described in this paper. Exclusion criteria: Severe hypercreatinaemia at baseline, on lipid lowering medications at baseline, missing data for lipids or creatinine at baseline, or at follow up, participants who did not fast prior to blood draw, participants of races other than white and African-American. Baseline data: ARIC population: 45% male, 23% black, 10% diabetic, 32% hypertensive, mean age 54 years, creatinine 1.09 mg/dl, total cholesterol 215 mg/dl, triglycerides 128 mg/dl, HDL cholesterol 53 mg/dl, LDL cholesterol 135 mg/dl	Plasma lipids: Total cholesterol, HDL cholesterol (including HDL- 2 and HDL-3), LDL cholesterol, apolipoprotein A-1, apolipoprotein- B, Lp(a), triglycerides		3 years	Rise in serum creatinine of ≥ 0.4 mg/dl (measure d using modified kinetic Jaffe method) ≥ 25% reduction in estimated creatinine clearance (Cockroft- Gault)	Authors supported by NIH and National Centre for Research Resources ARIC study funded by National, heart, lung and blood institute.

Effect size:

*Relative risks were adjusted for race, gender, age, baseline systolic BP, type of anti-hypertensive medication use, diabetes mellitus status and creatinine.

		Number of		Intervention/		Length of	Outcome	Source of
Reference	Study type	patients	Patient characteristics	exposure	Comparison	follow-up	measures	funding
Rise in serum creatin	ine of ≥ 0.4 mg	/dl						
Rise in serum creatini	ne of ≥ 0.4 mg/	dl: 1.7% (191/	12728) of participants; incidenc	ce rate 5.1 per 1000 person ye	ears of follow-up			
People who had a rise concentration.	e serum creatin	ine of ≥ 0.4 mg	/dl were more likely to be olde	er, black, have diabetes, hyper	tension, and hav	ve a higher base	eline creatinir	ie
Incidence (rate per 10 baseline.	000 person yea	rs) and adjusto	ed relative risks (95% CI) of a ri	se in creatinine ≥ 0.4mg/dl fı	om baseline to a	3 year follow u	p by lipid qua	artiles at
Lipid		Quartile						
		1	2	3	4		P trend	
Triglycerides								
Rate	4.0		3.9	5.4	7.2		0.0009	
Adjusted relative risk	1.0		0.99 (0.6, 1.6)	1.31(0.9, 2.0)	1.65 (1.1, 2.5)		0.008	
Lp(a)								
Rate	4.3		4.4	4.7	7.0		0.01	
Adjusted relative risk	1.0		0.96 (0.6, 1.5)	0.83 (1.5, 1.3)	1.10 (0.7, 1.7)		0.70	
HDL cholesterol								
Rate	6.8		5.1	5.8	2.8		0.0009	

0.86 (0.6, 1.3)

0.84 (0.6, 1.2)

0.99 (0.7, 1.5)

5.6

5.5

0.73 (0.5, 1.1)

0.65 (0.4, 1.0)

0.89 (0.6, 1.3)

4.4

5.2

Intervention /

Number of

Adjusted relative risk

Adjusted relative risk

Adjusted relative risk

HDL-3 cholesterol

HDL-2 cholesterol

Rate

Rate

1.0

6.6

1.0

6.3

1.0

Outcome Source of

Longth of

0.02 0.67 (0.4, 1.1) 0.17

0.01

0.01

0.05

0.47 (0.3, 0.8)

0.57 (0.4, 0.9)

3.5

3.5

Reference	Study	y type	Number of patients	Pat	tient characteristics		Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Apolipoprotein A											
Rate		6.6			4.8	5.1		4.1		0.03	
Adjusted relative ris	k	1.0			0.73 (0.5, 1.1)	0.79 (0.	5, 1.2)	0.66 (0.4, 1.0)		0.08	

Incidence of a creatinine rise was NS associated with total cholesterol (p=0.31), LDL cholesterol (p=0.66) or apolipoprotein B (p=0.33).

People with the highest quartile of triglycerides (> 156 mg/dl) had a significantly increased risk of a rise in creatinine \geq 0.4 mg/dl from baseline compared to people with the lowest quartile of triglycerides (< 78 mg/dl) [adjusted RR 1.65 (95% CI 1.1 to 2.5), p=0.01]

People with the highest quartile of HDL cholesterol (> 64 mg/dl) had a significantly decreased risk of a rise in creatinine \geq 0.4 mg/dl from baseline compared to people with the lowest quartile of HDL cholesterol (< 41 mg/dl) [adjusted RR 0.47 (95% CI 0.3 to 0.8), p<0.02]

People with the highest quartile of HDL-2 cholesterol (> 20 mg/dl) had a significantly decreased risk of a rise in creatinine \geq 0.4 mg/dl from baseline compared to people with the lowest quartile of HDL-2 cholesterol (< 9 mg/dl) [adjusted RR 0.57 (95% Cl 0.4 to 0.9), p<0.02]

The RR of a rise in creatinine \ge 0.4 mg/dl from baseline was NS for Lp (a), HDL-3 cholesterol, and apolipoprotein A.

Adjusted relative risks* (95% CI) of an incident rise in creatinine for a 3x higher baseline plasma triglyceride level overall and in selected subgroups

Overall	1.64 (1.2, 2.2)	P not stated
Non-diabetics	1.48 (1.0, 2.1)	P=0.04
Diabetics	2.44 (1.3, 4.7)	P=0.007
Normal creatinine	1.68 (1.2, 2.4)	P=0.005
African Americans	2.39 (1.5, 3.9)	P=0.001
Normotensive	1.65 (1.0, 2.7)	P=0.05
Hypertensive	1.57 (1.0, 2.4)	p=0.03

Number ofReferenceStudy typepatientsPatient characteristics	Intervention/ exposure Compariso	Length of follow-up	Outcome measures	Source of funding
---	-------------------------------------	------------------------	---------------------	-------------------

The adjusted relative risks for a rise in creatinine were not significant for those with hypercreatinaemia at baseline and for those who were white.

≥ 25% reduction in estimated creatinine clearance (Cockroft-Gault)

There were 407/12728 (3.2%) cases of a \geq 25% reduction in estimated creatinine clearance during follow-up.

For each three-fold higher triglycerides, the RR of developing a \geq 25% reduction in estimated creatinine clearance was 1.51 (95% Cl 1.2 to 2.0), p=0.003 (adjusted for race, gender, age, baseline systolic BP, type of anti-hypertensive medication use, diabetes mellitus status and creatinine clearance, insulin, glucose)

Table	288:	New	et al.	2007	
-------	------	-----	--------	------	--

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
New JP, Middleton RJ, Klebe B et al. Assessing the prevalence, monitoring and management of chronic kidney disease in patients with diabetes compared with those without diabetes in general practice. Diabetic Medicine. 2007; 24(4):364-369. Ref ID: 3002.	Cross- sectional population study UK population study Evidence Level: 3	N=162113	Inclusion criteria: General practice computer records reviewed from 17 practices in Surrey, Kent, greater Manchester area, UK between 2003 and 2004. Exclusion criteria: not stated Baseline Characteristics: a mostly Caucasian general practice UK population	Incidence of CKD in people with diabetes Procedure: a dataset of demographic, laboratory, diagnostic and prescription variables from patient records were extracted by Morbidity Information Query and Export Syntax between 2003 and 2004. Diabetes was identified with the Read code for diabetes. Serum creatinine values were converted to MDRD GFR and CKD was staged according to KDOQI. Hypertension defined as SBP > 140 mm Hg or DBP > 80 mm Hg.	Incidence of CKD in people without diabetes	N/A	CKD (defined as GFR < 60 ml/min/1. 73m ²	Roche

Effect size:

The prevalence of diabetes in the study population was 3.1% (5072/162113).

Diabetes as a risk factor for CKD:

People with diabetes were more likely to have CKD then people without diabetes. 31.3% of people with diabetes had Stage 3-5 CKD (GFR < 60 ml/min/1.73m²)

		Number of				Length of	Outcome	Source of
Reference	Study type	patients	Patient characteristics	Intervention/ exposure	Comparison	follow-up	measures	funding
	• •		01). The higher prevalence t diabetes had Stage 3 CKD	of diabetes-associated CKD wa (p<0.001).	is seen at all stag	es of CKD. 289	6 of people wi	th diabetes
Only 33% of diabetic to identify Stage 3 C		ad serum cre	atinine values > 120 microm	ol/l (upper limit of normal), ind	dicating that mea	suring serum	creatinine leve	l alone fails!
63% of people with a sufficient for screen		60 ml/min/1	73m ² had normoalbuminur	ia, indicating that microalbumin	nuria testing was	insensitive an	d used alone i	s not
GFR (ml/min/1.73m	²)	% Diabete	es (N=5072)	% No diabetes (N=15704)	1)	p-value		
> 90		8.3		3.1		< 0.001		
60-89		41.9		13.5		< 0.001		

6.7

0.2

0.03

Diabetes as a risk factor for anaemia:	:
--	---

People with diabetes were more likely to have anaemia compared with people without diabetes (5.9% vs.1.4%, p<0.001).

28.9

2.1

0.3

Management of hypertension or high cholesterol (with statins) was better in people with diabetes than in people without diabetes.

Note: Limitations – cross-sectional analysis by retrospectively reviewing medical records. Although a UK study, it was a predominantly Caucasian sample -caution in applying to areas of high ethnic mix.

30-59

15-29

< 15

< 0.001

< 0.001

< 0.001

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Retnakaran R, Cull CA, Thorne KI et al. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes. 2006; 55(6):1832- 1839. Ref ID: 3944	Prospective case series Evidence level: 3 UK study	N=5032 N Multivariat e analysis= 2167	Inclusion criteria: UKPDS: Adults 25-65 years old with newly diagnosed type 2 diabetes and fasting plasma glucose levels ≥ 6.0 mmol/l recruited between 1977 and 1991. Exclusion criteria: MI stroke within preceding year, severe vascular disease, uncontrolled hypertension, proliferative/preproliferative retinopathy, plasma creatinine ≥ 175 micromol/l, treatment with steroids, severe previous illness. Baseline data: mean age 52 years, 60& male, 82% Caucasian, 7.6% African Caribbean, 10% Indian Asian, 30% smoker, median UAC 9 mg/l, median plasma creatinine 82 micromol/l, SBP 135 mm Hg, DBP 83 mm Hg, 45% on antihypertensive agents, 6.9% HbAC1, 19% previous CVD	N/A Procedure: patients randomly allocated therapies for glycaemic control (not described in this paper). Serum creatinine, morning urine sample tested for albumin at baseline and annually. Participants followed up to assess development of micro or macroalbuminuria or CrCl ≤ 60 ml/min/1.73 m ²	N/A	Median 15 years (Until 1997)	Development of Microalbumin uria (UAC 50- 299 mg/l) Development of macroalbumin uria (UAC ≥ 300 mg/l) Development of CrCl ≤ 60 ml/min/1.73 m ²	MRC, British Diabetic Association, British Heart Foundation, Novo Nordisk, Bayer, Bristol- Myers Squibb, Hoechst, Eli Lilly

Table 289: Retnakaran et al. 2006

		Number of		Intervention/		Length of	Outcome	Source of
Reference	Study type	patients	Patient characteristics	exposure	Comparison	follow-up	measures	funding
Effect size:								
Multivariate and	alysis was restri	icted to N=216	7. This is a loss of half of the study p	articipants (due to incon	nplete data for	multivariate a	nalysis). Therefore	e, caution in
interpreting res	ults and EC only	y extracted dat	a for risk factors where evidence wa	s scanty.				
Hazard ratios (H	IR) adjusted for	race, gender, a	age, smoking status, weight, waist c	rcumference, SBP, DBP,	hypertension h	istory, FPG, Hl	bAC1, HOMA %B,	HOMA %S,
total, LDL, HDL o	cholesterol, trig	lycerides, whit	e cell count, urine albumin, plasma	creatinine, previous CVD	, retinopathy, r	neuropathy		
1544/4031 (38%	6) people devel	oped albuminu	ria.					
1449/5032 (29%	6) developed re	nal impairmen	t (CrCl \leq 60 ml/min/1.73 m ² or doub	ling of serum creatinine).			
577/4006 (14%)	developed bot	h albuminuria:	and renal impairment (CrCl \leq 60 ml/	min/1.73 m ² or doubling	g of serum crea	tinine).		
Of the 1534 pat	ients who deve	loped albumin	uria, 977 (64%) did NOT develop rer	al impairment, 372 (24%	6) developed re	nal impairmer	nt subsequent to o	developing
albuminuria, 12	% developed re	enal impairmen	t before developing albuminuria.					
Risk of Develop	ing Microalbur	ninuria						
Of 2167 people,	756 developed	d microalbumin	uria					

Chronic kidney disease Error! No text of specified style in document.

In multivariate analysis of adults with type 2 diabetes (N=2167), African Caribbeans had NS risk of developing microalbuminuria compared with Caucasians [HR 1.21 (95% CI 0.89 to 1.65), p=0.22]

Indian Asians had a significantly increased risk of developing microalbuminuria compared with Caucasians [HR 2.02 (95% CI 1.59 to 2.60), p<0.0001].

Smokers had a significantly increased risk of developing microalbuminuria compared with non smokers [HR 1.20 (95% CI 1.01 to 1.42), p=0.036].

Significantly increased risk of developing microalbuminuria for UAC, SBP (10 mm Hg increase), HbAC1, TGL, white blood cell count, previous CVD.

Risk of Developing Macroalbuminuria

- (C . I .	Number of	.	Intervention/	. .	Length of	Outcome	Source of
Reference	Study type	patients	Patient characteristics	exposure	Comparison	follow-up	measures	funding
Of 2167 people,	219 developed	d macroalbumii	nuria					
		ts with type 2 c	iabetes (N=2167), African Caribbean	s had NS risk of develop	oing macroalbu	minuria compa	ared with Caucasia	ans [HR 1.05
(95% CI 0.59 to 1	1.86), p=0.87]							
							-)	
Indian Asians ha	d a significantly	y increased risk	of developing macroalbuminuria co	mpared with Caucasians	s [HR 2.07 (95%	5 CI 1.36 to 3.1	5), p=0.00066].	
c() .						_		
Significantly inci	eased risk of d	eveloping mac	oalbuminuria for UAC, SBP (10 mm H	Ig increase), HbAC1, IG	iL, previous CVI	D.		
Risk of developi	ng (r() < 60 m	$1/min/1.72 m^2$						
Of 2167 people,	-		$ain / 1.72 m^2$					
• • •	•	-	iabetes (N=2167), African Caribbean	c had NS rick of dovelop	rcl < 60 m	$1/min/1.72 m^2$	compared with C	
1.26 (95% CI 0.9	•		labetes (N=2107), Amcan Cambbean	s nau ivs risk of develop		1/1111/1.7511	compared with c	
1.20 (55% Cl 0.5	1 to 1.70), p=0	.17]						
Indian Asians ha	d a significantly	v increased risk	of developing CrCl \leq 60 ml/min/1.73	$8 m^2$ compared with Cau	icasians [HR 1 (23 /05% CI 1 39	8 to 2 72) n=0 000	015]
	a a significanti	y meredsed fish				55 (5578 CT 1.50	στο 2.7 <i>2</i>], μ=0.000	
Smokers had a s	ignificantly inc	reased risk of d	eveloping CrCl \leq 60 ml/min/1.73 m ²	compared with non smo	okers (HR 1 25	(95% CI 1 03 to	1 52) n=0 022]	
Shickers had a s	is micanity mic					(JJ/) CI 1.03 ((σ 1.52), p=0.022].	

Significantly increased risk of developing CrCl ≤ 60 ml/min/1.73 m² for UAC, SBP (10 mm Hg increase), previous retinopathy Authors suggest that albuminuria does not always predict renal impairment and albuminuria and renal impairment may not reflect the same underlying pathology of T2D. Note that ACE inhibitors usage not assessed.

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures
Seaquist ER, Goetz FC, Rich S et al. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med. 1989; 320(18):1161- 1165. Ref ID: 3892	Case series, USA Evidence level: 3 to investigate the incidence of nephropathy in the diabetic siblings of diabetics with nephropathy and the siblings of	N= 37 probands N=41 siblings of the probands	 Probands were diabetic patients that did or did not have diabetic nephropathy Patients recruited from a university diabetics centre in Minnesota, USA Inclusion criteria: Minimum duration of Type 1 diabetes of 10 years in probands and 7 years in siblings. Baseline characteristics: There were no significant differences between groups with respect to duration of diabetes, age at onset, numbers of siblings. 	Diabetic Siblings of Proband diabetics with nephropathy N= 29	Diabetic Siblings of probands without nephropathy N=12	n/a	24 hr urinary albumin ESRD

Table 290: Seaquist et al. 1989

Effect size:

Prevalence of nephropathy in the siblings of diabetics:

diabetics without it.

Without nephropathy: 17% (2/12)

With nephropathy: 83% (24/29) p<0.001

Source of

Minnesota

foundatio

medical

n

funding

NIH

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Presence of ESRD in	the siblings of dia	abetics						
Without nephropath	y: 0% (0/12)							
With nephropathy: 4	1% (12/29)							
There was NS differe	nce in the durati	ion of diabetes	in either group of siblings.					
Among siblings with	out ESRD, the on	ly factor found	l to be significant in predicting nephropatl	ny in the diabetic si	blings was the p	resence of nep	hropathy in t	he diabetic
probands (p=0.03)								

Chronic kidney disease Error! No text of specified style in document.

Assessment of bias: Confounders like the effect of environmental factors (smoking, diet, etc) that might have been shared by the siblings is not controlled for.

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Compari son	Length of follow-up	Outcome measures	Source of funding
Speckman RA, McClellan WM, Volkova NV et al. Obesity is associated with family history of ESRD in incident dialysis patients. American Journal of Kidney Diseases. 2006; 48(1):50-58. Ref ID: 3959	case series Evidence level: 3 US study	N ESRD total = 23822 N ESRD No family history ESRD =18369 N ESRD with family history of ESRD= 5453	Inclusion criteria: Family History of ESRD Study: patients ≥ 20 years old with ESRD initiating RRT in dialysis units in North Carolina, South Carolina, and Georgia between 1995 and 2003. Exclusion criteria: Patients residing in other states, known Mendelian cause of ESRD (polycystic kidney disease, Alport syndrome), urological conditions, surgical nephrectomy, patients missing data on primary cause of ESRD or serum creatinine concentration, ethnicities other than black or white Baseline data: Compared with those who reported no family history of ESRD, patients reporting a family history of ESRD had significantly greater mean BMI (28.2 vs.26.6 kg/m ²),	Assessed effect of BMI, race, smoking, hypertension, diabetes on odds of having a family history of ESRD. Procedure: Participation of patients initiating RRT was voluntary. A family history of ESRD was considered present if an incident ESRD patient reported having either a first-degree (parent, child, sibling) or second- degree (grandparent, aunt, uncle, grandchild, or half- sibling) relative with ESRD. ESRD defined at dialysis, kidney transplant, or death from kidney disease before dialysis was started. A standardised data-collection instrument was used to collect data on presence of ESRD in first and second degree relatives, total number of siblings and	N/A	N/A	A family history of ESRD	None required

Table 291: Speckman et al. 2006

	Study	Number of			Compari	Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention/ exposure	son	follow-up	measures	funding
			were younger (57 vs.61 years),	children. Age, sex, race,				
			had more first degree relatives	weight, height of patients,				
			with ESRD (8.7 vs.7.6), were	primary cause of ESRD, co				
			more likely to be black (74.5%	morbidities, laboratory				
			vs.52.2%), and more likely to be	results at dialysis initiation				
			female (56% vs.49%)	obtained from Centres for				
				Medicare and Medicaid				
				Services Form 2728.				

Error! No text of specified style in document.

Chronic kidney disease

Effect size:

Odds ratios (OR) adjusted for race, gender, age, history of diabetes, history of hypertension, cause of ESRD, smoking status, number of first-degree relatives, and estimated GFR.

5453/23822 (22.9%) people with ESRD reported having a family history of ESRD.

In crude analysis, hypertension, diabetes, female gender, black ethnicity, and obesity were all associated with increased odds of a family history of ESRD.

There was a high prevalence of obesity among patients with ESRD: 6.7% were underweight, 37.8% had a normal BMI, 27.6% were overweight, 15.2% were obese, and 12.5% were morbidly obese.

Effect of BMI on odds of a family history of ESRD

There was NS differences in the odds of reporting a family history of ESRD for underweight patients with ESRD (N=1599, BMI < 18.5 kg/m^2) compared with normal weight people with ESRD (N=9037, BMI 18.5-24.9 kg/m²).

Overweight people with ESRD (N=6584, BMI 25-29.9 kg/m²) had a 17% greater odds of reporting a family of ESRD compared with normal weight people with ESRD (N=9037, BMI 18.5-24.9 kg/m²) [adjusted OR 1.17 (95% CI 1.08 to 1.26), p < 0.001]

Obese people with ESRD (N=3624, BMI 30-34.9 kg/m²) had a 25% greater odds of reporting a family of ESRD compared with normal weight people with ESRD (N=9037, BMI 18.5-24.9 kg/m²) [adjusted OR 1.25 (95% CI 1.14 to 1.37), p < 0.001]

Morbidly obese people with ESRD (N=2978, BMI \ge 35 kg/m²) had a 40% greater odds of reporting a family of ESRD compared with normal weight people with ESRD (N=9037, BMI 18.5-24.9 kg/m²) [adjusted OR 1.40 (95% CI 1.27 to 1.55), p < 0.001].

Reference type patients Patient characteristics Intervention/exposure son follow-up measures funding		Study	Number of			Compari	Length of	Outcome	Source of
	Reference	type	patients	Patient characteristics	Intervention/ exposure	son	follow-up	measures	funding

Effect of Race on odds of a family history of ESRD

Black people with ESRD (N=13645) were significantly more likely to report a family history of ESRD than white people with ESRD (N=10127) [adjusted OR 2.38 (95% CI 2.21 to 2.55), p<0.001]

Effect of Hypertension on odds of a family history of ESRD

People with ESRD and a history of hypertension (N=19987) were significantly more likely to report a family history of ESRD than people with ESRD and no history of hypertension (N=3835) [adjusted OR 1.12 (95% CI 1.02 to 1.23), p<0.001]

Effect of Smoking on odds of a family history of ESRD

There was NS differences in the odds of reporting a family history of ESRD for patients with ESRD and a history of smoking (N=2078) compared with people with ESRD and no history of smoking (N=21744) [adjusted OR 1.01 (95% CI 0.90 to 1.14), p=0.851]

Effect of diabetes on odds of a family history of ESRD

There was NS differences in the odds of reporting a family history of ESRD for patients with ESRD and a history of diabetes (N=4966) compared with people with ESRD and no history of diabetes (N=11174) [adjusted OR 1.09 (95% CI 0.96 to 1.23), p=0.184]

Note: characteristics of participants NS different from non-participants, NS also for BMI levels. Weight measurement in those reporting family history of ESRD may be confounded by edema

Table	292:	Stengel	et al.	2003
-------	------	---------	--------	------

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Stengel B, Tarver CM, Powe NR et al. Lifestyle factors, obesity and the risk of chronic kidney disease. Epidemiology. 2003; 14(4):479- 487. Ref ID: 786	Retrospective case series USA Evidence Level: 3	N=9082	Inclusion criteria: NHANES II a general health survey was conducted the USA in 1976-1980. Exclusion criteria: ESRD at baseline, people with "heterogeneous" risk of CKD, non-white or non- African Americans Baseline Characteristics: mean age 49.3 years, mean eGFR 88.1 ml/min, 47% male, 10% African American, 4% diabetic, 6% CVD history, 49% hypertensive, 36% smokers, 26% former smokers, 46% normal BMI (18.5-24 kg/m ²), 35% overweight (25-29 kg/m ²), 12% obese (30- 34 kg/m ²), 5% morbidly	Procedure: participants in completed a health questionnaire and had a clinical exam. Serum creatinine was measured in all participants and GFR was calculated with the MDRD equation. Physical activity, alcohol consumption, and smoking habits were documented in the health questionnaire. Exercise habits were described as "very active, moderately active or inactive. For smoking habits, people were classified as non- smokers, former smokers, or smokers. Smokers were classified into 2 categories ≤ 20 cigarettes/day. Alcohol consumption was classified as never, seldom (< once/week), weekly (1-6 times/week), or daily (1 or	Effect of smoking on CKD risk Effect of exercise on CKD risk Effect of alcohol consumption on CKD risk	Mean 13.2 years	Risk of CKD- related death Risk of ESRD	National Centre for Health Statistics

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
			obese (BMI > 35)	more times/day). CKD- related deaths were identified by computerised matching to the National Death Index and Social Security Administration Death Master Files databases (1976-1992). Participants with ESRD were identified by computer name matching from the Medicare registry.				

Effect size:

Relative risks (RR) were adjusted for age, gender, race, diabetes, CVD, hypertension, SBP, cholesterol, GFR

189 (total N=9082) subjects developed CKD and 23% of these were treated for ESRD. Of 189 CKD cases, 12% died of CKD, while 64% died with CKD being a contributing cause of death. Of the 189 CKD cases, 23% were diabetic or hypertensive nephropathy, while 77% were other types of CKD.

Physical Inactivity as a risk factor for CKD:

People with low physical activity have a significantly increased risk of CKD compared to people who have high physical activity [adjusted RR 2.2 (95% Cl 1.2 to 4.1)]. People with moderate physical activity have NS risk of CKD compared to people who have high physical activity [adjusted RR 1.2 (95% Cl 0.7 to 2.0)].

Smoking as a risk factor for CKD:

Smokers (> 20 cigarettes/day) have a significantly increased risk of CKD compared to non-smokers [adjusted RR 2.6 (95% CI 1.4 to 4.7)]. Smokers (1-20 cigarettes/day) have NS risk of CKD compared to non-smokers [adjusted RR 0.9 (95% CI 0.5 to 1.9)]. Former smokers have NS risk of CKD compared to non-smokers [adjusted RR 0.8 (95% CI 0.5 to 1.2)].

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
helefelle	Study type	patients	r attent enaracteristics	intervention/ exposure	companison		measures	running
Alcohol consum	ption as a risk factor	for CKD:						
People who drar	nk alcohol daily had N	S risk of CKD co	mpared to people who nev	er drank alcohol [adjusted RR 0	.9 (95% CI 0.6 to	1.3)].		
People who drar	nk alcohol weekly had	NS risk of CKD	compared to people who ne	ever drank alcohol [adjusted R	R 0.9 (95% CI 0.4	to 2.2)].		
People who seld	lom drank alcohol had	NS risk of CKD	compared to people who n	ever drank alcohol [adjusted Rl	R 0.5 (95% CI 0.3	to 1.0)].		
Body Mass Inde	x as a risk factor for (CKD:						
Thin people (BM	1I < 18.5 kg/m ²) had N	S risk of CKD co	mpared to people with a no	ormal BMI (18.5-24 kg/m²) [adj	usted RR 1.0 (959	% CI 0.2 to 3.8)].	
Overweight peop	ple (BMI 25-29 kg/m ²) had NS risk of	CKD compared to people w	ith a normal BMI (18.5-24 kg/m	n ²) [adjusted RR ().7 (95% CI 0.4	to 1.3)].	
Obese people (B	30-34 kg/m ²) had	NS risk of CKD of	compared to people with a r	normal BMI (18.5-24 kg/m ²) [ad	djusted RR 0.7 (9	5% CI 0.4 to 1.4	4)].	
Morbidly obese	people (BMI > 35 kg/i	m ²) had NS risk	of CKD compared to people	with a normal BMI (18.5-24 kg	(/m ²) [adjusted R	R 1.7 (95% CI 0).6 to 4.5)].	

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Tillin T, Forouhi N, McKeigue P et al. Microalbuminuria and coronary heart disease risk in an ethnically diverse UK population: A prospective cohort study. Journal of the American Society of Nephrology. 2005; 16(12):3702-3710. Ref ID: 3475	cohort study UK Evidence Level: 2 -	N total = 2965 N=1460 white Europeans N=946 South Asians and N=559 African Caribbean's 27% of participants had no AER measureme nt	 Patients recruited from two population based studies in West London. Recruitment was from ethnicity and gender stratified random samples from the general practitioner practice lists. Inclusion criteria: Age 40-69 years, other criteria of the individual studies not mentioned here. Of the patients for whom AER measurements were not available (27%), there were significant differences in gender, prevalence of current/former smoking, and CHD mortality. Baseline Characteristics: South Asians and African Caribbeans were more likely to be glucose intolerant and insulin resistant and have higher BP than Europeans. South Asians had adverse lipid profiles, while African-Caribbeans had favourable lipid profiles. 	Rates of microalbuminu ria in different ethnic groups (European, South Asian and African- Carribean) and Gender	Procedure: Participants completed health questionnaire and BP, ECG, fasting blood triglycerides, cholesterol, HDL cholesterol, glucose, insulin determined as local hospital. Urine albumin was measured from timed overnight urine collections by immunoturbi	Not mentioned	Mortality and cause of death Urine albumin excretion rate (AER)	British Heart Foundation

Table 293: Tillin et al. 2005

Effect size:

Chronic kidney disease Error! No text of specified style in document.

Reference Prevalence of mic	Study type oalbuminuria	Number of patients by gender and	Patient characteristics ethnicity		Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding		
				Microalbuminuria (AER 20-199 microg/min) (95%CI)							
Ethnicity			Men	Men			Women				
European			5.9 (4.5 to 7.4)	5.9 (4.5 to 7.4)			2.7 (1.2 to 4.1)				
South Asian			6.0 (4.2 to 7.7)	6.0 (4.2 to 7.7) 2.7 (0.4 to 5.0)							
African-Caribbean			6.8 (3.9 to 9.8)			7.3 (4.3 to 10.	3)				
The prevalence of	microalbumin	uria (AER 20-199	microg/min) was greatest in Af	rican-Caribb	ean and equivalen	t between Europ	ean and South	Asians.			

The prevalence of microalbuminuria was greater in men compared to women.

AER geometric means (adjusted for age, fasting glucose, glucose tolerance category, SBP, BMI and manual occupation)

Ethnicity		Geometric n	nean (95% CI)	
	Men	Ρ	Women	Ρ
European	4.8 (4.5 to 5.0)	Reference group	3.7 (3.3 to 4.1)	Reference group
South Asian	4.1 (3.9 to 4.4)	0.001	3.7 (3.2 to 4.4)	0.94
African-Caribbean	5.7 (5.2 to 6.3)	0.002	5.6 (4.9 to 6.3)	<0.001

AER (µg/min) by height/weight

	Men			Women				
Ethnicity	Short for weight	Not short for weight	Ρ	Short for weight	Not short for weight	Ρ		
European	5.20	4.41	0.02	-	-	No association		
South Asian	5.58	4.06	<0.001	4.72	3.01	0.017		
African-Caribbean	-	-	No association	-	-	No association		
Other cardiovascular r	isk factors did not accour	nt for the ethnic differen	ces in AER.					

ואמרוסדומו כוודווכמו פתומפוודופ כפדות פ לסדק

	Study	Number of		Intervention/		Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	exposure	Comparison	follow-up	measures	funding
This study further ex table.	amine the re	lationship betw	een AER and CHD prevalence and mortality	by ethnic groups, h	owever these re	sults are not pi	resented in th	nis evidence
			ave AER measurements; there were significa lationship between MA and CHD, not ethnic			e data were ind	cluded and th	iose who
Defining progress	ion (2014 g	guideline - ch	apter 7.2)					

Table 294: Ref ID: 3882 [Fliser et al. 1997]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Fliser D, Franek E, Joest M et al. Renal function in the elderly: impact of hypertensio n and cardiac function. Kidney International . 1997;	Cross- section al study Germa ny Evidenc e level: 3	N young healthy subjects =24 N elderly healthy subjects = 29 N elderly hypertensiv e subjects =	Inclusion: healthy young subjects recruited from Heidelberg University, elderly normotensive subjects recruited from Academy for Elderly in Heidelberg, elderly hypertensive (BP > 140/90 mm Hg on three occasions) without signs of atherosclerotic vascular disease and/or heart failure were recruited from University of Heidelberg (nephrology dept), elderly with confirmed mild or moderate heart failure recruited from Cardiology department.	 N elderly healthy subjects = 29 N elderly hypertensive subjects = 25 N elderly heart failure subjects = 14 Procedure: Young and elderly healthy subjects were matched for body weight. Subjects provided 	N young healthy subjects =24	N/A	GFR	Paul- Martini- Stiftung

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
51(4):1196- 1204. Ref ID: 3882		25 N elderly heart failure subjects = 14	determined by sonography, urinalysis, serum chemistry Population baseline characteristics: Elderly hypertensive people (age 70 years) had significantly higher BMI, 24-h MAP than young (age 26 years) and elderly healthy (age 68 years) subjects. Cholesterol and triglycerides were higher in all three elderly groups compared with young healthy people. The mean age of elderly heart failure subjects was 69 years.	24-h urine collections to determine urinary albumin, creatinine clearance. GFR measured by inulin clearance.				

Effect size:

Mean GFR (inulin clearance) was significantly lower in elderly healthy people (103 ml/min/1.73m², N=29, mean age 68 years) compared with young healthy people (121 ml/min/1.73m² N=24, mean age 26 years, p<0.05)

Mean GFR (inulin clearance) was significantly lower in elderly hypertensive people (103 ml/min/1.73m², N=25, mean age 70 years) compared with young healthy people (121 ml/min/1.73m² N=24, mean age 26 years, p<0.05)

Mean GFR (inulin clearance) was significantly lower in elderly people with heart failure (92 ml/min/1.73m², N=14, mean age 69 years) compared with young healthy people (121 ml/min/1.73m² N=24, mean age 26 years, p<0.05)

Mean GFR (inulin clearance) was significantly lower in elderly people with heart failure (92 ml/min/1.73m², N=14, mean age 69 years) compared with elderly healthy (103 ml/min/1.73m², N=29, mean age 68 years) or elderly hypertensive (103 ml/min/1.73m², N=25, mean age 70 years) people (p<0.05)

	Study	Number of				Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding
Mean GFR wa	s NS differ	ent between el	derly healthy and elderly hypertensive peo	ple.				
	с, .с.							
GFR was signi	ficantly aff	ected by age a	(p< 0.001) and heart failure (p<0.01), but n	ot by MAP or BMI.				
GFR was signi	ficantly affe	ected by age a	(p< 0.001) and heart failure (p<0.01), but n	ot by MAP or BMI.				
GFR was signi	ficantly aff	ected by age a	(p< 0.001) and heart failure (p<0.01), but n	ot by MAP or BMI.				
GFR was signi	ficantly aff	ected by age a	(p< 0.001) and heart failure (p<0.01), but n	ot by MAP or BMI.				

Reference	Study type	Number of patients	Patien	t charad	teristic	S		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Halbesma N, Kuiken DS, Brantsma AH et al. Macroalbum inuria is a better risk marker than low estimated GFR to identify individuals at risk for accelerated GFR loss in population screening. J Am Soc Nephrol. 2006; 17(9):2582- 2590. Ref ID: 3870	Posth oc analy sis cohor t study PREV END cohor t study Groni ngen, Neth erlan ds Evide nce level: 2+	N total = 8592 N macroalbu minuria (≥ 300 mg/24-h) = 134 N erythrocyt uria (> 250/microL , absence of leukocyturi a) = 128 N impaired renal function (5% lowest CrCl/MDRD GFR) = 103	75 yea Nether urinary mg/L a people concer cohort album Exclus pregna	rs old o rlands. / y album ind a rai with un tration that wa inuria. ion crite ancy,	f Gronin All indivi in conce ndom sa rinary al < 10 mg as enrich eria: insu seline c	gen, duals w entration imple of bumin g/L form ned for ulin use, haracte	n ≥ 10 f ned a , ristics:	N macroalbuminuria (>300 mg/24-h) = 134 N erythrocyturia (> 250/microL) = 128 N impaired renal function (5% lowest CrCl/MDRD GFR) = 103 Procedure: Subjects submitted two consecutive 24-h urine collections at baseline. A second screening was performed after 4 years follow-up. History of CVD was a self-assessed history of MI, cerebrovascular accident, or peripheral vascular disease. Plasma and urinary creatinine, cholesterol, glucose determined by an	Total population N=8592	4.2 years	Mortality Cardiovascula r morbidity Decline in GFR	Dutch Kidney Foundation

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

Reference	Study type	Number of patients	Patien	it chara	cteristic	s		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			% UAC < 10 mg/L	erythrocytes measured								
			Med ian UAE (mg/ d)	9.5	549*	23.7	37.6 *	with Nephur-test + leuco sticks. Urinary albumin concentration determined by nephelometry.				
			% Mac roal bumi nuri a	1.6	100*	7.0 *	17.5 *	Data on antihypertensive medication use from pharmacy databases. Death and morbidity statistics from the National Central Bureau				
			% Eryt hroc yturi a	1.5	6.7 *	100 *	7.8 *	of Statistics and PRISMANT databases, respectively. GFR was calculated as a mean of the creatinine				
			GFR	80.8	68.4 *	74.9 *	44.6 *	clearance from the two 24-h urine collections as				
			-	01 versi ic group	us total	populat	ion –	well as with the MDRD equation.				

Hazard ratios (HR) adjusted for age and sex.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
80% of the tot impaired rena	tal popula	ation complete	d 4 years follow-up, whereas only 64% to follow-up	of those with macroalbumin			ocyturia, and 66%	-
impaired rend	Tunction							
The prevalence	e of mac	roalbuminuria	in the general population of Groningen	(taking into account that the	e study cohort w	as enriched for	r albuminuria) w	as 0.6%.
The prevalence	e of erytl	nrocyturia in tl	ne general population of Groningen (tal	king into account that the stu	idy cohort was e	nriched for alb	ouminuria) was 1	.3%.
The prevalence	e of impa	nired renal fun	ction in the general population of Gron	ingen (taking into account th	at the study coh	ort was enrich	ed for albuminur	ria) was 0.9%.
Venn diagram	showed	little overlap o	f macroalbuminuria, erythrocyturia, im	paired renal function.				
2.8% died in t	he total c	ohort (140/85	92), whereas 9.7% of people with macr	oalbuminuria (13/134) died.	5.5% (7/128) of	people with er	ythrocyturia died	d and 16.8%
(17/103) of pe	eople with	n impaired ren	al function died.					
Cardiovascula		-						
Compared to CI 1.1 to 6.0)]	the total	population (N=	-8592), people with macroalbuminuria	(N=134) had a significantly in	creased risk of c	ardiovascular	mortality [adjust	ed HR 2.6 (95%
Compared to (95% CI 1.5 to		population (N=	=8592), people with impaired renal fund	ction (N=103) had a significar	ntly increased ris	k of cardiovaso	cular mortality [a	idjusted HR 3.4
There were no	o cardiova	ascular deaths	in people with erythrocyturia.					

Non-Cardiovascular mortality

Compared to the total population (N=8592), people with macroalbuminuria (N=134) had NS risk of non-cardiovascular mortality [adjusted HR 1.5 (95% CI 0.7 to 3.0)] Compared to the total population (N=8592), people with impaired renal function (N=103) had a significantly increased risk of non-cardiovascular mortality [adjusted HR 3.0 (95% CI 1.6 to 5.6)]

Compared to the total population (N=8592), people with erythrocyturia (N=128) had a significantly increased risk of non-cardiovascular mortality [adjusted HR 2.6 (95% CI 1.2 to 6.0)]

		Study	Number of				Length of	Outcome	Source of
R	eference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding

Cardiovascular Morbidity

Compared to the total population (N=8592), people with macroalbuminuria (N=134) had NS risk of cardiovascular morbidity [adjusted HR 1.4 (95% CI 1.0 to 2.1)] Compared to the total population (N=8592), people with erythrocyturia (N=128) had NS risk of cardiovascular morbidity [adjusted HR 1.4 (95% CI 0.7 to 2.5)] Compared to the total population (N=8592), people with impaired renal function (N=103) had a significantly increased risk of cardiovascular morbidity [adjusted HR 2.3 (95% CI 1.5 to 3.4)]

GFR decline

After 4.2 years follow-up, the decline in GFR was significantly greater in subjects with macroalbuminuria (N=86, GFR decline 7.2 ml/min/1.73 m²) compared with the general population (N=6894, GFR decline 2.3 ml/min/1.73 m²) p<0.01.

Interestingly, the decline in GFR was significantly less in subjects with impaired renal function (N=68, GFR decline 0.2 ml/min/1.73 m²) compared with the general population (N=6894, GFR decline 2.3 ml/min/1.73 m²) p<0.01.

There was NS difference in the decline in GFR between the general population (N=6894, GFR decline 2.3 ml/min/1.73 m²) and those with erythrocyturia (N=97, GFR decline 2.6 ml/min/1.73 m²).

Sensitivity analysis: there were more diabetics in the macroalbuminuric group than the general population. Excluding diabetics did not alter the GFR decline of the macroalbuminuric group, nor did the incidence rates of mortality or morbidity change significantly.

Note: limitations: large drop-out rate in macroalbuminuria, impaired renal function, and erythrocyturia groups (and already small sizes at baseline). Authors note that baseline characteristics of those who were lost to follow-up were NS different from subjects who completed follow-up. Also state that people who are in poor health are more likely to not complete follow-up for many reasons. Caution in generalising results to non-Caucasian populations, other unknown confounding variables, survival bias (people with greater odds of progressing may have died before end of follow-up) may have been an issue, but sensitivity analysis of worst case scenario could not fully explain the observed differences in GFR decline.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Hemmelgarn BR, Zhang J, Manns BJ et al. Progression of kidney dysfunction in the community- dwelling elderly. Kidney Int. 2006; 69(12):2155- 2161. Ref ID: 17	Prospe ctive longitu dinal study Evidenc e level: 3 Canadi an cohort	N = 10184 N mild CKD GFR 60–89 ml/min/1.73 $m^2 = 6573$ N moderate CKD GFR 30-59 ml/min/1.73 $m^2 = 3191$ N severe CKD GFR < 30 ml/min/1.73 $m^2 = 420$	Inclusion: adults ≥ 66 years with one or more serum creatinine measurements during each of two time periods: July – December, 2001 as well as July – December, 2003. Participants were identified from Calgary Laboratory Services database, Canada. Exclusion criteria: laboratory measurements associated with a hospital admission, dialysis patients at entry, subjects with more than 12 creatinine measurements in either of the 6 month observation periods, subjects who underwent renal transplant prior to July 1, 2003, subjects with GFR > 90 ml/min/1.73 m ² Population baseline characteristics: people with	N GFR 60–89 ml/min/1.73 m ² = 6573 N GFR 30-59 ml/min/1.73 m ² = 3191 N GFR < 30 ml/min/1.73 m ² = 420 Procedure: Serum creatinine measurements were performed in one laboratory. The first serum creatinine measurement (July 1-Dec. 31, 2001) defined the index GFR. The study mean eGFR (not the index GFR) was used to stratify people into mild, moderate or severe CKD. Data on age, sex, co- existing diseases, drug prescriptions was obtained from medical databases. Drug data was used to	Compared GFR decline within each GFR stratum in men and women with and without diabetes mellitus	2 years	Decline in GFR	Kidney Foundatio n of Canada, Alberta Heritage Foundatio n for Medical Research, Canadian Institute of Health Research

Table 296: Ref ID: 17 [Hemmelgarn 2006]

	Study	Number of				Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding
			moderate or severe kidney	identify subjects with				
			disease were older (77	diabetes, as well as to				
			versus 75), more likely to be	calculate a Chronic Disease				
			female (62% vs.55% female),	Score. Death and dialysis				
			and have a significantly	statistics were obtained				
			higher comorbidity scores	from Alberta Bureau of Vital				
			(3468 vs.2143) and diabetes	Statistics and Southern				
			(31% diabetes vs.14%) than	Alberta Renal Program				
			people with mild CKD.	databases, respectively.				
				GFR calculated with MDRD				
				equation.				

Chronic kidney disease Error! No text of specified style in document.

Effect size

A mixed effects model adjusting for age, sex, diabetes, and comorbidity score was used to determine rate of GFR decline.

The rate of GFR decline was greatest in people with diabetes.

Older males with diabetes had a GFR decline of 2.7 ml/min/1.73 m 2 /year (95% Cl 2.3 to 3.1).

Older males without diabetes had a GFR decline of 1.4 ml/min/1.73 m²/year (95% Cl 1.2 to 1.6).

Older females with diabetes had a GFR decline of 2.1 ml/min/1.73 m²/year (95% Cl 1.8 to 2.5). Older females without diabetes had a GFR decline of 0.8 ml/min/1.73 m²/year (95% Cl 0.6 to 1.0).

The rate of GFR decline increased with decreasing GFR and the largest decline in GFR was observed in people with severe CKD GFR < 30 ml/min/1.73 m². (no N values given for subgroup analysis)

	Age-ad	djusted rate of GFR decline (ml/min/1.73 r	n²/year)
Population	mild CKD GFR 60–89 ml/min/1.73 m ²	Moderate CKD GFR 30–59	severe CKD GFR < 30 ml/min/1.73 m ²

Reference	Study type	Number of patients	Patient characteristics	Interve	ention	Comparison	Length of follow-up	Outcome measures	Source of funding
					ml/min/1.73 m ²				
Females witho	out diabete	2S	0.6 (95% CI 0.3 to 0.9)		1.1 (95% CI 0.8 to 1.4))	1.8 (95% CI 1.	2 to 2.4)	
Females with	diabetes		1.6 (95% CI 1.0 to 2.1)		2.8 (95% Cl 2.3 to 3.3)		2.9 (95% CI 2.2 to 3.7)		
Males without	diabetes		1.1 (95% CI 0.8 to 1.4)		1.9 (95% CI 1.5 to 2.3)		2.0 (95% CI 1.3 to 2.7)		
Males with dia	betes		2.1 (95% CI 1.6 to 2.6)		3.6 (95% CI 3.1 to 4.2))	3.2 (95% CI 2.	3 to 4.0)	

Similar trends were observed for the absolute change in GFR (mean GFR 2001 – mean GFR 2003) as well as for the percent change in mean GFR.

When categorized by the change decline in GFR (GFR decline $\leq 0, 1-5, 6-10, 11-15, \text{ or } > 15 \text{ ml/min}/1.73 \text{ m}^2/\text{year})$, more than half of the subjects declined by 0-5 ml/min/1.73 m^2 /year. This was seen in mild, moderate, or severe CKD patients.

Few subjects in this older cohort experienced a rapid progression of CKD (decline in GFR > 15 ml/min/1.73 m²/year) : 14% of mild, 13% of moderate, and 9% of severe CKD subjects had a decline in GFR > 15 ml/min/1.73 m²/year.

Note: limitations: caution in generalising results to non-Caucasian or to people < 66 years, other confounding variables (proteinuria, BP, cause of CKD, smoking status, lipid levels) were not taken into account, survival bias (people with greater odds of progressing may have died before end of follow-up) may have been an issue, but sensitivity analysis comparing GFR decline in people who died with those who survived showed similar rates of GFR decline, 2 years follow-up may not be enough time to assess GFR decline (although authors refute this)

Reference	,	Number of patients	Patient c	haracteri	stics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Lindeman RD, Tobin JD, Shock NW. Association between blood pressure and the rate of decline in renal function with age. Kidney Int. 1984; 26(6):861- 868. Ref ID: 3883	ational 4 study 4 N Eviden N ce 1 level: 3 (f u Baltim tr ore d Longitu 1 dinal 1 Study N of 2 Aging (f US o cohort o study d N Study d	N total = 446 Males N Category L males Renal or urinary cract disease) = 118 N Category 2 males Hypertensi on/edemat ous disorder) = 74 N Category 3 males healthy) = 254	Study of age 22-9 clearance 1981. Sul 1 (renal/I UTI, signi and/or o hematuri nephrolit showed p WBC/hpf > 6 casts, Category (Hyperte were tho antihype to Catego not assig	Baltimo Aging: sel 7 with 5+ e determin bjects assi UT disease ficant urin bstructive ia, protein thiasis, or proteinuri c, > 10 RBC /lpf. Subje 2 nsion/ede se treated rtensives. ory 3 (hea ned to Ca on baselir	f-recruite serial creations in igned to C e) had his nary reter e lesions, nuria, on a clinic a +1, > 10 C/hpf, pre ects assign ematous c d with diu Subjects Ithy) were tegory 1 c	d males atinine 1958 to Category tory of ntion c visit sence of ned to disorder) retics, assigned e those or 2. teristics:	N Category 1 males (Renal or urinary tract disease) = 118 N Category 2 males (Hypertension/edematous disorder) = 74 Procedure : Subjects were assessed at baseline and every 12 - 18 months with clinical, psychological, and physiological tests at the Gerontology Research Centre. Subjects were placed in one of three categories: Category 1 (renal or urinary tract disease), Category 2 (hypertension or edematous disorder), or Category 3 (healthy). A non-fasting serum creatinine sample was obtained on arrival at the centre, and a 24-h urine collection was begun. A fasting serum creatinine	N Category 3 males (healthy) = 254	8 years	Decline in creatinine clearance with increasing age Decline in creatinine clearance with increasing MAP.	Not stated

Table 297: Ref ID: 3883 [Lindeman et al. 1984]

Reference	Study type	Number of patients	Patient o	characteri	istics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			Creati nine cleara nce, ml/mi n	125.8	135.2	129.9	sample was obtained the next morning. True creatinine was measured by treating acid tungstate filtrates of serum with Lloyd's reagent and acid picrate buffer to remove non-				
			SBP, mm Hg	133.0	143.1	128.4	creatinine chromogens. Creatinine was eluted with alkaline picrate and measured				
			DBP, mm Hg	83.6	89.7	79.9	colorimetrically (100% ± 1.7 recovery) Creatinine clearance				
			MAP, mm Hg	100.1	107.5	96.1	(ml/min/1.73m ²) was determined as the mean of the two samples. BP was measured at every visit.				

Subjects were separated into 3 different categories to avoid bias of increased BP on renal decline.

Decline in creatinine clearance

Creatinine clearance values in all three categories by age (cross-sectional data)

Age, years	N	Mean Creatinine clearance (ml/min/1.73m ²)	MAP, mm Hg
20-29.9	3	151.8	96.5
30-39.9	36	154.8	95.0
40-49.9	104	144.4	95.8
50-59.9	122	134.3	99.3
60-69.9	86	122.3	101.2

Reference	Study type	Number of patients	Patient characteristics	Inte	ervention	Comparison	Length of follow-up	Outcome measures	Source of funding
70-79.9			81		107.0		102.1		
80-89.9			13		91.9		100.5		
90-99.9			1		32.0		100.7		

In the whole population, creatinine clearance was stable in men < 40 years old (N=39). Creatinine clearance then declined steadily in men age 40 to 60 years (N=226). After age 60, creatinine clearance declined steeply (N= 181).

The mean cross-sectional change in creatinine clearance was: - 0.87 (ml/min/year).

Creatinine clearance values in males (longitudinal analysis)

The trend for decreasing creatinine clearance with increasing age was also observed in each Category 1, 2, and 3.

For healthy men (N=254, category 3), creatinine clearance decreased by 0.75 ml/min/year.

For men with renal disease or urinary tract disease (N=118, Category 1), creatinine clearance decreased by 1.10 ml/min/year. (NS difference compared to healthy population)

For men taking antihypertensive drugs (N=74, Category 2), creatinine clearance decreased by 0.92 ml/min/year. (NS difference compared to healthy population)

Effect of BP on decline in creatinine clearance

Renal function decreased more rapidly as MAP increased. For all subjects (N=446), the regression coefficient for change in creatinine clearance vs.MAP was -0.052 ml/min/year. This means that for every 1 mm Hg increase in MAP, the creatinine clearance decreases by 0.052 ml/min/year (p<0.0001).

Subgroup analysis showed that for men with renal disease or urinary tract disease (N=118, Category 1), creatinine clearance decreased by 0.076 ml/min/year for every 1 mm Hg increase in MAP (p<0.001).

Subgroup analysis showed that for men taking antihypertensive drugs (N=74, Category 2), creatinine clearance decreased by 0.060 ml/min/year for every 1 mm Hg increase in MAP (NS negative correlation between decline in CrCl and MAP in this group).

Subgroup analysis showed that for healthy men (N=254, category 3), creatinine clearance decreased by 0.048 ml/min/year for every 1 mm Hg increase in MAP (p<0.001).

At MAP < 107 mm Hg cut-off, the effect of MAP on creatinine clearance decline is NS. Note: limitations: inulin clearance would have been a better measure of renal function, caution in generalising results to females	At MAP < 107 mm Hg cut-off, the effect of MAP on creatinine clearance decline is NS.		
Note: limitations: inulin clearance would have been a better measure of renal function, caution in generalising results to females			
Note: limitations: inulin clearance would have been a better measure of renal function, caution in generalising results to females			
	Note: limitations: inulin clearance would have been a better measure of renal function, caution in generalising results to fema	ales	

Chronic kidney disease Error! No text of specified style in document.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Rowe JW, Andres R, Tobin JD et al. The effect of age on creatinine clearance in men: a cross- sectional and longitudinal study. J Gerontol. 1976; 31(2):155- 163. Ref ID: 3880	Community based cross- sectional and longitudina l observatio nal study Evidence level: 3 Baltimore Longitudina I Study of Aging US cohort study	N = 548 healthy males	Inclusion: self-recruited healthy males age 17-96 participating in Baltimore Longitudinal Study of Aging from July 1, 1961 to June 30, 1971. Exclusion criteria: to achieve a healthy population for study, subjects with the following diseases were excluded: nephrolithiasis, UTI, gout, prostatectomy, congestive heart failure, coronary heart disease, cerebrovascular disease, diabetes, abnormal urinalysis (proteinuria +1, 5 WBC/hpf, 5 RBC/hpf, presence of any RBC casts or granular casts), renal disease (any), diuretic or antihypertensive drug use, digitalis preparation, sex or adrenal steroid use, vasodilator use, amphetamine use	Procedure: Subjects were assessed at baseline and every 12 - 18 months with clinical, psychological, and physiological tests at the Gerontology Research Centre. A non-fasting serum creatinine sample was obtained on arrival at the centre, and a 24-h urine collection was begun. A fasting serum creatinine sample was obtained the next morning. True creatinine was measured by treating acid tungstate filtrates of serum with Lloyd's reagent and acid picrate buffer to remove non-creatinine chromogens. Creatinine was eluted with alkaline picrate and measured colorimetrically (100% ± 1.7 recovery) Creatinine clearance (ml/min/1.73m ²) was	The decline in creatinine clearance with increasing age	10 years	Decline in creatinine clearance with age	Not stated

Table 298: Ref ID: 3880 [Rowe et al. 1976]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Intervention		Length of follow-up	Outcome measures	Source of funding				
			Population baseline characteristics: not stated	determined as the r the two samples.	nean of								
Effect size:													
Creatinine cle	earance values	in healthy ma	les (cross-sectional data)										
Age, years	Ν	r	Mean Creatinine clearance (ml/min/1.73m ²)			rum creatinine co	oncentration (mg/100 ml)					
17-24	10	1	140.2	0.808									
25-34	73	1	140.1		0.808	0.808							
35-44	122	1	132.6		0.813								
45-54	152	1	126.8		0.829								
55-64	94	1	119.9	0.837	0.837								
65-74	68	1	109.5		0.825								
75-84	29	9	96.9		0.843			0.843					

Creatinine clearance was stable in healthy men < 35 years old (N=83). Creatinine clearance then declined steadily in healthy men age 35 to 65 years (N=368). After age 65, creatinine clearance declined steeply (N= 97).

Linear regression analysis of creatinine clearance vs.age gave an overall slope (creatinine clearance decline) of -0.80 ml/min/1.73m²/year.

			2
Age, years	N	Mean Creatinine clearance (ml/min/1.73m ²)	Creatinine clearance slope (ml/min/1.73m ² /year)
17-24	1	125.3	-1.75
25-34	20	140.4	-1.09
35-44	64	132.7	-0.11
45-54	95	128.1	-0.73

Creatinine clearance values in healthy males (longitudinal analysis)

Reference	Study type	Number of patients	Patient characteristics	Interventio	on	Comparison	Length of follow-up	Outcome measures	Source of funding
55-64	60	. 121.8			-1.64				Ū
65-74	36	110.0			-1.30				
75-84	17	97.0			-1.07				
Total	293	124.7			-0.90				

In the total healthy male population (N=293), creatinine clearance declined by 0.90 ml/min/1.73m²/year. The longitudinal data agreed closely with the cross-sectional data, showing a decline in creatinine clearance after age 55.

There was NS relationship between BP and creatinine clearance in this healthy population.

There was no trend for "first visit artefact" (data not shown).

Note: limitations: inulin clearance would have been a better measure of renal function, caution in generalising results to females

Reference	Study type	Number of patients	Patient charac	teristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Rule AD, Gussak HM, Pond GR et al. Measured and estimated GFR in healthy potential kidney donors. Am J Kidney Dis. 2004; 43(1):112- 119. Ref ID: 3884	Cross- sectional Retrospectiv e analysis of medical records USA Evidence level 3	N = 365	 > 18 years old a Mayo Clinic be 1996 to April, 2 Exclusion: historenal or system > 140/90 mm H serum glucose urine protein e mg/day, abnor sediment analy abnormalities (ical records of kidney donors assessed at the tween Oct, 2001. ory of primary hic disease, BP Hg, fasting > 126 mg/dl, excretion > 150 mal urine ysis, structural (diagnosed by or angiograghy)	Objective-to determine normal values for GFR in healthy kidney donors Protocol: Data on age, sex, race, body surface area, serum creatinine, and non- radiolabelled iothalamate clearance were obtained from medical records. Serum creatinine was measured by the modified kinetic rate Jaffe on an	GFR measured by non-radiolabelled iothalamate clearance	N/A	Normal values of GFR Change in GFR with increasing age	Not stated

Table 299: Ref ID: 3884 [Rule et al. 2004]

Reference	Study type	Number of patients	Patient charac	teristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			donors		autoanalyser.				
			% white	80.3	After				
			% Middle Easterners	3.3	hydration, 300 mg non- radiolabelled				
			% African American	1.4	iothalamate was injected				
			% Hispanic	1.6	subcutaneously				
		Asian/Pacific iothalamate was measure	and iothalamate was measured						
			Mean GFR, 101 plasma and	in timed plasma and urine samples.					
			Mean serum creatinine, mg/dl	1.04					

GFR decline

GFR declined with increasing age and this was a steady decline as age increased.

In female healthy kidney donors (N=205), GFR declined by 7.1 ml/min/decade or 0.71 ml/min/year (not normalised to body surface area). In male healthy kidney donors (N=160), GFR declined by 4.6 ml/min/decade or 0.46 ml/min/year (not normalised to body surface area). Regression analysis of GFR was significant for age and sex (p<0.001 for both).

When normalised to body surface area, GFR declined by 4.9 ml/min/1.73m²/decade or 0.5 ml/min/1.73m²/year in the whole sample (N=365). Regression analysis of GFR normalised surface area was significant for age (p<0.001), but not sex (p=0.826).

Reference	eference Study type patients		Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding	
Normal GFR V	/alues by Age								
				GFR, ml/min/1	.73m ² in healthy kidney	donors			
Age, years		5	th Percentile	Mean		95 th Perc	centile		
20			1	111		136			
30			6	107	107				
40		8	1	102	102		126		
50		70	6	97	97		121		
60		7:	1	92		116			
65		69	9	89	89		113		
70		6	6	87		111			
75		64	4	84		109			

Note: Limitations: mostly a white population, 71% of the healthy kidney donors were related to recipients, therefore these donors may have a greater prevalence of subclinical renal disease and the rate of GFR decline could be greater than in the general population.

