

Version 2.0

# **Preterm labour and birth**

### Appendices I & J

NICE Guideline 25 Methods, evidence and recommendations November 2015, updated June 2022

Final

Commissioned by the National Institute for Health and care Excellence



#### Disclaimer

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian.

Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.

NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the <u>Welsh Government</u>, <u>Scottish Government</u>, and <u>Northern Ireland Executive</u>. All NICE guidance is subject to regular review and may be updated or withdrawn.

#### Copyright

@2015 National Collaborating Centre for Women's and Children's Health

#### Update information

In June 2022 this document was updated to redact some content that was now out of date as a result of the 2022 evidence review on the use of repeat courses of maternal corticosteroids. See the NICE website for the current recommendations at <a href="https://www.nice.org.uk/guidance/ng25">https://www.nice.org.uk/guidance/ng25</a>.

#### Funding

Registered charity no. 213280

### Contents

| Append | lix I: Fo   | rest plots                                                                                                                 | 7  |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------|----|
| I.1 F  | =orest p    | lots for review question: Information and support                                                                          | 7  |
| I.2 F  | Prophyla    | actic vaginal progesterone and prophylactic cervical cerclage                                                              | 7  |
|        | I.2.1 I     | Prophylactic progesterone                                                                                                  | 7  |
|        | 1.2.2       | Prophylactic cervical cerclage                                                                                             | 8  |
| 1.3 [  | Diagnos     | ing preterm prelabour rupture of membranes (P-PROM                                                                         | 15 |
| 1.4 /  | Antenata    | al prophylactic antibiotics for women with P-PROM                                                                          | 16 |
|        | 1.4.1       | Any antibiotic versus placebo                                                                                              | 16 |
|        | 1.4.21      | Maternal outcomes                                                                                                          | 19 |
| I.5 I  | dentifyi    | ng infection in women with P-PROM                                                                                          | 22 |
| I.6 '  | Rescue      | ' cervical cerclage                                                                                                        | 26 |
| 1.7 [  | Diagnos     | ing preterm labour for women with intact membranes                                                                         | 26 |
| 1.8 /  | A. 8 Mat    | ernal corticosteroids                                                                                                      | 42 |
|        | I.8.1 I     | Different gestations                                                                                                       | 42 |
|        | 1.8.2       | Repeat courses                                                                                                             | 49 |
| 1.91   | Magnes      | ium sulphate for neuroprotection                                                                                           | 50 |
| I.10   | Tocoly      | sis                                                                                                                        | 53 |
| I.11   | Fetal m     | nonitoring                                                                                                                 | 60 |
|        | I.11.1      | EFM versus IA                                                                                                              | 60 |
|        | I.11.2      | Use of FSE                                                                                                                 | 60 |
|        | I.11.3      | CTG interpretation                                                                                                         | 60 |
|        | I.11.4      | Blood sampling                                                                                                             | 60 |
| I.12   | Mode of     | of birth                                                                                                                   | 61 |
|        | I.12.1      | Planned immediate caesarean section versus planned vaginal delivery in singletons                                          | 61 |
|        | I.12.2      | Immediate caesarean section versus planned vaginal delivery in                                                             | 00 |
| 1.40   | <b></b> ··· | singletons                                                                                                                 |    |
| 1.13   | •           | of cord clamping                                                                                                           | 64 |
|        |             | More placental transfusion (delayed clamping) versus less placental transfusion (early clamping)                           | 64 |
|        | I.13.2      | More placental transfusion versus less placental transfusion: subgroup analysis by strategy for more placental transfusion | 69 |
| Append | lix J: No   | etwork meta-analysis of tocolytics                                                                                         | 71 |
| J.1    | Sumr        | nary                                                                                                                       | 71 |
| J.2    | Metho       | ods                                                                                                                        | 71 |
|        | J.2.1       | Baseline probability (IVH, RDS and neonatal mortality)                                                                     | 72 |
|        | J.2.2       | Relative effects model                                                                                                     | 72 |
|        | J.2.3       | NMA model for binary data (outcomes 1 to 7)                                                                                | 72 |
|        | J.2.4       | NMA model for continuous data (EGA)                                                                                        | 73 |

|     | J.2.5  | Class model                                    | 73 |
|-----|--------|------------------------------------------------|----|
|     | J.2.6  | Consistency                                    | 74 |
| J.3 | Result | S                                              | 74 |
|     | J.3.1  | Baseline models (IVH, RDS, neonatal mortality) | 74 |
|     | J.3.2  | Imputing standard deviations (EGA)             | 74 |
|     | J.3.3  | Sensitivity to imputed SD                      | 75 |
| J.4 | Figure | S                                              | 79 |
| J.5 | Refere | ences                                          | 79 |
| J.6 | Samp   | e WINGBUGS code for binary outcome analyses    | 81 |

## **Appendix A: Scope**

The scope is presented in a separate document

### **Appendix B: Stakeholders**

The scope is presented in a separate document

### **Appendix C: Declarations of interest**

The scope is presented in a separate document

## **Appendix D: Review protocols**

The scope is presented in a separate document

## **Appendix E: Search strategies**

The scope is presented in a separate document

## **Appendix F: PRISMA flow diagrams**

The scope is presented in a separate document

## **Appendix G: Excluded studies**

The scope is presented in a separate document

## **Appendix H: Evidence tables**

The scope is presented in a separate document

## **Appendix I: Forest plots**

### I.1 Forest plots for review question: Information and support

No forest plots were generated for this review question

# I.2 Prophylactic vaginal progesterone and prophylactic cervical cerclage

#### I.2.1 Prophylactic progesterone

This section was updated and replaced in 2019. Please see the nice website for the updated guideline.

### I.2.2 Prophylactic cervical cerclage

### Figure 1: Prophylactic cervical cerclage versus no cerclage - perinatal death

|                                   | Experim    | ental     | Contr                   | lo       |           | Risk Ratio                                                                                                       | Risk Ratio                           |
|-----------------------------------|------------|-----------|-------------------------|----------|-----------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Study or Subgroup                 | Events     |           |                         |          | Weight    | M-H, Fixed, 95% Cl                                                                                               | M-H, Fixed, 95% CI                   |
| 1.1.1 History-indicate            | ed cerclag | e vs no   | cerclage                | 3        |           |                                                                                                                  |                                      |
| Ezechi 2004                       | 0          | 39        | 2                       | 42       | 1.9%      | 0.21 [0.01, 4.34]                                                                                                |                                      |
| Rush 1984                         | 9          | 96        | 9                       | 98       | 6.9%      | 1.02 [0.42, 2.46]                                                                                                | +                                    |
| MRC/RCOG 1993                     | 53         | 635       | 66                      | 629      | 51.3%     | 0.80 [0.56, 1.12]                                                                                                |                                      |
| Subtotal (95% CI)                 |            | 770       |                         | 769      | 60.0%     | 0.80 [0.58, 1.10]                                                                                                | •                                    |
| Total events                      | 62         |           | 77                      |          |           |                                                                                                                  |                                      |
| Heterogeneity: Chi <sup>2</sup> = | 1.03, df=  | 2(P = 0.  | 60); I <sup>a</sup> = 1 | 0%       |           |                                                                                                                  |                                      |
| Test for overall effect           | Z = 1.35 ( | P = 0.18) |                         |          |           |                                                                                                                  |                                      |
| 1.1.2 One-off ultraso             | und-indica | ated cere | clage in l              | high ris | sk for PT | vs no cerclage                                                                                                   |                                      |
| To 2004                           | 2          | 26        | 3                       | 30       | 2.2%      | 0.77 [0.14, 4.25]                                                                                                |                                      |
| Subtotal (95% CI)                 |            | 26        | -                       | 30       | 2.2%      | 0.77 [0.14, 4.25]                                                                                                | -                                    |
| Total events                      | 2          |           | 3                       |          |           |                                                                                                                  |                                      |
| Heterogeneity: Not a              | oplicable  |           |                         |          |           |                                                                                                                  |                                      |
| Test for overall effect           |            | P = 0.76  | 10                      |          |           |                                                                                                                  |                                      |
|                                   |            |           |                         |          |           |                                                                                                                  |                                      |
| 1.1.3 Serial ultrasou             | nd-indicat | ed cercl  | age in hi               | gh risk  | for PTL   | vs no cerclage                                                                                                   |                                      |
| Althuisius 2001                   | 0          | 19        | 3                       | 16       | 2.9%      | 0.12 [0.01, 2.19]                                                                                                |                                      |
| Berghella 2004                    | 4          | 25        | 4                       | 22       | 3.3%      | 0.88 [0.25, 3.11]                                                                                                |                                      |
| Rust 2000                         | 7          | 61        | 5                       | 66       | 3.7%      | 1.51 [0.51, 4.52]                                                                                                |                                      |
| Owen 2009                         | 13         | 148       | 25                      | 152      | 19.1%     | 0.53 [0.28, 1.00]                                                                                                | -                                    |
| Subtotal (95% CI)                 |            | 253       |                         | 256      | 29.0%     | 0.66 [0.41, 1.06]                                                                                                | •                                    |
| Total events                      | 24         |           | 37                      |          |           |                                                                                                                  |                                      |
| Heterogeneity: Chi? =             | 4.17, df=  | 3 (P = 0. | 24); I*= :              | 28%      |           |                                                                                                                  |                                      |
| Test for overall effect           | Z = 1.72 ( | P = 0.09) | )                       |          |           |                                                                                                                  |                                      |
| 1.1.4 One-off ultraso             | und-indica | ated cere | clage in l              | low/un   | specified | risk for PTL vs no cercla                                                                                        | age                                  |
| Berghella 2004                    | 0          | 3         | 0                       | 7        |           | Not estimable                                                                                                    |                                      |
| Rust 2000                         | 5          | 43        | 2                       | 37       | 1.7%      | 2.15 [0.44, 10.44]                                                                                               | +                                    |
| To 2004                           | 7          | 101       | 9                       | 96       | 7.1%      | 0.74 [0.29, 1.91]                                                                                                |                                      |
| Subtotal (95% CI)                 |            | 147       |                         | 140      | 8.8%      | 1.01 [0.46, 2.22]                                                                                                | <b>*</b>                             |
| Total events                      | 12         |           | 11                      |          |           |                                                                                                                  |                                      |
| Heterogeneity: Chi# =             | 1.30, df=  | 1 (P = 0. | 26); 1=                 | 23%      |           |                                                                                                                  |                                      |
| Test for overall effect           |            |           |                         |          |           |                                                                                                                  |                                      |
| Total (95% CI)                    |            | 1196      |                         | 1195     | 100.0%    | 0.78 [0.61, 1.00]                                                                                                | •                                    |
| Total events                      | 100        |           | 128                     |          |           | and the second |                                      |
| Heterogeneity: Chi#=              |            | 9 (P = 0  |                         | 0%       |           |                                                                                                                  | ton de la company                    |
| Test for overall effect           |            |           |                         |          |           |                                                                                                                  | 0.002 0.1 1 10 5                     |
| Test for subgroup dif             |            |           |                         |          |           |                                                                                                                  | Favours experimental Favours control |

|                                   | Experim     | ental                 | Contr      | lo       |              | Risk Ratio                | Risk Ratio                           |
|-----------------------------------|-------------|-----------------------|------------|----------|--------------|---------------------------|--------------------------------------|
| Study or Subgroup                 | Events      | Total                 | Events     | Total    | Weight       | M-H, Fixed, 95% Cl        | M-H, Fixed, 95% CI                   |
| 1.2.2 One-off ultraso             | und-indica  | ted cer               | clage in   | high ris | sk for PTI   | vs no cerclage            |                                      |
| To 2004<br>Subtotal (95% CI)      | 2           | 26<br>26              | 3          | 30<br>30 | 6.8%<br>6.8% | 0.77 [0.14, 4.25]         |                                      |
| Total events                      | 2           |                       | 3          |          |              |                           |                                      |
| Heterogeneity: Not a              | oplicable   |                       | 1          |          |              |                           |                                      |
| Test for overall effect           |             | P = 0.76              | )          |          |              |                           |                                      |
| 1.2.3 Serial ultrasou             | nd-indicate | ed cerc               | lage in hi | gh risk  | for PTL      | vs no cerclage            |                                      |
| Berghella 2004                    | 6           | 25                    | 6          | 22       | 15.5%        | 0.88 [0.33, 2.33]         |                                      |
| Owen 2009                         | 16          | 148                   | 18         | 153      | 43.0%        | 0.92 [0.49, 1.73]         |                                      |
| Rust 2000                         | 3           | 61                    | 6          | 66       | 14.0%        | 0.54 [0.14, 2.07]         |                                      |
| Subtotal (95% CI)                 |             | 234                   |            | 241      | 72.5%        | 0.84 [0.51, 1.37]         | •                                    |
| Total events                      | 25          |                       | 30         |          |              |                           |                                      |
| Heterogeneity: Chi <sup>2</sup> = | 0.50, df=   | 2 (P = 0              | 78); 12=   | 0%       |              |                           |                                      |
| Test for overall effect           | Z = 0.70 (  | P = 0.48              | )          |          |              |                           |                                      |
| 1.2.5 One-off ultraso             | und-indica  | ted cer               | clage in   | low/un   | specified    | risk for PTL vs no cercla | ge                                   |
| Berghella 2004                    | 1           | 3                     | 2          | 7        | 2.9%         | 1.17 [0.16, 8.48]         |                                      |
| Rust 2000                         | 4           | 43                    | 3          | 37       | 7.8%         | 1.15 [0.27, 4.80]         |                                      |
| To 2004                           | 7           | 101                   | 4          | 96       | 10.0%        | 1.66 [0.50, 5.50]         |                                      |
| Subtotal (95% CI)                 |             | 147                   |            | 140      | 20.7%        | 1.40 [0.61, 3.23]         | *                                    |
| Total events                      | 12          |                       | 9          |          |              |                           |                                      |
| Heterogeneity: Chi <sup>2</sup> = | 0.19, df=   | 2 (P = 0              | .91);  = 1 | 0%       |              |                           |                                      |
| Test for overall effect           | Z = 0.79 (  | P = 0.43              | )          |          |              |                           |                                      |
| Total (95% CI)                    |             | 407                   |            | 411      | 100.0%       | 0.95 [0.63, 1.43]         | +                                    |
| Total events                      | 39          |                       | 42         |          |              |                           |                                      |
| Heterogeneity: Chi <sup>2</sup> = | 1.72, df=   | 6 (P = 0              | .94); 1=   | 0%       |              |                           | 0.01 0.1 1 10 100                    |
| Test for overall effect           | Z= 0.25 (   | P = 0.80              | )          |          |              |                           | Favours experimental Favours control |
| Test for subgroup dif             | ferences: 0 | chi <sup>2</sup> = 1. | 13, df = 2 | (P = 0)  | 57), P= (    | 196                       | ratouis experimental ratouis condoi  |

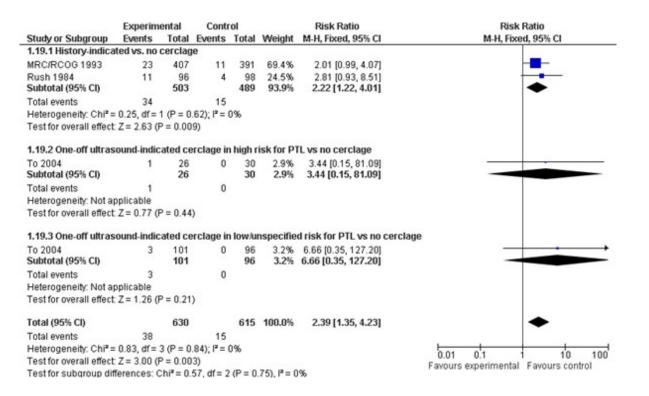
### Figure 2: Prophylactic cervical cerclage versus no cerclage - Serious neonatal morbidity

## Figure 3: Prophylactic cervical cerclage versus no cerclage- Preterm birth before 37+0 weeks

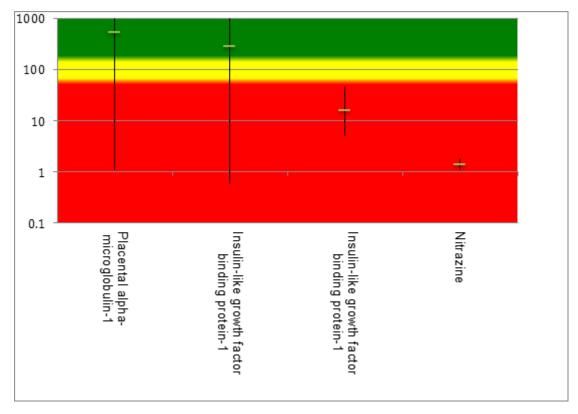
|                                                              | Experim     |            | Contr      |            |                         | Risk Ratio                             | Risk Ratio                           |
|--------------------------------------------------------------|-------------|------------|------------|------------|-------------------------|----------------------------------------|--------------------------------------|
| Study or Subgroup                                            | Events      |            |            |            | Weight                  | M-H, Random, 95% Cl                    | M-H, Random, 95% Cl                  |
| 1.7.1 History-indicate                                       | ed cerclag  | e vs no    | cerclage   | 2          |                         |                                        | 100                                  |
| Ezechi 2004                                                  | 3           | 39         | 15         | 42         | 1.8%                    | 0.22 [0.07, 0.69]                      |                                      |
| Lazar 1984                                                   | 18          | 268        | 13         | 238        | 4.5%                    | 1.23 [0.62, 2.46]                      |                                      |
| MRC/RCOG 1993                                                | 161         | 635        | 190        | 629        | 19.5%                   | 0.84 [0.70, 1.00]                      | -                                    |
| Rush 1984<br>Subtotal (95% CI)                               | 33          | 96<br>1038 | 31         | 98<br>1007 | 9.9%<br>35.7%           | 1.09 [0.73, 1.62]<br>0.86 [0.59, 1.27] | •                                    |
| Total events                                                 | 215         |            | 249        |            |                         |                                        | 23 C                                 |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect |             |            |            | = 0.05)    | ); I² = 62%             | 6                                      |                                      |
| 1.7.2 One-off ultraso                                        | und-indica  | ited cer   | clage in   | high ris   | sk for PTI              | L vs no cerclage                       |                                      |
| To 2004                                                      | 9           | 26         | 19         | 30         | 5.7%                    | 0.55 [0.30, 0.99]                      |                                      |
| Subtotal (95% CI)                                            |             | 26         |            | 30         | 5.7%                    | 0.55 [0.30, 0.99]                      | •                                    |
| Total events                                                 | 9           |            | 19         |            |                         |                                        |                                      |
| Heterogeneity: Not a                                         | pplicable   |            |            |            |                         |                                        |                                      |
| Test for overall effect                                      | Z=1.99 (    | P = 0.05   | )          |            |                         |                                        |                                      |
| 1.7.3 Serial ultrasou                                        | nd-indicat  | ed cerci   | lage in hi | gh risk    | for PTL                 | vs no cerclage                         |                                      |
| Althuisius 2001                                              | 4           | 19         | 10         | 16         | 2.6%                    | 0.34 [0.13, 0.87]                      |                                      |
| Berghella 2004                                               | 13          | 25         | 14         | 22         | 7.6%                    | 0.82 [0.50, 1.34]                      |                                      |
| Owen 2009                                                    | 66          | 148        | 91         | 153        | 17.3%                   | 0.75 [0.60, 0.94]                      | -                                    |
| Rust 2000                                                    | 27          | 61         | 29         | 66         | 10.2%                   | 1.01 [0.68, 1.49]                      | -                                    |
| Subtotal (95% CI)                                            |             | 253        | 2021       | 257        | 37.6%                   | 0.78 [0.60, 1.02]                      | •                                    |
| Total events                                                 | 110         |            | 144        |            |                         |                                        |                                      |
| Heterogeneity: Tau <sup>2</sup> :                            | = 0.03; Chi | = 4.80,    | df = 3 (P  | = 0.19)    | ); I <sup>2</sup> = 38% | 6                                      |                                      |
| Test for overall effect                                      | Z=1.82 (    | P = 0.07   | )          |            |                         |                                        |                                      |
| 1.7.5 One-off ultraso                                        | und-indica  | ited cer   | clage in   | low/un:    | specified               | risk for PTL vs no cerclage            | 5                                    |
| Berghella 2004                                               | 1           | 3          | 6          | 7          | 0.9%                    | 0.39 [0.08, 1.98]                      |                                      |
| Rust 2000                                                    | 22          | 43         | 18         | 37         | 8.8%                    | 1.05 [0.68, 1.64]                      | +                                    |
| To 2004                                                      | 32          | 101        | 44         | 96         | 11.3%                   | 0.69 [0.48, 0.99]                      | +                                    |
| Subtotal (95% CI)                                            |             | 147        |            | 140        | 21.0%                   | 0.80 [0.55, 1.16]                      | +                                    |
| Total events                                                 | 55          |            | 68         |            |                         |                                        | 25                                   |
| Heterogeneity: Tau <sup>2</sup> :                            | = 0.03; Chi | = 2.90,    | df= 2 (P   | = 0.23     | ); I <sup>2</sup> = 31% | 6                                      |                                      |
| Test for overall effect                                      | Z=1.16 (    | P = 0.25   | )          |            |                         |                                        |                                      |
| Total (95% CI)                                               |             | 1464       |            | 1434       | 100.0%                  | 0.80 [0.69, 0.95]                      | •                                    |
| Total events                                                 | 389         |            | 480        |            |                         |                                        | 30 23 24                             |
| Heterogeneity: Tau <sup>2</sup> :                            | = 0.03; Chi | = 18.11    | , df = 11  | (P = 0.)   | 08); I <sup>2</sup> = 3 | 9%                                     |                                      |
| Test for overall effect                                      |             |            |            |            |                         | 2.67                                   | 0.01 0.1 i 10 10                     |
| Test for subgroup dif                                        |             |            | - *        | -          |                         |                                        | Favours experimental Favours control |

## Figure 4: Prophylactic cervical cerclage versus no cerclage- Preterm birth before 34+0 weeks

|                                   | Experim                  |                      | Contr      |          |                          | Risk Ratio                 | Risk Ratio                            |
|-----------------------------------|--------------------------|----------------------|------------|----------|--------------------------|----------------------------|---------------------------------------|
| Study or Subgroup                 | Events                   |                      |            |          | Weight                   | M-H, Random, 95% Cl        | M-H, Random, 95% Cl                   |
| 1.8.1 History-indicate            | ed cerclag               | e vs no              | cerclage   | 2        |                          |                            | 3 Con                                 |
| Ezechi 2004                       | 0                        | 39                   | 11         | 42       | 0.3%                     | 0.05 [0.00, 0.77]          | · · · · · · · · · · · · · · · · · · · |
| MRC/RCOG 1993                     | 92                       | 635                  | 113        | 629      | 39.5%                    | 0.81 [0.63, 1.04]          | -                                     |
| Rush 1984                         | 14                       | 96                   | 14         | 98       | 5.4%                     | 1.02 [0.51, 2.03]          |                                       |
| Subtotal (95% CI)                 |                          | 770                  |            | 769      | 45.2%                    | 0.76 [0.40, 1.46]          | +                                     |
| Total events                      | 106                      |                      | 138        |          |                          |                            |                                       |
| Heterogeneity: Tau <sup>2</sup> : | = 0.17; Chi <sup>2</sup> | = 4.66,              | df = 2 (P  | = 0.10   | ); I <sup>2</sup> = 57%  | 6                          |                                       |
| Test for overall effect           | Z = 0.81 (               | P = 0.42             | )          |          |                          |                            |                                       |
| 1.8.2 One-off ultraso             | und-indica               | ated cer             | clage in l | high ris | sk for PTI               | L vs no cerclage           |                                       |
| To 2004                           | 6                        | 26                   | 11         | 30       | 3.5%                     | 0.63 [0.27, 1.46]          |                                       |
| Subtotal (95% CI)                 | <u>_</u>                 | 26                   |            | 30       | 3.5%                     | 0.63 [0.27, 1.46]          | -                                     |
| Total events                      | 6                        |                      | 11         |          |                          |                            |                                       |
| Heterogeneity: Not a              |                          |                      |            |          |                          |                            |                                       |
| Test for overall effect           |                          | P = 0.28             | )          |          |                          |                            |                                       |
|                                   |                          |                      |            |          |                          |                            |                                       |
| 1.8.3 Serial ultrasou             | nd-indicate              | ed cercl             | age in hi  | gh risk  | for PTL                  | vs no cerclage             | 23                                    |
| Althuisius 2001                   | 0                        | 19                   | 7          | 16       | 0.3%                     | 0.06 [0.00, 0.92]          | ·                                     |
| Berghella 2004                    | 10                       | 25                   | 11         | 22       | 6.2%                     | 0.80 [0.42, 1.51]          |                                       |
| Owen 2009                         | 42                       | 148                  | 57         | 153      | 23.3%                    | 0.76 [0.55, 1.06]          |                                       |
| Rust 2000                         | 13                       | 61                   | 15         | 66       | 5.8%                     | 0.94 [0.49, 1.81]          |                                       |
| Subtotal (95% CI)                 |                          | 253                  |            | 257      | 35.7%                    | 0.77 [0.55, 1.10]          | •                                     |
| Total events                      | 65                       |                      | 90         |          |                          |                            | 2.25                                  |
| Heterogeneity: Tau <sup>2</sup> = | = 0.03; Chi <sup>2</sup> | <sup>2</sup> = 3.92, | df = 3 (P  | = 0.27   | ); I <sup>2</sup> = 23%  | 6                          |                                       |
| Test for overall effect           | Z=1.42 (                 | P = 0.15             | )          |          |                          |                            |                                       |
| 1.8.5 One-off ultraso             | und-indica               | ated cer             | clage in l | low/un:  | specified                | risk for PTL vs no cerclag | 16                                    |
| Berghella 2004                    | 0                        | 3                    | 1          | 7        | 0.3%                     | 0.67 [0.03, 12.96]         |                                       |
| Rust 2000                         | 11                       | 43                   | 12         | 37       | 5.3%                     | 0.79 [0.40, 1.57]          |                                       |
| To 2004                           | 22                       | 101                  | 25         | 96       | 10.0%                    | 0.84 [0.51, 1.38]          |                                       |
| Subtotal (95% CI)                 |                          | 147                  |            | 140      | 15.6%                    | 0.82 [0.55, 1.22]          | +                                     |
| Total events                      | 33                       |                      | 38         |          |                          |                            |                                       |
| Heterogeneity: Tau <sup>2</sup> = |                          | = 0.04.              | df = 2 (P  | = 0.98   | ); I <sup>2</sup> = 0%   |                            |                                       |
| Test for overall effect           |                          |                      |            |          |                          |                            |                                       |
| Total (95% CI)                    |                          | 1196                 |            | 1196     | 100.0%                   | 0.79 [0.68, 0.93]          | •                                     |
| Total events                      | 210                      |                      | 277        |          |                          |                            |                                       |
| Heterogeneity: Tau <sup>2</sup> : |                          | = 8.88               |            | P = 0.5  | 4): $P = 0.9$            | 6                          |                                       |
| Test for overall effect           |                          |                      |            | - 0.0    |                          | T0                         | 0.01 0.1 i 10 10                      |
| Learner exercise enect            |                          |                      |            |          | .96), I <sup>#</sup> = ( |                            | Favours experimental Favours control  |

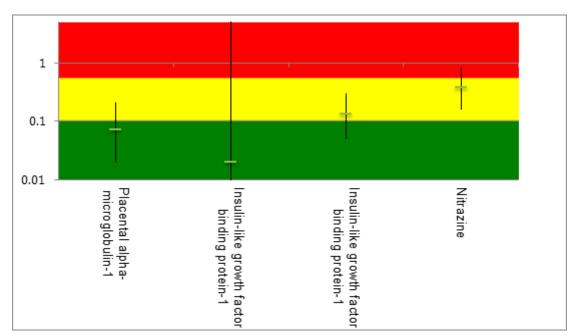

## Figure 5: Prophylactic cervical cerclage versus no cerclage- Preterm birth before 38+0 weeks

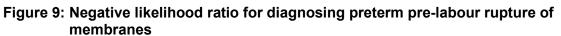
|                                   | Experim     |           | Contr                   |          |           | Risk Ratio                | Risk Ratio                            |
|-----------------------------------|-------------|-----------|-------------------------|----------|-----------|---------------------------|---------------------------------------|
| Study or Subgroup                 | Events      |           |                         |          | Weight    | M-H, Fixed, 95% Cl        | M-H, Fixed, 95% CI                    |
| 1.9.1 History-indicate            | ed cerclag  | e vs no   | cerclage                | 2        |           |                           |                                       |
| Ezechi 2004                       | 0           | 39        | 1                       | 42       | 1.0%      | 0.36 [0.02, 8.54]         |                                       |
| MRC/RCOG 1993                     | 53          | 635       | 65                      | 629      | 43.8%     | 0.81 [0.57, 1.14]         | -                                     |
| Rush 1984                         | 7           | 96        | 7                       | 98       | 4.6%      | 1.02 [0.37, 2.80]         |                                       |
| Subtotal (95% CI)                 |             | 770       |                         | 769      | 49.4%     | 0.82 [0.59, 1.13]         | •                                     |
| Total events                      | 60          |           | 73                      |          |           |                           |                                       |
| Heterogeneity: Chi <sup>2</sup> = | 0.45, df=   | 2(P = 0.  | 80); I <sup>2</sup> = I | 0%       |           |                           |                                       |
| Test for overall effect           | Z= 1.21 (   | P = 0.23  | )                       |          |           |                           |                                       |
| 1.9.2 One-off ultraso             | und-indica  | ated cer  | clage in l              | hiah ris | sk for PT | vs no cerclage            |                                       |
| To 2004                           | 3           | 26        | 5                       | 30       | 3.1%      | 0.69 [0.18, 2.62]         |                                       |
| Subtotal (95% CI)                 | 2           | 26        | 2                       | 30       | 3.1%      | 0.69 [0.18, 2.62]         |                                       |
| Total events                      | 3           |           | 5                       |          |           | see for showed            |                                       |
| Heterogeneity: Not a              |             |           | ~                       |          |           |                           |                                       |
| Test for overall effect           |             | P - 0 50  |                         |          |           |                           |                                       |
| reactor overall enect             | 2-0.54(     | - 0.00    | /                       |          |           |                           |                                       |
| 1.9.3 Serial ultrasou             | nd-indicat  | ed cercl  | age in hi               | gh risk  | for PTL   | vs no cerclage            | 25                                    |
| Althuisius 2001                   | 0           | 19        | 3                       | 16       | 2.5%      | 0.12 [0.01, 2.19]         | · · · · · · · · · · · · · · · · · · · |
| Berghella 2004                    | 6           | 25        | 5                       | 22       | 3.6%      | 1.06 [0.37, 2.99]         |                                       |
| Owen 2009                         | 21          | 148       | 33                      | 153      | 21.8%     | 0.66 [0.40, 1.08]         |                                       |
| Rust 2000                         | 9           | 61        | 11                      | 66       | 7.1%      | 0.89 [0.39, 1.99]         |                                       |
| Subtotal (95% CI)                 |             | 253       |                         | 257      | 35.0%     | 0.71 [0.48, 1.04]         | •                                     |
| Total events                      | 36          |           | 52                      |          |           |                           | 7.6                                   |
| Heterogeneity: Chi <sup>2</sup> = | 2.38, df =  | 3 (P = 0. | 50); I <sup>2</sup> = 1 | 0%       |           |                           |                                       |
| Test for overall effect           | Z=1.78 (    | P = 0.08  | )                       |          |           |                           |                                       |
| 1.9.5 One-off ultraso             | und-indica  | ated cer  | clage in l              | low/un:  | specified | risk for PTL vs no cercla | qe                                    |
| Berghella 2004                    | 0           | 3         | 1                       | 7        | 0.7%      | 0.67 [0.03, 12.96]        |                                       |
| Rust 2000                         | 7           | 43        | 5                       | 37       | 3.6%      | 1.20 [0.42, 3.48]         |                                       |
| To 2004                           | 12          | 101       | 12                      | 96       | 8.3%      | 0.95 [0.45, 2.01]         |                                       |
| Subtotal (95% CI)                 |             | 147       |                         | 140      |           | 1.01 [0.55, 1.83]         | +                                     |
| Total events                      | 19          | 2222      | 18                      | 332      |           |                           | T                                     |
| Heterogeneity: Chi <sup>2</sup> = |             | 2(P = 0)  |                         | 0%       |           |                           |                                       |
| Test for overall effect           |             |           |                         |          |           |                           |                                       |
| Total (95% CI)                    |             | 1196      |                         | 1196     | 100.0%    | 0.80 [0.64, 1.00]         | •                                     |
| Total events                      | 118         | 849.52    | 148                     | 1111-11  |           |                           | 23<br>2                               |
| Heterogeneity: Chi <sup>2</sup> = |             | 10 (P = 1 |                         | 0%       |           |                           |                                       |
| Test for overall effect           |             |           |                         | 0.0      |           |                           | 0.01 0.1 1 10 1                       |
|                                   | ferences: ( |           |                         |          |           |                           | Favours experimental Favours control  |


### Figure 6: Prophylactic cervical cerclage versus no cerclage- maternal side effects

|                                   | Experim     | ental     | Contr      | ol       |                        | Risk Ratio                   | Risk Ratio                           |
|-----------------------------------|-------------|-----------|------------|----------|------------------------|------------------------------|--------------------------------------|
| Study or Subgroup                 | Events      |           |            |          | Weight                 | M-H, Random, 95% Cl          | M-H, Random, 95% Cl                  |
| 1.17.1 History-indica             | ted cercla  | ge vs no  | cerclag    | e        |                        |                              | 23. 66621                            |
| Lazar 1984                        | 60          | 268       | 43         | 238      | 47.9%                  | 1.24 [0.87, 1.76]            | -                                    |
| Rush 1984                         | 11          | 96        | 4          | 98       | 29.7%                  | 2.81 [0.93, 8.51]            |                                      |
| Subtotal (95% CI)                 |             | 364       |            | 336      | 77.6%                  | 1.57 [0.76, 3.24]            | ★                                    |
| Total events                      | 71          |           | 47         |          |                        |                              |                                      |
| Heterogeneity: Tau <sup>2</sup> = | = 0.16; Chi | = 1.92,   | df = 1 (P  | = 0.17   | ; I <sup>2</sup> = 48% |                              |                                      |
| Test for overall effect           | Z=1.21 (    | P = 0.23) |            |          |                        |                              |                                      |
| 1.17.2 One-off ultras             | ound-indic  | ated ce   | rclage in  | high r   | isk for Pi             | L vs no cerclage             |                                      |
| Subtotal (95% CI)                 |             | 0         |            | 0        |                        | Not estimable                |                                      |
| Total events                      | 0           |           | 0          |          |                        |                              |                                      |
| Heterogeneity: Not a              | pplicable   |           |            |          |                        |                              |                                      |
| Test for overall effect           | Not applie  | able      |            |          |                        |                              |                                      |
| 1.17.3 Serial ultraso             | und-indica  | ted cerd  | lage in h  | nigh ris | k for PTL              | vs no cerclage               |                                      |
| Subtotal (95% CI)                 |             | 0         |            | 0        |                        | Not estimable                |                                      |
| Total events                      | 0           |           | 0          |          |                        |                              |                                      |
| Heterogeneity: Not a              | oplicable   |           |            |          |                        |                              |                                      |
| Test for overall effect           |             | able      |            |          |                        |                              |                                      |
| 1.17.4 Physical exar              | n-indicate  | d cercla  | ge in higl | h risk 1 | or PTL vs              | s no cerclage                |                                      |
| Subtotal (95% CI)                 |             | 0         | 1000000    | 0        |                        | Not estimable                |                                      |
| Total events                      | 0           |           | 0          |          |                        |                              |                                      |
| Heterogeneity: Not a              | oplicable   |           |            |          |                        |                              |                                      |
| Test for overall effect           | Not applie  | able      |            |          |                        |                              |                                      |
| 1.17.5 One-off ultras             | ound-indic  | ated ce   | rclage in  | low/u    | nspecifie              | d risk for PTL vs no cerclag | e                                    |
| To 2004                           | 12          | 127       | 2          | 126      | 22.4%                  | 5.95 [1.36, 26.06]           |                                      |
| Subtotal (95% CI)                 |             | 127       |            | 126      | 22.4%                  | 5.95 [1.36, 26.06]           |                                      |
| Total events                      | 12          |           | 2          |          |                        |                              |                                      |
| Heterogeneity: Not a              | pplicable   |           |            |          |                        |                              |                                      |
| Test for overall effect           | Z = 2.37 (  | P = 0.02) | 0          |          |                        |                              |                                      |
| Total (95% CI)                    |             | 491       |            | 462      | 100.0%                 | 2.25 [0.89, 5.69]            | •                                    |
| Total events                      | 83          |           | 49         |          |                        |                              |                                      |
| Heterogeneity: Tau <sup>a</sup> : | = 0.44; Chi | = 5.83.   | df = 2 (P  | = 0.05   | ; I <sup>2</sup> = 66% |                              |                                      |
|                                   |             |           |            |          |                        |                              | 0.01 0.1 1 10 10                     |
| Test for overall effect           | Z=1./00     | P = 0.09  | L.)        |          |                        |                              | Favours experimental Favours control |