Reference	Study type	Number of patients	Patient characteristics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding	
Slack TK, Wilson DM. Normal renal function: CIN and CPAH in healthy donors before and after nephrectom y. Mayo Clin Proc. 1976; 51(5):296- 300. Ref ID: 3885	Cross- sectional retrospecti ve analysis of medical records Evidence level: 3 I centre Mayo Clinic,USA	N = 141 healthy kidney donors	Inclusion: healthy subjects w a kidney removed during 197 1973. Exclusion criteria: to achieve healthy population for study, subjects with the following diseases were excluded: past history of renal or systemic d abnormal physical exam, hypertension, elevated serur creatinine, abnormal urinaly WBC/hpf, > 6 RBC/hpf), urine protein excretion > 300 mg/2 abnormal excretory urogram arteriogram Population baseline character 56% male, no further detail g	a , t lisease, vsis (> 8 e 24-h, os/renal	N = 141 Procedure: medical records of healthy subjects who had a nephrectomy were retrospectively reviewed. Records were assessed for measured inulin clearance.	The decline in inulin clearance with increasing age	N/A	Decline in inulin clearance with age	Not stated	
Effect size:										
Inulin clearan	ce values in h	ealthy kidney d	onors (cross-sectional data):							
Age, years	N	/lean inulin clea	rance (ml/min/1.73m ²)	Range,	ange, 5 th percentile					
20	1	18		90-99						
25	1	15		88-96						

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Reference	Study type	Number of patients	Patient characteristics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
30	11	2		86-93					
35	10)9		84-91					
40	10)6		82-88					
45	10)4		80-86					
50	10)1		78-85					
55	99)		75-83					
60	96	5		73-82					

Inulin clearance decline

Inulin clearance declined steadily with increasing age in healthy donors. (mean decline 4 ml/min/decade). There was no tendency for an accelerated decline after the age of 60, although there were few people > 60 years and no data for people > 67 years). There was NS sex differences.

Note: limitations- retrospective cross-sectional, no information on whether donors were related to people receiving the kidney, thus "healthy" may not be entirely true and these people could have subclinical renal disease (but no information to support or refute this).

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Wetzels JF, Kiemeney LA, Swinkels DW et al. Age- and gender- specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study.[see comment]. Kidney International . 2007; 72(5):632- 637. Ref ID: 4111	Cross- sectional study Evidence level: 3 Nijmegen Biomedical Study, Netherland S	N total = 6097 N males = 2823 N females = 3272 N disease- free = 3732 N comorbid conditions = 2365	Inclusion: Nijmegen Biomedical Study: age and sex stratified randomly selected adults (≥ 18 years) living in Nijmegen, Netherlands. Exclusion criteria: not stated Population baseline characteristics: N= 3732 "disease-free" N=1032 hypertension N=358 diabetes N=362 MI N=127 stroke N=145 kidney disease N=347 diuretic/ antihypertensive/ antirheumatic drug use	Age and sex reference values for eGFR N comorbid conditions = 2365 Procedure: People were invited to participate by returning a postal questionnaire on lifestyle and medical history (42% response). Responders donated blood samples for measurement of serum creatinine, which was calibrated to the MDRD laboratory and MDRD eGFR was calculated. No physical exams were carried out and participants were assigned to the comorbid group based on their answers to the question: Have you ever been diagnosed by a physician with MI, stroke or cerebrovascular disease, diabetes, hypertension, or any kidney disease? Specific information of medication use in the last 6 months was gathered.	Age and sex reference values for eGFR N disease- free = 3732	N/A	Age and sex specific eGFR values	Not stated

Table 301: Ref ID: 4111 [Wetzels et al. 2007]

		Number of				Length of	Outcome	Source of	
Reference	Study type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding	
Effect size:									
GFR Decline in	healthy peopl	e:							
GFR decline in healthy people was approximately 0.4 ml/min/year									
Age and Gend	er reference va	lues for eGFR:							
Note that a GI	R < 60 ml/min	/1.73 m2 was v	vithin the normal reference range	e for non-diseased men > 55 years ol	d and non-disea	sed women >	• 40 years old.	Authors	
suggest that d	efinition of CKI) should be cha	anged They suggest using a refer	ence-value eGFR below the lower re	ference thresho	ld			

Estimated GFR in non-diseased Caucasian males of the Nijmegen Biomedical studies

Age (years)NMean +/- SDRangeP5P25P50P75P9518-2494100 +/- 1372-13777909910912125-299693 +/- 1367-12574829010211730-3411886 +/- 1363-1336877859310735-3912585 +/- 1461-1186574859511040-4414384 +/- 1354-1246676839210645-4916083 +/- 1350-1236373829110550-5414379 +/- 1246-120607178879755-5915876 +/- 1327-118586875849860-6414975 +/- 1548-199596773839565-6915475 +/- 1451-165566674829770-7410271 +/- 1238-102546470799275-7911270 +/- 1341-1004562707991									
25-299693+/-1367-12574829010211730-3411886+/-1363-1336877859310735-3912585+/-1461-1186574859511040-4414384+/-1354-1246676839210645-4916083+/-1350-1236373829110550-5414379+/-1246-120607178879755-5915876+/-1327-118586875849860-6414975+/-1548-199596773839565-6915475+/-1451-165566674829770-7410271+/1238-102546470799275-791120+/-1341-10456270707991	Age (years)	Ν	Mean +/- SD	Range	P5	P25	P50	P75	P95
30-3411886 +/-1363-1336877859310735-3912585 +/-1461-1186574859511040-4414384 +/-1354-1246676839210645-4916083 +/-1350-1236373829110550-5414379 +/-1246-120607178879755-5915876 +/-1327-118586875849860-6414975 +/-1548-199596773839565-6915475 +/-1451-165566674829770-7410271 +/-1238-102546470799275-7911270 +/-1341-10456270707991	18-24	94	100 +/- 13	72-137	77	90	99	109	121
35-3912585 +/-1461-1186574859511040-4414384 +/-1354-1246676839210645-4916083 +/-1350-1236373829110550-5414379 +/-1246-120607178879755-5915876 +/-1327-118586875849860-6414975 +/-1448-199596773839565-6915475 +/-1451-165566674829770-7410271 +/-1238-102546470799275-791270 +/-1341-1104562707091	25-29	96	93 +/- 13	67-125	74	82	90	102	117
40-4414384 +/- 1354-1246676839210645-4916083 +/- 1350-1236373829110550-5414379 +/- 1246-120607178879755-5915876 +/- 1327-1 18586875849860-6414975 +/- 1548-199596773839565-6915475 +/- 1451-165566674829770-7410271 +/- 1238-102546470799275-791120+/- 1341-104562707091	30-34	118	86 +/-13	63-133	68	77	85	93	107
45-4916083 +/-1350-1236373829110550-5414379 +/-1246-120607178879755-5915876 +/-1327-118586875849860-6414975 +/-1548-199596773839565-6915475 +/-1451-165566674829770-7410271 +/-1238-102546470799275-7911270 +/-1341-110456270707991	35-39	125	85 +/-14	61-118	65	74	85	95	110
50-5414379 +/ 1246-120607178879755-5915876 +/ 1327-118586875849860-6414975 +/ 1548-199596773839565-6915475 +/ 1451-165566674829770-7410271 +/ 1238-102546470799275-791120 +/ 1341-110456270707991	40-44	143	84 +/- 13	54-124	66	76	83	92	106
55-5915876 +/- 1327 - 118586875849860-6414975 +/- 1548 - 199596773839565-6915475 +/- 1451 - 165566674829770-7410271 +/- 1238 - 102546470799275-7911270 +/- 1341 - 1004562707091	45-49	160	83 +/-13	50-123	63	73	82	91	105
60-6414975 +/- 1548-199596773839565-6915475 +/- 1451-165566674829770-7410271 +/- 1238-102546470799275-7911270 +/- 1341-1104562707091	50-54	143	79 +/- 12	46-120	60	71	78	87	97
65-69 154 75 +/- 14 51-165 56 66 74 82 97 70-74 102 71 +/- 12 38-102 54 64 70 70 92 75-79 112 70 +/- 13 41-110 45 62 70 70 91	55-59	158	76 +/- 13	27-118	58	68	75	84	98
70-74 102 71 +/-12 38-102 54 64 70 79 92 75-79 112 70 +/- 13 41-110 45 62 70 79 91	60-64	149	75 +/- 15	48-199	59	67	73	83	95
75-79 112 70 +/- 13 41-110 45 62 70 79 91	65-69	154	75 +/- 14	51-165	56	66	74	82	97
	70-74	102	71 +/-12	38-102	54	64	70	79	92
80-84 73 67 + /- 15 /1-129 /3 58 69 77 87	75-79	112	70 +/- 13	41-110	45	62	70	79	91
	80-84	73	67 +/- 15	41-129	43	58	69	77	87

Reference	Study type	Number o patients		haracteristics	Intervention		Compari	-	th of w-up	Outcom measure	
>85	33	62	+/- 16	34-101	35	47	65	72			92
Values are given as means (s.d.), ranges and 5 th , 25 th , 50 th ,75 th and 95 th percentile											
Note: limitations: questionnaire was used to assess health of participants (no physical exam), so "healthy" people may have actually been diseased; creatinine measured only once; data applies to European Caucasian population											
measured onl	y once; data a	pplies to Euro	opean Caucasi	an population							
			-	an population (2008) (2014 g	uideline - chapt	ter 7.3)					
Risk factors	associated	with progre	-		uideline - chapt	ter 7.3)					
	associated	with progre	-		uideline - chapt	ter 7.3)					

Risk factors associated with progression of CKD (2008) (2014 guideline - chapter 7.3)

Table 302: Ref ID: 1086 [Earle 2001]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparis on	Length of follow-up	Outcome measures	Source of funding
Earle KK, Porter KA, Ostberg J et al. Variation in the progression of diabetic nephropathy according to racial origin. Nephrol Dial Transplant. 2001; 16(2):286- 290. Ref ID: 1086	Retros pective Case- series Eviden ce level: 3	N total = 45 N Indo- Asian=10 N African Caribbean=11 N Caucasian = 24 1 centre study: diabetes clinic Whittington Hospital,	Inclusion: type 2 diabetic nephropathy (serum creatinine ≥ 170 micromol/l, persistent clinical proteinuria with diabetic retinopathy) Exclusion criteria: nondiabetic renal disease, absent retinopathy, congestive cardiac failure and/or malignancy Population baseline characteristics: NS difference between Indo-Asians (IA), African-Caribbean (AC) and	N Indo-Asian=10 N African Caribbean=11 Procedure: All serum creatinine measurements were identified from medical records. Assignment of racial origin was according to patient's choice on the hospital coding system. Indo-Asian included Indian, Pakistani, or Bangladeshi people. African-Caribbean included	N Caucasia n = 24 Procedur e: As for interventi on	Mean 37 months Indo-Asian, mean 46 months African Caribbean, mean 51 months Caucasian	Doubling of serum creatinine Rate of serum creatinine increase (slope=beta)	British Diabetic Association

	Study	Number of			Comparis	Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	on	follow-up	measures	funding
		London, UK	Caucasians (C) with respect to	Black Caribbean, Black				
			follow-up time, diabetes	African, Somali or Black				
			duration, SBP, DBP, smoking,	other. Caucasian patients				
			ACE inhibitors usage (90%, 91%,	were those who selected				
			79% IA, AC, C, respectively),	white. Patients visited the				
			HbA1C, urinary protein	clinic 2-3 times a year and				
			excretion, serum creatinine.	BP, serum creatinine,				
			Indo-Asians were significantly	proteinuria (reagent strip)				
			younger (58 years) than AC (68	and 24-h urinary protein				
			years) or C (67 years).	excretion were determined.				

Error! No text of specified style in document.

Chronic kidney disease

Effect size:

Effect of Ethnicity on Doubling of serum creatinine

100% of Indo-Asians experienced a doubling of serum creatinine compared with 45% of African Caribbeans and 50% of Caucasians (p=0.025) during follow-up.

Effect of Ethnicity on Rate of serum creatinine increase

The mean rise in serum creatinine in Indo-Asians (5.36 micromol/I/month) was significantly greater than in African Caribbeans (3.14 micromol/I/month) or Caucasians (2.22 micromol/I/month), p=0.031. This relationship remained after adjustment for DBP.

NS interaction between rate of serum creatinine change and age (p=0.073), treatment regimen (p=0.418), baseline urinary protein excretion (p=0.216), smoking (p=0.118), or gender (p=0.871)

Limitations: small sample size, population was diabetic people with nephropathy

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Elsayed EF, Tighiouart H, Griffith J et al. Cardiovascular Disease and Subsequent Kidney Disease. Archives of Internal Medicine. 2007; 167(11):1130- 1136. Ref ID: 3940	case series Eviden ce level: 3 USA	N total = 13826 N Subjects with CVD = 1787 N Subjects without CVD = 12039	Inclusion: patient data pooled from Atherosclerosis Risk in Communities (ARIC) and Cardiovascular Health Study (CHS). ARIC: people 45-64 years old recruited between 1987 and 1989 from 4 communities. CHS: subjects ≥ 65 years old recruited between 1989 and 1990. Exclusion criteria: participants with missing data (including baseline or final creatinine measurements), people with baseline GFR < 15 ml/min/1.73 m ² Population baseline characteristics: Mean age 57.6 years. People with baseline CVD were significantly older (60	Subjects with CVD N = 1787 Procedure: Baseline serum creatinine measured and calibrated to Third NHANES values. MDRD equation used to estimate GFR. Baseline cardiovascular disease (CVD) defined by stroke, angina, claudication, TIA, coronary angioplasty or bypass, or recognised or silent MI.	Subjects without CVD N = 12039 Procedure: As for intervention	Mean 9.3 years. 22% failed to provide last serum creatinine; these people were more likely to have CVD at baseline and had higher CVD risk factors. Authors suggest this exclusion would bias towards null hypothesis.	Kidney function decline (serum creatinine increase of at least 0.4 mg/dl between first and last visit) Kidney function decline (GFR decrease of at least 15 ml/min/1.73 m ² between first and last visit) Development of CKD (serum creatinine increase of at least 0.4 mg/dl from baseline level of < 1.4 mg/dl in men and < 1.2 mg/dl in women) Development of CKD (GFR decrease	NIH, Amgen, National Heart Lung, and Blood Institute

Table 303: Ref ID: 3940 [Elsayed et al. 2007]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			vs.57 years), had higher prevalence of diabetes and hypertension, and had lower baseline GFR (86 vs.90 ml/min/1.73 m ²) compared to people without CVD at baseline.				of 15 ml/min/1.73 m ² level in people with baseline GFR > 60 ml/min/1.73 m ²)	

Odds ratios (OR) adjusted for age, sex, race, education, study origin, diabetes, smoking, alcohol use, hypertension history, BMI, SBP, hematocrit, albumin level, HDL cholesterol, total cholesterol, baseline serum creatinine, baseline eGFR.

Effect of Cardiovascular disease on Kidney Function decline (serum creatinine increase of at least 0.4 mg/dl between first and last visit)

After a mean follow-up of 9.3 years, 128 of 1787 (7.2%) people with baseline cardiovascular disease had a decline in kidney function (serum creatinine increase of at least 0.4 mg/dl) compared with 392 of 12039 (3.3%) people without baseline CVD (p<0.001). People with decline in renal function were significantly older, more likely to have hypertension and diabetes, more likely to be African American, and had significantly higher baseline serum creatinine levels than those who did not experience renal function decline.

People with baseline cardiovascular disease (N=1787) had a significantly increased risk of a decline in renal function (serum creatinine increase of at least 0.4 mg/dl) compared with people without CVD at baseline (N=12039) [adjusted OR 1.70 (95% CI 1.36 to 2.13), p<0.001).

Effect of Cardiovascular disease on Kidney Function decline (GFR decrease of at least 15 ml/min/1.73 m² between first and last visit)

After a mean follow-up of 9.3 years, 607 of 1787 (34.0%) people with baseline cardiovascular disease had a decline in kidney function (GFR decrease of at least 15 ml/min/1.73 m²) compared with 3909 of 12039 (32.5%) people without baseline CVD (p=0.22).

People with baseline cardiovascular disease (N=1787) had a significantly increased risk of a decline in renal function (GFR decrease of at least 15 ml/min/1.73 m²) compared with people without CVD at baseline (N=12039) [adjusted OR 1.28 (95% CI 1.13 to 1.46), p<0.001).

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Effect of Cardiovasc	ular disea	ise on Develop	ment of CKD (serum creatinin	ne increase of at least	0.4 mg/dl from	baseline level of	< 1.4 mg/dl in men and	l < 1.2 mg/dl in

women) People with baseline CVD and baseline serum creatinine < 1.4 mg/dl in men and < 1.2 mg/dl in women had a significantly increased risk of developing CKD (serum

People with baseline CVD and baseline serum creatinine < 1.4 mg/dl in men and < 1.2 mg/dl in women had a significantly increased risk of developing CKD (serum creatinine increase of at least 0.4 mg/dl)compared with people without CVD at baseline [adjusted OR 1.75 (95% Cl 1.32 to 2.32), p<0.001).

Effect of Cardiovascular disease on Development of CKD (GFR decrease of at least 15 ml/min/1.73 m² level in people with baseline GFR > 60 ml/min/1.73 m²) People with baseline CVD had an increased risk of developing CKD (GFR decrease of at least 15 ml/min/1.73 m² level in people with baseline GFR > 60 ml/min/1.73 m²) compared with people without baseline CVD [adjusted OR 1.54 (95% CI 1.26 to 1.89), p<0.001).

Sensitivity Analyses:

Similar increased risk when analysis was restricted to ARIC or CHS cohorts separately.

Exclusion of people with heart failure: association still remained significant [OR 1.72 (1.12 to 2.62)].

Baseline ACE inhibitors use evaluated: CVD still associated with kidney function decline [OR 1.82 (1.20 to 2.76)] and ACE inhibitors use was protective [OR 0.30 (0.10 to 0.87)].

CVD defined as only MI or cardiac procedure: CVD still associated with decline in kidney function [OR 1.93 (1.45 to 2.59)].

Limitations: no baseline proteinuria data, ARIC study had no data on ACE inhibitors use.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Evans M, Fryzek JP, Elinder CG et al. The natural history of chronic renal failure: results from an unselected, population- based, inception cohort in Sweden. Am J Kidney Dis. 2005; 46(5):863-870. Ref ID: 3911	case series Evidence level: 3 Sweden	N total = 920	Inclusion: Native Swedes age 18-74 years with serum creatinine > 3.5 mg/dl (men) or > 2.8 mg/dl (women) were recruited between May, 1996 and May, 1998. Exclusion criteria: participants with serum creatinine elevations due to acute renal failure or dehydration, terminal malignant disease, patients with kidney transplants Population baseline characteristics: 65% male, 41% > 65 years old, GFR 1.7 to 14.9 ml/min (33%), GFR 15-19.9 ml/min (59%), GFR 20-23.8 ml/min (7%), diabetic renal disease (31%), glomerulonephritis (24%), nephrosclerosis (15%).	Examining variables associated with progression to RRT in people with Stage 4 and 5 CKD Procedure: Patients matching inclusion criteria identified through medical laboratory databases and National Registration Number. Information on anthropometric measurements, lifestyle and medical factors obtained from self- administered mail questionnaires. Medical conditions obtained during routine clinical workup. MDRD equation used to estimate GFR. Patients starting RRT identified from Swedish	N/A Procedure: As for intervention	Mean follow-up 2 years (From date of elevated serum creatinine to RRT, death, or Dec., 2002.)	Time to RRT (dialysis or kidney transplantatio n)	Internatio nal Epidemiol ogy Institute

Table 304: Ref ID: 3911 [Evans 2005]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
				Registry of RRT database.				

Relative risk (RR) adjusted for age, sex, BMI, primary renal disease, and GFR 739/920 (80%) started RRT during follow-up.

Effect of BMI on Progression to RRT:

Compared to people with CKD and BMI 20.1-25 kg/m² (N=377), there was NS risk of progression to RRT for people with BMI \leq 20 kg/m² (N=77) [adjusted RR 1.26 (95% CI 0.95 to 1.67)]

Compared to people with CKD and BMI 20.1-25 kg/m² (N=377), people with BMI 25.1-30 kg/m² (N=314) had a significantly decreased risk of progression to RRT [adjusted RR 0.79 (95% CI 0.67 to 0.94)]

Compared to people with CKD and BMI 20.1-25 kg/m² (N=377), there was NS risk of progression to RRT for people with BMI >30 kg/m² (N=26) [adjusted RR 0.86 (95% CI 0.68 to 1.07)]

Effect of baseline GFR on Progression to RRT:

People with GFR 16.7-18.4 ml/min had NS risk of progression to RRT compared with people with GFR \geq 18.5 ml/min [adjusted RR 1.20 (95% CI 0.96 to 1.50)] People with GFR 13.7-16.6 ml/min had a significantly increased risk of progression to RRT compared with people with GFR \geq 18.5 ml/min [adjusted RR 1.52 (95% CI 1.21 to 1.91)]

People with GFR < 13.7 ml/min had a significantly increased risk of progression to RRT compared with people with GFR \geq 18.5 ml/min [adjusted RR 2.27 (95% Cl 1.83 to 2.82)]

Age inversely related to risk of RRT, men had more rapid progression than women,

Diabetic nephropathy was associated with a more rapid progression to RRT compared with glomerulonephritis [adjusted RR 1.24 (95% CI 1.02 to 1.51)]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparis on	Length of follow-up	Outcome measures	Source of funding
Fored CM, Ejerblad E, Lindblad P et al. Acetaminop hen, aspirin, and chronic renal failure.[see comment]. New England Journal of Medicine. 2001; 345(25):180 1-1808. Ref ID: 707	Case- control study Evidence level: 2 + Sweden	N Cases (patients with chronic renal failure) = 926 N age and sex matched controls = 998	Inclusion: Cases: Native Swedes age 18-74 years with serum creatinine > 3.4 mg/dl (men) or > 2.8 mg/dl (women) were recruited between May, 1996 and May, 1998. Controls: Controls were randomly selected from the Swedish Population Register and frequency-matched to cases according to age (10-year age groups) and sex. Exclusion criteria: participants with serum creatinine elevations due to acute renal failure, severe heart failure, patients with kidney transplants Population baseline characteristics: Overall: 65% male, Mean age 58 years (men), 57 years (women). Median serum creatinine 3.8 mg/dl (male cases) and 3.2 mg/dl (female cases). Median eGFR (MDRD) 22 ml/min (male cases) 19 ml/min (female cases). Among cases: 31% diabetic nephropathy, 24%	Cases (patients with chronic renal failure) N=926 Procedure: Laboratory databases searched to identify case patients, and to retrieve clinical and demographic data. Cases and controls completed a self- administered questionnaire and underwent a face-to- face interview (interviewer blinded to study purpose) to assess use of NSAIDs (type, dose, duration of use). Regular use defined as at least 2 tablets/week for two months. Sporadic use defined as a cumulative lifetime dose > 20 tablets but users did	age and sex matched controls N = 998 Procedur e: As for interventi on	N/A	Risk of chronic renal failure (serum creatinine > 3.4 mg/dl (men) or > 2.8 mg/dl (women))	International Epidemiology Institute

Table 305: Ref ID: 707 [Fored et al. 2001]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparis on	Length of follow-up	Outcome measures	Source of funding
			glomerulonephritis, 15%	not use it regularly.				
			nephrosclerosis, 10% hereditary	Non-users took < 20				
			renal disease, 10% other renal	tablets during their				
			disease	lifetime.				

Odds ratios (OR) adjusted for age, sex, education, smoking, use or non-use of other analgesics, interaction between aspirin and acetaminophen use. Acetaminophen not an NSAID.

Effect of NSAIDS on risk of chronic renal failure (CRF- serum creatinine > 3.4 mg/dl (men) or > 2.8 mg/dl (women)

Compared to non-users of aspirin (N cases = 224, N controls= 363) regular users (N cases = 213, N controls= 141) of aspirin had a significantly increased risk of chronic renal failure [adjusted OR 2.5 (95% CI 1.9 to 3.3)]

Compared to non-users of aspirin (N cases = 224, N controls= 363) sporadic users (N cases = 459, N controls= 496) of aspirin had a significantly increased risk of chronic renal failure [adjusted OR 1.5 (95% CI 1.2 to 1.8)]

Compared to non-users of Acetaminophen (N cases = 230, N controls= 376) regular users (N cases = 105, N controls= 71) of Acetaminophen had a significantly increased risk of chronic renal failure [adjusted OR 2.5 (95% CI 1.7 to 3.6)]

Compared to non-users of Acetaminophen (N cases = 230, N controls= 376) sporadic users (N cases = 345, N controls= 413) of Acetaminophen had NS risk of chronic renal failure [adjusted OR 1.3 (95% CI 1.0 to 1.6)]

The risk of CRF increased with increasing cumulative dose of aspirin or acetaminophen. (p<0.01 and p<0.001 respectively). An average intake > 500g/year of aspirin significantly increased the risk of CRF [adjusted OR 3.3 (95% CI 1.4 to 8.0)]

Regular use of BOTH aspirin and acetaminophen was associated with a significantly increased risk of CRF compared with regular users of aspirin only [adjusted OR 2.2 (95% Cl 1.4 to 3.5)]

Regular use of BOTH aspirin and acetaminophen was NS associated with a risk of CRF compared with regular users of acetaminophen only [adjusted OR 1.6 (95% CI 0.9

ועמרוסדומו כוודווכמו שמומפוודופ כפדונרפ

ZUT4

	Study	Number of			Comparis	Length of	Outcome	Source of	
Reference	type	patients	Patient characteristics	Intervention	on	follow-up	measures	funding	
to 2.7)]									
NS risk of CRF	for other no	n-aspirin NSAID	s: OR 1.0						
Sub-analysis s	howed regul	ar use of aspirin	compared with non-use of aspirin was s	ignificantly associated with	increased r	isk of CRF in pe	ople with diabet	ic nephropathy	
(OR 2.9 (1.9-4	(OR 2.9 (1.9-4.5), glomerulonephritis (OR 2.6 (1.4-4.8), nephrosclerosis (OR 2.1 (1.3-3.5), hereditary renal disease (OR 3.1 (1.6-6.0).								
Note Intonvia	wore wore p	at blind to who	ware cases and controls (impossible) Al	sa impassibla ta rula aut bi	as sausad by	was of NEAD	for cumptones o	foonditions	

Note: Interviewers were not blind to who were cases and controls (impossible). Also impossible to rule out bias caused by use of NSAIDs for symptoms of conditions that pre-disposed cases to renal failure.

	Study type	Number of patients	Patient characteristics	Intervention	Comparis on	Length of follow-up	Outcome measures	Source of funding
Rossing P, Tarnow L et al. Smoking and progression of diabetic penbropathy	Prospe ctive cohort Eviden ce level: 2 +	N total = 301 N smokers = 176 N non- smokers = 94 N ex- smokers =31 1 centre study: Steno clinic, Denmark	Inclusion: patients with type 1 diabetes and nephropathy (persistent albuminuria > 300 mg/24-h in at least 2 of 3 consecutive 24-h urine collections, presence of diabetic retinopathy) attending the Steno clinic. Exclusion criteria: other renal disease Population baseline characteristics: NS between groups for duration of diabetes, retinopathy, albuminuria, HbA1C. Ex-smokers (mean 40 years) were significantly older than non-smokers (35 years) or smokers (36 years). Smokers had significantly lower SBP and DBP than non-smokers or ex-smokers. Smokers had significantly higher GFR (92 ml/min/1.73m ²) versus non-smokers (86 ml/min/1.73m ²) or ex-smokers (80	Smokers N = 176 Ex-smokers N=31 Procedure: At baseline and every 3-4 months, patients visited the clinic and had BP, blood glucose, HbA1C, albuminuria, weight measured. Patients completed a standardised questionnaire to assess smoking status: Smokers (Smoke > 1 cigarette/day during any portion of the study period), ex-smokers (subjects who quit smoking before entering the study and remained non- smokers during the study). GFR was measured annually with ⁵¹ Cr-EDTA plasma clearance. BP was targeted to < 140/90 mm Hg with antihypertensive therapy with predominantly ACE inhibitors.	Non smokers N = 94 Procedur e: As for interventi on	Median 7 years (range 3-14 years)	decline in GFR	Danish Diabetes Foundation, Hansen Foundation, Per S. Henriksen Foundation

Table 306: Ref ID: 558 [Hovind et al. 2003]

	Study	Number of			Comparis	Length of	Outcome	Source of	
Reference	type	patients	Patient characteristics	Intervention	on	follow-up	measures	funding	
			ml/min/1.73m ²).						
Effect size:									
Median cigare	ettes was 2	0/day in the sn	nokers and had been 20/day in ex-sn	nokers.					
Effect of Smo	king on GF	R							

After adjustment for BP, albuminuria, HbA1C and cholesterol, there was NS difference in the rate of GFR decline between non-smokers (mean 4.4 ml/min/year), exsmokers (mean 3.4 ml/min/year, and smokers (mean 4.0 ml/min/year).

Albuminuria, cholesterol, MAP, and HbA1C were all significant independent predictors of progression.

Table 307: Ref ID: 290 [Ibanez et al. 2005]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Compariso n	Length of follow-up	Outcome measures	Source of funding
Ibanez L, Morlans M, Vidal X et al. Case- control study of regular analgesic and nonsteroidal anti-inflammatory use and end-stage renal disease. Kidney International. 2005; 67(6):2393- 2398. Ref ID: 290	Case control Evidenc e level: 2+ Barcelo na, Spain	Cases with ESRD = 520 Controls without ESRD = 982	Inclusion criteria: Cases: all patients entering dialysis program because of ESRD between June 1995 and Nov. 1997 in all dialysis centres in Barcelona, Spain. Controls: randomly selected from hospital admission lists, including acute conditions not known to be related with NSAID use. Exclusion criteria: serious conditions, physical impairment (deafness or blindness), mental disability, illiteracy, renal transplantation recipients, non-residents of Barcelona Population baseline characteristics: Median age 64 years (cases) and 63 years (controls). Cases: glomerulonephritis	Users of analgesics and NSAIDS in Cases with ESRD = 122 Users of analgesics and NSAIDS in controls = 166 Procedure: Two controls were age (within 5 years), sex, and hospital matched with each case. Trained nurses interviewed cases and controls about type, dose, and duration of analgesic use, demographics, first diagnosis of renal disease, co-morbid conditions, smoking, alcohol, and caffeine consumption. Investigator abstracted medical records to classify ESRD according to underlying cause of renal disease. Users were people who used any analgesic or NSAID daily or every other day for 30 days	Nonusers of analgesics and NSAIDS in Cases with ESRD = 398 Nonusers of analgesics and NSAIDS in controls = 816	Not applicable	Risk of ESRD	Dept of Health and Social Security

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטב4

	Study	Number of			Compariso	Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	n	follow-up	measures	funding
			(17%), vascular nephropathy (34%), interstitial nephritis (13%), diabetic nephropathy (11%), cystic kidney disease (9%), unknown cause (13%)	or longer at any time before the date of the first diagnosis of renal disease. Index date established by 2 independent investigators blinded to drug use from patient and medical record information. Index				
				date for the controls was the same as for the matched cases.				

Odds ratios (OR) adjusted for smoking, hypertension, arteriopathy, diabetes, kidney stones, gout

Effect of Analgesic and NSAID use on Risk for ESRD:

Compared with non-users (N=398 cases, N=816 controls), users of analgesics and NSAIDS (N=122 cases, N=166 controls) had NS risk of ESRD [adjusted OR 1.22 (95% CI 0.89 to 1.66)]

Sub-analysis: Effect of Aspirin use and Risk for ESRD

Users of aspirin (N=81 cases, N=94 controls) had a significantly increased risk of ESRD compared with nonusers [adjusted OR 1.56 (95% CI 1.05 to 2.30)]. The effect of aspirin was related with the cumulative dose (p trend =0.012) and duration of use (p trend= 0.012).

Sub-analysis: Effect of Pyrazolone use and Risk for ESRD

Users of pyrazolones (N=34 cases, N=51 controls) had NS risk of ESRD compared with nonusers [adjusted OR 1.03 (95% CI 0.60 to 1.76)]

Sub-analysis: Effect of non-aspirin NSAID use and Risk for ESRD

Users of non-aspirin NSAIDs (N=37 cases, N=51 controls) had NS risk of ESRD compared with nonusers [adjusted OR 0.94 (95% CI 0.57 to 1.56)]

When the exposure time was increased to 6 months prior to any symptom of renal disease, the OR for ESRD by each drug category was similar.

Smoking and ESRD:

	Study	Number of			Compariso	Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	n	follow-up	measures	funding
Smokers (N=320 cases	s, N=557 coi	ntrols) had a sig	gnificantly increased risk of ESRD	compared with non-smokers [ac	justed OR 1.54	4 (95% CI 1.14	to 2.07)]	
	ias may hay	e caused miscl	assification of analgesic use					
Note: possible recall b	nus muy nuv	ic causea misei	assincation of analgesic use.					

Table 308: Ref ID: 2040 [Morlans 1990]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Morlans M, Laporte JR, Vidal X et al. End- stage renal disease and non-narcotic analgesics: A case- control study. British Journal of Clinical Pharmacology. 1990; 30(5):717-723. Ref ID: 2040	Case control Evidence level: 2+ Barcelon a, Spain	N Cases with ESRD = 340 N Controls without ESRD = 673	Inclusion criteria: Cases: randomly selected (using number tables to recruit at least 50% of each dialysis unit) patients entering dialysis program because of ESRD between 1980 and 1983 in all dialysis centres in Barcelona, Spain. Controls: randomly selected from hospital admission lists, including acute conditions not known to be related with NSAID use. Exclusion criteria: serious conditions, physical impairment (deafness or blindness), mental disability, illiteracy, renal transplantation recipients, non-residents of Barcelona. Control exclusions: admissions to obstetrics, radiation therapy, oncology, psychiatry.	Users of analgesics in Cases with ESRD = 70 Users of analgesics in controls = 59 Procedure: Two controls were age (within 5 years), sex, and hospital matched with each case. Trained nurses interviewed cases and controls about type, dose, and duration of analgesic use, demographics, first diagnosis of renal disease, co-morbid conditions, smoking, alcohol, and caffeine consumption. Investigator abstracted medical records to classify ESRD according to underlying cause of renal disease. Users were people who used any analgesic or NSAID daily or every other	Nonusers of analgesics Cases with ESRD = 270 Nonusers of analgesics in controls = 614	Not applicable	Risk of ESRD	Dept of Health and Social Security

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטב4

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			Population baseline characteristics: 61% males, NS between cases and controls for smoking and alcohol use	day for 30 days or longer at any time before the date of the first diagnosis of renal disease. Index date of renal disease established by 2 independent investigators blinded to drug use from patient and medical record information. Index date for the controls was the same as for the matched cases.				

Odds ratios (OR) adjusted for recurring headache history, arthritis, kidney stones, hypertension, diabetes

Effect of Overall Analgesic use on Risk for ESRD:

Compared with non-users (N=270 cases, N=614 controls), users of analgesics (N=70 cases, N=59 controls) had a significantly increased risk of ESRD [adjusted OR 2.89 (95% CI 1.78 to 4.68)]

Sub-analysis: Effect of Salicylate use and Risk for ESRD

Users of salicylates (N=23 cases, N=21 controls) had a significantly increased risk of ESRD compared with nonusers [adjusted OR 2.54 (95% CI 1.24 to 5.20)].

Sub-analysis: Effect of Pyrazolone use and Risk for ESRD

Users of pyrazolones (N=15 cases, N=13 controls) had NS risk of ESRD compared with nonusers [adjusted OR 2.16 (95% CI 0.87 to 5.32)]

Sub-analysis: Effect of phenacetin-containing combinations and Risk for ESRD

Users of phenacetin-containing combinations (N=9 cases, N=1 controls) had a significantly increased risk of ESRD compared with nonusers [adjusted OR 19.05 (95% CI 2.31 to 157.4)]

Note: possible recall bias may have caused misclassification of analgesic use.

Table 309: Ref ID: 3964	[Murray et al. 1995]
-------------------------	----------------------

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Murray MD, Black PK, Kuzmik DD et al. Acute and chronic effects of nonsteroidal antiinflammatory drugs on glomerular filtration rate in elderly patients. American Journal of the Medical Sciences. 1995; 310(5):188-197. Ref ID: 3964	RCT open label Evidence level: 1+ ITT=29 1 centre, Indiana, USA	N total = 29 N patients with renal insufficiency =15 N patients without renal insufficiency =14	Inclusion: adults > 65 years with (CrCl < 70 ml/min) or without renal insufficiency (CrCl > 70 ml/min) Exclusion criteria: people at risk of nonrenal adverse events from NSAIDS and those with diagnoses that would independently place them at risk of an adverse renal effect of NSAID, people taking glucocorticoids/mineraloc orticoids, people who could not tolerate withholding NSAIDs for 2 weeks before the study without causing excess discomfort Population baseline characteristics: people with renal insufficiency	N ibuprofen in people with CRI=15 N piroxicam in people with CRI=15 N sulindac in people with CRI=15 Procedure: Participants were recruited from senior citizen centres and assigned to groups with and without renal insufficiency based on the mean of two consecutive 24-h creatinine clearances. Patients in each group were randomly assigned to receive in cross-over fashion 800 mg ibuprofen three times daily, 20 mg piroxicam once daily. Each phase lasted 1 month with a 1 month washout between each phase. Patients permitted acetaminophen and low dose aspirin. Creatinine	N ibuprofen in people without CRI=14 N piroxicam in people without CRI=14 N sulindac in people without CRI=14 Procedure: As for intervention	Not stated (5 months)	Change in creatinine clearance Adverse Events Adverse effects	US Public Health Services Grant, Pfizer

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

	Study	Number of				Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding
			were more likely to be	clearance (two 24 hour urine				
			male, white, and weigh	collections) studies performed at				
			more than people	baseline and after 1 month of				
			without renal	continuous NSAID				
			insufficiency. Mean age	administration. Vital signs,				
			72 (no CRI) and 75 (CRI);	serum creatinine, electrolytes,				
			CrCl 87 ml/min (no CRI)	adverse events, compliance				
			and 58 ml/min (CRI)	assessed twice/week.				

Effect of NSAIDS on changes in creatinine clearance

In older people without renal insufficiency (N=14), there were NS changes in creatinine clearance from baseline (before administration of any NSAID) to the last dose (after 1 month of NSAID use) for ibuprofen (1.42 ml/s vs.1.48 ml/s), piroxicam (1.48 ml/s vs.1.46 ml/s) or sulindac (1.46 ml/s vs.1.48 ml/s).

In older people with renal insufficiency (N=15), there were NS changes in creatinine clearance from baseline (before administration of any NSAID) to the last dose (after 1 month of NSAID use) for ibuprofen (1.00 ml/s vs.1.00 ml/s).

In older people with renal insufficiency (N=15), chronic piroxicam use was associated with a significant decrease in creatinine clearance from baseline to 1 month of chronic use (1.12 ml/s vs.1.00 ml/s, 12% decrease, p=0.022).

In older people with renal insufficiency (N=15), chronic sulindac use was associated with a significant decrease in creatinine clearance from baseline to 1 month of chronic use (1.10 ml/s vs.0.98 ml/s, 11% decrease, p=0.022).

NS differences in magnitude of CrCl decrease between piroxicam and sulindac.

Adverse Events:

IN TOTAL: 4 people withdrew due to adverse events: 3 with CRI and 1 without CRI.

1 person without CRI (71 years, 1.46 ml/s baseline CrCl, hypertensive, diabetic, osteoarthritis, obese) and 1 person with CRI (87 years, baseline CrCl 0.76 ml/s, hypertensive, CAD, leg cramps) had an increase in serum creatinine > 40 micromol/l after ibuprofen.

1 patient with CRI (73 years, baseline CrCl 0.86 ml/s, osteoarthritis, hypertension, cerebrovascular and PVD, glaucoma) had to be removed from all three phases as all

	Study	Number of				Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding
three drugs produce	ed increases	in serum creati	nine > 40 micromol/l.					
1 patient with CRI h	ad to withdr	raw due to intol	erable epigastric distress, nau	usea, vomiting.				
Adverse Effects:								
More common in pe	eople with C	RI (N=11) than i	n people without CRI (N=8). N	Nost common complaint was GI disc	omfort.			
Edema in 2 patients	without CR	l (both following	; piroxicam)					
Limitations: small sa	ample size, k	out adequately p	powered to detect changes in	renal function (need N=12). Author	s suggest moni	toring of peop	le with CRI tre	eated with
piroxicam or sulinda	ac.							

	Study type	Number of patients	Patient characteristics	Intervention	Comparis on	Length of follow-up	Outcome measures	Source of funding
Stockmann A, Conradt C et al. Smoking as a risk factor for end- stage renal failure in	retrosp ective Case- control Eviden ce level: 2 +	N pairs = 102 N matched IgA-GN pairs = 54 N matched ADPKD pairs = 48 European multi-centre study: Austria, Germany, Italy	Inclusion: biopsy-proven IgA- glomerulonephritis (IgA-GN) or ultrasonography-proven autosomal dominant polycystic kidney disease (ADPKD) Exclusion criteria: systemic diseases involving the kidney (diabetes, lupus), immunosuppressive therapy, age at renal failure < 21 years Population baseline characteristics: NS difference between case (patients with ESRD) and matched controls (renal disease; no ESRD) with respect to age at renal death of cases compared to mean age of controls, age at diagnosis of renal disease, overall antihypertensive medication use, serum cholesterol, low protein diet, lipid lowering medication use. Male cases and controls were similar with	 5-15 pack years (cigarettes) N males = 28 males >15 pack years (cigarettes) N males=43 Procedure: Medical records searched to identify case and control patients, and to retrieve clinical and demographic data. Case patients were defined by the presence of ESRD (need for chronic haemodialysis or kidney transplant). Control patients were identified by the failure to progress to serum creatinine value > 3 mg/dl during a minimum observation period of 1 year (with a minimum of 3 creatinine measurements required). Controls did not require RRT. Cases and 	0-5 pack years (cigarette s) N males =73 Procedur e: As for interventi on	N/A Dropouts: 17.9% of controls and 12.2% of cases failed to return smoking questionnai re	ESRD	Not stated

Table 310: Ref ID: 911 [Orth et al. 1998]

	Study	Number of			Comparis	Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	on	follow-up	measures	funding
			respect to DBP, calcium channel	controls were matched				
			blocker use. SBP was higher in	according to type of renal				
			male cases than controls (146	disease (AKPKD or IgA-GN),				
			vs.139 mm Hg). ACE inhibitor	gender, region of residence,				
			use was significantly lower in	and age at renal death.				
			male cases than controls (25%	Smoking habits were				
			vs.42%). Female cases and	assessed with a				
			controls were similar with	standardised mail				
			respect to SBP and ACE	questionnaire.				
			inhibitor use.					

Analysis was restricted to male cases and matched controls (N=72 pairs), as the female pairs (N=30 pairs) were too few. In females, smoking was NS associated with risk of ESRD.

IgA-GN and ADPKD pairs were combined in the analysis as separate analyses showed similar effects of smoking on ESRD

Effect of Smoking on progression to ESRD

CRUDE analysis: Compared to men who smoked for 0-5 pack-years (N=73 total; N cases=26, N controls=47), men who smoked 5-15 pack years (N=28 total; N cases = 17, N controls = 11) had a significantly increased odds of ESRD [unadjusted OR 3.5 (95% CI 1.3 to 9.6), p=0.017].

Compared to men who smoked for 0-5 pack-years (N=73 total; N cases=26, N controls=47) men who smoked >15 pack years (N=43 total; N cases=29, N controls = 14) had a significantly increased odds of ESRD [unadjusted OR 5.8 (95% CI 2.0 to 17), p=0.001].

There was significant interaction between the smoking variable and ACE inhibitor use (p=0.026). Patients treated with ACE inhibitors (N cases=18, N controls = 30). Patients not treated with ACE inhibitors (N cases = 54, N controls = 42)

Compared to men who did not receive ACE inhibitors and smoked for 0-5 pack-years, men who smoked > 5 pack years and did not receive ACE inhibitors had a significantly increased odds of ESRD [adjusted OR 10.1 (95% CI 2.3 to 45), p=0.002]. adjusted for SBP

Compared to men who received ACE inhibitors and smoked for 0-5 pack-years, men who smoked > 5 pack years and received ACE inhibitors had NS risk of ESRD

	Study	Number of			Comparis	Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	on	follow-up	measures	funding
[adjusted OR '	1 / (95% C	l 0.3 to 7.1), p=0.65	1 adjusted for SPD					
ludiasted On .	1.4 (55/0 C	1 0.3 to 7.1], p=0.03	j. dujusteu ior SDP					
	1.4 (5570 C	10.3 to 7.1), p=0.03	j. aujusteu ioi SBP					
			from analysis due to low frequency	of smoking in this group, confo	unding by o	ther variables?	, ,	
				of smoking in this group, confo	unding by o	ther variables?	, ,	

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparis on	Length of follow-up	Outcome measures	Source of funding
Orth SR, Schroeder T, Ritz E et al. Effects of smoking on renal function in patients with type 1 and type 2 diabetes mellitus. Nephrol Dial Transplant. 2005; 20(11):2414- 2419. Ref ID: 2113	Prospe ctive cohort Eviden ce level: 2 +	N total = 185 N smokers = 44 N never smokers = 141 1 centre study: Germany	Inclusion: patients with type 1 or 2 diabetes attending the clinic Exclusion criteria: people with GFR < 60 ml/min/1.73m ² , ex-smokers Population baseline characteristics: 60% had type 1 diabetes. 72% non- smokers and 86% smokers had proteinuria > 0.15 g/d. Smokers were significantly younger (47 vs.54 years), more likely to be male, and had a lower GFR than non-smokers (95 vs.107 ml/min). NS difference between smokers and non-smokers with respect to BMI, diabetes type 1, insulin use, duration of diabetes, HbA1c, retinopathy, proteinuria, hypertension, SBP, DBP, ACE inhibitors use, CAD, PVD, stroke.	Smokers N = 44 Procedure: At baseline, patients had a physical exam (BP, anthropometry, spot urine test, serum creatinine, cholesterol, triglycerides), an interview, and completed a standardised questionnaire to assess smoking status. GFR was estimated with MDRD equation. Patients had at least 4 annual follow-up visits. Patient management was left to GP in interim.	Never smokers N = 141 Procedur e: As for interventi on	Median 5.1 years	20% decline in GFR Change in proteinuria	Not stated

Table 311: Ref ID: 2113 [Orth et al 2005]

Effect size:

BP at baseline was well controlled for both smokers (135/80 mm Hg) and non-smokers (138/79 mm Hg) and improved during follow-up.

Effect of Smoking on GFR

GFR remained stable during follow-up in non-smokers (107 to 106 ml/min) but decreased significantly in smokers (95 to 83 ml/min, p<0.001).

Ref	ference	Study type	Number of patients	Patient characteristics	Intervention	Comparis on	Length of follow-up	Outcome measures	Source of funding
		Upc .	patients			011	ionon up	measures	Turraing
Sm	okers had a	significan	tly increased o	dds of a 20% decline in GER compared to	non-smokers [OR 2.52 (95%	CI 1.06 to 5.9	99), p<0.01], Tł	nis relationship p	ersisted after

Smokers had a significantly increased odds of a 20% decline in GFR compared to non-smokers [OR 2.52 (95% Cl 1.06 to 5.99), p<0.01]. This relationship persisted after adjustment for diabetes type or control, retinopathy, age, BMI, ACE inhibitors use, BP, proteinuria (F-ratio=65.9, p<0.0001).

Male gender and diabetes type independently influenced course of renal function in smokers compared to non-smokers. Male smokers had a significantly increased odds of a 20% decline in GFR compared with male non-smokers [OR 5.32 (95% CI 1.49 to 18.9), p<0.05]. Smokers with type 1 diabetes had a significantly increased odds of a 20% decline in GFR compared with non-smokers with type 1 diabetes [OR 4.49 (95% CI 1.36 to 14.7), p<0.05]. NS for presence or absence of retinopathy, proteinuria, or ACE inhibitors use.

Error! No text of specified style in document.

Chronic kidney disease

Effect of Smoking on Proteinuria

Proteinuria increased from baseline to the end of the study in smokers (0.36 to 0.44 g/24-h, N=44) and non-smokers (0.47 to 0.54 g/24-h, N=141), but there was NS differences between the two groups.

Table 312: Ref ID: 3913 [Roderick et al. 1996]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Roderick PJ, Raleigh VS, Hallam L et al. The need and demand for renal replacement therapy in ethnic minorities in England. J Epidemiol Community Health. 1996; 50(3):334- 339. Ref ID: 3913	Retros pective cross- section al study Eviden ce level: 3 53 renal units, Englan d	N RRT patients total = 5901	Inclusion: retrospective cross- sectional survey of all English residents > 16 years old accepted for renal replacement therapy (RRT, dialysis or transplantation) in renal units in England in 1991 and 1992. Exclusion criteria: Welsh or Scottish residents treated in England, patients returning to dialysis after a failed renal transplant Population baseline characteristics: of 5901 RRT patients, 86.3% were white, 7.7% were Asians, and 4.7% were black people.	Asians on RRT Blacks on RRT Procedure: Population denominators for ethnic populations obtained from 1991 census. Underlying disease was specified by renal units using the European Dialysis and Transplant Association coding system. Renal units ascribed patients to Asian (Indian, Pakistani, or Bangladeshi), Black (Black Caribbean, Black African, and Black others) or White ethnicities.	Whites on RRT Procedure: As for intervention	N/A	Acceptanc e to RRT (dialysis or transplant ation)	Dept. of Health

Effect size:

Completeness of the data on RRT acceptances was 99.0% for age, sex, and district of residence, 93.5% for ethnicity, and 91.9% for underlying cause.

1991 Census: 93.8% of English population is white, 3.0% Asian, 1.9% black.

Of 5901 RRT patients, 86.3% were white, 7.7% were Asians, and 4.7% were black people.

Effect of Ethnicity on Acceptance to Renal Replacement Therapy

L²

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
	n (N=3063)	[RR 3.1, (95% C	nce rates to RRT compared with white Cl 2.7 to 3.5)]. Asian women (N=178) ha		-	•		

Black adults had 3.2 fold higher acceptance rates to RRT compared with white people. Black men (N=161) had 3.0 fold higher acceptance rates to RRT compared with Caucasian men (N=3063) [RR 3.0, (95% CI 2.6 to 3.5)]. Black women (N=111) had 3.4 fold higher acceptance rates to RRT compared with Caucasian women (N=1871) [RR 3.4, (95% CI 2.8 to 4.1)].

Acceptance to RRT increased with increasing age, regardless of ethnicity. After standardising rates for age and sex, the relative rate of RRT was 4.2 for Asian people and 3.7 for black people compared to white people.

Underlying Causes of Renal Disease:

Asians [RR 5.5 (95% CI 4.7 to 7.2)] and blacks [RR 6.5 (95% CI 5.1 to 8.3)] had higher rates of RRT compared with white people due to diabetic renal disease. Asians [RR 2.2 (95% CI 1.2 to 4.1)] and blacks [RR 3.2 (95% CI 1.4 to 7.2)] had higher rates of RRT compared with white people due to hypertension. Asians [RR 2.8 (95% CI 1.9 to 4.1)] and blacks [RR 2.3 (95% CI 1.1 to 4.4)] had higher rates of RRT compared with white people due to glomerulonephritis. Asians [RR 5.7 (95% CI 4.5 to 7.2)] and blacks [RR 1.8 (95% CI 1.0 to 3.4)] had higher rates of RRT compared with white people due to "unknown" causes of renal disease.

Rates of RRT were still higher in Asians and blacks compared to white people when analysis was restricted to a pooled group of 37 areas with high black and Asian populations (idea is that both whites and ethnic minorities in these areas would have same access to renal services, and the acceptance rates should have therefore been similar among whites ,blacks, and Asians).

Table 313: Ref ID: 3957 [Xue et al. 2007]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Xue JL, Eggers PW, Agodoa LY et al. Longitudinal study of racial and ethnic differences in developing end-stage renal disease among aged medicare beneficiaries. Journal of the American Society of Nephrology. 2007; 18(4):1299-1306. Ref ID: 3957	Retrospectiv e Case series Evidence level: 3 USA	N total = 1306825 N white =1163868 N black = 94511 N other = 48446	Inclusion: 5% random sample of US Medicare beneficiaries > 65 years old followed from Jan. 1, 1993 for up to 10 years or until death. Exclusion criteria: ESRD at baseline Population baseline characteristics: 89.1% white, 7.2% black. 62% female, mean age 76 years, 16% diabetic, 38% hypertensive	Blacks N=94511 Procedure: Data on patients treated for ESRD from USRDS database. Ethnicity (non-Hispanic black or non-Hispanic white) and death data drawn from Denominator Files. Diabetes and hypertension status obtained from Medicare claims.	Whites N=1163868 Procedure: As for intervention	10 years or until death	ESRD	National Institute of Diabetes and Digestive and Kidney Diseases, NIH

Effect size:

After adjustment for age and gender, black people were 2.0 times more likely to have diabetes than white people at baseline and 1.5 times more likely to have diabetes at follow-up. Black people were 2.0 and 1.1 times more likely to have hypertension at baseline and follow-up than white people.

Effect of Ethnicity on ESRD

After adjustment for age and gender, the cumulative 10-year likelihood of developing ESRD was 2.6% in whites and 6.7% in blacks with baseline diabetes. Compared with white people with baseline diabetes (N=175313), black people with baseline diabetes (N=25049) were 2.4 times more likely to develop ESRD.

After adjustment for age and gender, the cumulative 10-year likelihood of developing ESRD was 1.4% in whites and 3.8% in blacks with baseline hypertension.

		Number of				Length of	Outcome	Source of
Reference	Study type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding

Compared with white people with baseline hypertension (N=426300), black people with baseline hypertension (N=51016) were 2.5 times more likely to develop ESRD.

After adjustment for age and gender, the cumulative 10-year likelihood of developing ESRD was 0.3% in whites and 1.3% in blacks with no baseline hypertension and no baseline diabetes. Compared with white people with neither baseline hypertension nor diabetes (N=4651490), black people with neither hypertension nor diabetes at baseline (N=34916) were 3.5 times more likely to develop ESRD.

Women had higher risk of ESRD than men: HR adjusted for age

Characteristic	White	Black Men (95% CI)	Black Women (95% CI)
Diabetes baseline	1.0	2.12 (1.90 to 2.36)	2.50 (2.31 to 2.71)
Diabetes follow-up	1.0	1.93 (1.61 to 2.33)	3.41 (2.94 to 3.95)
Hypertension baseline	1.0	2.05 (1.87 to 2.25)	2.82 (2.63 to 3.02)
Hypertension follow-up	1.0	2.22 (1.90 to 2.60)	3.62 (3.17 to 4.13)
No hypertension No diabetes	1.0	3.27 (2.55 to 4.19)	4.03 (2.91 to 5.57)

Limitations: lack of biochemical data, lacks of data on other potential confounders (smoking, socioeconomic status, proteinuria), possible selection bias, caution in extrapolating results to younger people.

Q.5.8 Information, education and support for people with CKD and their carers (2014 guideline – chapter 8.1)

Table 314: Ref ID: 4049 [Manns et al. 2005]

	Study	Number of				Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding
Manns BJ,	RCT	N = 70	Inclusions: people with	Standard care + 2 phase educational	Standard care	1 month	Intent to	Southern
Taub K,	Open		CKD and eGFR < 30	intervention	(control		start home-	Alberta
Vanderstrae	label	1/35 = 3%	ml/min/1.73 m ² and	N=35	group)		care dialysis	Renal

ועמרוסנומן כוונווכמו שמומפוונופ

רהווו ה

LUT4

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
ten C et al. The impact of education on chronic kidney disease patients' plans to initiate dialysis with self-care dialysis: a randomized trial. Kidney International . 2005; 68(4):1777- 1783. Ref ID: 4049	Evidence level: 1 + 1 centre, Canada 80% power, blinded, randomis ed, allotment conceale d, not ITT, not	drop-out in control group and 7/35 = 20% drop out in education group	seen at least once in the pre-dialysis renal clinic. Exclusion: cognitive dysfunction, non- English-speaking, people who could not do own activities of daily living, currently on dialysis Baseline population characteristics: NS differences between groups for age (64.4 years), gender, comorbid conditions (CHF, CHD, PVD, stroke, diabetes), MDRD eGFR (20.4 in education group vs.20.3 ml/min/1.73m ² in control group, NS)	Protocol : Patients were randomised to standard care (teaching about kidney disease, dietary instruction, and different dialysis modalities) or 2 phase education + standard care. The 2-phase education consisted of booklets discussing advantages/disadvantages of self- care dialysis and in depth information on self-care dialysis modalities. A 15 minute video on dialysis modalities was presented. In the second phase, 2 weeks later, a 90 minute group discussion of self-care dialysis consisting of 3-6 patients, a nephrologist, and predialysis nurse was done. A questionnaire assessing intent to start home care dialysis was given at baseline (both groups), at week 2 after the education session (education group only) and at week 4 (both groups)	N=35 Protocol: as for intervention			Program, Calgary Health Trust Funds

Intention to start self-care dialysis:

At baseline there was NS differences (p=0.6) between the education + standard care group (57.1% intend to start self-care dialysis, N=35) compared with the standard

	Study	Number of				Length of	Outcome	Source of	
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding	
care group (48	8.6% intend t	o start self-care	dialysis, N=35) for patient	s' intention to start self-care dialysis.					
At study end, s	At study end, significantly more people in the education (post phase 2) + standard care group (82.1% intend to start self-care dialysis, N=28) intended to start self-care								
dialysis compa	red with the	standard care g	group (50% intend to start	self-care dialysis, N=34) for patients' inte	ention to start sel	f-care dialysis	(p=0.015).		
There was NS	difference (p	=0.2) between	the education (post phase	1) + standard care group (66.7% intend	to start self-care o	dialysis, N=30)	compared with	the	
standard care	group at stu	dy end (50% int	end to start self-care dialy	sis, N=34) for patients' intention to start	self-care dialysis.				

Long term follow-up:

Patients followed up for mean 339 days. 10 in total started dialysis: 7 in control and 3 in the intervention group. Importantly, 9/10 patients who started dialysis started the modality they had selected as their planned choice. Thus, the primary outcome was a reliable surrogate marker for the modality eventually selected by the patient. 4/7 controls started self-care dialysis. 2/3 intervention started self-care dialysis.

Note: no blinding, not ITT, underpowered as they needed 30 to 40 people in each arm, and the intervention group only had 28 completing the trial.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Inaguma D, Tatematsu M, Shinjo H et al. Effect of an educational program on the predialysis period for patients with chronic renal failure. Clinical & Experimenta I Nephrology. 2006; 10(4):274- 278. Ref ID: 4053	Retros pective cohort study Evidenc e level: 2 + 1 centre, Japan	N = 176	Inclusions: Retrospective study of people initiating dialysis from 2002-2005 in a renal unit Exclusion: rapidly progressive glomerulonephritis, acute renal failure Baseline population characteristics: NS differences between groups for age (67 years), gender, cause of CKD, BMI, CrCl (7.3 ml/min in education group vs.6.9 ml/min in no education group, NS). Total protein, albumin, haemoglobin, and hematocrit were significantly higher in the education group than the no education group at start of RRT.	educational intervention N=70 Protocol: Patients initiating dialysis were retrospectively reviewed and grouped into those who had received predialysis education and those who did not receive predialysis education. Predialysis education consisted of 4 hours of lectures (10 patients/group) from dieticians, nurses, nephrologists on renal function, chronic renal failure, treatment, daily-life instructions, explanations of different dialysis modalities, dialysis therapy, dietary therapy, medical expense and welfare systems. Those patients who did not receive education did so because dialysis had to be started before the next education program slot or the patient did not want to attend the education course. In this control group, standard dialysis	No educational intervention (control group) N=106 Protocol: as for intervention	Retrospecti ve study of people initiating dialysis from 2002- 2005	Hospitalisation Planned initiation of RRT (defined as a patient managed by a nephrologist for > 3 months and in whom blood access or a peritoneal catheter had been created or in place 2 weeks before initiation) Emergent initiation of RRT Use of double- lumen catheter for dialysis	Not stated

Table 315: Ref ID: 4053[Inaguma et al 2006]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
				information was provided by the			Selection of	
				attending physician if requested			treatment	
				by the patient.			modality	

Planned initiation of RRT

Significantly more people in the predialysis education group (approx 65%, N=70) had a planned initiation of RRT compared with those who did not receive education (approx. 35%, N=106, p=0.001 between groups).