#### Figure 7: Prophylactic cervical cerclage versus no cerclage- pyrexia





### I.3 Diagnosing preterm prelabour rupture of membranes (P-PROM



#### Figure 8: Positive likelihood ratio for diagnosing preterm pre-labour rupture of membranes

Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful





### I.4 Antenatal prophylactic antibiotics for women with P-PROM

#### I.4.1 Any antibiotic versus placebo

#### I.4.1.1 Neonatal outcomes

| Carcia 1995 2 30 5 30 1.7% 0.40 [0.08, 1.90]<br>Carbie 1996 0 31 2 29 0.5% 0.19 [0.01, 3.75]<br>Johnston 1990 3 40 4 45 2.12% 0.84 [0.20, 3.54]<br>Kerryon 2001 226 3584 82 1225 71.2% 0.94 [0.74, 212.52]<br>Mercer 1992 1 57 1 58 0.6% 1.02 (0.07, 15.88]<br>Mercer 1992 6 106 10 114 4.4% 0.65 [0.24, 1.71]<br>Mercer 1997 19 299 18 312 10.9% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 43 4.2% 1.19 [0.44, 3.26]<br>Subtal (95% Ch) 4315 1986 100.0% 0.93 [0.76, 1.14]<br>Total events 276 138<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 8.73, df = 11 ( $P$ = 0.65); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.69 ( $P$ = 0.49)<br><b>1.2.2 All penicillin (excluding co-amoxiclav) versus placebo</b><br>Crable 1995 0 31 2 29 9.6% 0.19 [0.01, 3.75]<br>Johnston 1990 3 40 4 45 42.0% 0.84 [0.20, 3.54]<br>Kurki 1992 1 57 1 58 11.5% 1.02 (0.07, 15.88]<br>Lockwood 1993a 3 37 3 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% Ch) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.05; Ch <sup>2</sup> = 0.50; l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.53 ( $P$ = 0.60)<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Subtotal (95% Ch) 1236 644 100.0% 0.40 [0.08, 1.90]<br>Keryon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% Ch) 1236 644 100.0% 0.40 [0.08, 1.90]<br>Keryon 2001 79 1205 41 613 71.6% 0.98 [0.64, 1.28]<br>Heterogeneity: Tau <sup>2</sup> = 0.05; Ch <sup>2</sup> = 2.17, df = 1 ( $P$ = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.56 ( $P$ = 0.57)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Carcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Keryon 2001 70 1390 41 61 3 54.11 0.059, 2.06]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 ( $P$ = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 ( $P$ = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Micree 1997 1 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Subta 1995 7 42 6 42 25.9% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 0.02; df = 2 ( $P$ = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.56 ( $P$ = 0.57)<br><b></b> | igure 10:                         | Treatm     | nent         |           | rol     | 10140-04-             | Risk Ratio          | Risk Ratio          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------|--------------|-----------|---------|-----------------------|---------------------|---------------------|
| Cox 1995 1 31 5 31 1.0% 0.20 [0.02, 1.61]<br>Garcia 1995 2 30 5 30 1.7% 0.40 [0.06, 1.90]<br>Grable 1996 0 31 2 29 0.5% 0.19 [0.01, 3.75]<br>Oblinston 1990 3 40 4 45 2.1% 0.84 [0.20, 3.54]<br>Karki 1992 1 57 1 58 0.6% 1.02 [0.07, 1.5.8]<br>Databased to the constraint of th                                                                                                                                                                                                                                                                  |                                   | Events     | Total        | Events    | Total   | Weight                | M-H, Random, 95% CI | M-H, Random, 95% CI |
| Tarcia 1995 2 30 5 30 1.7% 0.40 [0.08, 1.90]<br>Grable 1996 0 31 2 29 0.5% 0.19 [0.01, 3.75]<br>Johnston 1990 3 40 4 45 2.125 71.2% 0.94 [0.74, 212.52]<br>Lockwood 1993a 3 37 3 35 1.8% 0.95 [0.20, 4.38]<br>McGregor 1991 6 28 0 27 0.5% 1.25 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 4.4% 0.65 [0.24, 1.71]<br>Mercer 1992 7 42 6 43 4.2% 1.19 [0.43, 3.26]<br>Sware 1997 7 42 6 43 4.2% 1.19 [0.44, 3.26]<br>Sware 1997 2 3 0 2 37 1.2% 1.23 [0.18, 8.25]<br>Subtoal (95% Ct) 4315 1986 100.0% 0.93 [0.76, 1.14]<br>Total events 276 138<br>Heterogeneity: Tau <sup>2</sup> = 0.00: Ch <sup>2</sup> = 8.73, df = 11 (P = 0.65); h <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.69 (P = 0.49)<br>L2.2 All penicillin (excluding co-amoxiclav) versus placebo<br>Crable 1995 0 31 2 29 9.6% 0.19 [0.01, 3.75]<br>ohnston 1990 3 40 4 45 42.0% 0.84 [0.20, 3.54]<br>Korkik 1992 1 57 1 58 11.5% 1.02 [0.07, 15.88]<br>L2.2 All penicillin (excluding co-amoxiclav) versus placebo<br>Crable 1995 0 31 2 29 9.6% 0.95 [0.20, 4.38]<br>Subtoal (95% Ct) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.05; Ch <sup>2</sup> = 0.50;<br>L2.3 Beta lactum (including co-amoxiclav) versus placebo<br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Subtoal (95% Ct) 1236 644 100.0% 0.40 [0.05, 1.90]<br>Keryon 2001 79 1205 41 613 71.6% 0.98 [0.64, 1.41]<br>Subtoal (95% Ct) 1236 644 100.0% 0.40 [0.05, 1.90]<br>Keryon 2001 79 1205 41 613 71.4% 0.98 [0.64, 1.28]<br>Heterogeneity: Tau <sup>2</sup> = 0.05; Ch <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br>L2.4 Macrolide (including erythromycin) versus placebo<br>Carcia 1995 2 30 5 30 14.0% 0.40 [0.05, 1.90]<br>Keryon 2001 70 1390 41 61 35 44.110 (0.59, 2.06]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Ch <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br>L2.5 Other antibiotic versus placebo<br>Microer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 0.02; df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br>L2.5 Other antibiotic versus placeb                                              |                                   |            |              | 10        |         |                       |                     | 100                 |
| Grable 1996 0 31 2 29 0.5% 0.19 [0.01, 3.75]<br>Joinston 1990 3 40 44 55 2.1% 0.84 [0.20, 3.54]<br>Kenyon 2001 226 3584 82 1225 71.2% 0.94 [0.74, 1.20]<br>Kurki 1992 1 57 1 58 0.6% 1.02 [0.07, 15.88]<br>Lockwood 1993a 3 37 3 5 1.8% 0.95 [0.20, 4.38]<br>McGregor 1991 6 28 0 27 0.5% 12.55 [0.74, 212.52]<br>Mercer 1997 19 299 18 312 10.9% 1.10 [0.59, 2.06]<br>Oxalle Salas 1997 7 42 6 43 4.2% 1.19 [0.44, 3.26]<br>Svare 1997a 2 30 2 37 1.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 4315 1986 100.0% 0.39 [0.76, 1.14]<br>Total events 276 138<br>Heterogenehy: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 8.73, df = 11 ( $P = 0.65$ ); l <sup>2</sup> = 0%<br>Test for overall effect: $Z = 0.69 (P = 0.49)$<br>L2.2 All penicillin (excluding co-amoxiclav) versus placebo<br>Grable 1996 0 31 2 29 9.6% 0.19 [0.01, 3.75]<br>Joinston 1990 3 40 44 54 24.20% 0.84 [0.20, 3.54]<br>Kurki 1992 1 57 1 58 11.5% 1.02 [0.07, 15.88]<br>Lockwood 1993 3 37 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% CI) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogenehy: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 1.00, df = 3 ( $P = 0.80$ ); l <sup>2</sup> = 0%<br>Test for overall effect: $Z = 0.53 (P = 0.60)$<br>L2.3 Beta lactum (including co-amoxiclav) versus placebo<br>Garcia 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 7 10<br>Heterogenehy: Tau <sup>2</sup> = 0.05; Ch <sup>2</sup> = 2.17, df = 1 ( $P = 0.14$ ); l <sup>2</sup> = 54%<br>Test for overall effect: $Z = 0.65 (P = 0.51)$<br>L2.3 Beta lactum (including erythromycin) versus placebo<br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1390 41 613 71.6% 0.88 [0.61, 1.28]<br>MGGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>MGCregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>MGCregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>MGCregor 1991 6 28 0 27 7.2% 1.23 (0.18, 8.25]<br>Total events 84 56<br>Heterogenehy: Tau <sup>2</sup> = 0.17; Ch <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.05 (P = 0.57)<br>L2.5 Other antibiotic versus placebo<br>Marcer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Marcer 1997 2 19                                                            |                                   |            |              |           |         |                       |                     |                     |
| ponsion 1990 3 40 4 45 2.1% 0.44 [0.20, 3.54]<br>Kenyon 2001 226 3584 82 1225 71.2% 0.94 [0.74, 1.20]<br>Kenyon 2001 757 1 58 0.6% 1.02 [0.07, 15.88]<br>Lockwood 1993a 3 37 3 35 1.8% 0.95 [0.20, 4.38]<br>Mercer 1992 6 106 10 114 4.4% 0.65 [0.24, 1.71]<br>Mercer 1997 19 299 18 312 10.9% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 43 4.2% 1.19 [0.44, 3.26]<br>Subtotal (95% CD) 4315 1986 100.0% 0.93 [0.76, 1.14]<br>Total events 276 138<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 8.73, df = 11 ( $P = 0.65$ ); t <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.69 ( $P = 0.49$ )<br><b>1.2.2 All penicillin (excluding co-amoxiclav) versus placebo</b><br>Cox 1993 3 37 3 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% CD) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 1.00, df = 3 ( $P = 0.80$ ); t <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.53 ( $P = 0.65$ )<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 2.8.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br><b>3.50</b> 5 167 100.0% 0.62 [0.15, 2.56]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.65 ( $P = 0.51$ )<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 2.8.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 11205 41 613 71.6% 0.98 [0.68, 1.41]<br><b>3.50</b> 5 167 100.0% 0.62 [0.15, 2.56]<br>Total events 8 4 56<br>Heterogeneity: Tau <sup>2</sup> = 0.55 ( $P = 0.51$ )<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Cox 1995 1 33 4 2.8.4 (f = 3 ( $P = 0.69$ ); 1 <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 ( $P = 0.57$ )<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Mercer 1997 19 299 18 312 66.8% 1.13 [0.68, 1.88]<br>Total even                                           |                                   |            |              |           |         |                       |                     |                     |
| Kernyon 2001 226 3584 82 1225 71.2% 0.94 $[0.74, 1.20]$<br>Kurki 1992 1 57 1 58 0.6% 1.02 $[0.07, 15.88]$<br>Lockwood 1993a 3 37 35 1.8% 0.95 $[0.20, 4.38]$<br>McGregor 1991 6 28 0 27 0.5% 12.55 $[0.74, 212.52]$<br>Mercer 1992 6 106 10 114 4.4% 0.65 $[0.24, 1.71]$<br>Mercer 1997 19 299 18 312 10.9% 1.10 $[0.59, 2.06]$<br>Ovalle Salas 1997 7 42 6 43 4.2% 1.19 $[0.44, 3.26]$<br>Svane 1997a 2 30 2 37 1.2% 1.23 $[0.18, 8.25]$<br>Subtotal (95% C) 4315 1986 100.0% 0.93 $[0.76, 1.14]$<br>Total events 276 138<br>Heterogeneity: Tau <sup>2</sup> = 0.00: Chi <sup>2</sup> = 8.73, df = 11 (P = 0.65); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.69 (P = 0.49)<br>L2.2 All penicillin (excluding co-amoxiclav) versus placebo<br>Grable 1996 0 31 2 29 9.6% 0.19 $[0.01, 3.75]$<br>Johnston 1990 3 40 4 45 42.0% 0.84 $[0.20, 3.54]$<br>Kurki 1992 1 57 1 58 11.5% 1.02 $[0.07, 15.88]$<br>Lockwood 1993a 3 37 3 35 36.9% 0.95 $[0.20, 4.38]$<br>Subtotal (95% C) 165 167 100.0% 0.78 $[0.31, 1.97]$<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.00, df = 3 (P = 0.80); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.65 (P = 0.51)<br>L2.3 Beta lactum (including co-amoxiclav) versus placebo<br>Cox 1995 1 31 5 31 28.4% 0.20 $[0.02, 1.61]$<br>Keryon 2001 79 1205 41 613 71.6% 0.98 $[0.68, 1.41]$<br>Subtotal (95% C) 1256 44 100.0% 0.62 $[0.15, 2.56]$<br>Heterogeneity: Tau <sup>2</sup> = 0.05; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.65 (P = 0.51)<br>L2.4 Macrolide (including erythromycin) versus placebo<br>Carcia 1995 2 3 0 5 30 14.0% 0.40 $[0.08, 1.90]$<br>Keryon 2001 70 1390 41 613 54.1% 0.88 $[0.61, 1.28]$<br>McGregor 1991 6 28 0 27 5.0% 12.55 $[0.74, 212.52]$<br>McGregor 1991 6 28 0 27 5.0% 12.55 $[0.74, 212.52]$<br>McGregor 1991 6 28 0 27 5.0% 12.55 $[0.74, 212.52]$<br>McGregor 1991 6 28 0 27 7.2% 1.23 $[0.18, 8.25]$<br>Subtotal (95% C) 1354 784 100.0% 0.83 $[0.43, 1.60]$<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.66 (P = 0.57)<br>L2.5 Other antibiotic versus placebo<br>Marcer 1997 19 299 18 312 66.8% 1.10 $[0.59, 2.06]$<br>Ovalle Salas 1997 7 42 6 42 2.                            |                                   | -          |              | -         |         |                       |                     |                     |
| Kurki 1992 1 57 1 58 0.6% 1.02 [0.07, 15, 88]<br>Lockwood 1993a 3 37 3 35 1.8% 0.95 [0.20, 4.38]<br>Mercer 1991 6 28 0 27 0.5% 12.55 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 4.4% 0.65 [0.24, 1.71]<br>Mercer 1997 19 299 18 312 10.9% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 43 4.2% 1.19 [0.44, 3.26]<br>Sware 1997 2 30 2 37 1.2% 1.23 [0.18, 8.25]<br>Subtotal (95% C1) 4315 1986 100.0% 0.93 [0.76, 1.14]<br>Total events 276 138<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 8.73, df = 11 (P = 0.65); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.69 (P = 0.49)<br><b>1.2.2 All pencillin (ecluding co-amoxiclav) versus placebo</b><br>Grable 1996 0 31 2 29 9.6% 0.19 [0.01, 3.75]<br>Johnston 1990 3 40 4 45 42.0% 0.84 [0.20, 3.54]<br>Kurki 1992 1 57 1 58 11.5% 1.02 (0.07, 15.88]<br>Lockwood 1993a 3 37 3 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% C1) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Test for overall effect Z = 0.53 (P = 0.60)<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Keryon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% C1) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 8 0 46<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect Z = 0.56; (P = 0.51)<br><b>1.2.4 Macrolide (including cythromycin) versus placebo</b><br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Keryon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1991 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Subtotal (95% C1) 1354 7284 100.0% 0.83 [0.64], 1.26]<br>Mercer 1997 1 9 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Mercer 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Subtotal (95% C1) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 2 8 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                        |                                   | -          |              |           | 1000    |                       |                     |                     |
| Lockwood 1993a 3 37 3 35 1.8% 0.95 $[0.20, 4.38]$<br>McGregor 1991 6 28 0 27 0.5% 12.55 $[0.74, 212.52]$<br>Mercer 1992 6 106 10 114 4.4% 0.65 $[0.24, 1.71]$<br>Mercer 1997 19 299 18 312 10.9% 1.10 $[0.59, 2.06]$<br>Ovalle Salas 1997 7 42 6 43 4.2% 1.19 $[0.44, 3.26]$<br>Svare 1997a 2 30 2 37 1.2% 1.23 $[0.18, 8.25]$<br>Subtotal (95% CI) 4315 1986 100.0% 0.93 $[0.76, 1.14]$<br>Total events 276 138<br>Heterogeneily: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 8.73, df = 11 (P = 0.65); l <sup>2</sup> = 0%<br>Test for overall effect Z = 0.69 (P = 0.49)<br>1.2.2 All penicillin (excluding co-amoxiclav) versus placebo<br>Grable 1996 0 31 2 29 9.6% 0.19 $[0.01, 3.75]$<br>Johnston 1990 3 40 4 45 42.0% 0.84 $[0.20, 3.54]$<br>Kurki 1992 1 57 1 58 11.5% 1.02 $[0.07, 15.88]$<br>Lockwood 1993a 3 37 3 35 36.9% 0.35 $[0.20, 4.38]$<br>Subtotal (95% CI) 165 167 100.0% 0.78 $[0.31, 1.97]$<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 1.00, df = 3 (P = 0.80); l <sup>2</sup> = 0%<br>Test for overall effect Z = 0.53 (P = 0.60)<br>1.2.3 Beta lactum (including co-amoxiclav) versus placebo<br>Cox 1995 1 31 5 31 28.4% 0.20 $[0.02, 1.61]$<br>Keryon 2001 79 1205 41 613 71.6% 0.98 $[0.68, 1.41]$<br>Subtotal (95% CI) 1236 644 100.0% 0.62 $[0.15, 2.56]$<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.65; Ch <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect Z = 0.55 (P = 0.51)<br>1.2.4 Macrolide (including cythromycin) versus placebo<br>Garcia 1995 2 30 5 30 14.0% 0.40 $[0.08, 1.90]$<br>Keryon 2001 79 1190 41 613 54.1% 0.88 $[0.61, 1.28]$<br>Meccre 1997 2 50 6 20 7 50.0% 12.55 $[0.74, 21.25, 21]$<br>Mercer 1992 6 106 10 114 26.9% 0.65 $[0.24, 1.71]$<br>Mercer 1992 6 106 10 114 26.9% 0.65 $[0.24, 1.71]$<br>Mercer 1997 19 299 18 312 66.8% 1.10 $[0.59, 2.06]$<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 $[0.43, 3.18]$<br>Ware 1997 7 42 6 42 25.9% 1.17 $[0.43, 3.18]$<br>Subtotal (95% CI) 371 391 100.0% 1.13 $[0.68, 1.88]$<br>Total events 84 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect Z = 0.46 (P = 0.65)                                                                                                                                       |                                   |            |              |           |         |                       |                     |                     |
| MGCregor 1991 6 28 0 27 0.5% 12.55 [0.74, 212.52]  Mercer 1992 6 106 10 114 4.4% 0.65 [0.24, 1.71]  Mercer 1997 19 299 18 312 10.9% 1.10 [0.59, 2.06]  Ovalle Salas 1997 7 42 6 43 4.2% 1.19 [0.44, 3.26]  Sware 1997 2 30 2 37 1.2% 1.23 [0.18, 8.25]  Subtotal (95% CI) 4315 1986 100.0% 0.93 [0.76, 1.14]  Total events 276 138  Heterogeneity. Tau2 = 0.00; Ch2 = 8.73, df = 11 ( $P = 0.65$ ); l <sup>2</sup> = 0%<br>Test for overall effect: $Z = 0.69 (P = 0.49)$<br>1.2.2 All penicillin (excluding co-amoxiclav) versus placebo<br>Grable 199 0 3 4 0 4 45 42.0% 0.84 [0.20, 3.54]<br>Kurkl 1992 1 57 1 58 11.5% 1.02 [0.07, 15.8]<br>Lockwood 1993a 3 37 3 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% CI) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity. Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 1.00, df = 3 (P = 0.80); l <sup>2</sup> = 0%<br>Test for overall effect $Z = 0.53 (P = 0.60)$<br>1.2.3 Beta lactum (including co-amoxiclav) versus placebo<br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.38 [0.68], 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity. Tau <sup>2</sup> = 0.05; Ch <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect $Z = 0.56$ ( $P = 0.51$ )<br>1.2.4 Macrolide (including cythromycin) versus placebo<br>Carcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kerryon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Mercer 1992 1 6 106 114 26.9% 0.65 (0.24, 1.71]<br>Subtotal (95% CI) 1354 7284 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity. Tau <sup>2</sup> = 0.56 (P = 0.57)<br>1.2.5 Other antibiotic versus placebo<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Stals 1997 7 42 6 42 25.9% 1.171 [0.43, 3.18]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity. Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect Z = 0.46 (P = 0.65)<br>Heterogeneity. Tau <sup>2</sup> = 0.46 (P = 0.65)<br>Heterogeneity. Tau <sup>2</sup> = 0.46 (P = 0.65)<br>Heterogeneity                                                                                                                 |                                   |            |              | _         |         |                       |                     |                     |
| Mercer 1992 6 106 10 114 4.4% 0.65 [0.24, 1.71]<br>Mercer 1997 19 299 18 312 10.9% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 43 4.2% 1.19 [0.44, 3.26]<br>Svare 1997 2 30 2 37 1.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 4315 1986 100.0% 0.93 [0.66, 1.14]<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 8.73, 4 f = 11 ( $P = 0.65$ ); $I2 = 0\%$<br>Test for overall effect $Z = 0.69$ ( $P = 0.49$ )<br><b>1.2.2 All penicillin (excluding co-amoxiclav) versus placebo</b><br>Grable 1996 0 31 2 29 9.6% 0.19 [0.01, 3.75]<br>Johnston 1990 3 40 4 45 42.0% 0.84 [0.20, 3.54]<br>Kurki 1992 1 57 1 58 11.5% 1.02 [0.07, 15.88]<br>Lockwood 1993a 3 77 3 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% CI) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.00, d f = 3 ( $P = 0.80$ ); $I2 = 0\%$<br>Test for overall effect $Z = 0.53$ ( $P = 0.60$ )<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Keryon 2001 79 1205 41 613 71.6% 0.38 [0.66, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.05; Chi <sup>2</sup> = 2.17, df = 1 ( $P = 0.14$ ); $I2 = 54\%$<br>Test for overall effect $Z = 0.65$ ( $P = 0.51$ )<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Carcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Keryon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>MecGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 21.22, 2]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 ( $P = 0.19$ ); $I2 = 38\%$<br>Test for overall effect $Z = 0.55$ ( $P = 0.57$ )<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 ( $P = 0.99$ ); $I2 = 0\%$<br>Test for overall effect $Z = 0.46$ ( $P = 0.65$ )                                                                                                   |                                   |            |              |           |         |                       |                     |                     |
| Mercer 1997 19 299 18 312 10.9% $1.10 [0.59, 2.06]$<br>Ovalle Salas 1997 7 42 6 43 4.2% $1.29 [0.14, 3.26]$<br>Subtotal (95% CI) 4315 1986 100.0% 0.93 [0.76, 1.14]<br>Total events 276 138<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 8.73, df = 11 ( $P = 0.65$ ); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.69 ( $P = 0.49$ )<br>1.2.2 All penicillin (excluding co-amoxiclav) versus placebo<br>Grable 1996 0 31 2 29 9.6% 0.19 [0.01, 3.75]<br>Johnston 1990 3 40 4 45 42.0% 0.84 (0.20, 3.54]<br>Kurki 1992 1 57 1 58 11.5% 1.02 (0.07, 15.88]<br>Lockwood 1933 3 37 3 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% CI) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 1.00, df = 3 ( $P = 0.80$ ); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.53 ( $P = 0.60$ )<br>1.2.3 Beta lactum (including co-amoxiclav) versus placebo<br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Ch <sup>2</sup> = 2.17, df = 1 ( $P = 0.14$ ); l <sup>2</sup> = 54%<br>Test for overall effect Z = 0.55 ( $P = 0.51$ )<br>1.2.4 Macrolide (including erythromycin) versus placebo<br>Carcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>MecCreign 1991 6 28 0 27 5.0% 112.55 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>MecCreign 1991 6 28 0 27 5.0% 112.55 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.00% 0.40 [0.05, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.13 [0.68, 1.88]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Svare 1997a 7 42 6 42 25.9%<br>Svare 1997a                                      |                                   |            |              |           |         |                       |                     | -                   |
| Ovalle Salas 1997 7 42 6 43 4.2% 1.19 [0.44, 3.26]<br>Svare 1997 2 30 2 37 1.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 4315 1986 100.0% 0.93 [0.76, 1.14]<br>Total events 276 138<br>Heterogeneity: Tau <sup>2</sup> = 0.0; Chl <sup>2</sup> = 8.73, df = 11 ( $P$ = 0.65); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.69 ( $P$ = 0.49)<br><b>1.2.2 All penicilin (excluding co-amoxiclav) versus placebo</b><br>Grable 1996 0 31 2 29 9.6% 0.19 [0.01, 3.75]<br>Johnston 1990 3 40 4 45 42.0% 0.84 (0.20, 3.54]<br>Kurki 1992 1 57 1 58 11.5% 1.02 [0.07, 15.88]<br>Lockwood 1993a 3 37 3 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% CI) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chl <sup>2</sup> = 1.07, df = 3 ( $P$ = 0.80); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.53 ( $P$ = 0.60)<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kernyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br><b>Subtotal (95% CI)</b> 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 8 0 46<br>Heterogeneity: Tau <sup>2</sup> = 0.65 ( $P$ = 0.51)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>García 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kernyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.63 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.56 ( $P$ = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chl <sup>2</sup> = 0.02, df = 2 ( $P$ = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 ( $P$ = 0.65)                                                                                                                                                                                                                                                                                                              |                                   |            |              |           |         |                       |                     |                     |
| Sare 1997a 2 30 2 37 1.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 4315 1986 100.0% 0.93 [0.76, 1.14]<br>Total events 276 138<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 8.73, df = 11 (P = 0.65); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.69 (P = 0.49)<br>1.2.2 All penicillin (excluding co-amoxiclav) versus placebo<br>Grable 1996 0 31 2 29 9.6% 0.19 [0.01, 3.75]<br>Johnston 1990 3 40 4 45 42.0% 0.84 [0.20, 3.54]<br>Kurki 1992 1 57 1 58 11.5% 1.02 [0.07, 15.88]<br>Lockwood 1993a 3 37 3 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% CI) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.00, df = 3 (P = 0.80); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.53 (P = 0.60)<br>1.2.3 Beta lactum (including co-amoxiclav) versus placebo<br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 79 1205 464<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.65 (P = 0.51)<br>1.2.4 Macrolide (including erythromycin) versus placebo<br>Carcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 2.12.52]<br>Meterogeneity: Tau <sup>2</sup> = 0.7; Chi <sup>2</sup> = 4.22, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br>1.2.5 Other antibiotic versus placebo<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997 2 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Svare 1997 2 2 6 0.06 (P = 0.57)<br>1.2.5 Other antibiotic versus placebo<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997 2 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.06; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                     |                                   |            |              |           |         |                       |                     | +                   |
| Subtotal (95% C) 4315 1986 100.0% 0.93 [0.76, 1.14]<br>Total events 276 138<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 3.73, df = 11 ( $P = 0.65$ ); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.69 ( $P = 0.49$ )<br>1.2.2 All penicillin (excluding co-amoxiclav) versus placebo<br>Grable 1996 0 31 2 29 9.6% 0.19 [0.01, 3.75]<br>Johnston 1990 3 40 4 45 42.0% 0.84 [0.20, 3.54]<br>Kurki 1992 1 57 1 58 11.5% 1.02 [0.07, 15.88]<br>Subtotal (95% C) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.00, df = 3 ( $P = 0.80$ ); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.53 ( $P = 0.60$ )<br>1.2.3 Beta lactum (including co-amoxiclav) versus placebo<br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% C) 1226 6644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 ( $P = 0.14$ ); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.65 ( $P = 0.51$ )<br>1.2.4 Macrolide (including erythromycin) versus placebo<br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.11% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Subtotal (95% C) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.75; Chi <sup>2</sup> = 4.82, df = 3 ( $P = 0.19$ ); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 ( $P = 0.57$ )<br>1.2.5 Other antibiotic versus placebo<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Sials 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Subtotal (95% C) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.0; Chi <sup>2</sup> = 0.02, df = 2 ( $P = 0.99$ ); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 ( $P = 0.65$ )                                                                                                                                                                                                                                                                                                                                                                                             |                                   |            |              | -         |         |                       |                     |                     |
| Total events 276 138<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 8.73, df = 11 (P = 0.65); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.69 (P = 0.49)<br><b>1.2.2 All penicillin (excluding co-amoxiclav) versus placebo</b><br>Grable 1996 0 31 2 29 9.6% 0.19 [0.01, 3.75]<br>Johnston 1990 3 40 4 45 42.0% 0.84 [0.20, 3.54]<br>Lockwood 1993a 3 37 3 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% CI) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.00, df = 3 (P = 0.80); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.53 (P = 0.60)<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.65; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.65 (P = 0.51)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Carda 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1991 6 2 80 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1991 6 2 80 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1991 6 2 80 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1991 7 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.0; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                   |                                   | 2          |              | 2         |         |                       |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = 0.00: Chi <sup>2</sup> = 8.73, df = 11 (P = 0.65); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.69 (P = 0.49)<br><b>1.2.2 All penicillin (excluding co-amoxiclav) versus placebo</b><br>Grable 1996 0 31 2 29 9.6% 0.19 [0.01, 3.75]<br>Johnston 1990 3 40 4 45 42.0% 0.84 [0.20, 3.54]<br>Kurki 1992 1 57 1 58 11.5% 1.02 [0.07, 15.88]<br>Subtotal (95% CI) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 1 0<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.00, df = 3 (P = 0.80); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.53 (P = 0.60)<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.65 (P = 0.51)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kergron 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.555 [0.74, 212.552]<br>Subtotal (95% CI) 1354 784 100.0% 0.63 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997 2 9 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997 2 9 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |            | 4315         |           | 1986    | 100.0%                | 0.93 [0.76, 1.14]   | •                   |
| Test for overall effect: $Z = 0.69$ ( $P = 0.49$ )<br><b>1.2.2 All penicillin (excluding co-amoxiclav) versus placebo</b><br>Grable 1996 0 31 2 29 9.6% 0.19 [0.01, 3.75]<br>Johnston 1990 3 40 4 45 42.0% 0.84 [0.20, 3.54]<br>Kurki 1992 1 57 1 58 11.5% 1.02 [0.07, 15.88]<br>Lockwood 1993a 3 37 3 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% CI) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.00, df = 3 ( $P = 0.80$ ); $I^2 = 0$ %<br>Test for overall effect: $Z = 0.53$ ( $P = 0.60$ )<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.65 ( $P = 0.51$ )<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>MeGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212, 52]<br>Mercer 1992 6 106 10 114 26.9% 0.63 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84<br>56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 ( $P = 0.19$ ); $I^2 = 38\%$<br>Test for overall effect: $Z = 0.56 (P = 0.57)$<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 ( $P = 0.99$ ); $I^2 = 0\%$<br>Test for overall effect: $Z = 0.46 (P = 0.65)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |            |              |           |         |                       | 2 0.00              |                     |
| Grable 1996 0 31 2 29 9.6% 0.19 [0.01, 3.75]<br>Johnston 1990 3 40 4 45 42.0% 0.84 [0.20, 3.54]<br>Kurki 1992 1 57 1 58 11.5% 1.02 [0.07, 15.88]<br>Lockwood 1993a 3 37 3 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% CI) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.00, df = 3 (P = 0.80); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.53 (P = 0.60)<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.65 (P = 0.51)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 7 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |            |              |           | 11 (P = | = 0.65); I            | <sup>2</sup> = 0%   |                     |
| $ \begin{array}{cccc} binston 1990 & 3 & 40 & 4 & 45 & 42.0\% & 0.84 [0.20, 3.54] \\ Kurki 1992 & 1 & 57 & 1 & 58 & 11.5\% & 1.02 [0.07, 15.88] \\ boktood 1993a & 3 & 37 & 3 & 35 & 36.9\% & 0.95 [0.20, 4.38] \\ Subtotal (95% CI) & 165 & 167 & 100.0\% & 0.78 [0.31, 1.97] \\ Total events & 7 & 10 \\ Heterogeneity: Tau2 = 0.00; Chi2 = 1.00, df = 3 (P = 0.80); l2 = 0\% \\ Test for overall effect: Z = 0.53 (P = 0.60) \\ 1.2.3 Beta lactum (including co-amoxiclav) versus placebo \\ Cox 1995 & 1 & 31 & 5 & 31 & 28.4\% & 0.20 [0.02, 1.61] \\ Kenyon 2001 & 79 & 1205 & 41 & 613 & 71.6\% & 0.98 [0.68, 1.41] \\ Subtotal (95% CI) & 1236 & 644 & 100.0\% & 0.62 [0.15, 2.56] \\ Total events & 80 & 46 \\ Heterogeneity: Tau2 = 0.69; Chi2 = 2.17, df = 1 (P = 0.14); l2 = 54\% \\ Test for overall effect: Z = 0.65 (P = 0.51) \\ 1.2.4 Macrolide (including erythromycin) versus placebo \\ Garcia 1995 & 2 & 30 & 5 & 30 & 14.0\% & 0.40 [0.08, 1.90] \\ Kenyon 2001 & 70 & 1190 & 41 & 613 & 54.1\% & 0.88 [0.61, 1.28] \\ McGregor 1991 & 6 & 28 & 0 & 27 & 5.0\% & 12.55 [0.74, 212.52] \\ Subtotal (95% CI) & 1354 & 784 & 100.0\% & 0.63 [0.43, 1.60] \\ Total events & 84 & 56 \\ Heterogeneity: Tau2 = 0.17; Chi2 = 4.82, df = 3 (P = 0.19); l2 = 38\% \\ Test for overall effect: Z = 0.56 (P = 0.57) \\ 1.2.5 Other antibiotic versus placebo \\ Mercer 1997 & 19 & 299 & 18 & 312 & 66.8\% & 1.10 [0.59, 2.06] \\ Ovalle Salas 1997 & 7 & 42 & 6 & 42 & 25.9\% & 1.17 [0.43, 3.18] \\ Subtotal (95\% CI) & 371 & 391 & 100.0\% & 1.13 [0.68, 1.88] \\ Total events & 28 & 26 \\ Heterogeneity: Tau2 = 0.00; Chi2 = 0.02, df = 2 (P = 0.99); l2 = 0\% \\ Test for overall effect: Z = 0.46 (P = 0.65) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2.2 All penicillin (e           | excluding  | co-am        | oxiclav)  | versus  | placebo               |                     |                     |
| Kurki 1992 1 57 1 58 11.5% 1.02 [0.07, 15.88]<br>Lockwood 1993a 3 37 3 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% Cl) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.00, df = 3 (P = 0.80); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.53 (P = 0.60)<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% Cl) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.65; Ch <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.65 (P = 0.51)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Mecreer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% Cl) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Grable 1996                       | 0          | 31           | 2         | 29      | 9.6%                  | 0.19 [0.01, 3.75]   |                     |
| Lockwood 1993a 3 37 3 35 36.9% 0.95 [0.20, 4.38]<br>Subtotal (95% CI) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.00, df = 3 (P = 0.80); l <sup>2</sup> = 0%<br>Test for overall effect: $Z = 0.53$ (P = 0.60)<br>1.2.3 Beta lactum (including co-amoxiclav) versus placebo<br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.65 (P = 0.51)<br>1.2.4 Macrolide (including erythromycin) versus placebo<br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGreagor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>McGreagor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: $Z = 0.56$ (P = 0.57)<br>1.2.5 Other antibiotic versus placebo<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: $Z = 0.46$ (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Johnston 1990                     | 3          | 40           | 4         | 45      | 42.0%                 | 0.84 [0.20, 3.54]   |                     |
| Subtotal (95% CI) 165 167 100.0% 0.78 [0.31, 1.97]<br>Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.00, df = 3 (P = 0.80); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.53 (P = 0.60)<br>1.2.3 Beta lactum (including co-amoxiclav) versus placebo<br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.65 (P = 0.51)<br>1.2.4 Macrolide (including erythromycin) versus placebo<br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br>1.2.5 Other antibiotic versus placebo<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Sware 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997 19 29 18 312 66.8% 1.10 [0.59, 2.06]<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kurki 1992                        | 1          | 57           | 1         | 58      | 11.5%                 | 1.02 [0.07, 15.88]  |                     |
| Total events 7 10<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.00, df = 3 (P = 0.80); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.53 (P = 0.60)<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.65 (P = 0.51)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: $Z = 0.56 (P = 0.57)$<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lockwood 1993a                    | 3          | 37           | 3         | 35      | 36.9%                 | 0.95 [0.20, 4.38]   |                     |
| The theorements: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.00, df = 3 (P = 0.80); l <sup>2</sup> = 0%<br>Test for overall effect: $Z = 0.53$ (P = 0.60)<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: $Z = 0.65$ (P = 0.51)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: $Z = 0.56$ (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Sware 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: $Z = 0.46$ (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Subtotal (95% CI)                 |            | 165          |           | 167     | 100.0%                | 0.78 [0.31, 1.97]   | +                   |
| Test for overall effect: $Z = 0.53$ (P = 0.60)<br><b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br><b>Subtotal (95% CI)</b> 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.65; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: $Z = 0.65$ (P = 0.51)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br><b>Subtotal (95% CI)</b> 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: $Z = 0.56$ (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: $Z = 0.46$ (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total events                      | 7          |              | 10        |         |                       |                     |                     |
| <b>1.2.3 Beta lactum (including co-amoxiclav) versus placebo</b><br>Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br><b>Subtotal (95% CI)</b> 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.65 (P = 0.51)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>García 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heterogeneity: Tau <sup>2</sup> = | = 0.00; Ch | $hi^2 = 1.0$ | 00, df =  | 3 (P =  | 0.80); I2             | = 0%                |                     |
| Cox 1995 1 31 5 31 28.4% 0.20 [0.02, 1.61]<br>Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.65 (P = 0.51)<br>1.2.4 Macrolide (including erythromycin) versus placebo<br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.555 [0.74, 212.52]<br>McGregor 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br>1.2.5 Other antibiotic versus placebo<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test for overall effect           | Z = 0.53   | P = 0        | .60)      |         |                       |                     |                     |
| Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: $Z = 0.65$ (P = 0.51)<br>1.2.4 Macrolide (including erythromycin) versus placebo<br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Mecregor 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: $Z = 0.56$ (P = 0.57)<br>1.2.5 Other antibiotic versus placebo<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Sals 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: $Z = 0.46$ (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2.3 Beta lactum (ir             | cluding o  | o-amo        | xiclav) v | ersus   | placebo               |                     |                     |
| Kenyon 2001 79 1205 41 613 71.6% 0.98 [0.68, 1.41]<br>Subtotal (95% CI) 1236 644 100.0% 0.62 [0.15, 2.56]<br>Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: $Z = 0.65$ (P = 0.51)<br>1.2.4 Macrolide (including erythromycin) versus placebo<br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: $Z = 0.56$ (P = 0.57)<br>1.2.5 Other antibiotic versus placebo<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: $Z = 0.46$ (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cox 1995                          | 1          | 31           | 5         | 31      | 28.4%                 | 0.20 [0.02, 1.61]   |                     |
| Total events 80 46<br>Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.65 (P = 0.51)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kenyon 2001                       | 79         | 1205         | 41        | 613     | 71.6%                 |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = 0.69; Chi <sup>2</sup> = 2.17, df = 1 (P = 0.14); l <sup>2</sup> = 54%<br>Test for overall effect: Z = 0.65 (P = 0.51)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.555 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Subtotal (95% CI)                 |            | 1236         |           | 644     | 100.0%                | 0.62 [0.15, 2.56]   | -                   |
| Test for overall effect: $Z = 0.65$ (P = 0.51)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: $Z = 0.56$ (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: $Z = 0.46$ (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total events                      | 80         |              | 46        |         |                       |                     |                     |
| Test for overall effect: $Z = 0.65$ (P = 0.51)<br><b>1.2.4 Macrolide (including erythromycin) versus placebo</b><br>Garcia 1995 2 30 5 30 14.0% 0.40 [0.08, 1.90]<br>Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>McGregor 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: $Z = 0.56$ (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: $Z = 0.46$ (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heterogeneity: Tau <sup>2</sup> = | = 0.69; Ch | $hi^2 = 2.1$ | 17. df =  | 1 (P =  | 0.14); I <sup>2</sup> | = 54%               |                     |
| Garcia 1995       2       30       5       30       14.0%       0.40       [0.08, 1.90]         Kenyon 2001       70       1190       41       613       54.1%       0.88       [0.61, 1.28]         McGregor 1991       6       28       0       27       5.0%       12.55       [0.74, 212.52]         McGregor 1992       6       106       101       114       26.9%       0.65       [0.24, 1.71]         Subtotal (95% CI)       1354       784       100.0%       0.83       [0.43, 1.60]         Total events       84       56         Heterogeneity: Tau <sup>2</sup> = 0.17; Chl <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%         Test for overall effect: Z = 0.56 (P = 0.57)         12.5 Other antibiotic versus placebo         Mercer 1997       19       29       18       312       66.8%       1.10 [0.59, 2.06]         Ovalle Salas 1997       7       42       6       42       25.9%       1.17 [0.43, 3.18]         Svare 1997a       2       30       2       37       7.2%       1.23 [0.18, 8.25]         Subtotal (95% CI)       371       391       100.0%       1.13 [0.68, 1.88]       130         Total events       28       26       26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |            |              |           |         |                       |                     |                     |
| Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); I <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); I <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2.4 Macrolide (incl             | uding ery  | thromy       | cin) ver  | sus pla | icebo                 |                     |                     |
| Kenyon 2001 70 1190 41 613 54.1% 0.88 [0.61, 1.28]<br>McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); I <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); I <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |            |              |           |         |                       | 0.40 [0.08, 1.90]   |                     |
| McGregor 1991 6 28 0 27 5.0% 12.55 [0.74, 212.52]<br>Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% Cl) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br><b>Subtotal (95% Cl) 371 391 100.0% 1.13 [0.68, 1.88]</b><br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |            |              |           |         |                       |                     |                     |
| Mercer 1992 6 106 10 114 26.9% 0.65 [0.24, 1.71]<br>Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17: Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br>1.2.5 Other antibiotic versus placebo<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | 6          | 28           | 0         | 27      |                       |                     |                     |
| Subtotal (95% CI) 1354 784 100.0% 0.83 [0.43, 1.60]<br>Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); l <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br>1.2.5 Other antibiotic versus placebo<br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | -          |              |           |         |                       |                     |                     |
| Total events 84 56<br>Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); I <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br><b>Subtotal (95% Cl)</b> 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); I <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |            |              |           |         |                       |                     | +                   |
| Heterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 4.82, df = 3 (P = 0.19); I <sup>2</sup> = 38%<br>Test for overall effect: Z = 0.56 (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br><b>Subtotal (95% Cl) 371 391 100.0% 1.13 [0.68, 1.88]</b><br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); I <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total events                      | 84         |              | 56        |         |                       |                     | 1                   |
| Test for overall effect: Z = 0.56 (P = 0.57)<br><b>1.2.5 Other antibiotic versus placebo</b><br>Mercer 1997 19 299 18 312 66.8% 1.10 [0.59, 2.06]<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br><b>Subtotal (95% Cl) 371 391 100.0% 1.13 [0.68, 1.88]</b><br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); I <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |            | $1i^2 = 4.8$ |           | 3 (P =  | 0.19) 12              | = 38%               |                     |
| Mercer 1997 19 299 18 312 66.8% 1.10 $[0.59, 2.06]$<br>Ovalle Salas 1997 7 42 6 42 25.9% 1.17 $[0.43, 3.18]$<br>Svare 1997a 2 30 2 37 7.2% 1.23 $[0.18, 8.25]$<br>Subtotal (95% CI) 371 391 100.0% 1.13 $[0.68, 1.88]$<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); I <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |            |              |           | . (     |                       |                     |                     |
| Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% Cl) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.5 Other antibiot              | ic versus  | placebo      |           |         |                       |                     |                     |
| Ovalle Salas 1997 7 42 6 42 25.9% 1.17 [0.43, 3.18]<br>Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% Cl) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); I <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |            |              |           | 312     | 66.8%                 | 1.10 (0.59, 2.06)   | -                   |
| Svare 1997a 2 30 2 37 7.2% 1.23 [0.18, 8.25]<br>Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); I <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |            |              |           |         |                       |                     | _ <b>_</b> _        |
| Subtotal (95% CI) 371 391 100.0% 1.13 [0.68, 1.88]<br>Total events 28 26<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); I <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |            |              |           |         |                       |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.02, df = 2 (P = 0.99); I <sup>2</sup> = 0%<br>Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Subtotal (95% CI)                 | 0.750      |              |           |         |                       |                     | +                   |
| Test for overall effect: Z = 0.46 (P = 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |            |              |           | 1010    | 1022-02               | 1000                |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |            |              |           | 2 (P =  | 0.99); l <sup>2</sup> | = 0%                |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test for overall effect           | Z = 0.46   | 5 (P = 0)    | .65)      |         |                       |                     |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |            |              |           |         |                       |                     | 0.001 0.1 1 10 100  |

### Figure 11: Neonatal necrotising enterocolitis

| Study or Subgroup                                                                                                                                                                                                                                                                                          | Treatm                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cont                                                                     |                                                            | Walaba                                                                                       | Risk Ratio                                                                                                                                                                            | Risk Ratio                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Events                                                                   | Total                                                      | Weight                                                                                       | M-H, Random, 95% CI                                                                                                                                                                   | M-H, Random, 95% CI                                                                                             |
| 1.5.1 Any antibiotic                                                                                                                                                                                                                                                                                       |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          | 1212                                                       |                                                                                              |                                                                                                                                                                                       |                                                                                                                 |
| Cox 1995                                                                                                                                                                                                                                                                                                   | 5                                                                                                    | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                        | 31                                                         | 3.1%                                                                                         | 11.00 [0.63, 190.79]                                                                                                                                                                  |                                                                                                                 |
| Fuhr 2006                                                                                                                                                                                                                                                                                                  | 1                                                                                                    | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                        | 58                                                         | 4.8%                                                                                         | 0.41 [0.04, 3.83]                                                                                                                                                                     |                                                                                                                 |
| Grable 1996                                                                                                                                                                                                                                                                                                | 1                                                                                                    | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                        | 29                                                         | 3.3%                                                                                         | 0.94 [0.06, 14.27]                                                                                                                                                                    |                                                                                                                 |
| Johnston 1990                                                                                                                                                                                                                                                                                              | 2                                                                                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                        | 45                                                         | 7.2%                                                                                         | 0.75 [0.13, 4.26]                                                                                                                                                                     |                                                                                                                 |
| Kenyon 2001                                                                                                                                                                                                                                                                                                | 55                                                                                                   | 3584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                        | 1225                                                       | 19.2%                                                                                        | 3.13 [1.35, 7.26]                                                                                                                                                                     |                                                                                                                 |
| Lockwood 1993a                                                                                                                                                                                                                                                                                             | 2                                                                                                    | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                        | 35                                                         | 2.8%                                                                                         | 4.74 [0.24, 95.33]                                                                                                                                                                    |                                                                                                                 |
| McGregor 1991                                                                                                                                                                                                                                                                                              | 2                                                                                                    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                        | 27                                                         | 8.2%                                                                                         | 0.52 [0.10, 2.60]                                                                                                                                                                     |                                                                                                                 |
| Mercer 1992                                                                                                                                                                                                                                                                                                | 8                                                                                                    | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                       | 114                                                        | 18.9%                                                                                        | 0.72 [0.31, 1.69]                                                                                                                                                                     |                                                                                                                 |
| Mercer 1997                                                                                                                                                                                                                                                                                                | 24                                                                                                   | 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                       | 312                                                        | 27.6%                                                                                        | 0.93 (0.55, 1.57)                                                                                                                                                                     | +                                                                                                               |
| Ovalle Salas 1997                                                                                                                                                                                                                                                                                          | 0                                                                                                    | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                        | 43                                                         | 2.5%                                                                                         | 0.34 [0.01, 8.14]                                                                                                                                                                     |                                                                                                                 |
| Svare 1997a                                                                                                                                                                                                                                                                                                | 0                                                                                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                        | 37                                                         | 2.5%                                                                                         | 0.41 [0.02, 9.68]                                                                                                                                                                     |                                                                                                                 |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                          |                                                                                                      | 4273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | 1956                                                       | 100.0%                                                                                       | 1.09 [0.65, 1.83]                                                                                                                                                                     | •                                                                                                               |
| Total events                                                                                                                                                                                                                                                                                               | 100                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58                                                                       |                                                            |                                                                                              |                                                                                                                                                                                       |                                                                                                                 |
| Heterogeneity: Tau <sup>2</sup> +                                                                                                                                                                                                                                                                          | = 0.18; Ch                                                                                           | $i^2 = 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .98, df =                                                                | = 10 (P                                                    | = 0.17);                                                                                     | $l^2 = 2.8\%$                                                                                                                                                                         |                                                                                                                 |
| Test for overall effect                                                                                                                                                                                                                                                                                    | Z = 0.32                                                                                             | (P = 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .75)                                                                     |                                                            |                                                                                              |                                                                                                                                                                                       |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                            |                                                                                              |                                                                                                                                                                                       |                                                                                                                 |
| 1.5.2 All penicillin (                                                                                                                                                                                                                                                                                     | excluding                                                                                            | co-am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          | versus                                                     | placebo                                                                                      |                                                                                                                                                                                       |                                                                                                                 |
| Fuhr 2006                                                                                                                                                                                                                                                                                                  | 1                                                                                                    | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                        | 58                                                         | 31.3%                                                                                        | 0.41 [0.04, 3.83]                                                                                                                                                                     |                                                                                                                 |
| Johnston 1990                                                                                                                                                                                                                                                                                              | 2                                                                                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                        | 45                                                         | 51.5%                                                                                        | 0.75 [0.13, 4.26]                                                                                                                                                                     |                                                                                                                 |
| Lockwood 1993a                                                                                                                                                                                                                                                                                             | 2                                                                                                    | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                        | 35                                                         | 17.3%                                                                                        | 4.74 [0.24, 95.33]                                                                                                                                                                    |                                                                                                                 |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                          |                                                                                                      | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | 138                                                        | 100.0%                                                                                       | 0.85 [0.25, 2.97]                                                                                                                                                                     | +                                                                                                               |
| Total events                                                                                                                                                                                                                                                                                               | 5                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                        |                                                            |                                                                                              |                                                                                                                                                                                       |                                                                                                                 |
| Heterogeneity: Tau2 =                                                                                                                                                                                                                                                                                      | = 0.00; Ch                                                                                           | $i^2 = 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71, df =                                                                 | 2 (P =                                                     | 0.43); I2                                                                                    | = 0%                                                                                                                                                                                  |                                                                                                                 |
| Test for overall effect                                                                                                                                                                                                                                                                                    | Z = 0.25                                                                                             | (P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .80)                                                                     |                                                            |                                                                                              |                                                                                                                                                                                       |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                            |                                                                                              |                                                                                                                                                                                       |                                                                                                                 |
| 1.5.3 Beta lactum (in                                                                                                                                                                                                                                                                                      | cluding c                                                                                            | o-amo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | xiclav) v                                                                | ersus                                                      | placebo                                                                                      |                                                                                                                                                                                       | Contraction of the second s |
| Cox 1995                                                                                                                                                                                                                                                                                                   | 5                                                                                                    | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                        | 31                                                         | 15.0%                                                                                        | 11.00 [0.63, 190.79]                                                                                                                                                                  |                                                                                                                 |
| Kenyon 2001                                                                                                                                                                                                                                                                                                | 24                                                                                                   | 1205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                        | 613                                                        | 85.0%                                                                                        | 4.07 [1.23, 13.46]                                                                                                                                                                    |                                                                                                                 |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                          |                                                                                                      | 1236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | 644                                                        | 100.0%                                                                                       | 4.72 [1.57, 14.23]                                                                                                                                                                    | •                                                                                                               |
| Total events                                                                                                                                                                                                                                                                                               | 29                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                        |                                                            |                                                                                              |                                                                                                                                                                                       |                                                                                                                 |
| Heterogeneity: Tau <sup>2</sup>                                                                                                                                                                                                                                                                            | = 0.00; Ch                                                                                           | $i^2 = 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40, df =                                                                 | 1 (P =                                                     | 0.53); I2                                                                                    | = 0%                                                                                                                                                                                  |                                                                                                                 |
| Test for overall effect                                                                                                                                                                                                                                                                                    | : Z = 2.76                                                                                           | (P = 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .006)                                                                    |                                                            |                                                                                              |                                                                                                                                                                                       |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                            |                                                                                              |                                                                                                                                                                                       |                                                                                                                 |
| 1.5.4 Macrolide (incl                                                                                                                                                                                                                                                                                      | uding ery                                                                                            | thromy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cin) ver                                                                 | sus pla                                                    | cebo                                                                                         |                                                                                                                                                                                       |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                            |                                                                                              |                                                                                                                                                                                       |                                                                                                                 |
| Kenvon 2001                                                                                                                                                                                                                                                                                                | 11                                                                                                   | 1190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                        | 613                                                        | 26.3%                                                                                        | 1.89 [0.53, 6.75]                                                                                                                                                                     |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                            | 11<br>2                                                                                              | 1190<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                        | 613<br>27                                                  | 26.3% 16.5%                                                                                  | 1.89 [0.53, 6.75]<br>0.52 [0.10, 2.60]                                                                                                                                                |                                                                                                                 |
| McGregor 1991                                                                                                                                                                                                                                                                                              |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                            |                                                                                              |                                                                                                                                                                                       | -                                                                                                               |
| McGregor 1991<br>Mercer 1992                                                                                                                                                                                                                                                                               | 2                                                                                                    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                        | 27<br>114                                                  | 16.5%                                                                                        | 0.52 [0.10, 2.60]                                                                                                                                                                     |                                                                                                                 |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)                                                                                                                                                                                                                                                          | 2                                                                                                    | 26<br>106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                        | 27<br>114                                                  | 16.5%<br>57.2%                                                                               | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]                                                                                                                                                |                                                                                                                 |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events                                                                                                                                                                                                                                          | 2<br>8<br>21                                                                                         | 26<br>106<br>1322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>12<br>19                                                            | 27<br>114<br>754                                           | 16.5%<br>57.2%<br>100.0%                                                                     | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]                                                                                                                           | +                                                                                                               |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> :                                                                                                                                                                                                     | 2<br>8<br>21<br>= 0.01; Ch                                                                           | 26<br>106<br>1322<br>$hi^2 = 2.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>12<br>19<br>03, df =                                                | 27<br>114<br>754                                           | 16.5%<br>57.2%<br>100.0%                                                                     | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]                                                                                                                           | +                                                                                                               |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> :                                                                                                                                                                                                     | 2<br>8<br>21<br>= 0.01; Ch                                                                           | 26<br>106<br>1322<br>$hi^2 = 2.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>12<br>19<br>03, df =                                                | 27<br>114<br>754                                           | 16.5%<br>57.2%<br>100.0%                                                                     | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]                                                                                                                           | •                                                                                                               |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect                                                                                                                                                                          | 2<br>8<br>21<br>= 0.01; Ch<br>: Z = 0.39                                                             | 26<br>106<br>1322<br>$hi^2 = 2.0$<br>(P = 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>12<br>19<br>03, df =<br>.70)                                        | 27<br>114<br>754                                           | 16.5%<br>57.2%<br>100.0%                                                                     | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]                                                                                                                           | •                                                                                                               |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>1.5.5 Other antibiot                                                                                                                                                  | 2<br>8<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus                                                      | 26<br>106<br>1322<br>$hi^2 = 2.0$<br>(P = 0)<br>placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4<br>12<br>19<br>03, df =<br>.70)                                        | 27<br>114<br>754<br>2 (P =                                 | 16.5%<br>57.2%<br>100.0%<br>0.36); l <sup>2</sup>                                            | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%                                                                                                                   | *                                                                                                               |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>1.5.5 Other antibiot<br>Grable 1996                                                                                                                                   | 2<br>8<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1                                                 | 26<br>106<br>1322<br>$hi^2 = 2.0$<br>P = 0<br>placebo<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4<br>12<br>19<br>03, df =<br>.70)                                        | 27<br>114<br>754<br>2 (P =<br>29                           | 16.5%<br>57.2%<br>100.0%<br>0.36); l <sup>2</sup><br>3.4%                                    | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%                                                                                                                   |                                                                                                                 |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup><br>Test for overall effect<br>1.5.5 Other antibiot<br>Grable 1996<br>Mercer 1997                                                                                                                      | 2<br>8<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24                                           | 26<br>106<br>1322<br>$ni^2 = 2.0$<br>(P = 0)<br>placebo<br>31<br>299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4<br>12<br>19<br>03, df =<br>.70)<br>1<br>27                             | 27<br>114<br><b>754</b><br>2 (P =<br>29<br>312             | 16.5%<br>57.2%<br>100.0%<br>0.36); l <sup>2</sup><br>3.4%<br>91.5%                           | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]                                                                        |                                                                                                                 |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup><br>Test for overall effect<br><b>1.5.5 Other antibiot</b><br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997                                                                                          | 2<br>8<br>= 0.01: Ch<br>: Z = 0.39<br>ic versus<br>1<br>24<br>0                                      | $26 \\ 106 \\ 1322 \\ 0 (P = 0) \\ 0 (P = 0) \\ 0 \\ 0 \\ 1299 \\ 42 \\ 0 \\ 1299 \\ 42 \\ 0 \\ 120 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ $ | 4<br>12<br>19<br>03, df =<br>.70)<br>1<br>27<br>1                        | 27<br>114<br><b>754</b><br>2 (P =<br>29<br>312<br>43       | 16.5%<br>57.2%<br>100.0%<br>0.36); l <sup>2</sup><br>3.4%<br>91.5%<br>2.5%                   | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]                                                   |                                                                                                                 |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><b>1.5.5 Other antibiot</b><br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997                                                                                        | 2<br>8<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24                                           | $26 \\ 106 \\ 1322 \\ hi^2 = 2.1 \\ 0 (P = 0) \\ placebo \\ 31 \\ 299 \\ 42 \\ 30 \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4<br>12<br>19<br>03, df =<br>.70)<br>1<br>27                             | 27<br>114<br><b>754</b><br>2 (P =<br>29<br>312<br>43<br>37 | 16.5%<br>57.2%<br>100.0%<br>0.36); l <sup>2</sup><br>3.4%<br>91.5%<br>2.5%<br>2.5%           | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]<br>0.41 [0.02, 9.68]                              |                                                                                                                 |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br><b>1.5.5 Other antibiot</b><br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997<br>Svare 1997a<br>Subtotal (95% CI)                                                    | 2<br>8<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24<br>0<br>0                                 | $26 \\ 106 \\ 1322 \\ 0 (P = 0) \\ 0 (P = 0) \\ 0 \\ 0 \\ 1299 \\ 42 \\ 0 \\ 1299 \\ 42 \\ 0 \\ 120 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ $ | 4<br>12<br>19<br>03, df =<br>.70)<br>1<br>27<br>1<br>1                   | 27<br>114<br><b>754</b><br>2 (P =<br>29<br>312<br>43<br>37 | 16.5%<br>57.2%<br>100.0%<br>0.36); l <sup>2</sup><br>3.4%<br>91.5%<br>2.5%                   | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]                                                   |                                                                                                                 |
| Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><b>1.5.5 Other antibiot</b><br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997<br>Svare 1997a<br>Subtotal (95% CI)<br>Total events                     | 2<br>8<br>21<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24<br>0<br>0<br>25                     | $26 \\ 106 \\ 1322 \\ 0 (P = 0) \\ 0 (P = 0) \\ 0 \\ 1322 \\ 0 (P = 0) \\ 0 \\ 1322 \\ 0 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 1322 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 102 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>12<br>19<br>03, df =<br>.70)<br>1<br>27<br>1<br>1<br>30             | 27<br>114<br>754<br>2 (P =<br>29<br>312<br>43<br>37<br>421 | 16.5%<br>57.2%<br>100.0%<br>0.36); I <sup>2</sup><br>3.4%<br>91.5%<br>2.5%<br>2.5%<br>100.0% | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]<br>0.41 [0.02, 9.68]<br>0.89 [0.54, 1.47]         |                                                                                                                 |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> :<br>Test for overall effect<br><b>1.5.5 Other antibiot</b><br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997<br>Svare 1997a<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> | 2<br>8<br>211<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24<br>0<br>0<br>0<br>25<br>= 0.00; Ch | $26 \\ 106 \\ 1322 \\ 1322 \\ 0 (P = 0) \\ 0 (P = 0) \\ 0 \\ 1322 \\ 0 \\ 0 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>12<br>19<br>03, df =<br>.70)<br>1<br>27<br>1<br>1<br>30<br>51, df = | 27<br>114<br>754<br>2 (P =<br>29<br>312<br>43<br>37<br>421 | 16.5%<br>57.2%<br>100.0%<br>0.36); I <sup>2</sup><br>3.4%<br>91.5%<br>2.5%<br>2.5%<br>100.0% | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]<br>0.41 [0.02, 9.68]<br>0.89 [0.54, 1.47]         |                                                                                                                 |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><b>1.5.5 Other antibiot</b><br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997<br>Svare 1997a<br><b>Subtotal (95% CI)</b><br>Total events                             | 2<br>8<br>211<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24<br>0<br>0<br>0<br>25<br>= 0.00; Ch | $26 \\ 106 \\ 1322 \\ 1322 \\ 0 (P = 0) \\ 0 (P = 0) \\ 0 \\ 1322 \\ 0 \\ 0 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>12<br>19<br>03, df =<br>.70)<br>1<br>27<br>1<br>1<br>30<br>51, df = | 27<br>114<br>754<br>2 (P =<br>29<br>312<br>43<br>37<br>421 | 16.5%<br>57.2%<br>100.0%<br>0.36); I <sup>2</sup><br>3.4%<br>91.5%<br>2.5%<br>2.5%<br>100.0% | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]<br>0.41 [0.02, 9.68]<br>0.89 [0.54, 1.47]         |                                                                                                                 |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> :<br>Test for overall effect<br><b>1.5.5 Other antibiot</b><br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997<br>Svare 1997a<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> | 2<br>8<br>211<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24<br>0<br>0<br>0<br>25<br>= 0.00; Ch | $26 \\ 106 \\ 1322 \\ 1322 \\ 0 (P = 0) \\ 0 (P = 0) \\ 0 \\ 1322 \\ 0 \\ 0 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>12<br>19<br>03, df =<br>.70)<br>1<br>27<br>1<br>1<br>30<br>51, df = | 27<br>114<br>754<br>2 (P =<br>29<br>312<br>43<br>37<br>421 | 16.5%<br>57.2%<br>100.0%<br>0.36); I <sup>2</sup><br>3.4%<br>91.5%<br>2.5%<br>2.5%<br>100.0% | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]<br>0.41 [0.02, 9.68]<br>0.89 [0.54, 1.47]         |                                                                                                                 |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> :<br>Test for overall effect<br><b>1.5.5 Other antibiot</b><br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997<br>Svare 1997a<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> | 2<br>8<br>211<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24<br>0<br>0<br>0<br>25<br>= 0.00; Ch | $26 \\ 106 \\ 1322 \\ 1322 \\ 0 (P = 0) \\ 0 (P = 0) \\ 0 \\ 1322 \\ 0 \\ 0 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>12<br>19<br>03, df =<br>.70)<br>1<br>27<br>1<br>1<br>30<br>51, df = | 27<br>114<br>754<br>2 (P =<br>29<br>312<br>43<br>37<br>421 | 16.5%<br>57.2%<br>100.0%<br>0.36); I <sup>2</sup><br>3.4%<br>91.5%<br>2.5%<br>2.5%<br>100.0% | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]<br>0.41 [0.02, 9.68]<br>0.89 [0.54, 1.47]<br>= 0% |                                                                                                                 |
| McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> :<br>Test for overall effect<br><b>1.5.5 Other antibiot</b><br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997<br>Svare 1997a<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> | 2<br>8<br>211<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24<br>0<br>0<br>0<br>25<br>= 0.00; Ch | $26 \\ 106 \\ 1322 \\ 1322 \\ 0 (P = 0) \\ 0 (P = 0) \\ 0 \\ 1322 \\ 0 \\ 0 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 132 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>12<br>19<br>03, df =<br>.70)<br>1<br>27<br>1<br>1<br>30<br>51, df = | 27<br>114<br>754<br>2 (P =<br>29<br>312<br>43<br>37<br>421 | 16.5%<br>57.2%<br>100.0%<br>0.36); I <sup>2</sup><br>3.4%<br>91.5%<br>2.5%<br>2.5%<br>100.0% | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]<br>0.41 [0.02, 9.68]<br>0.89 [0.54, 1.47]<br>= 0% |                                                                                                                 |

#### Figure 12: Neonatal necrotising enterocolitis

| Study or Subgroup                                                                                                                                                                                                                                                                                                                              | Treatm                                                                                               |                                                                                                                                                 | Conti                                                                               |                                                                   | 10.000                                                                                                | Risk Ratio                                                                                                                                                                            | Risk Ratio          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                 | Events                                                                              | Total                                                             | Weight                                                                                                | M-H, Random, 95% CI                                                                                                                                                                   | M-H, Random, 95% CI |
| 1.5.1 Any antibiotic                                                                                                                                                                                                                                                                                                                           |                                                                                                      |                                                                                                                                                 |                                                                                     |                                                                   |                                                                                                       |                                                                                                                                                                                       |                     |
| Cox 1995                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                    | 31                                                                                                                                              | 0                                                                                   | 31                                                                | 3.1%                                                                                                  |                                                                                                                                                                                       |                     |
| Fuhr 2006                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                    | 47                                                                                                                                              | 3                                                                                   | 58                                                                | 4.8%                                                                                                  | 0.41 [0.04, 3.83]                                                                                                                                                                     |                     |
| Grable 1996                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                    | 31                                                                                                                                              | 1                                                                                   | 29                                                                | 3.3%                                                                                                  | 0.94 [0.06, 14.27]                                                                                                                                                                    |                     |
| Johnston 1990                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                    | 40                                                                                                                                              | 3                                                                                   | 45                                                                | 7.2%                                                                                                  | 0.75 [0.13, 4.26]                                                                                                                                                                     |                     |
| Kenyon 2001                                                                                                                                                                                                                                                                                                                                    | 55                                                                                                   | 3584                                                                                                                                            | 6                                                                                   | 1225                                                              | 19.2%                                                                                                 | 3.13 [1.35, 7.26]                                                                                                                                                                     |                     |
| Lockwood 1993a                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                    | 37                                                                                                                                              | 0                                                                                   | 35                                                                | 2.8%                                                                                                  | 4.74 [0.24, 95.33]                                                                                                                                                                    |                     |
| McGregor 1991                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                    | 26                                                                                                                                              | 4                                                                                   | 27                                                                | 8.2%                                                                                                  | 0.52 [0.10, 2.60]                                                                                                                                                                     |                     |
| Mercer 1992                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                    | 106                                                                                                                                             | 12                                                                                  | 114                                                               | 18.9%                                                                                                 | 0.72 [0.31, 1.69]                                                                                                                                                                     |                     |
| Mercer 1997                                                                                                                                                                                                                                                                                                                                    | 24                                                                                                   | 299                                                                                                                                             | 27                                                                                  | 312                                                               | 27.6%                                                                                                 | 0.93 [0.55, 1.57]                                                                                                                                                                     | +                   |
| Ovalle Salas 1997                                                                                                                                                                                                                                                                                                                              | 0                                                                                                    | 42                                                                                                                                              | 1                                                                                   | 43                                                                | 2.5%                                                                                                  | 0.34 [0.01, 8.14]                                                                                                                                                                     |                     |
| Svare 1997a                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                    | 30                                                                                                                                              | 1                                                                                   | 37                                                                | 2.5%                                                                                                  | 0.41 [0.02, 9.68]                                                                                                                                                                     |                     |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                              |                                                                                                      | 4273                                                                                                                                            |                                                                                     | 1956                                                              | 100.0%                                                                                                | 1.09 [0.65, 1.83]                                                                                                                                                                     | +                   |
| Total events                                                                                                                                                                                                                                                                                                                                   | 100                                                                                                  |                                                                                                                                                 | 58                                                                                  |                                                                   |                                                                                                       |                                                                                                                                                                                       |                     |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                              | = 0.18; Ch                                                                                           | $h^2 = 13$                                                                                                                                      | .98, df =                                                                           | = 10 (P                                                           | = 0.17);                                                                                              | $l^2 = 2.8\%$                                                                                                                                                                         |                     |
| Test for overall effect                                                                                                                                                                                                                                                                                                                        | Z = 0.32                                                                                             | (P = 0)                                                                                                                                         | .75)                                                                                |                                                                   |                                                                                                       |                                                                                                                                                                                       |                     |
|                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                 |                                                                                     |                                                                   |                                                                                                       |                                                                                                                                                                                       |                     |
| 1.5.2 All penicillin (e                                                                                                                                                                                                                                                                                                                        | -                                                                                                    |                                                                                                                                                 |                                                                                     |                                                                   | -                                                                                                     |                                                                                                                                                                                       |                     |
| Fuhr 2006                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                    | 47                                                                                                                                              | 3                                                                                   | 58                                                                | 31.3%                                                                                                 | 0.41 [0.04, 3.83]                                                                                                                                                                     |                     |
| Johnston 1990                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                    | 40                                                                                                                                              | 3                                                                                   | 45                                                                | 51.5%                                                                                                 | 0.75 [0.13, 4.26]                                                                                                                                                                     |                     |
| Lockwood 1993a                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                    | 37                                                                                                                                              | 0                                                                                   | 35                                                                | 17.3%                                                                                                 | 4.74 [0.24, 95.33]                                                                                                                                                                    |                     |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                              |                                                                                                      | 124                                                                                                                                             |                                                                                     | 138                                                               | 100.0%                                                                                                | 0.85 [0.25, 2.97]                                                                                                                                                                     | -                   |
| Total events                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                    |                                                                                                                                                 | 6                                                                                   |                                                                   |                                                                                                       |                                                                                                                                                                                       |                     |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                              |                                                                                                      |                                                                                                                                                 |                                                                                     | 2 (P =                                                            | 0.43); l <sup>2</sup>                                                                                 | = 0%                                                                                                                                                                                  |                     |
| Test for overall effect                                                                                                                                                                                                                                                                                                                        | Z = 0.25                                                                                             | (P = 0)                                                                                                                                         | .80)                                                                                |                                                                   |                                                                                                       |                                                                                                                                                                                       |                     |
|                                                                                                                                                                                                                                                                                                                                                | de aller a                                                                                           |                                                                                                                                                 |                                                                                     |                                                                   |                                                                                                       |                                                                                                                                                                                       |                     |
| 1.5.3 Beta lactum (ir                                                                                                                                                                                                                                                                                                                          | -                                                                                                    |                                                                                                                                                 |                                                                                     | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                          |                                                                                                       |                                                                                                                                                                                       |                     |
| Cox 1995                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                    | 31                                                                                                                                              | 0                                                                                   | 31                                                                | 15.0%                                                                                                 | 11.00 [0.63, 190.79]                                                                                                                                                                  |                     |
| Kenyon 2001                                                                                                                                                                                                                                                                                                                                    | 24                                                                                                   | 1205                                                                                                                                            | 3                                                                                   | 613                                                               | 85.0%                                                                                                 | 4.07 [1.23, 13.46]                                                                                                                                                                    |                     |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                              |                                                                                                      | 1236                                                                                                                                            |                                                                                     | 044                                                               | 100.0%                                                                                                | 4.72 [1.57, 14.23]                                                                                                                                                                    | -                   |
| Total events                                                                                                                                                                                                                                                                                                                                   | 29                                                                                                   |                                                                                                                                                 | 3                                                                                   |                                                                   | 0.000.02                                                                                              |                                                                                                                                                                                       |                     |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                              |                                                                                                      |                                                                                                                                                 |                                                                                     | 1 (P =                                                            | 0.53); l*                                                                                             | = 0%                                                                                                                                                                                  |                     |
|                                                                                                                                                                                                                                                                                                                                                | Z = 2.76                                                                                             | (P = 0)                                                                                                                                         | .006)                                                                               |                                                                   |                                                                                                       |                                                                                                                                                                                       |                     |
| restion overall effect                                                                                                                                                                                                                                                                                                                         |                                                                                                      |                                                                                                                                                 |                                                                                     |                                                                   |                                                                                                       |                                                                                                                                                                                       |                     |
| 100/12/09/ 1001 DI 1                                                                                                                                                                                                                                                                                                                           | udina erv                                                                                            | throm                                                                                                                                           | vcin) ver                                                                           | sus pla                                                           | cebo                                                                                                  |                                                                                                                                                                                       |                     |
| 1.5.4 Macrolide (incl                                                                                                                                                                                                                                                                                                                          |                                                                                                      |                                                                                                                                                 |                                                                                     |                                                                   |                                                                                                       | 1 89 (0 53 6 75)                                                                                                                                                                      |                     |
| 1.5.4 Macrolide (incl<br>Kenyon 2001                                                                                                                                                                                                                                                                                                           | 11                                                                                                   | 1190                                                                                                                                            | 3                                                                                   | 613                                                               | 26.3%                                                                                                 | 1.89 [0.53, 6.75]<br>0.52 [0.10, 2.60]                                                                                                                                                |                     |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991                                                                                                                                                                                                                                                                                          | 11<br>2                                                                                              | 1190<br>26                                                                                                                                      | 3<br>4                                                                              | 613<br>27                                                         | 26.3%<br>16.5%                                                                                        | 0.52 [0.10, 2.60]                                                                                                                                                                     | -                   |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992                                                                                                                                                                                                                                                                           | 11                                                                                                   | 1190<br>26<br>106                                                                                                                               | 3                                                                                   | 613<br>27<br>114                                                  | 26.3%<br>16.5%<br>57.2%                                                                               | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]                                                                                                                                                | -                   |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)                                                                                                                                                                                                                                                      | 11<br>2<br>8                                                                                         | 1190<br>26                                                                                                                                      | 3<br>4<br>12                                                                        | 613<br>27<br>114                                                  | 26.3%<br>16.5%                                                                                        | 0.52 [0.10, 2.60]                                                                                                                                                                     |                     |
| Test for overall effect<br>1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> a                                                                                                                                                                      | 11<br>2<br>8<br>21                                                                                   | 1190<br>26<br>106<br>1322                                                                                                                       | 3<br>4<br>12<br>19                                                                  | 613<br>27<br>114<br>754                                           | 26.3%<br>16.5%<br>57.2%<br>100.0%                                                                     | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]                                                                                                                           | *                   |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                 | 11<br>2<br>8<br>21<br>= 0.01; Ch                                                                     | 1190<br>26<br>106<br>1322<br>$ni^2 = 2.1$                                                                                                       | 3<br>4<br>12<br>19<br>03, df =                                                      | 613<br>27<br>114<br>754                                           | 26.3%<br>16.5%<br>57.2%<br>100.0%                                                                     | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]                                                                                                                           | +                   |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                 | 11<br>2<br>8<br>21<br>= 0.01; Ch                                                                     | 1190<br>26<br>106<br>1322<br>$ni^2 = 2.1$                                                                                                       | 3<br>4<br>12<br>19<br>03, df =                                                      | 613<br>27<br>114<br>754                                           | 26.3%<br>16.5%<br>57.2%<br>100.0%                                                                     | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]                                                                                                                           | *                   |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect                                                                                                                                                                      | 11<br>2<br>8<br>21<br>= 0.01; Ch<br>: Z = 0.39                                                       | 1190  26  106  1322  mi2 = 2.0  (P = 0)                                                                                                         | 3<br>4<br>12<br>19<br>03, df =<br>).70)                                             | 613<br>27<br>114<br>754                                           | 26.3%<br>16.5%<br>57.2%<br>100.0%                                                                     | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]                                                                                                                           | *                   |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events                                                                                                                                                                                                                                      | 11<br>2<br>8<br>21<br>= 0.01; Ch<br>: Z = 0.39                                                       | 1190  26  106  1322  mi2 = 2.0  (P = 0)                                                                                                         | 3<br>4<br>12<br>19<br>03, df =<br>).70)                                             | 613<br>27<br>114<br>754                                           | 26.3%<br>16.5%<br>57.2%<br>100.0%                                                                     | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]                                                                                                                           |                     |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>1.5.5 Other antibioti<br>Grable 1996                                                                                                                              | 11<br>2<br>8<br>21<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus                                          | 1190  26  106  1322  ni2 = 2.0  (P = 0)  placebo  31                                                                                            | 3<br>4<br>12<br>19<br>03, df =<br>).70)<br>0                                        | 613<br>27<br>114<br><b>754</b><br>2 (P =<br>29                    | 26.3%<br>16.5%<br>57.2%<br>100.0%<br>0.36); 1 <sup>2</sup>                                            | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%                                                                                                                   |                     |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>1.5.5 Other antibiot<br>Grable 1996<br>Mercer 1997                                                                                                                | 11<br>2<br>8<br>21<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1                                     | $     \begin{array}{r}       1190 \\       26 \\       106 \\       1322 \\       1322 \\       0 (P = 0) \\       placebo \\     \end{array} $ | 3<br>4<br>12<br>19<br>03, df =<br>0.70)<br>0                                        | 613<br>27<br>114<br>754<br>2 (P =                                 | 26.3%<br>16.5%<br>57.2%<br>100.0%                                                                     | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]                                                                        |                     |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>1.5.5 Other antibioti                                                                                                                                             | 11<br>2<br>8<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24                                     | 1190  26  106  1322  hi2 = 2.0  (P = 0)  placebo  31  299                                                                                       | 3<br>4<br>12<br>19<br>03, df =<br>0.70)<br>0<br>1<br>27<br>1                        | 613<br>27<br>114<br><b>754</b><br>2 (P =<br>29<br>312<br>43       | 26.3%<br>16.5%<br>57.2%<br>100.0%<br>0.36); 1 <sup>2</sup><br>3.4%<br>91.5%<br>2.5%                   | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]                                                   |                     |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>1.5.5 Other antibiot<br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997<br>Svare 1997a                                                                            | 11<br>2<br>8<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24<br>0                                | 1190  26  106  1322  ni2 = 2.0  (P = 0)  placebox  31  299  42                                                                                  | 3<br>4<br>12<br>19<br>03, df =<br>).70)<br>0<br>1<br>27                             | 613<br>27<br>114<br><b>754</b><br>2 (P =<br>29<br>312<br>43<br>37 | 26.3%<br>16.5%<br>57.2%<br>100.0%<br>0.36); l <sup>2</sup><br>3.4%<br>91.5%                           | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]<br>0.41 [0.02, 9.68]                              |                     |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>1.5.5 Other antibiot<br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997<br>Svare 1997a<br>Subtotal (95% Cl)                                                       | 11<br>2<br>8<br>21<br>21<br>2 0.01; Ch<br>2 0.39<br>ic versus<br>1<br>24<br>0<br>0                   | 1190  26  106  1322  ni2 = 2.0 (P = 0)  placebox  31  299  42  30                                                                               | 3<br>4<br>12<br>19<br>03, df =<br>0.70)<br>0<br>1<br>27<br>1<br>1                   | 613<br>27<br>114<br><b>754</b><br>2 (P =<br>29<br>312<br>43<br>37 | 26.3%<br>16.5%<br>57.2%<br>100.0%<br>0.36); l <sup>2</sup><br>3.4%<br>91.5%<br>2.5%<br>2.5%           | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]                                                   |                     |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>1.5.5 Other antibioti<br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997<br>Svare 1997a<br>Subtotal (95% Cl)<br>Total events                                      | 11<br>2<br>8<br>21<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24<br>0<br>0<br>0                | 1190  26  106  1322  ni2 = 2.0 (P = 0)  placebo  31  299  42  30  402                                                                           | 3<br>4<br>12<br>19<br>03, df =<br>0.70)<br>0<br>1<br>27<br>1<br>1<br>30             | 613<br>27<br>114<br>754<br>2 (P =<br>29<br>312<br>43<br>37<br>421 | 26.3%<br>16.5%<br>57.2%<br>100.0%<br>0.36); I <sup>2</sup><br>3.4%<br>91.5%<br>2.5%<br>2.5%<br>100.0% | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]<br>0.41 [0.02, 9.68]<br>0.89 [0.54, 1.47]         |                     |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>1.5.5 Other antibioti<br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997<br>Svare 1997a<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = | 11<br>2<br>8<br>21<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24<br>0<br>0<br>25<br>= 0.00; Ch | 1190  26  106  1322  m2 = 2.0  (P = 0)  placebo  31  299  42  30  40  40  40  40  40  40  40  4                                                 | 3<br>4<br>12<br>19<br>03, df =<br>0.70)<br>0<br>1<br>27<br>1<br>1<br>30<br>61, df = | 613<br>27<br>114<br>754<br>2 (P =<br>29<br>312<br>43<br>37<br>421 | 26.3%<br>16.5%<br>57.2%<br>100.0%<br>0.36); I <sup>2</sup><br>3.4%<br>91.5%<br>2.5%<br>2.5%<br>100.0% | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]<br>0.41 [0.02, 9.68]<br>0.89 [0.54, 1.47]         |                     |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>1.5.5 Other antibioti<br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997<br>Svare 1997a<br>Subtotal (95% Cl)<br>Total events                                      | 11<br>2<br>8<br>21<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24<br>0<br>0<br>25<br>= 0.00; Ch | 1190  26  106  1322  m2 = 2.0  (P = 0)  placebo  31  299  42  30  40  40  40  40  40  40  40  4                                                 | 3<br>4<br>12<br>19<br>03, df =<br>0.70)<br>0<br>1<br>27<br>1<br>1<br>30<br>61, df = | 613<br>27<br>114<br>754<br>2 (P =<br>29<br>312<br>43<br>37<br>421 | 26.3%<br>16.5%<br>57.2%<br>100.0%<br>0.36); I <sup>2</sup><br>3.4%<br>91.5%<br>2.5%<br>2.5%<br>100.0% | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]<br>0.41 [0.02, 9.68]<br>0.89 [0.54, 1.47]         |                     |
| 1.5.4 Macrolide (incl<br>Kenyon 2001<br>McGregor 1991<br>Mercer 1992<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>1.5.5 Other antibioti<br>Grable 1996<br>Mercer 1997<br>Ovalle Salas 1997<br>Svare 1997a<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = | 11<br>2<br>8<br>21<br>= 0.01; Ch<br>: Z = 0.39<br>ic versus<br>1<br>24<br>0<br>0<br>25<br>= 0.00; Ch | 1190  26  106  1322  m2 = 2.0  (P = 0)  placebo  31  299  42  30  40  40  40  40  40  40  40  4                                                 | 3<br>4<br>12<br>19<br>03, df =<br>0.70)<br>0<br>1<br>27<br>1<br>1<br>30<br>61, df = | 613<br>27<br>114<br>754<br>2 (P =<br>29<br>312<br>43<br>37<br>421 | 26.3%<br>16.5%<br>57.2%<br>100.0%<br>0.36); I <sup>2</sup><br>3.4%<br>91.5%<br>2.5%<br>2.5%<br>100.0% | 0.52 [0.10, 2.60]<br>0.72 [0.31, 1.69]<br>0.88 [0.45, 1.69]<br>= 2%<br>0.94 [0.06, 14.27]<br>0.93 [0.55, 1.57]<br>0.34 [0.01, 8.14]<br>0.41 [0.02, 9.68]<br>0.89 [0.54, 1.47]<br>= 0% |                     |

#### Figure 13: Birth before 37 weeks' gestation

|                         | Treatm     | nent        | Cont     | rol    |           | Risk Ratio          | Risk Ratio          |
|-------------------------|------------|-------------|----------|--------|-----------|---------------------|---------------------|
| Study or Subgroup       | Events     | Total       | Events   | Total  | Weight    | M-H, Random, 95% CI | M-H, Random, 95% CI |
| Kenyon 2001             | 3049       | 3584        | 1041     | 1225   | 84.3%     | 1.00 [0.97, 1.03]   |                     |
| McGregor 1991           | 28         | 28          | 27       | 27     | 13.0%     | 1.00 [0.93, 1.07]   | +                   |
| Svare 1997a             | 27         | 30          | 34       | 37     | 2.7%      | 0.98 [0.84, 1.14]   | +                   |
| Total (95% CI)          |            | 3642        |          | 1289   | 100.0%    | 1.00 [0.98, 1.03]   |                     |
| Total events            | 3104       |             | 1102     |        |           |                     |                     |
| Heterogeneity: Tau2 =   | = 0.00; Ci | $hi^2 = 0.$ | 08. df = | 2 (P = | 0.96); 12 | = 0%                | 0.1 0.5 1 2 5 10    |
| Test for overall effect | Z = 0.03   | P = 0       | .98)     |        |           |                     | 0.1 0.5 1 2 5 10    |

|                                   | Treatm             | nent        | Cont     | rol      |           | Risk Ratio          | Risk Ratio          |
|-----------------------------------|--------------------|-------------|----------|----------|-----------|---------------------|---------------------|
| Study or Subgroup                 | <b>Events</b> Tota |             | Events   | Total    | Weight    | M-H, Random, 95% CI | M-H, Random, 95% CI |
| Fuhr 2006                         | 17                 | 47          | 32       | 58       | 5.4%      | 0.66 [0.42, 1.02]   |                     |
| Grable 1996                       | 17                 | 31          | 21       | 29       | 6.6%      | 0.76 [0.51, 1.12]   |                     |
| Johnston 1990                     | 22                 | 40          | 37       | 45       | 9.2%      | 0.67 [0.49, 0.91]   |                     |
| Kenyon 2001                       | 2067               | 3584        | 775      | 1225     | 27.4%     | 0.91 [0.87, 0.96]   |                     |
| Lockwood 1993a                    | 22                 | 38          | 33       | 37       | 9.9%      | 0.65 [0.48, 0.87]   |                     |
| Mercer 1992                       | 77                 | 106         | 94       | 114      | 19.8%     | 0.88 [0.76, 1.02]   |                     |
| Mercer 1997                       | 166                | 299         | 229      | 312      | 21.8%     | 0.76 [0.67, 0.85]   | -                   |
| Total (95% CI)                    |                    | 4145        |          | 1820     | 100.0%    | 0.79 [0.71, 0.89]   | •                   |
| Total events                      | 2388               |             | 1221     |          |           |                     | 66                  |
| Heterogeneity: Tau <sup>2</sup> = | 0.01; C            | $ni^2 = 16$ | 5.94, df | = 6 (P = | = 0.010); | $l^2 = 65\%$        |                     |

#### Figure 14: Birth within 7 days of randomisation

0 (r = 0.010), r = 03% Test for overall effect: Z = 3.99 (P < 0.0001)

#### I.4.2 Maternal outcomes

#### Figure 15: Maternal death

|                         | Treatm    | nent   | Cont     | rol    |         | Risk Ratio          | Risk Ratio                        |
|-------------------------|-----------|--------|----------|--------|---------|---------------------|-----------------------------------|
| Study or Subgroup       | Events    | Total  | Events   | Total  | Weight  | M-H, Random, 95% CI | M-H, Random, 95% CI               |
| 1.1.1 Any antibiotic    | versus pl | acebo  |          |        |         |                     |                                   |
| Johnston 1990           | 0         | 40     | 0        | 45     |         | Not estimable       |                                   |
| Mercer 1997             | 0         | 299    | 0        | 312    |         | Not estimable       |                                   |
| Svare 1997a             | 0         | 30     | 0        | 37     |         | Not estimable       |                                   |
| Subtotal (95% CI)       |           | 369    |          | 394    |         | Not estimable       |                                   |
| Total events            | 0         |        | 0        |        |         |                     |                                   |
| Heterogeneity: Not ap   | plicable  |        |          |        |         |                     |                                   |
| Test for overall effect | Not appl  | icable |          |        |         |                     |                                   |
| 1.1.2 All penicillin (  | excluding | co-am  | oxiclav) | versus | placebo |                     |                                   |
| Johnston 1990           | 0         | 40     | 0        | 45     |         | Not estimable       |                                   |
| Subtotal (95% CI)       |           | 40     |          | 45     |         | Not estimable       |                                   |
| Total events            | 0         |        | 0        |        |         |                     |                                   |
| Heterogeneity: Not ap   | plicable  |        |          |        |         |                     |                                   |
| Test for overall effect | Not appl  | icable |          |        |         |                     |                                   |
| 1.1.5 Other antibiot    | ic versus | placeb | 0        |        |         |                     |                                   |
| Mercer 1997             | 0         | 299    | 0        | 312    |         | Not estimable       |                                   |
| Svare 1997a             | 0         | 30     | 0        | 37     |         | Not estimable       |                                   |
| Subtotal (95% CI)       |           | 329    |          | 349    |         | Not estimable       |                                   |
| Total events            | 0         |        | 0        |        |         |                     |                                   |
| Heterogeneity: Not ap   | plicable  |        |          |        |         |                     |                                   |
| Test for overall effect |           | icable |          |        |         |                     |                                   |
|                         |           |        |          |        |         |                     |                                   |
|                         |           |        |          |        |         |                     | 0.10.2 0.5 1 2 5 10               |
|                         |           |        |          |        |         |                     | Favours treatment Favours control |
|                         |           |        |          |        |         |                     | renous o content i arouis control |

#### Figure 16: Maternal infection after delivery prior to discharge

|                                   | Treatm   | ent                  | Control  |        |                       | Risk Ratio          | Risk Ratio          |  |  |
|-----------------------------------|----------|----------------------|----------|--------|-----------------------|---------------------|---------------------|--|--|
| Study or Subgroup                 | Events   | Total                | Events   | Total  | Weight                | M-H, Random, 95% CI | M-H, Random, 95% CI |  |  |
| Garcia 1995                       | 8        | 30                   | 7        | 30     | 1.9%                  | 1.14 [0.47, 2.75]   | +                   |  |  |
| Kenyon 2001                       | 686      | 3584                 | 262      | 1225   | 90.5%                 | 0.89 [0.79, 1.02]   |                     |  |  |
| Mercer 1997                       | 33       | 299                  | 36       | 312    | 7.3%                  | 0.96 [0.61, 1.49]   | Ŧ                   |  |  |
| Svare 1997a                       | 2        | 30                   | 1        | 37     | 0.3%                  | 2.47 [0.23, 25.91]  |                     |  |  |
| Total (95% CI)                    |          | 3943                 |          | 1604   | 100.0%                | 0.91 [0.80, 1.02]   |                     |  |  |
| Total events                      | 729      |                      | 306      |        |                       |                     |                     |  |  |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; C  | hi <sup>2</sup> = 1. | 06. df = | 3 (P = | 0.79); I <sup>2</sup> | = 0%                | 1 000 01 1 10 1000  |  |  |
| Test for overall effect           | Z = 1.61 | (P = 0)              | ).11)    |        |                       |                     | 0.001 0.1 1 10 1000 |  |  |

| Figure 17.               | Treatm   |             | Cont       |         | )        | Risk Ratio          | Risk Ratio          |
|--------------------------|----------|-------------|------------|---------|----------|---------------------|---------------------|
| Study or Subgroup        |          |             | Events     |         | Weight   | M-H, Random, 95% CI | M-H, Random, 95% CI |
| Ernest 1994              | 3        | 77          | 9          | 67      | 6.4%     | 0.29 [0.08, 1.03]   |                     |
| Garcia 1995              | 3        | 30          | 1          | 30      | 2.5%     | 3.00 [0.33, 27.23]  |                     |
| Grable 1996              | 4        | 31          | 8          | 29      | 7.9%     | 0.47 [0.16, 1.39]   |                     |
| Johnston 1990            | 3        | 40          | 16         | 45      | 7.2%     | 0.21 [0.07, 0.67]   |                     |
| Kurki 1992               | 1        | 50          | 7          | 51      | 2.9%     | 0.15 [0.02, 1.14]   |                     |
| Lockwood 1993a           | 10       | 35          | 10         | 37      | 12.4%    | 1.06 [0.50, 2.23]   |                     |
| McGregor 1991            | 7        | 28          | 6          | 27      | 9.4%     | 1.13 [0.43, 2.92]   |                     |
| Mercer 1992              | 18       | 105         | 22         | 112     | 15.9%    | 0.87 [0.50, 1.53]   |                     |
| Mercer 1997              | 69       | 299         | 101        | 312     | 22.3%    | 0.71 [0.55, 0.93]   | -                   |
| Ovalle Salas 1997        | 2        | 42          | 11         | 45      | 5.2%     | 0.19 [0.05, 0.83]   |                     |
| Svare 1997a              | 6        | 30          | 5          | 37      | 7.9%     | 1.48 [0.50, 4.38]   |                     |
| Total (95% CI)           |          | 767         |            | 792     | 100.0%   | 0.66 [0.46, 0.96]   | •                   |
| Total events             | 126      |             | 196        |         |          |                     | 2000                |
| Heterogeneity: Tau2 =    | 0.14; C  | $hi^2 = 18$ | 3.29, df - | = 10 (P | = 0.05); | $I^2 = 45\%$        | 0.01 0.1 1 10       |
| Test for overall effect: | Z = 2.18 | 8 (P = 0)   | .03)       |         |          |                     | 0.01 0.1 1 10       |

### Figure 17: Chorioamnionitis

### Figure 18: Major adverse drug reaction

|                         | Treatm   | nent   | Cont   | rol   |        | Risk Ratio          |     | Risk     | Ratio   |       |
|-------------------------|----------|--------|--------|-------|--------|---------------------|-----|----------|---------|-------|
| Study or Subgroup       | Events   | Total  | Events | Total | Weight | M-H, Random, 95% CI | M   | -H, Rand | om, 95% | CI    |
| Kenyon 2001             | 0        | 3584   | 0      | 1225  |        | Not estimable       |     |          |         |       |
| Mercer 1997             | 0        | 299    | 0      | 312   |        | Not estimable       |     |          |         |       |
| Svare 1997a             | 0        | 30     | 0      | 37    |        | Not estimable       |     |          |         |       |
| Total (95% CI)          |          | 3913   |        | 1574  |        | Not estimable       |     |          |         |       |
| Total events            | 0        |        | 0      |       |        |                     |     |          |         |       |
| Heterogeneity: Not ap   | plicable |        |        |       |        |                     | h.+ | 0.0      |         | \$ 10 |
| Test for overall effect | Not appl | icable |        |       |        |                     | 0.1 | 0.5      | 1 2     | 5 10  |

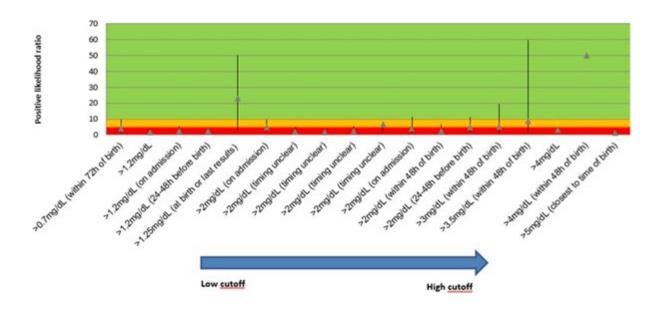
|                                   | Treatm    |              | Cont      |         |                       | Risk Ratio          | Risk Ratio          |
|-----------------------------------|-----------|--------------|-----------|---------|-----------------------|---------------------|---------------------|
| Study or Subgroup                 | Events    | Total        | Events    | Total   | Weight                | M-H, Random, 95% CI | M-H, Random, 95% CI |
| 4.1.1 New Subgroup                |           |              |           |         |                       |                     |                     |
| Amon 1988a                        | 2         | 43           | 6         | 39      | 1.5%                  | 0.30 [0.06, 1.41]   |                     |
| Camli 1997                        | 3         | 15           | 4         | 16      | 2.1%                  | 0.80 [0.21, 3.00]   |                     |
| Christmas 1992                    | 1         | 48           | 3         | 46      | 0.7%                  | 0.32 [0.03, 2.96]   |                     |
| Cox 1995                          | 1         | 31           | 5         | 31      | 0.8%                  | 0.20 [0.02, 1.61]   |                     |
| Garcia 1995                       | 2         | 30           | 5         | 30      | 1.5%                  | 0.40 [0.08, 1.90]   |                     |
| Grable 1996                       | 0         | 31           | 2         | 29      | 0.4%                  | 0.19 [0.01, 3.75]   |                     |
| Johnston 1990                     | 3         | 40           | 4         | 45      | 1.8%                  | 0.84 [0.20, 3.54]   |                     |
| Kenyon 2001                       | 226       | 3584         | 82        | 1225    | 61.2%                 | 0.94 [0.74, 1.20]   |                     |
| Kurki 1992                        | 1         | 57           | 1         | 58      | 0.5%                  | 1.02 [0.07, 15.88]  |                     |
| Lockwood 1993a                    | 3         | 37           | 3         | 35      | 1.6%                  |                     |                     |
| Magwali 1999                      | 8         | 82           | 11        | 86      | 4.9%                  | 0.76 [0.32, 1.80]   | -                   |
| McGregor 1991                     | 6         | 28           | 0         | 27      | 0.5%                  |                     |                     |
| Mercer 1992                       | 6         | 106          | 10        | 114     | 3.8%                  | 0.65 [0.24, 1.71]   | -+                  |
| Mercer 1997                       | 19        | 299          | 18        | 312     | 9.4%                  | 1.10 [0.59, 2.06]   | +                   |
| Morales 1989                      | 5         | 42           | 3         | 37      | 2.0%                  |                     |                     |
| Ovalle Salas 1997                 | 7         | 42           | 6         | 43      | 3.6%                  |                     | +                   |
| Owen 1993a                        | 4         | 59           | 7         | 58      | 2.7%                  |                     | -+                  |
| Svare 1997a                       | 2         | 30           | 2         | 37      | 1.0%                  |                     |                     |
| Subtotal (95% CI)                 | 20        | 4604         | 12        | 2268    | 100.0%                |                     |                     |
| Total events                      | 299       |              | 172       |         |                       |                     | 1                   |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Cł  | $hi^2 = 12$  | 2.87. df  | = 17 (P | = 0.75):              | $l^2 = 0\%$         |                     |
| Test for overall effect:          |           |              |           |         |                       |                     |                     |
| 4.1.2 Antibiotics ver             | sus no tr | eatme        | nt (no pl | acebo)  |                       |                     |                     |
| Amon 1988a                        | 2         | 43           | 6         | 39      | 11.0%                 | 0.30 [0.06, 1.41]   |                     |
| Camli 1997                        | 3         | 15           | 4         | 16      | 15.0%                 |                     |                     |
| Christmas 1992                    | 1         | 48           | 3         | 46      | 5.3%                  |                     |                     |
| Magwali 1999                      | 8         | 82           | 11        | 86      | 35.5%                 |                     |                     |
| Morales 1989                      | 5         | 42           | 3         | 37      | 14.1%                 |                     |                     |
| Owen 1993a                        | 4         | 59           | 7         | 58      | 19.0%                 |                     |                     |
| Subtotal (95% CI)                 |           | 289          |           |         | 100.0%                |                     | •                   |
| Total events                      | 23        |              | 34        |         |                       |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = |           | $hi^2 = 2$ . | 97. df =  | 5 (P =  | 0.70); I <sup>2</sup> | = 0%                |                     |
| Test for overall effect:          |           |              |           |         |                       |                     |                     |
|                                   |           |              |           |         |                       | ŀ                   |                     |
|                                   |           |              |           |         |                       | č                   | 0.001 0.1 1 10 1    |
|                                   |           |              |           |         |                       |                     |                     |

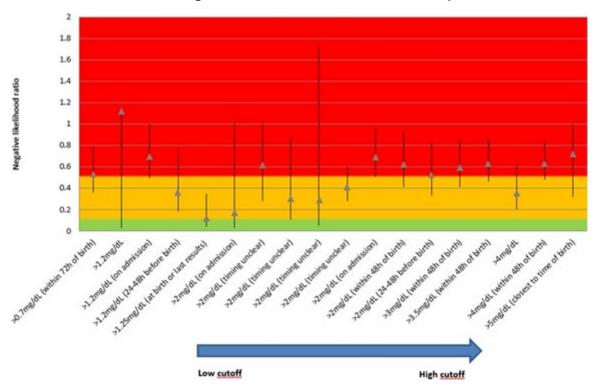
#### Figure 19: Antibiotics therapy versus either placebo or no antibiotics therapy

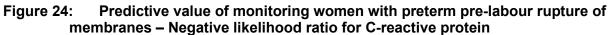
#### Figure 20: Intraventricular haemorrhage

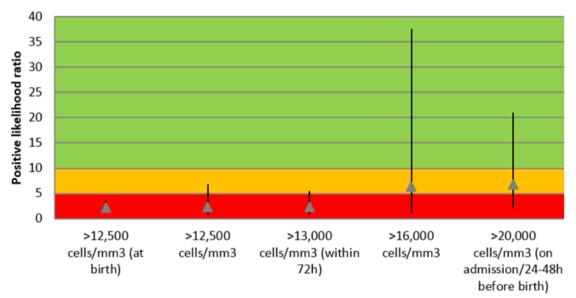
|                                   | Treatm   | ient   | Cont     | rol        |        | Risk Ratio        | Risk Ratio                                                |
|-----------------------------------|----------|--------|----------|------------|--------|-------------------|-----------------------------------------------------------|
| Study or Subgroup                 | Events   | Total  | Events   | Total      | Weight | M-H, Fixed, 95% C | M-H, Fixed, 95% CI                                        |
| Amon 1988a                        | 4        | 42     | 6        | 36         | 6.2%   | 0.57 [0.17, 1.87] | · · · · · ·                                               |
| Christmas 1992                    | 2        | 48     | 3        | 45         | 3.0%   | 0.63 [0.11, 3.57] | I                                                         |
| Fuhr 2006                         | 0        | 47     | 2        | 58         | 2.2%   | 0.25 [0.01, 5.00] |                                                           |
| Johnston 1990                     | 5        | 40     | 14       | 45         | 12.7%  | 0.40 [0.16, 1.02] |                                                           |
| Lockwood 1993a                    | 5        | 37     | 7        | 36         | 6.8%   | 0.69 [0.24, 1.99] |                                                           |
| Mercer 1992                       | 57       | 299    | 68       | 312        | 64.2%  | 0.87 [0.64, 1.20] | i 📫                                                       |
| Owen 1993a                        | 1        | 59     | 5        | 58         | 4.9%   | 0.20 [0.02, 1.63] |                                                           |
| Total (95% CI)                    |          | 572    |          | 590        | 100.0% | 0.73 [0.56, 0.95] | •                                                         |
| Total events                      | 74       |        | 105      |            |        |                   |                                                           |
| Heterogeneity: Chi <sup>2</sup> = | 5.05, df | = 6 (P | = 0.54); | $ ^2 = 09$ | 5      |                   | bas also da sad                                           |
| Test for overall effect           |          |        |          |            |        |                   | 0.01 0.1 1 10 100<br>Favours experimental Favours control |

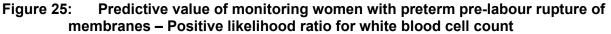
#### Figure 21: Sepsis


|                                   | Treatm   | nent      | Cont     | rol        |        | Risk Ratio        | Risk Ratio                              |                       |
|-----------------------------------|----------|-----------|----------|------------|--------|-------------------|-----------------------------------------|-----------------------|
| Study or Subgroup                 | Events   | Total     | Events   | Total      | Weight | M-H, Fixed, 95% ( | CI M-H, Fixed, 95                       | 5% CI                 |
| Amon 1988a                        | 1        | 42        | 6        | 38         | 7.7%   | 0.15 [0.02, 1.20  | 0]                                      |                       |
| Christmas 1992                    | 2        | 48        | 0        | 45         | 0.6%   | 4.69 [0.23, 95.19 | 9]                                      |                       |
| Lockwood 1993a                    | 2        | 37        | 3        | 36         | 3.7%   | 0.65 [0.12, 3.66  | 5]                                      | -                     |
| Mercer 1997                       | 46       | 299       | 67       | 312        | 80.5%  | 0.72 [0.51, 1.0]  | 1] 🔜                                    |                       |
| Owen 1993a                        | 2        | 59        | 6        | 58         | 7.4%   | 0.33 [0.07, 1.56  | 5]                                      |                       |
| Total (95% CI)                    |          | 485       |          | 489        | 100.0% | 0.67 [0.49, 0.9]  | 1] 🔶                                    |                       |
| Total events                      | 53       |           | 82       |            |        |                   |                                         |                       |
| Heterogeneity: Chi <sup>2</sup> = | 4.57, df | = 4 (P)   | = 0.33); | $l^2 = 12$ | 2%     |                   |                                         | 10 100                |
| Test for overall effect           | Z = 2.52 | 2 (P = 0) | 0.01)    |            |        |                   | 0.01 0.1 1<br>Favours experimental Favo | 10 100<br>urs control |