Emergent initiation:

Significantly fewer people in the predialysis education group (approx 35%, N=70) had an emergent (emergency??) initiation of RRT compared with those who did not receive education (approx. 65%, N=106, p=0.001 between groups).

Use of double-lumen catheter for dialysis

Significantly fewer people in the predialysis education group (approx 5%, N=70) used a double-lumen catheter for hemodialysis compared with those who did not receive education (approx. 25%, N=106, p<0.0003 between groups).

Selection of treatment modality:

NS differences between groups for choice of haemodialysis (90% in education group versus 95% in no education group, p=0.126). NS differences between groups for choice of peritoneal dialysis (10% in education group versus 5% in no education group, p=0.126). No patient chose to have a renal transplant.

Duration of hospitalisation for purpose of creating an access and starting dialysis:

People who received predialysis education spent significantly fewer days in hospital in the initiation period of RRT (mean 21.2 days, N=70) compared with those who did not receive education (mean 33.3 days, N=106, p=0.001 between groups)

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Note: Bias: due	e to volunt	ary participati	on in education program thes	e patients could have already unders	stood the details	of their diseas	e, and could have m	aintained
their health be	tter prior	to dialysis initi	ation than those who did not	participate in the education sessions	. Retrospective c	ohort study		

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Levin A, Lewis M, Mortiboy P et al. Multidiscipli nary predialysis programs: quantificatio n and limitations of their impact on patient outcomes in two Canadian settings. American Journal of Kidney Diseases. 1997; 29(4):533- 540. Ref ID: 4065	cohort study Evidenc e level: 2 + 1 centre, Vancou ver, Canada (ignore d the Toront o study as irreleva nt outcom e)	N = 76	Inclusions: people initiating dialysis from 1992-1995 in a renal unit at St. Paul's Hospital, Vancouver, Canada. Exclusion: changed dialysis modality, failed transplants, unresolved acute renal failure, known to nephrologists < 4 months Baseline population characteristics: NS differences between groups for age, proximity to Vancouver, creatinine levels at initiation of dialysis.	Clinic-based education N=37 Protocol: Patients entered a predialysis clinic education program or received standard care. The clinic education program consisted of discussions with a nurse educator, physician, social worker, and nutritionist about renal function, BP, bone disease, diet therapy over multiple visits. Frequency of clinic visits and lab tests dictated by severity of renal disease. Mean time spent by patients was 15-33 hours/year of renal insufficiency. Those patients who did not receive clinic-based education were managed according to local practice and seen by nephrologists/GPs for 30-60 min at regular intervals (7-15 hours/year of renal insufficiency). Both groups received educational videos on dialysis modes and demonstrations of the various dialysis modalities.	Standard care (control group) N=39 Protocol: as for intervention	initiating dialysis from 1992- 1995	Hospitalisati on days Urgent dialysis start Percent patients training as outpatients Selection of treatment modality	Not stated

Table 316: Ref ID: 4065 [Levin et al. 1997]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding			
Effect size:											
Urgent dialysis start:											
• •		le in the clinic-l	pased predialysis education g	roup (13%, N=4/37) required an urgent dia	Ilysis start comp	ared with tho	se who received	l standard			
care (35%, N=13/39, p<0.05 between groups).											
Selection of t	reatment r	nodality:									
		•	ice of peritoneal dialysis (53%	6 in clinic-based education group versus 42	% in standard c	are group, p=1	NS) .				
		•	ice of peritoneal dialysis (53%	6 in clinic-based education group versus 42	% in standard c	are group, p=1	۷S).				
	s between	groups for cho	ice of peritoneal dialysis (53%	6 in clinic-based education group versus 42	% in standard c	are group, p=N	۷S).				
NS difference Duration of h	s between ospitalisat	groups for cho		6 in clinic-based education group versus 42 days in hospital in the first month of dialys			·	se who			

Percent patients training as outpatients

Significantly more people in the clinic-based predialysis education group (76%, N=37) trained for dialysis as outpatients compared with those who received standard care (43%, N=39, p<0.05 between groups).

The clinic-based education group also had better control of MAP, haemoglobin, calcium at initiation of dialysis than those in the standard care group.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Lindberg JS, Husserl FE, Ross JL et al. Impact of multidiscipli nary, early renal education on vascular access placement. Nephrology News & Issues. 2005; 19(3):35-36. Ref ID: 4084	Retros pective cohort study Evidenc e level: 2 + 1 centre, USA	N = 147	Inclusions: Retrospective study of people with creatinine > 4.0 mg/dl, creatinine clearance < 20 ml/min, albuminuria, or microalbuminuria initiating haemodialysis from 1997- 2000 in the Ochsner Clinic Foundation Exclusion: previous peritoneal dialysis, previous kidney transplant, pre- existing permanent vascular access. Baseline population characteristics: NS differences between groups for age (62 years), race, gender, cause of CKD, albumin, haemoglobin.	Healthy Start Program educational intervention N=61 Protocol: Patients were referred to the clinic 6-12 months prior to initiation of dialysis. People in the Healthy Start education program received lectures, handbooks, and slide presentations on renal function, chronic renal failure, treatment, daily-life instructions, explanations of different dialysis modalities, dialysis therapy, and dietary therapy. Those patients who did not receive the Healthy Start education program received care for renal failure inside or outside of the Ochsner clinic (often presenting at the clinic < 30 days before dialysis initiation) and received conventional care (dialysis modality information, CKD video, meeting with a social worker in hospital). Types of vascular access obtained from patient records	No Healthy Start educational intervention (control group) N=86 Protocol: as for intervention	Retrospect ive study of people initiating dialysis from 1997- 2000	Vascular Access Placement s	Ochsner Clinic Foundatio n, Amgen, National Nephrolog Y Associates LLC

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Permanent V	ascular Ac	cess before Init	tiation of Dialysis:					
		-		n program (77%, N=61) had permanent vas 36%, N=86, p<0.001 between groups)	cular access plac	ed before init	iation of dialy	sis compare
people who	o did not pa	irticipate in the		n program (74%, N=61) had arteriovenous f (38%, N=86, p<0.05 between groups). Ove ersus 10% non-HSC, p<0.001)	-		-	-
Permanent V	ascular Ac	cess used for d	ialysis initiation					
		-	thy Start predialysis education y Start program (23%, N=86, p	n program (49%, N=61) initiated dialysis wi o<0.01 between groups)	th a permanent	vascular acce	ss compared v	vith people
		-	thy Start predialysis educatior nt program (30%, N=86, p<0.0	n program (70%, N=61) initiated dialysis wi 1 between groups)	th an arterioven	ous fistula cor	npared with p	eople who
			ny Start predialysis education p 36, p<0.01 between groups)	program (30%, N=61) initiated dialysis with	a graft compare	ed with people	e who did not	participate i
	v less peop	le in the Health	ny Start predialysis education p	program (51%, N=61) initiated dialysis with	a temporary ca	theter compa	red with peop	le who did

Table 318: Ref ID: 4070 [Anandarajah et al. 2005]

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Anandarajah S,	Cross	N Stage 3-	Inclusion criteria:	Aim: to use manual searching to	N/A	Not stated	Prevalenc	No
Tai T, de LS et	sectional	5 CKD in 1	NEOERICA study:	test the validity of computer			e of CKD	funding
al. The validity	analysis by	practice	medical records of	searching of primary practice				

Q.5.9

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
of searching routinely collected general practice computer data to identify patients with chronic kidney disease (CKD): a manual review of 500 medical records. Nephrol Dial Transplant. 2005; 20(10):2089- 2096. Ref ID: 4070	computerise d and manual (to validate the computer method) review of medical records Evidence Level: 3 1 primary care practice, UK	identified by computer searching = 492	adults > 18 years old with a valid serum creatinine Exclusion criteria: deaths before 2003 Baseline Characteristics: not stated	medical records to estimate prevalence of CKD. Procedure: MIQUEST computer program used to extract a retrospective dataset of all patients from 1 primary care practice. Records also reviewed manually for additional free text which is not recognised by computerised search. eGFR was calculated with the MDRD equation. Demographic, biochemical data, patient history, examination data, coded diagnoses, and prescription data were collected and cleaned. CKD defined as eGFR < 60 ml/min/1.73 m ²				

Prevalence of CKD:

The study population was standardised to the original study. The adjusted prevalence of Stage 3-5 CKD was 5.1%.

477/492 (97%) were Stage 3; 14/492 (2.8%) were Stage 4, 1/492 (0.2%) was Stage 5.

Only 36/492 (7.3%) of people identified as having stage 3-5 CKD were known to renal services or had a renal diagnosis coded on their records.

Manual checking of medical records:

Identified only 4 additional cases of CKD missed by the computer search. This brought the number of people with a renal disease code or known to renal services to n=40 or 8% (40/492).

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
			etrospectively reviewing m a made estimating Stage 1	nedical records. Ethnicity unreliably rep	ported, creatinir	ie not calibrate	d to original	MDRD

Table 319: Ref ID: 4074 [Hemmelgarn et al. 2007]

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Hemmelgarn BR, Culleton BF, Ghali WA. Derivation and validation of a clinical index for prediction of rapid progression of kidney dysfunction. Qjm. 2007; 100(2):87-92. Ref ID: 4074	Case series (reviewing medical records) Evidence Level: 3 Canada	N total = 10184 N derivation cohort = 6789 N validation cohort = 3395	Inclusion: Adults ≥ 66 years with one or more serum creatinine measurements during each of two time periods: July – December, 2001 as well as July – December, 2003. were identified from Calgary Laboratory Services database. Exclusion criteria: laboratory measurements associated with a hospital admission, dialysis patients at entry, subjects with more than 12 creatinine measurements in either of the 6 month observation periods, subjects who underwent renal transplant prior to July 1, 2003, subjects with GFR > 90 ml/min/1.73 m ²	Aim: to develop a clinical index tool to identify subjects at risk of rapid progression of kidney disease and to validate this in a separate cohort of older people Procedure: eGFR was calculated with the MDRD equation. Serum creatinine measurements were performed in one laboratory. The first serum creatinine measurement (July 1-Dec. 31, 2001) defined the index GFR. Medications dispensed 6 months prior to 2001 index creatinine measurement was used to determine disease categories (cardiac disease, depression, diabetes, hypertension, dyslipidaemia, liver disease, PVD, etc). Disease categories and drug exposures were considered in a stepwise logistic	N/A	2 years	Rapid progressi on of kidney dysfuncti on (≥ 25% decline in mean eGFR between the two study periods)	Not stated

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטב4

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
			Baseline Characteristics: mean age in both validation and derivation cohort was 76.1 years. In the total group, 65% had eGFR 60-89 ml/min/1.73 m ² and 31% had eGFR 30-59 ml/min/1.73 m ² and 4% had eGFR < 30 ml/min/1.73 m ²	regression analysis and risk scores were calculated for each subject. The risk scores (from 0 to 4+) were then categorised into risk classes (I to V). Rates of rapid progression were calculated.				

Rapid progression of kidney dysfunction (≥ 25% decline in mean eGFR between the two study periods)

Multivariate analysis: Of the 25 disease variables used in the model, only 5 variables were significantly associated with rapid progression of kidney dysfunction:

Age > 75 years [adjusted OR 1.0 (95% CI 1.0 to 1.1)]; point score for risk index = 1

Cardiac disease [adjusted OR 1.5 (95% Cl 1.2 to 1.8)]; point score for risk index = 2

Diabetes [adjusted OR 1.9 (95% CI 1.6 to 2.2)]; point score for risk index = 2

Gout [adjusted OR 1.5 (95% CI 1.1 to 2.1)]; point score for risk index = 2

Anti-emetic drug use [adjusted OR 2.9 (95% Cl 1.6 to 2.2)]; point score for risk index = 3

Rate of rapid progression of renal dysfunction (%) by risk stratification

Risk index (score)	Derivation cohort N=6789	Validation cohort N=3395
	Rate (%) (95%Cl)	Rate (%) (95%Cl)
Class I (0)	8.6 (7.5 to 9.8)	8.4 (6.8 to 10.1)
Class II (1)	10.9 (9.6 to 12.2)	11.6 (9.8 to 13.5)
Class III (2)	13.9 (11.5 to 16.7)	15.5 (12.1 to 19.5)

Reference St	tudy type	Number of patients	Patient	characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Class IV (3)				15.6 (13.3 to 18.0)		17.3 (13.9 to 2	1.1)		
Class V (4+)				24.1 (19.9 to 28.8)		21.9 (16.2 to 2	8.5)		

The rate of rapid progression of kidney dysfunction increased with increasing risk class (see above) in both the derivation and validation cohorts. People in Class V risk index had almost a triple risk of rapid renal disease progression compared with people in the Class 1 risk index.

C statistic for the model was 0.59 indicating a modest ability to discriminate between people with and without risk of rapid renal disease progression.

Note: Limitations – albuminuria was not included in the model, associations not causality, disease categories based on medication use, which may misclassify and underestimate true prevalence of a certain disease, validation of risk scores only done in 1 small cohort

Table 320: Ref ID: 4134 [Richards et al.2007]

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Richards N, Harris K, Whitfield M, O'Donoghue D, Lewis R, Mansell M et al. The impact of population- based identification of chronic kidney disease using estimated gloerular filtration rate (eGFR) reporting. Nephrology Dialysis and Transplantation. In press 2007. Ref ID: 4134	Longitudinal observation al study/befor e and after Evidence Level: 3 31 practices, Lincolnshire primary care trust , UK	N PCT population = 185434 N eGFR reported in first 12 months of disease managemen t program = 47119	Inclusion criteria: Optimal Renal Care UK (ORC UK) study: people > 15 years old identified from automated eGFR reporting from April 1, 2005 to March 31, 2006. Exclusion criteria: inpatient blood samples	Aim: to determine if primary practice computerised medical records contain sufficient information to estimate prevalence of CKD. Procedure: PCT-based disease management programme (DMP) was guideline and algorithm –based (from draft UK CKD guidelines) for the identification, management, and referral of people with CKD. The DMP used automated eGFR from all routine serum creatinine measures between April 1, 2005 to March 31, 2006 and eGFR was calculated with the MDRD equation. Patients were designated as primary care, secondary care (non-nephrology) or nephrology care depending on the site of origin of the first eGFR received. People with CKD Stage 3-5 originating in either primary or secondary (non-nephrology) were followed up for 12 months, looking for an eGFR originating from within nephrology care. DMP also	N/A	1 year	Prevalenc e of CKD Nephrolo gy Referral Location of care	Some authors affiliated with Fresenius Medical Care Renal Services UK

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטב4

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
				comprised community nurses, dieticians and social workers and care was delivered face-to-face and by telephone.				

Prevalence of CKD:

- In the first 12 months of the DMP, eGFR was reported in primary care from N=47119 people. eGFR testing increased with increasing age.
- 29% of eGFR results from primary care were consistent with Stage 3-5 CKD, and the estimated prevalence of Stage 3-5 CKD in primary care was 7.3% (5.3% in males and 9.3% in females, p<0.001). The estimated prevalence of Stage 3-5 CKD from all sources was 8.8%.
- 65%, 81% and 49% of people with Stage 3, 4, and 5, respectively, were > 70 years old.

Location of Care:

• 82.6% of people with Stage 3-5 CKD were cared for by primary care. Only 3.7% of people with Stage 3-5 CKD were cared for by nephrology secondary care and 13.7% in non-nephrology secondary care. The majority of people with CKD Stage 5 were cared for by nephrology secondary care, but there were significantly fewer women than men under nephrology care (0.57:1, p<0.001).

Impact of eGFR reporting on nephrology referrals:

- In the year before the DMP, 53 people with Stage 4-5 CKD in the WLPCT were referred to nephrology services and 11 (20.8%) died within 12 months.
- In 2005-2006 (after DMP initiation) the DMP enrolled 483 people with Stage 4 or 5 and N=50 (10.4%) died within 12 months, p<0.05. Suggests that the DMP was having an impact in terms of earlier referral.
- Following initiation of DMP, the number of referrals rose 2.7 times compared to the number of referrals 11 months prior to DMP commencement.
- After introduction of a referral assessment service in October 2005, referrals declined steadily with a reduction of 42% from the peak after 9 months. The referral rate remained 1.5 times greater than before DMP, but the people being referred were more appropriate for nephrology services.
- The referral assessment service showed that 40% of referrals did not follow referral guidelines.
- After initiation of the referral assessment service in the DMP, the referral rate tailed off rapidly and by 6 months a steady state of an average of 5 new CKD stage 4 or

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding		
5 patients being referred developed. This was a 0.16% incidence and within the capacity of local nephrology services.										
Note: Limitation	s –some ascerta	inment hias un:	able to ascertain if crea	tinine was calibrated to MDRD lab in the	automated eGF	R reporting cr	eatinine not (obtained		
			able to ascertain if crea	tinine was calibrated to MDRD lab in the	automated eGF	R reporting, cr	eatinine not o	obtained		

Table 321: Ref ID: 4135 [Richards et al. 2007]

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Richards N, Harris K, Whitfield M, O'Donoghue D, Lewis R, Mansell M et al. Primary care-based disease management of chronic disease (CKD), based on estimated glomerular filtration rate (eGFR) reporting, improves patient outcomes. Nephrology Dialysis and Transplantatio n. In press 2007. Ref ID:	Longitudinal observational study/before and after Evidence Level: 3 31 practices, Lincolnshire primary care trust , UK	N total= 483 N stage 3 CKD = 115 N Stage 4 CKD = 297 N Stage 5 CKD = 71	Inclusion criteria: Optimal Renal Care UK (ORC UK) study: people > 15 years old identified from automated eGFR reporting from April 1, 2005 to March 31, 2006. Exclusion criteria: inpatient blood samples Baseline characteristics: Mean age 77.1 years, 47% male, 30% diabetic, 60.4% took statins (declined with decreasing renal function), 52% took ACE or ARB (declined with decreasing renal function)	Before initiation of disease management programme (DMP) Procedure: PCT-based disease management programme (DMP) was guideline and algorithm – based (from draft UK CKD guidelines) for the identification, management, and referral of people with CKD. The DMP used automated eGFR from all routine serum creatinine measures between April 1, 2005 to March 31, 2006 and eGFR was calculated with the MDRD equation. People with CKD Stage 4-5 were identified and enrolled in the DMP program consisting of community nurses, dieticians and social workers and care was delivered face-to-face and by telephone. The main goals were patient education, medicine management, dietetic advice, and achieving guideline targets.	After initiation of disease management programme (DMP)	1 year	Achievem ent of clinical targets Preservati on of renal function	Some authors affiliated with Fresenius Medical Care Renal Services UK

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
4135	Study type	patients		intervention, exposure	Companson	ionow-up	measures	Tunung
Effect size:								
Achievement	of Clinical Targets	5:						
• •	ith Stage 3-5 CKD, 75% in target after			urements in target range increased	significantly after S) months of the	DMP (64.5%	in target a
• In people wi months on t	-	there was NS d	ifferences in HDL choleste	rol, LDL cholesterol, or triglyceride	neasurements in t	arget range at b	aseline comp	pared to 9
• •	•		es and a PCR < 100, the pe target after 9 months, p=0	rcentage of SBP measurements in t 0.001).	arget range increas	sed significantly	after 9 mont	ths of the
	-		es and a PCR < 100, the pe target after 9 months, p=0	rcentage of DBP measurements in 1 0.01).	arget range increa	sed significantly	/ after 9 mon ⁻	ths of the
 In people wi on the DMP 	•	with diabetes o	r a PCR > 100, there was N	IS differences in SBP or DBP measu	ements in target r	ange at baseline	e compared t	o 9 month
on the DIVIP								
	of renal function							
Preservation of		proved to Stage	e 2 CKD					
Preservation of N=3 people w	of renal function	-						
Preservation N=3 people w N=15 people v	of renal function ith CKD Stage 3 im	leteriorated to S	Stage 4 CKD					
Preservation o N=3 people w N=15 people v N=113 with St	of renal function ith CKD Stage 3 im with Stage 3 CKD d	leteriorated to S ed to Stage 3 CH	Stage 4 CKD KD					
Preservation of N=3 people w N=15 people w N=113 with St N=1 person w	of renal function ith CKD Stage 3 im with Stage 3 CKD d age 4 CKD improve	leteriorated to S ed to Stage 3 C eteriorated to St	Gtage 4 CKD KD age 5					
Preservation of N=3 people w N=15 people w N=113 with St N=1 person w N=4 people w	of renal function ith CKD Stage 3 im with Stage 3 CKD d age 4 CKD improve ith Stage 4 CKD de	leteriorated to S ed to Stage 3 CH eteriorated to St approved to Stage	Gtage 4 CKD KD age 5					
Preservation of N=3 people w N=15 people w N=113 with St N=1 person w N=4 people w	of renal function ith CKD Stage 3 im with Stage 3 CKD d age 4 CKD improv ith Stage 4 CKD de ith Stage 5 CKD im	leteriorated to S ed to Stage 3 Cl eteriorated to St aproved to Stage itiated dialysis	Gtage 4 CKD KD age 5	12 months after DM	1P initiation		P value	
Preservation of N=3 people w N=15 people w N=113 with St N=1 person w N=4 people w N=8 people w	of renal function ith CKD Stage 3 im with Stage 3 CKD d age 4 CKD improv ith Stage 4 CKD de ith Stage 5 CKD im	deteriorated to Stage 3 CH eteriorated to St aproved to Stage itiated dialysis 9 mo	Stage 4 CKD KD age 5 e 4	_		m²	P value	
Preservation of N=3 people w N=15 people w N=113 with St N=1 person w N=4 people w N=8 people w	of renal function ith CKD Stage 3 im with Stage 3 CKD d age 4 CKD improv ith Stage 4 CKD de ith Stage 5 CKD im	leteriorated to Stage 3 CH eteriorated to St approved to Stage itiated dialysis 9 mon media	Stage 4 CKD KD age 5 e 4 nths preceding DMP	_	QR), ml/min/1.73	m²	P value <0.001	

Chronic kidney disease Error! No text of specified style in document.

Reference	Study type	Number of patients	Patient characteristics	Intervention	/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
(fall eGFR ≥ 5 m	/min/1.73 m²)								
195 (fall eGFR < 5 ml/min/1.73 m²)		²) -1.92	-1.92 (-0.41 to -3.23)		-0.86 (-1.03 to -3.53)		0.082 NS		
fall \geq 5 ml/min/:		nontris of the	DMP the fall in eGFR was s	ignificantly less	s (slower) after 12 mon		THIS WAS AISO L	rue for peop	e with egrk
Death was signit	ficantly associated	d with:							
• Age (RR 1.008, p=0.001)									
• CKD at presen	tation (RR 2.538,	p=0.026)							
• SBP < 100 mm	n Hg (RR 6.128, p=	0.035)							

Composite endpoint (progression to dialysis, death, decline in eGFR≥ 5 ml/min/1.73 m²) only significantly associated with age (RR 1.063, p=0.005)

Table 322: Ref ID: 4069 [Stevens et al. 2007]

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Stevens PE, O'donoghue DJ, de LS et al. Chronic kidney disease management in the United Kingdom: NEOERICA project results.[see comment]. Kidney International. 2007; 72(1):92- 99. Ref ID: 4069	Cross sectional analysis by retrospectiv ely reviewing computerise d medical records Evidence Level: 3 17 primary care practices in Kent, Greater Manchester, and West Surrey, UK	N practice population = 162113 N valid creatinine recorded in adults (study cohort) = 38262	Inclusion criteria: NEOERICA study: medical records of adults > 18 years old with a valid serum creatinine identified between 1998 to 2003 Exclusion criteria: deaths before 2003 Baseline Characteristics: of N=38262 people with valid creatinine recorded, mean age was 58 years; female: male was 1.3:1; mean BMI 27.1 kg/m ² , 70% of study population had a creatinine measure in the last 24 months of the five year study period.	Aim: to determine if primary practice computerised medical records contain sufficient information to estimate prevalence of CKD. Procedure: MIQUEST computer program used to extract a retrospective dataset of all patients from 17 primary care practices. Serum creatinine was calibrated to the method used by the MDRD laboratory and eGFR was calculated with the MDRD equation. Demographic, biochemical data, patient history, examination data, coded diagnoses, and prescription data were collected and cleaned. CKD defined as eGFR < 60 ml/min/1.73 m ²	N/A	5 years	Prevalenc e of CKD Prevalenc e of co morbiditi es (hyperten sion, CVD, diabetes, anaemia) Achieved BP targets Medicatio n usage	Roche

Effect size:

וואנוטרואר כווחוכאו שעומפווחפ כפרונרפ בטב4

		Number of				Length of	Outcome	Source of
Reference	Study type	patients	Patient characteristics	Intervention/ exposure	Comparison	follow-up	measures	funding
Prevalence of CK	D:							
-	-	-		ce was higher in females (10.6% creased the proportion of peop				
-	ople > 70 years o ² were > 70 year		R decreased: 76.7% of people	e with eGFR < 30 ml/min/1.73 n	n ² were > 70 yea	ars old. 50% wi	th eGFR 45-5	9
-				n ² . However, only 242 (2.1%) of had a recorded renal diagnosis				e records.
Anaemia:								
Records showed	that 84.6% of th	e cohort (32385/38	262) had concurrent haemo	globin levels tested.				
Anemia (WHO de	finition, KDOQI	definition, or Hb < 1	L1 g/dl) increased with decre	easing eGFR.				
Hypertension:								
21332/38262 (55	.8%) were recor	ded as hypertensive	e (code or BP > 140/90 mm H	lg). Hypertension increased wit	h declining eGFI	R.		
ACE/ARB use was ACE/ARB with eG		· · · ·	rtension and use fell as eGFR	declined: 43% used ACE/ARB w	vith eGFR 45-59	ml/min/1.73 r	m ² whereas 3	32.5% used
BP targets:								
RP targets were	not achieved in r	nost instances: only	63/461 (13 7%) of people w	ith hypertension and eGER < 30	ml/min/1.72 m	² achieved BD	< 130/80 mm	

BP targets were not achieved in most instances: only 63/461 (13.7%) of people with hypertension and eGFR < 30 ml/min/1.73 m² achieved BP < 130/80 mm Hg. Only 571/6235 (9.2%) people with hypertension and eGFR 45-59 ml/min/1.73 m² achieved BP < 130/80 mm Hg.

Diabetes:

4063/38262 (10.6%) had a recorded diagnosis of diabetes. Diabetes prevalence increased as GFR decreased. In those with diabetes and eGFR < 60 ml/min/1.73 m², ACE/ARBS were prescribed in 690/1601 (44%), aspirin and/or antiplatelet drugs in 621/1601 (39.6%), and lipid lowering agents in 942/1601 (60.1%). Only 270/1313 (20%) with diabetes, hypertension, and eGFR < 60 ml/min/1.73 m² achieved target BP < 130/80 mm Hg.

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
CVD:								
7620/38262 (209 45-59 ml/min/1.		CVD prevalence incr	eased as eGFR decreased. 50	0% of people with eGFR < 30 ml	/min/1.73 m ² ha	ad CVD and 279	% of people w	vith eGFR
		R < 60 ml/min/1.73	m ² took ACE/ARBS compare	d with 34% of people with CVD	and eGFR > 60 r	nl/min/1.73 m	² (p<0.001)	
			· · ·					
				records. Ethnicity unreliably rep	orted, neyman l	oias, poor reco	rding of	
proteinuria/haer	naturia made est	timating Stage 1 and	d 2 difficult.					

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Weiner DE, Tighiouart H, Elsayed EF et al. The Framingham predictive instrument in chronic kidney disease. Journal of the American College of Cardiology. 2007; 50(3):217-224. Ref ID: 4110	Observatio nal study Evidence level: 3 USA	N Framingha m derivation cohort= 5251 N Subjects with CKD = 934	Inclusion: patient data pooled from Atherosclerosis Risk in Communities (ARIC) and Cardiovascular Health Study (CHS). ARIC: people 45-64 years old recruited between 1987 and 1989 from 4 communities. CHS: subjects ≥ 65 years old recruited between 1989 and 1990. Exclusion criteria: people > 74 years old, people with baseline GFR < 15 ml/min/1.73 m ² , people with missing baseline coronary heart disease status or missing laboratory data Population baseline characteristics: Compared with the Framingham derivation cohort, people with CKD were older (65 years CKD vs.48 years Framingham), more likely to have diabetes (14% CKD vs.5% Framingham) and more likely to have optimal BP in the range of SBP < 120 mm Hg, DBP < 80 mm Hg (25% CKD vs.20% Framingham). Mean eGFR of CKD cohort was 52.9 ml/min/1.73	Subjects with CKD (from the pooled ARIC and CHS studies) N = 934 Procedure: Baseline serum creatinine measured and calibrated to Third NHANES values. MDRD equation used to estimate GFR. Framingham risk scores calculated for each individual with CKD to derive the 5 and 10 year Framingham probability of a coronary event.	Framingham cohort N = 5251 Procedure: As for intervention	N/A	Ability of the Framingham prediction model to predict 5 year and 10 years risk of cardiac events (Myocardial infarction (MI) and Fatal coronary heart disease) in people with CKD	National Heart, Lung, and Blood Institute, Amgen

Table 323: Ref ID: 4110 [Weiner et al. 2007]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding	
			m ²						
Effect size									
Among men wit	th CKD (N=357), there were 3	35 (9.8%) cardiac events within 5 year	s and 74 (20.7%) cardia	c events within 1	0 years. 53 (14.8	3%) men with CK	D died within	
5 years and 126	5 (35.3%) men	with CKD died	within 10 years.						
•			e 30 (5.2%) cardiac events within 5 ye	ars and 56 (9.7%) cardia	ac events within :	10 years. 54 (9.4	1%) women with	CKD died	
within 5 years a	ind 120 (20.8%) women with	CKD died within 10 years.						
Best Cox regress	sion coefficien	ts for people v	vith CKD and for the original Framing	nam cohorts for 10-year	cardiac outcome	es:			
Note that Best o	cox models use	e the same trad	ditional risk factors as the original Fra	mingham equation, but	assign different	weight to each f	actor		
For men, beta c	coefficients we	re significantly	different for men with CKD compare	d with men in the origin	nal Framingham o	cohort for both	the hyperlipidae	mia group	
(beta = - 0.37 Cł	KD versus beta	= + 0.74 Fram	ingham, p<0.05) and the Stage 2-4 h	pertension group (beta	a = -0.05 CKD vers	sus beta = + 0.9) Framingham, p	<0.05)	
		•	ntly different for women with CKD cor	•	•	•	•		
	• •	1.07 CKD versu	us beta = - 0.37 Framingham, p<0.05)	and the Stage 2-4 hype	rtension group (b	eta = +2.24 CKE	versus beta = +	0.61	
Framingham, p<	<0.05)								
		•	m prediction model to separate those	who had cardiac event	s from those who	o did not; quant	ified by the C-sta	atistic which i	
analogous to ar	ea under the r	eceiver operat	ing characteristic curve)						
•	•	• •	oor discrimination in the CKD cohort.	• .	•			•	
•	vithin 10 years	only 60% of th	e time, compared with 69% of the tin	• .	•			•	

Chronic kidney disease Error! No text of specified style in document.

In women with CKD, discrimination was 73% for 10-year cardiac events compared with 76% in the original Framingham cohort.

Poforonco	Study type	Number of	Patient characteristics	Intervention	Comparison	Length of	Outcome	Source of
Reference	Study type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding
Calibration (ass calibration):	sesses whether	predicted out	comes and actual outcomes agree a	nd is quantified with the o	chi-square statist	ic, with high ch	ni square values ir	idicating poor
Among men wit	th CKD, the Fra	ımingham equ	ation under predicted cardiac event	s when people were strati	fied into guintile	s of Framingha	am Risk The 5 -ye	ear calibration
-) and the 10 year calibration was als		-	U	,	
Similarly, the Fr 75.1, p<0.01) ca		uation under p	redicted cardiac events in women w	vith CKD, resulting with po	or 5 year (chi sq	uare 61.2, p<0.	01) and 10 year (chi square
75.1, p<0.01) Ca								
Re-calibrated m	odels perform	ed better, alth	ough prediction remained poor in n	nen with CKD (5 year chi s	quare 13.7, p=0.0	01 and 10 year	chi square 32.3, j	p<0.01). In
		on showed NS	difference in predicted and observe	d cardiac events in 5 and 3	10 year probabili	ty models.		
Sensitivity Anal	-							
	-	-	composite outcome of MI and all-ca obabilities in men and women.	ause mortality showed tha	t the event rate	increased as Fr	amingham risk ro	se. Best cox
Authors conclue	de that Framin	gham equatio	ns do not accurately predict cardiac	events in people with CKE).			
Limitations: no	baseline prote	einuria data. Cl	(D population had moderate CKD ar	nd thus no information on	how Framinghar	n equation pre	dicts cardiac ever	nts in people

Limitations: no baseline proteinuria data, CKD population had moderate CKD and thus no information on how Framingham equation predicts cardiac events in people with more advanced CKD

Table 324: Ref ID: 414 [Castaneda et al.2001]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Castaneda C, Gordon PL, Uhlin KL et al. Resistance training to counteract the catabolism of a low- protein diet in patients with chronic renal insufficiency. A randomized, controlled trial.[see comment]. Annals of Internal Medicine. 2001;	RCT Evidence level: 1+ Randomise d, blinded 1 centre USA Not ITT	N =26 Drop out rate 0% in each arm	Inclusion criteria: people > 50 years with CKD (creatinine 133-442 micromol/l or 1.5-5.0 mg/dl) Exclusion criteria: MI in past 6 months, unstable chronic condition, dementia, alcoholism, dialysis or RRT, current resistance training, recent involuntary weight change (2 kg), albumin < 30 g/l, proteinuria > 10 g/d, abnormal stress test result at screening Baseline characteristics: NS differences between people randomised to resistance training or	N=14 Resistance training + low protein diet Procedure: Nutrition status and adherence to low-protein diet (0.6 g/kg body weight per day) was observed for 2-8 weeks run-in. Participants randomised to resistance group + low protein diet (three exercise sessions/week supervised by a blinded trainer with increasing workloads on five weight resistance machines) or to sham training + low protein diet (gentle movements of upper and lower body while standing, sitting and bending designed to have no physiologic impact). Muscle strength tests determined at baseline and after 12 weeks of	N=12 Sham training + low protein diet	3 months	Change in muscle strength Change in GFR Total body K	National Institute on Aging, New England Medical Center Research Fund, US Dept. of Agricultur e Research Service

נוטחמו כווחוכמו שמומפווחפ כפחנרפ 2014

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
135(11):965-			sham training for	training. GFR (¹²⁵ I-iothalamate),				
976. Ref ID:			gender, age (65 years),	biochemical measures				
414			GFR (24 or 27 ml/min),	determined at baseline and 12				
			body composition,	weeks after randomisation.				
			biochemical or health					
			variables					

Adherence to resistance training was 91% and to sham training was 90%. NS difference.

Adherence to low protein diet: resistance training group consumed 108% of target protein levels and sham group consumed 112% of target protein levels (NS between groups)

Change in muscle strength: People who took resistance training + low protein diet had an increase in muscle strength (+32%, N=14), whereas the sham training + low protein diet had decreased overall muscle strength (-13%, N=12). P<0.001 between groups.

Change in Total body Potassium: Resistance training increased total body potassium in the resistance training + low protein diet (+4%, N=12), whereas potassium decreased in the sham training + low protein diet (-6%, N=11), p=0.014 between groups

Change in GFR: GFR increased in people with resistance training + low protein diet (+ 1.18 ml/min/1.73m² absolute change, N=14), whereas GFR decreased in the sham training + low protein diet group (-1.62 ml/min/1.73m² absolute change, N=12). P=0.048 between groups.

No exercise adverse events or injuries were reported in either group.

Assessment of bias: small study may not be adequately powered to detect changes between groups.

ועמנוטרומו כווחוכמו שטומפווחפ כפחנרפ בטדא

Table 325: Ref ID: 4016 [Eidemak et al. 1997]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Eidemak I, Haaber AB, Feldt RB et al. Exercise training and the progression of chronic renal failure.[see comment]. Nephron. 1997; 75(1):36-40. Ref ID: 4016	RCT Evidence level: 1+ Randomis ed, blinding not applicable Denmark ITT	N =30 Drop out rate 20% in exercise 26% in usual	Inclusion criteria: nondiabetic people with moderate progressive CKD (median GFR 25 ml/min/1.73m ² , range 10-43 ml/min/1.73m ²) Exclusion criteria: not stated Baseline characteristics: NS differences between people randomised to exercise training or control (usual, sedentary lifestyle) for gender, age (45 years), GFR (26 ml/min) aerobic work capacity, BP, progression of nephropathy (reciprocal of serum creatinine vs.time)	N=15 Exercise training Procedure: Patients randomised to exercise group (mainly bicycle ergometer exercise in the patient's home, running, swimming, and walking) or to control group (patients maintained their usual, mostly sedentary lifestyle). Exercise duration and intensity gradually increased up to 60-75% of maximal exercise capacity determined by exercise testing. Exercise tests were performed before randomisation and at the end of the study. Exercise testing consisted of cycling on an electronically braked bicycle ergometer coupled to a cardiopulmonary gas exchange system. Plasma creatinine, physical exam, and clinical chemistry tests performed at baseline and every month. GFR	N=15 Usual (sedentary lifestyle)	1.5 years or until death or RRT (median 20 months in control and 18 months in the exercise group	Change in maximal aerobic work capacity Progression of renal disease (slope of GFR vs.time) Blood lipids (triglycerides, VLDL, LDL, HDL cholesterol, total cholesterol)	University of Copenhagen, Medical Foundation if Greater Copenhagen, Danish Kidney Foundation, Foundation, Faroe Islands and Greenland, Lilly Bertine Lund's Foundation

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטב4

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
				(⁵¹ Cr-EDTA clearance) was measured at baseline, and every 3-9 months.				

3 people in the exercise group started dialysis, N=2 in the control group started dialysis.

N=1 control died (unknown reason)

N=1 control withdrew after 10 months for personal reasons.

Change in maximal aerobic work capacity: Maximal aerobic work capacity significantly increased in the exercise group (N=15; 25 ml O_2 / (min X kg BW) at baseline to 27 ml O_2 / (min X kg BW) after 18 months, p<0.05), whereas maximal aerobic work capacity did NS change in the control group (N=15, 21 ml O_2 / (min X kg BW) at baseline to 19 ml O_2 / (min X kg BW) after 20 months, p NS).

Change in GFR: Median GFR decreased in both control (N=15; -0.28 ml/min/month) and exercise groups (N=15; -0.27 ml/min/month, NS between treatments)

Blood Lipids: NS changes from baseline in triglycerides, VLDL, HDL, LDL cholesterols in exercise or control groups. Total cholesterol significantly increased from baseline in the exercise group, p<0.05. NS changes from baseline for total cholesterol in the control group.

Assessment of bias: No blinding (not possible), small study N=15 in each arm may not be adequately powered to detect changes between groups. Authors note that renal function did not decline with exercise and suggest that exercise is neither detrimental nor overly beneficial to this population. Exercise could have other benefits (cardiovascular, feelings of well-being, etc)

Reference type	y Number of patients	Patient characteristics	Intervention	Compari son	Length of follow-up	Outcome measures	Source of funding
Hovind P, Prosp Rossing P, ctive Tarnow L et cohor al. Smoking and Evide progression e leve of diabetic 2 + nephropathy in type 1 diabetes Care. 2003; 26(3):911- 916. Ref ID: 558	301 rt N smokers nc = 176	Inclusion: patients with type 1 diabetes and nephropathy (persistent albuminuria > 300 mg/24-h in at least 2 of 3 consecutive 24-h urine collections, presence of diabetic retinopathy) attending the Steno clinic. Exclusion criteria: other renal disease Population baseline characteristics: NS between groups for duration of diabetes, retinopathy, albuminuria, HbA1C. Ex-smokers (mean 40 years) were significantly older than non- smokers (35 years) or smokers (36 years). Smokers had significantly lower SBP and DBP than non- smokers or ex-smokers. Smokers had significantly higher GFR (92 ml/min/1.73m ²) versus non- smokers (86 ml/min/1.73m ²).	Smokers N = 176 Ex-smokers N=31 Procedure: At baseline and every 3-4 months, patients visited the clinic and had BP, blood glucose, HbA1C, albuminuria, weight measured. Patients completed a standardised questionnaire to assess smoking status: Smokers (smoke > 1 cigarette/day during any portion of the study period), ex-smokers (subjects who quit smoking before entering the study and remained non-smokers during the study). GFR was measured annually with ⁵¹ Cr-EDTA plasma clearance. BP was targeted to < 140/90 mm Hg with antihypertensive therapy with predominantly ACE inhibitors.	Non smokers N = 94 Procedur e: As for intervent ion	Median 7 years (range 3-14 years)	decline in GFR	Danish Diabetes Foundation, Hansen Foundation, Per S. Henriksen Foundation

Table 326: Ref ID: 558 [Hovind et al. 2003]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Compari son	Length of follow-up	Outcome measures	Source of funding	
Effect size:									
Median cigarettes was 20/day in the smokers and had been 20/day in ex-smokers.									
Effect of Smok	ing on GF	R: After adjusti	ment for BP, albuminuria, HbA1C and	cholesterol, there was NS differen	ice in the rat	e of GFR decline	e between non	-smokers	
(mean 4.4 ml/min/year), ex-smokers (mean 3.4 ml/min/year, and smokers (mean 4.0 ml/min/year).									
Albuminuria, cholesterol, MAP, and HbA1C were all significant independent predictors of progression.									

Reference	Study type	Number of patients	Patient characteristics	Intervention	Compari son	Length of follow-up	Outcome measures	Source of funding
Ibanez L, Morlans M, Vidal X et al. Case- control study of regular analgesic and nonsteroidal anti- inflammatory use and end-stage renal disease. Kidney International. 2005; 67(6):2393-2398. Ref ID: 290	Case control Evidence level: 2+ Barcelona , Spain	Cases with ESRD = 520 Controls without ESRD = 982	Inclusion criteria: Cases: all patients entering dialysis program because of ESRD between June 1995 and Nov. 1997 in all dialysis centers in Barcelona, Spain. Controls: randomly selected from hospital admission lists, including acute conditions not known to be related with NSAID use. Exclusion criteria: serious conditions, physical impairment (deafness or blindness), mental disability, illiteracy, renal transplantation recipients, non-residents of Barcelona Population baseline characteristics:Median age 64 years (cases) and 63 years (controls). Cases: glomerulonephritis (17%),	Users of analgesics and NSAIDS in Cases with ESRD = 122 Users of analgesics and NSAIDS in controls = 166 Procedure: Two controls were age (within 5 years), sex, and hospital matched with each case. Trained nurses interviewed cases and controls about type, dose, and duration of analgesic use, demographics, first diagnosis of renal disease, co-morbid conditions, smoking, alcohol, and caffeine consumption. Investigator abstracted medical records to classify ESRD according to underlying cause of renal disease. Users were people who used any analgesic or NSAID daily or every other day for 30 days or longer at any time before the date of the first diagnosis of renal disease. Index date established by 2 independent investigators	Nonusers of analgesic s and NSAIDS in Cases with ESRD = 398 Nonusers of analgesic s and NSAIDS in controls = 816	Not applicable	Risk of ESRD	Dept of Health and Social Security

Table 327: Ref ID: 290 [Ibanez, 2005]

Study type	Number of patients	Patient characteristics	Intervention	Compari son	Length of follow-up	Outcome measures	Source of funding
		vascular nephropathy (34%), interstitial nephritis (13%), diabetic nephropathy (11%), cystic kidney disease (9%), unknown cause (13%)	blinded to drug use from patient and medical record information. Index date for the controls was the same as for the matched cases.				

Odds ratios (OR) adjusted for smoking, hypertension, arteriopathy, diabetes, kidney stones, gout

Effect of Analgesic and NSAID use on Risk for ESRD: Compared with non-users (N=398 cases, N=816 controls), users of analgesics and NSAIDS (N=122 cases, N=166 controls) had NS risk of ESRD [adjusted OR 1.22 (95% CI 0.89 to 1.66)]

Sub-analysis: Effect of Aspirin use and Risk for ESRD: Users of aspirin (N=81 cases, N=94 controls) had a significantly increased risk of ESRD compared with nonusers [adjusted OR 1.56 (95% CI 1.05 to 2.30)]. The effect of aspirin was related with the cumulative dose (p trend =0.012) and duration of use (p trend= 0.012).

Sub-analysis: Effect of Pyrazolone use and Risk for ESRD: Users of pyrazolones (N=34 cases, N=51 controls) had NS risk of ESRD compared with nonusers [adjusted OR 1.03 (95% CI 0.60 to 1.76)]

Sub-analysis: Effect of non-aspirin NSAID use and Risk for ESRD: Users of non-aspirin NSAIDs (N=37 cases, N=51 controls) had NS risk of ESRD compared with nonusers [adjusted OR 0.94 (95% CI 0.57 to 1.56)]

When the exposure time was increased to 6 months prior to any symptom of renal disease, the OR for ESRD by each drug category was similar.

Smoking and ESRD: Smokers (N=320 cases, N=557 controls) had a significantly increased risk of ESRD compared with non-smokers [adjusted OR 1.54 (95% CI 1.14 to 2.07)]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Compari son	Length of follow-up	Outcome measures	Source of funding
Note: possible recall b	ias may have	caused miscla	ssification of analgesic use.					

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Morales E, Valero MA, Leon M et al. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathi es. American Journal of Kidney Diseases. 2003; 41(2):319- 327. Ref ID: 318	RCT Evidence level: 1+ Not blinded Spain	N =30	Inclusion criteria: chronic (> 1 year duration) proteinuric (> 1 g/24-h urine protein on at least 3 consecutive determinations in preceding 6 months) nephropathy of diabetic or nondiabetic origin , BMI > 27 kg/m ²) Exclusion criteria: Unstable renal disease, nephrotic syndrome requiring diuretic therapy, immunosuppressiv e therapy, hypertension requiring > 2 antihypertensive agents	Low calorie diet N=20 Procedure: Prior to the study, all patients completed a 2 month observation period with a full history, exam, blood pressure, BMI, and lab tests. ACE inhibitors, nondihydropyridine CCBs, and ARBs were withdrawn 6 weeks prior to randomisation. Statins and antihypertensive agents (other than ACE, ARB, or CCB) permitted as long as dose remained the same throughout. BP targeted to < 140/90 mm Hg (doxazosin as first choice, then amlodipine if needed) Patients randomised 2:1 to low-calorie normo-protein diet group or control (usual diet) group. The low-calorie normo-protein diet was a reduction of 500 kcal with respect to the individual's usual diet (determined from 3 day food diaries) and consisted of 25-30% fat and 55-65% carbohydrate of totl caloric intake. Protein content was adjusted to 1 to	Usual diet N=10	5 months	BMI Change in protein excretion Change in CrCl Change in serum creatinine	Not stated

Table 328: Ref ID: 318 [Morales 2003]

Reference Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
		Baseline characteristics: NS differences between people randomised to low calorie or usual diet	 1.2 g/kg/day. Physical exam, BMI, BP, weight, interview with dietician performed at baseline and weeks 1,3, and 5 after randomisation. Laboratory evaluations performed at baseline, 1 and 5 months later. CrCl estimated from Cockcroft Gault. 				

Weight: Weight significantly decreased after 5 months of a low calorie diet (87.5 kg at baseline to 83.9 kg after 5 months, p<0.01, N=20), whereas weight increased significantly in the usual diet group (96.1 kg at baseline to 98 kg at 5 months, p<0.05, N=10) and p<0.05 between groups.

BMI: BMI significantly decreased after 5 months of a low calorie diet (33 kg/m² at baseline to 31.6 kg/m² after 5 months, p<0.01, N=20) and significantly increased in the usual diet group (34.3 kg/m² at baseline to 35 kg/m² after 5 months, p<0.05, N=10) and p<0.05 between groups.

BP: NS changes in SBP and DBP in either low calorie or usual diet groups.

Change in CrCl: There were NS changes in CrCl after 5 months of low calorie diet, however CrCl significantly decreased in the usual diet group (61.8 ml/min/1.73 m² at baseline to 56 ml/min/1.73 m² after 5 months, p<0.05) NS changes between groups

Change in serum creatinine: There were NS changes in serum creatinine after 5 months of a low calorie diet, whereas creatinine significantly increased after 5 months of a usual diet (1.6 mg/dl at baseline to 1.8 mg/dl at 5 months, p<0.05) NS between groups.

Change in protein excretion: Urinary protein excretion significantly decreased after 5 months of a low calorie diet (2.8 g/24-h at baseline to 1.9 g/24-h at 5 months, - 31% reduction, p<0.05). There was a NS increase in proteinuria in the usual diet group (3 g/24-h at baseline to 3.5 g/24-h at 5 months, NS). (p<0.05 between groups).

	_		Patient			Length of	Outcome	Source of
Reference	Study type	patients	characteristics	Intervention	Comparison	follow-up	measures	funding
Neight loss was	s significantly o	correlated with	a decrease in UPE (r=0	0.62, p<0.01), but not BP or creatinine cl	earance.			
-								
sesuits were sin			liabetic people were ar	laryseu separatery.				
Assessment of I	bias: small stu	dy N=30 and sh	nort follow-up (5 mont	hs) No blinding, Cockcroft Gault less acc	urate to estimat	e CrCl in obese pe	eople.	
		,	1.	, 8,		•		

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparis on	Length of follow-up	Outcome measures	Source of funding
Orth SR, Stockmann A, Conradt C et al. Smoking as a risk factor for end- stage renal failure in men with primary renal disease. Kidney International . 1998; 54(3):926- 931. Ref ID: 911	retrosp ective Case- control Evidenc e level: 2 +	N pairs = 102 N matched IgA-GN pairs = 54 N matched ADPKD pairs = 48 European multi-centre study: Austria, Germany, Italy	Inclusion: biopsy-proven IgA- glomerulonephritis (IgA-GN) or ultrasonography-proven autosomal dominant polycystic kidney disease (ADPKD) Exclusion criteria: systemic diseases involving the kidney (diabetes, lupus), immunosuppressive therapy, age at renal failure < 21 years Population baseline characteristics: NS difference between case (patients with ESRD) and matched controls (renal disease; no ESRD) with respect to age at renal death of cases compared to mean age of controls, age at diagnosis of renal disease, overall antihypertensive medication use, serum cholesterol, low protein diet, lipid lowering medication use. Male cases and controls were similar with	 5-15 pack years (cigarettes) N males = 28 males >15 pack years (cigarettes) N males=43 Procedure: Medical records searched to identify case and control patients, and to retrieve clinical and demographic data. Case patients were defined by the presence of ESRD (need for chronic haemodialysis or kidney transplant). Control patients were identified by the failure to progress to serum creatinine value > 3 mg/dl during a minimum observation period of 1 year (with a minimum of 3 creatinine measurements required). Controls did not require RRT. Cases and 	0-5 pack years (cigarette s) N males =73 Procedur e: As for interventi on	N/A Dropouts: 17.9% of controls and 12.2% of cases failed to return smoking questionnai re	ESRD	Not stated

Table 329: Ref ID: 911 [Orth et al. 1998]

ω

Chronic kidney disease Error! No text of specified style in document.

	Study	Number of			Comparis	Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	on	follow-up	measures	funding
			respect to DBP, calcium channel	controls were matched				
			blocker use. SBP was higher in	according to type of renal				
			male cases than controls (146	disease (AKPKD or IgA-GN),				
			vs.139 mm Hg). ACE inhibitor	gender, region of residence,				
			use was significantly lower in	and age at renal death.				
			male cases than controls (25%	Smoking habits were				
			vs.42%). Female cases and	assessed with a				
			controls were similar with	standardised mail				
			respect to SBP and ACE	questionnaire.				
			inhibitor use.					

Analysis was restricted to male cases and matched controls (N=72 pairs), as the female pairs (N=30 pairs) were too few. In females, smoking was NS associated with risk of ESRD.

IgA-GN and ADPKD pairs were combined in the analysis as separate analyses showed similar effects of smoking on ESRD

Effect of Smoking on progression to ESRD: CRUDE analysis: Compared to men who smoked for 0-5 pack-years (N=73 total; N cases=26, N controls=47), men who smoked 5-15 pack years (N=28 total; N cases = 17, N controls = 11) had a significantly increased odds of ESRD [unadjusted OR 3.5 (95% CI 1.3 to 9.6), p=0.017]. Compared to men who smoked for 0-5 pack-years (N=73 total; N cases=26, N controls=47) men who smoked >15 pack years (N=43 total; N cases=29, N controls = 14) had a significantly increased odds of ESRD [unadjusted OR 5.8 (95% CI 2.0 to 17), p=0.001].

There was significant interaction between the smoking variable and ACE inhibitor use (p=0.026). Patients treated with ACE inhibitors (N cases=18, N controls = 30). Patients not treated with ACE inhibitors (N cases = 54, N controls = 42)

Compared to men who did not receive ACE inhibitors and smoked for 0-5 pack-years, men who smoked > 5 pack years and did not receive ACE inhibitors had a significantly increased odds of ESRD [adjusted OR 10.1 (95% CI 2.3 to 45), p=0.002]. adjusted for SBP

Compared to men who received ACE inhibitors and smoked for 0-5 pack-years, men who smoked > 5 pack years and received ACE inhibitors had NS risk of ESRD

	Study	Number of			Comparis	Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	on	follow-up	measures	funding
[adjusted OR 1	L.4 (95% CI	0.3 to 7.1), p=0.65]. adjusted for SBP					
Note: limitatio	ons – femal	les were excluded f	rom analysis due to low frequency	of smoking in this group, confo	unding by of	ther variables?	,	
Note: limitatio	ons – femal	les were excluded f	rom analysis due to low frequency	of smoking in this group, confo	unding by ot	ther variables?	, ,	

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparis on	Length of follow-up	Outcome measures	Source of funding
Orth SR, Schroeder T, Ritz E et al. Effects of smoking on renal function in patients with type 1 and type 2 diabetes mellitus. Nephrol Dial Transplant. 2005; 20(11):2414- 2419. Ref ID: 2113	Prospe ctive cohort Evidenc e level: 2 +	N total = 185 N smokers = 44 N never smokers = 141 1 centre study: Germany	Inclusion: patients with type 1 or 2 diabetes attending the clinic Exclusion criteria: people with GFR < 60 ml/min/1.73m ² , ex-smokers Population baseline characteristics: 60% had type 1 diabetes. 72% non- smokers and 86% smokers had proteinuria > 0.15 g/d. Smokers were significantly younger (47 vs.54 years), more likely to be male, and had a lower GFR than non-smokers (95 vs.107 ml/min). NS difference between smokers and non-smokers with respect to BMI, diabetes type 1, insulin use, duration of diabetes, HbA1c, retinopathy, proteinuria, hypertension, SBP, DBP, ACE inhibitors use, CAD, PVD, stroke.	Smokers N = 44 Procedure: At baseline, patients had a physical exam (BP, anthropometry, spot urine test, serum creatinine, cholesterol, triglycerides), an interview, and completed a standardised questionnaire to assess smoking status. GFR was estimated with MDRD equation. Patients had at least 4 annual follow-up visits. Patient management was left to GP in interim.	Never smokers N = 141 Procedur e: As for interventi on	Median 5.1 years	20% decline in GFR Change in proteinuria	Not stated

BP at baseline was well controlled for both smokers (135/80 mm Hg) and non-smokers (138/79 mm Hg) and improved during follow-up.

Effect of Smoking on GFR:GFR remained stable during follow-up in non-smokers (107 to 106 ml/min) but decreased significantly in smokers (95 to 83 ml/min, p<0.001). Smokers had a significantly increased odds of a 20% decline in GFR compared to non-smokers [OR 2.52 (95% Cl 1.06 to 5.99), p<0.01]. This relationship persisted after

	Study	Number of			Comparis	Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	on	follow-up	measures	funding
adjustment for	diabotos	tuno or control	rotinonathy ago RMI ACE inhibitors	uso PD protoinuria (E ratio-65	0 n < 0 0 0 0 1	1		

adjustment for diabetes type or control, retinopathy, age, BMI, ACE inhibitors use, BP, proteinuria (F-ratio=65.9, p<0.0001).

Male gender and diabetes type independently influenced course of renal function in smokers compared to non-smokers. Male smokers had a significantly increased odds of a 20% decline in GFR compared with male non-smokers [OR 5.32 (95% CI 1.49 to 18.9), p<0.05]. Smokers with type 1 diabetes had a significantly increased odds of a 20% decline in GFR compared with non-smokers with type 1 diabetes [OR 4.49 (95% CI 1.36 to 14.7), p<0.05]. NS for presence or absence of retinopathy, proteinuria, or ACE inhibitors use.

Effect of Smoking on Proteinuria: Proteinuria increased from baseline to the end of the study in smokers (0.36 to 0.44 g/24-h, N=44) and non-smokers (0.47 to 0.54 g/24-h, N=141), but there was NS differences between the two groups.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Pechter U, Ots M, Mesikepp S et al. Beneficial effects of water-based exercise in patients with chronic kidney disease. International Journal of Rehabilitatio n Research. 2003; 26(2):153- 156. Ref ID: 4014	Non- rando mised controll ed trial Evidenc e level: 2 -	N total = 26 N water- based exercise = 17 N sedentary control = 9 1 centre study: Estonia	Inclusion: patients with moderate CKD Exclusion criteria: not stated Population baseline characteristics: NS differences between two groups for age, sex, BP, GFR (62 vs.69 ml/min, exercise vs.control), cystatin C, peak VO ₂	N water-based exercise = 17 Procedure: At baseline and after 12 weeks of intervention, patients had a physical exam (BP, anthropometry, spot urine test, serum creatinine, cystatin C, triglycerides) and underwent a breath-by-breath bicycle cardiopulmonary test. Water-based aerobic exercise was performed twice/week for 30 minutes/session in a swimming pool. The control group maintained their mostly sedentary lifestyle. GFR was estimated with Cockcroft Gault equation.	N sedentary control = 9 Procedure: As for intervention	3 months	Change in GFR Change in cystatin C Change in proteinuria Cardiorespir atory parameters Blood lipids	Not stated

Table 331: Ref ID: 4014 [Pechter 2003]

Effect size:

Change in GFR: There were NS changes in GFR from baseline to 12 weeks in people who took aerobic water-based exercise (62.9 ml/min at baseline to 67.1 ml/min at 12 weeks, NS), and there were NS changes in GFR in the sedentary control group (69.8 ml/min at baseline to 66.3 ml/min at 12 weeks, NS).