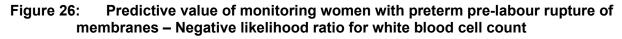

#### Figure 22: Delivery delayed ≥ 7 days

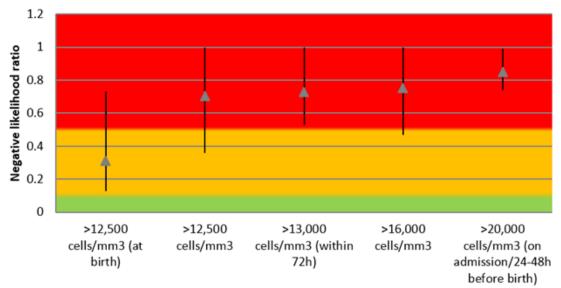

|                                   | Treatm   | ient     | Cont     | rol        |        | Risk Ratio        | Risk Ratio                                               |
|-----------------------------------|----------|----------|----------|------------|--------|-------------------|----------------------------------------------------------|
| Study or Subgroup                 | Events   | Total    | Events   | Total      | Weight | M-H, Fixed, 95% C | I M-H, Fixed, 95% CI                                     |
| Amon 1988a                        | 20       | 43       | 11       | 39         | 8.6%   | 1.65 [0.91, 2.99  | 1 +                                                      |
| Christmas 1992                    | 20       | 48       | 7        | 46         | 5.3%   | 2.74 [1.28, 5.85  | 1                                                        |
| Fuhr 2006                         | 30       | 47       | 26       | 58         | 17.3%  | 1.42 [1.00, 2.04  | 1                                                        |
| Johnston 1990                     | 18       | 40       | 8        | 45         | 5.6%   | 2.53 [1.24, 5.18  | i                                                        |
| Lockwood 1993a                    | 16       | 38       | 4        | 37         | 3.0%   | 3.89 [1.44, 10.56 | 1                                                        |
| Mercer 1997                       | 133      | 299      | 83       | 312        | 60.3%  | 1.67 [1.34, 2.09  | 1                                                        |
| Total (95% CI)                    |          | 515      |          | 537        | 100.0% | 1.80 [1.52, 2.13  | 1                                                        |
| Total events                      | 237      |          | 139      |            |        |                   |                                                          |
| Heterogeneity: Chi <sup>2</sup> = | 6.49, df | = 5 (P)  | = 0.26); | $ ^2 = 23$ | :%     |                   |                                                          |
| Test for overall effect           | Z = 6.76 | 5 (P < 0 | .00001)  |            |        |                   | 0.01 0.1 1 10 10<br>Favours experimental Favours control |


### I.5 Identifying infection in women with P-PROM

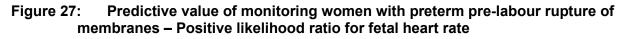

Figure 23: Predictive value of monitoring women with preterm pre-labour rupture of membranes – Positive likelihood ratio for C-reactive protein

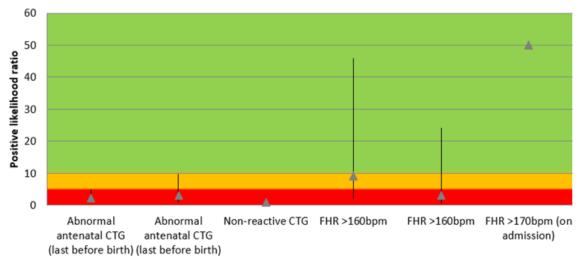




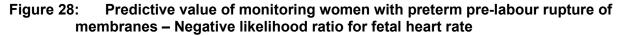



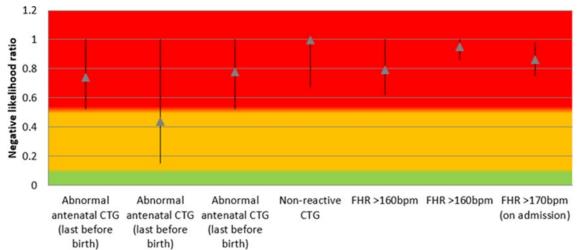




Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful







Colours indicate diagnostic thresholds - Green: very useful; Yellow: moderately useful; Red: not useful

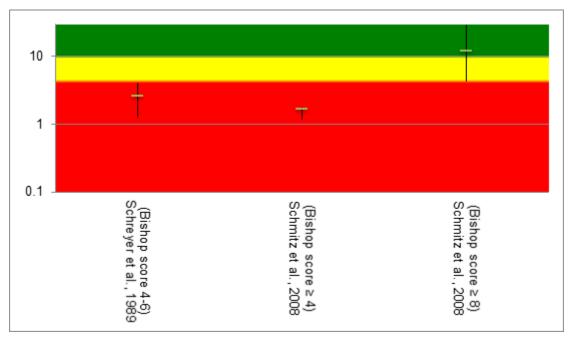




Colours indicate diagnostic thresholds - Green: very useful; Yellow: moderately useful; Red: not useful

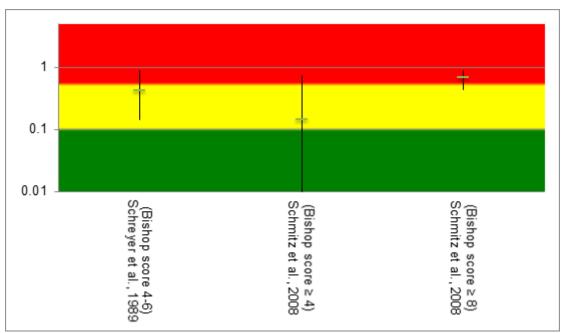




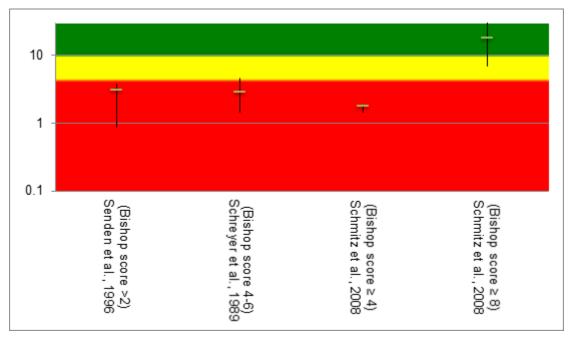

Colours indicate diagnostic thresholds - Green: very useful; Yellow: moderately useful; Red: not useful

### I.6 'Rescue' cervical cerclage

No forest plots were generated for this review question

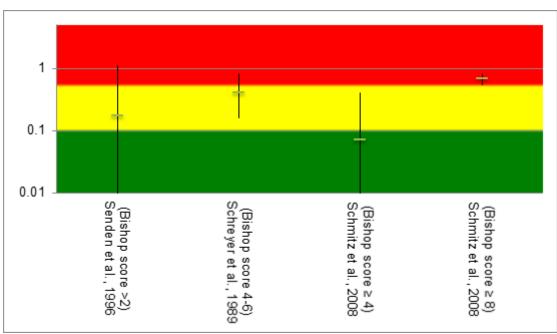

# I.7 Diagnosing preterm labour for women with intact membranes

## Figure 29: Positive likelihood ratio of Bishop score to diagnose pre-term birth within 48 hours



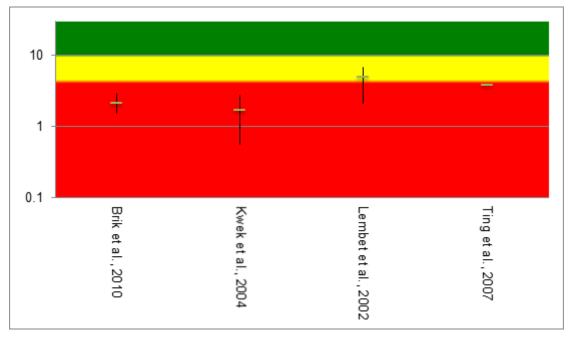

Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful

## Figure 30: Negative likelihood ratio of Bishop score to diagnose pre-term birth within 48 hours



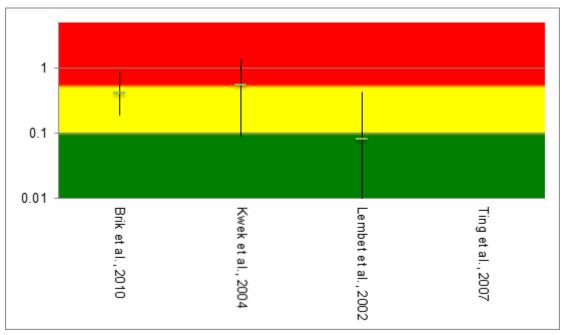






Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful






Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful

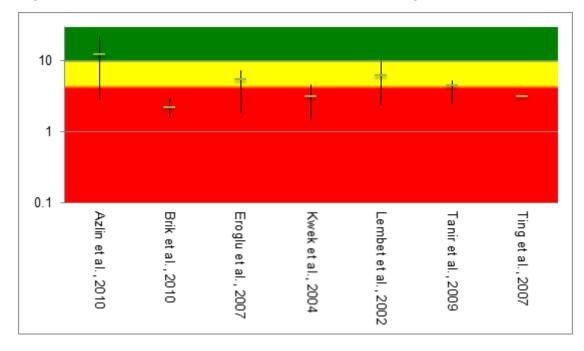
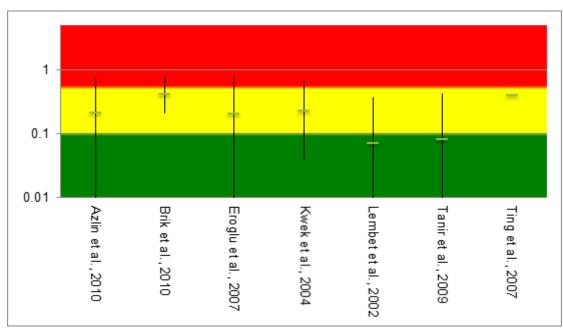
## Figure 33: Positive likelihood ratio of pIGFBP-1 to diagnose pre-term birth within 48 hours

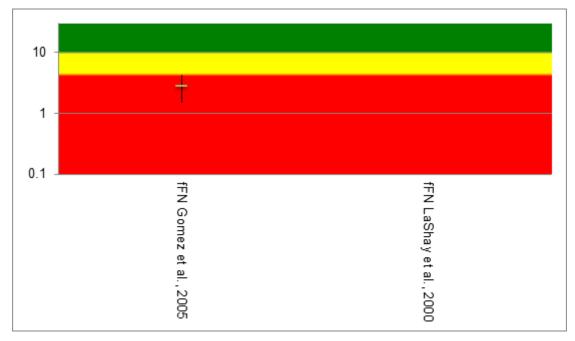


Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful

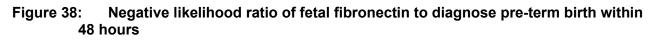


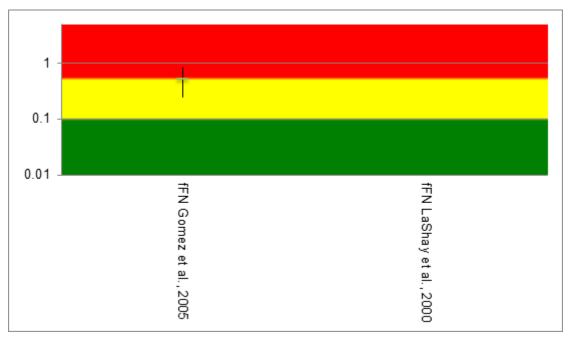




Figure 35: Positive likelihood ratio of pIGFBP-1 to diagnose pre-term birth within 7 days

Colours indicate diagnostic thresholds - Green: very useful; Yellow: moderately useful; Red: not useful



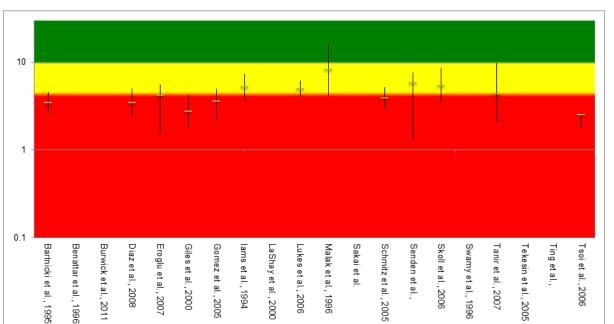
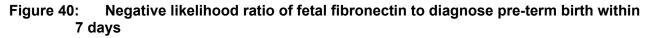
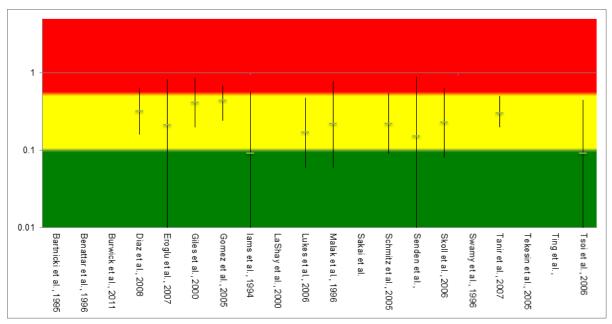

## Figure 37: Positive likelihood ratio of fetal fibronectin to diagnose pre-term birth within 48 hours

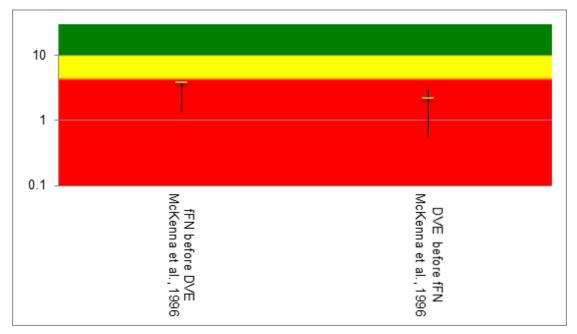


Colours indicate diagnostic thresholds - Green: very useful; Yellow: moderately useful; Red: not useful

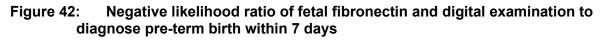


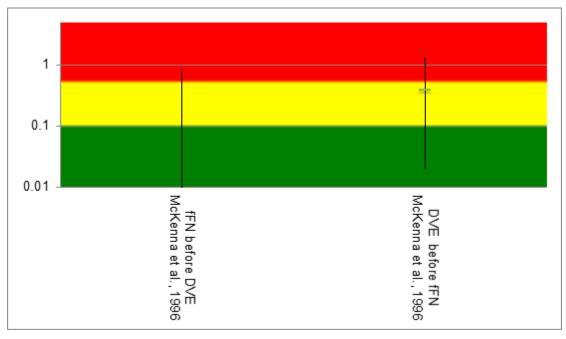


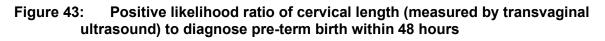




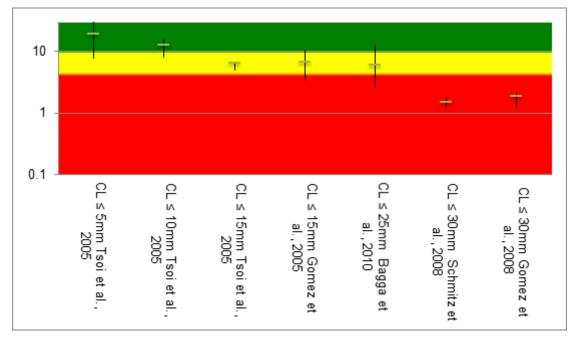


Figure 39: Positive likelihood ratio of fetal fibronectin to diagnose pre-term birth within 7 days

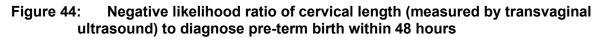
Colours indicate diagnostic thresholds - Green: very useful; Yellow: moderately useful; Red: not useful

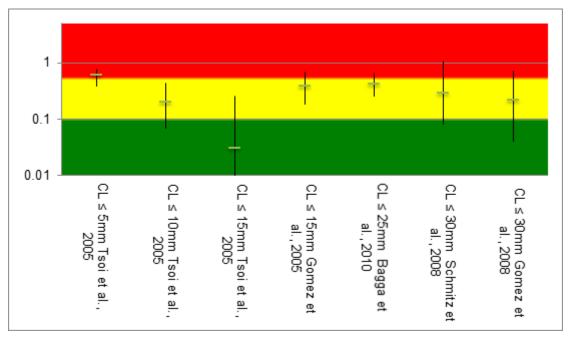




## Figure 41: Positive likelihood ratio of fetal fibronectin and digital examination to diagnose pre-term birth within 7 days





Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful














Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful

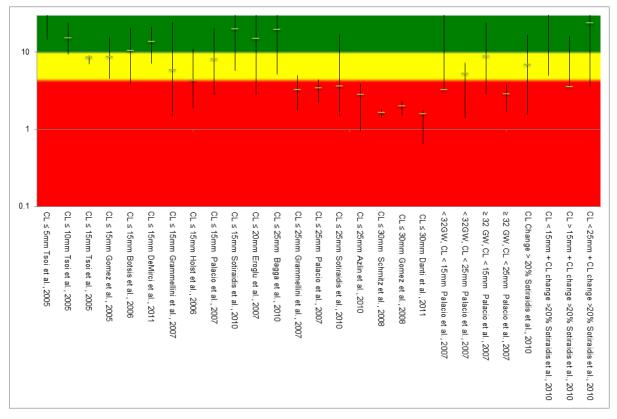
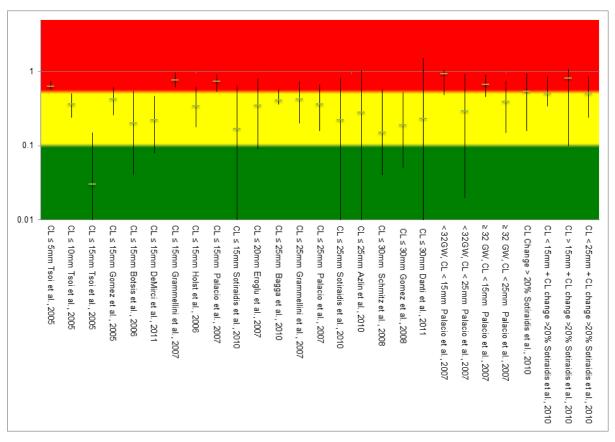
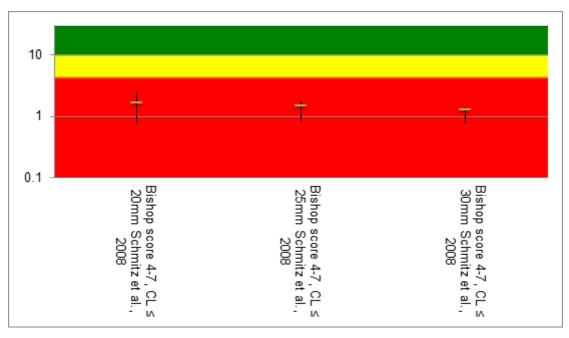
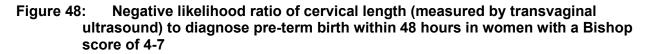
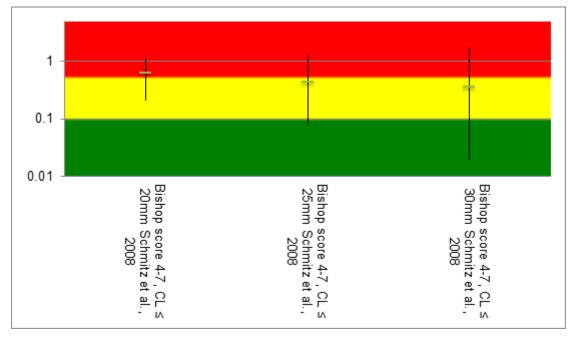



Figure 45: Positive likelihood ratio of cervical length (measured by transvaginal ultrasound) to diagnose pre-term birth within 7 days

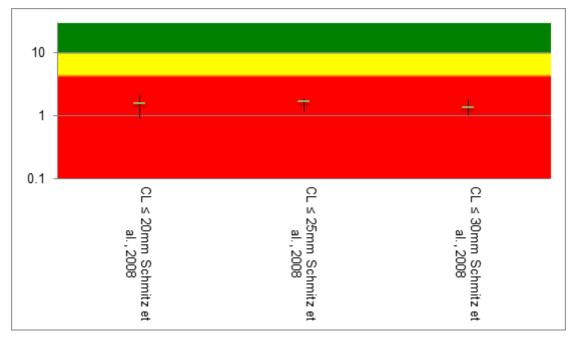



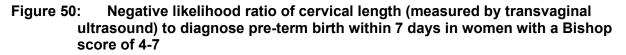


Figure 46: Negative likelihood ratio of cervical length (measured by transvaginal ultrasound) to diagnose pre-term birth within 7 days

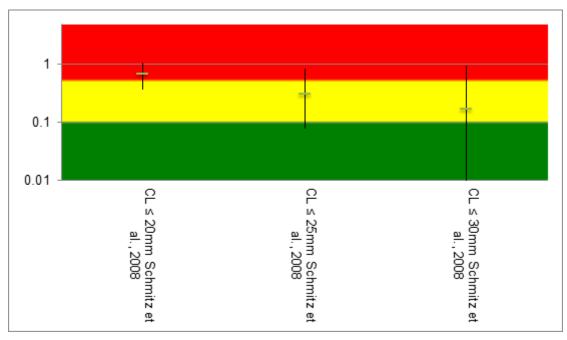

Colours indicate diagnostic thresholds - Green: very useful; Yellow: moderately useful; Red: not useful

# Figure 47: Positive likelihood ratio of cervical length (measured by transvaginal ultrasound) to diagnose pre-term birth within 48 hours in women with a Bishop score of 4-7

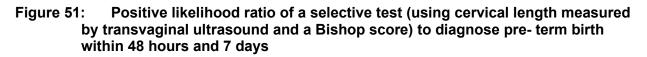


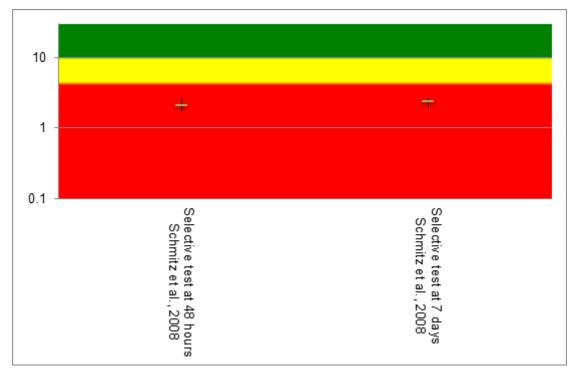

Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful




Colours indicate diagnostic thresholds - Green: very useful; Yellow: moderately useful; Red: not useful


# Figure 49: Positive likelihood ratio of cervical length (measured by transvaginal ultrasound) to diagnose pre-term birth within 7 days in women with a Bishop score of 4-7



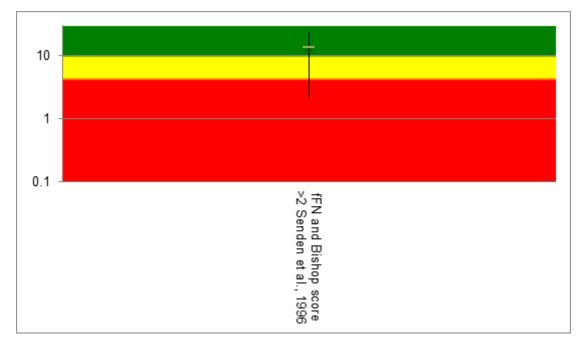




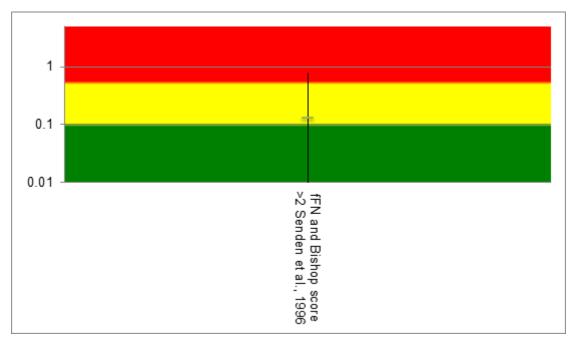

Colours indicate diagnostic thresholds - Green: very useful; Yellow: moderately useful; Red: not useful






Colours indicate diagnostic thresholds - Green: very useful; Yellow: moderately useful; Red: not useful

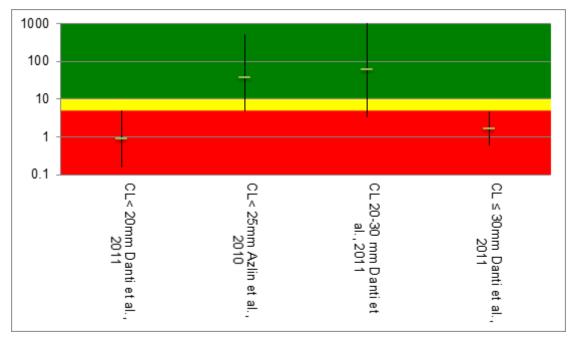




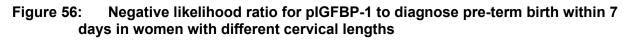

Colours indicate diagnostic thresholds - Green: very useful; Yellow: moderately useful; Red: not useful

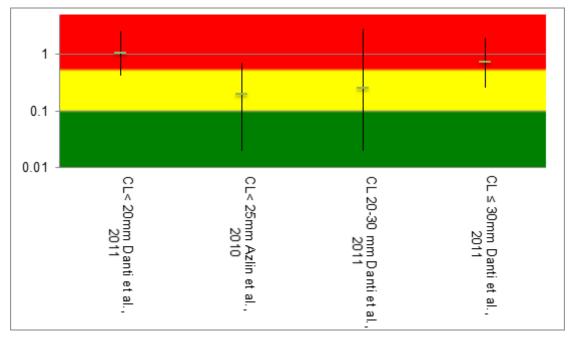
# Figure 53: Positive likelihood ratio for fetal fibronectin score and Bishop score to diagnose pre-term birth within 7 days



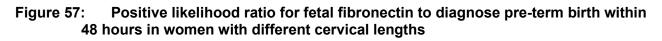

Colours indicate diagnostic thresholds - Green: very useful; Yellow: moderately useful; Red: not useful

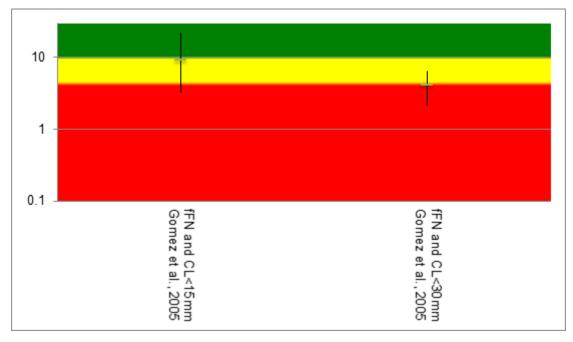



# Figure 54: Negative likelihood ratio for fetal fibronectin score and Bishop score to diagnose pre-term birth within 7 days

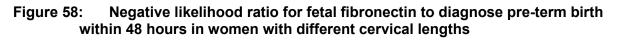

Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful

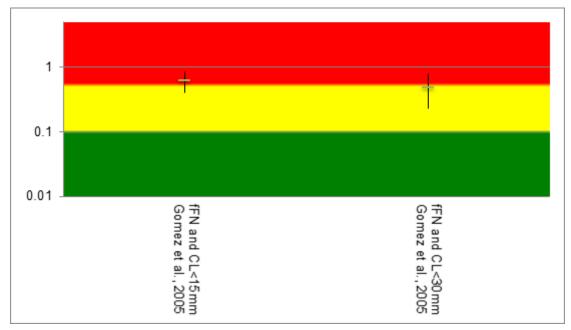






Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful

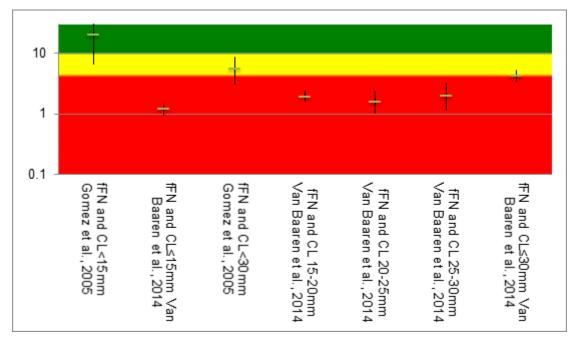






Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful






Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful





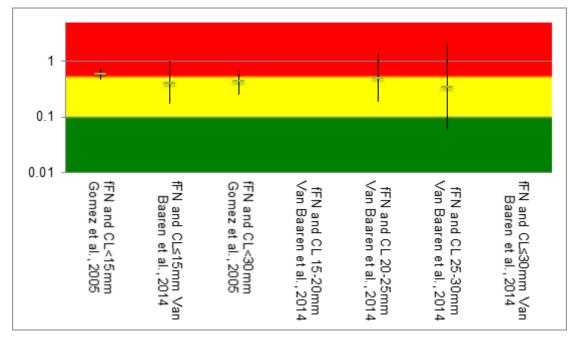

Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful

Figure 59: Positive likelihood ratio for fetal fibronectin to diagnose pre-term birth within 7 days in women with different cervical lengths



Colours indicate diagnostic thresholds – Green: very useful; Yellow: moderately useful; Red: not useful





Colours indicate diagnostic thresholds - Green: very useful; Yellow: moderately useful; Red: not useful

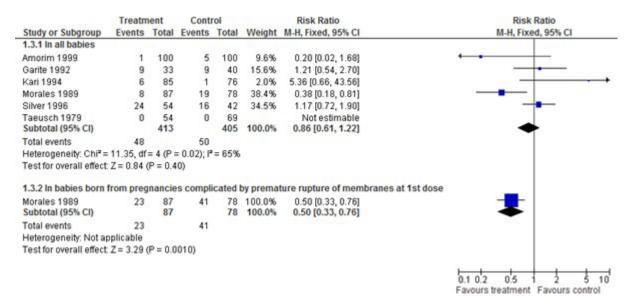
## I.8 A. 8 Maternal corticosteroids

#### I.8.1 Different gestations

Single-course corticosteroids versus placebo or expectant management

### Figure 61: Fetal and neonatal mortality

| Amonim 1999<br>Rinck 1927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ol<br>Total                                                                                               | Weight                                                                 | Risk Ratio<br>M.H. Fixed, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Risk Ratio<br>III-H, Foxed, 95% CI    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 108                                                                                                       | 10.5%                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| Collaborative 1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .60<br>378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54<br>379                                                                                                 | 12.00                                                                  | 0.60 (0.42, 1.04)<br>0.60 (0.16, 2.01)<br>1.00 (0.08), 1.40<br>0.39 (0.13, 1.21)<br>0.20 (0.11, 0.73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| Dexprom 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                        | 0 39 30 13 1 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| Doran 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14<br>22<br>12<br>6<br>122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63                                                                                                        | 29%<br>46%<br>62%<br>33%                                               | 0.20 (0.11.0.73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| Olampiu 1989<br>Olambe 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 127                                                                                                       | 6.2%                                                                   | 0.71 (0.39, 1.31)<br>1.14 (0.59, 2.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 41                                                                                                      | 17%                                                                    | 1.14(0.59, 2.21)<br>0.82(0.26, 2.61)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| Karl 1994<br>Liggins 1972a<br>Parsons 1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 601<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 617                                                                                                       | 1.7%                                                                   | 0.82 (0.26, 2.61)<br>0.91 (0.72, 1.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| Parsons 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108<br>G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                        |                                                                        | 0.32 (0.01, 7.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Porto 2011<br>Oublian 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 131                                                                                                       | 0.9%                                                                   | 0 30 (0 03, 2 88)<br>0 49 (0 32, 0 72)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| Schutte 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 58                                                                                                      | 12.5%                                                                  | 0450018 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| Taewach 1979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58<br>1957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .71                                                                                                       | 31%                                                                    | 1.06 (0.40, 2.27)<br>0.77 (0.66, 0.88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| Schutte 1980<br>Taeusch 1979<br>Settotal (95% Cl)<br>Total events<br>Helerogeneity: Chi# = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1945                                                                                                      | 100.0%                                                                 | 0.37 (0.66, 0.88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                     |
| Testfor overall effect .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           | 2011/13-0                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | om preg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103                                                                                                       | 31.2%                                                                  | Isrn rsphure of membranes at 1st dose<br>0.39 (0.13, 1.21)<br>0.86 (0.56, 1.33)<br>0.22 (0.01, 7.45)<br>0.44 (0.32, 0.72)<br>0.41 (0.32, 0.72)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| Liggins 1972a<br>Parsons 1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105<br>168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 173                                                                                                       | 39.5%                                                                  | 0 86 10 56, 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| Parsons 1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23<br>72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22                                                                                                        | 1.7%                                                                   | 0.2230.01,7.458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                     |
| Gublan 2001<br>Sebtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 565                                                                                                       | \$10.0%                                                                | 0.48 (0.32, 0.72)<br>0.62 (0.46, 0.82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>21<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           |                                                                        | and land and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| Hoterogeneity Chi# =<br>Testfor overall effect ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (25);/*=<br>(09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34%                                                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| 1.1.3 In babies born 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28 week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22 2                                  |
| 1.1.3 In babies born <<br>Dorav 1980<br>Liggins 1972a<br>Sebtosal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11<br>43<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                                                        | 15.3%                                                                  | 0.49 (0.17, 1.40)<br>0.87 (0.71, 1.07)<br>0.81 (0.65, 1.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| Subtotal (95% Cit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69                                                                                                        | 100.05                                                                 | 0.81 [0.65, 1.01]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |
| Yotal comete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                        | 2704-000-00-000-00-00-00-00-00-00-00-00-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.245                                 |
| Heterogeneity Chill =<br>Test for overall effect -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.32, df =<br>Z = 1.85 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25);#=<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24%                                                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| 1.1.4 in babies born 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 uvees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 227                                                                                                       |                                                                        | 1111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| Lippins 1972a<br>Sabtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102                                                                                                       | 100.0%                                                                 | 0.86 (0.70, 1.05)<br>0.86 (0.70, 1.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | trank.                                                                                                    | _ cessifit                                                             | and by a swall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| Heterogeneits: Not ap-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| Test for overall effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2=1,47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P=0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| 1.1.5 In babies born 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32 10009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| Block 1977<br>Dorien 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                                                                                                        | 2.0%                                                                   | 0.54 (0.12, 2.40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Doran 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .05                                                                                                       | 12.6%                                                                  | 0 28 (0 10, 0 76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Liggins 1972a<br>Sebtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 168<br>223                                                                                                | 100.0%                                                                 | 0.54 (0.52, 2.40)<br>0.20 (0.10, 0.76)<br>0.79 (0.53, 0.96)<br>0.71 (0.57, 0.86)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                     |
| Total mainte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| Heterogeneity Chi# =<br>Test for overall effect :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.19, 8F=<br>Z= 3.12 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 (P = 0<br>P = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (12); (**<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52%                                                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| 1.1.6 to holizes hore a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000                                  |
| Lippins 1972s<br>Sebtotel (95% CI)<br>Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 296                                                                                                       | 100.0%                                                                 | 0.73 (0.58, 0.91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Seblotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 255                                                                                                       | 100.0%                                                                 | 0.73 [0.58, 0.91]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                     |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| Hoterogeneity: Not ap<br>Testfor overall effect ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2=2734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           | ****                                                                   | 0.74 0 02 0 475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| Dovan 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · · · · · · · · · · · · · · · · · |
| Doran 1980<br>Liggins 1972a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 423                                                                                                       | 29.0%                                                                  | 0 82 80 65, 1 038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · ·                                 |
| Doran 1980<br>Lippins 1972a<br>Sebtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58<br>440<br>496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42<br>423<br>471                                                                                          | 29.0%<br>100.0%                                                        | 0.82 (0.65, 1.03)<br>0.75 (0.61, 0.94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ••••                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42<br>423<br>471<br>81%                                                                                   | 89.0%<br>100.0%                                                        | 0.24 (0.08, 0.67)<br>0.62 (0.65, 1.03)<br>0.75 (0.61, 0.94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| Heterogeneity. Chi# =<br>Test for overall effect .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.25, df =<br>Z = 2.52 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 (P = 0<br>P = 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,15<br>(02); (**<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81%                                                                                                       | 09.0%<br>100.0%                                                        | 0.62 (0.65, 1.03)<br>0.75 (0.61, 0.94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| Heterogenetic Chille :<br>Test for overall effect :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.25, df =<br>Z = 2.52 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 (P = 0<br>P = 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.15<br>(02); P=<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 81%                                                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| Heterogenetic Chiller<br>Testfor overall effect :<br>1.1.8 in babies < 26 w<br>Liggins 1972a<br>Sebtofal (II-5% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 25, df =<br>Z = 2.52 (<br>weks' ge<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 (P = 0<br>P = 0.07<br>station<br>23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,15<br>(02); P =<br>)<br>at 1st de<br>\$7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81%<br>26<br>26                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| Heterogeneith: Chill =<br>Heterogeneith: Chill =<br>Test for overall effect ;<br>1.1.8 in babies < 26 w<br>Liggins 1972a<br>Sobotal (95% C0<br>Total events<br>Heteropeneith: Not an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 25, df =<br>2 = 2 52 (<br>weks' ge<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 (P = 0<br>P = 0.07<br>station<br>23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,15<br>(02); P =<br>)<br>at 1st de<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81%<br>26<br>26                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                     |
| Heterogenetic Chi*=:<br>Test for overall effect :<br>1.1.8 in babies < 26 w<br>Liggins 1972a<br>Sabtotal (JISN CD<br>Total wants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 25, df =<br>2 = 2 52 (<br>weks' ge<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 (P = 0<br>P = 0.07<br>station<br>23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,15<br>(02); P =<br>)<br>at 1st de<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81%<br>26<br>26                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :                                     |
| India Peers<br>India Peers<br>Test for overall effect /<br>1.1.8 In bables < 26 w<br>Upgins 1972a<br>Seboolar (MS CD<br>Total events<br>Indiaropeenity: Not ap<br>Test for overall effect /<br>1.1.9 In bables betwee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 25, df =<br>Z = 2 52 (<br>meks' pe<br>15<br>15<br>15<br>2 = 0.01 (<br>en 26 an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 (P = 6<br>P = 0.01<br>etation<br>23<br>P = 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,55<br>1,020; P =<br>2<br>att 1st de<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 61%<br>26<br>26<br>28                                                                                     | 100.0%<br>100.0%                                                       | 1.50 (0.06, 1.50)<br>1.50 (0.66, 1.58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                                     |
| India Peers<br>India Peers<br>Test for overall effect /<br>1.1.8 In bables < 26 w<br>Upgins 1972a<br>Seboolar (MS CD<br>Total events<br>Indiaropeenity: Not ap<br>Test for overall effect /<br>1.1.9 In bables betwee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 25, df =<br>Z = 2 52 (<br>meks' pe<br>15<br>15<br>15<br>2 = 0.01 (<br>en 26 an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 (P = 6<br>P = 0.01<br>etation<br>23<br>P = 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,55<br>1,020; P =<br>2<br>att 1st de<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 61%<br>26<br>26<br>28                                                                                     | 100.0%<br>100.0%                                                       | 1.50 (0.06, 1.50)<br>1.50 (0.66, 1.58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                     |
| Incluipenents<br>Incluipenents: Chill = :<br>Test for overall effect :<br>1.1.8 in babies < 26 w<br>Liggins 1972a<br>Subtotal (Info. Cl)<br>Total events<br>Hotorogeneity: Not ag<br>Test for overall effect :<br>1.1.9 in babies betwee<br>Liggins 1972a<br>Subtotal (Info. Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 107<br>5.25, df =<br>2 = 2.52 (<br>works' go<br>15<br>15<br>15<br>15<br>215<br>215<br>215<br>215<br>215<br>215<br>215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 (P = 0<br>P = 0.07<br>23<br>23<br>P = 0.92<br>E < 30 m<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,55<br>(32); P =<br>)<br>at 1st de<br>17<br>17<br>0<br>eeks*9<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e1%<br>26<br>26<br>28<br>estatic<br>121<br>121                                                            | 100.0%<br>100.0%                                                       | 1.00 (5.66, 1.56)<br>1.00 (5.66, 1.58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| India points<br>India points<br>Test for overall effect<br>1.1.8 in bables < 20 w<br>Uppins 1972s<br>Sabidate (IdA CD)<br>Total winds<br>India points<br>India points<br>India points<br>Test for overall effect<br>1.1.9 in bables betwee<br>Uppins 1972s<br>Sabidate (IdA CD)<br>Total events<br>Interconnects: Not as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 107<br>5.25, df =<br>2 = 2.52 (<br>welks' ge<br>15<br>15<br>plicable<br>2 = 0.01 (<br>en 26 an<br>50<br>50<br>corrable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 (P = 6<br>P = 0.01<br>23<br>23<br>P = 0.50<br>£ < 30 w<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,55<br>(02); P=<br>)<br>at 1st de<br>17<br>17<br>17<br>0<br>eeeks*g<br>54<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e1%<br>26<br>26<br>28<br>estatic<br>121<br>121                                                            | 100.0%<br>100.0%                                                       | 1 50 (0 66, 1 50)<br>1.00 (0.66, 1.58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| India points<br>India points<br>Test for overall effect.<br>1.1.8 in bables < 20 w<br>Uppins 1972s<br>Sabidate (IdA CD)<br>Total winds<br>India points<br>Test for overall effect.<br>1.1.9 in bables betwee<br>Uppins 1972a<br>Sabidate (IdA CD)<br>Total events<br>Interconnects: Not as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107<br>5.25, df =<br>2 = 2.52 (<br>welks' ge<br>15<br>15<br>plicable<br>2 = 0.01 (<br>en 26 an<br>50<br>50<br>corrable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 (P = 6<br>P = 0.01<br>23<br>23<br>P = 0.50<br>£ < 30 w<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,55<br>(02); P=<br>)<br>at 1st de<br>17<br>17<br>17<br>0<br>eeeks*g<br>54<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e1%<br>26<br>26<br>28<br>estatic<br>121<br>121                                                            | 100.0%<br>100.0%                                                       | 1 50 (0 66, 1 50)<br>1.00 (0.66, 1.58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                                     |
| total events<br>Test for overall effect<br>1.1.8 in bables < 24<br>Sector 22<br>Sector 22<br>Sector 25<br>Sector 26<br>Test for overall effect<br>1.1.9 in bables between<br>Sector 26<br>Sector 26                                                                                                           | 5 25, df =<br>2 = 2 52 (<br>welks' ge<br>15<br>15<br>15<br>plicable<br>2 = 0.01 (<br>en 26 an<br>50<br>60<br>plicable<br>2 = 1.47 (<br>ean 30 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 (P = 0<br>P = 0.01<br>23<br>23<br>P = 0.50<br>£ < 30 w<br>140<br>140<br>P = 0.14<br>m < 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,55<br>(02); P =<br>)<br>at 1st de<br>17<br>17<br>0<br>54<br>54<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61%<br>26<br>26<br>28<br>rstatic<br>121<br>121                                                            | 100.0%<br>100.0%<br>at 1st o<br>100.0%<br>500.0%                       | 1.50 () 66, 1.50<br>1.60 () 66, 1.50<br>0.00 () 59, 1.50<br>0.40 () 59, 1.60<br>0.40 () 59, 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| total events<br>Test for overall effect<br>1.1.8 in bables < 24<br>Sector 22<br>Sector 22<br>Sector 25<br>Sector 26<br>Test for overall effect<br>1.1.9 in bables between<br>Sector 26<br>Sector 26                                                                                                           | 5 25, df =<br>2 = 2 52 (<br>welks' ge<br>15<br>15<br>15<br>plicable<br>2 = 0.01 (<br>en 26 an<br>50<br>60<br>plicable<br>2 = 1.47 (<br>ean 30 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 (P = 0<br>P = 0.01<br>23<br>23<br>P = 0.50<br>£ < 30 w<br>140<br>140<br>P = 0.14<br>m < 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,55<br>(02); P =<br>)<br>at 1st de<br>17<br>17<br>0<br>54<br>54<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61%<br>26<br>26<br>28<br>rstatic<br>121<br>121                                                            | 100.0%<br>100.0%<br>at 1st o<br>100.0%<br>500.0%                       | 1.50 () 66, 1.50<br>1.60 () 66, 1.50<br>0.00 () 59, 1.50<br>0.40 () 59, 1.60<br>0.40 () 59, 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| Ioau events<br>Ioau events<br>Text for overail effect<br>Text for overail effect<br>(Lagens 1972s<br>Stability (Lagens 1972s<br>Stabi                                                                                                                                                                                                                                                                                                            | 5 25, df =<br>2 = 2 52 (<br>weeks' ge<br>15<br>15<br>15<br>15<br>15<br>2 = 0.01 (<br>en 26 an<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (P = 0<br>P = 0.01<br>23<br>23<br>P = 0.50<br>£ < 30 to<br>140<br>140<br>P = 0.14<br>to<br>140<br>c < 33<br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,55<br>(02); P =<br>)<br>at 1st de<br>17<br>17<br>17<br>0<br>0<br>0<br>54<br>54<br>0<br>0<br>0<br>9<br>0<br>9<br>0<br>9<br>0<br>9<br>0<br>9<br>0<br>9<br>0<br>9<br>0<br>9<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | estatic<br>26<br>26<br>28<br>121<br>121<br>121<br>121<br>121                                              | 100.0%<br>100.0%<br>at 1st o<br>100.0%<br>500.0%                       | 1.50 () 66, 1.50<br>1.60 () 66, 1.50<br>0.00 () 59, 1.50<br>0.40 () 59, 1.60<br>0.40 () 59, 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| toa events<br>toa events<br>Test for overail effect<br>1.1.8 is babies < 30<br>Subport 1972<br>Sabobal (95% CD<br>Todal watch<br>instructional effect<br>1.1.9 is babies between<br>Lagois 1972<br>Sabobal (95% CD<br>Todal events<br>Heatergoareek, Not ag-<br>Test for overail effect<br>1.1.9 is babies between<br>Lagois 1972<br>Sabobal (95% CD<br>Todal events<br>Heatergoareek, Not ag-<br>Test for overail effect<br>1.1.9 is babies between<br>Lagois 1972<br>Sabobal (95% CD<br>Todal events<br>Heatergoareek, Not ag-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 525, df = 2<br>2 = 2 52 c<br>weeks' ge<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>2 = 0.01 c<br>en 26 an<br>50<br>60<br>00 cable<br>2 = 1.47 c<br>een 30 a<br>19<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 (P = 0<br>P = 0.01<br>23<br>23<br>P = 0.50<br>£ < 30 to<br>140<br>140<br>P = 0.14<br>to<br>140<br>c < 33<br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,55<br>(02); P =<br>)<br>at 1st de<br>17<br>17<br>0<br>54<br>54<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | estatic<br>26<br>26<br>28<br>121<br>121<br>121<br>121<br>121                                              | 100.0%<br>100.0%<br>at 1st o<br>100.0%<br>500.0%                       | 1.50 () 66, 1.50<br>1.60 () 66, 1.50<br>0.00 () 59, 1.50<br>0.40 () 59, 1.60<br>0.40 () 59, 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                     |
| Ioau events<br>Ioau events<br>Helersgenetic, Curl = 1<br>Text for overail effect<br>(Lagren 1972a<br>Section 2015)<br>Section 2015<br>Section 2 | 107<br>525 df = 2<br>2 = 2 52 (<br>weeks' ge<br>15<br>15<br>plicable<br>2 = 0.01 (<br>en 26 an<br>50<br>60<br>plicable<br>2 = 1.47 (<br>een 30 a<br>19<br>19<br>chiratie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 (P = 0<br>P = 0.07<br>station<br>23<br>23<br>P = 0.50<br>a < 30 m<br>140<br>P = 0.14<br>md < 33<br>165<br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,00<br>(022); P =<br>3<br>at 1st de<br>17<br>17<br>17<br>0<br>merks" 9<br>54<br>54<br>0<br>weeks",<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | estatic<br>26<br>26<br>28<br>121<br>121<br>121<br>121<br>121                                              | 100.0%<br>100.0%<br>at 1st o<br>100.0%<br>500.0%                       | 1.50 () 66, 1.50<br>1.60 () 66, 1.50<br>0.00 () 59, 1.50<br>0.40 () 59, 1.60<br>0.40 () 59, 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| I road entrals<br>I road entrals<br>Test Erv overall effect:<br>Test Erv overall effect:<br>I as B bables e 28 w<br>Upgins 19725<br>Sabolada (1976 CO<br>Total events<br>Sabolada (1975 CO<br>Total events<br>Sabolada (1975 CO<br>Total events<br>Sabolada (1975 CO<br>Total events<br>Test Erv overail effect.<br>Not applicable total<br>Sabolada (1976 CO<br>Total events<br>Test Erv overail effect.<br>Sabolada (1976 CO<br>Total events<br>Test Erv overail effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107<br>525, df = 2<br>2 = 2 52 (<br>weeks' go<br>15<br>15<br>plicable<br>2 = 0.01 (<br>ees 26 an<br>50<br>plicable<br>2 = 1.47 (<br>ees 30 a<br>19<br>19<br>plicable<br>2 = 1.52 (<br>15<br>50<br>50<br>50<br>50<br>15<br>15<br>50<br>50<br>50<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 (P = 0<br>P = 0.01<br>23<br>22<br>P = 0.30<br>140<br>140<br>140<br>P = 0.14<br>140<br>140<br>145<br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125<br>127<br>127<br>137<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81%<br>28<br>28<br>121<br>121<br>121<br>154                                                               | 100.0%<br>100.0%<br>100.0%<br>100.0%<br>100.0%                         | 102 (2016), 152<br>1020 (2016), 153<br>2010 (2016), 100<br>2010 (2016), 100<br>2010 (2016), 100<br>0 (2010), 100<br>0 | 1                                     |
| I road entrals<br>I road entrals<br>Test Erv overall effect:<br>Test Erv overall effect:<br>I as B bables e 28 w<br>Upgins 19725<br>Sabolada (1976 CO<br>Total events<br>Sabolada (1975 CO<br>Total events<br>Sabolada (1975 CO<br>Total events<br>Sabolada (1975 CO<br>Total events<br>Test Erv overail effect.<br>Not applicable total<br>Sabolada (1976 CO<br>Total events<br>Test Erv overail effect.<br>Sabolada (1976 CO<br>Total events<br>Test Erv overail effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107<br>525, df = 2<br>2 = 2 52 (<br>weeks' go<br>15<br>15<br>plicable<br>2 = 0.01 (<br>ees 26 an<br>50<br>plicable<br>2 = 1.47 (<br>ees 30 a<br>19<br>19<br>plicable<br>2 = 1.52 (<br>15<br>50<br>50<br>50<br>50<br>15<br>15<br>50<br>50<br>50<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 (P = 0<br>P = 0.01<br>23<br>22<br>P = 0.30<br>140<br>140<br>140<br>P = 0.14<br>140<br>140<br>145<br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,29<br>(2), P**<br>at 1st do<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>54<br>54<br>54<br>54<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81%<br>28<br>28<br>28<br>121<br>121<br>121<br>154<br>154                                                  | 100.0%<br>100.0%<br>en al 1at d<br>100.0%<br>100.0%                    | 1.50 () 56, 1.60<br>1.60 () 566, 1.60<br>0.00 () 500, 1.00<br>0.00 () 5, 1.00<br>659<br>0.50 () 5, 1.01<br>0.59 () 5, 5, 5, 1.01<br>0.59 () 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                     |
| I road entrain<br>I road entrain (Chi * )<br>Test for overall effect:<br>Test for overall effect:<br>1.3.5 In bables effect<br>2.3.6 In bables effect<br>2.3.6 In bables effect<br>2.3.6 In bables betwee<br>Upgins 1972s<br>Saboloal (Poly Chi<br>Total events<br>1.6.1 In bables betwee<br>Upgins 1972s<br>Saboloal (Poly Chi<br>Total events<br>1.6.1 In bables betwee<br>Upgins 1972s<br>Saboloal (Poly Chi<br>Total events<br>1680cogenety, Not agi<br>Test for overall effect<br>1.6.1 In bables betwee<br>1.6.1 In bables between<br>1.6.1 In bables between<br>1.                                                                                                                                                                                                                                                                                                      | 105<br>105<br>105<br>105<br>105<br>105<br>105<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 (P = 0<br>P = 0.01<br>31athon<br>23<br>23<br>P = 0.92<br>4<30 w<br>140<br>140<br>P = 0.14<br>145<br>145<br>145<br>145<br>145<br>145<br>145<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,29<br>(2), P**<br>at 1st do<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>54<br>54<br>54<br>54<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81%<br>28<br>28<br>28<br>121<br>121<br>121<br>154<br>154                                                  | 100.0%<br>100.0%<br>en al 1at d<br>100.0%<br>100.0%                    | 1.50 () 56, 1.60<br>1.60 () 566, 1.60<br>0.00 () 500, 1.00<br>0.00 () 5, 1.00<br>659<br>0.50 () 5, 1.01<br>0.59 () 5, 5, 5, 1.01<br>0.59 () 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                     |
| Indexergents<br>Index properties<br>Test for overall effect<br>Test for overall effect<br>Index provide the second<br>Department<br>Statistics of the second<br>Test for overall effect<br>Department<br>Statistics of the second<br>Statistics of the                                                                                                                                                                                                                                                                                                                  | 505, df =<br>2 = 252;<br>15<br>15<br>15<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 (P = 0<br>P = 0.01<br>31athon<br>23<br>23<br>P = 0.92<br>4<30 w<br>140<br>140<br>P = 0.14<br>145<br>145<br>145<br>145<br>145<br>145<br>145<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,29<br>(2), P**<br>at 1st do<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>54<br>54<br>54<br>54<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81%<br>28<br>28<br>28<br>121<br>121<br>121<br>154<br>154                                                  | 100.0%<br>100.0%<br>en al 1at d<br>100.0%<br>100.0%                    | 102 (2016), 152<br>1020 (2016), 153<br>2010 (2016), 100<br>2010 (2016), 100<br>2010 (2016), 100<br>0 (2010), 100<br>0 | *<br>*<br>*                           |
| Index optimized on the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1007<br>22 = 252 (<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 (P = 0<br>P = 0.07<br>23<br>23<br>P = 0.92<br>24<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,29<br>1,29<br>1,27<br>1,27<br>1,27<br>1,7<br>1,7<br>1,7<br>1,7<br>1,7<br>1,7<br>1,7<br>1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81%<br>28<br>28<br>28<br>121<br>121<br>121<br>154<br>154                                                  | 100.0%<br>100.0%<br>en al 1at d<br>100.0%<br>100.0%                    | 1 55 () 56 ()<br>1 56 () 56 ()<br>0 05 5 50 ()<br>0 05 5                                                                                                                       | *                                     |
| Total elevity<br>Testific overall effects<br>(1) and the second effects<br>(1) and (1) and                                                                                                                                                                                                                                                                                                                                                    | 1007<br>22 = 252 (<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 1 \ (P=0) \\ P=0.01 \\ 23 \\ 23 \\ P=0.91 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 160 \\ 150 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 1$ | 1,29<br>1,29<br>1,20<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27<br>1,27                                                                                                                                                                                                                                                                                                                                                      | 81%<br>26<br>28<br>99<br>121<br>121<br>121<br>154<br>154<br>185<br>185                                    | 100.0%<br>100.0%<br>100.0%<br>100.0%<br>100.0%<br>100.0%               | 1 30 () 36, 1 50<br>1 30 () 34, 1 50<br>3 0 () 35, 1 (0)<br>3 0 () 35, 1 (0)<br>3 0 () 5, 1 (0)<br>6 0 () 5 () 3, 1 (0)<br>6 0 () 5 () 3, 1 (0)<br>6 0 () 1 () 1 () 1 () 1 () 1 () 1 () 1 ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *<br>*<br>*                           |
| That even a set of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 (P = 0<br>P = 0.01<br>23<br>23<br>P = 0.30<br>4 < 30<br>165<br>P = 0.10<br>165<br>P = 0.0<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,1,9<br>2,1,9<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81%<br>26<br>26<br>28<br>estatic<br>121<br>121<br>121<br>121<br>154<br>154<br>185<br>185                  | 100.0%<br>100.0%<br>100.0%<br>100.0%<br>100.0%                         | 1.02 (2.06, 1.52)<br>1.02 (2.06, 1.52)<br>1.02 (2.06, 1.52)<br>2.02 (2.55, 1.02)<br>2.02 (2.55, 1.02)<br>3.559 (2.5, 1.02)<br>4.59 (2.5, 1.02)<br>4000<br>4000<br>410 (2.55, 2.65)<br>4.59 (2.55, 2.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                     |
| Testfor overall effect :<br>1.1.1 is to block < 2 % is<br>general to the second of the sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 25, df =<br>2 = 2 52 (<br>15 15<br>15 15<br>15 26 20 01 (<br>15 26 00 1)<br>50 00 10 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $10^{9} = 0.01$<br>213<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>2233<br>2233<br>2233<br>2233<br>2233<br>2233<br>2233                                                                                                                                                                                                                                                                                                                                                                | 12,0°=<br>12,0°=<br>12,0°=<br>12,0°=<br>13,0°=<br>13,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=<br>14,0°=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | estatic<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                     | 100.0%<br>100.0%<br>100.0%<br>100.0%<br>100.0%                         | 1.02 (2.06, 1.52)<br>1.02 (2.06, 1.52)<br>1.02 (2.06, 1.52)<br>2.02 (2.55, 1.02)<br>2.02 (2.55, 1.02)<br>3.559 (2.5, 1.02)<br>4.59 (2.5, 1.02)<br>4000<br>4000<br>410 (2.55, 2.65)<br>4.59 (2.55, 2.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                     |
| Little version devices. Conv<br>Conv<br>Conv<br>Little based of the<br>Little based of the<br>Little based of the<br>Little based of<br>Little b                                                                                                                                                                                                                                                | 525, dF =<br>52 = 252 (<br>15 = 252 (<br>15 = 15 =<br>15 =<br>16 =<br>17 =<br>18 =<br>19 =<br>10 | 1 (P = 0 01<br>9 = 0.01<br>23<br>23<br>P = 0.91<br>4 < 30 w<br>140<br>140<br>140<br>145<br>165<br>9 = 0.91<br>168<br>168<br>9 = 0.71<br>168<br>168<br>9 = 0.71<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21,0%<br>21,0%<br>21,0%<br>21,0%<br>21,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0%<br>20,0% | estatic<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                     | 100.0%<br>100.0%<br>100.0%<br>100.0%<br>100.0%                         | 1.02 (2.06, 1.52)<br>1.02 (2.06, 1.52)<br>1.02 (2.06, 1.52)<br>2.02 (2.55, 1.02)<br>2.02 (2.55, 1.02)<br>3.559 (2.5, 1.02)<br>4.59 (2.5, 1.02)<br>4000<br>4000<br>410 (2.55, 2.65)<br>4.59 (2.55, 2.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Total elevity<br>Testific overall effects<br>(1) and the second effects<br>(1) and (1) and                                                                                                                                                                                                                                                                                                                                                    | 525, 07 =<br>52 = 252; 07 =<br>15 =<br>15 =<br>15 =<br>15 =<br>15 =<br>50 =<br>5 | 1 (P = 6<br>P = 0.01<br>23<br>23<br>23<br>P = 0.50<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122,0°=<br>122,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121,0°=<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | estatic<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                     | 100.0%<br>100.0%<br>100.0%<br>100.0%<br>100.0%                         | 1.02 (2.06, 1.52)<br>1.02 (2.06, 1.52)<br>1.02 (2.06, 1.52)<br>2.02 (2.55, 1.02)<br>2.02 (2.55, 1.02)<br>3.559 (2.5, 1.02)<br>4.59 (2.5, 1.02)<br>4000<br>4000<br>410 (2.55, 2.65)<br>4.59 (2.55, 2.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *<br>*<br>*                           |
| The test of weak which is the test of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 25, 07 =<br>5 25 27 252 (27 =<br>27 252 (27 =<br>15 12 52 (27 =<br>1                                   | 1 (P = 0 0)<br>P = 0.01<br>23<br>23<br>P = 0.92<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>165<br>165<br>165<br>165<br>165<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168                                                                                                                                                                                                                                                                                                                                                                   | 122,0°=<br>123,0°=<br>127<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81%<br>000<br>26<br>26<br>28<br>estatic<br>121<br>121<br>121<br>154<br>154<br>154<br>pestat<br>107<br>107 | 100.0%<br>100.0%<br>in at 1std<br>100.0%<br>100.0%<br>100.0%<br>100.0% | 1 50 (2) 56, 1 52<br>1 50 (2) 56, 1 50<br>50 (2) 50, 1 50<br>50 (2) 50, 1 60<br>0 98 (2) 5, 1 60<br>0 98 (2) 5, 1 60<br>0 98 (2) 5, 1 60<br>1 10 (2) 5, 5 60<br>1 2 (2) (2), 5 50<br>1 2 (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2) (2) (2) (2) (2) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| The test of weak which is the test of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 25, 07 =<br>5 25 27 252 (27 =<br>27 252 (27 =<br>15 12 5 15 15 15 15 15 15 15 15 15 15 15 15 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 (P = 0 0)<br>P = 0.01<br>23<br>23<br>P = 0.92<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>165<br>165<br>165<br>165<br>165<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168                                                                                                                                                                                                                                                                                                                                                                   | 122,0°=<br>123,0°=<br>127<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81%<br>000<br>26<br>26<br>28<br>estatic<br>121<br>121<br>121<br>154<br>154<br>154<br>pestat<br>107<br>107 | 100.0%<br>100.0%<br>in at 1std<br>100.0%<br>100.0%<br>100.0%<br>100.0% | 1 50 (2) 56, 1 52<br>1 50 (2) 56, 1 50<br>50 (2) 50, 1 50<br>50 (2) 50, 1 60<br>0 98 (2) 5, 1 60<br>0 98 (2) 5, 1 60<br>0 98 (2) 5, 1 60<br>1 10 (2) 5, 5 60<br>1 2 (2) (2), 5 50<br>1 2 (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2) (2) (2) (2) (2) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| The test of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 (5, 07 =<br>5 (5, 07 =<br>5 (5, 07 =<br>5 = 252; (5 =<br>15 =<br>15 =<br>15 =<br>15 =<br>15 =<br>16 =<br>27 = 0.01; (5 =<br>16 =<br>17 =<br>19 =<br>10 =       | 1 (P = 0.5)<br>P = 0.01<br>21<br>22<br>P = 0.50<br>140<br>140<br>142<br>165<br>165<br>168<br>195<br>198<br>P = 0.71<br>168<br>198<br>P = 0.71<br>168<br>198<br>P = 0.71<br>108<br>198<br>P = 0.71<br>108<br>198<br>108<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198                                                                                                                                                                                                                                                                                                                                                                   | 122,0°=<br>123,0°=<br>127<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81%<br>000<br>26<br>26<br>28<br>estatic<br>121<br>121<br>121<br>154<br>154<br>154<br>pestat<br>107<br>107 | 100.0%<br>100.0%<br>in at 1std<br>100.0%<br>100.0%<br>100.0%<br>100.0% | 1 50 (2) 56, 1 52<br>1 50 (2) 56, 1 50<br>50 (2) 50, 1 50<br>50 (2) 50, 1 60<br>0 98 (2) 5, 1 60<br>0 98 (2) 5, 1 60<br>0 98 (2) 5, 1 60<br>1 10 (2) 5, 5 60<br>1 2 (2) (2), 5 50<br>1 2 (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2) (2) (2) (2) (2) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Lindowski, C. Ore - Construction of the con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 25, 07 =<br>5 25, 07 =<br>5 25, 07 =<br>7 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 (P = 6<br>P = 0.01<br>23<br>23<br>P = 0.52<br>23<br>23<br>P = 0.52<br>24<br>20<br>25<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122, (**<br>123, (**<br>127, (**<br>127, (**<br>127, (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81%<br>000<br>26<br>26<br>28<br>estatic<br>121<br>121<br>121<br>154<br>154<br>154<br>pestat<br>107<br>107 | 100.0%<br>100.0%<br>in at 1std<br>100.0%<br>100.0%<br>100.0%<br>100.0% | 1 50 (2) 56, 1 52<br>1 50 (2) 56, 1 50<br>50 (2) 50, 1 50<br>50 (2) 50, 1 60<br>0 98 (2) 5, 1 60<br>0 98 (2) 5, 1 60<br>0 98 (2) 5, 1 60<br>1 10 (2) 5, 5 60<br>1 2 (2) (2), 5 50<br>1 2 (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2) (2) (2) (2) (2) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| The test of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 25, 07 =<br>5 25, 07 =<br>5 25, 07 =<br>7 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 (P = 6<br>P = 0.01<br>23<br>23<br>P = 0.52<br>23<br>23<br>P = 0.52<br>24<br>20<br>25<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122, (**<br>123, (**<br>127, (**<br>127, (**<br>127, (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81%<br>000<br>26<br>26<br>28<br>estatic<br>121<br>121<br>121<br>154<br>154<br>155<br>107<br>107           | 100.0%<br>100.0%<br>in at 1std<br>100.0%<br>100.0%<br>100.0%<br>100.0% | 1 50 (2) 56, 1 52<br>1 50 (2) 56, 1 50<br>50 (2) 50, 1 50<br>50 (2) 50, 1 60<br>0 98 (2) 5, 1 60<br>0 98 (2) 5, 1 60<br>0 98 (2) 5, 1 60<br>1 10 (2) 5, 5 60<br>1 2 (2) (2), 5 50<br>1 2 (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2) (2) (2) (2) (2) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Lindowski, C. Ore - Construction of the con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 25, 07 =<br>5 25, 07 =<br>5 25, 07 =<br>7 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 (P = 6<br>P = 0.01<br>23<br>23<br>P = 0.52<br>23<br>23<br>P = 0.52<br>24<br>20<br>25<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122, (**<br>123, (**<br>127, (**<br>127, (**<br>127, (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**), (**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81%<br>000<br>26<br>26<br>28<br>estatic<br>121<br>121<br>121<br>154<br>154<br>155<br>107<br>107           | 100.0%<br>100.0%<br>in at 1std<br>100.0%<br>100.0%<br>100.0%<br>100.0% | 1 50 (2) 56, 1 52<br>1 50 (2) 56, 1 50<br>50 (2) 50, 1 50<br>50 (2) 50, 1 60<br>0 98 (2) 5, 1 60<br>0 98 (2) 5, 1 60<br>0 98 (2) 5, 1 60<br>1 10 (2) 5, 5 60<br>1 2 (2) (2), 5 50<br>1 2 (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2) (2) (2) (2)<br>1 2 (2) (2) (2) (2) (2) (2) (2) (2) (2) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |


| Figure 62: | Cerebroventricular | haemorrhage |
|------------|--------------------|-------------|
|------------|--------------------|-------------|

| Study or Subgroup<br>1.2.1 In all babies                        | Treatm<br>Events     | Total           | Coetr<br>Events                            | Total           | Weight     | Risk Ratio<br>M-H, Fixed, 95% CI                                                 | Risk Ratio<br>M-H, Fixed, 95% Cl                      |
|-----------------------------------------------------------------|----------------------|-----------------|--------------------------------------------|-----------------|------------|----------------------------------------------------------------------------------|-------------------------------------------------------|
| 1.2.1 In all babies<br>Amorim 1999                              |                      | 100             | 17                                         | 100             | 10.7%      | 0.35 (0.15, 0.86)                                                                |                                                       |
| Dexiprom 1999                                                   | ő                    | 105             | 0                                          | 101             |            | Not extinuable                                                                   |                                                       |
| Doran 1980                                                      | 1                    | 80              |                                            | 60              | 2.9%       | 0.19 (0.02, 1.63)                                                                | • • • • • • • • • • • • • • • • • • • •               |
| Fekih 2002<br>Gamsy 1989                                        | 5 2                  | 63<br>130       | 14                                         | 68              | 8.5%       | 0.19 [0.02, 1.63]<br>0.39 [0.15, 1.01]<br>0.51 [0.09, 2.72]                      |                                                       |
| Garte 1992                                                      | 2<br>10              | 130<br>33<br>77 | 14<br>19<br>18<br>3<br>27<br>20<br>8<br>17 | 40              | 10.9%      | 0.64 (0.35, 1.16)                                                                |                                                       |
| Kari 1994                                                       | 8                    | 77              | 18                                         | 66              | 12.3%      | 0.38 (0.18, 0.82)<br>0.15 (0.01, 2.74)                                           |                                                       |
| Lewis 1996                                                      | 8<br>0<br>16         | 38<br>554       | 3                                          | 39              | 2.2%       | 0.15 [0.01, 2.74]                                                                | ••                                                    |
| Liggins 1972a<br>Morales 1989                                   | 10                   | 954<br>87       | 27                                         | 507             | 16.9%      | 0.61 (0.33, 1.11)<br>0.58 (0.31, 1.09)                                           | Contraction of the second                             |
| Oublan 2001                                                     | 2                    | 70              | 8                                          | 65              | 5.2%       | 0 23 10 05 1 05                                                                  | • • • • •                                             |
| Silver 1996                                                     | 25                   | 54              | 17                                         | 42              | 12.1%      | 1 14 (0.72, 1.02)<br>0.14 (0.01, 2.57)                                           |                                                       |
| Taeusch 1979<br>Subtotal (95% CI)                               | 0                    | 54              | 4                                          | 69              | 2.5%       | 0.14 [0.01, 2.57]<br>0.54 [0.43, 0.69]                                           |                                                       |
| Total events<br>Heterogeneity: Chi <sup>a</sup> = 1             | 08<br>6.25, df       | = 11 (P         | 155                                        |                 |            | and form and                                                                     |                                                       |
| Test for overall effect 2                                       |                      |                 |                                            |                 |            |                                                                                  |                                                       |
| 1.2.2 In babies born fr<br>Davierom 1999                        | om preg              | 105             | s compê                                    | tot             | by prema   | ture rupture of membrane<br>Not estimable                                        | s at 1st dose                                         |
| Dexiprom 1999<br>Lewis 1995                                     | 0                    | .38             | 3                                          | 39              | 8.7%       | 0 15 10 01 2 741                                                                 | •••                                                   |
| Liggins 1972a                                                   |                      |                 | 7                                          | 158             | 17.4%      | 0.59 (0.18, 1.96)<br>0.58 (0.31, 1.09)<br>0.23 (0.05, 1.05)<br>0.47 (0.28, 0.79) |                                                       |
| Lippins 1995<br>Lippins 1972a<br>Morales 1999<br>Gublan 2001    | 13                   | 87<br>70        | 20                                         | 158<br>78<br>65 | 53.1%      | 0.58 (0.31, 1.09)                                                                |                                                       |
| Subtotal (95% CI)                                               | 2                    | 454             |                                            | 441             | 100.0%     | 0.47 [0.28, 0.79]                                                                | +                                                     |
|                                                                 |                      |                 |                                            |                 |            |                                                                                  |                                                       |
| Heterogeneity Chi <sup>a</sup> = 2<br>Test for overall effect 2 | = 2.88 (             | P = 0.0         | 0.57); P+<br>04)                           | 0%              |            |                                                                                  |                                                       |
| 1.2.3 In babies born <                                          | 28 week<br>5         | 34              | 12                                         | 20              | 100.0%     | 0.7410.14.0.961                                                                  |                                                       |
| Liggins 1972a<br>Subtotal (95% CI)                              |                      | - 34            |                                            | 28              | 100.0%     | 0.34 (0.14, 0.86)<br>0.34 (0.14, 0.86)                                           |                                                       |
| Total events                                                    | 5                    |                 | 12                                         |                 |            |                                                                                  |                                                       |
| Heterogeneity: Not app<br>Test for overall effect 3             | licable<br>(= 2.29 ( | P=0.0           | 25                                         |                 |            |                                                                                  |                                                       |
| 1.2.4 In babies born 4                                          | 10 meek              |                 |                                            |                 |            |                                                                                  |                                                       |
| Lipgins 1972a<br>Sebtotal (95% CI)                              | 11                   | 76              | 19                                         | 74              | 100.0%     | 0.56 [0.29, 1.10]<br>0.56 [0.29, 1.10]                                           |                                                       |
| Subtotal (95% CI)<br>Total events                               | н                    |                 |                                            | 74              | 100.0%     | 0.56 [0.29, 1.10]                                                                |                                                       |
| Total events<br>Heterogeneity: Not app                          | 11<br>icable         |                 | 19                                         |                 |            |                                                                                  |                                                       |
| Test for overall effect 2                                       | = 1.68 (             | P = 0.0         | 9)                                         |                 |            |                                                                                  |                                                       |
| 1.2.5 In babies born <                                          | 32 week              | 15              |                                            |                 |            |                                                                                  |                                                       |
| Lipgins 1972a<br>Sebtotal (95% CI)                              | 13                   | 144             | 23                                         | 133             | 100.0%     | 0.52 (0.28, 0.99)                                                                |                                                       |
| Subtotal (95% CI)                                               |                      | 144             |                                            | 133             | 100.0%     | 0.52 [0.28, 0.99]                                                                | -                                                     |
| Total events.<br>Heterogeneity: Not app                         |                      |                 | 23                                         |                 |            |                                                                                  |                                                       |
| Test for overall effect 1                                       | = 2.00 (             | P = 0.0         | 5)                                         |                 |            |                                                                                  |                                                       |
| 1.2.6 in babies born <                                          |                      |                 |                                            |                 |            |                                                                                  |                                                       |
| 1.2.6 In babies born <                                          | 34 week              | 373             |                                            | -               |            | 0.6240.20.0.00                                                                   |                                                       |
| Liggins 1972a<br>Subtotal (95% CI)                              | 10                   | 273             |                                            | 242             | 100.0%     | 0.53 (0.29, 0.95)<br>0.53 (0.29, 0.95)                                           | -                                                     |
| Total events                                                    | 16                   |                 | 27                                         |                 |            |                                                                                  | 1212                                                  |
| Heterogeneity: Not app                                          | incable :            |                 |                                            |                 |            |                                                                                  |                                                       |
| Test for overall effect 3                                       |                      |                 | 39                                         |                 |            |                                                                                  |                                                       |
| 1.2.7 In babies born <                                          | 36 meek              | 15              |                                            |                 |            |                                                                                  |                                                       |
| Liggins 1972a<br>Subtotal (95% CI)                              | 16                   | 394             | 27                                         | 373             | 100.0%     | 0.56 (0.31, 1.02)<br>0.56 (0.31, 1.02)                                           |                                                       |
| Total events                                                    | 16                   |                 | 27                                         |                 |            | and from the staff                                                               |                                                       |
| Heterogeneity: Not app                                          | licable              |                 |                                            |                 |            |                                                                                  |                                                       |
| Test for overall effect 2                                       |                      |                 |                                            |                 |            |                                                                                  |                                                       |
| 1.2.8 in babies < 26 w                                          | eeks' ge             | station         | at 1st di                                  | ose             | 100.00     |                                                                                  |                                                       |
| Liggins 1972a<br>Subtotal (95% CI)                              | - +                  | 15              | *                                          | 12              | 100.0%     | 1.20 [0.24, 6.06]<br>1.20 [0.24, 6.06]                                           |                                                       |
| Total events                                                    | 2                    |                 |                                            |                 |            |                                                                                  |                                                       |
| Heteropeneity: Not app<br>Test for overall effect 2             | inclable             |                 |                                            |                 |            |                                                                                  |                                                       |
|                                                                 |                      |                 |                                            |                 |            |                                                                                  |                                                       |
| 1.2.9 In babies betwee<br>Amorim 1999<br>Liggins 1972a          | 0                    | 1               | 0                                          | 1               | 100.0%     | Not estimable                                                                    | _                                                     |
| Liggins 1972a                                                   | 9                    | 120             | 18                                         | 107             | 100.0%     | 0.45 (0.21, 0.95)                                                                |                                                       |
| Subtotal (95% CI)<br>Total events                               |                      | 121             | 10                                         | 108             | 100.0%     | 0.45 [0.21, 0.95]                                                                |                                                       |
| Heterogeneity: Not app                                          | licable              |                 |                                            |                 |            |                                                                                  |                                                       |
| Test for overall effect 3                                       | t+ 2.09 (            | P = 0.0         | 4)                                         |                 |            |                                                                                  |                                                       |
| 1.2.10 In babies betw                                           | ee 30 a              | nd < 33         | weeks'                                     | pestat          | ion at 1st | dose                                                                             |                                                       |
| Liggins 1972a<br>Subtotal (95% CI)                              | 1                    | 155             | 4                                          | 140             | 100.0%     | 0.23 [0.03, 2.00]                                                                | -                                                     |
| Total events                                                    |                      | 100             |                                            | 140             | 100.0%     | ersa linear yool                                                                 |                                                       |
| Heterogeneity: Not app                                          | licable              |                 | -                                          |                 |            |                                                                                  |                                                       |
| Test for overall effect 2                                       | = 1.34 (             | P = 0.1         | 69                                         |                 |            |                                                                                  |                                                       |
| 1.2.11 In babies betw                                           | ien 33 a             | nd < 35         | weeks'                                     | pestat          | ion at 1st | dose                                                                             |                                                       |
| Liggins 1972a<br>Subtotal (95% CI)<br>Total events              | 3                    | 161             | 3                                          | 178             | 100.0%     | 1.51 (0.23, 5.40)                                                                |                                                       |
| Subtotal (95% CI)<br>Total events                               |                      | 101             |                                            | 178             | 100.0%     | 1.11 [0.23, 5.40]                                                                |                                                       |
| Heteropenetik: Not app                                          | licable              |                 |                                            |                 |            |                                                                                  |                                                       |
| Test for overall effect 2                                       |                      |                 |                                            |                 |            |                                                                                  |                                                       |
| 1.2.12 In babies betw                                           | ien 35 a             | nd < 37         | weeks'                                     | pestat          | ion at 1st | dose                                                                             |                                                       |
| Lipgins 1972a<br>Subtotal (95% CI)                              | 0                    | 85              | 0                                          | 108             |            | Not estimable<br>Not estimable                                                   |                                                       |
| Total events                                                    | 0                    |                 | Ó                                          | 10-0            |            | THE REPORT OF                                                                    |                                                       |
| Heterogeneity: Not app<br>Test for overall effect. P            | licable              |                 | đ.                                         |                 |            |                                                                                  |                                                       |
|                                                                 |                      |                 |                                            |                 |            |                                                                                  |                                                       |
| 1.2.13 In babies > 36 v                                         | veeks' g             | estatio         | e at 1st                                   | dose            |            | hist askessing                                                                   |                                                       |
| Lipgins 1972a<br>Subtotal (95% CI)                              | 0                    | 18              | 0                                          | 24              |            | Not estimable<br>Not estimable                                                   |                                                       |
| Total events                                                    | 0                    |                 | 0                                          |                 |            |                                                                                  |                                                       |
|                                                                 | drable.              |                 |                                            |                 |            |                                                                                  |                                                       |
| Heteropeneith: Not app                                          | int next             | and the second  |                                            |                 |            |                                                                                  |                                                       |
| Heterogeneity: Not app<br>Test for overall effect ?             | ict appli            | cable           |                                            |                 |            |                                                                                  |                                                       |
| Heteropeneith: Not app                                          | iot appli            | cable           |                                            |                 |            |                                                                                  | 01 02 05 1 2 5 1<br>Favours treatment Favours control |

## Figure 63: Intraventricular haemorrhage – grades 3 or 4

| weather to an end of the second   | Treatm    | nent   | Conti                   | rol   |           | Risk Ratio         | Risk Ratio                                                |
|-----------------------------------|-----------|--------|-------------------------|-------|-----------|--------------------|-----------------------------------------------------------|
| Study or Subgroup                 | Events    | Total  | Events                  | Total | al Weight | M-H, Fixed, 95% Cl | M-H, Fixed, 95% CI                                        |
| Doran 1980                        | 1         | 80     | 4                       | 60    | 0.0%      | 0.19 [0.02, 1.63]  | an and an a star of the star of the star                  |
| Gamsu 1989                        | 2         | 130    | 4                       | 132   | 0.0%      | 0.51 [0.09, 2.72]  |                                                           |
| Garite 1992                       | 1         | 33     | 9                       | 40    | 27.1%     | 0.13 [0.02, 1.01]  |                                                           |
| Lewis 1996                        | 0         | 38     | 3                       | 39    | 11.5%     | 0.15 [0.01, 2.74]  | • • •                                                     |
| Morales 1989                      | 3         | 87     | 12                      | 78    | 42.1%     | 0.22 [0.07, 0.77]  |                                                           |
| Silver 1996                       | 2         | 28     | 6                       | 30    | 19.3%     | 0.36 [0.08, 1.63]  | • • • • •                                                 |
| Total (95% CI)                    |           | 186    |                         | 187   | 100.0%    | 0.22 [0.10, 0.49]  | •                                                         |
| Total events                      | 6         |        | 30                      |       |           |                    | 27 22 N 22 A                                              |
| Heterogeneity: Chi <sup>2</sup> = | 0.70, df= | 3 (P = | 0.87); I <sup>2</sup> = | = 0%  |           |                    | 0.01 0.1 1 10 100                                         |
| Test for overall effect           |           |        |                         |       |           |                    | 0.01 0.1 1 10 100<br>Favours experimental Favours control |

#### Figure 64: Chronic lung disease



#### Figure 65: Need for mechanical intervention

|                         | Treatm       | ent      | Contr     | lor    |          | Risk Ratio                   | Risk Ratio                        |
|-------------------------|--------------|----------|-----------|--------|----------|------------------------------|-----------------------------------|
| Study or Subgroup       | Events       | Total    | Events    | Total  | Weight   | M-H, Fixed, 95% CI           | M-H, Fixed, 95% CI                |
| 1.4.1 In all babies     |              |          |           |        |          |                              |                                   |
| Amorim 1999             | 28           | 100      | 45        | 100    | 72.3%    | 0.62 [0.42, 0.91]            |                                   |
| Block 1977              | 5            | 57       | 12        | 53     | 0.0%     | 0.39 [0.15, 1.03]            |                                   |
| Dexiprom 1999           | 15           | 105      | 16        | 101    | 0.0%     | 0.90 [0.47, 1.73]            |                                   |
| Garite 1992             | 14           | 24       | 19        | 29     | 27.7%    | 0.89 [0.58, 1.37]            |                                   |
| Porto 2011              | 2            | 144      | 1         | 131    | 0.0%     | 1.82 [0.17, 19.83]           |                                   |
| Subtotal (95% CI)       |              | 124      |           | 129    | 100.0%   | 0.70 [0.52, 0.93]            | •                                 |
| Total events            | 42           |          | 64        |        |          |                              |                                   |
| Heterogeneity: Chi# =   | = 1.59, df = | 1 (P =   | 0.21); F= | 37%    |          |                              |                                   |
| Test for overall effect | : Z = 2.42 ( | (P = 0.0 | (2)       |        |          |                              |                                   |
| 1.4.2 In babies born    | from preg    | nancie   | s compli  | icated | by prema | ture rupture of membranes at | 1st dose                          |
| Dexiprom 1999           | 15           | 105      | 16        | 101    | 100.0%   | 0.90 [0.47, 1.73]            |                                   |
| Subtotal (95% CI)       |              | 105      |           | 101    | 100.0%   | 0.90 [0.47, 1.73]            | -                                 |
| Total events            | 15           |          | 16        |        |          |                              |                                   |
| Heterogeneity: Not a    | pplicable    |          |           |        |          |                              |                                   |
| Test for overall effect |              | P = 0.7  | 5)        |        |          |                              |                                   |
|                         |              |          |           |        |          |                              |                                   |
|                         |              |          |           |        |          |                              | 01 02 05 1 2 5 10                 |
|                         |              |          |           |        |          |                              | Favours treatment Favours control |
|                         |              |          |           |        |          |                              | ravous realitent ravous control   |

|                                      | Treatm          | ent        | Contr     | lo         |                 | Risk Ratio                             | Risk Ratio                                               |
|--------------------------------------|-----------------|------------|-----------|------------|-----------------|----------------------------------------|----------------------------------------------------------|
| Study or Subgroup                    | Events          | Total      | Events    | Total      | Weight          | M-H, Fixed, 95% CI                     | M-H, Fixed, 95% CI                                       |
| 1.5.1 In all babies                  |                 |            |           |            |                 |                                        | 1000                                                     |
| Amorim 1999                          | 13              | 100        | 28        | 100        | 42.6%           | 0.46 [0.26, 0.84]                      |                                                          |
| Collaborative 1981                   | 4               | 307        | 10        | 299        | 15.4%           | 0.39 [0.12, 1.23]                      |                                                          |
| Dexiprom 1999                        | 11              | 105        | 11        | 101        | 17.1%           | 0.96 [0.44, 2.12]                      |                                                          |
| Gamsu 1989                           | 4               | 130        | 7         | 132        | 10.6%           | 0.58 [0.17, 1.93]                      |                                                          |
| Parsons 1988                         | 0               | 23         | 0         | 22         |                 | Not estimable                          |                                                          |
| Porto 2011<br>Subtotal (95% CI)      | 6               | 144<br>809 | 9         | 131<br>785 | 14.3%<br>100.0% | 0.61 [0.22, 1.66]<br>0.57 [0.39, 0.83] | •                                                        |
| Total events                         | 38              |            | 65        |            |                 |                                        |                                                          |
| Heterogeneity: Chi <sup>2</sup> =    | 2.58, df =      | 4 (P =     | 0.63); P= | 0%         |                 |                                        |                                                          |
| Test for overall effect              | Z = 2.91 (      | (P = 0.0   | 104)      |            |                 |                                        |                                                          |
| 1.5.2 In babies born                 | from preg       | nancie     | s compli  | icated I   | by prema        | ture rupture of membranes at           | 1st dose                                                 |
| Dexiprom 1999                        | 11              | 105        | 11        | 101        | 100.0%          | 0.96 [0.44, 2.12]                      |                                                          |
| Parsons 1988<br>Subtotal (95% CI)    | 0               | 23<br>128  | 0         | 22<br>123  | 100.0%          | Not estimable<br>0.96 [0.44, 2.12]     | -                                                        |
| Total events<br>Heterogeneity: Not a | 11<br>nalicable |            | 11        |            |                 |                                        |                                                          |
| Test for overall effect              |                 | (P = 0.9   | (2)       |            |                 |                                        |                                                          |
|                                      |                 |            |           |            |                 |                                        | 0.1 0.2 0.5 1 2 5 1<br>Favours treatment Favours control |

#### Figure 66: Neonatal sepsis (systemic infection in first 48 hours of life)

#### Figure 67: Cerebral palsy in childhood

|                                   | Treatm    | ent       | Conti                   | rol       |        | Risk Ratio                             |         | Risk F     | Ratio     |
|-----------------------------------|-----------|-----------|-------------------------|-----------|--------|----------------------------------------|---------|------------|-----------|
| Study or Subgroup                 | Events    | Total     | Events                  | Total     | Weight | M-H, Fixed, 95% CI                     |         | M-H, Fixed | 1, 95% CI |
| 1.6.1 In all babies               |           |           |                         |           | 1002   |                                        |         | -          |           |
| Amorim 1999                       | 1         | 60        | 2                       | 34        | 8.4%   | 0.28 [0.03, 3.01]                      |         | •          |           |
| Collaborative 1981                | 9         | 200       | 15                      | 206       | 48.6%  | 0.62 [0.28, 1.38]                      |         |            | _         |
| Kari 1994                         | 5         | 50        | 7                       | 32        | 28.1%  | 0.46 [0.16, 1.32]                      | _       | -          |           |
| Liggins 1972a                     | 3         | 129       | 2                       | 107       | 7.2%   | 1.24 [0.21, 7.31]                      | -       |            | •         |
| Schutte 1980<br>Subtotal (95% CI) | 2         | 51<br>490 | 2                       | 35<br>414 | 7.8%   | 0.69 [0.10, 4.64]<br>0.60 [0.34, 1.03] |         | -          |           |
| Total events                      | 20        |           | 28                      |           |        |                                        |         |            |           |
| Heterogeneity: Chi <sup>2</sup> = | 1.31, df= | 4 (P =    | 0.86); I <sup>2</sup> = | = 0%      |        |                                        |         |            |           |
| Test for overall effect           | Z=1.85    | (P = 0.0) | (7)                     |           |        |                                        |         |            |           |
|                                   |           |           |                         |           |        |                                        |         |            |           |
|                                   |           |           |                         |           |        |                                        | 0.1 0.2 | 0.5 1      | 2 5       |

Favours treatment Favours control

#### Figure 68: Visual impairment in childhood

|                                   | Treatm    | nent      | Contr                   | lo    |        | Risk Ratio         | Risk Ratio         |
|-----------------------------------|-----------|-----------|-------------------------|-------|--------|--------------------|--------------------|
| Study or Subgroup                 | Events    | Total     | Events                  | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% Cl |
| 1.7.1 In all babies               |           |           |                         |       |        |                    |                    |
| Kari 1994                         | 2         | 50        | 3                       | 32    | 27.8%  | 0.43 [0.08, 2.41]  | <br>               |
| Schutte 1980                      | 7         | 50        | 8                       | 34    | 72.2%  | 0.59 [0.24, 1.49]  |                    |
| Subtotal (95% CI)                 |           | 100       |                         | 66    | 100.0% | 0.55 [0.24, 1.23]  |                    |
| Total events                      | 9         |           | 11                      |       |        |                    |                    |
| Heterogeneity: Chi <sup>2</sup> = | 0.11, df= | 1 (P=     | 0.74); I <sup>2</sup> = | = 0%  |        |                    |                    |
| Test for overall effect           | Z=1.45    | (P = 0.1) | 5)                      |       |        |                    |                    |

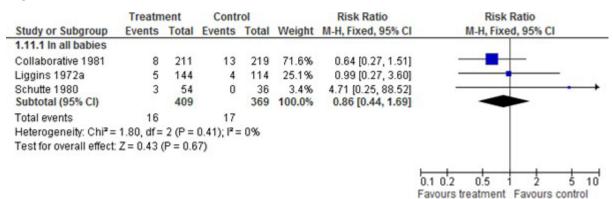
0.1 0.2 0.5 1 2 5 10 Favours treatment Favours control

#### Figure 69: Hearing impairment in childhood

|                         | Treatm    | nent      | Cont   | rol   |        | Risk Ratio         | Risk Ratio                     |    |
|-------------------------|-----------|-----------|--------|-------|--------|--------------------|--------------------------------|----|
| Study or Subgroup       | Events    | Total     | Events | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI             |    |
| 1.8.1 In all babies     |           |           |        |       |        |                    |                                |    |
| Kari 1994               | 1         | 50        | 1      | 32    | 100.0% | 0.64 [0.04, 9.87]  | ←                              | _  |
| Schutte 1980            | 0         | 50        | 0      | 34    |        | Not estimable      |                                |    |
| Subtotal (95% CI)       |           | 100       |        | 66    | 100.0% | 0.64 [0.04, 9.87]  |                                | _  |
| Total events            | 1         |           | 1      |       |        |                    |                                |    |
| Heterogeneity: Not ap   | oplicable |           |        |       |        |                    |                                |    |
| Test for overall effect | Z=0.32 (  | (P = 0.7) | '5)    |       |        |                    |                                |    |
|                         |           |           |        |       |        |                    |                                |    |
|                         |           |           |        |       |        |                    | 0.1 0.2 0.5 1 2 5              | 10 |
|                         |           |           |        |       |        |                    | Favours treatment Favours cont |    |

#### Figure 70: Neurodevelopment delay in childhood

|                                | Treatm    | nent      | Cont   | rol   |         | Risk Ratio         | Risk Ratio           |
|--------------------------------|-----------|-----------|--------|-------|---------|--------------------|----------------------|
| Study or Subgroup              | Events    | Total     | Events | Total | Weight  | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI   |
| 1.9.1 In all babies            |           |           |        |       |         |                    |                      |
| Kari 1994<br>Subtotal (95% CI) | 3         | 50<br>50  | 3      | 32    | 100.0%  | 0.64 [0.14, 2.98]  |                      |
| Total events                   | 3         |           | 3      | 02    | 1001011 | olo i [oli i Lioo] |                      |
| Heterogeneity: Not ap          | oplicable |           |        |       |         |                    |                      |
| Test for overall effect        | Z=0.57    | (P = 0.5) | 7)     |       |         |                    |                      |
|                                |           |           |        |       |         |                    |                      |
|                                |           |           |        |       |         |                    | 0.1 0.2 0.5 1 2 5 10 |


Favours treatment Favours control

#### Figure 71: Developmental delay in childhood

|                                   | Treatm    | nent      | Cont                    | rol   |        | Risk Ratio         |      | Risk R     | atio   |      |
|-----------------------------------|-----------|-----------|-------------------------|-------|--------|--------------------|------|------------|--------|------|
| Study or Subgroup                 | Events    | Total     | Events                  | Total | Weight | M-H, Fixed, 95% CI |      | M-H, Fixed | 95% CI |      |
| 1.10.1 In all babies              |           |           |                         |       | 1.00   |                    |      |            |        |      |
| Amorim 1999                       | 4         | 60        | 7                       | 34    | 43.4%  | 0.32 [0.10, 1.03]  |      |            |        |      |
| Collaborative 1981                | 7         | 206       | 12                      | 218   | 56.6%  | 0.62 [0.25, 1.54]  | -    |            |        |      |
| Subtotal (95% CI)                 |           | 266       |                         | 252   | 100.0% | 0.49 [0.24, 1.00]  | -    |            |        |      |
| Total events                      | 11        |           | 19                      |       |        |                    |      |            |        |      |
| Heterogeneity: Chi <sup>2</sup> = | 0.74, df= | 1 (P =    | 0.39); I <sup>2</sup> = | = 0%  |        |                    |      |            |        |      |
| Test for overall effect           | Z=1.97 (  | (P = 0.0) | 15)                     |       |        |                    |      |            |        |      |
|                                   |           |           |                         |       |        |                    |      |            |        |      |
|                                   |           |           |                         |       |        |                    | 0102 | 0.5 1      | +      | 5 10 |







#### Figure 73: Behavioural/learning difficulties in childhood

|                         | Treatm   | ent     | Cont   | rol   |        | Risk Ratio         |      | Risk Ratio         |    |
|-------------------------|----------|---------|--------|-------|--------|--------------------|------|--------------------|----|
| Study or Subgroup       | Events   | Total   | Events | Total | Weight | M-H, Fixed, 95% CI |      | M-H, Fixed, 95% CI |    |
| 1.12.1 In all babies    |          |         |        |       |        |                    |      |                    |    |
| Schutte 1980            | 9        | 54      | 7      | 36    | 100.0% | 0.86 [0.35, 2.09]  |      |                    |    |
| Subtotal (95% CI)       |          | 54      |        | 36    | 100.0% | 0.86 [0.35, 2.09]  |      |                    |    |
| Total events            | 9        |         | 7      |       |        |                    |      |                    |    |
| Heterogeneity: Not ap   | plicable |         |        |       |        |                    |      |                    |    |
| Test for overall effect | Z=0.34 ( | P = 0.7 | 4)     |       |        |                    |      |                    |    |
|                         |          |         |        |       |        |                    |      |                    |    |
|                         |          |         |        |       |        |                    | 0102 | 05 1 2 5           | 10 |

#### 0.1 0.2 0.5 1 2 5 10 Favours treatment Favours control

#### Figure 74: Maternal mortality

|                          | Treatm   | nent     | Cont   | rol   |        | Risk Ratio         |         | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|--------------------------|----------|----------|--------|-------|--------|--------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Study or Subgroup        | Events   | Total    | Events | Total | Weight | M-H, Fixed, 95% CI |         | M-H, Fixed, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| 1.13.1 In all women      |          |          | 100000 |       |        |                    |         | and the second sec |      |
| Amorim 1999              | 1        | 110      | 1      | 108   | 100.0% | 0.98 [0.06, 15.50] | +       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Dexiprom 1999            | 0        | 28       | 0      | 18    |        | Not estimable      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Schutte 1980             | 0        | 50       | 0      | 51    |        | Not estimable      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Subtotal (95% CI)        |          | 188      |        | 177   | 100.0% | 0.98 [0.06, 15.50] | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Total events             | 1        |          | 1      |       |        |                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Heterogeneity: Not ap    | plicable |          |        |       |        |                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Test for overall effect: | Z=0.01   | (P = 0.9 | 19)    |       |        |                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                          |          |          |        |       |        |                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                          |          |          |        |       |        |                    | 0.1 0.2 | 0.5 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 10 |
|                          |          |          |        |       |        |                    | 0.1 0.2 | 0.5 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 IU |