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding		
Change in cystatin C: Cystatin C significantly decreased in the exercise group (1.7 mg/l at baseline to 1.4 mg/l at 12 weeks, p<0.05), whereas there were NS changes in cystatin C in the sedentary control (1.7 mg/l at baseline to 2.0 mg/l at 12 weeks, NS)										
Change in proteinuria : Proteinuria significantly decreased in the exercise group (0.7 g/g PCR at baseline to 0.4 at 12 weeks, p<0.05), whereas there were NS changes in proteinuria in the sedentary control (1.4 mg/l g/g PCR at baseline to 1.5 at 12 weeks, NS)										
-			2 pulse, peak ventilation, and peak low where as there were NS changes in t	• • • •	•		• •			

Blood lipids: There were NS changes in either group for total cholesterol, HDL-cholesterol, LDL-cholesterol, or triglycerides

Note: very small trial, no assessment of power, uneven distribution to each arm, not randomised, no mention of blinding, no mention of loss to follow-up

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparis on	Length of follow-up	Outcome measures	Source of funding
Perneger TV, Whelton PK, Puddey IB et al. Risk of end-stage renal disease associated with alcohol consumptio n. American Journal of Epidemiolog y. 1999; 150(12):127 5-1281. Ref ID: 527	Case- control Evidenc e level: 2 - USA	N cases (people with new ESRD) =716 N controls (age matched from general population) = 361	Inclusion: Cases: people with new- onset ESRD requiring dialysis diagnosed between JanJuly 1991 identified through ESRD registry. Controls: general population identified by random number dialling. Exclusion criteria: not stated Population baseline characteristics: NS difference between case (ESRD) and age matched controls (general population) with respect to age (47 years). 42% of cases were female, 65% controls were female. 54% of cases were black, only 14% of controls were black.	N=716 cases Increasing drinks/month or day Procedure: Age matching between cases and controls. Participants interviewed via telephone about alcohol consumption, amount, frequency, and potential confounders (diabetes, hypertension, acetaminophen use, cigarette smoking, drug use, income, education	N=361 controls Abstainer Procedur e: As for interventi on	N/A 90% of controls and 95% of cases completed the telephone interview	ESRD	Not stated

Effect of Alcohol consumption on progression to ESRD:

Univariate analysis: Compared with abstainers (N=246 cases and N=124 controls), people who drank > 2 alcoholic drinks/day and ≤ 4 drinks/day (N=41 cases, N=7 controls) had a significantly greater odds of ESRD [OR 3.0 (95% CI 1.3 to 6.8)]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparis on	Length of follow-up	Outcome measures	Source of funding
Compared wit 6.1 (95% CI 2.4		rs (N=246 cases	and N=124 controls), people who drai	nk > 4 drinks/day (N=61 cases, I	N=5 controls) had a signific	antly greater odc	ls of ESRD [OR

After excluding N=68 people who drank moonshine and adjusting for age, sex, race, hypertension, income, diabetes, acetaminophen use, smoking, and opiate use (total N=912), people who drank > 2 alcoholic drinks/day had a significantly greater odds of ESRD [OR 4.0 (95% Cl 1.2 to 13.0)] than abstainers.

Error! No text of specified style in document.

Chronic kidney disease

There was NS odds of ESRD for people who drank moderate amounts of alcohol (< 1 drink/day or 1-2 drinks/day) compared with abstainers (adjusted as above)

Note: limitations – The following weren't addressed in the methodology: The same exclusion criteria are used for both cases and controls, Comparison is made between participants and non-participants to establish their similarities or differences. Cases are clearly defined and differentiated from controls. Is it clearly established that controls are non-cases? Measures have been taken to prevent knowledge of primary exposure influencing case ascertainment.

Defense	Charles train	Number of	Patient		6	Length of	Outcome	Source of
Reference Saiki A, Nagayama D, Ohhira M et al. Effect of weight loss using formula diet on renal function in obese patients with diabetic nephropathy International Journal of Obesity. 2005; 29(9):1115- 1120. Ref ID: 149	Study type Before and after prospective observation al study Evidence level : 3 Japan	patients N =22	<pre>characteristics Inclusion criteria: obese (BMI > 25 kg/m²) diabetic people with proteinuria (urinary albumin > 300 mg/day), serum creatinine < 265.2 micromol/l and diabetic retinopathy. Exclusion criteria: Unstable diabetic retinopathy, pleural effusion, severe leg edema Baseline characteristics: Mean age 53.6 years, BMI 30.4 kg/m², CrCl 0.68 ml/s/1.73 m²</pre>	Intervention After low calorie formula diet N=22 Procedure: Patients all received a daily caloric intake of 25-30 kcal/kg and 0.8 g/kg protein for at least 3 months. Statins, antihypertensive agents permitted providing they were prescribed for more than 2 months prior to study and that the doses were unchanged. All patients then switched to a low calorie diet (740 or 970 kcal/day or 11-19 kcal/kg) for 4 weeks. A formula diet providing 170 kcal/pack was used. Patients either consumed one meal of formula diet and 2 ordinary meals (total 970 kcal/day) or 2 formula diet meals and 1 ordinary meal (total 740 kcal/day). Salt intake was 2.79 g/day (740 kcal diet) or 4.90 g/day (970 kcal diet) Plasma creatinine, CrCl (24-h urine collections) physical exam, weight, BP, BMI, and clinical chemistry tests performed at baseline and every week for 4 weeks. Visceral fat measured before and after 4 weeks.	Comparison Before low calorie formula diet N=22	follow-up 1 month	measuresWeightBMIChange in protein excretionChange in CrCl	funding Not stated

ועמנוטחמו כווחוכמו סטומפווחפ כפחורפ בטדק

		Number of	Patient			Length of	Outcome	Source of			
Reference	Study type	patients	characteristics	Intervention	Comparison	follow-up	measures	funding			
Effect size											
Body weight:	Weight significa	antly decreased	d after four weeks of	a low calorie formula diet (85.2 kg at bas	seline to 79.0 kg afte	r 4 weeks, p<0	0.0001)				
BMI: BMI significantly decreased after four weeks of a low calorie formula diet (30.4 kg/m ² at baseline to 28.2 kg/m ² after 4 weeks, p<0.0001)											
BP: SBP and DBP each significantly decreased (p<0.05) after four weeks of a low calorie formula diet.											
Change in CrC	I: There was NS	S change in CrC	l after four weeks of	a low calorie formula diet (0.68 ml/s/1.7	3 m ² at baseline to 0	.77 after 4 we	eks, p NS)				
Change in ser	um creatinine:	Serum creatini	ne significantly decre	eased after 4 weeks of a low calorie-form	ula diet (172.4 micro	omol/l at basel	line to 130.8 mi	cromol/l			
after 4 weeks,	p<0.0001)										
Change in pro	tein excretion:	Urinary protei	n significantly decrea	ased after 4 weeks of a low calorie-formu	la diet (3.27 g/24-h a	at baseline to 2	1.50 g/24-h afte	er 4 weeks,			
p<0.0001)											
Weight loss w	as significantly	correlated with	n a decrease in serum	n creatinine (r=0.621, p=0.0021) and with	a decrease in protei	in excretion (r	=0.487, p=0.021	15)			
Decrease in vi	sceral fat was s	ignificantly cor	related with decreas	es in serum creatinine (r=0.579, p=0.047	5) and with a decrea	se in protein e	excretion (r=0.57	75, p=0.0496			
	()										

Changes in BP (SBP or DBP) were NS correlated with changes in creatinine or urinary protein excretion.

Assessment of bias: small study N=22 and all patients were hospitalised. Before and after study.

Table 334: Ref ID: 1319 [Solerte et al. 1989]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Solerte SB. Effects of diet-therapy on urinary protein excretion albuminuria and renal haemodyna mic function in obese diabetic patients with overt nephropathy International Journal of Obesity. 1989;(2):203 -211. Ref ID: 1319	Before and after prospective observation al study Evidence level: 3 Italy	N =24	Inclusion criteria: obese type 1 and type 2 diabetic people with overt nephropathy (urinary protein excretion > 500 mg/day on six consecutive visits), and diabetic retinopathy. Exclusion criteria: Unstable diabetic retinopathy, pleural effusion, severe leg edema Baseline characteristics: NS different between type 1 and 2 diabetics, therefore results were pooled.	After low calorie diet N=24 Procedure: Prior to the study, all patients received a mean daily caloric intake of 1870 kcal/day (220 kg carbohydrate, 81 g protein, 63 g fat). All patients then switched to a low calorie diet (1410 kcal/day consisting of 170 g carbohydrate, 58 g protein, 49 g fat) for 12 months. Drugs for arterial hypertension were discontinued. Plasma creatinine, creatinine clearance, urinary protein excretion rate, urinary albumin excretion rate, GFR (⁹⁹ Tc ^m) physical exam, weight, BP, BMI, and clinical chemistry tests performed at baseline and after 12 months.	Before low calorie diet N=24	12 months	BMI Change in protein excretion Change in crcl Change in GFR	Not stated

Effect size:

		Number of				Length of	Outcome	Source of
Reference	Study type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding
BMI: BMI signi	ificantly decrea	sed after 12 m	onths of a low calorie diet	t (33.5 kg/m ² at baseline to 26.2 kg/m ² af	fter 12 months, p	0<0.001)		
BP: SBP and D	BP each signific	antly decrease	d (p<0.002) after 12 mont	hs of a low calorie diet.				
Blood lipids: T calorie diet.	otal cholesterc	l (p<0.01) and ⁻	triglycerides (p<0.002)sign	ificantly decreased and HDL cholesterol	(p< 0.05) significa	antly increased	l after 12 mon	ths of a low
Change in CrC	I: CrCl significa	ntly increased a	fter 12 months of low cald	prie diet (80 ml/min/1.73 m ² at baseline t	to 90 ml/min/1.7	/3 m ² after 12 i	months, p<0.0	1)
Change in GFR	: GFR significar	ntly increased a	fter 12 months of low cald	prie diet (64 ml/min/1.73 m ² at baseline t	to 80 ml/min/1.7	/3 m ² after 12 i	months, p<0.0	1).
Change in seru months, p<0.0		Serum creatini	ne significantly decreased	after 12 months of a low calorie diet (14	5.2 micromol/l a	t baseline to 10	01.2 micromol	/l after 12
			n excretion significantly de bathy levels after 12 mont	ecreased by 51% after 12 months of a low hs of low calorie diet.	v calorie diet, p<	0.01. Reductic	on was seen in	all 24
Change in albu	umin excretion	: Urinary albun	nin excretion significantly	decreased by 31% after 12 months of a lo	ow calorie diet, p	<0.01.		
-			ise in UPE or UAE.					
-			re and after study.	ary protein excretion or UAE				
Assessment U	vids. smail Stu	ay 11-24. Del01	e and alter study.					

Q.5.11 Optimal blood pressure ranges (2014 guideline – chapter 10.1)

Table 335: Ref ID: 211 [Jafar et al. 2003]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Jafar TH, Stark PC, Schmid CH et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin- converting enzyme inhibition: a patient-level meta- analysis.[see comment]. Annals of Internal	Meta- analysi s Search MEDLI NE from 1977 to 1999 Evidenc e level 1 +	11 RCT (N=1860)	Inclusions: AIPRD Study Group database: RCTs of at least 1 year follow-up in patients with nondiabetic kidney disease, in which ACE inhibitors are compared to other antihypertensive regimens. Exclusion: acute kidney failure, immunosuppressive drug use, congestive heart failure, obstructive uropathy, renal artery stenosis, active systemic disease, diabetes, transplantation, allergy to ACE inhibitors, pregnancy	Follow-up SBP < 110 mm Hg (N*=253)Follow-up SBP 120-129 mm Hg (N*=959)Follow-up SBP 130-139 mm Hg (N*=1220)Follow-up SBP 140-159 mm Hg (N*=1501)Follow-up SBP >160 mm Hg (N*=1088)*Number of patients with even a single SBP in the corresponding rangeProcedure:Patients randomised to ACE inhibitors or other antihypertensive treatments to	Follow-up SBP 110-119 mm Hg (N*=548)	2.2 years.	Primary Outcome: doubling of serum creatinine or initiation of dialysis	Not stated

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
2003; 139(4):244- 252.	()pe			achieve goal BP of < 140/90 mm Hg. Justification for pooling placebo- controlled trials and active-drug controlled trials is based on the presence of pre-existing hypertension and the use of antihypertensive agents in most patients in the control groups to achieve a BP goal < 140/90 mm Hg				

Primary Outcome: Kidney Disease Progression (doubling of serum creatinine or initiation of dialysis)

Multivariate analysis: baseline and achieved SBP were significantly associated with kidney disease progression (p<0.001 for both). Baseline DBP (p=0.006) and achieved DBP (p=0.007) also significantly associated with kidney disease progression. Baseline and achieved urinary protein excretion also significantly associated with kidney disease progression (p<0.001, for both).

A. Reference SBP 110-119 mm Hg

- People with nondiabetic kidney disease with SBP < 110 mm Hg (N=253) had a significantly increased risk of kidney disease progression compared to people in the reference range 110-119 mm Hg (N=548) [RR 2.48 (95% CI 1.07 to 5.77)]
- People with nondiabetic kidney disease with SBP 120-129 mm Hg (N=959) had NS risk of kidney disease progression compared to people in the reference range 110-119 mm Hg (N=548).
- People with nondiabetic kidney disease with SBP 130-139 mm Hg (N=1220) had NS risk of kidney disease progression compared to people in the reference range 110-119 mm Hg (N=548) [RR 1.83 (95% CI 0.97 to 3.44)].
- People with nondiabetic kidney disease with SBP 140-159 mm Hg (N=1501) had an increased risk of kidney disease progression compared to people in the reference range 110-119 mm Hg (N=548) [RR 2.08 (95% CI 1.13 to 3.86)].
- People with nondiabetic kidney disease with SBP ≥ 160 mm Hg (N=1088) had an increased risk of kidney disease progression compared to people in the reference

	Study	Number of				Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding
range 110-119 mm Hg (N=548) [RR 3.14 (95% CI 1.64 to 5.99)].								

Authors state that the lowest risk of kidney progression was at SBP 110-129 mm Hg. SBP of 130 mm Hg or more were associated with a steep increase in risk. Note that risk is NS at 130-139 mm Hg.

B. Reference urine protein excretion < 0.5 d/day

- People with nondiabetic kidney disease and urine protein excretion of 0.5 to 1.9 g/day (N=1863) had NS risk of kidney disease progression compared to people in the reference range urine protein excretion < 0.5 d/day (N=1022).
- People with nondiabetic kidney disease and urine protein excretion of 2.0 to 2.9 g/day (N=629) had a significantly increased risk of kidney disease progression compared to people in the reference range urine protein excretion < 0.5 d/day (N=1022) [RR 1.67 (95% CI (1.09 -2.54)].
- People with nondiabetic kidney disease and urine protein excretion of 3.0 to 3.9 g/day (N=423) had a significantly increased risk of kidney disease progression compared to people in the reference range urine protein excretion < 0.5 d/day (N=1022) [RR 2.25 (95% CI (1.43 -3.53)].
- People with nondiabetic kidney disease and urine protein excretion of 4.0 to 4.9 g/day (N=320) had a significantly increased risk of kidney disease progression compared to people in the reference range urine protein excretion < 0.5 d/day (N=1022) [RR 3.43 (95% CI (2.09 -5.64)].
- People with nondiabetic kidney disease and urine protein excretion of 5.0 to 5.9 g/day (N=194) had a significantly increased risk of kidney disease progression compared to people in the reference range urine protein excretion < 0.5 d/day (N=1022) [RR 3.41 (95% CI (1.91 -6.06)].
- People with nondiabetic kidney disease and urine protein excretion of ≥ 6.0 g/day (N=234) had a significantly increased risk of kidney disease progression compared to people in the reference range urine protein excretion < 0.5 d/day (N=1022) [RR 4.77 (95% CI (2.92 -7.81)].

C. Protein excretion and SBP (reference 110 -119 mm Hg)

- For people with urine protein excretion < 1g/day, there was NS risk for renal disease progression at any level of blood pressure (The risk increased, but NS, at > 160 mm Hg or < 110 mm Hg).
- For people with urine protein excretion ≥ 1 g/day, there was NS risk for renal disease progression when SBP was 120-129 mm Hg [RR 2.0, NS].
- For people with urine protein excretion ≥ 1 g/day, there was a significantly increased risk for renal disease progression when SBP was 130-139 mm Hg [RR 4.5, no Cl given)

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding	
 For people with urine protein excretion ≥ 1 g/day, there was a significantly increased risk for renal disease progression when SBP was 140-159 mm Hg [RR 5.5, no Cl given) For people with urine protein excretion ≥ 1 g/day, there was a significantly increased risk for renal disease progression when SBP was > 160 mm Hg [RR 8.5, no Cl given). 									
D. Assignment to ACE inhibitors significantly decreases kidney disease progression [RR 0.67 (95% CI 0.53 to 0.84)].									

Authors conclusion: recommend a SBP target of 110-129 in people with urine protein excretion of > 1g/day. SBP < 110 mm Hg is associated with increased risk of kidney disease progression.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Klahr S, Levey AS, Beck GJ et al. The Effects of Dietary Protein Restriction and Blood- Pressure Control on the Progression of Chronic Renal Disease. The New England Journal of Medicine. 1994; 330(13):877- 884.	RCT Evidenc e level: 1 + 15 US nephro logy practic es All analyse s were ITT.	Total N =840 Study 1 N= 585 Study 2 N= 255	Inclusions: Study 1: age 18 to 70 years, serum creatinine 1.2 to 7.0 mg/dl (women) or 1.4 to 7.0 mg/dl (men) or a creatinine clearance < 70 dietary ml/min/1.73 m ² , MAP < 125 mm Hg (normotensive people were included) Study 1: GFR 25 to 55 ml/min/1.73 m ² , dietary protein intake \geq 0.9 g/kg, MAP < 125 mm Hg Study 2: GFR 13 to 24 ml/min/1.73 m ² , MAP < 125 mm Hg Exclusion: pregnancy, body weight under 80% or over 160% standard body weight, diabetes requiring insulin, urinary protein excretion > 10 g/d, history	Low mean arterial pressure (MAP ≤ 92 mm Hg for people 18-60 y or ≤ 98 mm Hg for people 61 and older) equivalent to 125/75 mm Hg Study 1 (GFR 25 to 55 ml/min/1.73 m ²) N= 300 Study 2 (GFR 13 to 24 ml/min/1.73 m ²) N= 132 Protocol: In study 1 and 2, patients were randomised to usual BP or to a lower mean arterial pressure goal. In study 1, patients were also randomised to a usual protein diet (1.3 g protein and 16-20 mg phosphorus/kg per day) or a low protein diet (0.58 g protein and 5- 10 mg phosphorus/kg each day). In Study 2, in addition to BP randomisation, patients were also randomised to a low protein diet or	Usual mean arterial pressure (≤ 107 mm Hg for people 18- 60 y or ≤ 113 mm Hg for people o 61 and older) equivalent to 140/90 mm Hg Study 1 N= 285 Study 2 N= 123 Protocol: as for intervention	2.2 years (mean) 1.9% dropout Study 1 1.2% dropout Study 2	Rate of change of GFR (slope) Composite outcome: ESRD or death	National Institute of Diabetes and Digestive and Kidney Diseases, Health Care Financing Administr ation

Table 336: Ref ID: 3667 [Klahr et al. 1994]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			of renal transplant or	a very low protein diet (0.28 g				
			chronic conditions.	protein and 4-9 mg phosphorus/kg				
				each day supplemented by a keto				
			Baseline population	acid-amino acid mix of 0.28 g/kg				
			characteristics: In either	per day)				
			Study 1 or Study 2, there					
			was NS difference at	The BP targets were reached using				
			baseline between people	ACE inhibitor with or without a				
			assigned to usual MAP or	diuretic, and CCB and other				
			low MAP for GFR,	medications were added as				
			creatinine clearance, serum	needed.				
			creatinine, SBP, DBP, age					
			(52 yr)	Protein intake was assessed				
				monthly by 24-h urinary excretion				
			Study 1: baseline GFR was	of urea nitrogen and by dietary				
			38.6 ml/min/1.73 m ²	records. BP, creatinine clearance,				
				urinary protein excretion measured				
			Study 2: baseline GFR was	at baseline and every month				
			18.5 ml/min/1.73 m ²	thereafter. GFR was assessed by				
				renal clearance of ¹²⁵ I-iothalamate				
				at baseline, at 2 months, at 4				
				months, and every 4 months				
				thereafter.				

Effect size:

There were NS interactions between the BP and dietary interventions. Thus, BP effects were pooled in the low and usual protein diet (Study 1) or the low and very low protein diet (Study 2).

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
		•		nce between the low and usual MAP gro	-			
1 (< 02								
Low (≤ 92 mm Decline in GFF		ual (≤ 107 mm	Hg) MAP					
In study 1 (N=	585, GFR 2		· ·	ne was significantly faster in the low Ma nl/min per 4 months, p =0.01).	AP group than the u	usual MAP gro	up in the first	4 months
However, ther the low pressu		-	rence in GFR decline between	low and usual MAP from baseline to 3 γ	years of follow-up.	The mean dec	line was 1.6 m	ıl/min less in
-			24 ml/min/1.73 m ²), there wa the low pressure group (p=0.2	s NS difference in GFR decline between 8)	people randomised	d to low versu	s usual MAP. T	īhe mean
STUDY 1 (GFR	25 to 55 m	l/min/1.73 m ²): There was an effect of baseli	ine urinary protein excretion and BP co	ntrol on GFR decline	e.		
In subgroup a	nalysis of p	eople with bas	eline urinary protein < 1g/day	(N=420), was there NS difference in GF	R decline between	low and usual	MAP after 3 y	ears.
• .		•	eline urinary protein excretion MAP (GFR decline 6 ml/min/ye	n 1 to <3 g/day (N=104), there was a mo ear) (no p value given).	derate benefit of lo	ow MAP (GFR (decline 4.5 ml,	/min/year)
		-	eline urinary protein excretion cline 10.5 ml/min/year) (no p	n > 3 g/day (N=54), there was a large be value given).	nefit of low MAP (G	GFR decline 7 r	nl/min/year) c	on declining
STUDY 2 (GFR	13 to 24 m	l/min/1.73 m ²	: There was an effect of baseli	ine urinary protein excretion and BP con	ntrol on GFR decline	e.		

In subgroup analysis of people with baseline urinary protein < 1g/day (N=136), was there NS difference in GFR decline between low and usual MAP after 3 years.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
	nalysis of p	eople with bas	eline urinary protein excretion	1 to <3 g/day (N=63), there was NS dif	ference in GFR decl	line between l	ow and usual I	MAP after 3
years								
		-	eline urinary protein excretion 8 ml/min/year) (no p value giv	> 3 g/day (N=32), there was a benefit o ven).	of low MAP (GFR de	ecline 5.5 ml/n	nin/year) on d	eclining GFR

In subgroup analysis of black and white people, black patients (N=53) had a significantly greater GFR decline (19 ml/min over 3 years) compared with white people (N=525, 11 ml/min over 3 years) (p=0.02). There was NS difference between low and usual MAP for projected GFR decline in the black patient population.

In subgroup analysis of types of renal disease, people with polycystic kidney disease had a faster decline in GFR than people with other renal diseases (17 versus 10 ml/min over 3 years, p<0.001). There was no benefit to assignment to low MAP in people with PKD.

Composite outcome: ESRD or death

Study 2: There was NS difference between low or usual MAP for the risk of death or ESRD.

There was NS difference between low or usual MAP for the number of deaths or stopping points (rapidly declining GFR, progression to ESRD) in either study.

Note: GFR decline was slow and the study would need a longer follow-up to detect differences between treatment arms. Patients with high baseline proteinuria (> 1g/d) benefit from low BP

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Ruggenenti P, Perna A, Loriga G et al. Blood- pressure control for renoprotecti on in patients with non- diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet. 2005; 365(9463):9 39-946.	RCT Open label Evidenc e level: 1 + Multice ntre study Italy All analyse s were ITT.	N = 338	Inclusions: REIN-2 trial (Ramipril Efficacy in Nephrology) - people age 18 to 70 years with non- diabetic nephropathy and persistent proteinuria (urinary protein excretion > 1 g/24-h for at least 3 months) who had not received ACE for at least 6 weeks prior to inclusion. Patients with proteinuria 1 to 3 g/24-h were included if their creatinine clearance < 45 ml/min/1.73 m ² . Patients with proteinuria ≥ 3 g/24-h were included if their creatinine clearance < 70 ml/min/1.73 m ² . Exclusion: use of NSAIDs/immunosuppressive drugs/corticosteroids, acute MI or cerebrovascular accident in previous 6 months, severe uncontrolled hypertension, renovascular disease, obstructive uropathy, diabetes, collagen disease, cancer, chronic cough,	Intensive BP control (SBP < 130 mm Hg, DBP < 80 mm Hg) N= 167 Protocol: 6 week washout from ACE, ARB, and dihydropyridine calcium channel blockers. Baseline BP, creatinine clearance, 24- h urinary protein excretion measured. 6 week ramipril run-in (2.5 -5.0 mg/d). Repeated baseline measurements. Randomisation to conventional BP control (DBP < 90 mm Hg, irrespective of SBP) or intensive BP control (SBP < 130 mm Hg, DBP < 80 mm Hg). Intensive BP control to be achieved with addition of felodipine (5-10 mg/d). Other antihypertensive	Conventional BP control (DBP < 90 mm Hg, irrespective of SBP) N=168 Protocol: as for intervention	3 years (median follow-up 19 months)	Primary outcome: ESRD Rate of decline of GFR Proteinuri a All-cause mortality Non-fatal serious adverse events	Mario Negri Institute for Pharmacologi cal Research.

Table 337: Ref ID: 86 [Ruggenenti et al. 2005]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			drug/alcohol abuse, pregnancy, poor tolerance/allergy to ACE inhibitors or dihydropyridine calcium channel blockers Baseline population characteristics: NS differences at baseline between those randomised to intensive or conventional BP control for age, gender, GFR, creatinine clearance, urinary protein excretion, SBP, DBP, MAP, serum K+	drugs (not ACE, ARB, or CCB) added if BP target was not reached. BP measured at 1, 2 weeks, and 3 months post- randomisation, and every 3 months thereafter. GFR was assessed by renal clearance of iohexol at baseline and at 3 and 6 months.				

Effect size:

Intense vs.Conventional BP

During follow-up, mean SBP was 129.6 \pm 10.9 mm Hg and mean DBP was 79.5 \pm 5.3 mm Hg in the intensive BP group. Mean SBP was 133.7 \pm 12.6 mm Hg and mean DBP was 82.3 \pm 7.1 mm Hg in the conventional BP group. A mean separation of 3.0 mm Hg in SBP was maintained throughout the study.

Primary Outcome: ESRD

There was NS difference in the risk of ESRD between intensive (23% progressed to ESRD) vs.conventional (20% progressed to ESRD) BP control.

In subgroup analysis of people with baseline proteinuria \geq 3 g/24-h, there was NS difference in the risk of ESRD for intensive (N=58) versus conventional (N=62) BP control.

In subgroup analysis of people with baseline proteinuria 1 to 3 g/24-h, there was NS difference in the risk of ESRD for intensive (N=109) versus conventional (N=106) BP

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Change in GFR								
There was NS o	difference	in median GFF	decline between those with intensive	e (N=93) BP control compared to	those with conve	entional (N=80)) BP control.	
Urinary protei	n excretio	n						
There was NS o	difference	in urinary prot	ein excretion between those with inte	nsive (N=167) BP control compa	ared to those with	o conventiona	l (N=168) BP	control.
All-cause mort	ality							
2 deaths (1 MI	, 1 unknow	vn cause) in int	ensive BP control compared to 3 deat	hs (1 MI, 1 stroke, 1 cancer) in c	onventional BP co	ontrol group. 1	This study ma	iy be
underpowered	l for statist	ical analysis fo	r this outcome.					
Non-fatal serio	ous advers	e events						
37 nonfatal SA	E arose in	the intense BP	control group compared with 25 non	fatal SAE in the conventional BP	group. This study	may be unde	rpowered for	r statistical

37 nonfatal SAE arose in the intense BP control group compared with 25 nonfatal SAE in the conventional BP group. This study may be underpowered for stat analysis for this outcome.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Bakris GL, Weir MR, Shanifar S et al. Effects of blood pressure level on progression of diabetic nephropathy : results from the RENAAL study.[see comment]. Archives of Internal Medicine. 2003; 163(13):155 5-1565	Post-hoc of double blind RCT Evidence level: 2+ Reduction of Endponts in NIDDM with the Angiotensi n II Antatgonis t Losartan- RENAAL) Multinatio nal trial	N=1513	Inclusion: RENAAL Study: Type 2 diabetes with nephropathy (presence on 2 occasions of urinary albumin:creatinine ratio of at least 300 mg/g (800 mg/day), serum creatinine between 1.3 and 3.0 mg/dl, with a lower limit of 1.5 mg/dl for male participants weighing more than 60 kg Exclusion: none stated Baseline population characteristics: There was NS difference between BP in the losartan or placebo group. Baseline BP was 152/82 mm Hg in the losartan group and 153/82 mm Hg in the placebo group. 75% of the participants had Stage 3 or 4 CKD.	SBP 130-139 mm Hg (N=209) SBP 140-159 mm Hg (N=610) SBP 160-179 mm Hg (N=373) SBP \geq 180 mm Hg (N=152) Protocol: Patients were stratified by baseline proteinuria (< 2000 mg/g or \geq 2000 mg/g) and then randomised to receive losartan potassium (N=751; 50 mg/d) or placebo (N=762; usual care). BP target was < 140/90 mm Hg. To achieve target BP study drugs were up-titrated, followed by additional open-label antihypertensive therapy. SBP and DBP were determined at baseline and throughout study	SBP < 130 mm Hg (N=169) Protocol: as for intervention	Median follow-up 3.4 yrs	Primary endpoint: time to doubling of serum creatinine, ESRD, or death ESRD or death ESRD alone	Not stated

Table 338: Ref ID: 216 [Bakris et al. 2003]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Effect size:								
Hazard ratios	are set as the	lowest categor	y of SBP.					
Primary endp	oint: time to d	loubling of ser	um creatinine, ESRD, or death					
BASELINE DBI	P:							
• There was I	NS increase in r	risk for the prin	mary endpoint at any level of bas	seline DBP.				
LAST DBP Pric	or to Endpoint	(Achieved DBP):					
There was I	NS increase in r	risk for the prir	mary endpoint at achieved DBP 7	'0-89 mm Hg.				
	BP of 90-99 mr . [HR 1.72 (95%		were associated with a significant 3), p<0.001]	tly higher risk of reaching the co	ombined renal endpo	pint compared	to achieved D	BP < 70 mn
	BP of ≥ 100 mr [HR 2.54 (95%		ere associated with a significantly D), p<0.001]	y higher risk of reaching the con	nbined renal endpoi	nt compared to	o achieved DB	P < 70 mm
BASELINE SBP):							
• The risk of o	doubling serum	n creatinine, Es	SRD, or death increases with incre	easing baseline SBP.				
 There was I mm Hg (N= 		or the combine	ed renal endpoint between peopl	le with baseline SBP 130-139 m	m Hg (N=209) comp	ared to people	with baseline	SBP < 130
			ed renal endpoint between peopl to 1.69), p=0.08]	le with baseline SBP 140-159 m	m Hg (N=610) compa	ared to people	with baseline	SBP < 130
			lg (N=373) had a significantly high 36 to 2.42), p<0.001]	her risk of reaching the combine	ed renal endpoint co	mpared to peo	ple with basel	ine SBP <
• People with	baseline SBP	≥ 180 mm Hg (N=152) had a significantly higher	risk of reaching the combined i	renal endnoint comr	ared to neonle	with haseline	SBD < 130

		Number of				Length of	Outcome	Source of
Reference	Study type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding
Kaplan-Meier	curve for base	line SBP < 140	mm Hg versus baseline SBP ≥ 14	0 mm Hg.				
People with	baseline SBP	≥ 140 mm Hg	had a significantly higher risk of r	eaching the combined renal endpoi	nt than people w	ith SBP < 140	mm Hg [HR 1.0	66, p<0.001
LAST SBP Prio	r to Endpoint (Achieved SBP)						
• There was N	NS difference fo	or the combine	ed renal endpoint between peop	le with achieved SBP 130-139 mm H	lg (N=401) compa	red to people	with achieved	SBP < 130
mm Hg (N=2	278).							
• People with	achieved SBP	140-159 mm H	lg (N=522) had a significantly hig	her risk of reaching the combined re	enal endpoint cor	npared to peo	ple with achie	eved SBP <
130 mm Hg	(N=278) [HR 1	.49 (95% CI 1.1	18 to 1.90), p=0.001]					
People with	achieved SBP	160-179 mm H	Ig (N=158) had a significantly hig	her risk of reaching the combined re	enal endpoint cor	npared to peo	ple with achie	eved SBP <
130 mm Hg	(N=278) [HR 2	.74 (95% CI 2.1	12 to 3.54), p<0.001]					
• People with	achieved SBP	≥ 180 mm Hg	(N=71) had a significantly higher	risk of reaching the combined renal	endpoint compar	red to people	with achieved	SBP < 130
mm Hg (N=2	278) [HR 3.51 (95% CI 2.50 to	4.93), p<0.001]					
PULSE PRESSU	JRE- the differe	ence between	SBP and DBP					
• A baseline p	oulse pressure	≥ 70 mm Hg si	gnificantly increased the risk of r	eaching the combined renal endpoin	nt compared to p	eople with ba	seline PP < 60	mm Hg.
ESRD or deat	h							

BASELINE DBP:

- There was NS increase in risk for ESRD or death at any level of baseline DBP.
- Every 10 mm Hg rise in baseline DBP decreased the risk for ESRD or death by 10.9 % (p=0.01) (multivariate model adjusted for urinary ACR (log scale), creatinine, albumin, hemoglobin).
- LAST DBP Prior to Endpoint (Achieved DBP):
- There was NS increase in risk for ESRD or death at achieved DBP 70-89 mm Hg.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
	BP of 90-99 mr 5% CI 1.16 to 2	- · · ·	were associated with a signification	antly higher risk of reaching	ESRD or death compared	to achieved DB	8P < 70 mm Hg	g (N=377).
	BP of ≥ 100 mr Cl 1.78 to 4.24)	- · · ·	ere associated with a significan	tly higher risk of reaching E	SRD or death compared to	o achieved DBP	< 70 mm Hg (N=377) [HR
BASELINE SBF):							
 There was I (N=169). 	NS difference f	or reaching ES	RD or death between people w	ith baseline SBP 130-139 m	nm Hg (N=209) compared t	o people with l	baseline SBP <	: 130 mm Hg
	NS difference f R 1.38 (95% CI	-	RD or death between people w p=0.06]	ith baseline SBP 140-159 m	nm Hg (N=209) compared t	o people with l	baseline SBP <	: 130 mm H
-	n baseline SBP : R 1.96 (95% Cl		g (N=373) had a significantly h o<0.001]	igher risk of reaching ESRD	or death compared to peo	ple with baseli	ne SBP < 130 r	mm Hg
	baseline SBP 5% Cl 1.44 to 3	•	N=152) had a significantly high	er risk of reaching ESRD or	death compared to people	e with baseline	SBP < 130 mm	n Hg (N=169
-	m Hg rise in ba emoglobin).	seline SBP incr	eased the risk for ESRD or deat	th by 6.7% (p=0.007) (multi	variate model adjusted for	urinary ACR (l	og scale), crea	tinine,
LAST SBP Pric	r to Endpoint (Achieved SBP)	:					
• The risk of	reaching ESRD	or death incre	ased significantly for people wi	ith an achieved SBP > 140 m	nm Hg.			
There was I	NS difference i	n risk for reach	ing FSRD or death between pe	onle with achieved SBP 130)-139 mm Hg (N=392) com	nared to neonl	e with achieve	d SBP < 12

- There was NS difference in risk for reaching ESRD or death between people with achieved SBP 130-139 mm Hg (N=392) compared to people with achieved SBP < 130 mm Hg (N=286).
- People with achieved SBP 140-159 mm Hg (N=518) had a significantly higher risk of reaching ESRD or death compared to people with achieved SBP < 130 mm Hg (N=286) [HR 1.33 (95% CI 1.02 to 1.72), p=0.03]

PULSE PRESSURE:

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
 A baseline p 	oulse pressure	≥ 70 mm Hg si	gnificantly increased the risk of	reaching ESRD or death compared t	o people with bas	seline PP < 60 i	mm Hg.	
ESRD alone								
BASELINE DBF):							
There was N	IS increase in r	isk for ESRD a	one at any level of baseline DBP).				
LAST DBP Price	or to Endpoint (Achieved DBP)					
	-		, one at achieved DBP 70-89 mm	Hg.				
	BP of 90-99 mr 5 to 2.44), p=0.	••••	were associated with a significar	ntly higher risk of reaching ESRD con	npared to achieve	ed DBP < 70 m	m Hg (N=377)	. [HR 1.67
	BP of ≥ 100 mn .58), p<0.001]	n Hg (N=36) w	ere associated with a significant	ly higher risk of reaching ESRD comp	pared to achieved	l DBP < 70 mm	n Hg (N=377) [I	HR 3.26 (959
BASELINE SBP	:							
 There was N (N=169). 	NS difference fo	or reaching ES	RD alone between people with b	paseline SBP 130-139 mm Hg (N=209	9) compared to p	eople with bas	eline SBP < 13	30 mm Hg
	NS difference fo R 1.37 (95% Cl	•	• •	paseline SBP 140-159 mm Hg (N=209	9) compared to p	eople with bas	eline SBP < 13	30 mm Hg
-	baseline SBP 2 5% CI 1.39 to 3		g (N=373) had a significantly hig	ther risk of reaching ESRD alone con	npared to people	with baseline	SBP < 130 mm	n Hg (N=169)
-	baseline SBP 2 5% CI 1.24 to 3			r risk of reaching ESRD alone compa	ared to people wi	th baseline SB	P < 130 mm H	g (N=169)
• Kaplan-Mei	er curve for ba	seline SBP < 1	40 mm Hg versus baseline SBP ≥	140 mm Hg.				
- Deemle with	hacolino CDD	> 140 mm 11a	had a significantly higher risk of	reaching ESPD along than people w	ith CDD < 140 mm		n < 0.0011	

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
LAST SBP Prior	to Endpoint (Achieved SBP)						
• The risk of re	eaching ESRD i	increased signi	ificantly for people with an achiev	ved SBP > 140 mm Hg.				
 There was N mm Hg (N=2 		n risk for reach	ing ESRD alone between people v	with achieved SBP 130-139 mm Hg	(N=392) compare	d to people w	ith achieved S	BP < 130
•	achieved SBP 1.52 (95% CI 1			her risk of reaching ESRD alone com	npared to people	with achieved	SBP < 130 mn	n Hg
PULSE PRESSU	RE:							
• A baseline p	ulse pressure 2	≥ 70 mm Hg si	gnificantly increased the risk of re	eaching ESRD alone compared to pe	eople with baselin	e PP < 60 mm	Hg	
				herause the analysic is retrospecti				

Note: Authors suggest a target SBP < 140 mm Hg. Note that bias is possible because the analysis is retrospective and BP was not measured using a random zero device. Also, analysis of achieved BP (measured before an endpoint) may be subject to interpretation bias. Comparator group (< 130 mm Hg SBP) had fewer participants than other SBP groups.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Berl T, Hunsicker LG, Lewis JB et al. Impact of achieved blood pressure on cardiovascul ar outcomes in the Irbesartan Diabetic Nephropath y Trial. Journal of the American Society of Nephrology. 2005; 16(7):2170- 2179.	Post-hoc of RCT Evidence level: 2+ (Irbesarta n in Diabetic Nephrop athy IDNT data)	N=1590	Inclusion: 30-70 yrs, Type 2 diabetes, hypertension defined as any of; seated office SBP > 135 mmHg, seated office DBP > 85 mm Hg or documented treatment with antihypertensive agents. All patients had diabetic nephropathy with overt proteinuria (> 900 mg/24 hr) and mild-to-moderate renal insufficiency (serum creatinine between 88 and 266 µmol/l (1.0 and 3.0 mg/dl) in women and 106 and 266 µmol/l (1.2 and 3.0 mg/dl) in men. Exclusion: none stated Baseline population characteristics: Baseline BP was 159/87 mm Hg and it decreased with NS differences between them, in the amlodipine, irbesartan, and placebo groups. 30% reached the 135 mm Hg SBP goal, and 81% achieved the 85 mm Hg DBP goal.	Achieved SBP ≤ 120 mm Hg (N=53) Protocol: Patients randomised to receive irbesartan (300 mg/d), amlodipine (10 mg/day) or placebo (usual care). BP target was < 135/85 mm Hg in all 3 arms. To achieve target BP participants were prescribed additional antihypertensive therapy. SBP and DBP were determined at baseline and throughout study	Achieved SBP > 120 mm Hg (N= 1537) Protocol: as for intervention	Median follow-up 2.9 yrs Follow-up until ESRD, death, censoring in Dec., 2000.	All-cause mortality Cardiovascul ar mortality Congestive heart failure Myocardial infarction Stroke	Bristol- Meyers Squibb and Sanofi- Synthelab O

Table 339: Ref ID: 70 [Berl et al. 2005]

Effect size:

All-cause mortality

People with an achieved SBP ≤ 120 mm Hg (N=53) had a significantly greater risk of all-cause mortality compared to people with an achieved SBP > 120 mm Hg

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
		CI 1.80 to 5.17), p	o<0.0001]					U
There was N	S association	between DBP a	nd risk for all-cause mortality.					
Cardiovascu	-				400.400.41			
			scular mortality as achieved SBP dec ovascular mortality (p<0.002).	reased from > 170 mm Hg to	120 to 130 mm Hg.	. A 20 mm Hg I	ower achieved	SBP was
associated w	101 a 59% re		p ascular mortality (p <0.002).					
There was a	significant d	ecrease in risk fo	or cardiovascular mortality in people	with SBP 120-130 mm Hg co	mnared to the refe	rence range 13	0-140 mm Hg (no numerica
data provide	•							no numerice
	.,	- ,						
There was a	significantly	higher risk for ca	ardiovascular mortality in people wi	th SBP > 170 mm Hg compare	ed to the reference	range 130-140	mm Hg (no nu	merical data
provided, no	p value).	-				-		
	an achieved							
People with	an acmeveu	SBP ≤ 120 mm H	g (N=53) had a significantly greater	risk of cardiovascular mortali	ity compared to peo	ple with an ac	hieved SBP > 1	20 mm Hg
•		SBP ≤ 120 mm H Cl 2.11 to 7.80), p		risk of cardiovascular mortali	ity compared to pec	pple with an ac	hieved SBP > 1	20 mm Hg
(N=1537) [RF	R 4.06 (95% (Cl 2.11 to 7.80), p	o<0.0001].		ity compared to pec	pple with an ac	hieved SBP > 1	20 mm Hg
(N=1537) [RF	R 4.06 (95% (Cl 2.11 to 7.80), p			ity compared to pec	ople with an ac	hieved SBP > 1	20 mm Hg
(N=1537) [RF	R 4.06 (95% (S association	Cl 2.11 to 7.80), p	o<0.0001].		ity compared to pec	ople with an ac	hieved SBP > 1	20 mm Hg

People with an achieved SBP 120 to 130 mm Hg had a significantly reduced risk of congestive heart failure compared to the reference range SBP 130-140 mm Hg (no numerical data provided, no p value).

associated with a 25% reduction in the risk for congestive heart failure (p=0.001).

	Study	Number of				Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding
•			g (N=53) had a significantly greater ri	isk of congestive heart failur	e compared to peop	ole with an acl	hieved SBP > 12	0 mm Hg
(N=1537) [RR	1.80 (95% (Cl 1.17 to 2.86), J	5=0.008]					
The second second			ad viel. Company was at it is the sent for the se					
There was NS	association	between DBP ar	nd risk for congestive heart failure.					
Myocardial in	farction							
-		$SBP \leq 120 \text{ mm H}_{2}$	g (N=53) had NS risk of MI compared	to people with an achieved	SBP > 120 mm Hg (N=1537).		
		e risk of nonfatal				,		
A 10 mm Hg lo	wer achiev	ed DBP was asso	ciated with a significantly higher risk	k of MI [RR 1.61 (95% CI 1.28	to 2.02), p<0.0001]		
Compared to t	he reference	ce DBP 70-80 mn	n Hg, the risk for MI was significantly	/ higher in people with DBP <	70 mm Hg (no nur	nerical data pr	ovided, no p va	lue).
Compared the	reference	DBP 70-80 mm H	lg, the risk for MI was significantly lo	ower in people with DBP > 85	mm Hg (no numer	ical data provi	ded, no p value).
Stroke								
People with a	n achieved S	$SBP \le 120 \text{ mm H}_{2}$	g (N=53) had NS risk of stroke compa	ared to people with an achie	ved SBP > 120 mm l	Hg (N=1537).		
SBP was NS re	lated to the	e risk of stroke.						
A 10 mm Hg lo	ower achiev	ed DBP was asso	ciated with a significantly lower risk	of stroke [PP 0 65 /05% CI (10 + 000 $n = 000$			

Note: People with SBP \leq 120 mm Hg were more likely to have a history of heart disease and CHF at baseline and were younger, took fewer CCB, had lower serum creatinine, lower baseline SBP and DBP, and took fewer antihypertensive agents than people with SBP > 120 mm Hg. However, the risks of death and CV death were significant and were not decreased after accounting for the different frequencies of these co-morbidities.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Peterson JC, Adler S, Burkart JM et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Annals of Internal Medicine. 1995; 123(10):754- 762.	Posthoc analysis RCT Evidence level: 2 + 15 US nephrolo gy practices All analyses were ITT.	Total N =840 Study 1 N= 585 Study 2 N= 255	Inclusions: Study 1: age 18 to 70 years, serum creatinine 1.2 to 7.0 mg/dl (women) or 1.4 to 7.0 mg/dl (men) or a creatinine clearance < 70 dietary ml/min/1.73 m ² , MAP < 125 mm Hg (normotensive people were included) Study 1: GFR 25 to 55 ml/min/1.73 m ² , dietary protein intake ≥ 0.9 g/kg, MAP < 125 mm Hg Study 2: GFR 13 to 24 ml/min/1.73 m ² , MAP < 125 mm Hg Exclusion: pregnancy, body weight under 80% or over 160% standard body weight, diabetes requiring insulin, urinary protein	Low mean arterial pressure (MAP \leq 92 mm Hg for people 18-60 y or \leq 98 mm Hg for people 61 and older) equivalent to 125/75 mm Hg Study 1 (GFR 25 to 55 ml/min/1.73 m ²) N= 300 Study 2 (GFR 13 to 24 ml/min/1.73 m ²) N= 132 Protocol: In study 1 and 2, patients were randomised to usual BP or to a lower mean arterial pressure goal. In study 1, patients were also randomised to a usual protein diet (1.3 g protein and 16-20 mg phosphorus/kg per day) or a low protein diet (0.58 g protein and 5-10 mg phosphorus/kg each day). In Study 2, in addition to BP randomised to a low protein diet or a	Usual mean arterial pressure (≤ 107 mm Hg for people 18- 60 y or ≤ 113 mm Hg for people o 61 and older) equivalent to 140/90 mm Hg Study 1 N= 285 Study 2 N= 123 Protocol: as for intervention	2.2 years (mean)	Rate of change of GFR (slope) Change in proteinuria	National Institute of Diabetes and Digestive and Kidney Diseases, Healh Care Financing Administr ation

ואמעוטדומו כוודווכמו שעומפוודופ כפרונדפ בטב4

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	process	excretion > 10 g/d, history	very low protein diet (0.28 g protein				
			of renal transplant or	and 4-9 mg phosphorus/kg each day				
			chronic conditions.	supplemented by a keto acid-amino				
			chronic conditions.	acid mix of 0.28 g/kg per day)				
			Baseline population					
			characteristics: In either	The BP targets were reached using				
			Study 1 or Study 2, there	ACE inhibitor with or without a				
			was NS difference at	diuretic, and CCB and other				
			baseline between people	medications were added as needed.				
			assigned to usual MAP or					
			low MAP for GFR,	Protein intake was assessed monthly				
			creatinine clearance,	by 24-h urinary excretion of urea				
			serum creatinine, SBP,	nitrogen and by dietary records. BP,				
			DBP, age (52 yr)	creatinine clearance, urinary protein				
				excretion measured at baseline and				
			Study 1: baseline GFR was	every month thereafter. GFR was				
			38.6 ml/min/1.73 m ²	assessed by renal clearance of ¹²⁵ I-				
			50.0 111/1111/1.75 11	iothalamate at baseline, at 2 months,				
			Study 2: baseline GFR was	at 4 months, and every 4 months				
			18.5 ml/min/1.73 m ²	thereafter.				

There were NS interactions between the BP and dietary interventions. Thus, BP effects were pooled in the low and usual protein diet (Study 1) or the low and very low protein diet (Study 2).

Low (≤ 92 mm Hg) vs.Usual (≤ 107 mm Hg) MAP

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Decline in GF	R according	to baseline pro	oteinuria					
0.08 g/d, N=3 people with I usual MAP co	301). There v baseline pro ontrol after 2	was NS differen teinuria of 1.0-3 2 years follow-u	ce in GFR decline between lo 3.0 g/day (mean 1.8 g/d, N=1 p (no p value given). For pe	n GFR decline between low and ow and usual MAP in people w 104), the GFR decline was slow ople with baseline proteinuria ose assigned to usual MAP con	ith baseline proteinuria 0.25 er in those randomised to lo of > 3.0 g/day (mean 4.8 g/d	5 -1.0 g/d (mea ow MAP contro	n 0.58 g/d, N= I than those a	119). For ssigned to
				e association of higher blood p igher blood pressure with faste				Hg MAP.
People with I	paseline pro		/d (N=95) had faster GFR dec	etween low and usual MAP for Cline and benefited from low N				
Change in Pr	oteinuria							
Assignment t	o low MAP	significantly dec	creased proteinuria during fo	bllow-up compared to usual M	AP. This was seen in people	with baseline p	oroteinuria > 0	.25 g/day
	lusion: that	neonle with nr	oteinuria > 3 g/day benefit fi	rom PD control at 02 mm Hg M	1AP and people with protein	uria 0.25 to 3	r/day benefit :	

Reference type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Pohl MA,Post-heBlumenthal S,of RCTCordonnier DJ etof RCTal. IndependentEvidenand additivelevel: 2impact of bloodressure controland angiotensin II(Irbesareceptor blockadeDiabetoutcomes in theIDNTdiabeticdata)clinicalimplications andlimitations.Journal of theAmerican Societyof Nephrology.2005;16(10):3027-3037.	ce ++ rt ic	Inclusion: 30-70 yrs, Type 2 diabetes, hypertension defined as any of; seated office SBP > 135 mm Hg, seated office DBP > 85 mm Hg or documented treatment with antihypertensive agents. All patients had diabetic nephropathy with overt proteinuria (> 900 mg/24 hr) and mild-to-moderate renal insufficiency (serum creatinine between 88 and 266 µmol/l (1.0 and 3.0 mg/dl) in women and 106 and 266 µmol/l (1.2 and 3.0 mg/dl) in men. Exclusion: none stated Baseline population characteristics:Baseline BP was 159/87 mm Hg and it decreased with NS differences between the amlodipine, irbesartan, and placebo groups. 30% reached the 135 mm Hg SBP goal, and 81% achieved the 85 mm Hg DBP goal.	Achieved SBP Protocol: Patients randomised to receive irbesartan (300 mg/d), amlodipine (10 mg/day) or placebo (usual care). BP target was < 135/85 mm Hg in all 3 arms. To achieve target BP participants were prescribed additional antihypertensive therapy. SBP and DBP were determined at baseline and throughout study	Baseline SBP Protocol: as for intervention	Median follow-up 2.9 yrs Follow-up until ESRD, death, censoring in Dec., 2000.	Composite Outcome: Doubling of baseline serum creatinine or ESRD All-cause mortality	Bristol- Meyers Squibb and Sanofi- Synthelab O

Table 341: Ref ID: 75 [Pohl et al. 2005]

	Study	Number of				Length of	Outcome	Source of				
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding				
BP was controlled to	BP was controlled to similar means in the 3 groups (irbesartan group 141/78±14/8; amlodipine group 142/77±13/8; placebo/usual care group 144/80±13/8 mmHg).											
Renal Endpoint: Do	ubling of ba	seline serum o	reatinine or ESRD									
*Baseline BP												
Baseline SBP correla	ated significa	antly with the i	renal outcomes (doubling of SCr or ESRD) i	n univariate analysis.	The risk for reach	ing a renal enc	point increas	ed				
progressively with h	nigher baseli	ne SBP (p<0.00	001).									
36% of those in the	highest qua	rtile (baseline	SBP > 170 mm Hg) reached a renal endpoi	nt vs. 18% of those in	the lowest quartil	e (SBP < 145 m	nm Hg).					
Baseline DBP was N	S correlated	with renal out	come, with no correlation for those with l	baseline DBP > 100 mr	nHg.							
*Achieved SBP												
Achieved follow-up	SBP is an ind	dependent pre	dictor of the risk for a adverse renal outco	mes irrespective of th	e baseline BP. A	decrease of 20) mm Hg in acl	hieved SBP				
was associated with	n a 47% decr	ease in the ris	for developing a renal end point.									
While baseline SBP	was an inde	pendent predi	ctor of renal outcome, this relationship wa	s lost when achieved	SBP was taken int	o account.						

Mean follow-up seated SBP grouped in 10 mm Hg increments were considered with the natural log of the relative risk of reaching a renal end point. This showed an increasing risk with increasing SBP, though outcomes for those with a follow-up SBP <120 were not substantially better than those with a follow-up between 120 and 130 mm Hg.

Baseline estimated GFR and albumin/creatinine ratio (ACR) were both linearly and significantly correlated with both mean follow-up BP and with the risk of renal endpoint.

The assessed risk for a renal outcome 20 mm Hg decrease in SBP was associated with a 47% decrease in the risk of renal outcome (p<0.0001). After correlation for eGFR and ACR each 20 mm Hg decrease in SBP was still associated with a 30% reduction in the risk for a renal event (p<0.0001), independent of these two baseline renal covariates.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
All-cause mortality								
The natural log of th	ne relative ri	sk for all cause	e mortality shows an essentially linear relati	onship from SBP of 12	20 to SBP > 180 m	m Hg, howeve	er participants	with the
lowest SBP < 120 m	m Hg had a s	sharply higher	mortality.					

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Hovind P, Rossing P, Tarnow L et al. Remission and regression in the nephropathy of type 1 diabetes when blood pressure is controlled aggressively. [see comment]. Kidney International . 2001; 60(1):277- 283.	Case series Evidence level: 3 One centre, Steno Diabetes Center Denmark All analyses were ITT.	N = 301	Inclusions: Type 1 diabetic patients with nephropathy (persistent albuminuria > 200 microgram/min in at least two out of three consecutive 24-h urine collections, presence of diabetic retinopathy, absence of other kidney or renal tract disease) Exclusion: not stated Baseline population characteristics: NS differences at baseline between remission group and non-remission group for age, diabetes duration, SBP, DBP, GFR. Baseline MAP was lower in remission group (102 vs.104 mm Hg, p<0.05). There were more males in the non- remission group. NS differences at baseline between regression and non-	Remission Group (N=92) Regression Group (N=67) Protocol: 301 Type 1 diabetics with nephropathy were observed for 7 years. GFR was measured annually by plasma clearance of ⁵¹ Cr-EDTA. Albuminuria (24-h urine collections), BP, blood glucose, weight, insulin and antihypertensive agent dosage was monitored at baseline and every 4 months. The BP target was < 140/90 mm Hg, mostly achieved with ACE inhibitors (179/271).	Non-remission group (N=209) Non-regression Group (N=234)	7 years	Principal endpoint: Regression (a rate of decline in GFR ≤ 1 ml/min/year during the observation period – equivalent to natural decline with aging) Surrogate endpoint: Remission (decrease in albuminuria < 200 microgram/min in at least two out of three consecutive 24-h urine collections that was sustained for at least one year during follow-up,	Danish Diabetes Associatio n, Hansen Foundatio n Foundatio n

Table 342: Ref ID: 314 [Hovind et al. 2001]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			regression groups for sex, age,				with a decrease	
			diabetes duration, GFR.				of at least 30%	
			Baseline SBP, DBP, and MAP				from pre-	
			were lower in the regression				remission levels).	
			group than the non-regression					
			group.					

Effect size:

Of the 271 people treated with antihypertensive drugs, 43% achieved a mean SBP < 140 mm Hg and 83% achieved a DBP < 90 mm Hg. 40% achieved < 140/80 mm Hg.

The mean decline in GFR in all 301 patients during follow-up was 4.0 ± 0.2 ml/min/year.

Surrogate endpoint: Remission (decrease in albuminuria < 200 microgram/min in at least two out of three consecutive 24-h urine collections that was sustained for at least one year during follow-up, with a decrease of at least 30% from pre-remission levels).

- 31% of the cohort (92/301) obtained remission.
- During follow-up, the GFR decline was significantly less in the remission group (N=92, GFR decline 2.2 ml/min/year) than in the non-remission group (N=209, GFR decline 4.8 ml/min/year, p<0.001)
- Follow-up SBP was significantly less in the remission group (N=92, SBP 137 mm Hg) than in the non-remission group (N=209, SBP 145 mm Hg, p<0.001)
- Follow-up DBP was significantly less in the remission group (N=92, DBP 81 mm Hg) than in the non-remission group (N=209, DBP 84 mm Hg, p<0.001)
- Follow-up MAP was significantly less in the remission group (N=92, MAP 100 mm Hg) than in the non-remission group (N=209, MAP 105 mm Hg, p<0.001)
- More people with a lower follow-up MAP achieved remission. Stratified by MAP: MAP 93 mm Hg (58% remission), MAP 99 mm Hg (33% remission), MAP 103 mm Hg (25% remission), MAP 107 mm Hg (20% remission), MAP 113 mm Hg (17% remission)

Principal endpoint: Regression (a rate of decline in GFR ≤ 1 ml/min/year during the observation period – equivalent to natural decline with aging)

• 22% (67/301) of the cohort obtained regression.

	Study	Number of				Length of	Outcome	Source of	
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding	
• Follow-up SBP was significantly less in the regression group (N=67, SBP 138 mm Hg) than in the non-regression group (N=234, SBP 144 mm Hg, p<0.001)									
• Follow-up D	BP was sign	ificantly less in tl	ne regression group (N=67, DBP 80) mm Hg) than in the non-r	egression group (N	I=234, DBP 84	1 mm Hg, p<0.001)		
• Follow-up N	1AP was sigr	nificantly less in t	he regression group (N=67, MAP 9	99 mm Hg) than in the non-	regression group (N=234, MAP	104 mm Hg, p<0.001	.)	
		•	P achieved regression. Stratified b 20% regression), MAP 113 mm Hg	, ,	2% regression), M	AP 99 mm Hg	(32% regression), M	AP 103 mm	
• The adjusted	d odds ratio	for regression as	ssociated with a 10 mm Hg decline	e in MAP was 2.14 (95% Cl 1	1.33 to 3.44, p<0.0	01).			
• The adjusted odds ratio for regression associated with a tenfold lowering of albuminuria was 2.79 (95% CI 1.35 to 5.69, p<0.001).									
• The adjusted	d odds ratio	for regression as	ssociated with a reduction of 1% ir	n haemoglobin HbA1c was 2	2.00 (95% CI 1.46 t	o 2.73, p<0.0	01).		

Note: authors suggest aggressive antihypertensive treatment induces remission and regression in Type 1 diabetics with nephropathy. Lower MAP, reduced albuminuria, and good glycaemic control were predictors of regression of nephropathy.

Reference	Study type	Number of patients	Patient characteristi	cs	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding			
Kovesdy CP, Trivedi BK, SeriesCaseNTrivedi BK, SeriesseriesIKalantar ZKEvidencIet al.EvidencIAssociation of low blood pressuree level: 3Iof low blood pressureUS WarIwith increased mortality in patientssIs cohortcohortI	series Evidenc e level: 3 US War veteran	N = 860	enrolled at the Nephrology Clinic at Salem Veterans Affairs Medical Centre between 1990 and 2004 with Stage 3-5 CKD (< 60 ml/min/1.73 m²), not yet on dialysis.N= 238Exclusion: Stage 1-2 CKD Baseline population characteristics:SBP 155-170 mm Hg N= 211CharacteristicCKD cohort	SBP 155-170 mm Hg N= 211 SBP > 170 mm Hg N= 194	SBP < 133 mm Hg, N=217 Protocol: as for intervention	Patients were followed until they died, were lost to follow-up, or until May 15, 2005.	Primary outcome: all-cause mortality	Not stated				
		N	860	Protocol: BP, antihypertensive								
moderate to						Age, year	68	medication use,				
severe chronic			% black race	24.4	serum creatinine, albumin, haemoglobin, 24-h urine protein or PCR							
kidney			% male	99.1								
disease.			% diabetes	50								
Nephrology Dialysis Transplantat ion. 2006; 21(5):1257- 1262.		m ² first cl Serum albumin, 3.5 peath record		32	were measured at first clinic visit.							
			Deaths were recorded from the									
		People with SBP < 13 likely to be black or t antihypertensive dru have atherosclerotic	o be on gs and more likely to	US Dept. of Veteran Affairs CPRS.								