Favours treatment Favours control

#### Figure 75: Side-effects of therapy in women

|                                                                   | Treatm | ent      | Cont   | rol      |        | Risk Ratio                     | Risk      | Ratio        |  |
|-------------------------------------------------------------------|--------|----------|--------|----------|--------|--------------------------------|-----------|--------------|--|
| Study or Subgroup                                                 | Events | Total    | Events | Total    | Weight | M-H, Fixed, 95% CI             | M-H, Fixe | ed, 95% CI   |  |
| 1.14.1 In all women                                               |        |          |        |          |        |                                |           | Sector State |  |
| Schutte 1980<br>Subtotal (95% CI)                                 | 0      | 50<br>50 | 0      | 51<br>51 |        | Not estimable<br>Not estimable |           |              |  |
| Total events<br>Heterogeneity: Not ap<br>Test for overall effect: |        | cable    | 0      |          |        |                                |           |              |  |
|                                                                   |        |          |        |          |        |                                |           | $\vdash$     |  |

0.1 0.2 0.5 1 2 5 10 Favours treatment Favours control

#### Figure 76: Puerperal sepsis

|                                     | Treatm     | nent      | Contr                   | lo        |         | Risk Ratio                             | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------|------------|-----------|-------------------------|-----------|---------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study or Subgroup                   | Events     | Total     | Events                  | Total     | Weight  | M-H, Fixed, 95% CI                     | M-H, Fixed, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .3.1 In all women                   |            |           |                         |           |         |                                        | and the second sec |
| morim 1999                          | 9          | 110       | 13                      | 108       | 30.4%   | 0.68 [0.30, 1.52]                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Dexiprom 1999                       | 4          | 102       | 7                       | 102       | 16.2%   | 0.57 [0.17, 1.89]                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Barite 1992                         | 10         | 33        | 5                       | 38        | 10.8%   | 2.30 [0.88, 6.06]                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ewis 1996                           | 2          | 38        | 4                       | 39        | 9.2%    | 0.51 [0.10, 2.64]                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ublan 2001                          | 9          | 72        | 2                       | 67        | 4.8%    | 4.19 [0.94, 18.68]                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Schutte 1980                        | 1          | 50        | 1                       | 51        | 2.3%    | 1.02 [0.07, 15.86]                     | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Silver 1996                         | 11         | 39        | 5                       | 36        | 12.1%   | 2.03 [0.78, 5.28]                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| aeusch 1979<br>Subtotal (95% CI)    | 11         | 52<br>496 | 7                       | 66<br>507 | 14.3%   | 1.99 [0.83, 4.79]<br>1.35 [0.93, 1.95] | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| otal events                         | 57         |           | 44                      |           |         |                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| leterogeneity: Chi <sup>2</sup> =   |            | = 7 (P =  |                         | = 36%     |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| est for overall effect.             |            |           |                         |           |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| .3.4 In women with p                | pregnanc   | ies co    | mplicate                | d by pr   | emature | rupture of membranes at 1st            | dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dexiprom 1999                       | 4          | 102       | 7                       | 102       | 49.7%   | 0.57 [0.17, 1.89]                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ewis 1996                           | 2          | 38        | 4                       | 39        | 28.1%   | 0.51 [0.10, 2.64]                      | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| oublan 2001                         | 9          | 72        | 2                       | 67        | 14.7%   | 4.19 [0.94, 18.68]                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Schutte 1980                        | 1          | 30        | 1                       | 27        | 7.5%    | 0.90 [0.06, 13.70]                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Subtotal (95% CI)                   |            | 242       |                         | 235       | 100.0%  | 1.11 [0.55, 2.25]                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| otal events                         | 16         |           | 14                      |           |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     | 5 00 df-   | 3 (P =    | 0.17); I <sup>2</sup> = | 41%       |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| leterogeneity: Chi <sup>2</sup> = : | J.05, ui - |           |                         |           |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### I.8.2 Repeat courses

This section was updated and replaced in 2022. Please see the NICE website for the updated guideline

## I.9 Magnesium sulphate for neuroprotection

#### Figure 77: Stillbirth

|                                     | Magnesium Su         | Iphate                  | Place  | bo    |        | Risk Ratio         | Risk Ratio                    |
|-------------------------------------|----------------------|-------------------------|--------|-------|--------|--------------------|-------------------------------|
| Study or Subgroup                   | Events               | Total                   | Events | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI            |
| Crowther et al., 2003               | 9                    | 629                     | 11     | 626   | 50.5%  | 0.81 [0.34, 1.95]  |                               |
| Marret et al., 2007                 | 2                    | 352                     | 3      | 336   | 14.0%  | 0.64 [0.11, 3.78]  |                               |
| Rouse et al., 2008                  | 5                    | 1179                    | 8      | 1252  | 35.5%  | 0.66 [0.22, 2.02]  |                               |
| Total (95% CI)                      |                      | 2160                    |        | 2214  | 100.0% | 0.74 [0.39, 1.40]  | •                             |
| Total events                        | 16                   |                         | 22     |       |        |                    |                               |
| Heterogeneity: Chi <sup>2</sup> = 0 | 0.11, df = 2 (P = 0. | 95); I <sup>2</sup> = 0 | 1%     |       |        |                    | 0.01 0.1 1 10 100             |
| Test for overall effect: 2          | Z = 0.94 (P = 0.35)  | )                       |        |       |        |                    | Favours MgSO4 Favours control |

#### Figure 78: Neonatal mortality: before discharge

|                                     | Magnesium Su         | Iphate                  | Place  | bo    |        | Risk Ratio         | Risk Ratio                    |
|-------------------------------------|----------------------|-------------------------|--------|-------|--------|--------------------|-------------------------------|
| Study or Subgroup                   | Events               | Total                   | Events | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI            |
| Crowther et al., 2003               | 76                   | 629                     | 92     | 626   | 47.6%  | 0.82 [0.62, 1.09]  |                               |
| Marret et al., 2007                 | 31                   | 352                     | 32     | 336   | 16.9%  | 0.92 [0.58, 1.48]  | -                             |
| Rouse et al., 2008                  | 80                   | 1179                    | 71     | 1252  | 35.5%  | 1.20 [0.88, 1.63]  | · •                           |
| Total (95% CI)                      |                      | 2160                    |        | 2214  | 100.0% | 0.97 [0.80, 1.18]  | •                             |
| Total events                        | 187                  |                         | 195    |       |        |                    |                               |
| Heterogeneity: Chi <sup>2</sup> = 3 | 3.12, df = 2 (P = 0. | 21); I <sup>2</sup> = 3 | 86%    |       |        |                    | 0.01 0.1 1 10 100             |
| Test for overall effect: Z          | Z = 0.29 (P = 0.77   | )                       |        |       |        |                    | Favours MgSO4 Favours control |

#### Figure 79: Neonatal/paediatric mortality: between discharge and follow-up

|                                     | Magnesium         | Sulphate                  | Place  | bo    |        | <b>Risk Ratio</b>  | Risk Ratio                    |
|-------------------------------------|-------------------|---------------------------|--------|-------|--------|--------------------|-------------------------------|
| Study or Subgroup                   | Events            | Total                     | Events | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% Cl            |
| Crowther et al., 2003               | 2                 | 629                       | 4      | 626   | 19.6%  | 0.50 [0.09, 2.71]  |                               |
| Rouse et al., 2008                  | 18                | 1179                      | 17     | 1252  | 80.4%  | 1.12 [0.58, 2.17]  |                               |
| Total (95% CI)                      |                   | 1808                      |        | 1878  | 100.0% | 1.00 [0.55, 1.84]  | +                             |
| Total events                        | 20                |                           | 21     |       |        |                    |                               |
| Heterogeneity: Chi <sup>2</sup> = ( | ).77, df = 1 (P = | 0.38); I <sup>2</sup> = 0 | 1%     |       |        |                    | 0.01 0.1 1 10 100             |
| Test for overall effect: 2          | Z = 0.01 (P = 1.  | 00)                       |        |       |        |                    | Favours MgSO4 Favours control |

#### Figure 80: Total perinatal, neonatal and paediatric mortality

|                                     | Magnesium Su         | Iphate                  | Place  | bo    |        | Risk Ratio         | Risk Ratio                                                                                                      |
|-------------------------------------|----------------------|-------------------------|--------|-------|--------|--------------------|-----------------------------------------------------------------------------------------------------------------|
| Study or Subgroup                   | Events               | Total                   | Events | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI                                                                                              |
| Crowther et al., 2003               | 87                   | 629                     | 107    | 626   | 44.6%  | 0.81 [0.62, 1.05]  | a contraction of the second |
| Marret et al., 2008                 | 34                   | 352                     | 38     | 336   | 16.2%  | 0.85 [0.55, 1.32]  |                                                                                                                 |
| Mittendorf et al., 2002             | 2                    | 30                      | 1      | 29    | 0.4%   | 1.93 [0.19, 20.18] |                                                                                                                 |
| Rouse et al., 2008                  | 103                  | 1179                    | 96     | 1252  | 38.8%  | 1.14 [0.87, 1.49]  | <b>+</b>                                                                                                        |
| Total (95% CI)                      |                      | 2190                    |        | 2243  | 100.0% | 0.95 [0.80, 1.13]  | •                                                                                                               |
| Total events                        | 226                  |                         | 242    |       |        |                    |                                                                                                                 |
| Heterogeneity: Chi <sup>2</sup> = 3 | .82, df = 3 (P = 0.) | 28); I <sup>2</sup> = 2 | 2%     |       |        |                    |                                                                                                                 |
| Test for overall effect Z           | (= 0.60 (P = 0.55)   |                         |        |       |        |                    | 0.01 0.1 1 10 100<br>Favours MgSO4 Favours control                                                              |

#### Figure 81: Findings on cranial ultrasound: grades III or IV intracranial haemorrhage

|                                     | Magnesium       | Sulphate                  | Place  | bo    |        | Risk Ratio         | Risk Ratio                                         |
|-------------------------------------|-----------------|---------------------------|--------|-------|--------|--------------------|----------------------------------------------------|
| Study or Subgroup                   | Events          | Total                     | Events | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI                                 |
| Crowther et al., 2003               | 49              | 596                       | 50     | 586   | 56.2%  | 0.96 [0.66, 1.40]  | · · · · · · · · · · · · · · · · · · ·              |
| Mittendorf et al., 2002             | 0               | 30                        | 2      | 29    | 2.8%   | 0.19 [0.01, 3.87]  | + · · · · · · · · · · · · · · · · · · ·            |
| Rouse et al., 2008                  | 23              | 1112                      | 38     | 1184  | 41.0%  | 0.64 [0.39, 1.07]  |                                                    |
| Total (95% CI)                      |                 | 1738                      |        | 1799  | 100.0% | 0.81 [0.60, 1.09]  | •                                                  |
| Total events                        | 72              |                           | 90     |       |        |                    |                                                    |
| Heterogeneity: Chi <sup>2</sup> = 2 | 46, df = 2 (P = | 0.29); I <sup>2</sup> = 1 | 9%     |       |        |                    |                                                    |
| Test for overall effect Z           | = 1.37 (P = 0.1 | 7)                        |        |       |        |                    | 0.01 0.1 1 10 100<br>Favours MgSO4 Favours control |

#### Figure 82: Findings on cranial ultrasound: periventricular leukomalacia

|                                     | Magnesium        | Sulphate                  | Place  | bo    |        | <b>Risk Ratio</b>  | Risk Ratio                                         |
|-------------------------------------|------------------|---------------------------|--------|-------|--------|--------------------|----------------------------------------------------|
| Study or Subgroup                   | Events           | Total                     | Events | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI                                 |
| Crowther et al., 2003               | 22               | 596                       | 21     | 586   | 44.3%  | 1.03 [0.57, 1.85]  |                                                    |
| Mittendorf et al., 2002             | 1                | 30                        | 0      | 29    | 1.1%   | 2.90 [0.12, 68.50] |                                                    |
| Rouse et al., 2008                  | 21               | 1112                      | 27     | 1184  | 54.7%  | 0.83 [0.47, 1.46]  |                                                    |
| Total (95% CI)                      |                  | 1738                      |        | 1799  | 100.0% | 0.94 [0.63, 1.40]  | •                                                  |
| Total events                        | 44               |                           | 48     |       |        |                    |                                                    |
| Heterogeneity: Chi <sup>2</sup> = 0 | .78, df = 2 (P = | 0.68); I <sup>#</sup> = 0 | %      |       |        |                    | has also to the sect                               |
| Test for overall effect Z           | = 0.30 (P = 0.3  | 76)                       |        |       |        |                    | 0.01 0.1 1 10 100<br>Favours MgSO4 Favours control |

#### Figure 83: Cerebral palsy: any

|                                     | Magnesium        | Sulphate                  | Place  | bo    |        | Risk Ratio          | Risk Ratio                                         |
|-------------------------------------|------------------|---------------------------|--------|-------|--------|---------------------|----------------------------------------------------|
| Study or Subgroup                   | Events           | Total                     | Events | Total | Weight | M-H, Fixed, 95% CI  | M-H, Fixed, 95% CI                                 |
| Crowther et al., 2003               | 36               | 620                       | 42     | 621   | 28.9%  | 0.86 [0.56, 1.32]   | -                                                  |
| Marret et al., 2008                 | 22               | 347                       | 30     | 331   | 21.2%  | 0.70 [0.41, 1.19]   |                                                    |
| Mittendorf et al., 2002             | 3                | 30                        | 0      | 29    | 0.4%   | 6.77 [0.37, 125.65] |                                                    |
| Rouse et al., 2008                  | 41               | 1133                      | 74     | 1203  | 49.5%  | 0.59 [0.41, 0.85]   | -                                                  |
| Total (95% CI)                      |                  | 2130                      |        | 2184  | 100.0% | 0.71 [0.56, 0.91]   | •                                                  |
| Total events                        | 102              |                           | 146    |       |        |                     |                                                    |
| Heterogeneity: Chi <sup>2</sup> = 4 | .02, df = 3 (P = | 0.26); I <sup>2</sup> = 2 | 5%     |       |        |                     | 0.01 0.1 1 10 100                                  |
| Test for overall effect Z           | = 2.71 (P = 0.0  | 007)                      |        |       |        |                     | 0.01 0.1 1 10 100<br>Favours MgSO4 Favours control |

#### Figure 84: Cerebral palsy: moderate or severe (at 2 years)

|                                     | Magnesium :       | Sulphate           | Place  | bo    |        | <b>Risk Ratio</b>  | Risk Ratio                                         |
|-------------------------------------|-------------------|--------------------|--------|-------|--------|--------------------|----------------------------------------------------|
| Study or Subgroup                   | Events            | Total              | Events | Total | Weight | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                                 |
| Crowther et al., 2003               | 15                | 620                | 21     | 620   | 36.2%  | 0.71 [0.37, 1.37]  |                                                    |
| Rouse et al., 2008                  | 20                | 1041               | 38     | 1095  | 63.8%  | 0.55 [0.32, 0.95]  |                                                    |
| Total (95% CI)                      |                   | 1661               |        | 1715  | 100.0% | 0.61 [0.40, 0.92]  | •                                                  |
| Total events                        | 35                |                    | 59     |       |        |                    | -                                                  |
| Heterogeneity: Chi <sup>2</sup> = 0 | ).35, df = 1 (P = | $0.55$ ; $l^2 = 0$ | 1%     |       |        |                    | 0.01 0.1 1 10 100                                  |
| Test for overall effect: 2          | z = 2.33 (P = 0.0 | )2)                |        |       |        |                    | 0.01 0.1 1 10 100<br>Favours MgSO4 Favours control |

#### Figure 85: Maternal death

|                            | Magnesium Sul     | phate | Place  | bo    |        | Risk Ratio         | Risk Ratio                    |
|----------------------------|-------------------|-------|--------|-------|--------|--------------------|-------------------------------|
| Study or Subgroup          | Events            | Total | Events | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI            |
| Crowther et al., 2003      | 0                 | 535   | 0      | 527   |        | Not estimable      |                               |
| Marret et al., 2007        | 0                 | 286   | 1      | 278   | 100.0% | 0.32 [0.01, 7.92]  |                               |
| Rouse et al., 2008         | 0                 | 1096  | 0      | 1145  |        | Not estimable      |                               |
| Total (95% CI)             |                   | 1917  |        | 1950  | 100.0% | 0.32 [0.01, 7.92]  |                               |
| Total events               | 0                 |       | 1      |       |        |                    |                               |
| Heterogeneity: Not app     | licable           |       |        |       |        |                    | 0.01 0.1 1 10 100             |
| Test for overall effect: Z | = 0.69 (P = 0.49) |       |        |       |        |                    | Favours MgSO4 Favours control |

#### Figure 86: Maternal adverse effects: any

|                                     | Magnesium Su                   | Iphate     | Place     | bo      |        | Risk Ratio          | Risk      | Ratio           |
|-------------------------------------|--------------------------------|------------|-----------|---------|--------|---------------------|-----------|-----------------|
| Study or Subgroup                   | Events                         | Total      | Events    | Total   | Weight | M-H, Random, 95% CI | M-H, Rand | om, 95% Cl      |
| Crowther et al., 2003               | 476                            | 535        | 199       | 527     | 50.1%  | 2.36 [2.10, 2.64]   |           |                 |
| Rouse et al., 2008                  | 833                            | 1078       | 140       | 1125    | 49.9%  | 6.21 [5.30, 7.27]   |           |                 |
| Total (95% CI)                      |                                | 1613       |           | 1652    | 100.0% | 3.82 [1.38, 10.59]  |           | •               |
| Total events                        | 1309                           |            | 339       |         |        |                     |           |                 |
| Heterogeneity: Tau <sup>2</sup> = I | 0.54; Chi <sup>2</sup> = 109.5 | 57, df = 1 | (P < 0.00 | 001); P | = 99%  |                     | 0.01 0.1  | 1 10 100        |
| Test for overall effect 2           | Z = 2.58 (P = 0.01             | )          |           |         |        |                     | ****      | Favours control |

#### Figure 87: Maternal adverse effects: leading to stopping of infusion

|                                     | Magnesium         | Sulphate                    | Place  | bo    |        | Risk Ratio         | Risk Ratio                    |
|-------------------------------------|-------------------|-----------------------------|--------|-------|--------|--------------------|-------------------------------|
| Study or Subgroup                   | Events            | Total                       | Events | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% Cl            |
| Crowther et al., 2003               | 78                | 535                         | 28     | 527   | 64.3%  | 2.74 [1.81, 4.15]  |                               |
| Rouse et al., 2008                  | 45                | 1078                        | 16     | 1125  | 35.7%  | 2.94 [1.67, 5.16]  |                               |
| Total (95% CI)                      |                   | 1613                        |        | 1652  | 100.0% | 2.81 [2.01, 3.93]  | •                             |
| Total events                        | 123               |                             | 44     |       |        |                    |                               |
| Heterogeneity: Chi <sup>2</sup> = ( | 0.04, df = 1 (P = | : 0.85); l <sup>2</sup> = 0 | 1%     |       |        |                    | 0.01 0.1 1 10 100             |
| Test for overall effect: 2          | Z = 6.06 (P < 0.) | 00001)                      |        |       |        |                    | Favours MgSO4 Favours control |

#### Figure 88: Maternal adverse effects: cardiac or respiratory arrest

|                            | Magnesium Su   | Iphate | Place  | bo    |        | Risk Ratio         | Risk Ra                        | tio                      |
|----------------------------|----------------|--------|--------|-------|--------|--------------------|--------------------------------|--------------------------|
| Study or Subgroup          | Events         | Total  | Events | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed,                    | 95% CI                   |
| Crowther et al., 2003      | 0              | 535    | 0      | 527   |        | Not estimable      | 5                              |                          |
| Marret et al., 2007        | 0              | 286    | 0      | 278   |        | Not estimable      |                                |                          |
| Total (95% CI)             |                | 821    |        | 805   |        | Not estimable      |                                |                          |
| Total events               | 0              |        | 0      |       |        |                    |                                |                          |
| Heterogeneity: Not app     | licable        |        |        |       |        |                    |                                | 10 100                   |
| Test for overall effect: N | lot applicable |        |        |       |        |                    | 0.01 0.1 1<br>Favours MgSO4 Fi | 10 100<br>avours control |

# I.10 Tocolysis

#### Figure 89: Neonatal mortality

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Odds Ratio (95% Crl)                                                                                                                                      |
| Placebo/control v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           |
| Prostaglandin inhibitors<br>Magnesium sulfate<br>Betamimetics<br>Calcium channel blockers<br>Nitrates<br>Oxytocin receptor blockers<br>Alcohol/ethanol<br>Other treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1 (0.39, 3.4)<br>1.5 (0.56, 4.1)<br>1.0 (0.49, 2.1)<br>0.62 (0.21, 1.8)<br>0.98 (0.016, 62.)<br>0.73 (0.23, 2.2)<br>2.3 (0.41, 14.)<br>0.56 (0.11, 2.6) |
| Prostaglandin inhibitors v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                           |
| Magnesium sulfate<br>Betamimetics<br>Calcium channel blockers<br>Nitrates<br>Oxytocin receptor blockers<br>Alcohol/ethanol<br>Other treatments<br>Other t | 1.3 (0.45, 3.8)<br>0.90 (0.32, 2.4)<br>0.55 (0.16, 1.7)<br>- 0.86 (0.013, 56.)<br>0.64 (0.16, 2.4)<br>2.1 (0.29, 14.)<br>0.49 (0.078, 2.7)                |
| Magnesium sulfate v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |
| Betamimetics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.68 (0.26, 1.8)<br>0.42 (0.13, 1.2)<br>0.65 (0.010, 42.)<br>0.49 (0.13, 1.7)<br>1.6 (0.24, 10.)<br>0.37 (0.065, 1.8)                                     |
| Betamimetics v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01 (0.000, 1.0)                                                                                                                                         |
| Calcium channel blockers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.61 (0.25, 1.4)<br>0.96 (0.016, 57.)<br>0.71 (0.26, 1.8)<br>2.3 (0.44, 12.)<br>0.54 (0.10, 2.6)                                                          |
| Calcium channel blockers v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                           |
| Nitrates<br>Oxytocin receptor blockers<br>Alcohol/ethanol<br>Other treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6 (0.024, 1.1e+02)<br>1.2 (0.36, 3.8)<br>3.7 (0.60, 25.)<br>0.89 (0.15, 5.1)                                                                            |
| Nitrates v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                           |
| Oxytocin receptor blockers Alcohol/ethanol Other treatments O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 0.74 (0.011, 50.)<br>- 2.4 (0.030, 1.9e+02)<br>- 0.57 (0.0071, 44.)                                                                                     |
| Oxytocin receptor blockers v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                           |
| Alcohol/ethanol<br>Other treatments<br>Alcohol/ethanol v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.2 (0.49, 22.)<br>0.76 (0.12, 4.7)                                                                                                                       |
| Other treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.24 (0.021 1.6)                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.24 (0.031, 1.6)                                                                                                                                         |
| 0.007 1<br>fav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200<br>ours treatment in bold                                                                                                                             |

favours treatment in bold

### Figure 90: Perinatal mortality

| -                                                                                                                                                                          | •                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Comparison                                                                                                                                                                 | Odds Ratio (95% Crl)                                                                                                                                                                            |
| Placebo/control v.                                                                                                                                                         |                                                                                                                                                                                                 |
| Prostaglandin inhibitors<br>Magnesium sulfate<br>Betamimetics<br>Calcium channel blockers<br>Nitrates<br>Oxytocin receptor blockers<br>Alcohol/ethanol<br>Other treatments | 0.72 (0.22, 2.3)<br>1.2 (0.35, 3.7)<br>1.0 (0.48, 2.)<br>0.76 (0.25, 2.2)<br>0.10 (0.0030, 1.1)<br>0.86 (0.25, 2.6)<br>2.6 (0.50, 14.)<br>2.0 (0.41, 9.7)                                       |
| Prostaglandin inhibitors v.                                                                                                                                                |                                                                                                                                                                                                 |
| Magnesium sulfate    Betamimetics    Calcium channel blockers    Nitrates    Oxytocin receptor blockers    Alcohol/ethanol    Other treatments                             | $\begin{array}{c} 1.6 \ (0.44, \ 6.3) \\ 1.4 \ (0.43, \ 4.5) \\ 1.1 \ (0.25, \ 4.3) \\ 0.14 \ (0.0036, \ 1.9) \\ 1.2 \ (0.24, \ 5.4) \\ 3.6 \ (0.54, \ 25.) \\ 2.8 \ (0.41, \ 19.) \end{array}$ |
| Magnesium sulfate v.                                                                                                                                                       |                                                                                                                                                                                                 |
| Betamimetics                                                                                                                                                               | 0.85 (0.28, 2.7)<br>0.64 (0.18, 2.5)<br>0.085 (0.0022, 1.1)<br>0.72 (0.15, 3.3)<br>2.2 (0.34, 16.)<br>1.7 (0.26, 12.)                                                                           |
| Betamimetics v.                                                                                                                                                            |                                                                                                                                                                                                 |
| Calcium channel blockers                                                                                                                                                   | 0.75 (0.31, 1.8)<br>0.10 (0.0031, 1.1)<br>0.85 (0.28, 2.4)<br>2.6 (0.57, 13.)<br>2. (0.42, 9.7)                                                                                                 |
| Calcium channel blockers v.                                                                                                                                                |                                                                                                                                                                                                 |
| Nitrates Oxytocin receptor blockers Alcohol/ethanol Other treatments Nitrates v.                                                                                           | 0.13 (0.0037, 1.6)<br>1.1 (0.27, 4.4)<br>3.4 (0.60, 21.)<br>2.6 (0.43, 16.)                                                                                                                     |
|                                                                                                                                                                            | 0.4 (0.65, 0.45, 00)                                                                                                                                                                            |
| Oxytocin receptor blockers Alcohol/ethanol Other treatments                                                                                                                | 8.4 (0.65, 3.1e+02)           →         26. (1.6, 1.2e+03)            20. (1.2, 8.7e+02)                                                                                                        |
| Oxytocin receptor blockers v.                                                                                                                                              |                                                                                                                                                                                                 |
| Alcohol/ethanol o<br>Other treatments o                                                                                                                                    | 3.0 (0.50, 22.)<br>2.3 (0.37, 16.)                                                                                                                                                              |
| Alcohol/ethanol v.                                                                                                                                                         |                                                                                                                                                                                                 |
| Other treatments                                                                                                                                                           | 0.77 (0.13, 4.5)                                                                                                                                                                                |
| 0.002 1                                                                                                                                                                    | 2000                                                                                                                                                                                            |
| fa                                                                                                                                                                         | avours treatment in bold                                                                                                                                                                        |
|                                                                                                                                                                            |                                                                                                                                                                                                 |

### Figure 91: Respiratory distress syndrome

| •                                                                                                                                                              |            |                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Comparison                                                                                                                                                     |            | Odds Ratio (95% Crl)                                                                                                                  |
| Placebo/control v.                                                                                                                                             |            |                                                                                                                                       |
| Prostaglandin inhibitors<br>Magnesium sulfate<br>Betamimetics<br>Calcium channel blockers<br>Oxytocin receptor blockers<br>Alcohol/ethanol<br>Other treatments |            | 1.1 (0.68, 1.9)<br>1.2 (0.76, 1.9)<br>0.88 (0.65, 1.2)<br>0.81 (0.50, 1.3)<br>0.96 (0.66, 1.4)<br>2.5 (0.78, 9.1)<br>0.75 (0.26, 2.2) |
| Prostaglandin inhibitors v.                                                                                                                                    |            |                                                                                                                                       |
| Magnesium sulfate<br>Betamimetics<br>Calcium channel blockers<br>Oxytocin receptor blockers<br>Alcohol/ethanol<br>Other treatments                             |            | 1.1 (0.69, 1.7)<br>0.78 (0.49, 1.3)<br>0.71 (0.41, 1.3)<br>0.85 (0.52, 1.4)<br>2.2 (0.65, 8.4)<br>0.66 (0.20, 2.2)                    |
| Magnesium sulfate v.                                                                                                                                           |            |                                                                                                                                       |
| Betamimetics<br>Calcium channel blockers<br>Oxytocin receptor blockers<br>Alcohol/ethanol<br>Other treatments                                                  |            | 0.73 (0.47, 1.2)<br>0.67 (0.41, 1.1)<br>0.80 (0.51, 1.3)<br>2.1 (0.62, 7.9)<br>0.63 (0.19, 2.0)                                       |
| Betamimetics v.                                                                                                                                                |            |                                                                                                                                       |
| Calcium channel blockers<br>Oxytocin receptor blockers<br>Alcohol/ethanol<br>Other treatments                                                                  | +<br>+<br> | 0.92 (0.61, 1.4)<br>1.1 (0.77, 1.5)<br>2.9 (0.92, 9.8)<br>0.85 (0.28, 2.6)                                                            |
| Calcium channel blockers v.                                                                                                                                    |            |                                                                                                                                       |
| Oxytocin receptor blockers<br>Alcohol/ethanol<br>Other treatments                                                                                              | <br>       | 1.2 (0.73, 1.9)<br>3.1 (0.93, 11.)<br>0.93 (0.28, 3.0)                                                                                |
| Oxytocin receptor blockers v.                                                                                                                                  |            |                                                                                                                                       |
| Alcohol/ethanol<br>Other treatments                                                                                                                            | <br>       | 2.6 (0.80, 9.5)<br>0.79 (0.25, 2.4)                                                                                                   |
| Alcohol/ethanol v.                                                                                                                                             |            |                                                                                                                                       |
| Other treatments0.05                                                                                                                                           | -0         | 0.29 (0.057, 1.5)                                                                                                                     |
| 0.05                                                                                                                                                           | '<br>favou | rs treatment in bold                                                                                                                  |
|                                                                                                                                                                |            |                                                                                                                                       |

### Figure 92: Intraventricular haemorrhage

| U                                                                                                                                                         |                    | 0                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Comparison                                                                                                                                                |                    | Odds Ratio (95% Crl)                                                                                                                         |
| Placebo/control v.                                                                                                                                        |                    |                                                                                                                                              |
| Prostaglandin inhibitors<br>Magnesium sulfate<br>Betamimetics<br>Calcium channel blockers<br>Nitrates<br>Oxytocin receptor blockers<br>Other treatments – |                    | 0.76 (0.35, 1.6)<br>0.69 (0.33, 1.4)<br>0.79 (0.51, 1.2)<br>0.40 (0.21, 0.74)<br>0.34 (0.081, 1.1)<br>0.82 (0.48, 1.4)<br>0.14 (0.016, 0.77) |
| Prostaglandin inhibitors v.                                                                                                                               |                    |                                                                                                                                              |
| Magnesium sulfate<br>Betamimetics<br>Calcium channel blockers<br>Nitrates<br>Oxytocin receptor blockers<br>Other treatments                               |                    | 0.91 (0.54, 1.5)<br>1.0 (0.53, 2.1)<br>0.53 (0.27, 1.0)<br>0.45 (0.096, 1.7)<br>1.1 (0.48, 2.4)<br>0.19 (0.023, 0.94)                        |
| Magnesium sulfate v.                                                                                                                                      |                    |                                                                                                                                              |
| Betamimetics<br>Calcium channel blockers<br>Nitrates<br>Oxytocin receptor blockers<br>Other treatments                                                    |                    | 1.2 (0.58, 2.3)<br>0.58 (0.30, 1.1)<br>0.49 (0.11, 1.9)<br>1.2 (0.53, 2.7)<br>0.21 (0.026, 0.95)                                             |
| Betamimetics v.                                                                                                                                           |                    |                                                                                                                                              |
| Calcium channel blockers<br>Nitrates<br>Oxytocin receptor blockers<br>Other treatments                                                                    | - <del>0</del><br> | 0.50 (0.30, 0.83)<br>0.43 (0.11, 1.4)<br>1.0 (0.63, 1.7)<br>0.18 (0.021, 0.96)                                                               |
| Calcium channel blockers v.                                                                                                                               |                    |                                                                                                                                              |
| Nitrates<br>Oxytocin receptor blockers<br>Other treatments                                                                                                | <br>               | 0.85 (0.20, 3.0)<br>2.1 (1.0, 4.1)<br>0.36 (0.042, 1.9)                                                                                      |
| Nitrates v.                                                                                                                                               |                    |                                                                                                                                              |
| Oxytocin receptor blockers<br>Other treatments                                                                                                            |                    | — 2.4 (0.68, 10.)<br>0.42 (0.037, 3.7)                                                                                                       |
| Oxytocin receptor blockers v.                                                                                                                             |                    |                                                                                                                                              |
| Other treatments -0.01                                                                                                                                    | <br>1<br>fi        | 0.17 (0.019, 0.98)<br>20<br>avours treatment in bold                                                                                         |

56

## Figure 93: Mothers with adverse events requiring cessation of treatment

| Comparison                                                                              | Odds Ratio (95% Crl)                                                                                                                                                            |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placebo/control v.                                                                      |                                                                                                                                                                                 |
| Magnesium sulfateBetamimeticsCalcium channel blockersNitratesOxytocin receptor blockers | → →       16. (1.9, 1.8e+02)         → →       1.3e+02 (19., 1.3e+03)         → →       5.2 (0.35, 57.)         → →       5.6 (0.26, 1.6e+02)         → →       3.1 (0.31, 23.) |
| Magnesium sulfate v.                                                                    |                                                                                                                                                                                 |
| BetamimeticsCalcium channel blockersNitratesOxytocin receptor blockers                  | →→         8.0 (2.2, 34.)           0.32 (0.045, 1.4)           0.34 (0.013, 9.2)           0.19 (0.019, 1.1)                                                                   |
| Betamimetics v.                                                                         |                                                                                                                                                                                 |
| Calcium channel blockers ———<br>Nitrates ———<br>Oxytocin receptor blockers ————         | 0.039 (0.0059, 0.14)<br>0.042 (0.0015, 1.2)<br>0.023 (0.0033, 0.091)                                                                                                            |
| Calcium channel blockers v.                                                             |                                                                                                                                                                                 |
| Nitrates                                                                                | • 1.1 (0.039, 49.)<br>• 0.59 (0.071, 5.3)                                                                                                                                       |
| Nitrates v.                                                                             |                                                                                                                                                                                 |
| Oxytocin receptor blockers                                                              | 0.54 (0.013, 15.)<br>1 2000                                                                                                                                                     |
|                                                                                         | favours treatment in bold                                                                                                                                                       |

#### Figure 94: Delay of birth by at least 48 hours

| 0                                             |                |                                       |
|-----------------------------------------------|----------------|---------------------------------------|
| Comparison                                    |                | Odds Ratio (95% Crl)                  |
| Placebo/control v.                            |                |                                       |
| Prostaglandin inhibitors                      |                | 3.1 (1.5, 7.1)                        |
| Magnesium sulfate                             | -0             | 2.1 (1.1, 4.1)                        |
| Betamimetics                                  |                | 2.0 (1.2, 3.6)                        |
| Calcium channel blockers                      | -0             | 2.0 (1.1, 3.8)                        |
| Nitrates                                      |                | 0.89 (0.40, 2.0)                      |
| Oxytocin receptor blockers                    |                | 1.9 (1.0, 3.7)                        |
| Alcohol/ethanol                               |                | 0.83 (0.12, 5.6)                      |
| Other treatments                              | <u>P</u>       | 1.1 (0.38, 3.2)                       |
| Prostaglandin inhibitors v.                   |                |                                       |
| Magnesium sulfate                             | -0+            | 0.67 (0.33, 1.3)                      |
| Betamimetics                                  | -0-            | 0.65 (0.32, 1.3)                      |
| Calcium channel blockers                      | -0-            | 0.64 (0.31, 1.3)                      |
| Nitrates                                      | <u> </u>       | 0.28 (0.100, 0.78)                    |
| Oxytocin receptor blockers                    |                | 0.61 (0.26, 1.4)                      |
| Alcohol/ethanol —                             |                | 0.26 (0.035, 1.9)                     |
| Other treatments                              |                | 0.35 (0.099, 1.2)                     |
| Magnesium sulfate v.                          |                |                                       |
| Betamimetics                                  |                | 0.97 (0.57, 1.7)                      |
| Calcium channel blockers                      |                | 0.96 (0.56, 1.6)                      |
| Nitrates                                      |                | 0.43 (0.17, 1.1)                      |
| Oxytocin receptor blockers<br>Alcohol/ethanol |                | 0.92 (0.45, 1.9)                      |
| Other treatments                              |                | 0.40 (0.057, 2.7)<br>0.53 (0.17, 1.7) |
|                                               |                | 0.55 (0.17, 1.7)                      |
| Betamimetics v.                               |                |                                       |
| Calcium channel blockers                      | -              | 0.99 (0.65, 1.5)                      |
| Nitrates                                      |                | 0.44 (0.19, 1.0)                      |
| Oxytocin receptor blockers<br>Alcohol/ethanol |                | 0.95 (0.54, 1.6)                      |
| Other treatments                              |                | 0.41 (0.062, 2.6)<br>0.54 (0.18, 1.6) |
|                                               |                | 0.54 (0.10, 1.0)                      |
| Calcium channel blockers v.                   |                |                                       |
| Nitrates                                      |                | 0.44 (0.19, 1.0)                      |
| Oxytocin receptor blockers                    |                | 0.96 (0.52, 1.7)                      |
| Alcohol/ethanol<br>Other treatments           |                | 0.41 (0.060, 2.7)                     |
|                                               |                | 0.54 (0.18, 1.6)                      |
| Nitrates v.                                   |                |                                       |
| Oxytocin receptor blockers                    | + <del>•</del> | 2.2 (0.85, 5.5)                       |
| Alcohol/ethanol                               |                | 0.93 (0.12, 7.0)                      |
| Other treatments                              |                | 1.2 (0.34, 4.5)                       |
| Oxytocin receptor blockers v.                 |                |                                       |
| Alcohol/ethanol                               |                | 0.43 (0.062, 3.)                      |
| Other treatments                              |                | 0.57 (0.19, 1.8)                      |
| Alcohol/ethanol v.                            |                |                                       |
| Other treatments                              |                | - 1.3 (0.21, 8.6)                     |
| 0 03                                          |                | 9                                     |
|                                               | 1              | ษ                                     |
| favours treatmen                              | l III dola     |                                       |

### Figure 95: Neonatal sepsis

| Comparison                                                                                                                                  |       | Odds Ratio (95% Crl)                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------|
| Placebo/control v.                                                                                                                          |       |                                                                                                                 |
| Prostaglandin inhibitors<br>Magnesium sulfate<br>Betamimetics<br>Calcium channel blockers<br>Oxytocin receptor blockers<br>Other treatments |       | 1.6 (0.33, 9.3)<br>1.9 (0.43, 11.)<br>1.1 (0.25, 6.6)<br>0.83 (0.18, 4.7)<br>1.2 (0.22, 7.1)<br>1.3 (0.21, 8.0) |
| Prostaglandin inhibitors v.                                                                                                                 |       |                                                                                                                 |
| Magnesium sulfate<br>Betamimetics<br>Calcium channel blockers<br>Oxytocin receptor blockers<br>Other treatments                             |       | 1.2 (0.63, 2.4)<br>0.72 (0.29, 1.8)<br>0.52 (0.23, 1.1)<br>0.73 (0.25, 2.1)<br>0.81 (0.065, 9.)                 |
| Magnesium sulfate v.                                                                                                                        |       |                                                                                                                 |
| Betamimetics<br>Calcium channel blockers<br>Oxytocin receptor blockers<br>Other treatments –                                                |       | 0.59 (0.26, 1.3)<br>0.43 (0.21, 0.86)<br>0.60 (0.22, 1.6)<br>0.67 (0.056, 7.0)                                  |
| Betamimetics v.                                                                                                                             |       |                                                                                                                 |
| Calcium channel blockers<br>Oxytocin receptor blockers<br>Other treatments                                                                  | <br>  | 0.72 (0.42, 1.2)<br>1.0 (0.55, 1.9)<br>- 1.1 (0.093, 12.)                                                       |
| Calcium channel blockers v.                                                                                                                 |       |                                                                                                                 |
| Oxytocin receptor blockers<br>Other treatments                                                                                              |       | 1.4 (0.65, 3.0)<br>— 1.6 (0.13, 17.)                                                                            |
| Oxytocin receptor blockers v                                                                                                                | ·.    |                                                                                                                 |
| Other treatments                                                                                                                            | P     | 1.1 (0.086, 13.)                                                                                                |
| 0.05                                                                                                                                        | 5 1   | 20                                                                                                              |
|                                                                                                                                             | favou | irs treatment in bold                                                                                           |

59

#### Figure 96: Gestational age at birth

| Comparison                                                                                                                                             | Mean difference (95% Crl)                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Placebo/control v.                                                                                                                                     |                                                                                                                  |
| Prostaglandin inhibitorsOMagnesium sulfate-OBetamimetics-OCalcium channel blockers-ONitrates-OOxytocin receptor blockersO                              | - 2.3 (1.3, 3.3)<br>1.3 (0.29, 2.3)<br>1.2 (0.40, 2.1)<br>1.7 (0.69, 2.7)<br>1.7 (0.52, 2.8)<br>0.68 (-1.3, 2.7) |
| Prostaglandin inhibitors v.                                                                                                                            |                                                                                                                  |
| Magnesium sulfate     -O       Betamimetics     -O       Calcium channel blockers     -O       Nitrates     -O       Oxytocin receptor blockers     -O | -1.0 (-2.0, -0.039)<br>-1.1 (-2.1, -0.054)<br>-0.64 (-1.7, 0.42)<br>-0.67 (-2., 0.67)<br>-1.6 (-3.8, 0.52)       |
| Magnesium sulfate v.                                                                                                                                   |                                                                                                                  |
| Betamimetics                                                                                                                                           | -0.040 (-0.99, 0.91)<br>0.40 (-0.51, 1.3)<br>0.36 (-0.88, 1.6)<br>-0.61 (-2.7, 1.5)                              |
| Betamimetics v.                                                                                                                                        |                                                                                                                  |
| Calcium channel blockers                                                                                                                               | 0.44 (-0.32, 1.2)<br>0.40 (-0.54, 1.4)<br>-0.57 (-2.6, 1.5)                                                      |
| Calcium channel blockers v.                                                                                                                            | 0.000 ( 4.0. 4.4)                                                                                                |
| Nitrates                                                                                                                                               | -0.033 (-1.2, 1.1)<br>-1.0 (-3., 0.99)                                                                           |
| Nitrates v.                                                                                                                                            |                                                                                                                  |
| Oxytocin receptor blockers                                                                                                                             | -0.98 (-3.1, 1.2)<br>4                                                                                           |
| favours treatment in bold                                                                                                                              |                                                                                                                  |

## I.11 Fetal monitoring

#### I.11.1 EFM versus IA

No forest plots were generated for this review question

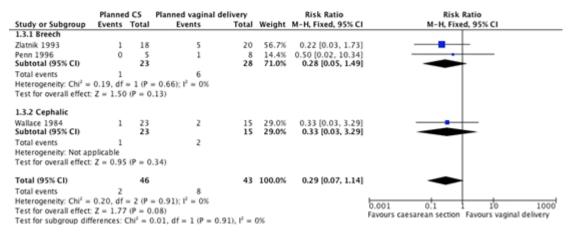
#### I.11.2 Use of FSE

No forest plots were generated for this review question

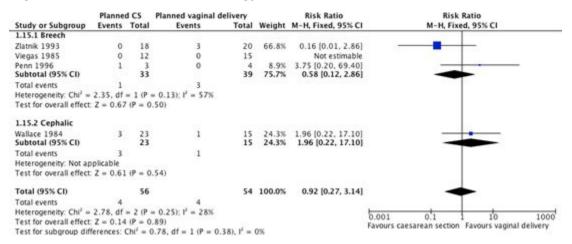
#### I.11.3 CTG interpretation

No forest plots were generated for this review question

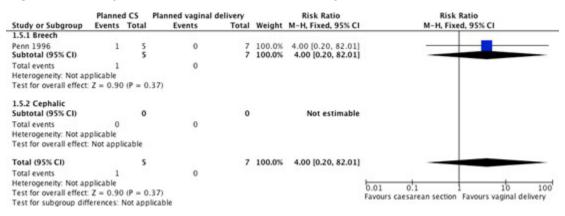
#### I.11.4 Blood sampling


No forest plots were generated for this review question

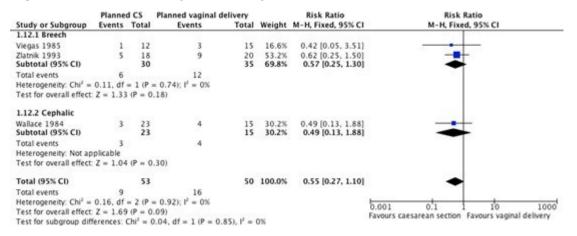
## I.12 Mode of birth


# I.12.1 Planned immediate caesarean section versus planned vaginal delivery in singletons

#### I.12.1.1 Neonatal outcome


#### Figure 97: Perinatal death




#### Figure 98: Intracranial pathology (outcome not pre-specified)

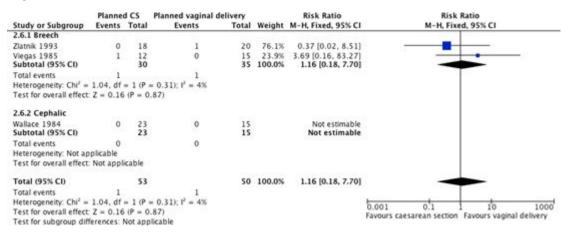


#### Figure 99: Hypoxic ischemic encephalopathy



#### Figure 100: Respiratory distress syndrome




#### I.12.2 Immediate caesarean section versus planned vaginal delivery in singletons

#### I.12.2.1 Maternal outcomes

#### Figure 101: Postpartum haemorrhage

|                                   | Planne   | d CS    | Planned vaginal de | livery |        | <b>Risk Ratio</b>              | Risk Ratio                                         |
|-----------------------------------|----------|---------|--------------------|--------|--------|--------------------------------|----------------------------------------------------|
| Study or Subgroup                 | Events   | Total   | Events             | Total  | Weight | M-H, Fixed, 95% CI             | M-H, Fixed, 95% CI                                 |
| 2.4.1 Breech                      |          | - 1.5.4 |                    | 1000   |        |                                |                                                    |
| Viegas 1985                       | 1        | 12      | 0                  | 15     | 100.0% | 3.69 [0.16, 83.27]             |                                                    |
| Zlatnik 1993                      | 0        | 18      | 0                  | 20     |        | Not estimable                  |                                                    |
| Lumley 1985                       | 0        | 1       | 0                  | 1      |        | Not estimable                  |                                                    |
| Subtotal (95% CI)                 |          | 31      |                    | 36     | 100.0% | 3.69 [0.16, 83.27]             |                                                    |
| Total events                      | 1        |         | 0                  |        |        |                                |                                                    |
| Heterogeneity: Not ap             | plicable |         |                    |        |        |                                |                                                    |
| Test for overall effect           |          | (P = 0) | .41)               |        |        |                                |                                                    |
| 2.4.2 Cephalic                    |          |         |                    |        |        |                                |                                                    |
| Wallace 1984<br>Subtotal (95% CI) | 0        | 23      | 0                  | 15     |        | Not estimable<br>Not estimable |                                                    |
| Total events                      | 0        |         | 0                  |        |        |                                |                                                    |
| Heterogeneity: Not ap             | plicable |         |                    |        |        |                                |                                                    |
| Test for overall effect           |          | icable  |                    |        |        |                                |                                                    |
| Total (95% CI)                    |          | 54      |                    | 51     | 100.0% | 3.69 [0.16, 83.27]             |                                                    |
| Total events                      | 1        |         | 0                  |        |        |                                |                                                    |
| Heterogeneity: Not ap             | plicable |         |                    |        |        |                                | have the de read                                   |
| Test for overall effect           |          | (P = 0) | .41)               |        |        |                                | 0.001 0.1 1 10 1000                                |
| Test for subgroup diff            |          |         |                    |        |        |                                | Favours caesarean section Favours vaginal delivery |