Table 343: Ref ID: 41 [Kovesdy et al. 2006]

F	Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
				disease (ASCVD) and CHF, and more likely to have have lower proteinuria					

Effect size:

Older age, ASCVD, ejection fraction < 35%, smoking, lower eGFR, lower serum albumin, lower proteinuria, diabetes, and being on dialysis were all associated with higher mortality.

Aim: Determine relationship between SBP and all-cause mortality in a CKD (GFR < 60 ml/min/1.73 m²) male cohort. Reference: SBP < 133 mm Hg

Primary Outcome: All-cause mortality

- Mortality was highest in men with CKD and SBP < 133 mm Hg. Mortality was lowest in men with CKD and SBP 134-154.
- Men with SBP 134-154 mm Hg (N=238) had a significantly decreased risk for all-cause mortality compared with men who had SBP < 133 mm Hg (N=217) [adjusted HR 0.62 (95% CI 0.45 to 0.85), p=0.003] (fully adjusted model for age, race, diabetes history, CHF, ASCVD, use of antihypertensive agents, eGFR, BMI, smoking, serum albumin, cholesterol, hemoglobin, 24-h urinary protein).
- Men with SBP 155-170 mm Hg (N=211) had a significantly decreased risk for all-cause mortality compared with men who had SBP < 133 mm Hg (N=217) [adjusted HR 0.63 (95% CI 0.45 to 0.87), p=0.006]
- Men with SBP > 170 mm Hg (N=194) had a significantly decreased risk for all-cause mortality compared with men who had SBP < 133 mm Hg (N=217) [adjusted HR 0.69 (95% CI 0.49 to 0.96), p=0.029]

Primary Outcome: All-cause mortality: Determine relationship between DBP and all-cause mortality in a CKD (GFR < 60 ml/min/1.73 m²) male cohort.

- Mortality was highest in men with DBP < 64 mm Hg and lowest in men with DBP > 86 mm Hg.
- Compared to men with DBP < 65 mm Hg (N=233), there was NS difference in risk for all-cause mortality for men with DBP 65-75 mm Hg (N=197).
- Compared to men with DBP < 65 mm Hg (N=233), there was NS difference in risk for all-cause mortality for men with DBP 76-86 mm Hg (N=230).
- Compared to men with DBP < 65 mm Hg (N=233), there was a significant reduction in the risk for all-cause mortality for men with DBP > 86 mm Hg (N=200) [adjusted HR 0.6 (95% CI 0.4 to 0.9, p=0.005).

Chronic kidney disease

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
• A 10 mm Hg	higher DB	P was associat	ed with a hazard ratio for all-cause mortality o	of 0.87 (95% CI 0.80-0.94	ł, p=0.002)			

eference	Study type	Number of patients	Patient characteristics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
an BT, /oittiez K, lauw GJ et rospective udy of the fect of ood ressure on enal unction in d age: the eiden 85-	Case series Evidence level: 3 Netherla nds populatio n based elderly cohort study	N = 550	Patient characteristicsInclusions: inhabitants of followed up until age 90 selection criteria for head demographic characteristicExclusion: none statedBaseline population characteristicNAge, yearMean creatinine clearance, ml/min% female% diabetes% hypertension% chronic disease% with no cardiovascular disease% with 1 cardiovascular disease	or death. No lth or tics.	DBP 70-79 mm Hg N=219 DBP 80-89 mm Hg N=148 DBP ≥ 90 mm Hg N=48 Protocol: At baseline and yearly thereafter, BP, weight, creatinine clearance (Jaffe method and Cockcroft- Gault equation) was measured. ECG, interviews, and performance tests also done. Medical history obtained from participant's physician	DBP < 70 mm Hg, N= 135 Baseline SBP 120-129 mm Hg N=276 Protocol: as for intervention	5 years	Change in creatinine clearance	Dutch Ministry of Health, Welfare and Sports
			% chronic disease % with no cardiovascular disease % with 1	41 37	interviews, and performance tests also done. Medical history obtained from				

Table 344: Ref ID: 6 [Van et al. 2006]

Ref	ference	Study type	Number of patients	Patient characteristics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
				SBP, mm Hg	155.6					
				DBP, mm Hg	76.9					
				Pulse pressure, mm Hg	8.7					

Effect size:

- During follow-up to age 90 or death, the overall decline in creatinine clearance was 1.31 ml/min per year, p<0.001
- At baseline and follow-up, creatinine clearance was correlated with the presence of cardiovascular disease. Creatinine clearance declined an extra 0.21 ml/min per year, p=0.002 over the normal annual decline for every additional manifestation of cardiovascular disease.
- There was no association between either SBP or pulse pressure and the annual decline in creatinine clearance.
- DBP < 70 mm Hg versus DBP 70-79 mm Hg or DBP 80-89 or DBP \ge 90 mm Hg in an elderly cohort (85-90 y).

Creatinine Clearance

- The decline in creatinine clearance was significantly faster in people with DBP < 70 mm Hg (-1.63 ml/min, N= 135) compared to people with DBP 70-79 mm Hg (-1.21 ml/min, N=219, p=0.01)
- The decline in creatinine clearance was significantly faster in people with DBP < 70 mm Hg (-1.63 ml/min, N= 135) compared to people with DBP 80-89 mm Hg (-1.26 ml/min, N=219, p=0.03)
- There was NS difference in declining creatinine clearance between people with DBP < 70 mm Hg compared to people with DBP ≥ 90 mm Hg (N=48)

NOTE: DBP < 70 mm Hg is associated with a decline in creatinine clearance, whereas higher DBP is not. Authors acknowledge that CG is not the gold standard for assessing renal function; also that they did not have data on heart failure rates

	Study	Number of					Length of	Outcome	Source of
Reference	type	patients	Patient characteristics		Intervention	Comparison	follow-up	measures	funding
Weiner DE, Tighiouart H, Levey AS et al. Lowest systolic blood pressure is associated with stroke in stages 3 to 4 chronic kidney disease. Journal of the American Society of Nephrology. 2007; 18(3):960- 966.	Case series Evidence level: 3 small group, no power assessme nt US cohort (pooled Atheroscl erosis Risk in Communi ty Study (ARIC) and Cardiovas cular Health	N = 1549 CKD defined GFR < 60 ml/min/1. 73 m ² .	Inclusions: ARIC enrolled (64 from four US communit and 1989. CHS enrolled per older from four US commu 1989 and 1990. Analysis restricted to peop < 60 ml/min/1.73 m ² .) Peo or nondiabetic CKD, hyper normotensive. Exclusion: Stage 5 CKD (G ml/min/1.73 m ²). Baseline population chara Characteristic N Age, year % black race % female % CHS cohort % diabetes % hypertension	ties between 1987 ople age 65 and unities between ole with CKD (GFR ople with diabetic tensive or FR < 15	Baseline SBP < 120 mm Hg, N= 416 Protocol: GFR measured using MDRD after calibrating ARIC and CHS laboratories indirectly using NHANES III data.	Baseline SBP 120-129 mm Hg N=276 Protocol: as for intervention	8.8 years	Primary outcome: definite or probable incident stroke (defined as sudden/rapi d onset of neurologic symptoms lasting > 24 h or led to death in absence of evidence of non-stroke cause)	NIH NIDDK grants, Amgen

Reference	Study type	Number of patients	Patient characteristics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
	Study		% coronary disease	14.6					
	(CHS)		SBP, mm Hg	135.2					
			DBP, mm Hg	71.5					
			Serum creatinine, mg/dl	1.3					
			eGFR, ml/min/1.73 m ²	51.2					
			Serum albumin, g/dl	3.9					
			% All-cause stroke	12.3					

Effect size:

Determine relationship between baseline SBP and incident stroke in a CKD (GFR < 60 ml/min/1.73 m²) cohort.

Baseline SBP < 120 mm Hg versus Baseline SBP 120-129 mm Hg in a CKD (GFR < 60 ml/min/1.73 m²) cohort.

Primary Outcome: Stroke

People with CKD and SBP < 120 mm Hg were at a significantly increased risk for stroke compared with people with CKD and SBP 120-129 mm Hg [HR 2.26 (95% CI 1.16 to 4.41)] (fully adjusted model for age, race, gender, diabetes history, coronary disease history, LVH, use of antihypertensive agents, education, smoking, serum albumin, non-HDL cholesterol, haemoglobin, study origin).

This is a J-shaped curve for risk of stroke with increasing BP.

In sensitivity analysis (multivariate), people with CKD and SBP < 120 mm Hg who used antihypertensive agents (N=209) had a significantly increased risk of stroke compared with people with CKD and SBP 120-129 mm Hg who used antihypertensive agents (N=173) [HR 2.62 (95% CI 1.22 to 5.66)]

There was NS difference for the risk of stroke between people with CKD and SBP < 120 mm Hg who did not use antihypertensive agents (N=207) compared with people with CKD and SBP 120-129 mm Hg who did not use antihypertensive agents (N=103). However, this study lacked statistical power due to its small size (N).

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
NOTE: Authors	acknowled	ge that there i	s NO data on proteinuria and analysis is mostly	applicable to Stage	3 CKD in a US popu	Ilation. Author	rs caution again	st
concluding tha	t antihypert	ensive agent ι	use in people with CKD and SBP < 120 mm Hg C	AUSES the increased	d stroke risk as it is	likely that the	se people may h	nave a

 Study
 Number of patients

 Reference
 type

 NOTE: Authors acknowledge that there is NO data on proteint concluding that antihypertensive agent use in people with CKD greater lifetime CVD burden and therefore higher stroke risk.

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Sarnak MJ, Greene T, Wang X et al. The effect of a lower target blood pressure on the progression of kidney disease: long-term follow-up of the modification of diet in renal disease study.[see comment]. Annals of Internal Medicine. 2005; 142(5):342-	Long- term follow-up of MDRD trial (cohort study) Evidence level: 2 - 15 US nephrolo gy practices All analyses were ITT.	Total N =840 Study 1 N= 585 Study 2 N= 255	Inclusions: Study 1: age 18 to 70 years, serum creatinine 1.2 to 7.0 mg/dl (women) or 1.4 to 7.0 mg/dl (men) or a creatinine clearance < 70 dietary ml/min/1.73 m ² , MAP < 125 mm Hg (normotensive people were included) Study 1: GFR 25 to 55 ml/min/1.73 m ² , dietary protein intake \geq 0.9 g/kg, MAP < 125 mm Hg Study 2: GFR 13 to 24 ml/min/1.73 m ² , MAP < 125 mm Hg Exclusion: pregnancy, body weight under 80% or over 160% standard body weight, diabetes requiring insulin, urinary protein excretion > 10 g/d, history of renal transplant or	Low mean arterial pressure (MAP ≤ 92 mm Hg for people 18-60 y or ≤ 98 mm Hg for people 61 and older) equivalent to 125/75 mm Hg Combined Study 1 and Study 2 N= 432 Protocol: Trial was conducted from 1989 to 1993. In study 1 and 2, patients were randomised to usual BP or to a lower mean arterial pressure goal. Long-term follow-up: NO specific BP target was recommended after completion of the trial in 1993. BP was only measured once (at 9 months after the end of the trial). NO more BP measurements	Usual mean arterial pressure (≤ 107 mm Hg for people 18-60 y or ≤ 113 mm Hg for people o 61 and older) equivalent to 140/90 mm Hg Combined Study 1 and Study 2 N= 408 Protocol: as for intervention	Long-term follow-up (1993- 2000) (censoring on Dec. 31, 2000) Mean duration was 6.2 years	Kidney Failure (defined as initiation of dialysis or renal transplantati on) Composite outcome: Kidney Failure or all-cause mortality	National Institute of Diabetes and Digestive and Kidney Diseases

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
351.			chronic conditions. Baseline population characteristics: In either Study 1 or Study 2, NS difference at baseline between people assigned to usual MAP or low MAP for GFR, creatinine clearance, serum creatinine, SBP, DBP, age (52 yr)	available thereafter and no way of knowing if the BP differences were maintained in the two trial arms. Also, no specific pharmacological therapy was recommended after trial completion. There was no way of knowing how the two trial arms differed during the 6 year follow-up after the trial officially ended.				
			Study 1: baseline GFR was 38.6 ml/min/1.73 m ² Study 2: baseline GFR was 18.5 ml/min/1.73 m ²	Onset of kidney failure ascertained from US Renal Data System and mortality from the National Death Index.				

4

ואמנוטרומו כווחוכמו שעומפווחפ כפחנרפ

LUT4

Effect size:

Low (≤ 92 mm Hg) vs.Usual (≤ 107 mm Hg) MAP

Progression to Kidney Failure (initiation of dialysis or renal transplantation)

People with CKD originally assigned to the low MAP group had a significantly lower risk of progression to kidney failure compared to people with CKD originally assigned to the usual MAP [adjusted HR 0.68 (95% CI 0.57 to 0.82), P<0.001).

People with lower baseline proteinuria (< 1g/day) had a significantly lower risk of progression to kidney failure compared to people with baseline proteinuria > 1 g/day [HR 0.79 (95% CI 0.63 to 0.99), p=0.04).

		Number						
	Study	of				Length of	Outcome	Source of
Reference	type	patients	Patient characteristics	Intervention	Comparison	follow-up	measures	funding

Composite outcome: Kidney Failure or all-cause mortality

People with CKD originally assigned to the low MAP group had a significantly lower risk of progression to kidney failure or all-cause mortality compared with people with CKD originally assigned to the usual MAP [adjusted HR 0.77 (95% CI 0.65 to 0.91), P=0.0024).

There was NS difference in risk for progression to kidney failure or all-cause mortality between people with baseline proteinuria (< 1g/day) compared to people with baseline proteinuria > 1 g/day.

$\dot{\bar{e}}$.5.12 Practicalities of treatment with ACE inhibitors /ARBs in people with CKD (2014 guideline – chapter 10.3)

Table 347: Ref ID: 3676 [Bakris et al. 2000]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Bakris GL, Weir MR. Angiotensin- converting enzyme inhibitor- associated elevations in serum creatinine: is this a cause for concern?	Systemati c review Search not stated Evidence level: 1 +	N=12 RCTs, 6 large double-blind, placebo controlled RCTs, 6 smaller randomised studies N=1102 people randomised to ACE inhibitor. N=705/1102 (64%)	Inclusion: studies had to be randomised to either ACE inhibitor therapy or blood pressure control using ACE inhibitors as part of the drug regimen, blood pressure goals < 140/90 mm Hg, with the majority of participants having > 25% loss of renal function at baseline, regardless of cause. Studies had to have a minimum	ACE inhibitors	Not applicable	mean follow-up of 3.2 years	Change in serum creatinine levels or GFR Hyperkalaemi a	Not stated

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Arch Intern		had renal function	follow-up of 2 years.					
Med. 2000;		data at both < 6						
160(5):685-		months and at study	Exclusion: not stated					
693.		end						

Effect size:

Purpose: to examine changes in serum creatinine and potassium upon commencement of ACE inhibitors and to determine if increases in serum creatinine result in long-term protection against decline in renal function in people with CKD.

Serum Creatinine Levels

Initiation of ACE inhibitor or ARB is associated with a 30% or less increase (above baseline) in serum creatinine levels. This increase will occur within the first 2 weeks of treatment and usually stabilises within 2 to 4 weeks. In N=11 studies, the GFR decline was slower at the end of the study than after ACE initiation.

In 2 long-term studies in diabetic CKD populations, (n= 65) initiation of ACE inhibitor treatment resulted in a 3 to 9% reduction in GFR (below baseline). After 6 years of therapy, the GFR returned to levels not significantly different from baseline within 1 month of stopping ACE inhibitor treatment. Thus the initial and persistent decline in GFR is reversible despite prolonged ACE use.

Despite the initial decline in GFR (or increase in serum creatinine), people with the greatest degree of renal insufficiency receive the greatest protection from renal disease progression from ACE therapy. In people with serum creatinine > 2.0 mg/dl (> 177 micromol/L) there was a 62% to 75% decrease in renal progression. However, there is limited data on the benefit of ACE inhibitors in advanced disease (GFR < 30 ml/min).

Compared to the general population, people > 65 years of age or < 49.5 kg have much lower GFRs for a particular serum creatinine concentration.

Hyperkalaemia

In people with diabetic or nondiabetic renal disease (serum creatinine levels 133-265 micromol/L or 1.5 -3.0 mg/dl), serum potassium levels increased by 0.4 to 0.6 mmol/L during ACE inhibitor or ARB treatment. Approximately 1 to 1.7% developed hyperkalaemia > 6 mmol/l. The risk is low for hyperkalaemia

 The authors present an algorithm. A. Upon ACE initiation if serum creatinine does not change, continue to titrate ACE until BP goal reached. Check creatinine and potassium within 3-4 weeks. If stab recheck annually. If NSAID started or hypoperfusion state develops, re-check more often. B. If serum creatinine increases > 30% above baseline and BP goal is achieved recheck creatinine in 2-3 weeks. If the level is still > 30% reduce ACE dosage by 50% and add other antihypertensive agents to reach BP goal. Re-check creatinine in 4 weeks. If stable, monitor annually. If > 30% rise discontinue ACE and use other antihypertensive agents to reach BP goal. 								
serum creatinine > 50% increase exclude hypoperfusion state (volume depletion								

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Compariso n	Length of follow-up	Outcome measures	Source of funding
Chonchol M, Scragg R. 25- Hydroxyvitamin D, insulin resistance, and kidney function in the Third National Health and Nutrition Examination Survey.[see comment]. Kidney	Cross- sectional population study NHANES III US population study Evidence Level: 3	N total =14679 N GFR ≥ 90 ml/min/ $1.73m^2$ = 9687 N GFR 60-89 ml/min/ $1.73m^2$ = 4094 N GFR 30-59	Inclusion criteria: a general health survey was conducted in USA in 1988-1994 of non- institutionalised adults 20 years or older. Random selection using a stratified cluster method. Exclusion criteria: CKD stage 5, GFR or vitamin D unusually high	N/A Procedure: Non-Hispanic blacks, elderly, and American Mexicans were deliberately over-sampled. Participants completed a health questionnaire and had a clinical exam. Serum creatinine was measured in all participants and GFR was calculated with the MDRD equation re-calibrated to the MDRD laboratory.	N/A	N/A	Serum 25- hydroxyvi tamin D [25 (OH) D ₃]	Not stated

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Compariso n	Length of follow-up	Outcome measures	Source of funding
International. 2007; 71(2):134-139. Ref ID: 44		ml/min/ 1.73m ² = 854 N GFR 15-29 ml/min/ 1.73m ² = 44	Baseline Characteristics: 44% non-Hispanic white, 28% non- Hispanic black, 28% Mexican- American, 77% received no vitamin D supplementation, 17% received > 400 IU/day vitamin D	Serum 25 (OH) D ₃ was measured by a radioimmunoassay after extraction with acetonitrile. CKD was defined according to GFR and staged according to KDOQI.				

Effect size:

adjusted for age, sex, ethnicity, BMI, physical activity, vitamin D supplementation, milk consumption

In this American sample (N=14679), the prevalence of mild CKD (GFR 60-89 ml/min/1.73m²) was 28%. The prevalence of moderate CKD (GFR 30-59 ml/min/1.73m²) was 6% and the prevalence of severe CKD (GFR 15-29 ml/min/1.73m²) was 0.2%.

GFR and Serum Vitamin D:

- Compared with people with GFR \ge 90 ml/min/1.73m² (N= 9687, mean 25 (OH) D₃ = 73.3 nmol/l), people with GFR 60-89 ml/min/1.73m² (N= 4094, mean 25 (OH) D₃ = 77.3 nmol/l, p=0.0002) had significantly higher 25 (OH) D₃.
- Compared with people with GFR \ge 90 ml/min/1.73m² (N= 9687, mean 25 (OH) D₃ = 73.3 nmol/l), there was NS difference in serum 25 (OH) D₃ for people with GFR 30-59 ml/min/1.73m² (N= 854, mean 25 (OH) D₃ = 75.8 nmol/l, p=0.10).
- Compared with people with GFR \ge 90 ml/min/1.73m² (N= 9687, mean 25 (OH) D₃ = 73.3 nmol/l), people with GFR 15-29 ml/min/1.73m² (N= 44, mean 25 (OH) D₃ = 61.6 nmol/l, p=0.0002, mean difference -11.7 nmol/l) had significantly lower 25 (OH) D₃.

Note: Limitations – Cross-sectional analysis.

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Craver L, Marco MP, Martinez I et al. Mineral metabolism parameters throughout chronic kidney disease stages 1-5 - Achievement of K/DOQI target ranges. Nephrol Dial Transplant. 2007; 22(4):1171- 1176. Ref ID: 1225	Cross- sectional study Two nephrolog y clinics, Spain Evidence Level: 3	N total =1836 N CKD Stage 1 = 174 N CKD Stage 2 = 341 N CKD Stage 3 = 856 N CKD Stage 4 = 354 N CKD Stage 5 = 111	Inclusion criteria: all CKD patients attending 2 nephrology clinics in Spain (similar treatment policies in each clinic) Exclusion criteria: history of primary parathyroid disease, previous parathyroidectomy, neoplasias, osteoporosis under treatment with bisphosphonates or calcitonin. Baseline Characteristics: None of the patients were on dialysis or received 25-vitamin D supplements. Significant differences among CKD stages were seen for gender, age, serum creatinine, creatinine clearance, Ca, P, Ca x P product, iPTH, treatment with Ca salts and/or calcitriol, and 1, 25 OH ₂ D ₃ . NS differences for CKD aetiology, diabetes and 25 (OH) D ₃ .	N/A Procedure: Medication use, age, gender, CKD aetiology, presence of diabetes, serum creatinine, phosphate, calcium, Ca X P product, and iPTH were determined. Serum 1, 25 OH ₂ D ₃ (N=522) determined with radioreceptor assay (Hybritec, normal range 18-78 pg/ml). Serum 25 (OH) D ₃ (N=205) determined in October- February with radioimmunoassay (Biosource, normal range 12- 80 ng/ml). Serum iPTH determined by a two-site electrochemiluminometric assay (Cobast Roche, normal range 1.2-6.9 pmol/I). Creatinine clearance determined by Cockcroft Gault equation.	N/A	N/A)	Serum P Serum Ca Serum intact parathyroi d hormone (iPTH) Serum 1, 25- dihydroxyv itamin D (1, 25 OH ₂ D ₃) Serum 25- hydroxyvit amin D [25 (OH) D ₃]	Not stated

Table 349: Ref ID: 1225 [Craver et al. 2007]

		Number of				Length of	Outcome	Source of
Reference	Study type	patients	Patient characteristics	Intervention/ exposure	Comparison	follow-up	measures	funding
Effect size:								
Changes in seru	m iPTH and 1,2	25 Vit D precede	e changes in calcium or phosphate.					
Serum Ca: Mean	n levels of Ca ii	ncreased from C	CKD Stages 1 to 3 and decreased the	ereafter. People with Stage 4 CKD) (N=354, mean	Ca 9.35 mg/c	dl) had signific	antly lower
serum calcium t	han people wi	th Stage 3 CKD	(N=856, mean Ca 9.57 mg/dl, p<0.0	5).				
Serum P: Mean	levels of P rem	nained stable fro	om Stages 1 to 3 CKD and then incre	eased thereafter. People with Sta	age 4 CKD (N=3	54, mean P 3.	.92 mg/dl) had	d
significantly hig	ner serum pho	sphate than peo	ople with Stage 3 CKD (N=856, mea	n P 3.59 mg/dl, p<0.05). People w	vith Stage 5 CKI	D (N=111, me	an P 4.89 mg/	′dl) had
significantly high	her serum pho	sphate than peo	ople with Stage 4 CKD (N=354, mea	n P 3.92 mg/dl, p<0.05).				
Serum iPTH: Ser	rum iPTH incre	ased steadily ac	cross all stages of CKD.					

- People with Stage 2 CKD (N=341, mean iPTH 5.97 pmol/l) had significantly higher serum iPTH than people with Stage 1 CKD (N=174, mean iPTH 4.86 pmol/l, p<0.05).
- People with Stage 3 CKD (N=856, mean iPTH 8.96 pmol/l) had significantly higher serum iPTH than people with Stage 2 CKD (N=341, mean iPTH 5.97 pmol/l, p<0.05).
- People with Stage 4 CKD (N=354, mean iPTH 16.47 pmol/l) had significantly higher serum iPTH than people with Stage 3 CKD (N=856, mean iPTH 8.96 pmol/l, p<0.05).
- People with Stage 5 CKD (N=111, mean iPTH 24.29 pmol/l) had significantly higher serum iPTH than people with Stage 4 CKD (N=354, mean iPTH 16.47 pmol/l, p<0.05).

Serum Vitamin D: There were NS changes across all stages of CKD for serum 25 (OH) D₃ (N=205).

- Serum 1, 25 $OH_2 D_3$ (N=522) remained stable from Stages 1 to 2 and then decreased thereafter.
- People with Stage 3 CKD (N=221, mean 1, 25 OH₂ D₃ 25.7 pg/ml) had significantly lower levels of mean serum 1, 25 OH₂ D₃ than people with Stage 2 CKD (N=87, mean 1, 25 OH₂ D₃ 33.9 pg/ml, p<0.05).
- People with Stage 4 CKD (N=156, mean 1, 25 OH₂ D₃ 16.8 pg/ml) had significantly lower levels of mean serum 1, 25 OH₂ D₃ than people with Stage 3 CKD (N=221, mean 1, 25 OH₂ D₃ 25.7 pg/ml, p<0.05).
- People with Stage 5 CKD (N=43, mean 1, 25 OH2 D3 13.2 pg/ml) had significantly lower levels of mean serum 1, 25 OH₂ D₃ than people with Stage 4 CKD (N=156, mean 1, 25 OH₂ D₃ 16.8 pg/ml, p<0.05).

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Authors also rea	ported that pe	rcentage of pati	ents having all 4 metabolites (Ca, P	iPTH and Vitamin D) within K/D	00l recommer	ded ranges w	vere low	
	· ·	• •	ease of 1.25 Vitamin D, authors sug	· · · · · · ·		ided fallges w		
Limitations –X-s	-		iations, not causal relationships, CK	D defined by 1 creatinine measur	rement, Cockcr	oft-Gault CrC	l used to assig	n people to

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Hsu CY, Chertow GM. Elevations of serum phosphorus and potassium in mild to moderate chronic renal insufficiency . Nephrol Dial Transplant. 2002; 17(8):1419- 1425. Ref ID: 1401	Cross- sectional study NHANES III, USA Evidence Level: 3	N total =14722 N CrCl > 80 ml/min = 8425 N CrCl 70-80 ml/min = 1910 N CrCl 60-70 ml/min = 1473 N CrCl 50-60 ml/min = 1163 N CrCl 40-50 ml/min = 866 N CrCl 30-40 ml/min = 614 N CrCl 20-30 ml/min = 224 N CrCl < 20	Inclusion criteria: a general health survey was conducted in USA in 1988-1994 of non- institutionalised adults 20 years or older. Random selection using a stratified cluster method. Analysis restricted to adults > 17 years who had a serum creatinine, Na, K, bicarbonate, ionised Ca, phosphorus, and albumin measurement. Exclusion criteria: hemophilia, recent cancer chemotherapy Baseline Characteristics: 47% male, 41% non-Hispanic white, 29% non-Hispanic black, Mean CrCl 85 ml/min (female), 90 ml/min (male), mean serum P 3.5 mg/dl (female) and 3.4 mg/dl (male), mean ionised Ca (normalised) 1.24 mmol/l (female) and 1.24 mmol/l (male)	Serum P and Ca levels in people with decreasing deciles of CrCl stratified by gender Procedure: 24-h dietary recall and medication use assessed through patient interviews. Participants asked to fast for at least 6 h prior to phlebotomy. Serum total Ca, P, creatinine analysed with autoanalyser. Ionised Ca measure was normalised for serum pH. Cockcroft Gault equation used to estimate creatinine clearance (CrCl). The laboratory normal reference range for ionised Ca was 1.13-1.32 mmol/l. The laboratory normal reference range for serum P was 2.7-4.5 mg/dl. Upper limit of	Serum P and Ca levels in people with CrCl > 80 ml/min stratified by gender.	N/A	Serum P Serum Ca	NIH

Table 350: Ref ID: 1401 [Hsu et al. 2002]

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
		ml/min = 47		laboratory normal reference for serum P was > 4.5 mg/dl.				

Effect size: Focus of the paper is on changes in serum P and Ca.

CrCl and serum P:

In both men and women, serum P increased with decreasing CrCl.

Compared with women with CrCl > 80 ml/min (N=4078) significant increases in serum P were observed in women with CrCl 50-60 ml/min (N=697, change in serum P= 0.1 mg/dl (95% Cl 0.1 to 0.2), p <0.0001). This trend of increasing P continued with decreasing CrCl (change in P = 0.2 mg/dl in CrCl 30-40, p<0.0001; 0.3 mg/dl in CrCl 20-30 ml/min, p=0.0003; 0.8 mg/dl in CrCl < 20 ml/min, p=0.002)

CrCl (ml/min)	N total	% hyperphosphataemia (95% CI) - serum P > 4.5 mg/dl
> 40	Not stated	≤ 2 (95% CI not given)
30-40	614	3 (1 to 6%)
20-30	224	7 (1 to 12%)
≤ 20	47	30 (0 to 62%)

CrCl and serum ionised Ca++:

Compared to people with CrCl > 80 ml/min, there were NS changes in ionised Ca with declining CrCl. Compared to men with CrCl > 80 ml/min (N=4347), men with CrCl < 20 ml/min (N=20) had a significant decrease in ionised serum Ca [change in ionised Ca = -0.03 mmol/l (95% Cl -0.05 to -0.01), p=0.002]. Serum total Ca or serum total Ca adjusted for albumin levels were not lower at lower CrCl (data not shown).

Note: Limitations –X-sectional analysis shows associations, not causal relationships and no longitudinal follow-up, CrCl defined by 1 creatinine measurement, no PTH or vitamin D measures, serum biochemistry performed only once.

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
LaClair RE, Hellman RN, Karp SL et al. Prevalence of calcidiol deficiency in CKD: a cross-sectional study across latitudes in the United States.[see comment]. American Journal of Kidney Diseases. 2005; 45(6):1026-1033. Ref ID: 235	Cross- sectional study 12 centres, USA Evidence Level: 3	N total =201 N Stage 3 GFR 30-60 ml/min = 65 N Stage 4 GFR 15-30 ml/min = 113 N Stage 5 GFR < 15 ml/min = 22	Inclusion criteria: people > 18 years old with known CKD and GFR 15-59 ml/min Exclusion criteria: RRT, proteinuria > 5g/24-h, poorly controlled hypertension, diabetes, or vasculitis, use of vitamin D or phosphate binders Baseline Characteristics: Mean GFR 27 ml/min, mean age 65 years, 65% male	Serum parameters in Stage 4 N= 113 Serum parameters in Stage 5 N= 22 Procedure: GFR was measured with Cockcroft-Gault equation. Serum 1, 25 OH ₂ D ₃ (Nichols radioimmunoassay, reference range 15-62 pg/ml) and 25 (OH) D ₃ (Nichols Advantage chemiluminescence, reference range 10-68 ng/ml), iPTH (Nichols Advantage chemiluminescence, reference range 10-65 pg/ml, Ca (corrected for albumin), P, creatinine were analysed with autoanalyser at a central laboratory.	Serum parameters in Stage 3 N= 65	N/A	Serum P Serum Ca Serum intact parathyroid hormone (iPTH) Serum 1, 25- dihydroxyvit amin D (1, 25 OH ₂ D ₃) Serum 25- hydroxyvita min D [25 (OH) D ₃]	Genzyme Inc.

Effect size

GFR and serum Ca:

People with Stage 4 CKD (N=113, mean Ca 2.30 mmol/l) or Stage 5 CKD (N=22, mean Ca 2.25 mmol/l) had significantly lower serum Ca than people with Stage 3 CKD (N=65, mean Ca 2.37 mmol/l, p not stated).

43% of people with Stage 3 CKD (N=65) and 71% of people with Stage 4 CKD (N=113) had serum Ca < 2.37 mmol/l.

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ 2014

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
GFR and serum	Р:							
People with Sta	ge 4 CKD (N=1	13, mean P 1.32	mmol/l) or Stage 5 CKD (I	N=22, mean P 1.42 mmol/l) had si	gnificantly higher se	erum P than pe	ople with Stage	e 3 CKD
(N=65, mean P	L.13 mmol/l, p	not stated).						
3% of people w	th Stage 3 CKE	O (N=65) and 22%	of people with Stage 4 C	CKD (N=113) had serum P > 1.52 m	nmol/l.			
GFR and serum	iPTH:							
People with Sta	ge 4 CKD (N=1	13, mean iPTH 23	35 pg/ml) or Stage 5 CKD	(N=22, mean iPTH 310 pg/ml) had	significantly higher	r serum iPTH tł	nan people with	n Stage 3 CKI
(N=65, mean iP	ΓΗ 114 pg/ml,	p not stated).						
Only 35% of peo	ple with Stage	e 3 (N=65) and 31	% of people with Stage 4	l CKD (N=113) had iPTH within K/I	OOQI target range (<	< 70 Stage 3, <	110 Stage 4)	
GFR and serum	25 (OH) D₃							
People with Sta	ge 4 CKD (N=1	13, mean 25 (OH) D $_3$ 46.4 nmol/l) or Stage	e 5 CKD (N=22, mean 25 (OH) D $_3$ 2	9.9 nmol/l) had low	er serum 25 (C	$DH) D_3$ than peo	ople with
Stage 3 CKD (N=	65, mean 25 (OH) D₃ 58.2 nmo	I/I, p not stated). No disc	ussion of the significance of this re	esult.			
57% of people y	vith Stage 3 CK	(D (N=65) and 58	% of people with Stage 4	CKD (N=113) had 25 (OH) D ₃ insu	fficiency (25 (OH) D	10-30 ng/ml)		

14% of people with Stage 3 CKD (N=65) and 26% of people with Stage 4 CKD (N=113) had 25 (OH) D_3 deficiency (25 (OH) D_3 < 10 ng/ml).

GFR and serum 1, 25 $OH_2 D_3$

Limitations – population is older people, X-sectional analysis shows associations, not causal relationships

Chronic kidney disease Error! No text of specified style in document.

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Compariso n	Length of follow-up	Outcome measures	Source of funding
Levin A, Bakris GL, Molitch M et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007; 71(1):31-38. Ref ID: 3982	Cross- sectional study Baseline analysis of SEEK 153 centres, USA Evidence Level: 3	N total =1814 N GFR > 60 ml/min = 408 N GFR 59- 30 ml/min = 1109 N GFR < 30 ml/min = 297	Inclusion criteria: Study for the Evaluation of Early Kidney disease (SEEK) participants:> 40 years old, MDRD eGFR < 60 ml/min Exclusion criteria: RRT, history of primary parathyroid disease, use of any prescription-based vitamin D therapy 12 months prior to screening Baseline Characteristics: Mean GFR 47 ml/min, 85% hypertensive, 71% > 65 years old, mean age 70 years, 35% CAD, 47% diabetic, 12% African American, 48% male, 25% receiving Ca supplementation, 8.7& hormone replacement therapy, 8% receiving bisphosphonates, 38% ACE inhibitors use, 34% ARB	N/A Procedure: Participant charts screened for serum creatinine in 2003-04 to determine eligibility for inclusion in the study. Medical history, medications, blood and urine samples collected at baseline (June 2004 to October 2004). Serum 1, 25 OH ₂ D ₃ and 25 (OH) D ₃ determined with DiaSorin radioimmunoassay. Serum Ca, P, creatinine analysed with autoanalyser. Total Ca was corrected for serum albumin. Serum iPTH determined by chemiluminescence assay. Lab references 10-65 pg/ml for iPTH, 8-60 ng/ml for 25 (OH) D ₃ and 25-65 pg/ml for 1, 25 OH ₂ D ₃ . Dietary supplementation of vitamin D and multivitamin intake	N/A	N/A (Baseline analysis)	Serum P Serum Ca Serum intact parathyroid hormone (iPTH) Serum 1, 25- dihydroxyvita min D (1, 25 OH ₂ D ₃) Serum 25- hydroxyvitami n D [25 (OH) D ₃]	Abbott Pharmaceutic als

Table 352: Ref ID: 3982 [Levin et al. 2007]

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Compariso n	Length of follow-up	Outcome measures	Source of funding
			use, 64% diuretic use	up to 400 IU/day permitted.				
Effect size:								
Discrepancy be	etween screer	ing serum crea	atinine and baseline creatinine	measurement resulted in some	people with e	GFR > 60 ml/mi	n being included i	n the study

Discrepancy between screening serum creatinine and baseline creatinine measurement resulted in some people with eGFR > 60 ml/min being included in the study (N=408)

GFR and serum P and Ca:

Median Ca and P levels remained stable and within normal levels across GFR (patients stratified by decile GFR). P levels increased at GFR < 20 ml/min. Of people with eGFR 20-29 ml/min (N=204), 15% had abnormal phosphorus levels (P > 4.6 mg/dl). Of people with GFR < 20 ml/min (N=93) 40% had abnormal phosphorus levels (P > 4.6 mg/dl). (Note that original Levin et al. paper stated abnormal P levels as P < 4.6 mg/dl. EC and PS think this was a misprint and should be P > 4.6 mg/dl).

Of people with eGFR 20-29 ml/min (N=204), < 10 % had abnormal Ca levels (Ca < 8.4 mg/dl). Of people with GFR < 20 ml/min (N=93) 15% had abnormal Ca levels (Ca < 8.4 mg/dl). 8.4 mg/dl).

		, , , , , , , , , , , , , , , , , , , ,
eGFR (ml/min/1.73 m ²)	Ν	Prevalence (%) Hyperparathyroidism (iPTH > 65 ng/ml)
> 80	61	12
70-79	117	17
60-69	230	21
59-50	396	* 30
49-40	355	* 40
39-30	358	* 55
29-20	204	* 70
< 20	93	* 85

GFR and serum iPTH: iPTH levels were relatively stable until GFR decreased to 45 ml/min.

*EC estimated from Figure 4

Reference Study ty	Number of pe patients	Patient characteristics	Intervention/ exposure	Compariso n	Length of follow-up	Outcome measures	Source of funding
GFR and serum Vitamir	D: 1, 25 OH ₂ D ₃ ;	and 25 (OH) D_3					
regression analysis show 25 $OH_2 D_3$ was seen as 0	ved a relationship GFR decreased to	D_3 decreased with decreasing eGF o between eGFR and 1, 25 OH ₂ D_3 approx. 45 ml/min/1.73 m ² (above) /ml) remained stable until GFR <	(R2 = 0.3827, p < 0.0001) but ut the GFR as iPTH levels appro	not between e ached hyperpa	GFR and 25 O arathyroidism	H D $_3$ (p=0.8932). levels). The preva	Deficiency of 1,
eGFR (ml/min/1.73 m ²)	N	** Prevalence (%) 1, 25 OH ₂ D ₃ deficiency (1, 25 OH ₂ D ₃ < 22 pg	** Prevalence (%) /ml)	25 OH D₃ defic	iency (25 OH I	D₃ < 15 ng/ml)	
> 80	61	12	10				
70-79	117	15	10				
60-69	230	15	5				
59-50	396	20	5				
59-50 49-40	396 355	20 30	5 15				
49-40	355	30	15				

** EC estimated from Figure 6.

49% of people with low 1, 25 OH₂ D₃ levels had high iPTH (irrespective of 25 OH D₃ levels), whereas 35% of those with low 25 OH D₃ levels had high iPTH levels (p<0.05).

Multivariate analysis (adjusted for age, gender, race, GFR, diabetes, urinary ACR, Ca, P):

Diabetes, decreased GFR, and increased urinary ACR independently predicted low 1, 25 OH₂ D₃.

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Compariso n	Length of follow-up	Outcome measures	Source of funding	
Note: Limitations – population is older people, X-sectional analysis shows associations, not causal relationships, CKD defined by 1 creatinine measurement									

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
St John A., Thomas MB, Davies CP et al. Determinants of intact parathyroid hormone and free 1,25- dihydroxyvita min D levels in mild and moderate renal failure. Nephron. 1992; 61(4):422-427. Ref ID: 1811	Observation al study 2 nephrology clinics, Australia Evidence Level: 3	N total =51 N mild CRF (GFR 40-90 ml/min/1.73 m ²) = 27 N moderate CRF (GFR 20- 39 ml/min/1.73 m ²) = 12 N healthy subjects = 12	Inclusion criteria: patients with mild (GFR 40-90) or moderate (GFR 20-39) age 22- 68 years were recruited from 2 nephrology units in July 1988-June 1989. Healthy subjects with no prior renal disease were controls. Exclusion criteria: patients taking prednisolone, vitamin D derivatives, high dose oral calcium, or phosphate binders Baseline Characteristics: Primary diagnosis of renal disease: 28% glomerulonephritis, 28% hypertensive, 15% polycystic kidney disease, 13% chronic interstitial nephritis, 8% diabetic nephropathy, 8% renal transplant donors. Mean age: 34 (healthy), 48 (mild CRF), 45 (moderate CRF). Mean GFR: 115	Serum markers of bone metabolism in people with mild renal failure (GFR 40-90 ml/min/1.73 m ²) N = 27 Serum markers of bone metabolism in people with moderate renal failure (GFR 20-39 ml/min/1.73 m ²) N = 12 Procedure: Following an overnight fast, GFR was determined by clearance of [^{99mTc}]DTPA from the plasma. Blood samples assayed for total Ca, P, albumin, creatinine, bicarbonate, alkaline phosphatase. Serum 1, 25 OH ₂ D ₃ was determined with a bovine thymus cytoreceptor assay. Serum 25 (OH) D ₃ was determined using rat	Serum markers of bone metabolism in healthy people N=12	N/A	Serum P Serum Ca Serum intact parathyroid hormone (iPTH) Serum 1, 25- dihydroxyvita min D (1, 25 OH ₂ D ₃) Serum 25- hydroxyvitam in D [25 (OH) D ₃]	Telethon Foundation and Sir Charles Gairdner Hospital Research Foundation grants

Table 353: Ref ID: 1811 [St.John et al. 1992]

Reference	Study type	Number of patients	Patient characteristics	Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
			ml/min/1.73m ² (healthy), 56	kidney cytosol. Serum				
			ml/min/1.73m ² (mild CRF), 32	iPTH determined by an				
			ml/min/1.73m ² (moderate	immunochemiluminometr				
			CRF)	ic assay.				

Effect size:

Changes in plasma iPTH and 1,25 Vit D precede changes in calcium or phosphate.

Plasma Ca:

- There were NS differences in mean Ca levels for people with mild CRF (GFR 40-90 ml/min/1.73m², N=27, mean Ca 2.31 mmol/l) compared with healthy controls (N=12, mean Ca 2.27 mmol/l).
- People with moderate CRF (GFR 20-39 ml/min/1.73m², N=12, mean Ca 2.24 mmol/l) had significantly lower Ca levels than people with mild CRF (GFR 40-90 ml/min/1.73m², N=27, mean Ca 2.31 mmol/l, p<0.05)

Plasma P:

- There were NS differences in mean phosphate levels for people with mild CRF (GFR 40-90 ml/min/1.73m², N=27, mean P 1.0 mmol/l) compared with healthy controls (N=12, mean P 1.1 mmol/l).
- People with moderate CRF (GFR 20-39 ml/min/1.73m², N=12, mean P 1.2 mmol/l) had significantly higher P levels than people with mild CRF (GFR 40-90 ml/min/1.73m², N=27, mean P 1.0 mmol/l, p<0.05)

Plasma iPTH:

- People with mild CRF (GFR 40-90 ml/min/1.73m², N=27, mean iPTH 57.5 pg/ml) had significantly higher levels of iPTH than healthy people (N=12, mean iPTH 25.4 pg/ml, p<0.05).
- People with moderate CRF (GFR 20-39 ml/min/1.73m², N=12, mean iPTH 139 pg/ml) had significantly higher iPTH levels than people with mild CRF (GFR 40-90 ml/min/1.73m², N=27, mean iPTH 57.5 pg/ml, p<0.05)
- People with moderate CRF (GFR 20-39 ml/min/1.73m², N=12, mean iPTH 139 pg/ml) had significantly higher iPTH levels than healthy people (N=12, mean iPTH 25.4 pg/ml, p<0.05).

ועמרוסנומו כוונווכמו סמומפוונופ כפנות פ

ZUT4

Reference	Study type	Number patients		Intervention/ exposure	Comparison	Length of follow-up	Outcome measures	Source of funding
Note that 17/3 ml/min/1.73m	_	e with CRF w	ere still within the reference range of i	PTH (even at low GFR). The in	crease in iPTH a	bove referend	ce values began a	at GFR < 60
Plasma Vitam	in D:							
-	mild CRF (GFR n 1, 25 OH ₂ D ₃ :		n/1.73m ² , N=27, mean 1, 25 OH ₂ D ₃ = 4 p<0.05).	12.1 pg/ml) had significantly lo	ower levels of 1,	25 OH ₂ D ₃ co	mpared with he	althy people
-			ml/min/1.73m ² , N=12, mean 1, 25 OH ₂ 5 pg/ml, p<0.05).	$D_3 = 39.2 \text{ pg/ml}$ had significa	ntly lower levels	s of 1, 25 OH ₂	D_3 compared wi	th healthy
Note than 9/3	9 (23%) people	with CRF we	ere BELOW the reference range of 1, 25	$5 \text{ OH}_2 \text{ D}_3$. This occurred at GFR	k < 60 ml/min/1.	73m ² .		
There were NS	6 differences in	25 (OH) D ₃ .						
Note: – accura	ite measure of	GFR used, b	ut in small number of patients. Observa	itional study.				
Risks and be	nefits of bisp	ohosphona	ites for preventing osteoporosis	in adults with CKD (201	4 guideline –	chapter 13	3.2)	
Table 354: Rei	f ID: 3990 [Jai	mal et al. 20	007]					
Reference	···· ·	Number of Datients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding

ואמווטוזמו כוווזוכמו שמומפוווזפ כפוונרפ לסדל

Chronic kidney disease Error! No text of specified style in document.

Q.5.14

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Jamal SA, Bauer DC, Ensrud KE, Cauley JA, Hochberg M,	RCT Evidence level: 1+	N=6458 N=2027 in the	Inclusion criteria: women were enrolled in FIT if they were 55-80 years old, at least 2 years postmenopausal, femoral neck BMD ≤0.68 g/cm ² .	Alendronate (dose not mentioned in this paper)	Placebo	48 months in the clinical fracture arm	BMD Fractures: Clinical	Canadian Institutes of Health Research

Reference	Study type	Number of patients	Patient character	istics			Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
				(20.0)	(20.3)		Blood chemistry				
			% Fracture after age 45	46.9	41.7	0.02	(Ca, P, creatinine, ALP, PTH) measured at baseline and annually. Adverse events assessed over the phone or at clinic visits every 3 months.				

Effect size:

Standard WHO definition of osteoporosis used: BMD at femoral neck, total hip or lumbar spine of ≤ 2.5 SD below mean BMD for young adult women (T score of ≤ -2.5); T score between -1 and -2.5 classified as osteopenia; T score >-1 classified as 'normal BMD'.

Change in BMD [%change (95%CI)], alendronate vs. placebo, by eGFR

	All women	Severely reduced eGFR (eGFR<45)	Moderately reduced or normal eGFR (eGFR ≥45)	P for interaction
All women (N=6458)				
Total hip	4.9 ± 8.7%	5.6 (4.8-6.5)	4.8 (4.6-5.0)	0.04
Femoral neck		5.0 (4.0-5.9)	4.5 (4.2-4.8)	0.32
Spine	6.6 ± 5.8%	6.7 (5.7-7.8)	6.6 (6.3-6.9)	0.75
Women with osteoporosis (N=3214)				
Total hip		4.9 (3.7-6.3)	4.7 (4.4-5.0)	0.61
Femoral neck		4.5 (3.2-5.8)	4.2 (3.8-4.7)	0.73
Spine		5.9 (4.3-7.5)	6.4 (6.2-7.1)	0.33

Reference	Study type	Number of patients	Patient characteristics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Fracture risk [Odds ratio (95%CI)], alend	ronate vs. placebo, by eGFR						
		All women	Severely reduced eGFR	Moderately re eGFR	educed or normal	P for interacti		f fracture in w ≪45 vs. eGFR≥4	
All women (N=	=6458)								
Clinical fractur	es	0.8 (0.7-0.9)	0.78 (0.51-1.2)	0.81 (0.70-0.9	4)	0.90	1.3 (1	.0-1.6)	
Spine fractures	5	0.54 (0.37-0.	.78) 0.72 (0.31-1.7)	0.50 (0.32-0.7	6)	0.44	2.5 (1	.6-3.9)	
Women with osteoporosis (N=3214)								
Clinical fractur	es		0.84 (0.45-1.54)	0.74 (0.61-0.9	1)	0.72			
Spine fractures	5		1.01 (0.29-3.6)	0.62 (0.36-1.1	0)	0.49			

Serum creatinine: there was an increase in serum creatinine that was the same in those with and without reduced renal function (mean increase in both groups: 0.01 ± 0.10 ; p=0.88); and was the same in the placebo and alendronate treated groups (mean increase: 0.01 ± 0.10 ; p=0.99)

Adverse events

NS differences in adverse events experienced by people with severe renal dysfunction or reduced/normal renal function.

Frequency of reported adverse events	Severely reduced eGFR	Moderately reduced or normal eGFR	p
Overall (%)	99.1	99.5	0.189
Gastrointestinal events (%)	4.5	5.2	0.5
Cerebrovascular (%)	2.2	2.2	0.9
Cardiovascular (%)	2.6	3.2	0.4
Arrhythmias (%)	2.4	2.1	0.7
Malignancies (%)	4.3	5.0	0.4
Death (%)	1.6	1.9	0.5

Reference	Study type	Number of patients	Patient characteristics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Renal adverse	events (%)		2.1	2.3		0.68			
			ffective at increasing BMD and adverse events.	decreasing fractu	e risk and are not ass	ociated with ar	increase in ser	um creatinine,	, reduction

Assessment of bias: RCT details of which are not mentioned in this paper, no mention of ITT, method of randomisation, concealment. Assessors of radiographic evidence were blinded. This was a post-hoc analysis.

Table 355: Ref ID: 3991 [Kikuchi et al. 2007]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Compariso n	Length of follow-up	Outcome measures	Source of funding
Kikuchi Y, Imakiire T, Yamada M, Saigusa T, Hyodo T, Kushiyama T, Higashi K, Hyodo N, Yamamoto K, Suzuki S, Miura S. Effect of risedronate on high- dose corticosteroid- induced bone loss in patients with glomerular disease. Nephrol Dial Transplant 2007; 22: 1593-1600	RCT Evidence level: 1+ Randomise d, open- label, prospective study Randomisat ion using envelope randomisati on method.	N =38 Drop out rate 0% Japanese population	Inclusion criteria: patients with glomerulonephritis initiating high-dose corticosteroid therapy (>30 mg/day prednisolone, including steroid pulse therapy Exclusion criteria: severe renal dysfunction due to rapidly progressive glomerulonephritis, very high (>130%) or very low (<80%) BMD Baseline characteristics: There were NS differences in sex, age, BMI, BMD or the biochemical markers of bone metabolism among the groups. Mean GFR was 78 ml/min (Group R), 74 ml/min (Group R + A), 81 ml/min (Group A)	N=12 Group R: risedronate 2.5mg/day N=15 Group A: alfacalcidol 0.5 µg/day (an active vitamin D3 analogue) Procedure: Patients randomised to risedronate alone, alfacalcidol alone, or risedronate alone, alfacalcidol alone, or risedronate + alfacalcidol. Drugs were simultaneously started with the initiation of steroid therapy. No patients received Ca supplementation. BMD (assessed by DEXA) measured at baseline and 12 months following randomisation. CrCl calculated (method not	N=11 Group R+A: risedronate 2.5mg/day and alfacalcidol 0.5 μg/day	1 year	BMD GFR Urinary protein Serum blood urea nitrogen and creatinine (BUN) ALP iPTH osteocalcin urinary cross-linked N- telopeptide of type I collage (NTx)	Not stated

ואמנוטרומו כוורווכמו שעומפוורופ כפרונרפ בטב4

Reference	Study type	Number of patients	Patient characteristics	Intervention	Compariso n	Length of follow-up	Outcome measures	Source of funding
			Urinary protein was higher in the R+A group than in group R or A, but this was not significant.	stated).				
Effect size:								
BMD Changes								
		Group R		Group R+A		Group A		
BMD baseline (g/cm ²)		1.04 ± 0.10		1.06 ± 0.11		1.02 ± 0.10		
BMD at 12 months (g	/cm²)	1.03 (NS cha	nge from baseline)	1.08 (p<0.05 from baseline)	0.96 (p<0.05 compared to	from baseline) o R+A)	[p=0.001

Adverse Events:

No patients were excluded due to adverse events and no list of adverse events given.

Fractures: There were no fractures that occurred in the study.

Several factors (osteocalcin, ALP, urinary NTx, iPTH) showed significant changes from baseline; but NS significant differences between the groups.

Predictive factors for loss of BMD: patients were classified into 3 groups on the basis of BMD change and predictive factors for BMD loss were assessed (Group I BMD increase >1.1% (N=12); Group II mild change in BMD -3.2 to +1.1% (N=13); Group III BMD decreased > 3.2% (N=13)). There were no significant differences in sex, age, BMI, BMD or renal function at baseline among the groups. Urinary NTx was significantly higher in groups II and III than in group I. Serum osteocalcin, ALP also higher in Groups II and III than I, but NS.

Assessment of bias: ITT analysis, no drop outs, open-label study, small numbers.

Roux C, Boonen S, Buniap LE, Burgio DE.Propout rate: 36% in placebo group and 35% in risedronate in patients with age- related by the group and Gault method: a nooled analysis of in clinical in clinica	Reference	Study type	Number of patients	Patient cha	racteristics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Age (yrs) 75 (80) 75 (8.2)	Roux C, Boonen S, Barton IP, Dunlap LE, Burgio DE. Safety and efficacy of risedronate in patients with age- related reduced renal function as estimated by the Cockcroft and Gault method: a pooled analysis of nine clinical	analysis Evidence level : 1+ Data from 9 randomis ed, double blind, placebo controlle d, parallel group phase III trials were included, all used risedrona	Dropout rate: 36% in placebo group and 35% in risedronat	different str Population renal disease Exclusion cr excluded fro they had ev systemic dis hyperparath or osteoma enrolment; values inclu >1.1 times t Baseline ch renal impain treatment g risedronate respect to b disease cha	riteria: patients v is osteoporotic v is osteoporotic v is on the individual idence of clinical sease such as his hyroidism, hyper lacia within 1 yes or markedly abn ding serum creat the ULN. aracteristics: with rment subgroup, groups (placebo a) were very simil baseline demogra racteristics. Risedronate 4500	were al studies if Ily significant itory of thyroidism ar before hormal lab tinine levels thin each , the 2 and lar with aphic and Placebo 4496	(5 mg daily) N= 4496 overall N Severe CKD=301 N moderate CKD = 2034 N mild CKD = 2161 Protocol: Analysis of trials stratified by renal function: mild (CrCl >50 to 80 ml/min), moderate (CrCl >30 to <50 ml/min) or severe (CrCl <30 ml/min) renal impairment. BMD (assessed with DXA) measured at baseline, at 6, 12, 24 months and at	N=4500 overall N Severe CKD=271 N moderate CKD = 2037 N mild CKD =	duration of treatment	outcome: safety. Adverse events Secondary outcomes: efficacy BMD (measured by DXA) Creatinine clearance	(USA), Sanofi- Aventis

Table 356: Ref ID: 3987 [Miller et al. 2005]

Reference	Study type	Number of patients	Patient cha	racteristics		Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Bone and Mineral Research	treatmen t of osteopor		Serum creatinine mg/dl	0.98 (0.208)	0.99 (0.22)	fractures (decrease of 15% or more in vertebral height or a change from				
2005; 20(12): 2105-2115	osis.		CrCl ml/min	49.5	49.2	grade 0 to grade 1 or more) assessed by blinded radiologists.				

Effect size:

Of the 9883 women on the database 91% (8996/9883) had some degree of renal impairment. Severe 572/9883 (5.8%), moderate 4071/9883(41.2%) and mild 4353/9883 (44.0%).

Adverse events: The incidence of overall, urinary and renal function related adverse events were similar within and between treatment groups in the subgroups of patients with severe, moderate and mild renal impairment. Statistically and clinically there were NS differences.

Changes in serum creatinine: There were NS differences between the placebo and risedronate groups in changes from baseline in serum creatinine in any of the renal impairment groups.

BMD:

	Placebo vs.risedronate in mild renal impairment	Placebo vs.risedronate in moderate renal impairment	Placebo vs.risedronate in severe renal impairment
Mean % change (SE) in lumbar spine	-0.14% (0.19%) vs.3.96% (0.18%);	-0.47% (0.50%) vs.4.33 (0.51%);	-1.37% (1.72%) vs.4.23% (1.82%);
BMD	p<0.001	p<0.001	p<0.001

The mean percent increase from baseline to endpoint in BMD at the femoral neck and trochanter was significantly greater in the risedronate 5 mg group than in the placebo group in all 3 renal impairment subgroups, except at the femoral neck in the severe renal impairment subgroup.

Incidence of new vertebral fractures: Incidence of new vertebral factures was significantly lower in the risedronate group than the placebo groups within each renal impairment subgroup. Within the risedronate treatment group, the incidence of new vertebral fractures was similar across renal impairment subgroups (p=0.124). The

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
incidence	n the placebo t	reated group i	ncreased significantly with the severity of re	enal impairments (p<0.001).	[Note that Figur	e 2 was very d	lifficult to inte	rpret. Looks
as if 56% o	placebo and 1	.2% of risedron	ate group had new fractures in the severe (CKD group. Is this reasonable	?]			

Assessment of bias: posthoc analysis of pooled data from 9 trials, ITT analysis, all trials reported to be randomised and double blind but no details of each given.

Table 357: Ref ID: 3979 [Fuji et al. 2007]

Reference	Study type	Number of patients	Patient characteristics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
Fujii N, Hamano T, Mikami S, Nagasawa Y, Isaka Y, Moriyama T, Horio M, Imai E, Hori M, Ito T. Risedronate, an effective treatment for glucocorticoid – induced bone loss in CKD patients with or without concomitant active vitamin D (PRIUS- CKD) Nephrol Dial Transplant 2007; 22: 1601-1607	RCT Evidence level 1- Poorly randomise d, prospective , open- label, study Per- protocol analysis Randomisa tion using computer software	N=114 19.2% (15/78) of patients taking risedronate withdrew	Inclusion criteria: CKD outpatients receiving glucocorticoid therapy (prednisone equivalent of ≥2.5 mg/day) for >6 months Exclusion criteria: current treatment with bisphosphonate, native Vit D, oestrogen, selective oestrogen receptor modulator (SERM), or human parathyroid hormone, any concurrent diseases that affect bone turnover such as primary hyperparathyroidism and thyroid dysfunction, kidney transplant patients and females planning pregnancy. Baseline characteristics: Mean age (SD) 42.5 ±	Group A: Active Vit D alone N=38 Group B: Active Vit D + risedronate 2.5 mg/day (randomisation conducted so that this group had 40% more patients than group A) N=50 Protocol: Subjects randomised to Vitamin D alone (Group A), Vitamin D + risedronate (Group B). Remainder allocated to risedronate alone (Group C). Diuretic, Ca supplement, beta blocker, vitamin D use not changed during study. BMD of the second to fourth lumbar vertebrae measured every 6 months and blood chemistry at baseline, 1, 3, and 6	Group C: Risedronate 2.5 mg/day N=26	1 year	Bone mineral density (BMD) Creatinine clearance (CrCl) Serum N- terminal telopeptides of type I collagen (S- NTX) [a marker for bone turnover] Bone ALP	In part by Sanofi- Aventis (Tokyo, Japan)

Chronic kidney disease Error! No text of specified style in document.

Reference	Study type	Number of patients	Patient character	istics	Intervention	Comparison	Length of follow-up	Outcome measures	Source of funding
			16.6 years Sex Male 47% (54 CrCl (SD) 99.6 ± 3 ml/min/1.73m ²	. ,	months, after randomisation measured using a dual-energy X-ray absorptiometer. CrCl estimated using the Cockcroft-Gault formula.				
Effect size									
		Group A (Vita	min D alone)	Group	B (Vitamin D + Risedronate)	Group C (Rise	edronate alor	ie)	
Change in BMD		-1.2 ± 0.6%		+2.8 ± 1	1.3%	+2.1 ± 1.0%			
Lumbar spine at 12	months	NS, no p-value	e given	Signific	ant, no p-value given	Significant, n	o p-value give	n	
Change in S-NTX at	5 months	+4.7%		-19.6%		-14.6%			
		(p<0.05 compa			for change from baseline)	(p<0.05 for change from baseline)			
Change in bone ALP	at 6 months	+26.9%		-11.6%		-10%			
		(p<0.05 comp	ared to B or C)						

• Changes in BMD at the femoral neck were not obvious in any group.

• There was a mild tendency of a stepwise increase in the lumbar BMD with the greater reduction in S-NTX at 6-months (but not statistically significant).

- Baseline values of bone turnover markers were not associated with percentage changes in lumbar BMD after 1 year of risedronate treatment.
- Changes in CrCl were similar across all groups.

Assessment of bias: only the patients in the active Vit D group were randomised, patients in group C were allocated to risedronate without any form of randomisation. Per-protocol analysis. Open-labelled study.

Conclusions: monotherapy with active vitamin D fails to maintain the bone mass of CKD patients receiving glucocorticoids. Risedronate with or without vitamin D is an effective treatment for glucocorticoid induced bone loss in CKD patients in terms of BMD.

Caution: 2.5 mg risedronate below recommended dose for treatment of osteoporosis.

Appendix R: References

- 1 Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994; 344(8934):1383-1389
- Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet. 1997; 349(9069):1857-1863
- 3 Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet. 2000; 355(9200):253-259
- 4 Effect of 3 years of antihypertensive therapy on renal structure in type 1 diabetic patients with albuminuria: the European Study for the Prevention of Renal Disease in Type 1 Diabetes (ESPRIT). Diabetes. 2001; 50(4):843-850
- 5 Kidney Disease: improving globlal outcomes (KDIGO). 2007. Available from: http://www.kdigo.org/ [Last accessed: 28 February 2008]
- 6 British National Formulary. UK. BMJ Publishing Group Ltd and RPS Publishing, 2008. Available from: http://www.bnf.org/bnf/
- Quality and Outcomes Framework (QOF). 2008. Available from: http://www.dh.gov.uk/en/Healthcare/Primarycare/Primarycarecontracting/QOF/index.htm [Last accessed: 28 February 2008]
- 8 Rivaroxaban-once daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation: rationale and design of the ROCKET AF study. American Heart Journal. 2010; 159(3):340-347
- 9 Abdelhafiz AH, Tan E, Levett C, Minchin J, Nahas ME. Natural history and predictors of faster glomerular filtration rate decline in a referred population of older patients with type 2 diabetes mellitus. Hospital Practice. 2012; 40(4):49-55
- 10 Abramowitz MK, Melamed ML, Bauer C, Raff AC, Hostetter TH. Effects of oral sodium bicarbonate in patients with CKD. Clinical Journal of the American Society of Nephrology. 2013; 8(5):714-720
- 11 Adachi M, Miyoshi T, Shiraishi N, Shimada H, Sakaguchi S, Tomita K et al. A study of maintenance therapy after intravenous maxacalcitol for secondary hyperparathyroidism. Clinical Nephrology. 2011; 76(4):266-272
- 12 Adarkwah CC, Gandjour A, Akkerman M, Evers S. To treat or not to treat? Cost-effectiveness of ace inhibitors in non-diabetic advanced renal disease: a Dutch perspective. Kidney and Blood Pressure Research. Netherlands 2013; 37(2-3):168-180

- 13 Adarkwah CC, Gandjour A, Akkerman M, Evers SM. Cost-effectiveness of Angiotensinconverting enzyme inhibitors for the prevention of diabetic nephropathy in The Netherlands -A Markov model. PLoS ONE. 2011; 6(10):e26139
- 14 Agarwal R, Bunaye Z, Bekele DM, Light RP. Competing risk factor analysis of end-stage renal disease and mortality in chronic kidney disease. American Journal of Nephrology. 2008; 28(4):569-575
- 15 Agarwal R, Debella YT, Giduma HD, Light RP. Long-term retinal, renal and cardiovascular outcomes in diabetic chronic kidney disease without proteinuria. Nephrology Dialysis and Transplantation. 2012; 27(1):310-317
- 16 Agarwal V, Hans N, Messerli F. Effect of allopurinol on blood pressure: A systematic review. Journal of Clinical Hypertension. 2011; 13(4 Suppl. 1):A9
- 17 Aggarwal HK, Jain D, Kumar A. Doxercalciferol versus calcitriol for treatment of secondary hyperparathyroidism in patients of chronic kidney disease-efficacy and safety. Journal of Medical Sciences. 2011; 11(5):226-230
- 18 Agnelli G, Buller HR, Cohen A, Curto M, Gallus AS, Johnson M et al. Apixaban for extended treatment of venous thromboembolism. New England Journal of Medicine. 2013; 368(8):699-708
- 19 Agodoa LY, Appel L, Bakris GL, Beck G, Bourgoignie J, Briggs JP et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial.[see comment]. JAMA. 2001; 285(21):2719-2728
- 20 Aguilar MI, O'Meara ES, Seliger S, Longstreth WT, Hart RG, Pergola PE et al. Albuminuria and the risk of incident stroke and stroke types in older adults. Neurology. 2010; 75(15):1343-1350
- 21 Ahlstrom A, Tallgren M, Peltonen S, Rasanen P, Pettila V. Survival and quality of life of patients requiring acute renal replacement therapy. Intensive Care Medicine. 2005; 31(9):1222-1228
- Ahmad J, Siddiqui MA, Ahmad H. Effective postponement of diabetic nephropathy with enalapril in normotensive type 2 diabetic patients with microalbuminuria. Diabetes Care. 1997; 20(10):1576-1581
- 23 Ahmad J, Shafique S, Abidi SMA, Parwez I. Effect of 5-year enalapril therapy on progression of microalbuminuria and glomerular structural changes in type 1 diabetic subjects. Diabetes Research and Clinical Practice. 2003; 60(2):131-138
- Ahmed S, Michael GC, Cannon CP, Murphy SA, Sabatine MS. Impact of reduced glomerular filtration rate on outcomes in patients with ST-segment elevation myocardial infarction undergoing fibrinolysis: a CLARITY-TIMI 28 analysis. Journal of Thrombosis and Thrombolysis. 2011; 31(4):493-500

- 25 Al-Aly Z, Quazi RA, Gonzalez EA, Zerinque A. Changes in Serum 25-Hydroxyvitamin D and Plasma Intact PTH Levels Following Treatment With Ergocalciferol in Patients With CKD. American Journal of Kidney Diseases. United States 2007; 50(1):59-68
- Al-Aly Z, Zeringue A, Fu J, Rauchman MI, McDonald JR, El-Achkar TM et al. Rate of kidney function decline associates with mortality. Journal of the American Society of Nephrology. 2010; 21(11):1961-1969
- Alborzi P, Patel NA, Peterson C, Bills JE, Bekele DM, Bunaye Z et al. Paricalcitol reduces albuminuria and inflammation in chronic kidney disease: a randomized double-blind pilot trial. Hypertension. 2008; 52(2):249-255
- Alexander JH, Lopes RD, James S, Kilaru R, He Y, Mohan P et al. Apixaban with antiplatelet therapy after acute coronary syndrome. New England Journal of Medicine. 2011; 365(8):699-708
- Ali O, Mohiuddin A, Mathur R, Dreyer G, Hull S, Yaqoob MM. A cohort study on the rate of progression of diabetic chronic kidney disease in different ethnic groups. BMJ Open. 2013; 3(2):e001855
- 30 Alonso A, Lopez FL, Matsushita K, Loehr LR, Agarwal SK, Chen LY et al. Chronic kidney disease is associated with the incidence of atrial fibrillation: The atherosclerosis risk in communities (ARIC) Study. Circulation. 2011; 123(25):2946-2953
- 31 Altemtam N, Russell J, El Nahas M. A study of the natural history of diabetic kidney disease (DKD). Nephrology Dialysis and Transplantation. 2012; 27(5):1847-1854
- 32 Alvarez JA, Law J, Coakley KE, Zughaier SM, Hao L, Shahid Salles K et al. High-dose cholecalciferol reduces parathyroid hormone in patients with early chronic kidney disease: a pilot, randomized, double-blind, placebo-controlled trial. American Journal of Clinical Nutrition. 2012; 96(3):672-679
- 33 Amin AP, Whaley-Connell AT, Li S, Chen SC, McCullough PA, Kosiborod MN et al. The synergistic relationship between estimated GFR and microalbuminuria in predicting long-term progression to ESRD or death in patients with diabetes: results from the Kidney Early Evaluation Program (KEEP). American Journal of Kidney Diseases. 2013; 61(4 Suppl. 2):S12-S23
- 34 Anand IS, Bishu K, Rector TS, Ishani A, Kuskowski MA, Cohn JN. Proteinuria, chronic kidney disease, and the effect of an angiotensin receptor blocker in addition to an angiotensinconverting enzyme inhibitor in patients with moderate to severe heart failure. Circulation. 2009; 120(16):1577-1584
- 35 Anderson AH, Yang W, Hsu C-Y, Joffe MM, Leonard MB, Xie D et al. Estimating GFR among participants in the Chronic Renal Insufficiency Cohort (CRIC) Study. American Journal of Kidney Diseases. 2012; 60(2):250-261

- 36 Ansell D, Feest T, Hodsman A, and Rao R. UK Renal Registry, The Renal Associaton, The Ninth Annual Report. Bristol: UK. UK Renal Registry, 2006. Available from: http://www.renalreg.com/reports/renal-registry-reports/2006/
- Appel LJ, Wright JT, Greene T, Agodoa LY, Astor BC, Bakris GL et al. Intensive blood-pressure control in hypertensive chronic kidney disease. New England Journal of Medicine. 2010; 363(10):918-929
- 38 Arai T, Ohashi H. Angiotensin receptor blockers and microalbuminuria in hypertensive patients with early (microalbuminuric) stage diabetic nephropathy. Molecular Medicine Reports. 2008; 1(3):391-393
- 39 Archibald G, Bartlett W, Brown A, Christie B, Eliott A. UK Consensus Conference on Early Chronic Kidney Disease. Consensus Conferences held in the Royal College of Physicians 2008;
- 40 Arnlov J, Evans JC, Meigs JB, Wang TJ, Fox CS, Levy D et al. Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation. 2005; 112(7):969-9754203
- 41 Arora P, Obrador GT, Ruthazer R, Kausz AT, Meyer KB, Jenuleson CS et al. Prevalence, predictors, and consequences of late nephrology referral at a tertiary care center. Journal of the American Society of Nephrology. 1999; 10(6):1281-1286
- 42 Asselbergs FW, Diercks GF, Hillege HL, van Boven AJ, Janssen WM, Voors AA et al. Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. Circulation. 2004; 110(18):2809-2816
- 43 Astor BC, Matsushita K, Gansevoort RT, van der Velde M, Woodward M, Levey AS et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney International. 2011; 79(12):1331-1340
- 44 Atmaca A, Gedik O. Effects of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and their combination on microalbuminuria in normotensive patients with type 2 diabetes. Advances in Therapy. 2006; 23(4):615-622
- Atta MG, Baptiste-Roberts K, Brancati FL, Gary TL. The Natural Course of Microalbuminuria among African Americans with Type 2 Diabetes: A 3-Year Study. American Journal of Medicine. 2009; 122(1):62-72
- Babayev R, Whaley-Connell A, Kshirsagar A, Klemmer P, Navaneethan S, Chen SC et al.
 Association of race and body mass index with ESRD and mortality in CKD stages 3-4: results from the Kidney Early Evaluation Program (KEEP). American Journal of Kidney Diseases. 2013; 61(3):404-412
- Baboolal K, McEwan P, Sondhi S, Spiewanowski P, Wechowski J, Wilson K. The cost of renal dialysis in a UK setting--a multicentre study. Nephrology Dialysis and Transplantation. 2008; 23(6):1982-1989

- 48 Baek SD, Baek CH, Kim JS, Kim SM, Kim JH, Kim SB. Does stage III chronic kidney disease always progress to end-stage renal disease? A ten-year follow-up study. Scandinavian Journal of Urology and Nephrology. 2012; 46(3):232-238
- 49 Bagshaw SM, Laupland KB, Doig CJ, Mortis G, Fick GH, Mucenski M et al. Prognosis for longterm survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study. Critical Care. 2005; 9(6):R700-R709
- 50 Baigent C, Landray M, Leaper C, Altmann P, Armitage J, Baxter A et al. First United Kingdom Heart and Renal Protection (UK-HARP-I) study: Biochemical efficacy and safety of simvastatin and safety of low-dose aspirin in chronic kidney disease. American Journal of Kidney Diseases. 2005; 45(3):473-484
- Baker LR, Abrams L, Roe CJ, Faugere MC, Fanti P, Subayti Y et al. 1,25(OH)2D3 administration in moderate renal failure: a prospective double-blind trial. Kidney International. 1989; 35(2):661-669
- 52 Bakris G, Burgess E, Weir M, Davidai G, Koval S. Telmisartan is more effective than losartan in reducing proteinuria in patients with diabetic nephropathy. Kidney International. 2008; 74(3):364-369
- 53 Bakris GL, Barnhill BW, Sadler R. Treatment of arterial hypertension in diabetic humans: importance of therapeutic selection. Kidney International. 1992; 41(4):912-919
- Bakris GL, Slataper R, Vicknair N, Sadler R. ACE inhibitor mediated reductions in renal size and microalbuminuria in normotensive, diabetic subjects. Journal of Diabetic Complications. 1994; 8(1):2-6
- 55 Ballantyne FC, Gibbons J, O'Reilly DS. Urine albumin should replace total protein for the assessment of glomerular proteinuria. Annals of Clinical Biochemistry. 1993; 30(Pt. 1):101-103
- 56 Barbour SJ, Er L, Djurdjev O, Karim MM, Levin A. Differences in progression of CKD and mortality amongst Caucasian, Oriental Asian and South Asian CKD patients. Nephrology Dialysis and Transplantation. 2010; 25(11):3663-3672
- 57 Barbour SJ, Schachter M, Er L, Djurdjev O, Levin A. A systematic review of ethnic differences in the rate of renal progression in CKD patients. Nephrology Dialysis and Transplantation. 2010; 25(8):2422-2430
- Barnett A. Preventing renal complications in type 2 diabetes: Results of the diabetics exposed to telmisartan and enalapril trial. Journal of the American Society of Nephrology. 2006; 17(Suppl. 2):S132-S135
- 59 Barnett AH, Bain SC, Bouter P, Karlberg B, Madsbad S, Jervell J et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. New England Journal of Medicine. 2004; 351(19):1952-1961

- 60 Barrett BJ, Garg AX, Goeree R, Levin A, Molzahn A, Rigatto C et al. A nurse-coordinated model of care versus usual care for stage 3/4 chronic kidney disease in the community: a randomized controlled trial. Clinical Journal of the American Society of Nephrology. 2011; 6(6):1241-1247
- 61 Becker RC, Bassand JP, Budaj A, Wojdyla DM, James SK, Cornel JH et al. Bleeding complications with the P2Y12 receptor antagonists clopidogrel and ticagrelor in the PLATelet inhibition and patient Outcomes (PLATO) trial. European Heart Journal. 2011; 32(23):2933-2944
- 62 Beddhu S, Allen BK, Cheung AK, Horne BD, Bair T, Muhlestein JB et al. Impact of renal failure on the risk of myocardial infarction and death. Kidney International. 2002; 62(5):1776-1783
- 63 Bedford M, Farmer C, Levin A, Ali T, Stevens P. Acute kidney injury and CKD: chicken or egg? American Journal of Kidney Diseases. 2012; 59(4):485-491
- 64 Bello AK, Hemmelgarn B, Lloyd A, James MT, Manns BJ, Klarenbach S et al. Associations among estimated glomerular filtration rate, proteinuria, and adverse cardiovascular outcomes. Clinical Journal of the American Society of Nephrology. 2011; 6(6):1418-1426
- 65 Berhane A, Nelson R, Knowler W, Weil EJ, Hanson R. Albuminuria and estimated glomerular filtration rate as predictors of diabetic end-stage renal disease (ESRD). Diabetes. 2009; 58
- 66 Berhane AM, Weil EJ, Knowler WC, Nelson RG, Hanson RL. Albuminuria and estimated glomerular filtration rate as predictors of diabetic end-stage renal disease and death. Clinical Journal of the American Society of Nephrology. 2011; 6(10):2444-2451
- 67 Berl T, Hunsicker LG, Lewis JB, Pfeffer MA, Porush JG, Rouleau JL et al. Cardiovascular outcomes in the Irbesartan Diabetic Nephropathy Trial of patients with type 2 diabetes and overt nephropathy. Annals of Internal Medicine. 2003; 138(7):542-549
- 68 Best PJ, Steinhubl SR, Berger PB, Dasgupta A, Brennan DM, Szczech LA et al. The efficacy and safety of short- and long-term dual antiplatelet therapy in patients with mild or moderate chronic kidney disease: results from the Clopidogrel for the Reduction of Events During Observation (CREDO) trial. American Heart Journal. 2008; 155(4):687-693
- 69 Bevc S, Hojs R, Ekart R, Gorenjak M, Puklavec L. Simple cystatin C formula compared to serum creatinine-based formulas for estimation of glomerular filtration rate in patients with mildly to moderately impaired kidney function. Kidney and Blood Pressure Research. 2012; 35(6):649-654
- Bevc S, Hojs R, Ekart R, Gorenjak M, Puklavec L. Simple cystatin C formula compared to sophisticated CKD-EPI formulas for estimation of glomerular filtration rate in the elderly. Therapeutic Apheresis and Dialysis. 2011; 15(3):261-268
- 71 Bevc S, Hojs R, Ekart R, Zavrsnik M, Gorenjak M, Puklavec L. Simple cystatin C formula for estimation of glomerular filtration rate in overweight patients with diabetes mellitus type 2 and chronic kidney disease. Experimental Diabetes Research. 2012; 2012:179849

- 72 Bhatt DL, Fox KAA, Hacke W, Berger PB, Black HR, Boden WE et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. New England Journal of Medicine. 2006; 354(16):1706-1717
- 73 Bhavsar NA, Appel LJ, Kusek JW, Contreras G, Bakris G, Coresh J et al. Comparison of measured GFR, serum creatinine, cystatin C, and beta-trace protein to predict ESRD in African Americans with hypertensive CKD. American Journal of Kidney Diseases. 2011; 58(6):886-893
- Bianchi S, Bigazzi R, Campese VM. Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney International. 2006; 70(12):2116-2123
- Bianchi S, Bigazzi R, Campese VM. Intensive versus conventional therapy to slow the progression of idiopathic glomerular diseases. American Journal of Kidney Diseases. 2010; 55(4):671-681
- 76 Bichu P, Nistala R, Khan A, Sowers JR, Whaley-Connell A. Angiotensin receptor blockers for the reduction of proteinuria in diabetic patients with overt nephropathy: results from the AMADEO study. Vascular Health and Risk Management. 2009; 5(1):129-140
- 77 Bicik Z, Bahcebasi T, Kulaksizoglu S, Yavuz O. The efficacy of cystatin C assay in the prediction of glomerular filtration rate. Is it a more reliable marker for renal failure? Clinical Chemistry & Laboratory Medicine. 2005; 43(8):855-861
- Bilic M, Munjas-Samarin R, Ljubanovic D, Horvatic I, Galesic K. Effects of ramipril and valsartan on proteinuria and renal function in patients with nondiabetic proteinuria. Collegium Antropologicum. 2011; 35(4):1061-1066
- 79 Bilous R, Chaturvedi N, Sjolie AK, Fuller J, Klein R, Orchard T et al. Effect of Candesartan on Microalbuminuria and Albumin Excretion Rate in Diabetes Three Randomized Trials. Annals of Internal Medicine. 2009; 151(1):11-20
- 80 Bilous RW, Parving H-H, Orchard TJ, Klein R, Porta M, Fuller J et al. Renin angiotensin system blockade is effective in preventing microalbuminuria in hypertensive but not normotensive people with type 2 diabetes; further analysis of the DIRECT Programme. Diabetologia. 2010; 53:S99
- 81 Bjork J, Jones I, Nyman U, Sjostrom P. Validation of the Lund-Malmo, Chronic Kidney Disease Epidemiology (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) equations to estimate glomerular filtration rate in a large Swedish clinical population. Scandinavian Journal of Urology and Nephrology. 2012; 46(3):212-222
- Bjorkman M, Sorva A, Tilvis R. Responses of parathyroid hormone to vitamin D
 supplementation: A systematic review of clinical trials. Archives of Gerontology and Geriatrics.
 2009; 48(2):160-166

- 83 Blacklock CL, Hirst JA, Taylor KS, Stevens RJ, Roberts NW, Farmer AJ. Evidence for a dose effect of renin-angiotensin system inhibition on progression of microalbuminuria in type 2 diabetes: a meta-analysis. Diabetic Medicine. 2011; 28(10):1182-1187
- Blecker S, Matsushita K, Kttgen A, Loehr LR, Bertoni AG, Boulware LE et al. High-normal albuminuria and risk of heart failure in the community. American Journal of Kidney Diseases. 2011; 58(1):47-55
- Bleyer AJ, Shemanski LR, Burke GL, Hansen KJ, Appel RG. Tobacco, hypertension, and vascular disease: risk factors for renal functional decline in an older population. Kidney International. 2000; 57(5):2072-2079
- Bojestig M, Karlberg BE, Lindstrom T, Nystrom FH. Reduction of ACE activity is insufficient to decrease microalbuminuria in normotensive patients with type 1 diabetes. Diabetes Care. 2001; 24(5):919-924
- 87 Bomback AS, Kshirsagar AV, Amamoo MA, Klemmer PJ. Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: a systematic review. American Journal of Kidney Diseases. 2008; 51(2):199-211
- 88 Bostom AG, Kronenberg F, Ritz E. Predictive performance of renal function equations for patients with chronic kidney disease and normal serum creatinine levels. Journal of the American Society of Nephrology. 2002; 13(8):2140-2144
- 89 Bosworth C, De Boer IH, Targher G, Kendrick J, Smits G, Chonchol M. The effect of combined calcium and cholecalciferol supplementation on bone mineral density in elderly women with moderate chronic kidney disease. Clinical Nephrology. 2012; 77(5):358-365
- 90 Botev R, Mallie JP, Couchoud C, Schuck O, Fauvel JP, Wetzels JF et al. Estimating glomerular filtration rate: Cockcroft-Gault and Modification of Diet in Renal Disease formulas compared to renal inulin clearance. Clinical Journal of the American Society of Nephrology. 2009; 4(5):899-906
- 91 Boudville N, Kemp A, Moody H, Fassett RG, Pedagogos E, Nelson C et al. Factors associated with chronic kidney disease progression in Australian nephrology practices. Nephron - Clinical Practice. 2012; 121(1-2):c36-c41
- 92 Boulware LE, Jaar BG, Tarver CM, Brancati FL, Powe NR. Screening for proteinuria in US adults: a cost-effectiveness analysis. JAMA. 2003; 290(23):3101-3114
- 93 Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. New England Journal of Medicine. 2001; 345(12):861-869
- 94 Brouhard BH, LaGrone L. Effect of dietary protein restriction on functional renal reserve in diabetic nephropathy. American Journal of Medicine. 1990; 89(4):427-431

- 95 Brouwers FP, Asselbergs FW, Hillege HL, De Boer RA, Gansevoort RT, van Veldhuisen DJ et al. Long-term effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria: Ten years of follow-up of Prevention of Renal and Vascular End-stage Disease Intervention Trial (PREVEND IT). American Heart Journal. 2011; 161(6):1171-1178
- Brown MA, Pirabhahar S, Kelly JJ, Mangos GJ, Mackenzie C, McConachie P et al. Inaccuracies in estimated glomerular filtration rate in one Australian renal centre. Nephrology. 2011; 16(5):486-494
- Bruno G, Merletti F, Bargero G, Novelli G, Melis D, Soddu A et al. Estimated glomerular filtration rate, albuminuria and mortality in type 2 diabetes: the Casale Monferrato study. Diabetologia. 2007; 50(5):941-948
- 98 Bucaloiu ID, Kirchner HL, Norfolk ER, Hartle JE, Perkins RM. Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney International. 2012; 81(5):477-485
- Burgess ED, Carides GW, Gerth WC, Marentette MA, Chabot I, Canadian Hypertension Society.
 Losartan reduces the costs associated with nephropathy and end-stage renal disease from type
 2 diabetes: Economic evaluation of the RENAAL study from a Canadian perspective. Canadian
 Journal of Cardiology. 2004; 20(6):613-618
- 100 Burkhardt H, Hahn T, Gretz N, Gladisch R. Bedside estimation of the glomerular filtration rate in hospitalized elderly patients. Nephron Clinical Practice. 2005; 101(1):c1-c8
- 101 Camargo EG, Soares AA, Detanico AB, Weinert LS, Veronese FV, Gomes EC et al. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation is less accurate in patients with Type 2 diabetes when compared with healthy individuals. Diabetic Medicine. 2011; 28(1):90-95
- 102 Campbell KL, Ash S, Davies PS, Bauer JD. Randomized controlled trial of nutritional counseling on body composition and dietary intake in severe CKD. American Journal of Kidney Diseases. 2008; 51(5):748-758
- 103 Capek M, Schnack C, Ludvik B, Kautzky-Willer A, Banyai M, Prager R. Effects of captopril treatment versus placebo on renal function in type 2 diabetic patients with microalbuminuria: a long-term study. Clinical Investigator. 1994; 72(12):961-966
- 104 Carella MJ, Gossain VV, Jones J. The effects of a low-dose regimen of fosinopril on elevated urinary albumin excretion in normotensive type 1 diabetic patients. Journal of Medicine. 1999; 30(5-6):305-320
- 105 Caring for Australians with Renal Impairment (CARI) Steering Committee. Proteinuria--CARI guidelines. Australian Family Physician. 2005; 34(11):942-943
- 106 Carter JL, Stevens PE, Irving JE, Lamb EJ. Estimating glomerular filtration rate: Comparison of the CKD-EPI and MDRD equations in a large UK cohort with particular emphasis on the effect of age. QJM. 2011; 104(10):839-847

- 107 Casas JP, Chua W, Loukogeorgakis S, Vallance P, Smeeth L, Hingorani AD et al. Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet. 2005; 366(9502):2026-2033
- Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey.
 2007. Available from: http://www.cdc.gov/nchs/nhanes.htm [Last accessed: 28 February 2008]
- 109 Cha RH, Lee CS, Lim YH, Kim H, Lee SH, Yu KS et al. Clinical usefulness of serum cystatin C and the pertinent estimation of glomerular filtration rate based on cystatin C. Nephrology. 2010; 15(8):768-776
- 110 Chadban S, Howell M, Twigg S, Thomas M, Jerums G, Cass A et al. The CARI guidelines. Costeffectiveness and socioeconomic implications of prevention and management of chronic kidney disease in type 2 diabetes. Nephrology. 2010; 15(Suppl. 1):S195-S203
- 111 Chadban SJ, Briganti EM, Kerr PG, Dunstan DW, Welborn TA, Zimmet PZ et al. Prevalence of kidney damage in Australian adults: The AusDiab kidney study. Journal of the American Society of Nephrology. 2003; 14(7 Suppl. 2):S131-S138
- 112 Chandra P, Binongo JN, Ziegler TR, Schlanger LE, Wang W, Someren JT et al. Cholecalciferol (vitamin D3) therapy and vitamin D insufficiency in patients with chronic kidney disease: a randomized controlled pilot study. Endocrine Practice. 2008; 14(1):10-17
- 113 Chase HP, Garg SK, Harris S, Hoops S, Jackson WE, Holmes DL. Angiotensin-converting enzyme inhibitor treatment for young normotensive diabetic subjects: a two-year trial. Annals of Ophthalmology. 1993; 25(8):284-289
- 114 Chawla LS, Amdur RL, Amodeo S, Kimmel PL, Palant CE. The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney International. 2011; 79(12):1361-1369
- 115 Chen SH, Tsai YF, Sun CY, Wu IW, Lee CC, Wu MS. The impact of self-management support on the progression of chronic kidney disease--a prospective randomized controlled trial. Nephrology Dialysis and Transplantation. 2011; 26(11):3560-3566
- Cheng J, Zhang W, Zhang X, Li X, Chen J. Efficacy and safety of paricalcitol therapy for chronic kidney disease: A meta-analysis. Clinical Journal of the American Society of Nephrology. 2012; 7(3):391-400
- 117 Cheung BM, Lauder IJ, Lau CP, Kumana CR. Meta-analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. British Journal of Clinical Pharmacology. 2004; 57(5):640-651
- 118 Choi AI, Li Y, Deeks SG, Grunfeld C, Volberding PA, Shlipak MG. Association between kidney function and albuminuria with cardiovascular events in HIV-infected persons. Circulation. 2010; 121(5):651-658

- 119 Chonchol M, Cook T, Kjekshus J, Pedersen TR, Lindenfeld J. Simvastatin for Secondary Prevention of All-Cause Mortality and Major Coronary Events in Patients With Mild Chronic Renal Insufficiency. American Journal of Kidney Diseases. 2007; 49(3):373-382
- 120 Chonchol M, Shlipak MG, Katz R, Sarnak MJ, Newman AB, Siscovick DS et al. Relationship of uric acid with progression of kidney disease. American Journal of Kidney Diseases. 2007; 50(2):239-247
- 121 Christensson AG, Grubb AO, Nilsson JA, Norrgren K, Sterner G, Sundkvist G. Serum cystatin C advantageous compared with serum creatinine in the detection of mild but not severe diabetic nephropathy. Journal of Internal Medicine. 2004; 256(6):510-518
- 122 Christiansen C, Rodbro P, Christensen MS, Hartnack B, Transbol I. Deterioration of renal function during treatment of chronic renal failure with 1,25-dihydroxycholecalciferol. Lancet. 1978; 2(8092 Pt. 1):700-703
- 123 Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010; 375(9731):2073-2081
- 124 Chrysostomou A, Pedagogos E, MacGregor L, Becker GJ. Double-blind, placebo-controlled study on the effect of the aldosterone receptor antagonist apironolactone in patients who have persistent proteinuria and are on long-term angiotensin-converting enzyme inhibitor therapy, with or without an angiotensin II receptor blocker. Clinical Journal of the American Society of Nephrology. 2006; 1(2):256-262
- 125 Chudleigh RA, Ollerton RL, Dunseath G, Peter R, Harvey JN, Luzio S et al. Use of cystatin Cbased estimations of glomerular filtration rate in patients with type 2 diabetes. Diabetologia. 2009; 52(7):1274-1278
- 126 Cianciaruso B, Pota A, Bellizzi V, Di GD, Di ML, Minutolo R et al. Effect of a low- versus moderate-protein diet on progression of CKD: follow-up of a randomized controlled trial. American Journal of Kidney Diseases. 2009; 54(6):1052-1061
- 127 Cianciaruso B, Pota A, Pisani A, Torraca S, Annecchini R, Lombardi P et al. Metabolic effects of two low protein diets in chronic kidney disease stage 4-5--a randomized controlled trial. Nephrology Dialysis and Transplantation. 2008; 23(2):636-644
- 128 Ciarambino T, Castellino P, Paolisso G, Coppola L, Ferrara N, Signoriello G et al. Long term effects of low protein diet on depressive symptoms and quality of life in elderly Type 2 diabetic patients. Clinical Nephrology. 2012; 78(2):122-128
- Cirillo M, Lombardi C, Mele AA, Marcarelli F, Bilancio G. A population-based approach for the definition of chronic kidney disease: The CKD prognosis Consortium. Journal of Nephrology. 2012; 25(1):7-12

- 130 Citarella A, Mantovani LG, Cammarota S, Menditto E, Riegler S, de PS. Pharmacoeconomic consequences of losartan therapy in patiens undergoing diabetic end-stage renal disease. Value in Health. 2009; 12(7):A406-A407
- 131 Clark WF, Macnab JJ, Sontrop JM, Jain AK, Moist L, Salvadori M et al. Dipstick proteinuria as a screening strategy to identify rapid renal decline. Journal of the American Society of Nephrology. 2011; 22(9):1729-1736
- 132 Clase CM, Gao P, Tobe SW, McQueen MJ, Grosshennig A, Teo KK et al. Estimated glomerular filtration rate and albuminuria as predictors of outcomes in patients with high cardiovascular risk: A cohort study. Annals of Internal Medicine. 2011; 154(5):310-318
- 133 Coburn JW, Maung HM, Elangovan L, Germain MJ, Lindberg JS, Sprague SM et al. Doxercalciferol safely suppresses PTH levels in patients with secondary hyperparathyroidism associated with chronic kidney disease stages 3 and 4. American Journal of Kidney Diseases. 2004; 43(5):877-890
- 134 Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney International. 2012; 81(5):442-448
- 135 Coca SG, Cho KC, Hsu Cy. Acute kidney injury in the elderly: predisposition to chronic kidney disease and vice versa. Nephron Clinical Practice. 2011; 119(Suppl. 1):c19-c24
- 136 Conley J, Tonelli M, Quan H, Manns BJ, Palacios-Derflingher L, Bresee LC et al. Association between GFR, proteinuria, and adverse outcomes among white, Chinese, and South Asian individuals in Canada. American Journal of Kidney Diseases. 2012; 59(3):390-399
- 137 Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A et al. Dabigatran versus warfarin in patients with atrial fibrillation. New England Journal of Medicine. 2009; 361(12):1139-1151
- 138 Cordonnier DJ, Pinel N, Barro C, Maynard M, Zaoui P, Halimi S et al. Expansion of cortical interstitium is limited by converting enzyme inhibition in type 2 diabetic patients with glomerulosclerosis. The Diabiopsies Group. Journal of the American Society of Nephrology. 1999; 10(6):1253-1263
- 139 Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. American Journal of Kidney Diseases. 2003; 41(1):1-12
- 140 Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007; 298(17):2038-2047
- 141 Coyle D, Rodby R, Soroka S, Levin A, Muirhead N, de Cotret PR et al. Cost-effectiveness of irbesartan 300 mg given early versus late in patients with hypertension and a history of type 2 diabetes and renal disease: a Canadian perspective. Clinical Therapeutics. 2007; 29(7):1508-1523

- 142 Coyle D, Rodby RA. Economic evaluation of the use of irbesartan and amlodipine in the treatment of diabetic nephropathy in patients with hypertension in Canada. Canadian Journal of Cardiology. 2004; 20(1):71-79
- 143 Coyne D, Acharya M, Qiu P, Abboud H, Batlle D, Rosansky S et al. Paricalcitol capsule for the treatment of secondary hyperparathyroidism in stages 3 and 4 CKD. American Journal of Kidney Diseases. 2006; 47(2):263-276
- 144 Crepaldi G, Carta Q, Deferrari G, Mangili R, Navalesi R, Santeusanio F et al. Effects of lisinopril and nifedipine on the progression to overt albuminuria in IDDM patients with incipient nephropathy and normal blood pressure. The Italian Microalbuminuria Study Group in IDDM. Diabetes Care. 1998; 21(1):104-110
- 145 Curtis L. Unit Costs of Health and Social Care. Canterbury: UK. Personal Social Services Research Unit, 2007. Available from: www.pssru.ac.uk
- 146 Curtis L. Unit costs of health and social care 2012. Canterbury: Personal Social Services Research Unit, University of Kent; 2012. Available from: http://www.pssru.ac.uk/archive/pdf/uc/uc2012/full-with-covers.pdf
- 147 Dahl OE, Kurth AA, Rosencher N, Noack H, Clemens A, Eriksson BI. Thromboprophylaxis in patients older than 75 years or with moderate renal impairment undergoing knee or hip replacement surgery [corrected]. International Orthopaedics. 2012; 36(4):741-748
- 148 Daien V, Duny Y, Ribstein J, du Cailar G, Mimran A, Villain M et al. Treatment of hypertension with renin-angiotensin system inhibitors and renal dysfunction: a systematic review and metaanalysis. American Journal of Hypertension. 2012; 25(1):126-132
- 149 Dalla VM, Pozza G, Mosca A, Grazioli V, Lapolla A, Fioretto P et al. Effect of lercanidipine compared with ramipril on albumin excretion rate in hypertensive Type 2 diabetic patients with microalbuminuria: DIAL study (diabete, ipertensione, albuminuria, lercanidipina). Diabetes, Nutrition & Metabolism - Clinical & Experimental. 2004; 17(5):259-266
- 150 Dasgupta A, Steinhubl SR, Bhatt DL, Berger PB, Shao M, Mak KH et al. Clinical outcomes of patients with diabetic nephropathy randomized to clopidogrel plus aspirin versus aspirin alone (a post hoc analysis of the clopidogrel for high atherothrombotic risk and ischemic stabilization, management, and avoidance [CHARISMA] trial). American Journal of Cardiology. 2009; 103(10):1359-1363
- 151 Dash A, Maiti R, Bandakkanavar TKA, Bhaskar A, Prakash J, Pandey BL. Prophylactic Add-on Antiplatelet Therapy in Chronic Kidney Disease With Type 2 Diabetes Mellitus: Comparison Between Clopidogrel and Low-dose Aspirin. International Journal of Preventive Medicine. 2013; 4(8):902-910
- 152 Davidson MB, Tareen N, Duran P, Aguilar V, Lee ML. Aggressive versus Low Dose Inhibition of the Renin-Angiotensin System for the Treatment of Microalbuminuria in Type 2 Diabetic Patients: A Pilot Study. ISRN Endocrinology. 2011; 2011:696124

- 153 De Boer IH, Flynn AV, Rue TC, Kestenbaum B, Probstfield JL, Weiss NS et al. Proof of concept clinical trial of cholecalciferol in diabetic kidney disease. Clinical and Translational Science. 2010; 3(2):S17
- 154 de Boer IH, Katz R, Cao JJ, Fried LF, Kestenbaum B, Mukamal K et al. Cystatin C, albuminuria, and mortality among older adults with diabetes. Diabetes Care. 2009; 32(10):1833-1838
- 155 de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. Journal of the American Society of Nephrology. 2009; 20(9):2075-2084
- 156 De Goeij MCM, Liem M, De Jager DJ, Voormolen N, Sijpkens YWJ, Rotmans JI et al. Proteinuria as a risk marker for the progression of chronic kidney disease in patients on predialysis care and the role of angiotensin-converting enzyme inhibitor/angiotensin ii receptor blocker treatment. Nephron - Clinical Practice. 2012; 121(1-2):c73-c82
- 157 de Portu S, Citarella A, Cammarota S, Menditto E, Mantovani LG. Pharmaco-economic consequences of losartan therapy in patients undergoing diabetic end stage renal disease in EU and USA. Clinical and Experimental Hypertension. 2011; 33(3):174-178
- 158 de Wit GA, Merkus MP, Krediet RT, de Charro FT. Health profiles and health preferences of dialysis patients. Nephrology Dialysis and Transplantation. 2002; 17(1):86-92
- 159 de Zeeuw D, Agarwal R, Amdahl M, Audhya P, Coyne D, Garimella T et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet. 2010; 376(9752):1543-1551
- 160 Delea TE, Sofrygin O, Palmer JL, Lau H, Munk VC, Sung J et al. Cost-effectiveness of aliskiren in type 2 diabetes, hypertension, and albuminuria. Journal of the American Society of Nephrology. 2009; 20(10):2205-2213
- Department of Health. National Service Framework for Renal Services Part Two: Chronic kidney disease, acute renal failure and end of life care. London: UK. Department of Health, 2005. Available from: http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidan ce/DH_4101902
- Department of Health. NHS reference Costs 2005 2006. UK. Department of Health, 2006.
 Available from: http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidan ce/DH_062884
- 163 Department of Health. Estimated Glomerular Filtration Rate (eGFR). London: UK: 2007. Available from: http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidan ce/DH_4133020

- 164 Di Iorio BR, Minutolo R, De NL, Bellizzi V, Catapano F, Iodice C et al. Supplemented very low protein diet ameliorates responsiveness to erythropoietin in chronic renal failure. Kidney International. 2003; 64(5):1822-1828
- 165 Diener H-C, Sacco RL, Yusuf S, Cotton D, Ounpuu S, Lawton WA et al. Effects of aspirin plus extended-release dipyridamole versus clopidogrel and telmisartan on disability and cognitive function after recurrent stroke in patients with ischaemic stroke in the Prevention Regimen for Effectively Avoiding Second Strokes (PRoFESS) trial: a double-blind, active and placebocontrolled study. Lancet Neurology. 2008; 7(10):875-884
- 166 Disthabanchong S, Treeruttanawanich A. Oral sodium bicarbonate improves thyroid function in predialysis chronic kidney disease. American Journal of Nephrology. 2010; 32(6):549-556
- 167 Dogan E, Erkoc R, Sayarlioglu H, Soyoral Y, Dulger H. Effect of depot oral cholecalciferol treatment on secondary hyperparathyroidism in stage 3 and stage 4 chronic kidney diseases patients. Renal Failure. 2008; 30(4):407-410
- 168 Dowling TC, Wang ES, Ferrucci L, Sorkin JD. Glomerular filtration rate equations overestimate creatinine clearance in older individuals enrolled in the Baltimore longitudinal study on aging: impact on renal drug dosing. Pharmacotherapy. 2013; 33(9):912-921
- 169 Drey N, Roderick P, Mullee M, Rogerson M. A population-based study of the incidence and outcomes of diagnosed chronic kidney disease. American Journal of Kidney Diseases. 2003; 42(4):677-684
- 170 Dreyer G, Hull S, Mathur R, Chesser A, Yaqoob MM. Progression of chronic kidney disease in a multi-ethnic community cohort of patients with diabetes mellitus. Diabetic Medicine. 2013; 30(8):956-963
- 171 Drion I, van Hateren KJJ, Joosten H, Alkhalaf A, Groenier KH, Kleefstra N et al. Chronic kidney disease and mortality risk among older patients with type 2 diabetes mellitus (ZODIAC-24). Age and Ageing. 2012; 41(3):345-350
- Drueke TB, Ritz E. Treatment of secondary hyperparathyroidism in CKD patients with cinacalcet and/or vitamin D derivatives. Clinical Journal of the American Society of Nephrology. 2009; 4(1):234-241
- Du X, Liu L, Hu B, Wang F, Wan X, Jiang L et al. Is the Chronic Kidney Disease Epidemiology
 Collaboration four-level race equation better than the cystatin C equation? Nephrology. 2012;
 17(4):407-414
- 174 Dube J, Girouard J, Leclerc P, Douville P. Problems with the estimation of urine protein by automated assays. Clinical Biochemistry. 2005; 38(5):479-485
- 175 Dullaart RP, Beusekamp BJ, Meijer S, van Doormal JJ, Sluiter WJ. Long-term effects of proteinrestricted diet on albuminuria and renal function in IDDM patients without clinical nephropathy and hypertension. Diabetes Care. 1993; 16(2):483-492

- 176 Dumoulin A, Hill GS, Montseny J-J, Meyrier A. Clinical and morphological prognostic factors in membranous nephropathy: Significance of focal segmental glomerulosclerosis. American Journal of Kidney Diseases. 2003; 41(1):38-48
- 177 Dussol B, Iovanna C, Raccah D, Darmon P, Morange S, Vague P et al. A randomized trial of lowprotein diet in type 1 and in type 2 diabetes mellitus patients with incipient and overt nephropathy. Journal of Renal Nutrition. 2005; 15(4):398-406
- Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Annals of Internal Medicine. 2012; 156(11):785-270, W
- 179 Ebert N, Gaedeke J, Jakob O, Kuhlmann M, Martus P, Van Der Giet M et al. Assessing GFR in older adults: Comparison of current eGFR equations with measured iohexol-GFR in a population based sample. Nephrology Dialysis and Transplantation. 2012; 27:ii97-ii98
- 180 Eikelboom JW, Connolly SJ, Gao P, Paolasso E, De Caterina R, Husted S et al. Stroke risk and efficacy of apixaban in atrial fibrillation patients with moderate chronic kidney disease. Journal of Stroke and Cerebrovascular Diseases. 2012; 21(6):429-435
- 181 Ekart R, Ferjuc A, Furman B, Gerjevic S, Bevc S, Hojs R. Chronic kidney disease progression to end stage renal disease: A single center experience of the role of the underlying kidney disease. Therapeutic Apheresis and Dialysis. 2013; 17(4):363-367
- 182 Engelbertz C, Reinecke H. Atrial fibrillation and oral anticoagulation in chronic kidney disease. Journal of Atrial Fibrillation. 2012; 4(6):89-100
- 183 Epstein M. Aldosterone as a mediator of progressive renal disease: pathogenetic and clinical implications. American Journal of Kidney Diseases. 2001; 37(4):677-688
- Epstein M, Williams GH, Weinberger M, Lewin A, Krause S, Mukherjee R et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes.
 Clinical Journal of the American Society of Nephrology. 2006; 1(5):940-951
- 185 Erickson KF, Lea J, McClellan WM. Interaction between GFR and risk factors for morbidity and mortality in African Americans with CKD. Clinical Journal of the American Society of Nephrology. 2013; 8(1):75-81
- 186 Eriksen BO, Ingebretsen OC. The progression of chronic kidney disease: A 10-year populationbased study of the effects of gender and age. Kidney International. 2006; 69(2):375-382
- 187 Eriksen BO, Mathisen UD, Melsom T, Ingebretsen OC, Jenssen TG, Njolstad I et al. Cystatin C is not a better estimator of GFR than plasma creatinine in the general population. Kidney International. 2010; 78(12):1305-1311
- 188 Eriksen BO, Mathisen UD, Melsom T, Ingebretsen OC, Jenssen TG, Njolstad I et al. The role of cystatin C in improving GFR estimation in the general population. American Journal of Kidney Diseases. 2012; 59(1):32-40

- 189 Escolar G, Cases A, Bastida E, Garrido M, Lopez J, Revert L et al. Uremic platelets have a functional defect affecting the interaction of von Willebrand factor with glycoprotein IIb-IIIa. Blood. 1990; 76(7):1336-1340
- 190 Estacio RO, Jeffers BW, Gifford N, Schrier RW. Effect of blood pressure control on diabetic microvascular complications in patients with hypertension and type 2 diabetes. Diabetes Care. 2000; 23(Suppl. 2):B54-B64
- 191 Estacio RO, Jeffers BW, Hiatt WR, Biggerstaff SL, Gifford N, Schrier RW. The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension. New England Journal of Medicine. 1998; 338(10):645-652
- Estacio RO, Savage S, Nagel NJ, Schrier RW. Baseline characteristics of participants in the
 Appropriate Blood Pressure Control in Diabetes trial. Controlled Clinical Trials. 1996; 17(3):242 257
- Estacio RO, Schrier RW. Antihypertensive therapy in type 2 diabetes: implications of the appropriate blood pressure control in diabetes (ABCD) trial. American Journal of Cardiology. 1998; 82(9B):9R-14R
- 194 Esteghamati A, Noshad S, Jarrah S, Mousavizadeh M, Khoee SH, Nakhjavani M. Long-term effects of addition of mineralocorticoid receptor antagonist to angiotensin II receptor blocker in patients with diabetic nephropathy: a randomized clinical trial. Nephrology, Dialysis, Transplantation. 2013; 28(11):2823-2833
- 195 Evans M, Bain S, Beckham C, Hogan S, Bilous R. Irbesartan delays progression of nephropathy as measured by estimated glomerular filtration rate: Post-hoc analysis of the Irbesartan Diabetic Nephropathy Trial. Diabetic Medicine. 2009; 26:158-159
- 196 Evans M, Bain SC, Hogan S, Bilous RW. Irbesartan delays progression of nephropathy as measured by estimated glomerular filtration rate: post hoc analysis of the Irbesartan Diabetic Nephropathy Trial. Nephrology Dialysis and Transplantation. 2012; 27(6):2255-2263
- 197 Ezekowitz J, McAlister FA, Humphries KH, Norris CM, Tonelli M, Ghali WA et al. The association among renal insufficiency, pharmacotherapy, and outcomes in 6,427 patients with heart failure and coronary artery disease. Journal of the American College of Cardiology. 2004; 44(8):1587-1592
- 198 Fan FH, Zhang X, Guo HZ, Xie D, Ping YC, Wei RZ et al. Efficacy and safety of benazepril for advanced chronic renal insufficiency. New England Journal of Medicine. 2006; 354(2):131-140
- 199 Fernandez JG, Luno J, Barrio V, de Vinuesa SG, Praga M, Goicoechea M et al. Effect of dual blockade of the Renin-Angiotensin system on the progression of type 2 diabetic nephropathy: a randomized trial. American Journal of Kidney Diseases. 2013; 61(2):211-218
- 200 Fernandez-Juarez G, Barrio V, de Vinuesa SG, Goicoechea M, Praga M, Luno J. Dual blockade of the renin-angiotensin system in the progression of renal disease: the need for more clinical trials. Journal of the American Society of Nephrology. 2006; 17(12 Suppl. 3):S250-S254

- 201 Fishbane S, Chittineni H, Packman M, Dutka P, Ali N, Durie N. Oral paricalcitol in the treatment of patients with CKD and proteinuria: a randomized trial. American Journal of Kidney Diseases. 2009; 54(4):647-652
- 202 Flamant M, Haymann J-P, Letavernier E, Vidal-Petiot E, Boffa J-J, Vrtovsnik F. Estimation of GFR in the elderly: Which formula should be used? Nephrology Dialysis and Transplantation. 2012; 27:ii97
- 203 Fliser D, Franek E, Joest M, Block S, Mutschler E, Ritz E. Renal function in the elderly: impact of hypertension and cardiac function. Kidney International. 1997; 51(4):1196-1204
- 204 Foley RN, Wang C, Ishani A, Collins AJ. NHANES III: influence of race on GFR thresholds and detection of metabolic abnormalities. Journal of the American Society of Nephrology. 2007; 18(9):2575-2582
- 205 Fontsere N, Salinas I, Bonal J, Bayes B, Riba J, Torres F et al. Are prediction equations for glomerular filtration rate useful for the long-term monitoring of type 2 diabetic patients? Nephrology Dialysis and Transplantation. 2006; 21(8):2152-2158
- 206 Foster MC, Hwang SJ, Larson MG, Parikh NI, Meigs JB, Vasan RS et al. Cross-classification of microalbuminuria and reduced glomerular filtration rate: associations between cardiovascular disease risk factors and clinical outcomes. Archives of Internal Medicine. 2007; 167(13):1386-1392
- 207 Fouque D, Laville M, Boissel JP. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database of Systematic Reviews. 2006;(2):CD001892
- 208 Fox CS, Matsushita K, Woodward M, Bilo HJG, Chalmers J, Heerspink HJL et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet. 2012; 380(9854):1662-1673
- 209 Fox KA, Piccini JP, Wojdyla D, Becker RC, Halperin JL, Nessel CC et al. Prevention of stroke and systemic embolism with rivaroxaban compared with warfarin in patients with non-valvular atrial fibrillation and moderate renal impairment. European Heart Journal. 2011; 32(19):2387-2394
- 210 Frances CD, Noguchi H, Massie BM, Browner WS, McClellan M. Are we inhibited? Renal insufficiency should not preclude the use of ACE inhibitors for patients with myocardial infarction and depressed left ventricular function. Archives of Internal Medicine. 2000; 160(17):2645-2650
- 211 Fretheim A, Oxman AD. International variation in prescribing antihypertensive drugs: its extent and possible explanations. BMC Health Services Research. 2005; 5(1):21
- 212 Fried LF, Duckworth W, Zhang JH, O'Connor T, Brophy M, Emanuele N et al. Design of combination angiotensin receptor blocker and angiotensin- converting enzyme inhibitor for treatment of diabetic nephropathy (VA NEPHRON-D). Clinical Journal of the American Society of Nephrology. 2009; 4(2):361-368

- 213 Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney International. 2001; 59(1):260-269
- 214 Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W et al. Combined Angiotensin inhibition for the treatment of diabetic nephropathy. New England Journal of Medicine. 2013; 369(20):1892-1903
- 215 Froissart M, Rossert J, Jacquot C, Paillard M, Houillier P. Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function. Journal of the American Society of Nephrology. 2005; 16(3):763-773
- 216 Furumatsu Y, Nagasawa Y, Tomida K, Mikami S, Kaneko T, Okada N et al. Effect of reninangiotensin-aldosterone system triple blockade on non-diabetic renal disease: addition of an aldosterone blocker, spironolactone, to combination treatment with an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker. Hypertension Research. 2008; 31(1):59-67
- 217 Galle J, Schwedhelm E, Pinnetti S, BöGer RH, Wanner C. Antiproteinuric effects of angiotensin receptor blockers: telmisartan versus valsartan in hypertensive patients with type 2 diabetes mellitus and overt nephropathy. Nephrology Dialysis and Transplantation. 2008; 23(10):3174-3183
- 218 Gansevoort RT, Matsushita K, Van D, V, Astor BC, Woodward M, Levey AS et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney International. 2011; 80(1):93-104
- 219 Garattini L, Brunetti M, Salvioni F, Barosi M. Economic evaluation of ACE inhibitor treatment of nephropathy in patients with insulin-dependent diabetes mellitus in Italy. Pharmacoeconomics. 1997; 12(1):67-75
- Garg AX, Bryce AK, William FC, Haynes RB, Catherine MC. Albuminuria and renal insufficiency prevalence guides population screening: Results from the NHANES III. Kidney International. 2002; 61(6):2165
- Garg AX, Papaioannou A, Ferko N, Campbell G, Clarke JA, Ray JG. Estimating the prevalence of renal insufficiency in seniors requiring long-term care. Kidney International. 2004; 65(2):649-653
- 222 Garg SK, Chase HP, Jackson WE, Harris S, Carmain JA, Hansen MH et al. Renal and retinal changes after treatment with Ramipril and pentoxifyline in subjects with IDDM. Annals of Ophthalmology Glaucoma. 1998; 30(1):33-37
- 223 Garside R, Pitt M, Anderson R, Mealing S, D'Souza R, Stein K. The cost-utility of cinacalcet in addition to standard care compared to standard care alone for secondary hyperparathyroidism in end-stage renal disease: a UK perspective. Nephrology Dialysis and Transplantation. 2007; 22(5):1428-1436

- 224 Genders TSS, Meijboom WB, Meijs MFL, Schuijf JD, Mollet NR, Weustink AC et al. CT coronary angiography in patients suspected of having coronary artery disease: decision making from various perspectives in the face of uncertainty. Radiology. 2009; 253(3):734-744
- 225 Giannitsis E, Katus HA. Antiplatelet therapy ticagrelor. Hamostaseologie. 2012; 32(3):177-185
- 226 Gibney EM, Casebeer AW, Schooley LM, Cunningham F, Grover FL, Bell MR et al. Cardiovascular medication use after coronary bypass surgery in patients with renal dysfunction: a national Veterans Administration study. Kidney International. 2005; 68(2):826-832
- 227 Giovanetti S, Maggiore Q. A low nitrogen diet with proteins of high biological value for severe chronic uremia. Lancet. 1964; 1:1000-1003
- 228 Giustia A, Baronea A, Palummeria E, Piolib G. A randomized trial of two different dosing regimens of cholecalciferol versus calcitriol in the management of secondary hyperparathyroidism due to vitamin D deficiency. Bone. 2009; 44:S353
- 229 Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. New England Journal of Medicine. 2004; 351(13):1296-1305+1370
- 230 Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincon A et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clinical Journal of the American Society of Nephrology. 2010; 5(8):1388-1393
- 231 Goldberg R, Dennen P. Long-term outcomes of acute kidney injury. Advances in Chronic Kidney Disease. 2008; 15(3):297-307
- 232 Goraya N, Simoni J, Jo CH, Wesson DE. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clinical Journal of the American Society of Nephrology. 2013; 8(3):371-381
- 233 Gordge MP, Faint RW, Rylance PB, Neild GH. Platelet function and the bleeding time in progressive renal failure. Thrombosis and Haemostasis. 1988; 60(1):83-87
- 234 Gordge MP, Neild GH. Platelet function in uraemia. Platelets. 1991; 2(3):115-123
- 235 Government Actuary's Department. Interim life tables, 2007. Available from: http://www.gad.gov.uk/Demography_Data/Life_Tables/Interim_life_tables.asp]
- 236 Grams ME, Astor BC, Bash LD, Matsushita K, Wang Y, Coresh J. Albuminuria and estimated glomerular filtration rate independently associate with acute kidney injury. Journal of the American Society of Nephrology. 2010; 21(10):1757-1764
- Groop P-H, Thomas MC, Moran JL, Waden J, Thorn LM, Makinen V-P et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009; 58(7):1651-1658

- 238 Grubb A, Nyman U, Bjork J. Improved estimation of glomerular filtration rate (GFR) by comparison of eGFRcystatin C and eGFRcreatinine. Scandinavian Journal of Clinical and Laboratory Investigation. 2012; 72(1):73-77
- 239 Gullion CM, Keith DS, Nichols GA, Smith DH. Impact of comorbidities on mortality in managed care patients with CKD. American Journal of Kidney Diseases. 2006; 48(2):212-220
- 240 Halbesma N, Brantsma AH, Bakker SJL, Jansen DF, Stolk RP, de Zeeuw D et al. Gender differences in predictors of the decline of renal function in the general population. Kidney International. 2008; 74(4):505-512
- 241 Hallan S, Asberg A, Lindberg M, Johnsen H. Validation of the modification of diet in renal disease formula for estimating GFR with special emphasis on calibration of the serum creatinine assay. American Journal of Kidney Diseases. 2004; 44(1):84-93
- 242 Hallan S, de MR, Carlsen S, Dekker FW, Aasarod K, Holmen J. Obesity, smoking, and physical inactivity as risk factors for CKD: are men more vulnerable? American Journal of Kidney Diseases. 2006; 47(3):396-405
- 243 Hallan SI, Matsushita K, Sang Y, Mahmoodi BK, Black C, Ishani A et al. Age and association of kidney measures with mortality and end-stage renal disease. JAMA. 2012; 308(22):2349-2360
- Hallan SI, Ritz E, Lydersen S, Romundstad S, Kvenild K, Orth SR. Combining GFR and albuminuria to classify CKD improves prediction of ESRD. Journal of the American Society of Nephrology. 2009; 20(5):1069-1077
- Hamdy NA, Kanis JA, Beneton MN, Brown CB, Juttmann JR, Jordans JG et al. Effect of alfacalcidol on natural course of renal bone disease in mild to moderate renal failure. BMJ. 1995; 310(6976):358-363
- 246 Hansen HP, Tauber-Lassen E, Jensen BR, Parving HH. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney International. 2002; 62(1):220-228
- 247 Hansen KW, Klein F, Christensen PD, Sorensen K, Andersen PH, Moller J et al. Effects of captopril on ambulatory blood pressure, renal and cardiac function in microalbuminuric type 1 diabetic patients. Diabète and Métabolisme. 1994; 20(5):485-493
- 248 Hansen PM, Mathiesen ER, Kofoed-Enevoldsen A, Deckert T. Possible effect of angiotensinconverting enzyme inhibition on glomerular charge selectivity. Journal of Diabetic Complications. 1995; 9(3):158-162
- 249 Hansson L, Zanchetti A, Carruthers SG, Dahlof B, Elmfeldt D, Julius S et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet. 1998; 351(9118):1755-1762