#### Figure 102: Maternal wound infection



#### Figure 103: Other maternal infection

|                                  | Planne     | d CS     | Planned vaginal d      | elivery  |        | <b>Risk Ratio</b>  | Risk Ratio                                          |
|----------------------------------|------------|----------|------------------------|----------|--------|--------------------|-----------------------------------------------------|
| Study or Subgroup                | Events     | Total    | Events                 | Total    | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI                                  |
| 2.7.1 Breech                     |            |          |                        |          |        |                    |                                                     |
| Zlatnik 1993                     | 9          | 18       | 4                      | 20       | 89.4%  | 2.50 [0.93, 6.73]  |                                                     |
| Viegas 1985<br>Subtotal (95% CI) | 1          | 12<br>30 | 0                      | 15<br>35 | 10.6%  |                    |                                                     |
| Total events                     | 10         |          | 4                      |          |        |                    |                                                     |
| Heterogeneity: Chi2 =            | 0.06, df   | = 1 (P   | $= 0.81$ ; $l^2 = 0\%$ |          |        |                    |                                                     |
| Test for overall effect          | Z = 1.99   | (P = 0)  | .05)                   |          |        |                    |                                                     |
| 2.7.2 Cephalic                   |            |          |                        |          |        |                    |                                                     |
| Wallace 1984                     | 0          | 23       | 0                      | 15       |        | Not estimable      |                                                     |
| Subtotal (95% CI)                |            | 23       |                        | 15       |        | Not estimable      |                                                     |
| Total events                     | 0          |          | 0                      |          |        |                    |                                                     |
| Heterogeneity: Not ap            | plicable   |          |                        |          |        |                    |                                                     |
| Test for overall effect          | Not appl   | icable   |                        |          |        |                    |                                                     |
| Total (95% CI)                   |            | 53       |                        | 50       | 100.0% | 2.63 [1.02, 6.78]  |                                                     |
| Total events                     | 10         |          | 4                      |          |        |                    |                                                     |
| Heterogeneity: Chi2 =            | 0.06, df   | = 1 (P   | $= 0.81$ ; $l^2 = 0\%$ |          |        |                    | 0.5 0.7 1.5 2                                       |
| Test for overall effect          | Z = 1.99   | (P = 0)  | .05)                   |          |        |                    | Favours caesarean section Favours vaginal delivery  |
| Test for subgroup diff           | erences: I | Not app  | licable                |          |        |                    | ravours caesarean section. Pavours vaginal delivery |

# I.13 Timing of cord clamping

# I.13.1 More placental transfusion (delayed clamping) versus less placental transfusion (early clamping)

#### Figure 104: Infant death

|                                   | More placenta     | I trans    | Less placenta  | al trans |        | Risk Ratio          |      | Risk Rat           | 0            |    |
|-----------------------------------|-------------------|------------|----------------|----------|--------|---------------------|------|--------------------|--------------|----|
| Study or Subgroup                 | Events            | Total      | Events         | Total    | Weight | M-H, Fixed, 95% CI  |      | M-H, Fixed, 9      | 5% CI        |    |
| 1.1.1 Infant death ove            | erall             |            |                |          |        |                     |      |                    |              |    |
| Ultee 2008                        | 0                 | 18         | 0              | 19       |        | Not estimable       |      |                    |              |    |
| Mercer 2003                       | 0                 | 16         | 0              | 16       |        | Not estimable       |      |                    |              |    |
| Kinmond 1993                      | 0                 | 17         | 0              | 19       |        | Not estimable       |      |                    |              |    |
| Strauss 2008                      | 0                 | 45         | 0              | 60       |        | Not estimable       |      |                    |              |    |
| Hofmeyr 1988                      | 5                 | 24         | 0              | 14       | 2.4%   | 6.60 [0.39, 111.10] |      |                    |              |    |
| Hofmeyr 1993                      | 1                 | 40         | 1              | 46       | 3.6%   | 1.15 [0.07, 17.80]  |      |                    |              |    |
| Kugelman 2007                     | 0                 | 30         | 1              | 35       | 5.3%   | 0.39 [0.02, 9.16]   |      |                    |              |    |
| Rabe 2000                         | 0                 | 19         | 1              | 20       | 5.6%   | 0.35 [0.02, 8.10]   |      |                    |              |    |
| McDonnell 1997                    | 0                 | 23         | 2              | 23       | 9.6%   | 0.20 [0.01, 3.95]   |      |                    |              |    |
| Baezinger 2007                    | 0                 | 15         | 3              | 24       | 10.5%  | 0.22 [0.01, 4.04]   |      | •                  |              |    |
| Oh 2002                           | 2                 | 16         | 3              | 17       | 11.2%  | 0.71 [0.14, 3.70]   |      |                    |              |    |
| Hosono 2008                       | 2                 | 20         | 3              | 20       | 11.5%  | 0.67 [0.12, 3.57]   |      |                    |              |    |
| Mercer 2006                       | 0                 | 36         | 3              | 36       | 13.4%  | 0.14 [0.01, 2.67]   | -    |                    | _            |    |
| Ranjit 2014                       | 0                 | 44         | 5              | 50       | 19.8%  | 0.10 [0.01, 1.81]   | +    | •                  |              |    |
| Subtotal (95% CI)                 |                   | 363        |                | 399      | 92.8%  | 0.51 [0.26, 1.01]   |      | •                  |              |    |
| Total events                      | 10                |            | 22             |          |        |                     |      |                    |              |    |
| Heterogeneity: Chi <sup>2</sup> = | 6.44, df = 9 (P = | 0.70); P=  | 0%             |          |        |                     |      |                    |              |    |
| Test for overall effect:          | Z = 1.92 (P = 0.0 | 05)        |                |          |        |                     |      |                    |              |    |
| 1.1.2 Uterotonic used             | 1                 |            |                |          |        |                     |      |                    |              |    |
| Hofmeyr 1988                      | 5                 | 24         | 0              | 14       |        | Not estimable       |      |                    |              |    |
| McDonnell 1997                    | 0                 | 19         | 1              | 20       |        | Not estimable       |      |                    |              |    |
| Rabe 2000                         | 0                 | 19         | 1              | 20       |        | Not estimable       |      |                    |              |    |
| Baezinger 2007                    | 1                 | 44         | 2              | 50       | 7.2%   | 0.57 [0.05, 6.05]   |      |                    |              |    |
| Subtotal (95% CI)                 |                   | 44         |                | 50       | 7.2%   | 0.57 [0.05, 6.05]   |      |                    |              |    |
| Total events                      | 1                 |            | 2              |          |        |                     |      |                    |              |    |
| Heterogeneity: Not ap             | plicable          |            |                |          |        |                     |      |                    |              |    |
| Test for overall effect:          | Z = 0.47 (P = 0.6 | 64)        |                |          |        |                     |      |                    |              |    |
| Total (95% CI)                    |                   | 407        |                | 449      | 100.0% | 0.52 [0.27, 0.99]   |      | •                  |              |    |
| Total events                      | 11                |            | 24             |          |        |                     |      |                    |              |    |
| Heterogeneity: Chi <sup>2</sup> = | 6.45, df = 10 (P  | = 0.78); P | = 0%           |          |        |                     | -    | -                  | 1            |    |
| Test for overall effect:          |                   |            | 0.0000000      |          |        |                     | 0.01 | 0.1 i              | 10           | 10 |
| Test for subgroup diff            |                   |            | 1 m - 0 0 0 R. |          |        |                     |      | More PT better Les | ss PT better |    |

#### Figure 105: Intraventricular haemorrhage

|                                   | More placenta      | I trans                 | Less placenta   | I trans |        | Risk Ratio         | Risk Ratio |                                   |     |
|-----------------------------------|--------------------|-------------------------|-----------------|---------|--------|--------------------|------------|-----------------------------------|-----|
| Study or Subgroup                 | Events             | Total                   | Events          | Total   | Weight | M-H, Fixed, 95% CI |            | M-H, Fixed, 95% CI                |     |
| 1.2.1 New Subgroup                |                    |                         |                 |         |        |                    |            |                                   |     |
| Strauss 2008                      | 1                  | 45                      | 1               | 60      | 1.1%   | 1.33 [0.09, 20.75] |            | -                                 |     |
| Ranjit 2014                       | 0                  | 44                      | 1               | 50      | 1.8%   | 0.38 [0.02, 9.04]  |            |                                   |     |
| McDonnell 1997                    | 0                  | 15                      | 1               | 16      | 1.9%   | 0.35 [0.02, 8.08]  |            |                                   |     |
| Oh 2002                           | 4                  | 16                      | 3               | 17      | 3.8%   | 1.42 [0.37, 5.37]  |            |                                   |     |
| Rabe 2000                         | 1                  | 19                      | 3               | 20      | 3.8%   | 0.35 [0.04, 3.09]  |            |                                   |     |
| Kugelman 2007                     | 2                  | 30                      | 4               | 35      | 4.8%   | 0.58 [0.11, 2.96]  |            |                                   |     |
| Mercer 2003                       | 3                  | 16                      | 5               | 16      | 6.5%   | 0.60 [0.17, 2.10]  |            |                                   |     |
| Hosono 2008                       | 3                  | 20                      | 5               | 20      | 6.5%   | 0.60 [0.17, 2.18]  |            |                                   |     |
| Hofmeyr 1993                      | 8                  | 40                      | 11              | 46      | 13.4%  | 0.84 [0.37, 1.87]  |            |                                   |     |
| Hofmeyr 1988                      | 8                  | 23                      | 10              | 13      | 16.7%  | 0.45 [0.24, 0.85]  |            |                                   |     |
| Mercer 2006                       | 5                  | 36                      | 13              | 36      | 17.0%  | 0.38 [0.15, 0.97]  |            |                                   |     |
| Subtotal (95% CI)                 |                    | 304                     |                 | 329     | 77.6%  | 0.59 [0.41, 0.84]  |            | •                                 |     |
| Total events                      | 35                 |                         | 57              |         |        |                    |            |                                   |     |
| Heterogeneity: Chi# =             | 4.62, df = 10 (P = | = 0.92); I <sup>a</sup> | = 0%            |         |        |                    |            |                                   |     |
| Test for overall effect.          | Z = 2.88 (P = 0.0  | 04)                     |                 |         |        |                    |            |                                   |     |
| 1.2.2 Uterotonic used             | 1                  |                         |                 |         |        |                    |            |                                   |     |
| McDonnell 1997                    | 0                  | 15                      | 1               | 16      | 1.9%   | 0.35 [0.02, 8.08]  |            |                                   |     |
| Rabe 2000                         | 4                  | 16                      | 3               | 17      | 3.8%   | 1.42 [0.37, 5.37]  |            |                                   |     |
| Hofmeyr 1988                      | 8                  | 23                      | 10              | 13      | 16.7%  | 0.45 [0.24, 0.85]  |            |                                   |     |
| Subtotal (95% CI)                 |                    | 54                      |                 | 46      | 22.4%  | 0.61 [0.34, 1.08]  |            | •                                 |     |
| Total events                      | 12                 |                         | 14              |         |        |                    |            |                                   |     |
| Heterogeneity: Chi <sup>2</sup> = | 2.50, df = 2 (P =  | 0.29); I2 =             | 20%             |         |        |                    |            |                                   |     |
| Test for overall effect.          | Z = 1.71 (P = 0.0  | 9)                      |                 |         |        |                    |            |                                   |     |
| Total (95% CI)                    |                    | 358                     |                 | 375     | 100.0% | 0.59 [0.44, 0.81]  |            | •                                 |     |
| Total events                      | 47                 |                         | 71              |         |        |                    |            |                                   |     |
| Heterogeneity: Chi <sup>2</sup> = | 7.08, df = 13 (P = | = 0.90); P              | = 0%            |         |        |                    | h          |                                   |     |
| Test for overall effect.          |                    |                         |                 |         |        |                    | 0.01 0.1   | i 10<br>e PT better Less PT bette | 100 |
| Test for subgroup diff            |                    |                         | 1 (P = 0.92) P= | : 0%    |        |                    | MORE       | eribeder Lessribede               |     |

## Figure 106: Severe intraventricular haemorrhage

|                                     | More placenta     | I trans   | Less placenta    | I trans | Risk Ratio |                                         | Risk Ratio |                               |     |
|-------------------------------------|-------------------|-----------|------------------|---------|------------|-----------------------------------------|------------|-------------------------------|-----|
| Study or Subgroup                   | Events            | Total     | Events           | Total   | Weight     | M-H, Fixed, 95% CI                      |            | M-H, Fixed, 95% CI            |     |
| 1.3.1 New Subgroup                  |                   |           |                  |         |            |                                         |            |                               |     |
| Mercer 2003                         | 0                 | 16        | 0                | 16      |            | Not estimable                           |            |                               |     |
| Rabe 2000                           | 0                 | 19        | 0                | 20      |            | Not estimable                           |            | 2.55                          |     |
| Hofmeyr 1988                        | 2                 | 23        | 0                | 13      | 7.3%       | 2.92 [0.15, 56.51]                      |            |                               |     |
| Mercer 2006                         | 0                 | 36        | 1                | 36      | 17.4%      | 0.33 [0.01, 7.92]                       |            |                               |     |
| Hofmeyr 1993                        | 1                 | 40        | 2                | 46      | 21.6%      | 0.57 [0.05, 6.11]                       |            |                               |     |
| Hosono 2008                         | 2                 | 20        | 4                | 20      | 46.4%      | 0.50 [0.10, 2.43]                       |            |                               |     |
| Subtotal (95% CI)                   |                   | 154       |                  | 151     | 92.7%      | 0.68 [0.23, 1.96]                       |            | -                             |     |
| Total events                        | 5                 |           | 7                |         |            |                                         |            |                               |     |
| Heterogeneity: Chi <sup>2</sup> = 1 | 1.28, df = 3 (P = | 0.73); P= | 0%               |         |            |                                         |            |                               |     |
| Test for overall effect 2           |                   |           |                  |         |            |                                         |            |                               |     |
| 1.3.2 Uterotonic used               |                   |           |                  |         |            |                                         |            |                               |     |
| Rabe 2000                           | 0                 | 19        | 0                | 20      |            | Not estimable                           |            |                               |     |
| Hofmeyr 1988                        | 2                 | 23        | 0                | 13      | 7.3%       | 2.92 [0.15, 56.51]                      |            |                               |     |
| Subtotal (95% CI)                   |                   | 42        |                  | 33      | 7.3%       | 2.92 [0.15, 56.51]                      |            |                               |     |
| Total events                        | 2                 |           | 0                |         |            |                                         |            |                               |     |
| Heterogeneity: Not app              | plicable          |           |                  |         |            |                                         |            |                               |     |
| Test for overall effect 2           | Z = 0.71 (P = 0.4 | 18)       |                  |         |            |                                         |            |                               |     |
| Total (95% CI)                      |                   | 196       |                  | 184     | 100.0%     | 0.84 [0.32, 2.22]                       |            | •                             |     |
| Total events                        | 7                 |           | 7                |         |            | 100000000000000000000000000000000000000 |            |                               |     |
| Heterogeneity: Chi <sup>2</sup> = 3 | 2.20, df = 4 (P = | 0.70); P= | 0%               |         |            |                                         | +          |                               |     |
| Test for overall effect             |                   |           | 0.000            |         |            |                                         | 0.002      | 0.1 1 10                      | 500 |
| Test for subgroup diffe             |                   |           | 1 /D - 0 203 IZ- | 0.00    |            |                                         |            | More PT better Less PT better |     |

#### Figure 107: Ventilated for respiratory distress syndrome

|                                   | More placenta     | I trans   | Less placenta  | I trans |        | Risk Ratio         | Risk Ratio                    |
|-----------------------------------|-------------------|-----------|----------------|---------|--------|--------------------|-------------------------------|
| Study or Subgroup                 | Events            | Total     | Events         | Total   | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% Cl            |
| 1.4.1 New Subgroup                |                   |           |                |         |        |                    |                               |
| Strauss 2008                      | 3                 | 45        | 7              | 60      | 7.9%   | 0.57 [0.16, 2.09]  |                               |
| Ranjit 2014                       | 5                 | 44        | 8              | 50      | 9.9%   | 0.71 [0.25, 2.01]  |                               |
| Rabe 2000                         | 9                 | 19        | 8              | 20      | 10.3%  | 1.18 [0.58, 2.42]  |                               |
| McDonnell 1997                    | 9                 | 23        | 9              | 23      | 11.8%  | 1.00 [0.49, 2.06]  |                               |
| Baezinger 2007                    | 6                 | 15        | 12             | 24      | 12.1%  | 0.80 [0.38, 1.67]  |                               |
| Kinmond 1993                      | 13                | 17        | 13             | 19      | 16.1%  | 1.12 [0.75, 1.67]  | -                             |
| Subtotal (95% CI)                 |                   | 163       |                | 196     | 68.1%  | 0.93 [0.69, 1.25]  | +                             |
| Total events                      | 45                |           | 57             |         |        |                    |                               |
| Heterogeneity: Chi# =             | 2.25, df = 5 (P = | 0.81); P= | 0%             |         |        |                    |                               |
| Test for overall effect:          | Z = 0.49 (P = 0.6 | 53)       |                |         |        |                    |                               |
| 1.4.2 Uterotonic used             |                   |           |                |         |        |                    | 12                            |
| Rabe 2000                         | 3                 | 45        | 7              | 60      | 7.9%   | 0.57 [0.16, 2.09]  |                               |
| McDonnell 1997                    | 9                 | 23        | 9              | 23      | 11.8%  | 1.00 [0.49, 2.06]  |                               |
| Baezinger 2007                    | 6                 | 15        | 12             | 24      | 12.1%  | 0.80 [0.38, 1.67]  |                               |
| Subtotal (95% CI)                 |                   | 83        |                | 107     | 31.9%  | 0.82 [0.50, 1.33]  | -                             |
| Total events                      | 18                |           | 28             |         |        |                    |                               |
| Heterogeneity: Chi <sup>2</sup> = | 0.60, df = 2 (P = | 0.74); P= | 0%             |         |        |                    |                               |
| Test for overall effect:          | Z = 0.81 (P = 0.4 | 12)       |                |         |        |                    |                               |
| Total (95% CI)                    |                   | 246       |                | 303     | 100.0% | 0.89 [0.69, 1.15]  | +                             |
| Total events                      | 63                |           | 85             |         |        |                    | · · · · · · · · · · · ·       |
| Heterogeneity: Chi <sup>2</sup> = | 3.24, df = 8 (P = | 0.92); P= |                |         |        |                    |                               |
| Test for overall effect.          |                   |           |                |         |        |                    | 0.1 0.2 0.5 1 2 5 10          |
| Test for subgroup diff.           |                   |           | 1 /D - 0 CO R- | 0.00    |        |                    | More PT better Less PT better |

Test for subgroup differences: Chi# = 0.19, df = 1 (P = 0.66), I# = 0%

#### Figure 108: Hyperbilirubinemia

|                                   | More placenta     | I trans   | Less placenta    | I trans  |                | Risk Ratio                             | Risk Ratio                                            |
|-----------------------------------|-------------------|-----------|------------------|----------|----------------|----------------------------------------|-------------------------------------------------------|
| Study or Subgroup                 | Events            | Total     | Events           | Total    | Weight         | M-H, Fixed, 95% CI                     | M-H, Fixed, 95% Cl                                    |
| 1.5.1 New Subgroup                |                   |           |                  |          |                |                                        |                                                       |
| Ultee 2008                        | 6                 | 18        | 8                | 19       | 13.4%          | 0.79 [0.34, 1.83]                      |                                                       |
| Rabe 2000                         | 12                | 19        | 12               | 20       | 20.2%          | 1.05 [0.64, 1.73]                      |                                                       |
| Strauss 2008<br>Subtotal (95% CI) | 33                | 45<br>82  | 31               | 59<br>98 | 46.3%<br>79.8% | 1.40 [1.03, 1.88]<br>1.21 [0.94, 1.55] | •                                                     |
| Total events                      | 51                |           | 51               |          |                |                                        |                                                       |
| Heterogeneity: Chi? =             | 2.16, df = 2 (P = | 0.34); P= | 8%               |          |                |                                        |                                                       |
| Test for overall effect           |                   |           |                  |          |                |                                        |                                                       |
| 1.5.2 Uterotonic used             | d                 |           |                  |          |                |                                        |                                                       |
| Rabe 2000<br>Subtotal (95% CI)    | 12                | 19<br>19  | 12               | 20<br>20 | 20.2%          | 1.05 [0.64, 1.73]<br>1.05 [0.64, 1.73] | -                                                     |
| Total events                      | 12                |           | 12               |          |                |                                        |                                                       |
| Heterogeneity: Not ap             | oplicable         |           |                  |          |                |                                        |                                                       |
| Test for overall effect           | Z = 0.20 (P = 0.8 | 34)       |                  |          |                |                                        |                                                       |
| Total (95% CI)                    |                   | 101       |                  | 118      | 100.0%         | 1.18 [0.94, 1.47]                      | +                                                     |
| Total events                      | 63                |           | 63               |          |                |                                        |                                                       |
| Heterogeneity: Chi <sup>2</sup> = | 2.49, df = 3 (P = | 0.48); P= | = 0%             |          |                |                                        |                                                       |
| Test for overall effect.          |                   |           |                  |          |                |                                        | 0.1 0.2 0.5 1 2 5 10<br>More PT better Less PT better |
| Test for subgroup diff            |                   |           | 1 (P = 0.63) P = | 0%       |                |                                        | More Proeder Less Proeder                             |

Test for subgroup differences: Chi<sup>2</sup> = 0.24, df = 1 (P = 0.63), I<sup>2</sup> = 0%

#### Figure 109: Transfused for anaemia

|                                     | More placenta     | trans     | Less placenta                  | I trans   |        | Risk Ratio                             | Risk Ratio                                         |
|-------------------------------------|-------------------|-----------|--------------------------------|-----------|--------|----------------------------------------|----------------------------------------------------|
| Study or Subgroup                   | Events            | Total     | Events                         | Total     | Weight | M-H, Fixed, 95% CI                     | M-H, Fixed, 95% CI                                 |
| 1.6.1 New Subgroup                  |                   |           |                                |           |        |                                        |                                                    |
| Strauss 2008                        | 2                 | 45        | 5                              | 59        | 4.5%   | 0.52 [0.11, 2.58]                      |                                                    |
| Kugelman 2007                       | 3                 | 30        | 5                              | 35        | 4.9%   | 0.70 [0.18, 2.69]                      |                                                    |
| McDonnell 1997                      | 4                 | 23        | 6                              | 23        | 6.3%   | 0.67 [0.22, 2.05]                      |                                                    |
| Kinmond 1993                        | 1                 | 13        | 7                              | 13        | 7.4%   | 0.14 [0.02, 1.00]                      |                                                    |
| Hosono 2008                         | 7                 | 20        | 14                             | 20        | 14.7%  | 0.50 [0.26, 0.97]                      |                                                    |
| Rabe 2000                           | 9                 | 19        | 16                             | 20        | 16.4%  | 0.59 [0.35, 1.00]                      |                                                    |
| Mercer 2006<br>Subtotal (95% CI)    | 18                | 36<br>186 | 22                             | 36<br>206 | 23.1%  | 0.82 [0.54, 1.24] 0.61 [0.46, 0.81]    | •                                                  |
| Total events                        | 44                |           | 75                             |           |        |                                        | 2014                                               |
| Heterogeneity: Chi <sup>2</sup> = 4 | 4.50, df = 6 (P = | 0.61); P= | 0%                             |           |        |                                        |                                                    |
| Test for overall effect 2           | Z = 3.46 (P = 0.0 | 005)      |                                |           |        |                                        |                                                    |
| 1.6.2 Uterotonic used               |                   |           |                                |           |        |                                        |                                                    |
| McDonnell 1997                      | 4                 | 23        | 6                              | 23        | 6.3%   | 0.67 [0.22, 2.05]                      |                                                    |
| Rabe 2000<br>Subtotal (95% CI)      | 9                 | 19<br>42  | 16                             | 20<br>43  | 16.4%  | 0.59 [0.35, 1.00]<br>0.61 [0.37, 1.00] | •                                                  |
| Total events                        | 13                |           | 22                             |           |        |                                        |                                                    |
| Heterogeneity: Chi <sup>2</sup> = I | 0.04, df = 1 (P = | 0.85); P= |                                |           |        |                                        |                                                    |
| Test for overall effect.            |                   |           |                                |           |        |                                        |                                                    |
| Total (95% CI)                      |                   | 228       |                                | 249       | 100.0% | 0.61 [0.48, 0.78]                      | •                                                  |
| Total events                        | 57                |           | 97                             |           |        |                                        |                                                    |
| Heterogeneity: Chi <sup>2</sup> = 4 | 4.53, df = 8 (P = | 0.81); P= | 0%                             |           |        |                                        |                                                    |
| Test for overall effect 2           |                   |           |                                |           |        |                                        | 0.01 0.1 1 10 100<br>More PT better Less PT better |
| Test for subgroup diffe             |                   |           | 1 (P = 0.98), I <sup>2</sup> = | 0%        |        |                                        | More Pri beder Less Pi beder                       |

#### Figure 110: Apgar score at 5th minute < 8

|                                     | More placenta                         | I trans                 | Less placenta                  | Less placental trans |        | Risk Ratio         | Risk Ratio                                         |
|-------------------------------------|---------------------------------------|-------------------------|--------------------------------|----------------------|--------|--------------------|----------------------------------------------------|
| Study or Subgroup                   | Events                                | Total                   | Events                         | Total                | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI                                 |
| 1.8.1 New Subgroup                  |                                       |                         |                                |                      |        |                    |                                                    |
| Hofmeyr 1988                        | 0                                     | 14                      | 4                              | 24                   | 14.4%  | 0.19 [0.01, 3.20]  |                                                    |
| Hofmeyr 1993                        | 8                                     | 39                      | 7                              | 45                   | 27.6%  | 1.32 [0.53, 3.31]  |                                                    |
| Rabe 2000                           | 5                                     | 19                      | 7                              | 20                   | 29.0%  | 0.75 [0.29, 1.96]  |                                                    |
| Subtotal (95% CI)                   |                                       | 72                      |                                | 89                   | 71.0%  | 0.86 [0.45, 1.62]  | +                                                  |
| Total events                        | 13                                    |                         | 18                             |                      |        |                    |                                                    |
| Heterogeneity: Chi <sup>2</sup> = 1 | 2.02, df = 2 (P =                     | 0.36); P=               | 1%                             |                      |        |                    |                                                    |
| Test for overall effect.            | Z = 0.47 (P = 0.6                     | (4)                     |                                |                      |        |                    |                                                    |
| 1.8.2 Uterotonic used               | i i i                                 |                         |                                |                      |        |                    |                                                    |
| Hofmeyr 1988                        | 14                                    | 0                       | 4                              | 24                   |        | Not estimable      |                                                    |
| Rabe 2000                           | 5                                     | 19                      | 7                              | 20                   | 29.0%  | 0.75 [0.29, 1.96]  |                                                    |
| Subtotal (95% CI)                   |                                       | 19                      |                                | 44                   | 29.0%  | 0.75 [0.29, 1.96]  | -                                                  |
| Total events                        | 19                                    |                         | 11                             |                      |        |                    |                                                    |
| Heterogeneity: Not ap               | plicable                              |                         |                                |                      |        |                    |                                                    |
| Test for overall effect.            | Z = 0.58 (P = 0.5                     | 6)                      |                                |                      |        |                    |                                                    |
| Total (95% CI)                      |                                       | 91                      |                                | 133                  | 100.0% | 0.83 [0.49, 1.41]  | +                                                  |
| Total events                        | 32                                    |                         | 29                             |                      |        |                    |                                                    |
| Heterogeneity: Chi <sup>2</sup> = 1 | 2.12, df = 3 (P =                     | 0.55); I <sup>2</sup> = | 0%                             |                      |        |                    | to a de la col                                     |
| Test for overall effect 2           | · · · · · · · · · · · · · · · · · · · |                         |                                |                      |        |                    | 0.01 0.1 1 10 100<br>More PT better Less PT better |
| Test for subgroup diffe             | erences: Chi#= (                      | 0.05, df=               | 1 (P = 0.82), I <sup>2</sup> = | 0%                   |        |                    | More Pri better Less Pri better                    |

## Figure 111: Haematocrit at 4 hours of life (%)

|                                     | More pla     | More placental trans |                         |      | Less placental trans |       |                | Mean Difference                         | Mean Difference             |  |
|-------------------------------------|--------------|----------------------|-------------------------|------|----------------------|-------|----------------|-----------------------------------------|-----------------------------|--|
| Study or Subgroup                   | Mean         | SD                   | Total                   | Mean | SD                   | Total | Weight         | IV, Fixed, 95% CI                       | IV, Fixed, 95% CI           |  |
| 1.9.1 New Subgroup                  |              |                      |                         |      |                      |       |                |                                         |                             |  |
| Baezinger 2007                      | 55.56        | 8.42                 | 15                      | 50.2 | 7.73                 | 24    | 8.7%           | 5.36 [0.09, 10.63]                      |                             |  |
| Oh 2002                             | 44.4         | 7                    | 16                      | 40   | 5.6                  | 17    | 12.8%          | 4.40 [0.06, 8.74]                       |                             |  |
| Nelle 1998                          | 55           | 5                    | 11                      | 46   | 4                    | 8     | 14.7%          | 9.00 [4.95, 13.05]                      |                             |  |
| McDonnell 1997                      | 55           | 7                    | 23                      | 52.5 | 7                    | 23    | 14.7%          | 2.50 [-1.55, 6.55]                      |                             |  |
| Kinmond 1993<br>Subtotal (95% CI)   | 56.4         | 4.8                  | 17 82                   | 50.9 | 4.5                  | 19    | 25.9%<br>76.6% | 5.50 [2.45, 8.55]<br>5.40 [3.62, 7.17]  |                             |  |
| 1.9.2 Uterotonic used               |              |                      |                         |      |                      |       |                |                                         |                             |  |
| 1.9.2 Uterotonic used               |              |                      |                         |      |                      |       |                |                                         |                             |  |
| Baezinger 2007                      | 55.58        | 8.42                 | 15                      | 50.2 | 7.73                 | 24    | 8.7%           | 5.36 [0.09, 10.63]                      |                             |  |
| McDonnell 1997<br>Subtotal (95% CI) | 55           | 7                    | 23<br>38                | 52.5 | 7                    | 23    | 14.7%          | 2.50 [-1.55, 6.55]<br>3.56 [0.35, 6.77] | -                           |  |
| Heterogeneity: Chi# = I             | 0.71, df = 1 | (P = 0.4             | 0); I <sup>#</sup> = 09 | 36   |                      |       |                |                                         | 100                         |  |
| Test for overall effect :           | Z = 2.18 (P  | = 0.03)              |                         |      |                      |       |                |                                         |                             |  |
| Total (95% CI)                      |              |                      | 120                     |      |                      | 138   | 100.0%         | 4.97 [3.42, 6.52]                       | •                           |  |
| Heterogeneity: Chi#=                | 6.89, df = 6 | 6 (P = 0.3           | 3); I <sup>2</sup> = 13 | 3%   |                      |       |                |                                         | -10 -5 0 5 10               |  |
| Test for overall effect .           | Z = 6.28 (P  | < 0.0000             | 01)                     |      |                      |       |                |                                         | More PT lower Less PT lower |  |
| Test for subgroup diffe             |              |                      |                         |      | 17 0.04              |       |                |                                         | more Fillower Less Fillower |  |

#### Figure 112: Haematocrit at 24 hours after birth (%)

|                                     | More pla    | cental t | rans                    | Less pla | acental t | rans      |             | Mean Difference                          | Mean Difference             |
|-------------------------------------|-------------|----------|-------------------------|----------|-----------|-----------|-------------|------------------------------------------|-----------------------------|
| Study or Subgroup                   | Mean        | SD       | Total                   | Mean     | SD        | Total     | Weight      | IV, Fixed, 95% CI                        | IV, Fixed, 95% CI           |
| 1.10.1 New Subgroup                 | 1           |          |                         |          |           |           |             |                                          |                             |
| Baezinger 2007                      | 55.93       | 7.19     | 15                      | 49.74    | 8.34      | 23        | 7.5%        | 6.19 [1.20, 11.18]                       |                             |
| Strauss 2008                        | 56          | 8.32     | 41                      | 53       | 8.16      | 55        | 16.8%       | 3.00 [-0.34, 6.34]                       |                             |
| Kugelman 2007                       | 52.8        | 5.2      | 30                      | 50.2     | 6         | 35        | 25.2%       | 2.60 [-0.12, 5.32]                       |                             |
| Ranjit 2014<br>Subtotal (95% CI)    | 58.5        | 5.1      | 44<br>130               | 50.8     | 5.2       | 50<br>163 | 43.0% 92.5% | 7.70 [5.61, 9.79] 5.33 [3.91, 6.76]      | •                           |
| Heterogeneity: Chi#= 1              | 10.81. df=  | 3(P = 0) | 01): P=                 | 72%      |           |           |             |                                          |                             |
| Test for overall effect 2           |             |          |                         | 17.000   |           |           |             |                                          |                             |
| 1.10.2 Uterotonic use               | d           |          |                         |          |           |           |             |                                          |                             |
| Baezinger 2007<br>Subtotal (95% CI) | 55.93       | 7.19     | 15<br>15                | 49.74    | 8.34      | 23<br>23  | 7.5%        | 6.19 [1.20, 11.18]<br>6.19 [1.20, 11.18] | -                           |
| Heterogeneity: Not app              | olicable    |          |                         |          |           |           |             |                                          | 1996-062                    |
| Test for overall effect 2           |             | = 0.01)  |                         |          |           |           |             |                                          |                             |
| Total (95% CI)                      |             |          | 145                     |          |           | 186       | 100.0%      | 5.40 [4.03, 6.77]                        | •                           |
| Heterogeneity: Chi# = 1             | 10.92, df=  | 4(P = 0. | 03); I <sup>2</sup> = 1 | 63%      |           |           |             |                                          |                             |
|                                     |             |          |                         |          |           |           |             |                                          | -10 -5 0 5 10               |
| Test for overall effect 2           | Z = 7.74 (P | < 0.000  | 01)                     |          |           |           |             |                                          | More PT lower Less PT lower |

# I.13.2 More placental transfusion versus less placental transfusion: subgroup analysis by strategy for more placental transfusion

#### Figure 113: Infant death

|                                     | More placenta     | I trans                 | Less placenta    | I trans |        | Risk Ratio          |      | Risk Ratio          |           |     |
|-------------------------------------|-------------------|-------------------------|------------------|---------|--------|---------------------|------|---------------------|-----------|-----|
| Study or Subgroup                   | Events            | Total                   | Events           | Total   | Weight | M-H, Fixed, 95% CI  |      | M-H, Fixed, 95%     | CI        |     |
| 2.1.1 Delayed clampin               | g                 |                         |                  |         |        |                     |      |                     |           |     |
| Ultee 2008                          | 0                 | 18                      | 0                | 19      |        | Not estimable       |      |                     |           |     |
| Kinmond 1993                        | 0                 | 17                      | 0                | 19      |        | Not estimable       |      |                     |           |     |
| Strauss 2008                        | 0                 | 45                      | 0                | 60      |        | Not estimable       |      |                     |           |     |
| Mercer 2003                         | 0                 | 16                      | 0                | 16      |        | Not estimable       |      |                     |           |     |
| Hofmeyr 1988                        | 5                 | 24                      | 0                | 14      | 3.3%   | 6.60 [0.39, 111.10] |      |                     | •         |     |
| Hofmeyr 1993                        | 1                 | 40                      | 1                | 46      | 4.9%   | 1.15 [0.07, 17.80]  |      |                     |           |     |
| Kugelman 2007                       | 0                 | 30                      | 1                | 35      | 7.3%   | 0.39 [0.02, 9.16]   | _    |                     |           |     |
| Rabe 2000                           | 0                 | 19                      | 1                | 20      | 7.7%   | 0.35 [0.02, 8.10]   | _    |                     |           |     |
| McDonnell 1997                      | 0                 | 23                      | 2                | 23      | 13.1%  | 0.20 [0.01, 3.95]   |      | • •                 | -         |     |
| Baezinger 2007                      | 0                 | 15                      | 3                | 24      | 14.3%  | 0.22 [0.01, 4.04]   |      | •                   | -         |     |
| Oh 2002                             | 2                 | 16                      | 3                | 17      | 15.3%  | 0.71 [0.14, 3.70]   |      |                     | -         |     |
| Mercer 2006                         | 0                 | 36                      | 3                | 36      | 18.4%  | 0.14 [0.01, 2.67]   | +    |                     |           |     |
| Subtotal (95% CI)                   |                   | 299                     |                  | 329     | 84.2%  | 0.62 [0.28, 1.36]   |      | -                   |           |     |
| Total events                        | 8                 |                         | 14               |         |        |                     |      |                     |           |     |
| Heterogeneity: Chi <sup>2</sup> = 5 | 5.12, df = 7 (P = | 0.65); 12=              | 0%               |         |        |                     |      |                     |           |     |
| Test for overall effect 2           | z = 1.19 (P = 0.2 | 23)                     |                  |         |        |                     |      |                     |           |     |
| 2.1.2 Cord milking                  |                   |                         |                  |         |        |                     |      |                     |           |     |
| Hosono 2008                         | 2                 | 20                      | 3                | 20      | 15.8%  | 0.67 [0.12, 3.57]   |      |                     | -         |     |
| Subtotal (95% CI)                   |                   | 20                      |                  | 20      | 15.8%  | 0.67 [0.12, 3.57]   |      |                     |           |     |
| Total events                        | 2                 |                         | 3                |         |        |                     |      |                     |           |     |
| Heterogeneity: Not app              | licable           |                         |                  |         |        |                     |      |                     |           |     |
| Test for overall effect 2           | z = 0.47 (P = 0.6 | i4)                     |                  |         |        |                     |      |                     |           |     |
| Total (95% CI)                      |                   | 319                     |                  | 349     | 100.0% | 0.63 [0.31, 1.28]   |      | •                   |           |     |
| Total events                        | 10                |                         | 17               |         |        |                     |      |                     |           |     |
| Heterogeneity: Chi <sup>2</sup> = 5 | 5.14, df = 8 (P = | 0.74); I <sup>2</sup> = | 0%               |         |        |                     | -    |                     | 10        | 100 |
| Test for overall effect 2           |                   |                         |                  |         |        |                     | 0.01 | 0.1 1               | 10        | 100 |
| Test for subgroup diffe             |                   |                         | 1 /P = 0.04) /P- | 0%      |        |                     |      | More PT better Less | PT better |     |

#### Figure 114: Severe intraventricular haemorrhage

|                           | More placenta     | I trans   | Less placenta                  | I trans |        | Risk Ratio         | Risk Ratio                                          |
|---------------------------|-------------------|-----------|--------------------------------|---------|--------|--------------------|-----------------------------------------------------|
| Study or Subgroup         | Events            | Total     | Events                         | Total   | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI                                  |
| 2.2.1 Delayed clamping    | ng                |           |                                |         |        |                    |                                                     |
| Mercer 2003               | 0                 | 16        | 0                              | 16      |        | Not estimable      |                                                     |
| Rabe 2000                 | 0                 | 19        | 0                              | 20      |        | Not estimable      | 1.0                                                 |
| Hofmeyr 1988              | 2                 | 23        | 0                              | 13      | 7.9%   | 2.92 [0.15, 56.51] |                                                     |
| Mercer 2006               | 0                 | 36        | 1                              | 36      | 18.8%  | 0.33 [0.01, 7.92]  |                                                     |
| Hofmeyr 1993              | 1                 | 40        | 2                              | 46      | 23.3%  | 0.57 [0.05, 6.11]  |                                                     |
| Subtotal (95% CI)         |                   | 134       |                                | 131     | 50.0%  | 0.85 [0.20, 3.66]  | -                                                   |
| Total events              | 3                 |           | 3                              |         |        |                    |                                                     |
| Heterogeneity: Chi2 = '   | 1.11, df = 2 (P = | 0.58); P= | : 0%                           |         |        |                    |                                                     |
| Test for overall effect.  | Z = 0.21 (P = 0.8 | 3)        |                                |         |        |                    |                                                     |
| 2.2.2 Cord milking        |                   |           |                                |         |        |                    |                                                     |
| Hosono 2008               | 2                 | 20        | 4                              | 20      | 50.0%  | 0.50 [0.10, 2.43]  |                                                     |
| Subtotal (95% CI)         |                   | 20        |                                | 20      | 50.0%  | 0.50 [0.10, 2.43]  | -                                                   |
| Total events              | 2                 |           | 4                              |         |        |                    |                                                     |
| Heterogeneity: Not app    | plicable          |           |                                |         |        |                    |                                                     |
| Test for overall effect.  | Z = 0.86 (P = 0.3 | 9)        |                                |         |        |                    |                                                     |
| Total (95% CI)            |                   | 154       |                                | 151     | 100.0% | 0.68 [0.23, 1.96]  | -                                                   |
| Total events              | 5                 |           | 7                              |         |        |                    |                                                     |
| Heterogeneity: Chi2 =     | 1.28, df = 3 (P = | 0.73); P= | : 0%                           |         |        |                    | 0.002 0.1 1 10 500                                  |
| Test for overall effect 2 | Z = 0.72 (P = 0.4 | 7)        |                                |         |        |                    | 0.002 0.1 1 10 500<br>More PT better Less PT better |
| Test for subgroup diffe   | erences: Chi#= (  | 0.24, df= | 1 (P = 0.62), I <sup>2</sup> = | : 0%    |        |                    | more riverer Less riverer                           |

### Figure 115: Transfused for anaemia

|                                                                   | More placental trans                   |           | Less placental trans |           |                | Risk Ratio                             | Risk Ratio                            |
|-------------------------------------------------------------------|----------------------------------------|-----------|----------------------|-----------|----------------|----------------------------------------|---------------------------------------|
| Study or Subgroup                                                 | Events                                 | Total     | Events               | Total     | Weight         | M-H, Fixed, 95% CI                     | M-H, Fixed, 95% CI                    |
| 2.12.1 Delayed Clamp                                              | ing                                    |           |                      |           |                |                                        |                                       |
| Strauss 2008                                                      | 2                                      | 45        | 5                    | 59        | 4.7%           | 0.52 [0.11, 2.58]                      | · · · · · · · · · · · · · · · · · · · |
| Kugelman 2007                                                     | 3                                      | 30        | 5                    | 35        | 5.1%           | 0.70 [0.18, 2.69]                      |                                       |
| McDonnell 1997                                                    | 4                                      | 23        | 6                    | 23        | 6.6%           | 0.67 [0.22, 2.05]                      |                                       |
| Kinmond 1993                                                      | 1                                      | 13        | 7                    | 13        | 7.7%           | 0.14 [0.02, 1.00]                      | · · · · · · · · · · · · · · · · · · · |
| Rabe 2000                                                         | 9                                      | 19        | 16                   | 20        | 17.1%          | 0.59 [0.35, 1.00]                      |                                       |
| Mercer 2006<br>Subtotal (95% CI)                                  | 18                                     | 36<br>166 | 22                   | 36<br>186 | 24.1%<br>65.3% | 0.82 [0.54, 1.24]<br>0.63 [0.46, 0.87] |                                       |
| Total events                                                      | 37                                     |           | 61                   |           |                |                                        |                                       |
| Heterogeneity: Chi² = 3<br>Test for overall effect: 2             |                                        |           | 0%                   |           |                |                                        |                                       |
| 2.12.2 Cord milking                                               |                                        |           |                      |           |                |                                        |                                       |
| Hosono 2008                                                       | 7                                      | 20        | 14                   | 20        | 15.3%          | 0.50 [0.26, 0.97]                      | · · · · ·                             |
| March 2011<br>Subtotal (95% CI)                                   | 17                                     | 21        | 16                   | 17        | 19.4%          | 0.86 [0.68, 1.09]<br>0.70 [0.53, 0.94] |                                       |
| Total events                                                      | 24                                     |           | 30                   |           |                | en e ferest erest                      |                                       |
| Heterogeneity: Chi <sup>2</sup> = 3<br>Test for overall effect. 2 | 3.81, df = 1 (P =                      |           |                      |           |                |                                        |                                       |
| Total (95% CI)                                                    |                                        | 207       |                      | 223       | 100.0%         | 0.66 [0.52, 0.82]                      | •                                     |
| Total events                                                      | 61                                     |           | 91                   |           |                |                                        |                                       |
| Heterogeneity: Chi <sup>2</sup> = 9                               | 8.17, df = 7 (P =<br>Z = 3.66 (P = 0.0 |           | 24%                  |           |                |                                        | 0.01 0.1 1 10 10                      |

# Appendix J: Network meta-analysis of tocolytics

## J.1 Summary

Tocolytics are given to women in preterm labour to delay birth and therefore improve outcomes for the newborn. Whilst the treatment is given to the mother, the aim is to improve outcomes for the infant.

Network meta-analyses (NMA) of outcomes considered important to assess efficacy and safety were conducted. Eight outcomes were suitable for NMA:

- 1. IVH (infant)
- 2. RDS (infant)
- 3. Neonatal mortality (infant)
- 4. Neonatal sepsis (infant)
- 5. Perinatal mortality (infant)
- 6. Delay of birth by at least 48 hours (mother)
- 7. Termination of treatment due to adverse events (mother)
- 8. Estimated gestational age (EGA) at delivery (mother)

The first 7 outcomes are reported as the number of observed events out of the total number of infants or mothers, whilst EGA is reported as a continuous outcome (mean EGA) with a standard deviation. Because some studies included multiple births, allowing more than one infant per mother, it was not always clear which was the most appropriate number of individuals to consider for outcomes on the infant. Where available we used the number of infants as the denominator. Although this does not account for the expected correlation in outcomes of infants from the same mother, it prevents double counting of infants from the same mother who may both have had an event.

A total of 35 treatments (including Placebo and combinations of treatments) were evaluated in relevant trials. These treatments were classified into 9 classes (Table 1).

A NMA class model (Kew 2014) was used to estimate the relative effects of each treatment class compared to Placebo/control. Since there was no evidence of within-class variability for any of the outcomes considered, all the results presented assume that all treatments in a class have the same relative effect.

A binomial / logit model was used to model outcomes 1 to 7 and a normal model with identity link was used to model EGA (Dias 2011).

The final dataset consisted of data from 93 trials comparing 35 treatments, although not all trials report all the outcomes of interest. Studies reporting zero events on all arms were removed from the NMA as they do not contribute information on the relative treatment effects. Treatments were assigned to classes according to Table 2.

## J.2 Methods

In order to take all trial information into consideration, without ignoring part of the evidence and without introducing bias by breaking the rules of randomisation (for example, by "naively" combining data across treatment arms from all RCTs), Mixed Treatment Comparison metaanalytic techniques, also termed Network meta-analysis (NMA), were employed. NMA is a generalization of standard pairwise meta-analysis for A versus B trials, to data structures that include, for example, A versus B, B versus C, and A versus C trials (Dias 2001; Lu 2004; Caldwell 2005). A basic assumption of NMA methods is that direct and indirect evidence estimate the same parameter, that is, the relative effect between A and B measured directly from a A versus B trial, is the same as the relative effect between A and B estimated indirectly from A versus C and B versus C trials. NMA techniques strengthen inference concerning the relative effect of two treatments by including both direct and indirect comparisons between treatments, and, at the same time, allow simultaneous inference on all treatments while respecting randomisation (Lu 2004; Caldwell 2005). Simultaneous inference on the relative effects of all treatments is possible whenever treatments are part of a single "network of evidence", that is, every treatment is linked to at least one of the other treatments under assessment. The correlation between the random effects of multi-arm trials (i.e. those with more than 2 arms) in the network is taken into account in the analysis (Dias 2011).