- 250 Harmoinen A, Lehtimaki T, Korpela M, Turjanmaa V, Saha H. Diagnostic accuracies of plasma creatinine, cystatin C, and glomerular filtration rate calculated by the Cockcroft-Gault and Levey (MDRD) formulas. Clinical Chemistry. 2003; 49(7):1223-1225
- 251 Hart RG, Eikelboom J, Yusuf S, Gao P, Paolasso E, De CR et al. Efficacy and safety of the novel oral factor Xa inhibitor apixaban in atrial fibrillation (AF) patients with chronic kidney disease (CKD): The AVERROES trial. European Heart Journal. 2011; 32:6
- Hart RG, Pearce LA, Asinger RW, Herzog CA. Warfarin in atrial fibrillation patients with moderate chronic kidney disease. Clinical Journal of the American Society of Nephrology. 2011; 6(11):2599-2604
- Hayashi K, Saruta T, Goto Y, Ishii M. Impact of renal function on cardiovascular events in elderly hypertensive patients treated with efonidipine. Hypertension Research. 2010; 33(11):1211-1220
- 254 Hayashi T, Nitta K, Uchida K, Honda K, Kobayashi H, Kawashima A et al. Clinical assessment of serum cystatin C as a marker of glomerular filtration rate in patients with various renal diseases. Clinical and Experimental Nephrology. 2000; 4(2):133-136
- 255 Healey JS, Eikelboom J, Wallentin L, Ezekowitz MD, Connolly SJ, Reilly P. Effect of age and renal function on the risks of stroke and major bleeding with dabigatran compared to warfarin: an analysis from the RE-LY study. Journal of the American College of Cardiology. 2010; 55(10A):A4
- 256 Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002; 360(9326):7-22
- 257 Heeringa SF, Branten AJW, Deegens JKJ, Steenbergen E, Wetzels JFM. Focal segmental glomerulosclerosis is not a sufficient predictor of renal outcome in patients with membranous nephropathy. Nephrology Dialysis and Transplantation. 2007; 22(8):2201-2207
- 258 Hellemons ME, Persson F, Bakker SJ, Rossing P, Parving HH, Zeeuw D et al. initial angiotensin receptor blockade-induced decrease in albuminuria is associated with long-term renal outcome in type 2 diabetic patients with microalbuminuria: a post hoc analysis of the IRMA-2 trial. Diabetes Care. 2011; 34(9):2078-2083
- Hemmelgarn BR, Culleton BF, Ghali WA. Derivation and validation of a clinical index for
 prediction of rapid progression of kidney dysfunction. QJM. United Kingdom 2007; 100(2):87 92
- 260 Hemmelgarn BR, Zhang J, Manns BJ, Tonelli M, Larsen E, Ghali WA et al. Progression of kidney dysfunction in the community-dwelling elderly. Kidney International. 2006; 69(12):2155-2161
- 261 Hemmelgarn BR, Manns BJ, Lloyd A, James MT, Klarenbach S, Quinn RR et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA. 2010; 303(5):423-429

- 262 Hendry BM, Viberti GC, Hummel S, Bagust A, Piercy J. Modelling and costing the consequences of using an ACE inhibitor to slow the progression of renal failure in type I diabetic patients. QJM. 1997; 90(4):277-282
- 263 Hene RJ, Boer P, Koomans HA, Mees EJ. Plasma aldosterone concentrations in chronic renal disease. Kidney International. 1982; 21(1):98-101
- 264 Heras M, Fernandez-Reyes MJ, Sanchez R, Guerrero MT, Molina A, Rodriguez MA et al. Elderly patients with chronic kidney disease: outcomes after 5 years of follow-up. Nefrologia. 2012; 32(3):300-305
- 265 Herman WH, Shahinfar S, Carides GW, Dasbach EJ, Gerth WC, Alexander CM et al. Losartan reduces the costs associated with diabetic end-stage renal disease: the RENAAL study economic evaluation. Diabetes Care. 2003; 26(3):683-687
- 266 Hijazi Z, Hohnloser SH, Oldgren J, Andersson U, Connolly SJ, Eikelboom JW et al. Efficacy and safety of dabigatran compared with warfarin in relation to baseline renal function in patients with atrial fibrillation: a RE-LY (Randomized Evaluation of Long-term Anticoagulation Therapy) trial analysis. Circulation. 2014; 129(9):961-970
- Hillege HL, Fidler V, Diercks GF, van Gilst WH, de ZD, van Veldhuisen DJ et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population.
 Circulation. 2002; 106(14):1777-1782
- 268 Hillege HL, Nitsch D, Pfeffer MA, Swedberg K, McMurray JJ, Yusuf S et al. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation. 2006; 113(5):671-678
- 269 Hirst JA, Taylor KS, Stevens RJ, Blacklock CL, Roberts NW, Pugh CW et al. The impact of reninangiotensin-aldosterone system inhibitors on Type 1 and Type 2 diabetic patients with and without early diabetic nephropathy. Kidney International. 2012; 81(7):674-683
- Hladunewich MA, Troyanov S, Calafati J, Cattran DC. The natural history of the non-nephrotic membranous nephropathy patient. Clinical Journal of the American Society of Nephrology. 2009; 4(9):1417-1422
- 271 Hoefield RA, Kalra PA, Baker P, Lane B, New JP, O'donoghue DJ et al. Factors associated with kidney disease progression and mortality in a referred CKD population. American Journal of Kidney Diseases. 2010; 56(6):1072-1081
- 272 Hoefield RA, Kalra PA, Baker PG, Sousa I, Diggle PJ, Gibson MJ et al. The use of eGFR and ACR to predict decline in renal function in people with diabetes. Nephrology Dialysis and Transplantation. 2011; 26(3):887-892
- 273 Hoefield RA, Kalra PA, Lane B, O'donoghue DJ, Foley RN, Middleton RJ. Associations of baseline characteristics with evolution of eGFR in a referred chronic kidney disease cohort. QJM. 2013; 106(10):915-924

- Hogan TJ, Elliott WJ, Seto AH, Bakris GL. Antihypertensive treatment with and without benazepril in patients with chronic renal insufficiency: a US economic evaluation.
 Pharmacoeconomics. 2002; 20(1):37-47
- 275 Hohnloser SH, Hijazi Z, Thomas L, Alexander JH, Amerena J, Hanna M et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. European Heart Journal. 2012; 33(22):2821-2830
- 276 Hojs R, Bevc S, Ekart R, Gorenjak M, Puklavec L. Serum cystatin C as an endogenous marker of renal function in patients with mild to moderate impairment of kidney function. Nephrology Dialysis and Transplantation. 2006; 21(7):1855-1862
- 277 Hojs R, Bevc S, Ekart R, Gorenjak M, Puklavec L. Serum cystatin C as an endogenous marker of renal function in patients with chronic kidney disease. Renal Failure. 2008; 30(2):181-186
- 278 Hori M, Matsumoto M, Tanahashi N, Momomura Si, Uchiyama S, Goto S et al. Safety and efficacy of adjusted dose of rivaroxaban in Japanese patients with non-valvular atrial fibrillation-subanalysis of J-ROCKET AF for patients with moderate renal impairment. Circulation Journal. 2013; 77(3):632-638
- 279 Horita Y, Taura K, Taguchi T, Furusu A, Kohno S. Aldosterone breakthrough during therapy with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in proteinuric patients with immunoglobulin A nephropathy. Nephrology. 2006; 11(5):462-466
- 280 Hossain F, Kendrick-Jones J, Ma TM, Marshall MR. The estimation of glomerular filtration rate in an Australian and New Zealand cohort. Nephrology. 2012; 17(3):285-293
- 281 Hou FF, Xie D, Zhang X, Chen PY, Zhang WR, Liang M et al. Renoprotection of Optimal Antiproteinuric Doses (ROAD) Study: a randomized controlled study of benazepril and losartan in chronic renal insufficiency. Journal of the American Society of Nephrology. 2007; 18(6):1889-1898
- Howard K, White S, Chadban S, Craig J, McDonald S, Perkovic V et al. Cost-effectiveness of early detection and intervention to prevent the progression of chronic kidney disease in Australia. Melbourne: Australia. Kidney Health Australia, 2006. Available from: http://www.kidney.org.au/LinkClick.aspx?fileticket=4YwOE262iKs%3D&tabid=622&mid=1802
- 283 Howard K, White S, Salkeld G, McDonald S, Craig JC, Chadban S et al. Cost-effectiveness of screening and optimal management for diabetes, hypertension, and chronic kidney disease: a modeled analysis. Value in Health. 2010; 13(2):196-208
- 284 Hsu CY, Chertow GM, McCulloch CE, Fan D, Ordonez JD, Go AS. Nonrecovery of kidney function and death after acute on chronic renal failure. Clinical Journal of the American Society of Nephrology. 2009; 4(5):891-898
- Hsu Cy, Iribarren C, McCulloch CE, Darbinian J, Go AS. Risk factors for end-stage renal disease:
 25-year follow-up. Archives of Internal Medicine. 2009; 169(4):342-350

- 286 Hsu RK, Hsu C-Y. Proteinuria and reduced glomerular filtration rate as risk factors for acute kidney injury. Current Opinion in Nephrology and Hypertension. 2011; 20(3):211-217
- Huang S-H, Macnab JJ, Sontrop JM, Filler G, Gallo K, Lindsay RM et al. Performance of the creatinine-based and the cystatin C-based glomerular filtration rate (GFR) estimating equations in a heterogenous sample of patients referred for nuclear GFR testing. Translational Research. 2011; 157(6):357-367
- 288 Hughes PJ, Freeman MK. Dabigatran for the prevention of thromboembolic complications in the elderly: A RE-LY-able alternative to warfarin? Consultant Pharmacist. 2012; 27(6):445-452
- 289 Ibrahim H, Mondress M, Tello A, Fan Y, Koopmeiners J, Thomas W. An alternative formula to the Cockcroft-Gault and the modification of diet in renal diseases formulas in predicting GFR in individuals with type 1 diabetes. Journal of the American Society of Nephrology. 2005; 16(4):1051-1060
- Ihle BU, Becker GJ, Whitworth JA, Charlwood RA, Kincaid SP. The effect of protein restriction on the progression of renal insufficiency. New England Journal of Medicine. 1989; 321(26):1773-1777
- 291 Ikizler TA, Greene JH, Wingard RL, Parker RA, Hakim RM. Spontaneous dietary protein intake during progression of chronic renal failure. Journal of the American Society of Nephrology. 1995; 6(5):1386-1391
- 292 Iliadis F, Didangelos T, Ntemka A, Makedou A, Moralidis E, Gotzamani-Psarakou A et al. Glomerular filtration rate estimation in patients with type 2 diabetes: creatinine- or cystatin Cbased equations? Diabetologia. 2011; 54(12):2987-2994
- 293 Imai E, Chan J, Ito S, Haneda M, Makino H. Impact of olmesartan with or without ace inhibitor on renal and cardiovascular protection in type 2 diabetes with overt proteinuria. NDT Plus. 2010; 3:iii416-iii417
- 294 Imai E, Chan JCN, Ito S, Yamasaki T, Kobayashi F, Haneda M et al. Effects of olmesartan on renal and cardiovascular outcomes in type 2 diabetes with overt nephropathy: A multicentre, randomised, placebo-controlled study. Diabetologia. 2011; 54(12):2978-2986
- 295 Imai E, Haneda M, Ito S, Kobayashi F, Yamasaki T, Chan J et al. Proteinuria is a therapeutic target for renoprotection in patients with type 2 diabetes with overt nephropathy: A subanalysis of orient study. Nephrology Dialysis and Transplantation. 2012; 27:ii13
- Imai E, Ito S, Haneda M, Chan JCN, Makino H. Olmesartan Reducing Incidence of Endstage Renal Disease in Diabetic Nephropathy trial (ORIENT): Rationale and study design.
 Hypertension Research. 2006; 29(9):703-709
- 297 Inker LA, Coresh J, Levey AS, Tonelli M, Muntner P. Estimated GFR, albuminuria, and complications of chronic kidney disease. Journal of the American Society of Nephrology. 2011; 22(12):2322-2331

- 298 Inker LA, Fan L, Okparavero AA, Gudnason V, Eriksdottir G, Andresdottir MB et al. Comparing cystatin C and creatinine for estimating measured GFR and CKD prevalence in a communitybased sample of the elderly. Journal of the American Society of Nephrology. 2013; 24:164A
- 299 Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. New England Journal of Medicine. 2012; 367(1):20-29
- Innes A, Rowe PA, Burden RP, Morgan AG. Early deaths on renal replacement therapy: the
 need for early nephrological referral. Nephrology Dialysis and Transplantation. 1992; 7(6):467 471
- 301 Iseki K, Ikemiya Y, Iseki C, Takishita S. Proteinuria and the risk of developing end-stage renal disease. Kidney International. 2003; 63(4):1468-1474
- 302 Iseki K, Ikemiya Y, Kinjo K, Iseki C, Takishita S. Prevalence of high fasting plasma glucose and risk of developing end-stage renal disease in screened subjects in Okinawa, Japan. Clinical and Experimental Nephrology. 2004; 8(3):250-256
- 303 Iseki K, Kinjo K, Iseki C, Takishita S. Relationship between predicted creatinine clearance and proteinuria and the risk of developing ESRD in Okinawa, Japan. American Journal of Kidney Diseases. 2004; 44(5):806-814
- 304 Ishani A, Xue JL, Himmelfarb J, Eggers PW, Kimmel PL, Molitoris BA et al. Acute kidney injury increases risk of ESRD among elderly. Journal of the American Society of Nephrology. 2009; 20(1):223-228
- Jackson CE, Solomon SD, Gerstein HC, Zetterstrand S, Olofsson B, Michelson EL et al.
 Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet. 2009;
 374(9689):543-550
- 306 Jafar TH, Chaturvedi N, Hatcher J, Levey AS. Use of albumin creatinine ratio and urine albumin concentration as a screening test for albuminuria in an Indo-Asian population.[see comment]. Nephrology Dialysis and Transplantation. 2007; 22(8):2194-2200
- 307 Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patientlevel data. Annals of Internal Medicine. 2001; 135(2):73-87
- 308 Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Annals of Internal Medicine. 2003; 139(4):244-252
- 309 James MT, Ghali WA, Knudtson ML, Ravani P, Tonelli M, Faris P et al. Associations between acute kidney injury and cardiovascular and renal outcomes after coronary angiography. Circulation. 2011; 123(4):409-416

- 310 James MT, Ghali WA, Tonelli M, Faris P, Knudtson ML, Pannu N et al. Acute kidney injury following coronary angiography is associated with a long-term decline in kidney function. Kidney International. 2010; 78(8):803-809
- 311 James S, Akerblom A, Cannon CP, Emanuelsson H, Husted S, Katus H et al. Comparison of ticagrelor, the first reversible oral P2Y(12) receptor antagonist, with clopidogrel in patients with acute coronary syndromes: Rationale, design, and baseline characteristics of the PLATelet inhibition and patient Outcomes (PLATO) trial. American Heart Journal. 2009; 157(4):599-605
- 312 James S, Budaj A, Aylward P, Buck KK, Cannon CP, Cornel JH et al. Ticagrelor versus clopidogrel in acute coronary syndromes in relation to renal function: results from the Platelet Inhibition and Patient Outcomes (PLATO) trial. Circulation. 2010; 122(11):1056-1067
- 313 James SK, Storey RF, Bushnell C, Horrow J, Husted S, Mahaffey KW et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes and history of stroke or transient ischemic accident: Results from the platelet inhibition and patient outcomes trial. Circulation. 2011; 124(21 Suppl. 1):A15029
- 314 Jardine M, Ninomiya T, Cass A, Turnbull F, Gallagher M, Zoungas S et al. Aspirin benefit increases as eGFR declines: Results from a randomised controlled trial in a hypertensive population. Nephrology. 2010; 15:49
- 315 Jardine MJ, Ninomiya T, Perkovic V, Cass A, Turnbull F, Gallagher MP et al. Aspirin is beneficial in hypertensive patients with chronic kidney disease: a post-hoc subgroup analysis of a randomized controlled trial. Journal of the American College of Cardiology. 2010; 56(12):956-965
- 316 Jennings DL, Kalus JS, Coleman Cl, Manierski C, Yee J. Combination therapy with an ACE inhibitor and an angiotensin receptor blocker for diabetic nephropathy: a meta-analysis. Diabetic Medicine. 2007; 24(5):486-493
- 317 Jerums G, Allen TJ, Campbell DJ, Cooper ME, Gilbert RE, Hammond JJ et al. Long-term renoprotection by perindopril or nifedipine in non-hypertensive patients with Type 2 diabetes and microalbuminuria. Diabetic Medicine. 2004; 21(11):1192-1199
- 318 Jerums G, Allen TJ, Campbell DJ, Cooper ME, Gilbert RE, Hammond JJ et al. Long-term comparison between perindopril and nifedipine in normotensive patients with type 1 diabetes and microalbuminuria. American Journal of Kidney Diseases. 2001; 37(5):890-899
- 319 John R, Webb M, Young A, Stevens PE. Unreferred chronic kidney disease: a longitudinal study. American Journal of Kidney Diseases. 2004; 43(5):825-835
- 320 Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension. 2003; 41(6):1183-1190

- 321 Jun M, Lv J, Perkovic V, Jardine MJ. Managing cardiovascular risk in people with chronic kidney disease: A review of the evidence from randomized controlled trials. Therapeutic Advances in Chronic Disease. 2011; 2(4):265-278
- 322 Jungers P, Chauveau P, Ployard F, Lebkiri B, Ciancioni C, Man NK. Comparison of ketoacids and low protein diet on advanced chronic renal failure progression. Kidney International -Supplement. 1987; 22:S67-S71
- 323 Jungers P, Zingraff J, Albouze G, Chauveau P, Page B, Hannedouche T et al. Late referral to maintenance dialysis: detrimental consequences. Nephrology Dialysis and Transplantation. 1993; 8(10):1089-1093
- 324 Kahvecioglu S, Akdag I, Gullulu M, Arabul M, Ersoy A, Dilek K et al. Comparison of higher dose of losartan treatment with losartan plus carvedilol and losartan plus ramipril in patients with glomerulonephritis and proteinuria. Renal Failure. 2007; 29(2):169-175
- 325 Kallner A, Khatami Z. How does the MDRD Study equation compare with serum creatinine in routine healthcare? Anatomy of MDRD-eGFR. Scandinavian Journal of Clinical and Laboratory Investigation Supplementum. 2008; 241:39-45
- 326 Kallner A, Ayling PA, Khatami Z. Does eGFR improve the diagnostic capability of S-Creatinine concentration results? A retrospective population based study. International Journal of Medical Sciences. 2008; 5(1):9-17
- 327 Kanno Y, Takenaka T, Nakamura T, Suzuki H. Add-on angiotensin receptor blocker in patients who have proteinuric chronic kidney diseases and are treated with angiotensin-converting enzyme inhibitors. Clinical Journal of the American Society of Nephrology. 2006; 1(4):730-737
- 328 Kao MP, Ang DS, Gandy SJ, Nadir MA, Houston JG, Lang CC et al. Allopurinol benefits left ventricular mass and endothelial dysfunction in chronic kidney disease. Journal of the American Society of Nephrology. 2011; 22(7):1382-1389
- 329 Karunaratne K, Stevens P, Irving J, Hobbs H, Kilbride H, Kingston R et al. The impact of pay for performance on the control of blood pressure in people with chronic kidney disease stage 3-5. Nephrology, Dialysis, Transplantation : Official Publication of the European Dialysis and Transplant Association - European Renal Association. 2013; 28(8):2107-2116
- 330 Kasiske BL, O'Donnell MP, Cleary MP, Keane WF. Treatment of hyperlipidemia reduces glomerular injury in obese Zucker rats. Kidney International. 1988; 33(3):667-672
- 331 Kasiske BL, O'Donnell MP, Garvis WJ, Keane WF. Pharmacologic treatment of hyperlipidemia reduces glomerular injury in rat 5/6 nephrectomy model of chronic renal failure. Circulation Research. 1988; 62(2):367-374
- 332 Katayama S, Kikkawa R, Isogai S, Sasaki N, Matsuura N, Tajima N et al. Effect of captopril or imidapril on the progression of diabetic nephropathy in Japanese with type 1 diabetes mellitus: a randomized controlled study (JAPAN-IDDM). Diabetes Research and Clinical Practice. 2002; 55(2):113-121

- 333 Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Archives of Internal Medicine. 2004; 164(6):659-663
- 334 Keltai M, Tonelli M, Mann JFE, Sitkei E, Lewis BS, Hawken S et al. Renal function and outcomes in acute coronary syndrome: Impact of clopidogrel. European Journal of Cardiovascular Prevention & Rehabilitation. 2007; 14(2):312-318
- 335 Kent DM, Jafar TH, Hayward RA, Tighiouart H, Landa M, de JP et al. Progression risk, urinary protein excretion, and treatment effects of Angiotensin-converting enzyme inhibitors in nondiabetic kidney disease. Journal of the American Society of Nephrology. 2007; 18(6):1959-1965
- 336 Keough RMT, Kiberd BA, Dipchand CS, Cox JL, Rose CL, Thompson KJ et al. Outcomes of acute coronary syndrome in a large Canadian cohort: impact of chronic renal insufficiency, cardiac interventions, and anemia. American Journal of Kidney Diseases. 2005; 46(5):845-855
- 337 Khatami Z, Handley G, Narayanan K, Weaver JU. Applicability of estimated glomerular filtration rate in stratifying chronic kidney disease. Scandinavian Journal of Clinical and Laboratory Investigation. 2007; 67(3):297-305
- 338 Khedr A, Khedr E, House AA. Body Mass Index and the Risk of Progression of Chronic Kidney Disease. Journal of Renal Nutrition. 2011; 21(6):455-461
- 339 Kiberd BA, Jindal KK. Screening to prevent renal failure in insulin dependent diabetic patients: an economic evaluation. BMJ. 1995; 311(7020):1595-1599
- 340 Kidney Research UK. Summaries of the ABLE Projects. 2008. Available from: http://kidneyresearchuk.org/content/view/57/84/ [Last accessed: 19 June 2006]
- 341 Kilbride HS, Stevens PE, Eaglestone G, Knight S, Carter JL, Delaney MP et al. Accuracy of the MDRD (Modification of Diet in Renal Disease) Study and CKD-EPI (CKD Epidemiology Collaboration) Equations for Estimation of GFR in the Elderly. American Journal of Kidney Diseases. 2013; 61(1):57-66
- 342 Kim-Mitsuyama S, Ogawa H, Matsui K, Jinnouchi T, Jinnouchi H, Arakawa K. An angiotensin II receptor blocker-calcium channel blocker combination prevents cardiovascular events in elderly high-risk hypertensive patients with chronic kidney disease better than high-dose angiotensin II receptor blockade alone. Kidney International. 2013; 83(1):167-176
- 343 Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. New England Journal of Medicine. 1994; 330(13):877-884
- Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease.
 Modification of Diet in Renal Disease Study Group. New England Journal of Medicine. 1994; 330(13):877-884

- 345 Klausen K, Borch JK, Feldt RB, Jensen G, Clausen P, Scharling H et al. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation. 2004; 110(1):32-35
- 346 Klebe B, Irving J, Stevens PE, O'donoghue DJ, de LS, Cooley R et al. The cost of implementing UK guidelines for the management of chronic kidney disease. Nephrology Dialysis and Transplantation. 2007; 22(9):2504-2512
- 347 Knudsen ST, Andersen NH, Poulsen SH, Eiskjaer H, Hansen KW, Helleberg K et al. Pulse pressure lowering effect of dual blockade with candesartan and lisinopril vs. high-dose ACE inhibition in hypertensive type 2 diabetic subjects: A CALM II study post-hoc analysis. American Journal of Hypertension. 2008; 21(2):172-176
- 348 Ko GTC, Tsang CC, Chan HCK. Stabilization and regression of albuminuria in Chinese patients with type 2 diabetes: a one-year randomized study of valsartan versus enalapril. Advances in Therapy. 2005; 22(2):155-162
- 349 Kohzuki M, Kamimoto M, Wu XM, Xu HL, Kawamura T, Mori N et al. Renal protective effects of chronic exercise and antihypertensive therapy in hypertensive rats with chronic renal failure. Journal of Hypertension. 2001; 19(10):1877-1882
- 350 Kong X, Ma Y, Chen J, Luo Q, Yu X, Li Y et al. Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating glomerular filtration rate in the Chinese population. Nephrology Dialysis and Transplantation. 2013; 28(3):641-651
- 351 Kooienga L, Fried L, Scragg R, Kendrick J, Smits G, Chonchol M. The effect of combined calcium and vitamin D3 supplementation on serum intact parathyroid hormone in moderate CKD. American Journal of Kidney Diseases. 2009; 53(3):408-416
- 352 Koppe L, Klich A, Dubourg L, Ecochard R, Hadj-Aissa A. Performance of creatinine-based equations compared in older patients. Journal of Nephrology. 2013; 26(4):716-723
- 353 Koshikawa S, Akizawa T, Kurokawa K, Marumo F, Sakai O, Arakawa M et al. Clinical effect of intravenous calcitriol administration on secondary hyperparathyroidism: A Double-Blind Study among 4 Doses. Nephron. 2002; 90(4):413-423
- 354 Kosmadakis G, Filiopoulos V, Georgoulias C, Tentolouris N, Michail S. Comparison of the influence of angiotensin-converting enzyme inhibitor lisinopril and angiotensin II receptor antagonist losartan in patients with idiopathic membranous nephropathy and nephrotic syndrome. Scandinavian Journal of Urology and Nephrology. 2010; 44(4):251-256
- 355 Kovesdy CP, Lu JL, Malakauskas SM, Andress DL, Kalantar-Zadeh K, Ahmadzadeh S. Paricalcitol versus ergocalciferol for secondary hyperparathyroidism in CKD stages 3 and 4: a randomized controlled trial. American Journal of Kidney Diseases. 2012; 59(1):58-66
- 356 Koya D, Haneda M, Inomata S, Suzuki Y, Suzuki D, Makino H et al. Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: a randomised controlled trial. Diabetologia. 2009; 52(10):2037-2045

- 357 Krairittichai U, Mahannopkul R, Bunnag S. An open label, randomized controlled study of oral calcitriol for the treatment of proteinuria in patients with diabetic kidney disease. Journal of the Medical Association of Thailand. 2012; 95(Suppl. 3):S41-S47
- 358 Krause MW, Massing M, Kshirsagar A, Rosamond W, Simpson RJ, Jr. Combination therapy improves survival after acute myocardial infarction in the elderly with chronic kidney disease. Renal Failure. 2004; 26(6):715-725
- 359 Kunz R, Friedrich C, Wolbers M, Mann JF. Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Annals of Internal Medicine. 2008; 148(1):30-48
- 360 Kurella M, Chertow GM, Fried LF, Cummings SR, Harris T, Simonsick E et al. Chronic kidney disease and cognitive impairment in the elderly: the health, aging, and body composition study. Journal of the American Society of Nephrology. 2005; 16(7):2127-2133
- 361 Kurella M, Yaffe K, Shlipak MG, Wenger NK, Chertow GM. Chronic kidney disease and cognitive impairment in menopausal women. American Journal of Kidney Diseases. 2005; 45(1):66-76
- 362 Kutscherauer P, Kodym R, Bartaskova D. Cost-effectiveness analysis of add-on aliskiren to losartan treatment for patients with type 2 diabetes, hypertension and nephropathy in the Czech patients from payor perspective. Value in Health. 2009; 12(3):A154
- 363 Kwan BC, Kronenberg F, Beddhu S, Cheung AK. Lipoprotein metabolism and lipid management in chronic kidney disease. Journal of the American Society of Nephrology. 2007; 18(4):1246-1261
- 364 Lacourciere Y, Belanger A, Godin C, Halle JP, Ross S, Wright N et al. Long-term comparison of losartan and enalapril on kidney function in hypertensive type 2 diabetics with early nephropathy. Kidney International. 2000; 58(2):762-769
- Laffel LM, McGill JB, Gans DJ. The beneficial effect of angiotensin-converting enzyme inhibition with captopril on diabetic nephropathy in normotensive IDDM patients with microalbuminuria. North American Microalbuminuria Study Group. American Journal of Medicine. 1995; 99(5):497-504
- 366 Lafrance J-P, Djurdjev O, Levin A. Incidence and outcomes of acute kidney injury in a referred chronic kidney disease cohort. Nephrology Dialysis and Transplantation. 2010; 25(7):2203-2209
- 367 Lamb EJ, Webb MC, Simpson DE, Coakley AJ, Newman DJ, O'Riordan SE. Estimation of glomerular filtration rate in older patients with chronic renal insufficiency: is the modification of diet in renal disease formula an improvement? Journal of the American Geriatrics Society. 2003; 51(7):1012-1017
- Lameire N, Van BW. The pattern of referral of patients with end-stage renal disease to the nephrologist--a European survey. Nephrology Dialysis and Transplantation. 1999; 14(Suppl. 6):16-23

- 369 Le WB, Liang SS, Hu YL, Deng KP, Bao H, Zeng CH et al. Long-term renal survival and related risk factors in patients with IgA nephropathy: Results from a cohort of 1155 cases in a Chinese adult population. Nephrology Dialysis and Transplantation. 2012; 27(4):1479-1485
- 370 Lea J, Greene T, Hebert L, Lipkowitz M, Massry S, Middleton J et al. The relationship between magnitude of proteinuria reduction and risk of end-stage renal disease: results of the African American study of kidney disease and hypertension. Archives of Internal Medicine. 2005; 165(8):947-953
- 371 Lebovitz HE, Wiegmann TB, Cnaan A, Shahinfar S, Sica DA, Broadstone V et al. Renal protective effects of enalapril in hypertensive NIDDM: role of baseline albuminuria. Kidney International -Supplement. 1994; 45:S150-S155
- 372 Lee D, Levin A, Roger SD, McMahon LP. Longitudinal analysis of performance of estimated glomerular filtration rate as renal function declines in chronic kidney disease. Nephrology Dialysis and Transplantation. 2009; 24(1):109-116
- 373 Lee H, Kim DK, Oh K-H, Joo KW, Kim YS, Chae D-W et al. Mortality of IgA Nephropathy Patients: A Single Center Experience over 30 Years. PLoS ONE. 2012; 7(12):e51225
- 374 Lee YJ, Cho S, Kim SR, Jang HR, Lee JE, Huh W et al. Effect of losartan on proteinuria and urinary angiotensinogen excretion in non-diabetic patients with chronic kidney disease. Postgraduate Medical Journal. 2011; 87(1032):664-669
- 375 Leehey DJ, Kramer HJ, Daoud TM, Chatha MP, Isreb MA. Progression of kidney disease in type 2 diabetes - Beyond blood pressure control: An observational study. BMC Nephrology. 2005; 6:8
- 376 Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU et al. Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from Kidney Disease Improving Global Outcomes. Kidney International. 2007; 72(3):247-259
- 377 Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Annals of Internal Medicine. 2006; 145(4):247-254
- 378 Levey AS, Greene T, Beck GJ, Caggiula AW, Kusek JW, Hunsicker LG et al. Dietary protein restriction and the progression of chronic renal disease: What have all of the results of the MDRD study shown? Journal of the American Society of Nephrology. 1999; 10(11):2426-2439
- 379 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro 3rd.A.F., Feldman HI et al. A new equation to estimate glomerular filtration rate. Annals of Internal Medicine. 2009; 150(9):604-612
- 380 Levey AS, Greene T, Sarnak MJ, Wang X, Beck GJ, Kusek JW et al. Effect of dietary protein restriction on the progression of kidney disease: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. American Journal of Kidney Diseases. 2006; 48(6):879-888

- 381 Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney International. 2007; 71(1):31-38
- 382 Levin A, Djurdjev O, Beaulieu M, Er L. Variability and Risk Factors for Kidney Disease Progression and Death Following Attainment of Stage 4 CKD in a Referred Cohort. American Journal of Kidney Diseases. 2008; 52(4):661-671
- 383 Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. New England Journal of Medicine. 1993; 329(20):1456-1462
- 384 Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. New England Journal of Medicine. 2001; 345(12):851-860
- 385 Li L, Astor BC, Lewis J, Hu B, Appel LJ, Lipkowitz MS et al. Longitudinal progression trajectory of GFR among patients with CKD. American Journal of Kidney Diseases. 2012; 59(4):504-512
- 386 Li PKT, Leung CB, Chow KM, Cheng YL, Fung SKS, Mak SK et al. Hong Kong Study Using Valsartan in IgA Nephropathy (HKVIN): A Double-Blind, Randomized, Placebo-Controlled Study. American Journal of Kidney Diseases. 2006; 47(5):751-760
- 387 Liano F, Felipe C, Tenorio MT, Rivera M, Abraira V, Saez-de-Urturi JM et al. Long-term outcome of acute tubular necrosis: a contribution to its natural history. Kidney International. 2007; 71(7):679-686
- Lima HN, Cabral NL, Goncalves ARR, Hauser A, Pecoits-Filho R. Association between albuminuria, glomerular filtration rate and mortality or recurrence in stroke patients. Nephron
 Clinical Practice. 2011; 117(3):c246-c252
- 389 Lindeman RD. Is the decline in renal function with normal aging inevitable? Geriatric Nephrology & Urology. 1998; 8(1):7-9
- 390 Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. Journal of the American Geriatrics Society. 1985; 33(4):278-285
- 391 Lindeman RD, Tobin JD, Shock NW. Association between blood pressure and the rate of decline in renal function with age. Kidney International. 1984; 26(6):861-868
- 392 Lins RL, Elseviers MM, Daelemans R. Severity scoring and mortality 1 year after acute renal failure. Nephrology Dialysis and Transplantation. 2006; 21(4):1066-1068
- 393 Liu X, Ma H, Huang H, Wang C, Tang H, Li M et al. Is the Chronic Kidney Disease Epidemiology Collaboration creatinine-cystatin C equation useful for glomerular filtration rate estimation in the elderly? Clinical Interventions in Aging. 2013; 8:1387-1391
- 394 Lizakowski S, Tylicki L, Rutkowski P, Renke M, Sulikowska B, Heleniak Z et al. Safety of enhanced renin-angiotensin-aldosterone system inhibition with aliskiren in nondiabetic

patients with chronic kidney disease. Polskie Archiwum Medycyny Wewnetrznej. 2013; 123(5):221-227

- 395 Lo LJ, Go AS, Chertow GM, McCulloch CE, Fan D, Ordoez JD et al. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney International. 2009; 76(8):893-899
- 396 Locatelli F, Alberti D, Graziani G, Buccianti G, Redaelli B, Giangrande A. Prospective, randomised, multicentre trial of effect of protein restriction on progression of chronic renal insufficiency. Northern Italian Cooperative Study Group. Lancet. 1991; 337(8753):1299-1304
- 397 Locatelli F, Carbarns IR, Maschio G, Mann JF, Ponticelli C, Ritz E et al. Long-term progression of chronic renal insufficiency in the AIPRI Extension Study. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. Kidney International - Supplement. 1997; 63:S63-S66
- 398 Loef BG, Epema AH, Smilde TD, Henning RH, Ebels T, Navis G et al. Immediate postoperative renal function deterioration in cardiac surgical patients predicts in-hospital mortality and longterm survival. Journal of the American Society of Nephrology. 2005; 16(1):195-200
- 399 Lorenzo V, Saracho R, Zamora J, Rufino M, Torres A. Similar renal decline in diabetic and nondiabetic patients with comparable levels of albuminuria. Nephrology Dialysis and Transplantation. 2010; 25(3):835-841
- 400 Lv J, Perkovic V, Foote C, V, Craig ME, Craig JC, Strippoli Giovanni FM. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database of Systematic Reviews. 2012; Issue 12:CD004136. DOI:10.1002/14651858.CD004136.pub3
- 401 Lv J, Shi S, Xu D, Zhang H, Troyanov S, Cattran DC et al. Evaluation of the Oxford Classification of IgA Nephropathy: A Systematic Review and Meta-analysis. American Journal of Kidney Diseases. 2013; 62(5):891-899
- 402 Ma YC, Zuo L, Chen JH, Luo Q, Yu XQ, Li Y et al. Improved GFR estimation by combined creatinine and cystatin C measurements. Kidney International. 2007; 72(12):1535-1542
- 403 MacGregor MS, Traynor JP, O'Reilly DSJ, and Deighan CJ. Assessing proteinuria in chronic kidney disease: protein-creatinine ratio versus albumin-creatinine ratio, 2007
- 404 MacIsaac RJ, Cheong K, Ekinci E, Verma S, Premaratne E, Lu ZX et al. Estimating early glomerular filtration rate (GFR) decline in diabetes by the chronic kidney disease-epidemiology collaboration (CKD-EPI) equation. Diabetes. 2012; 61:A137
- 405 MacIsaac RJ, Tsalamandris C, Thomas MC, Premaratne E, Panagiotopoulos S, Smith TJ et al. Estimating glomerular filtration rate in diabetes: a comparison of cystatin-C- and creatininebased methods. Diabetologia. 2006; 49(7):1686-1689

- 406 MacIsaac RJ, Tsalamandris C, Thomas MC, Premaratne E, Panagiotopoulos S, Smith TJ et al. The accuracy of cystatin C and commonly used creatinine-based methods for detecting moderate and mild chronic kidney disease in diabetes. Diabetic Medicine. 2007; 24(4):443-448
- 407 Madero M, Sarnak MJ, Wang X, Sceppa CC, Greene T, Beck GJ et al. Body Mass Index and Mortality in CKD. American Journal of Kidney Diseases. 2007; 50(3):404-411
- 408 Mahajan A, Simoni J, Sheather SJ, Broglio KR, Rajab MH, Wesson DE. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney International. 2010; 78(3):303-309
- 409 Mahajan S, Mukhiya GK, Singh R, Tiwari SC, Kalra V, Bhowmik DM et al. Assessing glomerular filtration rate in healthy Indian adults: a comparison of various prediction equations. Journal of Nephrology. 2005; 18(3):257-261
- 410 Mahmoodi BK, Gansevoort RT, Naess IA, Lutsey PL, Braekkan SK, Veeger NJGM et al. Association of mild to moderate chronic kidney disease with venous thromboembolism: Pooled analysis of five prospective general population cohorts. Circulation. 2012; 126(16):1964-1971
- 411 Mahmoodi BK, Matsushita K, Woodward M, Blankestijn PJ, Cirillo M, Ohkubo T et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet. 2012; 380(9854):1649-1661
- 412 Maione A, Navaneethan SD, Graziano G, Mitchell R, Johnson D, Mann JF et al. Angiotensinconverting enzyme inhibitors, angiotensin receptor blockers and combined therapy in patients with micro- and macroalbuminuria and other cardiovascular risk factors: a systematic review of randomized controlled trials. Nephrology Dialysis and Transplantation. 2011; 26(9):2827-2847
- 413 Maione A, Nicolucci A, Craig JC, Tognoni G, Moschetta A, Palasciano G et al. Protocol of the Long-term Impact of RAS Inhibition on Cardiorenal Outcomes (LIRICO) randomized trial. Journal of Nephrology. 2007; 20(6):646-655
- 414 Makino H, Haneda M, Babazono T, Moriya T, Ito S, Iwamoto Y et al. Microalbuminuria reduction with telmisartan in normotensive and hypertensive Japanese patients with type 2 diabetes: a post-hoc analysis of The Incipient to Overt: Angiotensin II Blocker, Telmisartan, Investigation on Type 2 Diabetic Nephropathy (INNOVATION) study. Hypertension Research. 2008; 31(4):657-664
- Malvy D, Maingourd C, Pengloan J, Bagros P, Nivet H. Effects of severe protein restriction with ketoanalogues in advanced renal failure. Journal of the American College of Nutrition. 1999; 18(5):481-486
- 416 Mann JF, Gerstein HC, Pogue J, Bosch J, Yusuf S. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Annals of Internal Medicine. 2001; 134(8):629-636

- 417 Mann JF, Schmieder RE, Dyal L, McQueen MJ, Schumacher H, Pogue J et al. Effect of telmisartan on renal outcomes: a randomized trial. Annals of Internal Medicine. 2009; 151(1):1-10, W1
- 418 Mann JF, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008; 372(9638):547-553
- 419 Mann JFE, Anderson C, Gao P, Gerstein HC, Boehm M, Ryden L et al. Dual inhibition of the renin-angiotensin system in high-risk diabetes and risk for stroke and other outcomes: results of the ONTARGET trial. Journal of Hypertension. 2013; 31(2):414-421
- Marin R, Ruilope LM, Aljama P, Aranda P, Segura J, Diez J et al. A random comparison of fosinopril and nifedipine GITS in patients with primary renal disease. Journal of Hypertension. 2001; 19(10):1871-1876
- 421 Marks A, Fluck N, Prescott GJ, Robertson LM, Simpson WG, Smith WC et al. Definitions of progression in chronic kidney disease – predictors and relationship to renal replacement therapy in a population cohort with 6 years follow-up. Nephrology Dialysis and Transplantation. 2013; Epub
- 422 Marre M. Microalbuminuria and ACE inhibition in non-hypertensive diabetics. Journal of Diabetic Complications. 1990; 4(2):84-85
- 423 Marre M, Chatellier G, Leblanc H, Guyene TT, Menard J, Passa P. Prevention of diabetic nephropathy with enalapril in normotensive diabetics with microalbuminuria. BMJ. 1988; 297(6656):1092-1095
- Marre M, Leblanc H, Suarez L, Guyenne TT, Menard J, Passa P. Converting enzyme inhibition and kidney function in normotensive diabetic patients with persistent microalbuminuria. BMJ. 1987; 294(6585):1448-1452
- 425 Marre M, Lievre M, Chatellier G, Mann JFE, Passa P, Menard J et al. Effects of low dose ramipril on cardiovascular and renal outcomes in patients with type 2 diabetes and raised excretion of urinary albumin: randomised, double blind, placebo controlled trial (the DIABHYCAR study). BMJ. 2004; 328(7438):495
- 426 Marwyne MNN, Loo CY, Halim AG, Norella K, Sulaiman T, Zaleha MI. Estimation of glomerular filtration rate using serum cystatin C in overweight and obese subjects. Medical Journal of Malaysia. 2011; 66(4):313-317
- 427 Maschio G, Alberti D, Janin G, Locatelli F, Mann JF, Motolese M et al. Effect of the angiotensinconverting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. New England Journal of Medicine. 1996; 334(15):939-945
- 428 Maschio G, Alberti D, Locatelli F, Mann JF, Motolese M, Ponticelli C et al. Angiotensinconverting enzyme inhibitors and kidney protection: the AIPRI trial. The ACE Inhibition in

Progressive Renal Insufficiency (AIPRI) Study Group. Journal of Cardiovascular Pharmacology. 1999; 33(Suppl. 1):S16-S20

- 429 Mathiesen ER, Hommel E, Giese J, Parving HH. Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. BMJ. 1991; 303(6794):81-87
- 430 Mathiesen ER, Hommel E, Hansen HP, Smidt UM, Parving HH. Randomised controlled trial of long term efficacy of captopril on preservation of kidney function in normotensive patients with insulin dependent diabetes and microalbuminuria. BMJ. 1999; 319(7201):24-25
- Matsuda H, Hayashi K, Homma K, Yoshioka K, Kanda T, Takamatsu I et al. Differing antiproteinuric action of candesartan and losartan in chronic renal disease. Hypertension Research. 2003; 26(11):875-880
- 432 Matsuda H, Hayashi K, Saruta T. Distinct time courses of renal protective action of angiotensin receptor antagonists and ACE inhibitors in chronic renal disease. Journal of Human Hypertension. 2003; 17(4):271-276
- Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K et al. Revised Equations for Estimated
 GFR From Serum Creatinine in Japan. American Journal of Kidney Diseases. 2009; 53(6):982-992
- 434 Matsushita K, Tonelli M, Lloyd A, Levey AS, Coresh J, Hemmelgarn BR. Clinical risk implications of the CKD Epidemiology Collaboration (CKD-EPI) equation compared with the Modification of Diet in Renal Disease (MDRD) Study equation for estimated GFR. American Journal of Kidney Diseases. 2012; 60(2):241-249
- 435 Mazza A, Montemurro D, Piccoli A, Pagnan A, Pessina AC, Rampin L et al. Comparison of methods for determination of glomerular filtration rate in hypertensive subjects with normal serum creatinine. Blood Pressure. 2010; 19(5):278-286
- 436 McClellan W, Warnock DG, McClure L, Campbell RC, Newsome BB, Howard V et al. Racial differences in the prevalence of chronic kidney disease among participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) Cohort Study. Journal of the American Society of Nephrology. 2006; 17(6):1710-1715
- 437 McClellan WM, Warnock DG, Judd S, Muntner P, Patzer RE, Bradbury BD et al. Association of family history of ESRD, prevalent albuminuria, and reduced GFR with incident esrd. American Journal of Kidney Diseases. 2012; 59(1):25-31
- 438 McCullough PA, Jurkovitz CT, Pergola PE, McGill JB, Brown WW, Collins AJ et al. Independent components of chronic kidney disease as a cardiovascular risk state: results from the Kidney Early Evaluation Program (KEEP). Archives of Internal Medicine. 2007; 167(11):1122-1129
- 439 McManus DD, Corteville DCM, Shlipak MG, Whooley MA, Ix JH. Relation of Kidney Function and Albuminuria With Atrial Fibrillation (from the Heart and Soul Study). American Journal of Cardiology. 2009; 104(11):1551-1555

- 440 Mega JL, Braunwald E, Wiviott SD, Bassand JP, Bhatt DL, Bode C et al. Rivaroxaban in patients with a recent acute coronary syndrome. New England Journal of Medicine. 2012; 366(1):9-19
- 441 Meguro S, Shigihara T, Kabeya Y, Tomita M, Atsumi Y. Increased risk of renal deterioration associated with low e-GFR in type 2 diabetes mellitus only in albuminuric subjects. Internal Medicine. 2009; 48(9):657-663
- 442 Mehdi UF, Adams-Huet B, Raskin P, Vega GL, Toto RD. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. Journal of the American Society of Nephrology. 2009; 20(12):2641-2650
- 443 Mehler PS, Coll JR, Estacio R, Esler A, Schrier RW, Hiatt WR. Intensive blood pressure control reduces the risk of cardiovascular events in patients with peripheral arterial disease and type 2 diabetes. Circulation. 2003; 107(5):753-756
- 444 Mehran R, Nikolsky E, Lansky AJ, Kirtane AJ, Kim Y-H, Feit F et al. Impact of Chronic Kidney Disease on Early (30-Day) and Late (1-Year) Outcomes of Patients With Acute Coronary Syndromes Treated With Alternative Antithrombotic Treatment Strategies. An ACUITY (Acute Catheterization and Urgent Intervention Triage strategY) Substudy. JACC: Cardiovascular Interventions. 2009; 2(8):748-757
- 445 Mehta SR, Yusuf S. The Clopidogrel in Unstable angina to prevent Recurrent Events (CURE) trial programme; rationale, design and baseline characteristics including a meta-analysis of the effects of thienopyridines in vascular disease. European Heart Journal. 2000; 21(24):2033-2041
- 446 Meloni C, Morosetti M, Suraci C, Pennafina MG, Tozzo C, Taccone-Gallucci M et al. Severe dietary protein restriction in overt diabetic nephropathy: benefits or risks? Journal of Renal Nutrition. 2002; 12(2):96-101
- 447 Meloni C, Tatangelo P, Cipriani S, Rossi V, Suraci C, Tozzo C et al. Adequate protein dietary restriction in diabetic and nondiabetic patients with chronic renal failure. Journal of Renal Nutrition. 2004; 14(4):208-213
- 448 Menon V, Kopple JD, Wang X, Beck GJ, Collins AJ, Kusek JW et al. Effect of a very low-protein diet on outcomes: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. American Journal of Kidney Diseases. 2009; 53(2):208-217
- 449 Methven S, Traynor JP, Hair MD, O'Reilly DSJ, Deighan CJ, MacGregor MS. Stratifying risk in chronic kidney disease: An observational study of UK guidelines for measuring total proteinuria and albuminuria. QJM. 2011; 104(8):663-670
- 450 Mezzano D, Tagle R, Panes O, Perez M, Downey P, Munoz B et al. Hemostatic disorder of uremia: the platelet defect, main determinant of the prolonged bleeding time, is correlated with indices of activation of coagulation and fibrinolysis. Thrombosis and Haemostasis. 1996; 76(3):312-321

- 451 Michels WM, Grootendorst DC, Verduijn M, Elliott EG, Dekker FW, Krediet RT. Performance of the Cockcroft-Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clinical Journal of the American Society of Nephrology. 2010; 5(6):1003-1009
- 452 Mimura T, Takenaka T, Kanno Y, Moriwaki K, Okada H, Suzuki H. Vascular compliance is secured under angiotensin inhibition in non-diabetic chronic kidney diseases. Journal of Human Hypertension. 2008; 22(1):38-47
- 453 Mircescu G, Garneata L, Stancu SH, Capusa C. Effects of a supplemented hypoproteic diet in chronic kidney disease. Journal of Renal Nutrition. 2007; 17(3):179-188
- 454 Moe SM, Saifullah A, LaClair RE, Usman SA, Yu Z. A randomized trial of cholecalciferol versus doxercalciferol for lowering parathyroid hormone in chronic kidney disease. Clinical Journal of the American Society of Nephrology. 2010; 5(2):299-306
- 455 Molitch ME, Steffes M, Sun W, Rutledge B, Cleary P, De Boer IH et al. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care. 2010; 33(7):1536-1543
- 456 Momeni A, Shahidi S, Seirafian S, Taheri S, Kheiri S. Effect of allopurinol in decreasing proteinuria in type 2 diabetic patients. Iranian Journal of Kidney Diseases. 2010; 4(2):128-132
- 457 Morgera S, Kraft AK, Siebert G, Luft FC, Neumayer HH. Long-term outcomes in acute renal failure patients treated with continuous renal replacement therapies. American Journal of Kidney Diseases. 2002; 40(2):275-279
- 458 Mori-Takeyama U, Minatoguchi S, Murata I, Fujiwara H, Ozaki Y, Ohno M et al. Dual blockade of the rennin-angiotensin system versus maximal recommended dose of angiotensin II receptor blockade in chronic glomerulonephritis. Clinical and Experimental Nephrology. 2008; 12(1):33-40
- Muirhead N, Feagan BF, Mahon J, Lewanczuk RZ, Rodger NW, Botteri F et al. The effects of valsartan and captopril on reducing microalbuminuria in patients with type 2 diabetes mellitus: A placebo-controlled trial. Current Therapeutic Research, Clinical & Experimental. 1999; 60(12):650-660
- 460 Mukoro F. Renal Patient View: A system which provides patients online access to their test results: Final evaluation report. London. NHS Kidney Care, 2012. Available from: www.kidneycare.nhs.uk
- 461 Muntner P, Barrett BC, Gao L, Rizk D, Judd S, Tanner RM et al. Age-specific association of reduced estimated glomerular filtration rate and albuminuria with all-cause mortality. Clinical Journal of the American Society of Nephrology. 2011; 6(9):2200-2207
- 462 Murata K, Baumann NA, Saenger AK, Larson TS, Rule AD, Lieske JC. Relative performance of the MDRD and CKD-EPI equations for estimating glomerular filtration rate among patients with

varied clinical presentations. Clinical Journal of the American Society of Nephrology. 2011; 6(8):1963-1972

- 463 Murussi M, Campagnolo N, Beck MO, Gross JL, Silveiro SP. High-normal levels of albuminuria predict the development of micro- and macroalbuminuria and increased mortality in Brazilian Type 2 diabetic patients: An 8-year follow-up study. Diabetic Medicine. 2007; 24(10):1136-1142
- Nag S, Bilous R, Kelly W, Jones S, Roper N, Connolly V. All-cause and cardiovascular mortality in diabetic subjects increases significantly with reduced estimated glomerular filtration rate (eGFR): 10 years' data from the South Tees Diabetes Mortality study. Diabetic Medicine. 2007; 24(1):10-17
- 465 Nakagawa T, Kang DH, Feig D, Sanchez-Lozada LG, Srinivas TR, Sautin Y et al. Unearthing uric acid: An ancient factor with recently found significance in renal and cardiovascular disease.
 Kidney International. 2006; 69(10):1722-1725
- 466 Nakagawa T, Mazzali M, Kang DH, Kanellis J, Watanabe S, Sanchez-Lozada LG et al.
 Hyperuricemia causes glomerular hypertrophy in the rat. American Journal of Nephrology.
 2003; 23(1):2-7
- 467 Nakamura T, Fujiwara N, Kawagoe Y, Sugaya T, Ueda Y, Koide H. Effects of telmisartan and enalapril on renoprotection in patients with mild to moderate chronic kidney disease.
 European Journal of Clinical Investigation. 2010; 40(9):790-796
- 468 Nakamura T, Fujiwara N, Sato E, Ueda Y, Sugaya T, Koide H. Renoprotective effects of various angiotensin II receptor blockers in patients with early-stage diabetic nephropathy. Kidney and Blood Pressure Research. 2010; 33(3):213-220
- 469 Nakamura T, Kanno Y, Takenaka T, Suzuki H, Kanai A, Iino A et al. An angiotensin receptor blocker reduces the risk of congestive heart failure in elderly hypertensive patients with renal insufficiency. Hypertension Research - Clinical & Experimental. 2005; 28(5):415-423
- 470 Nankervis A, Nicholls K, Kilmartin G, Allen P, Ratnaike S, Martin FI. Effects of perindopril on renal histomorphometry in diabetic subjects with microalbuminuria: a 3-year placebocontrolled biopsy study. Metabolism: Clinical and Experimental. 1998; 47(12 Suppl. 1):12-15
- 471 National Collaborating Centre for Chronic Conditions. Chronic kidney disease: national clinical guideline for early identification and management in adults in primary and secondary care.
 London. Royal College of Physicians, 2008. Available from: http://guidance.nice.org.uk/CG73
- 472 National Institute for Health and Clinical Excellence. Diagnosis and management of type 1 diabetes in children, young people and adults. London: UK. National Institute for Health and Clincial Excellence, 2004
- 473 National Institute for Health and Clinical Excellence. Anaemia management in people with chronic kidney disease (CKD). London: UK. National Institute for Health and Clinical Excellence, 2006

- 474 National Institute for Health and Clinical Excellence. Brief interventions and referral for smoking cessation in primary care and other settings. London: UK. National Institute for Health and Clinical Excellence, 2006
- 475 National Institute for Health and Clinical Excellence. Hypertension: management of hypertension in adults in primary care. London: UK. National Institute for Health and Clinical Excellence, 2006
- 476 National Institute for Health and Clinical Excellence. Obesity: the prevention, identification, assessment and management of overweight and obesity in adults and children. London: UK. National Institute for Health and Clinical Excellence, 2006
- 477 National Institute for Health and Clinical Excellence. Guidelines Manual. UK: London. National Institute for Health and Clinical Excellence, 2007. Available from: http://www.nice.org.uk/
- 478 National Institute for Health and Clinical Excellence. Cardiovascular risk assessment: the modification of blood lipids for the primary and secondary prevention of cardiovascular disease, 2008. Available from: http://www.nice.org.uk/guidance/index.jsp?action=byID&o=11628
- 479 National Institute for Health and Clinical Excellence. Osteoporosis: assessment of fracture risk and the prevention of osteoporotic fractures in individuals at high risk. London: UK. National Institute for Health and Clinical Excellence, 2008
- 480 National Institute for Health and Clinical Excellence. Type 2 diabetes: the management of type 2 diabetes (update). London: UK. National Institute for Health and Clinical Excellence, 2008
- 481 National Institute for Health and Clinical Excellence. The guidelines manual. London: National Institute for Health and Clinical Excellence; 2012. Available from: http://publications.nice.org.uk/the-guidelines-manual-pmg6/
- 482 National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease:
 evaluation, classification, and stratification. American Journal of Kidney Diseases. 2002; 39(2
 Suppl. 1):S1-S266
- 483 Navaneethan SD, Nigwekar SU, Sehgal AR, Strippoli GF. Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis. Clinical Journal of the American Society of Nephrology. 2009; 4(3):542-551
- 484 Nerpin E, Ingelsson E, Riserus U, Sundstrom J, Larsson A, Jobs E et al. The combined contribution of albuminuria and glomerular filtration rate to the prediction of cardiovascular mortality in elderly men. Nephrology Dialysis and Transplantation. 2011; 26(9):2820-2827
- 485 Nevarez A, Garcia-Contreras F, Olvera K. Economic evaluation of aliskiren in type 2 diabetes and hypertension patients with nephropathy in Mexico. Value in Health. 2010; 13(7):A476
- 486 NHS Business Services Authority. NHS electronic drug tariff 2013. 2013. Available from: http://www.ppa.org.uk/ppa/edt_intro.htm [Last accessed: 1 August 2011]

- 487 NHS Business Services Authority, NHS. Prescription Cost Analysis England, 2012. 2013.
 Available from: http://www.hscic.gov.uk/catalogue/PUB10610 [Last accessed: 9 August 2013]
- 488 Ninomiya T, Perkovic V, De Galan BE, Zoungas S, Pillai A, Jardine M et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. Journal of the American Society of Nephrology. 2009; 20(8):1813-1821
- 489 Nitsch D, Grams M, Sang Y, Black C, Cirillo M, Djurdjev O et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a metaanalysis. BMJ. 2013; 346:f324
- 490 Nordal KP, Dahl E. Low dose calcitriol versus placebo in patients with predialysis chronic renal failure. Journal of Clinical Endocrinology & Metabolism. 1988; 67(5):929-936
- 491 Norris KC, Greene T, Kopple J, Lea J, Lewis J, Lipkowitz M et al. Baseline predictors of renal disease progression in the African American Study of Hypertension and Kidney Disease. Journal of the American Society of Nephrology. 2006; 17(10):2928-2936
- 492 Nuijten M, Andress DL, Marx SE, Sterz R. Chronic kidney disease Markov model comparing paricalcitol to calcitriol for secondary hyperparathyroidism: a US perspective. Current Medical Research and Opinion. 2009; 25(5):1221-1234
- 493 Nuijten M, Andress DL, Marx SE, Curry AS, Sterz R. Cost Effectiveness of Paricalcitol versus a non-selective vitamin D receptor activator for secondary hyperparathyroidism in the UK: a chronic kidney disease markov model. Clinical Drug Investigation. 2010; 30(8):545-557
- 494 Nyman U, Grubb A, Sterner G, Bjork J. The CKD-EPI and MDRD equations to estimate GFR.
 Validation in the Swedish Lund-Malmo Study cohort. Scandinavian Journal of Clinical and
 Laboratory Investigation. 2011; 71(2):129-138
- 495 Nyman U, Grubb A, Sterner G, Bjork J. Different equations to combine creatinine and cystatin C to predict GFR. Arithmetic mean of existing equations performs as well as complex combinations. Scandinavian Journal of Clinical and Laboratory Investigation. 2009; 69(5):619-627
- 496 O'Donnell MJ, Rowe BR, Lawson N, Horton A, Gyde OH, Barnett AH. Placebo-controlled trial of lisinopril in normotensive diabetic patients with incipient nephropathy. Journal of Human Hypertension. 1993; 7(4):327-332
- 497 O'Donnell MP, Kasiske BL, Kim Y, Schmitz PG, Keane WF. Lovastatin retards the progression of established glomerular disease in obese Zucker rats. American Journal of Kidney Diseases.
 1993; 22(1):83-89
- 498 O'Hare AM, Bertenthal D, Covinsky KE, Landefeld CS, Sen S, Mehta K et al. Mortality risk stratification in chronic kidney disease: one size for all ages? Journal of the American Society of Nephrology. 2006; 17(3):846-853

- 499 O'Hare AM, Bertenthal D, Shlipak MG, Sen S, Chren MM. Impact of renal insufficiency on mortality in advanced lower extremity peripheral arterial disease. Journal of the American Society of Nephrology. 2005; 16(2):514-519
- 500 O'Hare AM, Choi AI, Bertenthal D, Bacchetti P, Garg AX, Kaufman JS et al. Age affects outcomes in chronic kidney disease. Journal of the American Society of Nephrology. United States 2007; 18(10):2758-2765
- 501 O'Hare AM, Batten A, Burrows NR, Pavkov ME, Taylor L, Gupta I et al. Trajectories of kidney function decline in the 2 years before initiation of long-term dialysis. American Journal of Kidney Diseases. 2012; 59(4):513-522
- 502 O'Hare P, Bilous R, Mitchell T, O'Callaghan CJ, Viberti GC, Willoughby R et al. Low-dose ramipril reduces microalbuminuria in type 1 diabetic patients without hypertension: Results of a randomized controlled trial. Diabetes Care. 2000; 23(12):1823-1829
- 503 Obi Y, Kimura T, Nagasawa Y, Yamamoto R, Yasuda K, Sasaki K et al. Impact of age and overt proteinuria on outcomes of stage 3 to 5 chronic kidney disease in a referred cohort. Clinical Journal of the American Society of Nephrology. 2010; 5(9):1558-1565
- 504 Ocak G, Verduijn M, Vossen CY, Lijfering WM, Dekker FW, Rosendaal FR et al. Chronic kidney disease stages 1-3 increase the risk of venous thrombosis. Journal of Thrombosis and Haemostasis. 2010; 8(11):2428-2435
- 505 Office for National Statistics. Office for National Statistics population and Vital Statistics, England And Wales. UK: 2007. Available from: http://www.statistics.gov.uk/
- 506 Ogawa H, Nakayama M, Morimoto T, Uemura S, Kanauchi M, Doi N et al. Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2008; 300(18):2134-2141
- 507 Ogawa S, Takeuchi K, Mori T, Nako K, Tsubono Y, Ito S. Effects of monotherapy of temocapril or candesartan with dose increments or combination therapy with both drugs on the suppression of diabetic nephropathy. Hypertension Research. 2007; 30(4):325-334
- 508 Oguri M, Utsugi T, Ohyama Y, Nakamura T, Tomono S, Kurabayashi M. Comparative effects of enarapril versus losartan on the prevention of diabetic nephropathy in type 2 diabetes patients with microalbuminuria. International Journal of Diabetes and Metabolism. 2009; 17(1):1-4
- 509 Oh SJ, Lee JI, Ha WC, Jeong SH, Yim HW, Son HS et al. Comparison of cystatin C- and creatininebased estimation of glomerular filtration rate according to glycaemic status in Type 2 diabetes. Diabetic Medicine. 2012; 29(7):e121-e125
- 510 Ohashi Y, Sakai K, Tanaka Y, Mizuiri S, Aikawa A. Reappraisal of proteinuria and estimated GFR to predict progression to ESRD or death for hospitalized chronic kidney disease patients. Renal Failure. 2011; 33(1):31-39

- 511 Oksa A, Spustová V, Krivosíková Z, Gazdíková K, Fedelesová V, Lajdová I et al. Effects of longterm cholecalciferol supplementation on mineral metabolism and calciotropic hormones in chronic kidney disease. Kidney and Blood Pressure Research. 2008; 31(5):322-329
- 512 Organisation for Economic Co-operation and Development (OECD). Purchasing power parities (PPP). 2012. Available from: http://www.oecd.org/std/ppp [Last accessed: 14 January 2014]
- 513 Organisation for Economic Co-operation and Development (OECD). Purchasing power parities (PPP). 2013. Available from: http://www.oecd.org/std/ppp [Last accessed: 7 June 2012]
- 514 Othman M, Kawar B, El Nahas AM. Influence of obesity on progression of non-diabetic chronic kidney disease: A retrospective cohort study. Nephron Clinical Practice. 2009; 113(1):c16-c23
- 515 Padala S, Tighiouart H, Inker LA, Contreras G, Beck GJ, Lewis J et al. Accuracy of a GFR estimating equation over time in people with a wide range of kidney function. American Journal of Kidney Diseases. 2012; 60(2):217-224
- 516 Palmer AJ, Annemans L, Roze S, Lamotte M, Rodby RA, Bilous RW. An economic evaluation of the Irbesartan in Diabetic Nephropathy Trial (IDNT) in a UK setting. Journal of Human Hypertension. 2004; 18(10):733-738
- 517 Palmer AJ, Roze S, Valentine WJ, Ray JA, Frei A, Burnier M et al. Health economic implications of irbesartan plus conventional antihypertensive medications versus conventional blood pressure control alone in patients with type 2 diabetes, hypertension, and renal disease in Switzerland. Swiss Medical Weekly. 2006; 136(21-22):346-352
- 518 Palmer AJ, Valentine WJ, Ray JA. Irbesartan treatment of patients with type 2 diabetes, hypertension and renal disease: a UK health economics analysis. International Journal of Clinical Practice. 2007; 61(10):1626-1633
- 519 Palmer AJ, Annemans L, Roze S, Lamotte M, Rodby RA, Cordonnier DJ. An economic evaluation of irbesartan in the treatment of patients with type 2 diabetes, hypertension and nephropathy: cost-effectiveness of Irbesartan in Diabetic Nephropathy Trial (IDNT) in the Belgian and French settings. Nephrology Dialysis and Transplantation. 2003; 18(10):2059-2066
- 520 Palmer SC, Micco LD, Razavian M, Craig JC, Perkovic V, Pellegrini F et al. Effects of antiplatelet therapy on mortality and cardiovascular and bleeding outcomes in persons with chronic kidney disease:A systematic review and meta-analysis. Annals of Internal Medicine. 2012; 156(6):445-459
- 521 Palmer SC, McGregor DO, Craig JC, Elder G, Macaskill P, Strippoli Giovanni FM. Vitamin D compounds for people with chronic kidney disease not requiring dialysis. Cochrane Database of Systematic Reviews. 2009; Issue 4:CD008175
- 522 Pan Y, Guo LL, Jin HM. Low-protein diet for diabetic nephropathy: a meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition. 2008; 88(3):660-666

- 523 Paruk F, Moodley J, Daya PK, Meineke K. Screening for proteinuria in hypertensive disorders of pregnancy. Journal of Obstetrics & Gynaecology. 1997; 17(6):528-530
- 524 Parving HH, Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE et al. [Effect of losartan on renal and cardiovascular complications of patients with type 2 diabetes and nephropathy]. Ugeskrift for Laeger. 2001; 163(40):5514-5519
- Parving HH, Hommel E, Damkjaer Nielsen M, Giese J. Effect of captopril on blood pressure and kidney function in normotensive insulin dependent diabetics with nephropathy. BMJ. 1989; 299(6698):533-536
- Parving HH, Hommel E, Jensen BR, Hansen HP. Long-term beneficial effect of ACE inhibition on diabetic nephropathy in normotensive type 1 diabetic patients. Kidney International. 2001; 60(1):228-234
- 527 Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. New England Journal of Medicine. 2001; 345(12):870-878
- 528 Parving HH, Persson F, Lewis JB, Lewis EJ, Hollenberg NK. Aliskiren combined with losartan in type 2 diabetes and nephropathy. New England Journal of Medicine. 2008; 358(23):2433-2446
- 529 Parving H-H, Brenner BM, McMurray JJV, de ZD, Haffner SM, Solomon SD et al. Aliskiren Trial in Type 2 Diabetes Using Cardio-Renal Endpoints (ALTITUDE): Rationale and study design.
 Nephrology Dialysis and Transplantation. 2009; 24(5):1663-1671
- 530 Parving H-H, Brenner BM, McMurray JJV, de ZD, Haffner SM, Solomon SD et al. Baseline characteristics in the Aliskiren Trial in Type 2 Diabetes Using Cardio-Renal Endpoints (ALTITUDE). Journal of the Renin-Angiotensin-Aldosterone System. 2012; 13(3):387-393
- 531 Parving HH, Brenner BM, McMurray JJV, de Zeeuw D, Haffner SM, Solomon SD et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. New England Journal of Medicine. 2012; 367(23):2204-2213
- 532 Patel A, Robertson J, Darwin C, Locay H, Anel R, Engstrand S et al. Double-blind study comparing doxercalciferol and placebo in vitamin D-replete CKD patients. Dialysis and Transplantation. 2011; 40(6):252-257
- 533 Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. New England Journal of Medicine. 2011; 365(10):883-891
- 534 Patel UD, Young EW, Ojo AO, Hayward RA. CKD progression and mortality among older patients with diabetes. American Journal of Kidney Diseases. 2005; 46(3):406-414
- 535 Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Annals of Internal Medicine. 1996; 124(7):627-632

- 536 Pei X, Bao L, Xu Z, Yan C, He J, Zhu B et al. Diagnostic value of cystatin C and glomerular filtration rate formulae in Chinese nonelderly and elderly populations. Journal of Nephrology. 2013; 26(3):476-484
- 537 Pei X, Liu Q, He J, Bao L, Yan C, Wu J et al. Are cystatin C-based equations superior to creatinine-based equations for estimating GFR in Chinese elderly population? International Urology and Nephrology. 2012; 44(6):1877-1884
- 538 Penno G, Chaturvedi N, Talmud PJ, Cotroneo P, Manto A, Nannipieri M et al. Effect of angiotensin-converting enzyme (ACE) gene polymorphism on progression of renal disease and the influence of ACE inhibition in IDDM patients: findings from the EUCLID Randomized Controlled Trial. EURODIAB Controlled Trial of Lisinopril in IDDM. Diabetes. 1998; 47(9):1507-1511
- 539 Perkins RM, Bucaloiu ID, Kirchner HL, Ashouian N, Hartle JE, Yahya T. GFR decline and mortality risk among patients with chronic kidney disease. Clinical Journal of the American Society of Nephrology. 2011; 6(8):1879-1886
- 540 Perkovic V, Ninomiya T, Arima H, Gallagher M, Jardine M, Cass A et al. Chronic kidney disease, cardiovascular events, and the effects of perindopril-based blood pressure lowering: data from the PROGRESS study. Journal of the American Society of Nephrology. 2007; 18(10):2766-2772
- 541 Perneger TV, Nieto FJ, Whelton PK, Klag MJ, Comstock GW, Szklo M. A prospective study of blood pressure and serum creatinine. Results from the 'Clue' Study and the ARIC Study. JAMA. 1993; 269(4):488-493
- 542 Petchey WG, Hickman IJ, Duncan E, Prins JB, Hawley CM, Johnson DW et al. The role of 25hydroxyvitamin D deficiency in promoting insulin resistance and inflammation in patients with chronic kidney disease: a randomised controlled trial. BMC Nephrology. 2009; 10:41
- 543 Petchey WG, HickmanvI.J., Prins JB, Hawley CM, Johnson DW, Isabel NM. Erratum: Vitamin D does not improve the metabolic health of patients with chronic kidney disease stage 3-4: A randomized controlled trial (Nephrology (2013) 18 (26-35)). Nephrology. 2013; 18(6):481
- 544 Petchey WG, Hickman IJ, Prins JB, Hawley CM, Johnson DW, Isbel NM. Vitamin D does not improve the metabolic health of patients with chronic kidney disease stage 3-4: a randomized controlled trial. Nephrology. 2013; 18(1):26-35
- Pham JT, Leehey DJ, Schmitt BP. Effects of dual blockade of the renin angiotensin system in diabetic kidney disease: A systematic review and meta-analysis. Pharmacotherapy. 2011; 31(10):359e
- 546 Phillips PJ, Phillipou G, Bowen KM, Lowe J, Yue DK, Wischusen J et al. Diabetic microalbuminuria and cilazapril. American Journal of Medicine. 1993; 94(4A):58S-60S
- 547 Piccini JP, Stevens SR, Chang Y, Singer DE, Lokhnygina Y, Go AS et al. Renal dysfunction as a predictor of stroke and systemic embolism in patients with nonvalvular atrial fibrillation: validation of the R(2)CHADS(2) index in the ROCKET AF (Rivaroxaban Once-daily, oral, direct

factor Xa inhibition Compared with vitamin K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation) and ATRIA (AnTicoagulation and Risk factors In Atrial fibrillation) study cohorts. Circulation. 2013; 127(2):224-232

- 548 Pijls LT, de VH, van Eijk JT, Donker AJ. Protein restriction, glomerular filtration rate and albuminuria in patients with type 2 diabetes mellitus: a randomized trial. European Journal of Clinical Nutrition. 2002; 56(12):1200-1207
- 549 Poggio ED, Wang X, Greene T, Van LF, Hall PM. Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. Journal of the American Society of Nephrology. 2005; 16(2):459-466
- Ponte B, Felipe C, Muriel A, Tenorio MT, Liano F. Long-term functional evolution after an acute kidney injury: a 10-year study. Nephrology Dialysis and Transplantation. 2008; 23(12):3859-3866
- 551 Poulsen BK, Grove EL, Husted SE. New oral anticoagulants: a review of the literature with particular emphasis on patients with impaired renal function. Drugs. 2012; 72(13):1739-1753
- 552 Poulsen PL, Ebbehoj E, Mogensen CE. Lisinopril reduces albuminuria during exercise in low grade microalbuminuric type 1 diabetic patients: a double blind randomized study. Journal of Internal Medicine. 2001; 249(5):433-440
- Poulsen PL, Ebbehoj E, Nosadini R, Fioretto P, Deferrari G, Crepaldi G et al. Early ACE-i
 intervention in microalbuminuric patients with type 1 diabetes: effects on albumin excretion,
 24 h ambulatory blood pressure, and renal function. Diabetes & Metabolism. 2001; 27(2 Pt. 1):123-128
- Praditpornsilpa K, Townamchai N, Chaiwatanarat T, Tiranathanagul K, Katawatin P,
 Susantitaphong P et al. The need for robust validation for MDRD-based glomerular filtration rate estimation in various CKD populations. Nephrology Dialysis and Transplantation. 2011; 26(9):2780-2785
- 555 Price CP, Newall RG, Boyd JC. Use of protein:creatinine ratio measurements on random urine samples for prediction of significant proteinuria: a systematic review. Clinical Chemistry. 2005; 51(9):1577-1586
- 556 Pride YB, Wiviott SD, Buros JL, Zorkun C, Tariq MU, Antman EM et al. Effect of prasugrel versus clopidogrel on outcomes among patients with acute coronary syndrome undergoing percutaneous coronary intervention without stent implantation: a TRial to assess Improvement in Therapeutic Outcomes by optimizing platelet inhibitioN with prasugrel (TRITON)-Thrombolysis in Myocardial Infarction (TIMI) 38 substudy. American Heart Journal. 2009; 158(3):e21-e26
- 557 Przedlacki J, Manelius J, Huttunen K. Bone mineral density evaluated by dual-energy X-ray absorptiometry after one-year treatment with calcitriol started in the predialysis phase of chronic renal failure. Nephron. 1995; 69(4):433-437

- Raal FJ, Kalk WJ, Lawson M, Esser JD, Buys R, Fourie L et al. Effect of moderate dietary protein restriction on the progression of overt diabetic nephropathy: a 6-mo prospective study. American Journal of Clinical Nutrition. 1994; 60(4):579-585
- 559 Rabelink TJ, Zwaginga JJ, Koomans HA, Sixma JJ. Thrombosis and hemostasis in renal disease. Kidney International. 1994; 46(2):287-296
- 560 Rachmani R, Slavachevsky I, Amit M, Levi Z, Kedar Y, Berla M et al. The effect of spironolactone, cilazapril and their combination on albuminuria in patients with hypertension and diabetic nephropathy is independent of blood pressure reduction: a randomized controlled study. Diabetic Medicine. 2004; 21(5):471-475
- Rahman M, Pressel S, Davis BR, Nwachuku C, Wright JT, Jr., Whelton PK et al. Cardiovascular outcomes in high-risk hypertensive patients stratified by baseline glomerular filtration rate.[see comment][summary for patients in Ann Intern Med. 2006 Feb 7;144(3):I33; PMID: 16461958].
 Annals of Internal Medicine. 2006; 144(3):172-180
- 562 Ratcliffe PJ, Phillips RE, Oliver DO. Late referral for maintenance dialysis. BMJ. 1984; . 288(6415):441-443
- 563 Ravid M, Clutter WE. Long-term effect of enalapril on normotensive type II diabetes mellitus. Annals of Internal Medicine. 1993; 119(Suppl. 1):6
- 564 Ravid M, Lang R, Rachmani R, Lishner M. Long-term renoprotective effect of angiotensinconverting enzyme inhibition in non-insulin-dependent diabetes mellitus. A 7-year follow-up study. Archives of Internal Medicine. 1996; 156(3):286-289
- 565 Ravid M, Neumann L, Lishner M. Plasma lipids and the progression of nephropathy in diabetes mellitus type II: effect of ACE inhibitors. Kidney International. 1995; 47(3):907-910
- 566 Ravid M, Savin H, Jutrin I, Bental T, Katz B, Lishner M. Long-term stabilizing effect of angiotensin-converting enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients. Annals of Internal Medicine. 1993; 118(8):577-581
- 567 Remuzzi G, Perico N, Zoja C, Corna D, Macconi D, Vigano G. Role of endothelium-derived nitric oxide in the bleeding tendency of uremia. Journal of Clinical Investigation. 1990; 86(5):1768-1771
- 568 Remuzzi G, Tognoni G, Ruggenenti P, Perna A, Maggiorre Q, Pizzarelli F et al. A long term, randomized clinical trial to evaluate the effects of ramipril on the evolution of renal function in chronic nephropathies. Journal of Nephrology. 1991; 4(3):193-202
- 569 Rifkin DE, Katz R, Chonchol M, Fried LF, Cao J, De Boer IH et al. Albuminuria, impaired kidney function and cardiovascular outcomes or mortality in the elderly. Nephrology Dialysis and Transplantation. 2010; 25(5):1560-1567

- 570 Rigalleau V, Lasseur C, Perlemoine C, Barthe N, Raffaitin C, De La FR et al. A simplified Cockcroft-Gault formula to improve the prediction of the glomerular filtration rate in diabetic patients. Diabetes & Metabolism. 2006; 32(1):56-62
- 571 Rigalleau V, Lasseur C, Perlemoine C, Barthe N, Raffaitin C, Liu C et al. Estimation of glomerular filtration rate in diabetic subjects: Cockcroft formula or modification of diet in renal disease study equation? Diabetes Care. 2005; 28(4):838-843
- 572 Ritz E, Kuster S, Schmidt-Gayk H, Stein G, Scholz C, Kraatz G et al. Low-dose calcitriol prevents the rise in 1,84 iPTH without affecting serum calcium and phosphate in patients with moderate renal failure (prospective placebo-controlled multicentre trial). Nephrology Dialysis and Transplantation. 1995; 10(12):2228-2234
- 573 Rix M, Eskildsen P, Olgaard K. Effect of 18 months of treatment with alfacalcidol on bone in patients with mild to moderate chronic renal failure. Nephrology Dialysis and Transplantation. 2004; 19(4):870-876
- 574 Rizos EC, Agouridis AP, Elisaf MS. Aliskiren in patients with diabetes: A systematic review. Current Vascular Pharmacology. 2012; 10(2):140-146
- 575 Rizzoni D, Porteri E, De Ciuceis C, Sleiman I, Rodella L, Rezzani R et al. Effect of treatment with candesartan or enalapril on subcutaneous small artery structure in hypertensive patients with noninsulin-dependent diabetes mellitus. Hypertension. 2005; 45(4):659-665
- 576 Robertson L, Waugh N, Robertson A. Protein restriction for diabetic renal disease. Cochrane Database of Systematic Reviews. 2007;(4):CD002181
- 577 Rocha R, Chander PN, Khanna K, Zuckerman A, Stier CT, Jr. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension. 1998; 31(1 Pt 2):t-8
- 578 Rocha R, Chander PN, Zuckerman A, Stier CT, Jr. Role of aldosterone in renal vascular injury in stroke-prone hypertensive rats. Hypertension. 1999; 33(1 Pt 2):t-7
- 579 Rodby RA, Chiou CF, Borenstein J, Smitten A, Sengupta N, Palmer AJ et al. The costeffectiveness of irbesartan in the treatment of hypertensive patients with type 2 diabetic nephropathy. Clinical Therapeutics. 2003; 25(7):2102-2119
- 580 Rodby RA, Firth LM, Lewis EJ. An economic analysis of captopril in the treatment of diabetic nephropathy. The Collaborative Study Group. Diabetes Care. 1996; 19(10):1051-1061
- Roderick PJ, Raleigh VS, Hallam L, Mallick NP. The need and demand for renal replacement therapy in ethnic minorities in England. Journal of Epidemiology and Community Health. 1996; 50(3):334-339
- 582 Rognant N, Lemoine S, Laville M, Hadj-Aissa A, Dubourg L. Performance of the chronic kidney disease epidemiology collaboration equation to estimate glomerular filtration rate in diabetic patients. Diabetes Care. 2011; 34(6):1320-1322

Ь

- 583 Romero R, Salinas I, Lucas A, Abad E, Reverter JL, Johnston S et al. Renal function changes in microalbuminuric normotensive type II diabetic patients treated with angiotensin-converting enzyme inhibitors. Diabetes Care. 1993; 16(4):597-600
- 584 Ros-Ruiz S, Aranda-Lara P, Fernandez JC, Martinez-Esteban MD, Jironda C, Hidalgo P et al. High doses of irbesartan offer long-term kidney protection in cases of established diabetic nephropathy. Nefrologia. 2012; 32(2):187-196
- 585 Rosansky SJ, Hoover DR, King L, Gibson J. The association of blood pressure levels and change in renal function in hypertensive and nonhypertensive subjects. Archives of Internal Medicine. 1990; 150(10):2073-2076
- 586 Rosenberg ME, Salahudeen AK, Hostetter TH. Dietary protein and the renin-angiotensin system in chronic renal allograft rejection. Kidney International - Supplement. 1995; 52:S102-S106
- 587 Rosman JBLK, Brandl M, Peris-Becht TPM, van der Hem GK, ter Wee PM, Donker JM. Proteinrestricted diets in chronic renal failure: a four year follow-up shows limited indications. Kidney International - Supplement. 1989; 27(36):S96-S102
- 588 Rossing K, Schjoedt KJ, Smidt UM, Boomsma F, Parving HH. Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: a randomized, double-masked, cross-over study. Diabetes Care. 2005; 28(9):2106-2112
- 589 Royal College of Physicians. Chronic kidney diseases in adults: UK guidelines for identification, management and referral. London: UK: 2006
- 590 Rucker D, Tonelli M, Coles MG, Yoo S, Young K, McMahon AW. Vitamin D insufficiency and treatment with oral vitamin D3 in northern-dwelling patients with chronic kidney disease. Journal of Nephrology. 2009; 22(1):75-82
- 591 Rudakova AV. Pharmacoeconomics of direct renin ingibitor aliskiren in hypertension treatment of patients with type-2 diabetes and nephropathy. Value in Health. 2009; 12(7):A331
- 592 Ruggenenti P, Pagano E, Tammuzzo L, Benini R, Garattini L, Remuzzi G. Ramipril prolongs life and is cost effective in chronic proteinuric nephropathies. Kidney International. 2001; 59(1):286-294
- 593 Ruggenenti P, Perna A, Benini R, Remuzzi G. Effects of dihydropyridine calcium channel blockers, angiotensin-converting enzyme inhibition, and blood pressure control on chronic, nondiabetic nephropathies. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). Journal of the American Society of Nephrology. 1998; 9(11):2096-2101
- 594 Ruggenenti P, Perna A, Gherardi G, Garini G, Zoccali C, Salvadori M et al. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet. 1999; 354(9176):359-364
- 595 Ruggenenti P, Perna A, Gherardi G, Gaspari F, Benini R, Remuzzi G. Renal function and requirement for dialysis in chronic nephropathy patients on long-term ramipril: REIN follow-up

trial. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). Ramipril Efficacy in Nephropathy. Lancet. 1998; 352(9136):1252-1256

- Ruggenenti P, Perna A, Remuzzi G. ACE inhibitors to prevent end-stage renal disease: when to start and why possibly never to stop: a post hoc analysis of the REIN trial results. Ramipril Efficacy in Nephropathy. Journal of the American Society of Nephrology. 2001; 12(12):2832-2837
- 597 Ruilope LM, Salvetti A, Jamerson K, Hansson L, Warnold I, Wedel H et al. Renal function and intensive lowering of blood pressure in hypertensive participants of the hypertension optimal treatment (HOT) study. Journal of the American Society of Nephrology. 2001; 12(2):218-225
- 598 Sabariego C, Grill E, Brack M, Fritschka E, Mahlmeister J, Stucki G. Incremental costeffectiveness analysis of a multidisciplinary renal education program for patients with chronic renal disease. Disability and Rehabilitation. 2010; 32(5):392-401
- 599 Saito Y, Morimoto T, Ogawa H, Nakayama M, Uemura S, Doi N et al. Low-dose aspirin therapy in patients with type 2 diabetes and reduced glomerular filtration rate: subanalysis from the JPAD trial. Diabetes Care. 2011; 34(2):280-285
- 600 Saleem M, Florkowski CM, George PM. Comparison of the Mayo Clinic Quadratic Equation with the Modification of Diet in Renal Disease equation and radionuclide glomerular filtration rate in a clinical setting. Nephrology. 2008; 13(8):684-688
- 601 Saltzman AJ, Stone GW, Claessen BE, Narula A, Leon-Reyes S, Weisz G et al. Long-term impact of chronic kidney disease in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention: The HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) trial. JACC: Cardiovascular Interventions. 2011; 4(9):1011-1019
- 602 Sanchez C, Aranda P, Planells E, Galindo P, Perez de la Cruz A, Larrubia M et al. Influence of low-protein dietetic foods consumption on quality of life and levels of B vitamins and homocysteine in patients with chronic renal failure. Nutricion Hospitalaria. 2010; 25(2):238-244
- 603 Sanchez-Lozada LG, Tapia E, Santamaria J, vila-Casado C, Soto V, Nepomuceno T et al. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney International. 2005; 67(1):237-247
- 604 Sano T, Hotta N, Kawamura T, Matsumae H, Chaya S, Sasaki H et al. Effects of long-term enalapril treatment on persistent microalbuminuria in normotensive type 2 diabetic patients: results of a 4-year, prospective, randomized study. Diabetic Medicine. 1996; 13(2):120-124
- 605 Sano T, Kawamura T, Matsumae H, Sasaki H, Nakayama M, Hara T et al. Effects of long-term enalapril treatment on persistent micro-albuminuria in well-controlled hypertensive and normotensive NIDDM patients. Diabetes Care. 1994; 17(5):420-424

- 606 Sarafidis PA, Stafylas PC, Kanaki A, I, Lasaridis AN. Effects of renin-angiotensin system blockers on renal outcomes and all-cause mortality in patients with diabetic nephropathy: an updated meta-analysis. American Journal of Hypertension. 2008; 21(8):922-929
- 607 Sasso FC, Chiodini P, Carbonara O, De NL, Conte G, Salvatore T et al. High cardiovascular risk in patients with Type 2 diabetic nephropathy: The predictive role of albuminuria and glomerular filtration rate. The NID-2 Prospective Cohort Study. Nephrology Dialysis and Transplantation. 2012; 27(6):2269-2274
- 608 Sato A, Tabata M, Hayashi K, Saruta T. Effects of the angiotensin II type 1 receptor antagonist candesartan, compared with angiotensin-converting enzyme inhibitors, on the urinary excretion of albumin and type IV collagen in patients with diabetic nephropathy. Clinical and Experimental Nephrology. 2003; 7(3):215-220
- 609 Saudan PJ, Brown MA, Farrell T, Shaw L. Improved methods of assessing proteinuria in hypertensive pregnancy. British Journal of Obstetrics & Gynaecology. 1997; 104(10):1159-1164
- 610 Savage S, Estacio RO, Jeffers B, Schrier RW. Urinary albumin excretion as a predictor of diabetic retinopathy, neuropathy, and cardiovascular disease in NIDDM. Diabetes Care. 1996; 19(11):1243-1248
- 611 Schadlich PK, Brecht JG, Brunetti M, Pagano E, Rangoonwala B, Huppertz E. Cost effectiveness of ramipril in patients with non-diabetic nephropathy and hypertension: economic evaluation of Ramipril Efficacy in Nephropathy (REIN) Study for Germany from the perspective of statutory health insurance. Pharmacoeconomics. 2001; 19(5):497-512
- 612 Schaeffner ES, Ebert N, Delanaye P, Frei U, Gaedeke J, Jakob O et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Annals of Internal Medicine. 2012; 157(7):471-481
- Schiffl H. Renal recovery from acute tubular necrosis requiring renal replacement therapy: a prospective study in critically ill patients. Nephrology Dialysis and Transplantation. 2006; 21(5):1248-1252
- 614 Schjoedt KJ, Rossing K, Juhl TR, Boomsma F, Rossing P, Tarnow L et al. Beneficial impact of spironolactone in diabetic nephropathy. Kidney International. 2005; 68(6):2829-2836
- Schjoedt KJ, Rossing K, Juhl TR, Boomsma F, Tarnow L, Rossing P et al. Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney International. 2006; 70(3):536-542
- 616 Schmieder RE, Mann JFE, Schumacher H, Gao P, Mancia G, Weber MA et al. Changes in albuminuria predict mortality and morbidity in patients with vascular disease. Journal of the American Society of Nephrology. 2011; 22(7):1353-1364
- 617 Schrier RW, Estacio RO, Jeffers B. Appropriate Blood Pressure Control in NIDDM (ABCD) Trial. Diabetologia. 1996; 39(12):1646-1654

- 618 Schrier RW, Estacio RO, Esler A, Mehler P. Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney International. 2002; 61(3):1086-1097
- 619 Schulman S, Kearon C, Kakkar AK, Schellong S, Eriksson H, Baanstra D et al. Extended use of dabigatran, warfarin, or placebo in venous thromboembolism. New England Journal of Medicine. 2013; 368(8):709-718
- 620 Scottish Intercollegiate Guidelines Network. Chronic Kidney Disease, 2008
- 621 Segarra A, de la Torre J, Ramos N, Quiroz A, Garjau M, Torres I et al. Assessing glomerular filtration rate in hospitalized patients: A comparison between CKD-EPI and four cystatin cbased equations. Clinical Journal of the American Society of Nephrology. 2011; 6(10):2411-2420
- 622 Selistre L, De Souza V, Cochat P, Antonello ICF, Hadj-Aissa A, Ranchin B et al. GFR estimation in adolescents and young adults. Journal of the American Society of Nephrology. 2012; 23(6):989-996
- 623 Selvin E, Juraschek SP, Eckfeldt J, Levey AS, Inker LA, Coresh J. Within-person variability in kidney measures. American Journal of Kidney Diseases. 2013; 61(5):716-722
- 624 Sengul AM, Altuntas Y, Kurklu A, Aydin L. Beneficial effect of lisinopril plus telmisartan in patients with type 2 diabetes, microalbuminuria and hypertension. Diabetes Research and Clinical Practice. 2006; 71(2):210-219
- 625 Sesso R, Belasco AG. Late diagnosis of chronic renal failure and mortality on maintenance dialysis. Nephrology Dialysis and Transplantation. 1996; 11(12):2417-2420
- 626 Shahinfar S, Dickson TZ, Ahmed T, Zhang Z, Ramjit D, Smith RD et al. Losartan in patients with type 2 diabetes and proteinuria: observations from the RENAAL Study. Kidney International -Supplement. 2002;(82):S64-S67
- 627 Sharma P, Blackburn RC, Parke CL, McCullough K, Marks A, Black C. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for adults with early (stage 1 to 3) nondiabetic chronic kidney disease. Cochrane Database of Systematic Reviews. 2011; Issue 10:CD007751. DOI:10.1002/14651858.CD007751.pub2
- 628 Shastri S, Katz R, Shlipak MG, Kestenbaum B, Peralta CA, Kramer H et al. Cystatin C and albuminuria as risk factors for development of CKD stage 3: The multi-ethnic study of atherosclerosis (MESA). American Journal of Kidney Diseases. 2011; 57(6):832-840
- Shen P-C, He L-Q, Yang X-J, Cao H-X. Renal protection of losartan 50 mg in normotensive chinese patients with nondiabetic chronic kidney disease. Journal of Investigative Medicine. 2012; 60(7):1041-1047
- 630 Shihabi ZK, Konen JC, O'Connor ML. Albuminuria vs urinary total protein for detecting chronic renal disorders. Clinical Chemistry. 1991; 37(5):621-624

- Shlipak MG, Stehman BC, Fried LF, Song X, Siscovick D, Fried LP et al. The presence of frailty in elderly persons with chronic renal insufficiency. American Journal of Kidney Diseases. 2004; 43(5):861-867
- 632 Shoda J, Kanno Y, Suzuki H. A five-year comparison of the renal protective effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in patients with non-diabetic nephropathy. Internal Medicine. 2006; 45(4):193-198
- 633 Shulman NB, Ford CE, Hall WD, Blaufox MD, Simon D, Langford HG et al. Prognostic value of serum creatinine and effect of treatment of hypertension on renal function. Results from the hypertension detection and follow-up program. The Hypertension Detection and Follow-up Program Cooperative Group. Hypertension. 1989; 13(5 Suppl.):Suppl-93
- Siew ED, Peterson JF, Eden SK, Hung AM, Speroff T, Ikizler TA et al. Outpatient nephrology referral rates after acute kidney injury. Journal of the American Society of Nephrology. 2012; 23(2):305-312
- 635 Silveiro SP, Araujo GN, Ferreira MN, Souza FDS, Yamaguchi HM, Camargo EG. Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation pronouncedly underestimates glomerular filtration rate in type 2 diabetes. Diabetes Care. 2011; 34(11):2353-2355
- 636 Singh NP, Sahni V, Garg D, Nair M. Effect of pharmacological suppression of secondary hyperparathyroidism on cardiovascular hemodynamics in predialysis CKD patients: A preliminary observation. Hemodialysis International. 2007; 11(4):417-423
- Siu YP, Leung KT, Tong MK, Kwan TH. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. American Journal of Kidney Diseases. 2006; 47(1):51-59
- Siu YP, Leung KT, Tong MK, Kwan TH. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. American Journal of Kidney Diseases. 2006; 47(1):51-59
- 639 Smink PA, Lambers Heerspink HJ, Gansevoort RT, de Jong PE, Hillege HL, Bakker SJL et al. Albuminuria, estimated GFR, traditional risk factors, and incident cardiovascular disease: The PREVEND (Prevention of renal and vascular endstage disease) study. American Journal of Kidney Diseases. 2012; 60(5):804-811
- 640 So WY, Kong AP, Ma RC, Ozaki R, Szeto CC, Chan NN et al. Glomerular filtration rate, cardiorenal end points, and all-cause mortality in type 2 diabetic patients. Diabetes Care. 2006; 29(9):2046-2052
- 641 Soares CM, Diniz JSS, Lima EM, Oliveira GR, Canhestro MR, Colosimo EA et al. Predictive factors of progression to chronic kidney disease stage 5 in a predialysis interdisciplinary programme. Nephrology Dialysis and Transplantation. 2009; 24(3):848-855
- 642 Solini A, Penno G, Bonora E, Fondelli C, Orsi E, Arosio M et al. Diverging association of reduced glomerular filtration rate and albuminuria with coronary and noncoronary events in patients

with type 2 diabetes: The renal insufficiency and cardiovascular events (RIACE) Italian multicenter study. Diabetes Care. 2012; 35(1):143-149

- 643 Solomon SD, Rice MM, Jablonski A, Jose P, Domanski M, Sabatine M et al. Renal function and effectiveness of angiotensin-converting enzyme inhibitor therapy in patients with chronic stable coronary disease in the Prevention of Events with ACE inhibition (PEACE) trial. Circulation. 2006; 114(1):26-31
- Solomon SD, Lin J, Solomon CG, Jablonski KA, Rice MM, Steffes M et al. Influence of albuminuria on cardiovascular risk in patients with stable coronary artery disease. Circulation. 2007; 116(23):2687-2693
- 645 Souchet T, Durand Z, I, Hannedouche T, Rodier M, Gaugris S, Passa P et al. An economic evaluation of Losartan therapy in type 2 diabetic patients with nephropathy: an analysis of the RENAAL study adapted to France. Diabetes & Metabolism. 2003; 29(1):29-35
- 646 Spinler SA, Nawarskas JJ, Boyce EG, Connors JE, Charland SL, Goldfarb S. Predictive performance of ten equations for estimating creatinine clearance in cardiac patients. Iohexol Cooperative Study Group. Annals of Pharmacotherapy. 1998; 32(12):1275-1283
- 647 Stafylas PC, Sarafidis PA, Grekas DM, Lasaridis AN. A cost-effectiveness analysis of Angiotensinconverting enzyme inhibitors and Angiotensin receptor blockers in diabetic nephropathy. Journal of Clinical Hypertension. 2007; 9(10):751-759
- 648 Steiner RW, Coggins C, Carvalho AC. Bleeding time in uremia: a useful test to assess clinical bleeding. American Journal of Hematology. 1979; 7(2):107-117
- 649 Steinhubl SR, Berger PB, Mann JT, III, Fry ET, DeLago A, Wilmer C et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA. 2002; 288(19):2411-2420
- 650 Stevens LA, Claybon MA, Schmid CH, Chen J, Horio M, Imai E et al. Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney International. 2011; 79(5):555-562
- 651 Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M, Kusek J et al. Estimating GFR Using Serum Cystatin C Alone and in Combination With Serum Creatinine: A Pooled Analysis of 3,418 Individuals With CKD. American Journal of Kidney Diseases. 2008; 51(3):395-406
- 652 Stevens LA, Schmid CH, Greene T, Zhang Y, Beck GJ, Froissart M et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. American Journal of Kidney Diseases. 2010; 56(3):486-495
- 653 Stevens PE, O'donoghue DJ, de LS, Van VJ, Klebe B, Middleton R et al. Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney International. 2007; 72(1):92-99

- 654 Stornello M, Valvo EV, Scapellato L. Hemodynamic, renal, and humoral effects of the calcium entry blocker nicardipine and converting enzyme inhibitor captopril in hypertensive type II diabetic patients with nephropathy. Journal of Cardiovascular Pharmacology. 1989; 14(6):851-855
- 655 Stornello M, Valvo EV, Scapellato L. Persistent albuminuria in normotensive non-insulindependent (type II) diabetic patients: comparative effects of angiotensin-converting enzyme inhibitors and beta-adrenoceptor blockers. Clinical Science. 1992; 82(1):19-23
- 656 Strippoli GF, Navaneethan SD, Johnson DW, Perkovic V, Pellegrini F, Nicolucci A et al. Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials. BMJ. 2008; 336(7645):645-651
- 657 Strippoli GFM, Bonifati C, Craig M, Navaneethan SD, Craig JC. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database of Systematic Reviews. 2006;(4):CD006257
- 658 Suh J-W, Seung K-B, Gwak C-H, Kim K-S, Hong S-J, Park T-H et al. Comparison of antiplatelet effect and tolerability of clopidogrel resinate with clopidogrel bisulfate in patients with coronary heart disease (CHD) or CHD-equivalent risks: A Phase IV, prospective, double-dummy, parallel-group, 4-week noninferiority trial. Clinical Therapeutics. 2011; 33(8):1057-1068
- 659 Susantitaphong P, Sewaralthahab K, Balk EM, Jaber BL, Madias NE. Short- and long-term effects of alkali therapy in chronic kidney disease: a systematic review. American Journal of Nephrology. 2012; 35(6):540-547
- Sutton AJ, Cooper NJ, Goodacre S, Stevenson M. Integration of meta-analysis and economic decision modeling for evaluating diagnostic tests. Medical Decision Making. 2008; 28(5):650-667
- 661 Szucs TD, Sandoz MS, Keusch GW. The cost-effectiveness of losartan in type 2 diabetics with nephropathy in Switzerland--an analysis of the RENAAL study. Swiss Medical Weekly. 2004; 134(31-32):440-447
- 662 Taal M. UK Renal Association Clinical Practice Guidelines. The Renal Association, 2007
- Tamez H, Zoccali C, Packham D, Wenger J, Bhan I, Appelbaum E et al. Vitamin D reduces left atrial volume in patients with left ventricular hypertrophy and chronic kidney disease.
 American Heart Journal. 2012; 164(6):902-909
- 664 Tamura Y, Kosuga M, Yamashita M, Tomioka S, Sasaki M, Hikita T et al. Renoprotective effects of angiotensin II receptor blocker, candesartan cilexetil, in patients with stage 4-5 chronic kidney disease. Clinical and Experimental Nephrology. 2008; 12(4):256-263
- 665 Tan KCB, Chow WS, Ai VHG, Lam KSL. Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria. Diabetes/Metabolism Research and Reviews. 2002; 18(1):71-76

- 666 Tang SCW, Lin M, Tam S, Au WS, Ma MKM, Yap DYH et al. Aliskiren combined with losartan in immunoglobulin A nephropathy: An open-labeled pilot study. Nephrology Dialysis and Transplantation. 2012; 27(2):613-618
- 667 Tangri N, Stevens LA, Schmid CH, Zhang YL, Beck GJ, Greene T et al. Changes in dietary protein intake has no effect on serum cystatin C levels independent of the glomerular filtration rate. Kidney International. 2011; 79(4):471-477
- Targher G, Zoppini G, Chonchol M, Negri C, Stoico V, Perrone F et al. Glomerular filtration rate, albuminuria and risk of cardiovascular and all-cause mortality in type 2 diabetic individuals.
 Nutrition, Metabolism and Cardiovascular Diseases. 2011; 21(4):294-301
- 669 Teo BW, Xu H, Wang D, Li J, Sinha AK, Shuter B et al. GFR estimating equations in a multiethnic asian population. American Journal of Kidney Diseases. 2011; 58(1):56-63
- 670 Teo BW, Xu H, Wang D, Li J, Sinha AK, Shuter B et al. Estimating glomerular filtration rates by use of both cystatin C and standardized serum creatinine avoids ethnicity coefficients in asian patients with chronic kidney disease. Clinical Chemistry. 2012; 58(2):450-457
- 671 Teplan V, Stollova M, Sasakova D, Horackova O, Zadrazil M, Hajny J et al. Conservative treatment of chronic renal insufficiency and failure in the elderly: Re-analysis of the CEKAD study. Kidney and Blood Pressure Research. 2010; 33(4):329
- 672 The Information Centre for Health and Social Care. HESonline. 2007. Available from: www.hesonline.nhs.uk/ [Last accessed: 14 January 2014]
- Thomas N, Bryar R. An evaluation of a self-management package for people with diabetes at risk of chronic kidney disease. Primary Health Care Research and Development. 2013; 14(3):270-280
- 674 Tidman M, Sjostrom P, Jones I. A Comparison of GFR estimating formulae based upon scystatin C and s-creatinine and a combination of the two. Nephrology Dialysis and Transplantation. 2008; 23(1):154-160
- 675 Tobbia P, Brodie BR, Stuckey T, Witzenbichler B, Metzger C, Guagliumi G et al. Are adverse events following primary PCI for STEMI more frequent at US sites than sites outside the US (OUS)? Three-year analysis from the HORIZONS-AMI trial. Journal of the American College of Cardiology. 2011; 58(20 Suppl. 1):B9
- 676 Tobe SW, Clase CM, Gao P, McQueen M, Grosshennig A, Wang X et al. Cardiovascular and renal outcomes with telmisartan, ramipril, or both in people at high renal risk: results from the ONTARGET and TRANSCEND studies. Circulation. 2011; 123(10):1098-1107
- 677 Tokmakova MP, Skali H, Kenchaiah S, Braunwald E, Rouleau JL, Packer M et al. Chronic kidney disease, cardiovascular risk, and response to angiotensin-converting enzyme inhibition after myocardial infarction: the Survival And Ventricular Enlargement (SAVE) study. Circulation. 2004; 110(24):3667-3673

- 678 Tonelli M, Collins D, Robins S, Bloomfield H, Curhan GC, Veterans' Affairs High DLITVHI. Gemfibrozil for secondary prevention of cardiovascular events in mild to moderate chronic renal insufficiency. Kidney International. 2004; 66(3):1123-1130
- 679 Tonelli M, Muntner P, Lloyd A, Manns BJ, James MT, Klarenbach S et al. Using proteinuria and estimated glomerular filtration rate to classify risk in patients with chronic kidney disease: A cohort study. Annals of Internal Medicine. 2011; 154(1):12-21
- Tong PCY, Ko GTC, Chan W-B, Ma RCW, So W-Y, Lo MKW et al. The efficacy and tolerability of fosinopril in Chinese type 2 diabetic patients with moderate renal insufficiency. Diabetes, Obesity and Metabolism. 2006; 8(3):342-347
- 681 Toth PP. Review of the AMADEO study: Reducing proteinuria in patients with diabetic nephropathy with telmisartan versus losartan. Postgraduate Medicine. 2010; 122(2):165-168
- 682 Trevisan R, Tiengo A. Effect of low-dose ramipril on microalbuminuria in normotensive or mild hypertensive non-insulin-dependent diabetic patients. North-East Italy Microalbuminuria Study Group. American Journal of Hypertension. 1995; 8(9):876-883
- 683 Tseng C-L, Lafrance J-P, Lu S-E, Miller D, Soroka O, Maney M et al. Does variation in estimated glomerular filtration rate (EGFR) predict risk of dialysis or death in patients with chronic kidney disease (CKD)? Diabetes. 2012; 61:A353
- Turin TC, Coresh J, Tonelli M, Stevens PE, de Jong PE, Farmer CKT et al. Change in the estimated glomerular filtration rate over time and risk of all-cause mortality. Kidney International. 2013; 83(4):684-691
- 685 Turin TC, Coresh J, Tonelli M, Stevens PE, de Jong PE, Farmer CKT et al. One-year change in kidney function is associated with an increased mortality risk. American Journal of Nephrology. 2012; 36(1):41-49
- Turin TC, Coresh J, Tonelli M, Stevens PE, de Jong PE, Farmer CKT et al. Short-term change in kidney function and risk of end-stage renal disease. Nephrology Dialysis and Transplantation. 2012; 27(10):3835-3843
- 687 Tutuncu NB, Gurlek A, Gedik O. Efficacy of ACE inhibitors and ATII receptor blockers in patients with microalbuminuria: A prospective study. Acta Diabetologica. 2001; 38(4):157-161
- Tylicki L, Rutkowski P, Renke M, Larczynski W, Aleksandrowicz E, Lysiak-Szydlowska W et al.
 Triple pharmacological blockade of the renin-angiotensin-aldosterone system in nondiabetic
 CKD: an open-label crossover randomized controlled trial. American Journal of Kidney Diseases.
 2008; 52(3):486-493
- 689 Tylicki L, Rutkowski P, Renke M, Rutkowski B. Addition of aldosterone receptor blocker to dual renin-angiotensin-aldosterone blockade leads to limitation of tubulointerstitial injury of kidney. Kidney International. 2007; 72(9):1164-1165

- 690 UK Transplant. Cost effectiveness of transplantation. 2007. Available from: http://www.uktransplant.org.uk/ukt/newsroom/fact_sheets/cost_effectiveness_of_transplant ation.jsp [Last accessed: February 2008]
- 691 Unsal A, Koc Y, Basturk T, Akgun AO, Sakaci T, Ahbap E. Risk factors for progression of renal disease in patient with diabetic nephropathy. European Review for Medical and Pharmacological Sciences. 2012; 16(7):878-883
- 692 van den Meiracker AH, Baggen RG, Pauli S, Lindemans A, Vulto AG, Poldermans D et al. Spironolactone in type 2 diabetic nephropathy: Effects on proteinuria, blood pressure and renal function. Journal of Hypertension. 2006; 24(11):2285-2292
- 693 van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey A et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney International. 2011; 79(12):1341-1352
- 694 van Deventer HE, Paiker JE, Katz IJ, George JA. A comparison of cystatin C- and creatinine-based prediction equations for the estimation of glomerular filtration rate in black South Africans. Nephrology Dialysis and Transplantation. 2011; 26(5):1553-1558
- 695 van Hout BA, Simeon GP, McDonnell J, Mann JF. Economic evaluation of benazepril in chronic renal insufficiency. Kidney International Supplement. 1997; 63:S159-S162
- 696 Van Pottelbergh G, Bartholomeeusen S, Buntinx F, Degryse J. The evolution of renal function and the incidence of end-stage renal disease in patients aged >= 50 years. Nephrology Dialysis and Transplantation. 2012; 27(6):2297-2303
- 697 Van Pottelbergh G, Van Heden L, Mathei C, Degryse J. Methods to evaluate renal function in elderly patients: a systematic literature review. Age and Ageing. 2010; 39(5):542-548
- 698 Vaziri ND, Freel RW, Hatch M. Effect of chronic experimental renal insufficiency on urate metabolism. Journal of the American Society of Nephrology. 1995; 6(4):1313-1317
- 699 Vejakama P, Thakkinstian A, Lertrattananon D, Ingsathit A, Ngarmukos C, Attia J. Renoprotective effects of renin-angiotensin system blockade in type 2 diabetic patients: a systematic review and network meta-analysis. Diabetologia. 2012; 55(3):566-578
- 700 Verberk WJ, Kroon AA, Lenders JW, Kessels AG, van Montfrans GA, Smit AJ et al. Selfmeasurement of blood pressure at home reduces the need for antihypertensive drugs: a randomized, controlled trial. Hypertension. 2007; 50(6):1019-1025
- 701 Viberti G, Mogensen CE, Groop LC, Pauls JF. Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. European Microalbuminuria Captopril Study Group. JAMA. 1994; 271(4):275-279

- 702 Vlek ALM, van der Graaf Y, Braam B, Moll FL, Nathoe HM, Visseren FLJ. Blood Pressure and Decline in Kidney Function in Patients With Atherosclerotic Vascular Disease: A Cohort Study. American Journal of Kidney Diseases. 2009; 54(5):820-829
- 703 Vora J, Carides G, Robinson P. Effects of losartan-based therapy on the incidence of end-stage renal disease and associated costs in type 2 diabetes mellitus: A retrospective costeffectiveness analysis in the United Kingdom. Current Therapeutic Research, Clinical & Experimental. 2005; 66(6):475-485
- Vupputuri S, Nichols GA, Lau H, Joski P, Thorp ML. Risk of progression of nephropathy in a population-based sample with type 2 diabetes. Diabetes Research and Clinical Practice. 2011; 91(2):246-252
- 705 Waheed S, Matsushita K, Sang Y, Hoogeveen R, Ballantyne C, Coresh J et al. Combined association of albuminuria and cystatin C-based estimated GFR with mortality, coronary heart disease, and heart failure outcomes: the Atherosclerosis Risk in Communities (ARIC) Study. American Journal of Kidney Diseases. 2012; 60(2):207-216
- 706 Wald R, Quinn RR, Luo J, Li P, Scales DC, Mamdani MM et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA. 2009; 302(11):1179-1185
- 707 Walker WG. Hypertension-related renal injury: a major contributor to end-stage renal disease. American Journal of Kidney Diseases. 1993; 22(1):164-173
- 708 Walker WG, Neaton JD, Cutler JA, Neuwirth R, Cohen JD. Renal function change in hypertensive members of the Multiple Risk Factor Intervention Trial. Racial and treatment effects. The MRFIT Research Group. JAMA. 1992; 268(21):3085-3091
- 709 Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. New England Journal of Medicine. 2009; 361(11):1045-1057
- 710 Wallentin L, Lopes RD, Hanna M, Thomas L, Hellkamp A, Nepal S et al. Efficacy and safety of apixaban compared with warfarin at different levels of predicted international normalized ratio control for stroke prevention in atrial fibrillation. Circulation. 2013; 127(22):2166-2176
- 711 Wang H, Zhang GL, Zhang QB, Deng JL. Spironolactone for diabetic nephropathy: a systematic review. Chinese Journal of Evidence-Based Medicine. 2009; 9(1):71-75
- 712 Wanner C, Krane V, Marz W, Olschewski M, Mann JF, Ruf G et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. New England Journal of Medicine. 2005; 353(3):238-248
- 713 Warnock DG, Muntner P, McCullough PA, Zhang X, McClure LA, Zakai N et al. Kidney function, albuminuria, and all-cause mortality in the REGARDS (Reasons for Geographic and Racial Differences in Stroke) study. American Journal of Kidney Diseases. 2010; 56(5):861-871

- 714 Wattanakit K, Folsom AR, Selvin E, Coresh J, Hirsch AT, Weatherley BD. Kidney function and risk of peripheral arterial disease: Results from the Atherosclerosis Risk in Communities (ARIC) study. Journal of the American Society of Nephrology. United States 2007; 18(2):629-636
- 715 Wei S-Y, Chang Y-Y, Mau L-W, Lin M-Y, Chiu H-C, Tsai J-C et al. Chronic kidney disease care program improves quality of pre-end-stage renal disease care and reduces medical costs. Nephrology. 2010; 15(1):108-115
- 716 Weimar C, Hohnloser SH, Eikelboom JW, Diener H-C. Preventing cardioembolic stroke in atrial fibrillation with dabigatran. Current Neurology and Neuroscience Reports. 2012; 12(1):17-23
- 717 Wesseling-Perry K, Pereira RC, Sahney S, Gales B, Wang HJ, Elashoff R et al. Calcitriol and doxercalciferol are equivalent in controlling bone turnover, suppressing parathyroid hormone, and increasing fibroblast growth factor-23 in secondary hyperparathyroidism. Kidney International. 2011; 79(1):112-119
- 718 Whitfield M and Holmes M. Final report to Optimal Renal Care UK Ltd. A cost and clinical effectiveness evaluation of a "disease management programme" for chronic kidney disease (CKD), 2007
- 719 Wilkie M, Pontoriero G, MacArio F, Yaqoob M, Bouman K, Braun J et al. Impact of vitamin d dose on biochemical parameters in patients with secondary hyperparathyroidism receiving cinacalcet. Nephron Clinical Practice. 2009; 112(1):c41-c50
- 720 Williams A, Manias E, Walker R, Gorelik A. A multifactorial intervention to improve blood pressure control in co-existing diabetes and kidney disease: a feasibility randomized controlled trial. Journal of Advanced Nursing. 2012; 68(11):2515-2525
- 721 Williams B, Poulter NR, Brown MJ, Davis M, McInnes GT, Potter JF et al. Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004-BHS IV. Journal of Human Hypertension. 2004; 18(3):139-185
- 722 Williams PS, Stevens ME, Fass G, Irons L, Bone JM. Failure of dietary protein and phosphate restriction to retard the rate of progression of chronic renal failure: a prospective, randomized, controlled trial. QJM. 1991; 81(1):837-855
- Winkelmayer WC, Zhang Z, Shahinfar S, Cooper ME, Avorn J, Brenner BM. Efficacy and safety of angiotensin II receptor blockade in elderly patients with diabetes. Diabetes Care. 2006; 29(10):2210-2217
- 724 Woo KT, Chan CM, Tan HK, Choong HL, Foo M, Vathsala A et al. Beneficial effects of high-dose losartan in IgA nephritis. Clinical Nephrology. 2009; 71(6):617-624
- 725 Wright JT, Jr., Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002; 288(19):2421-2431

- 726 Wright RS, Reeder GS, Herzog CA, Albright RC, Williams BA, Dvorak DL et al. Acute myocardial infarction and renal dysfunction: a high-risk combination. Annals of Internal Medicine. 2002; 137(7):563-570
- Wu M, Lam K, Lee W, Hsu K, Wu C, Cheng B et al. Albuminuria, Proteinuria, and Urinary
 Albumin to Protein Ratio in Chronic Kidney Disease. Journal of Clinical Laboratory Analysis.
 2012; 26(2):82-92
- 728 Xu L, Wan X, Huang Z, Fang D, Liu L, Liu J et al. Vitamin D supplementation on albuminuria and progression of pre-dialysis diabetic nephropathy and other kidney diseases: A meta analysis and systematic review of randomized controlled trials. Diabetes. 2012; 61:A567
- 729 Xun L, Cheng W, Hua T, Chenggang S, Zhujiang C, Zengchun Y et al. Assessing glomerular filtration rate (GFR) in elderly Chinese patients with chronic kidney disease (CKD): a comparison of various predictive equations. Archives of Gerontology and Geriatrics. 2010; 51(1):13-20
- 730 Yanagi M, Tamura K, Fujikawa T, Wakui H, Kanaoka T, Ohsawa M et al. The angiotensin II type 1 receptor blocker olmesartan preferentially improves nocturnal hypertension and proteinuria in chronic kidney disease. Hypertension Research. 2013; 36(3):262-269
- Yang X, Ma RC, So WY, Ko GT, Kong AP, Lam CW et al. Impacts of chronic kidney disease and albuminuria on associations between coronary heart disease and its traditional risk factors in type 2 diabetic patients the Hong Kong diabetes registry. Cardiovascular Diabetology. 2007; 6:37
- 732 Yang X, So WY, Ma RC, Ko GT, Kong AP, Ho CS et al. Thresholds of risk factors for ischemic stroke in type 2 diabetic patients with and without albuminuria: a non-linear approach. Clinical Neurology and Neurosurgery. 2008; 110(7):701-709
- 733 Yasuda G, Ando D, Hirawa N, Umemura S. Effects of atorvastatin versus probucol on lowdensity lipoprotein subtype distribution and renal function in hyperlipidemic patients with nondiabetic nephropathy. Renal Failure. 2010; 32(6):680-686
- 734 Yokoyama H, Araki S, Haneda M, Matsushima M, Kawai K, Hirao K et al. Chronic kidney disease categories and renal-cardiovascular outcomes in type 2 diabetes without prevalent cardiovascular disease: A prospective cohort study (JDDM25). Diabetologia. 2012; 55(7):1911-1918
- Yokoyama H, Matsushima M, Kawai K, Oishi M, Hirao K, Sugimoto H et al. CKD categories by KDIGO and the progression rate in GFR, albuminuria and cardiovascular disease in type 2 diabetes without prevalent cardiovascular disease: Prospective cohort study. Diabetologia. 2011; 54:S437
- Yoshida T, Takei T, Shirota S, Tsukada M, Sugiura H, Itabashi M et al. Risk factors for progression in patients with early-stage chronic kidney disease in the Japanese population. Internal Medicine. 2008; 47(21):1859-1864

- 737 Zambon S, Maggi S, Zanoni S, Romanato G, Noale M, Corti MC et al. Association of single measurement of estimated glomerular filtration rate and non-quantitative dipstick proteinuria with all-cause and cardiovascular mortality in the elderly. Results from the Progetto Veneto Anziani (Pro.V.A.) Study. Atherosclerosis. 2012; 220(1):201-207
- 738 Zannad F, Kessler M, Lehert P, Grunfeld JP, Thuilliez C, Leizorovicz A et al. Prevention of cardiovascular events in end-stage renal disease: Results of a randomized trial of fosinopril and implications for future studies. Kidney International. 2006; 70(7):1318-1324
- 739 Zeller K, Whittaker E, Sullivan L, Raskin P, Jacobson HR. Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. New England Journal of Medicine. 1991; 324(2):78-84