A Bayesian framework is used to estimate all parameters, using Markov chain Monte Carlo simulation methods implemented in WinBUGS 1.4.3 (Lunn 2000; Lunn 2013). In order to test whether starting values have an impact on the results, three chains with different initial values were run simultaneously. Convergence was assessed by inspection of the Gelman–Rubin diagnostic plots and by examining the history plots. Pre-convergence iterations were discarded, and further iterations on all chains were run on which results are based.

Sample WinBUGS code is provided in Section J.6.

#### J.2.1 Baseline probability (IVH, RDS and neonatal mortality)

Please see Health Economic Appendix K for details on calculating baseline probabilities for IVH, RDS and neonatal mortality.

#### J.2.2 Relative effects model

Models allowing for within-class differences in treatment effects were considered with both fixed and random treatment effects. These were compared with models assuming no withinclass variability (i.e. all treatments in a class have the same relative effect), allowing for fixed or random treatment effects. Goodness of fit was tested using the posterior mean of the residual deviance, which was compared to the number of data points in the model and by inspecting the fit of each data point. Models were compared using the deviance information criteria (DIC) (Spiegelhalter 2002). The model with the lowest DIC was chosen, with differences of 5 considered meaningful. When models had very similar DIC (differences less than 5), simpler models were preferred, provided the posterior mean of the residual deviance was still close to the number of data points.

#### J.2.3 NMA model for binary data (outcomes 1 to 7)

A logit model was used to obtain the log-odds ratios of each treatment relative to Placebo. For each arm k of a trial *i*, the number of events,  $r_{ik}$ , have a binomial likelihood

$$r_{ik} \sim \text{Binomial}(p_{ik}, n_{ik})$$

where  $p_{ik}$  is the probability of an event and  $n_{ik}$  the total number of patients in arm k of trial i.

The parameters of interest are the probabilities of an event and these are modelled using a NMA model on the log-odds scale using a logit link such that

$$\operatorname{logit}(p_{ik}) = \mu_i + \delta_{ik}$$

with  $\mu_i$  being given non-informative normal priors, Normal(0,1000), and  $\delta_{ii} = 0$  since there is no relative treatment effect estimated for arm 1 of each trial.

@2015 National Collaborating Centre for Women and Children's Health

In a random effects (RE) model the trial-specific treatment effects of the treatment in arm k, relative to the treatment in arm 1, are drawn from a common random effects distribution, under the assumption of consistency:

$$\delta_{ik} \sim N(d_{tik} - d_{til}, \tau^2)$$

where  $d_{ik}$  represents the mean effect of the treatment in arm k in trial i,  $t_{ik}$ , relative to Placebo, and  $\tau^2$  represents the between-trial variability in treatment effects (heterogeneity). The between-trials standard deviation,  $\tau$ , was given a Uniform(0,5) prior.

In the FE model we replace equation (2) with

 $logit(p_{ik}) = \mu_i + d_t - d_t$ 

### J.2.4 NMA model for continuous data (EGA)

For each arm k of a trial i, the observed mean EGA,

 $y_{ik}$ , has a normal likelihood

 $y_{ik} \sim \text{Normal}(\theta_{ik}, s_{ik}^2)$ 

where  $\theta_{ik}$  is the underlying (true) mean EGA and  $s_{ik}$  is the standard error of the mean EGA in

arm k of trial i.

The mean EGA is modelled using a NMA model such that

 $\theta_{ik} = \mu_i + \delta_{ik}$ 

with  $\mu_i$  being given non-informative normal priors, Normal(0,1000), and  $\delta_{i1} = 0$ , since there is no relative treatment effect estimated for arm 1 of each trial.

In a random effects (RE) model the trial-specific treatment effects of the treatment in arm k, relative to the treatment in arm 1, are drawn from a common random effects distribution, under the assumption of consistency (equation (3)). The between-trials standard deviation was given a Uniform(0,20) prior.

In the FE model we replace equation (5) with

$$\theta_{ik} = \mu_i + d_t - d_t$$

For studies not reporting the standard error, this was calculated using imputed standard deviations (SD). For each treatment for which a SD was not reported, it was imputed based on the median SD for that treatment reported in other studies. When there were fewer than 2 other studies reporting SD for a given treatment, the SD was imputed based on the median of reported SDs for that class. A sensitivity analysis imputing the upper quartile instead of the median was carried out.

#### J.2.5 Class model

Due to the sparseness of the network, with most comparisons being informed by only a few trials, a class model was used to borrow strength within treatment classes.

Two models for class were explored: an **exchangeable class effects** model, where the pooled relative treatment effects were assumed exchangeable within class

$$d_{I,k} \sim N(m_{Dk} , \tau^2_{D})$$

with  $D_k$  indicating the class to which treatment k belongs to; and a **fixed class effects** model,

where the pooled relative treatment effects are assumed equal for all treatments in a class  $d_{1,k} = m_{D_k}$ . Magnesium sulphate belongs to a class formed only of itself (Class 3), so its

relative treatment effect was assumed to be equal to its class effect in both models.

Both class models were considered with fixed or random treatment effects. The within-class mean treatment effects were given vague priors  $m_{j} \sim N(0,100^2)$  and the within-class standard deviations were assumed equal for all classes (due to insufficient data) and given Uniform(0,2) priors.

### J.2.6 Consistency

Consistency was assessed by checking the agreement of direct and indirect evidence using a node-split model (Dias 2009) fitted in R (Anonymous 2010) through the GeMTC package (van Valkenhoef 2012). Bayesian p-values for agreement between direct and indirect evidence were calculated. When these were lower than 0.05, included trials were inspected to help determine reasons for the potential inconsistency, bearing in mind that multiple probabilities of disagreement are being calculated and there is the potential to find spurious results.

### J.3 Results

### J.3.1 Baseline models (IVH, RDS, neonatal mortality)

Convergence was satisfactory by at least 20,000 iterations in all cases. Models were then run for a further 50,000 iterations on three separate chains, and all results are based on this further sample.

Results from these models are used in the relative effects model to generate a baseline  $A \sim Normal(m, sd^2)$  on the log-odds scale on which relative effects were added at each iteration, to deliver the posterior summaries on the absolute probability scale for each treatment (Dias 2011a; Dias 2011b).

The estimated probabilities of events were very imprecise and there was large betweenstudy heterogeneity in the log-odds of an event. This suggests that the included studies are very different in their baseline event rates and that they are perhaps not all representative of the UK population.

#### J.3.2 Imputing standard deviations (EGA)

51 studies were used in the NMA for EGA. 5 studies (Merkatz 1980, Leveno 1986, Larsen 1986, Rasanen 1995, Holleboom 1996) did not report the standard deviation (SD).

19 treatments were included in the network. No treatments in Class 8 (Alcohol/ethanol) were compared in trials reporting this outcome.

Five studies did not report SD for EGA (Merkatz 1980, Leveno 1986, Larsen 1986, Rasanen 1995, Holleboom 1996). This meant that the SD had to be imputed for 4 treatments: Placebo, Indomethacin, Sulindac and Ritodrine.

**Placebo:** 11 studies comparing this treatment to other treatments reported the SD, whilst 3 did not. The range of reported SD was 0.5 to 6.6 (Figure 133).

**Indomethacin:** 10 studies comparing this treatment to other treatments reported the SD, whilst 1 did not. The range of reported SD was 0.7 to 5.6 (Figure 133).

**Sulindac:** only 1 study comparing this treatment to other treatments reported the SD, whilst one other did not. The reported SD for other treatments of the same class (Class 2) were used as the basis for imputation. The range of reported SD for this class was 0.5 to 5.6 (Figure 133).

**Ritodrine:** 13 studies comparing this treatment to other treatments reported the SD, whilst 4 did not. The range of reported SD was 1.7 to 4.7 (Figure 133).

Imputed values for the main analysis were based on the median SD (Table 4, Figure 133). A sensitivity analysis using the upper quartile of the reported SD was also carried out (Table 4).

Model comparison using the DIC showed the fixed class with random treatment effects model as the preferred model (**Error! Reference source not found.**). The model with fixed lass and treatment effects was not fitted as it was expected to have a very poor fit, given the results of the exchangeable class, fixed effects model. Node-split models compared direct and indirect evidence on 11 comparisons. Some evidence of inconsistency was found for comparisons of placebo and magnesium sulphate (p=0.01).

### J.3.3 Sensitivity to imputed SD

When imputing the upper quartile of the reported SD, the fixed class with fixed treatment effects model was preferred, although there were some poorly fitting data points and there was evidence of inconsistency for comparisons of placebo and prostaglandin inhibitors (p=0.02) and placebo and betamimetics (p=0.49). Apart from increased uncertainty the main results were not affected.

#### Table 1: Class descriptions

|   | Classes                    |
|---|----------------------------|
| 1 | Placebo/control            |
| 2 | Prostaglandin inhibitors   |
| 3 | Magnesium sulfate          |
| 4 | Betamimetics               |
| 5 | Calcium channel blockers   |
| 6 | Nitrates                   |
| 7 | Oxytocin receptor blockers |
| 8 | Alcohol/ethanol            |
| 9 | Other treatments           |

#### Table 2: Treatments with class assignments

|    | Treatment         | class |
|----|-------------------|-------|
| 1  | Placebo           | 1     |
| 2  | No treatment      | 1     |
| 3  | Bed rest          | 1     |
| 4  | Celecoxib         | 2     |
| 5  | Indomethacin      | 2     |
| 6  | Ketorolac         | 2     |
| 7  | Mefenic Acid      | 2     |
| 8  | Nimeluside        | 2     |
| 9  | Rofecoxib         | 2     |
| 10 | Sulindac          | 2     |
| 11 | Magnesium Sulfate | 3     |
| 12 | Beta-Mimetics     | 4     |

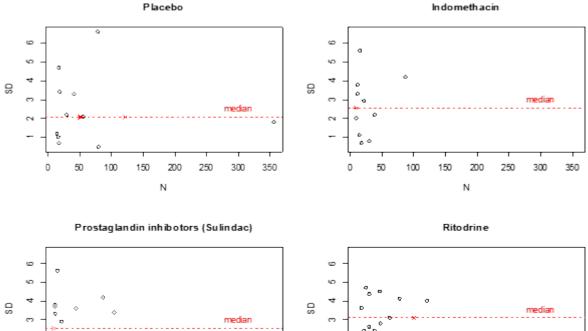
|    | Treatment               | class |
|----|-------------------------|-------|
| 13 | Fenoterol               | 4     |
| 14 | Hexoprenaline           | 4     |
| 15 | Isoxsuprine             | 4     |
| 16 | Ritodrine               | 4     |
| 17 | Salbutamol              | 4     |
| 18 | Terbutaline             | 4     |
| 19 | Nylidrin                | 4     |
| 20 | Calcium-Channel Blocker | 5     |
| 21 | Nicardipine             | 5     |
| 22 | Nifedipine              | 5     |
| 23 | Nitric Oxide            | 6     |
| 24 | Nitroglycerin           | 6     |
| 25 | Atosiban                | 7     |
| 26 | Barisiban 1.0           | 7     |
| 27 | Barusiban 0.3           | 7     |
| 28 | Barusiban 10            | 7     |
| 29 | Barusiban 3.0           | 7     |
| 30 | Alcohol                 | 8     |
| 31 | Ethanol                 | 8     |
| 32 | Beta-Mimetics + Mag     | 9     |
| 33 | Alcohol + Indomethacin  | 9     |
| 34 | Other Tocolytic(s)      | 9     |
| 35 | Tocolysis               | 9     |
|    |                         |       |

Treatment classes are defined in Table 1

| Outcome (number of       |                                  | Exchangeable class eff | ects              | Fixed class effects |       |
|--------------------------|----------------------------------|------------------------|-------------------|---------------------|-------|
| data points)             | Measures of model fit            | RE                     | FE                | RE                  | FE    |
| IVH (61)                 | $\overline{D}_{res}$             | 65.7                   | 68.6              | 66.1                | 69.2  |
|                          | DIC                              | 285.1                  | 284.2             | 284.0               | 282.9 |
|                          | between-study standard deviation | 0.27 (0.01, 0.83)      | -                 | 0.27 (0.01, 0.81)   | -     |
|                          | within-class standard deviation  | 0.44 (0.02, 1.78)      | 0.43 (0.02, 1.77) | -                   | -     |
| RDS (102)                | $\overline{D}_{res}$             | 110.0                  | 114.3             | <mark>-112.3</mark> | 121.3 |
|                          | DIC                              | 506.5                  | 505.8             | 506.9               | 507.6 |
|                          | between-study standard deviation | 0.20 (0.01, 0.50)      | -                 | 0.25 (0.02, 0.54)   | -     |
|                          | within-class standard deviation  | 0.30 (0.02, 0.87)      | 0.36 (0.04, 0.92) | -                   | -     |
| Neonatal mortality       | $\overline{D}_{res}$             | 111.6                  | 132.5             | <mark>112.2</mark>  | 144.0 |
| (102)                    | DIC                              | 429.1                  | 437.4             | 429.2               | 443.3 |
|                          | between-study standard deviation | 0.79 (0.24, 1.42)      | -                 | 0.86 (0.39, 1.47)   | -     |
|                          | within-class standard deviation  | 0.79 (0.04, 1.90)      | 1.16 (0.14, 7.95) | -                   | -     |
| Neonatal sepsis (39)     | $\overline{D}_{res}$             | 42.8                   | 45.4              | 44.0                | 47.0  |
|                          | DIC                              | 181.2                  | 180.1             | 181.0               | 179.8 |
|                          | between-study standard deviation | 0.44 (0.02, 1.49)      | -                 | 0.41 (0.02, 1.41)   | -     |
|                          | within-class standard deviation  | 0.65 (0.03, 1.87)      | 0.60 (0.03, 1.84) | -                   | -     |
| Perinatal mortality (88) | $\overline{D}_{res}$             | *                      | *                 | 95.6                | 115.1 |
|                          | DIC                              | *                      | *                 | 365.1               | 371.8 |
|                          | between-study                    | *                      | *                 | 0.79 (0.19, 1.47)   | -     |

### Table 3: Posterior mean of the residual deviance ( $\overline{D_{res}}$ ) DIC for all models

| Outcome (number of    |                                     | Exchangeable class effe | ects              | Fixed class effects |       |
|-----------------------|-------------------------------------|-------------------------|-------------------|---------------------|-------|
| data points)          | Measures of model fit               | RE                      | FE                | RE                  | FE    |
|                       | standard deviation                  |                         |                   |                     |       |
|                       | within-class standard<br>deviation  | *                       | *                 | -                   | -     |
| Delay by 48hrs (132)  | $\bar{D}_{res}$                     | 130.7                   | 301.0             | 130.7               | NA    |
|                       | DIC                                 | 727.9                   | 862.6             | 727.2               | NA    |
|                       | between-study<br>standard deviation | 0.89 (0.68, 1.16)       | -                 | 0.89 (0.68, 1.14)   | -     |
|                       | within-class standard<br>deviation  | 0.14 (0.01, 0.55)       | 0.29 (0.05, 0.61) | -                   | -     |
| Termination due to AE | $\overline{D}_{res}$                | 80.1                    | 103.2             | 82.0                | 102.5 |
| (75)                  | DIC                                 | 297.7                   | 308.7             | 298.5               | 306.7 |
|                       | between-study<br>standard deviation | 1.34 (0.26, 2.68)       | -                 | 1.17 (0.18, 2.74)   | -     |
|                       | within-class standard deviation     | 0.36 (0.02, 1.60)       | 0.18 (0.01, 0.97) | -                   | -     |
| EGA (101)             | $\overline{D}_{res}$                | 100.3                   | 352.7             | 100.0               | NA    |
|                       | DIC                                 | 191.0                   | 418.4             | 190.4               | NA    |
|                       | between-study<br>standard deviation | 1.25 (0.96, 1.64)       | -                 | 1.25 (0.98, 1.62)   | -     |
|                       | within-class standard deviation     | 0.25 (0.01, 0.98)       | 1.53 (0.96, 2.67) | -                   | -     |


'NA' indicates the model was not fitted as it was expected to be a poor fit, and '\*' indicated that the model was not fitted because there was not enough evidence to estimate all the parameters. Shaded cells indicate the preferred model. The median and 95% Credible Intervals of the between-study deviation (heterogeneity) and within-class standard deviation are also presented, A '--' indicates that this value was fixed at zero in the model.

| Treatment    | Median | Upper quartile |
|--------------|--------|----------------|
| Placebo      | 2.1    | 3.35           |
| Indomethacin | 2.555  | 3.675          |
| Sulindac     | 2.555  | 3.625          |
| Ritodrine    | 3.1    | 4.1            |

#### Table 4: Vales used for the imputation of SD with these were not reported

## J.4 Figures

Figure 133: Reported standard deviations (SD) in trials comparing the difference treatments, or treatments of the same class (open circles); SD in the only sulindac trial to report it (filled circle); imputed values (red crosses) and median SD, plotted against sample size



#### ഹ്ര 150 200 250 300 350 50 100 150 200 250 350 0 50 100 0 300 Ν N

## J.5 References

#### Kew 2014

Kew KM, Dias S, Cates CJ. Long-acting inhaled therapy (beta-agonists, anticholinergics and steroids) for COPD: a network meta-analysis. Cochrane Database of Systematic Reviews. 2014(3):Art No.: CD010844.

#### Dias 2011a

Dias S, Welton NJ, Sutton AJ, Ades AE. NICE DSU Technical Support Document 2: A generalised linear modelling framework for pair-wise and network meta-analysis of randomised controlled trials. 2011.

#### Lu 2004

Lu G, Ades A. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. 2004 2004;23:3105-3124.

#### Caldwell 2005

Caldwell DM, Ades AE, Higgins JPT. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ. 2005 2005;331:897-900.

#### Lunn 2000a

Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS -- a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing. 2000;10:325-337.

#### Lunn 2000b

Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D. The BUGS book. Boca Raton, FL: CRC Press; 2013.

#### Dias 2011b

Dias S, Welton NJ, Sutton AJ, Ades AE. NICE DSU Technical Support Document 5: Evidence synthesis in the baseline natural history model. 2011.

#### Spiegelhalter 2002

Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society (B). 2002;64(4):583-616.

#### Dias 2010

Dias S, Welton NJ, Caldwell DM, Ades AE. Checking Consistency in Mixed Treatment Comparison Meta-analysis. Stat Med. 2010;29:932-944.

#### Anonymous 2010

R: A Language and Environment for Statistical Computing [computer program]. Vienna, Austria: R Foundation for Statistical Computing; 2010.

#### van Valkenhoef 2012

van Valkenhoef G, Lu G, De Brock B, Hillege H, Ades AE, Welton NJ. Automating network meta-analysis. Research Synthesis Methods. 2012;3:285-299.

# J.6 Sample WINGBUGS code for binary outcome analyses

FIXED CLASS, FIXED TREATMENT EFFECTS

| Cla<br>wit | iss m<br>hin-c | ics: outcome is IVH<br>nodel - treatments exchangeable within class,<br>class variance is zero (fixed class effects)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | ay 2014        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Treat      | tments         | (code, Class, Treat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1          | 1              | Placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2          | 2              | Indomethacin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3          | 2              | Ketorolac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4          | 2              | Rofecoxib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5          | 3              | Magnesium Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6          | 4              | Beta-Mimetics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7          | 4              | Ritodrine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8          | 4              | Salbutamol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9          | 4              | Terbutaline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10         | 4              | Terbutaline<br>Nylidrin (NOT TO BE USED FOR RANKING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11         | 5<br>6<br>7    | Nifedipine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12         | 6              | Nitric Oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13         | 7              | Atosiban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14         | 8              | Other Tocolytic(s) (NOT TO BE USED FOR RANKING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| # Fi       | xed ef         | l likelihood, logit link<br>ffects model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -          |                | ffects - zero within-class variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mode       |                | # *** PROGRAM STARTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | i in l         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |                | <pre>~ dnorm(0,.0001)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                | k in l:na[i]) {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| + ===      |                | <pre>print content con</pre> |
| + 100      |                | p(i,k) <- mu[i] + d[t[i,k]] - d[t[i,1]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ± ex       |                | d value of the numerators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | -              | hat[i,k] <- p[i,k] * n[i,k]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| #Dev       |                | contribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | de             | <pre>ev[i,k] &lt;- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |                | + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rhat       | [i,k])<br>}    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ‡ su       | mmed r         | residual deviance contribution for this trial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | }              | <pre>v[i] &lt;- sum(dev[i,l:na[i]])</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                | <- sum(resdev[])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | -              | <pre>‡ treatment effect is zero for reference treatment</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |                | nt effects from Class - fixed class effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IOL        | (k in          | $2:nt) \{ d[k] \le m[D[k]] \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

PTLB Appendices I & J Network meta-analysis of tocolytics

2

2

2

2

1

2

2

2

13

5

5

NA

NA

NA

NA

4 4

1

```
m[1] < - 0
for (k in 2:nc) { m[k] ~ dnorm(0, .0001) } # priors for mean class effect
# all pairwise ORs
for (c in 1:(nt-1)) {
    for (k in (c+1):nt)
        lor[c,k] \leq d[k] - d[c]
        OR[c,k] <- exp(lor[c,k])
      }
  3
# select treatments to be used for ranking and economic analysis
for(k in 1:9) { dR[k] <- d[k] }</pre>
# not treatment 10
for(k in 11:13) { dR[k-1] <- d[k] }
# not treatment 14
# ranking on relative scale
for (k in 1:ntR) {
     rk[k]<- (ntR+1)-rank(dR[],k)
                                        # events are "good"
                                        # events are "bad"
    rk[k] \leq - rank(dR[],k)
    best[k] <- equals(rk[k],1)</pre>
                                       # rank=1 is best
#calculate probability that treat k is h-th best
    for (h in 1:nt) { prob[h,k] <- equals(rk[k],h) }
# Provide estimates of treatment effects T[k] on the natural scale
# Given a Mean Effect, meanA, for 'standard' treatment A,
# with precision (1/variance) precA
A ~ dnorm(meanA,precA)
for (k in l:ntR) { logit(T[k]) <- A + dR[k] }
# all pairwise ORs for classes
for (c in 1: (nc-1)) {
    for (k in (c+1):nc) {
        lorClass[c,k] <- m[k] - m[c]</pre>
        ORClass[c,k] <- exp(m[k] - m[c])
    }
 -1
# rank all classes except last
for (k in 1:nc-1) {
     rkClass[k] <- (nc+1) -rank(m[],k)</pre>
                                               # events are "good"
    rkClass[k] <- rank(m[1:(nc-1)],k)
                                                       # events are "bad"
    bestClass[k] <- equals(rkClass[k],1)  # rank=1 is best</pre>
# prob class k is h-th best, prob[l,k]=best[k]
for (h in l:nc-1) { probClass[h,k] <- equals(rkClass[k],h) }</pre>
    3
                                     # *** PROGRAM ENDS
}
Data
```

# ns= number of studies; nt=number of treatments; nc=number of classes; D=index of classes # ntR = number of treat for ranking list(ns=29, nt=14, nc=8, meanA=-2.814, precA=0.9861, ntR=12, D=c(1, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 6, 7, 8)) na[] t[,1] n[,1] n[,2] n[,3] #Study Year t[,2] t[,3] r[,1] r[,2] r[,3] #Cotton 1984 3 16 19 119 103 2 2 5 11 14 11 10 95 #Klauser 2012 3 13 13 5 7 4 56 61 58 #Goodwin ŏ ŇA 20 #Panter 1999 2 NA 19 NA 2 1 1 2 57 89 NA #Cox 1 NA 4 4 NA 78 1990 2 NA 4 2 NA 55 56 NA #Leveno 1986 2 7 NA 31 21 NA 391 380 NA #CPLIG 1992 1 2 16 2 12 NA NA 79 74 NA #Smith 2007 1 1 NA 19 246 243

4

6

4

NA

NA

NA

NA

49

14

47

52

18

50

NA

NA

NA

1996

#Romero 2000 #Morales 1993 #Parilla 1997

#Morales 1989

| 2<br>2<br>2   | 2<br>2<br>3 | 7<br>10<br>5 | NA<br>NA<br>NA | 3 2     | 2<br>0<br>0 | NA<br>NA<br>NA | 25<br>30<br>45 | 20<br>30<br>43 | NA<br>NA | #Besinger 1991<br>#Kurki 1991<br>#Schorr 1998  |
|---------------|-------------|--------------|----------------|---------|-------------|----------------|----------------|----------------|----------|------------------------------------------------|
| 2 2           | 4<br>5      | 5<br>11      | NA<br>NA       | 6<br>3  | 7           | NA             | 92<br>106      | 102<br>110     | NA<br>NA | #McWhorter 2004<br>#Lyell 2007                 |
| 22            | 5           | 14<br>12     | NA             | 8       | 22          | NA             | 55<br>116      | 51<br>120      | NA<br>NA | #Mittendorf MAGnet2002<br>#Bisits 2004         |
| 2             | 7           | 7            | NA             | 15<br>1 | 4           | NA             | 111<br>35      | 111<br>35      | NA<br>NA | #Holleboom 1996<br>#Maitra 2007                |
| 2<br>2        | 7           | 11<br>11     | NA<br>NA       | 7<br>28 | 4<br>17     | NA<br>NA       | 43<br>90       | 48<br>95       | NA<br>NA | #Van de Water 2008<br>#Papatsonis (1997/2000)  |
| 2             | 7           | 13<br>13     | NA<br>NA       | 1       | 3           | NA             | 63<br>107      | 63<br>107      | NA<br>NA | #Shim 2006<br>#Moutquin 2000                   |
| 2             | 8           | 13           | NA             | 2       | 4           | NA             | 99<br>16       | 109<br>20      | NA       | #French/Australian 2001<br>#Laohapojanart 2007 |
| 2<br>2<br>END | 9<br>11     | 13<br>11     | NA<br>NA       | 4<br>0  | 3<br>4      | NA<br>NA       | 105<br>48      | 101<br>52      | NA<br>NA | #European 2001<br>#Nassar 2009                 |

#### FIXED CLASS, RANDOM TREATMENT EFFECTS

#### Tocolytics: outcome is RDS Class model - treatments exchangeable within class, within-class variance is zero (fixed class effects) \_\_\_\_\_ 6 August 2014 Treatments (code, Class, Treat) Placebo 1 1 2 Celecoxib 3 2 Indomethacin 4 2 Ketorolac 5 2 Rofecoxib 6 2 Sulindac 7 3 (TREATMENT IS ITS OWN CLASS) Magnesium Sulfate 8 4 Fenoterol 9 4 Hexoprenaline 10 4 Ritodrine 11 4 Salbutamol 12 4 Terbutaline 13 4 (NOT TO BE USED FOR RANKING) Nylidrin 5 14 Nicardipine 15 5 Nifedipine 6 16 Atosiban 17 6 Barisiban 1.0 (NOT TO BE USED FOR RANKING) Barusiban 0.3 18 6 (NOT TO BE USED FOR RANKING) 19 6 Barusiban 10 (NOT TO BE USED FOR RANKING) Barusiban 3.0 20 6 (NOT TO BE USED FOR RANKING) 21 7 Ethanol (NOT TO BE USED FOR RANKING) 22 8 Tocolysis (NOT TO BE USED FOR RANKING) Class "Nitrates" not compared Classes 7 and 8 not to be used for ranking \_\_\_\_\_ # Binomial likelihood, logit link # Random effects model for multi-arm trials # class effects - zero within-class variance # \*\*\* PROGRAM STARTS model{ for(i in 1:ns) { # LOOP THROUGH STUDIES w[i,1] <- 0 # adjustment for multi-arm trials is zero for control arm delta[i,1] <- 0 ‡ treatment effect is zero for control arm # vague priors for all trial baselines mu[i] ~ dnorm(0,.0001) # LOOP THROUGH ARMS for (k in l:na[i]) { r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood logit(p[i,k]) <- mu[i] + delta[i,k] # model for linear predictor</pre> rhat[i,k] <- p[i,k] \* n[i,k] # expected value of the numerators</pre> #Deviance contribution dev[i,k] <- 2 \* (r[i,k] \* (log(r[i,k])-log(rhat[i,k]))</pre> (n[i,k]-r[i,k]) \* (log(n[i,k]-r[i,k]) - log(n[i,k]rhat[i,k]))) # summed residual deviance contribution for this trial resdev[i] <- sum(dev[i,l:na[i]])</pre> # LOOP THROUGH ARMS for (k in 2:na[i]) { # trial-specific LOR distributions delta[i,k] ~ dnorm(md[i,k],taud[i,k]) # mean of LOR distributions (with multi-arm trial correction)

```
md[i,k] <- d[t[i,k]] - d[t[i,1]] + sw[i,k]
# precision of LOR distributions (with multi-arm trial correction)
        taud[i,k] <- tau *2*(k-1)/k
# adjustment for multi-arm RCTs
        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])
# cumulative adjustment for multi-arm trials
        sw[i,k] <- sum(w[i,1:k-1])/(k-1)
      }
  3
totresdev <- sum(resdev[])</pre>
                                        # Total Residual Deviance
              # treatment effect is zero for reference treatment
d[11<-0
# treatment effects from Class - fixed class effects
for (k in 2:nt) \{ d[k] \le m[D[k]] \}
sd ~ dunif(0,5)
                    # vague prior for between-trial SD
tau <- pow(sd,-2) # between-trial precision = (1/between-trial variance)</pre>
m[1] <- 0
for (k in 2:nc) { m[k] ~ dnorm(0, .0001) } # priors for mean class effect
# all pairwise ORs
for (c in 1: (nt-1)) {
    for (k in (c+1):nt) {
       lor[c,k]<- d[k]-d[c]
        OR[c,k] <- exp(lor[c,k])
      }
  }
# select treatments to be used for ranking and economic analysis
for(k in 1:12) { dR[k] <- d[k] }</pre>
# not treatment 13
for(k in 14:16) { dR[k-1] <- d[k] }
# not treatments 17-22
# ranking on relative scale
for (k in 1:ntR) {
±.
    rk[k] \leq (ntR+1) - rank(dR[], k)
                                        # events are "good"
    rk[k] \leq - rank(dR[],k)
                                        # events are "bad"
    best[k] <- equals(rk[k],1)</pre>
                                      # rank=1 is best
#calculate probability that treat k is h-th best
    for (h in 1:nt) { prob[h,k] <- equals(rk[k],h) }</pre>
# Provide estimates of treatment effects T[k] on the natural scale
# Given a Mean Effect, meanA, for 'standard' treatment A,
# with precision (1/variance) precA
A ~ dnorm(meanA,precA)
for (k in 1:ntR) { logit(T[k]) <- A + dR[k] }</pre>
# all pairwise ORs for classes
for (c in 1: (nc-1)) {
    for (k in (c+1):nc) {
        lorClass[c,k] <- m[k] - m[c]</pre>
        ORClass[c,k] <- exp(m[k] - m[c])
    }
# rank all classes except last two
for (k in 1:nc-2) {
    rkClass[k] <- rank(m[1:(nc-2)],k)
                                              # events are "bad"
    bestClass[k] <= rank(m[1:(nc-2)],k)  # events are "back
bestClass[k] <= equals(rkClass[k],1)  # rank=1 is best</pre>
# prob class k is h-th best, prob[1,k]=best[k]
    for (h in 1:nc-2) { probClass[h,k] <- equals(rkClass[k],h) }</pre>
    3
                                        # *** PROGRAM ENDS
}
```

# ns= number of studies; nt=number of treatments; nc=number of classes; D=index of classes # ntR = number of treat for ranking list(ns=47, nt=22, nc=8, meanA=-1.75, precA=0.555, ntR=15, D=c(1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 7, 8))

|      | 47.41          | # 21           | # 21           | +1.41      | 47.51 -F.11           | -1.21      | -021  | -1.41 | -1.51 | of 11 | n[,2] |
|------|----------------|----------------|----------------|------------|-----------------------|------------|-------|-------|-------|-------|-------|
| na[] | t[,1]<br>n[,3] | t[.2]<br>n[.4] | ť[,3]<br>n[,5] | t[,4]<br># | t[,5] r[,1]<br>Study  | r[,2]      | r[,3] | r[.4] | r[,5] | n[,1] |       |
| 5    | 1<br>32        | 17<br>36       | 18<br>32       | 19<br>#    | 20 1<br>Thornton 2009 | 2          | 0     | 7     | 2     | 32    | 31    |
| 4    | 1<br>41        | 10<br>46       | 10<br>NA       | 10<br>#    | NA 1<br>Larsen 1980   | 4          | 5     | 2     | NA    | 45    | 44    |
| 3    | 1              | 7<br>NA        | 12<br>NA       | ŇA<br>#    | NA 6<br>Cotton 1984   | 6          | 4     | NA    | NA    | 19    | 16    |
| 3    | 3              | 7              | 18             | NA         | NA 41                 | 39         | 34    | NA    | NA    | 103   | 95    |
| 3    | 119<br>10      | NA<br>16       | NA<br>16       | #<br>NA    | Klauser 2012<br>NA 5  | 8          | 7     | 3     | 2     | 56    | 61    |
| 2    | 58<br>1        | 62<br>3        | 57<br>NA       | #<br>NA    | Goodwin 1996<br>NA 2  | 3          | NA    | NA    | NA    | 15    | 16    |
| 2    | NA<br>1        | NA<br>3        | NA<br>NA       | #<br>NA    | Niebyl 1980<br>NA 2   | 4          | NA    | NA    | NA    | 20    | 19    |
| 2    | NA<br>1        | NA<br>3        | NA<br>NA       | #<br>NA    | Panter 1999<br>NA 4   | 1          | NA    | NA    | NA    | 18    | 18    |
| 2    | NA<br>1        | NA<br>7        | NA<br>NA       | #<br>NA    | Zuckerman<br>NA 15    | 1984<br>15 | NA    | NA    | NA    | 89    | 78    |
|      | NA             | ŇA             | NA             | #          | Cox 1990              |            | 100   | 00    | 00    | 08    |       |
| 2    | 1<br>NA        | 10<br>NA       | NA<br>NA       | NA<br>#    | NA 3<br>Spellacy 1979 | 0          | NA    | NA    | NA    | 15    | 14    |
| 2    | 1<br>NA        | 10<br>NA       | NA             | NA<br>#    | NA 6                  | 3          | NA    | NA    | NA    | 50    | 49    |
| 2    | 1              | 10             | NA             | NA         | NA 24                 | 20         | NA    | NA    | NA    | 122   | 187   |
| 2    | NA<br>1        | NA<br>10       | NA<br>NA       | #<br>NA    | Merkatz 1980<br>NA 24 | 25         | NA    | NA    | NA    | 55    | 56    |
| 2    | NA<br>1        | NA<br>10       | NA<br>NA       | #<br>NA    | Leveno 1986<br>NA 90  | 69         | NA    | NA    | NA    | 391   | 380   |
| 2    | NA<br>1        | NA<br>16       | NA<br>NA       | #<br>NA    | CPLIG 1992<br>NA 0    | 3          | NA    | NA    | NA    | 57    | 57    |
| 2    | NA<br>1        | NA<br>16       | NA<br>NA       | #<br>NA    | Goodwin 1994<br>NA 54 | 64         | NA    | NA    | NA    | 292   | 283   |
|      | NA             | NA             | NA             | #          | Romero 2000           |            |       |       |       |       |       |
| 2    | 1<br>NA        | 22<br>NA       | NA<br>NA       | NA<br>#    | NA 22<br>Weiner 1988  | 15         | NA    | NA    | NA    | 42    | 33    |
| 2    | 2<br>NA        | 3<br>NA        | NA<br>NA       | NA<br>#    | NA 1<br>Stika 2002    | 1          | NA    | NA    | NA    | 12    | 12    |
| 2    | 3<br>NA        | 6<br>NA        | NA             | NA<br>#    | NA 1                  | 0          | NA    | NA    | NA    | 10    | 10    |
| 2    | 3              | 7              | NA<br>NA       | NA         | Rasanen 1995<br>NA 5  | 5          | NA    | NA    | NA    | 49    | 52    |
| 2    | NA<br>3        | NA<br>7        | NA<br>NA       | #<br>NA    | Morales 1993<br>NA 5  | 5          | NA    | NA    | NA    | 14    | 18    |
| 2    | NA<br>3        | NA<br>10       | NA<br>NA       | #<br>NA    | Parilla 1997<br>NA 8  | 12         | NA    | NA    | NA    | 47    | 50    |
|      | NA             | NA             | NA             | #          | Morales 1989          |            |       |       |       |       |       |
| 2    | 3<br>NA        | 13<br>NA       | NA<br>NA       | NA<br>#    | NA 3<br>Kurki 1991    | 2          | NA    | NA    | NA    | 30    | 30    |
| 2    | 4<br>NA        | 7<br>NA        | NA<br>NA       | NA<br>#    | NA 2<br>Schorr 1998   | 4          | NA    | NA    | NA    | 45    | 43    |
| 2    | 5              | 7              | NA             | NA         | NA 18                 | 19         | NA    | NA    | NA    | 92    | 102   |
| 2    | NA<br>7        | NA<br>12       | NA<br>NA       | #<br>NA    | McWhorter<br>NA 3     | 2004<br>2  | NA    | NA    | NA    | 15    | 16    |
| 2    | NA<br>7        | NA<br>15       | NA<br>NA       | #<br>NA    | Miller 1982<br>NA 4   | 5          | NA    | NA    | NA    | 40    | 50    |
|      | NA             | NA             | NA             | #          | Floyd 1995            |            |       |       |       |       |       |
| 2    | 7<br>NA        | 15<br>NA       | NA<br>NA       | NA<br>#    | NA 24<br>Lyell 2007   | 21         | NA    | NA    | NA    | 106   | 110   |
| 2    | 8<br>NA        | 10<br>NA       | NA<br>NA       | NA<br>#    | NA 4<br>Essed 1978    | 2          | NA    | NA    | NA    | 48    | 48    |
| 2    | 9              | 11             | NA             | NA         | NA 7                  | 4          | NA    | NA    | NA    | 70    | 70    |
| 2    | NA<br>10       | NA<br>10       | NA<br>NA       | #<br>NA    | Gummerus<br>NA 17     | 1983<br>12 | NA    | NA    | NA    | 111   | 111   |
| 2    | NA<br>10       | NA<br>12       | NA<br>NA       | #<br>NA    | Holleboom<br>NA 2     | 1996<br>5  | NA    | NA    | NA    | 31    | 26    |
|      | NA             | NA             | NA             | #          | Caritis 1984          |            |       |       |       |       |       |
| 2    | 10<br>NA       | 15<br>NA       | NA<br>NA       | NA<br>#    | NA 1<br>Maitra 2007   | 0          | NA    | NA    | NA    | 35    | 35    |
| 2    | 10<br>NA       | 15<br>NA       | NA<br>NA       | NA<br>#    | NA 3<br>Cararach 2006 | 2          | NA    | NA    | NA    | 39    | 39    |

PTLB Appendices I & J Network meta-analysis of tocolytics

| 2   | 10 | 15 | NA | NA | NA        | 3         | 3      | NA   | NA | NA | 43  | 48  |
|-----|----|----|----|----|-----------|-----------|--------|------|----|----|-----|-----|
|     | NA | NA | NA | #  | Van de W  | /ater     | 2008   |      |    |    |     |     |
| 2   | 10 | 15 | NA | NA | NA        | 4         | 4      | NA   | NA | NA | 28  | 30  |
|     | NA | NA | NA | #  | Al-Qattan | 2000      |        |      |    |    |     |     |
| 2   | 10 | 15 | NA | NA | NA        | 31        | 23     | NA   | NA | NA | 90  | 95  |
|     | NA | NA | NA | #  | Papatson  | is (1997  | (2000) | 1997 |    |    |     |     |
| 2   | 10 | 16 | NA | NA | NA        | 0`        | 3 ΄    | NA   | NA | NA | 63  | 63  |
|     | NA | NA | NA | #  | Shim      | 2006      |        |      |    |    |     |     |
| 2   | 10 | 16 | NA | NA | NA        | 1         | 0      | NA   | NA | NA | 22  | 23  |
|     | NA | NA | NA | #  | Lin       | 2009      |        |      |    |    |     |     |
| 2   | 10 | 16 | NA | NA | NA        | 14        | 15     | NA   | NA | NA | 107 | 107 |
| -   | NA | NA | NA | #  | Moutquin  | 2000      |        |      |    |    |     |     |
| 2   | 10 | 21 | NA | NA | NA        | 6         | 15     | NA   | NA | NA | 73  | 76  |
|     | NA | NA | NA | #  | Lauersen  | 1977      |        |      |    |    |     |     |
| 2   | 11 | 14 | NA | NA | NA        | 3         | 5      | NA   | NA | NA | 21  | 24  |
|     | NA | NA | NA | #  | Trabelsi  | 2008      |        |      |    |    |     |     |
| 2   | 11 | 16 | NA | ŇA | NA        | 10        | 14     | NA   | NA | NA | 99  | 109 |
|     | NA | NA | NA | #  | French/A  | ustralian | 2001   |      |    |    |     |     |
| 2   | 12 | 15 | NA | ŇA | NA        | 2         | 2      | NA   | NA | NA | 16  | 20  |
|     | NA | NA | NA | #  | Laohapoj  | anart     | 2007   |      |    |    |     |     |
| 2   | 12 | 16 | NA | ŇA | NA        | 28        | 17     | NA   | NA | NA | 105 | 101 |
|     | NA | NA | NA | #  | European  |           | 2001   |      |    |    |     |     |
| 2   | 15 | 15 | NA | NA | NA        | 6         | 10     | NA   | NA | NA | 48  | 52  |
| _   | NA | NA | NA | #  | Nassar    | 2009      |        |      |    |    |     |     |
| 2   | 15 | 16 | NA | NA | NA        | 10        | 5      | NA   | NA | NA | 23  | 25  |
| -   | NA | NA | NA | #  | Al-Omari  |           | -      |      |    |    |     |     |
| END |    |    |    |    |           |           |        |      |    |    |     |     |
|     |    |    |    |    |           |           |        |      |    |    |     |     |

### SAMPLE WINBUGS CODE FOR EGA

#### FIXED CLASS, RANDOM TREATMENT EFFECTS

### Tocolytics: outcome is EGA at delivery Class model - treatments exchangeable within class, within-class variance is zero (fixed class effects)

\_\_\_\_\_

1 August 2014

#### Treatments (code, Class, Treat)

| 1  | 1 | Placebo                                        |
|----|---|------------------------------------------------|
| 2  | 2 | Celecoxib                                      |
| 3  | 2 | Indomethacin                                   |
| 4  | 2 | Ketorolac                                      |
| 5  | 2 | Nimeluside                                     |
| 6  | 2 | Rofecoxib                                      |
| 7  | 2 | Sulindac                                       |
| 3  | 3 | Magnesium Sulfate (TREATMENT IS ITS OWN CLASS) |
| 9  | 4 | Fenoterol                                      |
| 10 | 4 | Isoxsuprine                                    |
| 11 | 4 | Ritodrine                                      |
| 12 | 4 | Salbutamol                                     |
| 13 | 4 | Terbutaline                                    |
| 14 | 4 | Nylidrin (NOT TO BE USED FOR RANKING)          |
| 15 | 5 | Nicardipine                                    |
| 16 | 5 | Nifedipine                                     |
| 17 | 6 | Nitric Oxide                                   |
| 18 | 7 | Atosiban                                       |
| 19 | 8 | Tocolysis (NOT TO BE USED FOR RANKING)         |

Class "Alcohol/ethanol" not compared Class 8 not to be used for ranking

```
# Normal likelihood, identity link
# Random effects model for multi-arm trials
# class effects - zero within-class variance
model{
                                     # *** PROGRAM STARTS
for(i in l:ns){
                                         LOOP THROUGH STUDIES
                                     #
                  # adjustment for multi-arm trials is zero for control
   w[i,1] <- 0
arm
    delta[i,1] <- 0
                               ‡ treatment effect is zero for control arm
                            # vague priors for all trial baselines
# Joop Type
    mu[i] ~ dnorm(0,.0001)
                                     # LOOP THROUGH ARMS
    for (k in 1:na[i]) {
        var[i,k] <- pow(se[i,k],2) # calculate variances</pre>
       prec[i,k] <- l/var[i,k]</pre>
                                    # set precisions
       y[i,k] ~ dnorm(theta[i,k],prec[i,k]) # binomial likelihood
        theta[i,k] <- mu[i] + delta[i,k] # model for linear predictor</pre>
#Deviance contribution
        dev[i,k] <- (y[i,k]-theta[i,k])*(y[i,k]-theta[i,k])*prec[i,k]</pre>
      1
# summed residual deviance contribution for this trial
    resdev[i] <- sum(dev[i,l:na[i]])</pre>
                                      # LOOP THROUGH ARMS
    for (k in 2:na[i]) {
# trial-specific LOR distributions
       delta[i,k] ~ dnorm(md[i,k],taud[i,k])
# mean of LOR distributions, with multi-arm trial correction
```

```
md[i,k] <- d[t[i,k]] - d[t[i,1]] + sw[i,k]
# precision of LOR distributions (with multi-arm trial correction)
       taud[i,k] <- tau *2*(k-1)/k
# adjustment, multi-arm RCTs
       w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])
# cumulative adjustment for multi-arm trials
       sw[i,k] <- sum(w[i,1:k-1])/(k-1)</pre>
      }
 - 1
totresdev <- sum(resdev[])</pre>
                                        #Total Residual Deviance
d[1]<-0
             # treatment effect is zero for control arm
# treatment effects from Class - fixed class effects
for (k \text{ in } 2:nt) \{ d[k] \leq m[D[k]] \}
sd ~ dunif(0,20)
                   # vague prior for between-trial SD
tau <- pow(sd,-2)  # between-trial precision = (1/between-trial variance)
m[1] <- 0
for (k in 2:nc) { m[k] ~ dnorm(0, .0001) } # priors for mean class effect
# all pairwise differencess
for (c in 1: (nt-1)) {
   for (k in (c+1):nt) { diff[c,k]<- d[k]-d[c] }
  -}
# select treatments to be used for ranking
for(k in 1:13) { dR[k] <- d[k] }
# not treatment 14
for(k in 15:18) { dR[k-1] <- d[k] }
# not treatment 19
# ranking on relative scale
for (k in 1:ntR) {
    rk[k]<- (ntR+1)-rank(dR[],k)
                                      # larger values are "good"
    rk[k] < - rank(dR[],k)
                                       # larger values are "bad"
                                  # rank=1 is best
   best[k] <- equals(rk[k],1)</pre>
#calculate probability that treat k is h-th best
   for (h in 1:nt) { prob[h,k] <- equals(rk[k],h) }
 - 1
# all pairwise differences for classes
for (c in 1: (nc-1)) {
    for (k in (c+1):nc) { diffClass[c,k] <- m[k] - m[c] }
 -1
# rank all classes except 8
for (k in 1:nc-1) {
    rkClass[k] <- nc-rank(m[1:(nc-1)],k) # larger values are "good"</pre>
   bestClass[k] <- equals(rkClass[k],1)  # rank=1 is best</pre>
# prob class k is h-th best, prob[1,k]=best[k]
    for (h in 1:nc-1) { probClass[h,k] <- equals(rkClass[k],h) }</pre>
                                        # *** PROGRAM ENDS
}
```

#### Data

# ns= number of studies; nt=number of treatments; nc=number of classes; D=index of classes
# ntR = number of treat for ranking
list(ns=49, nt=19, nc=8, ntR=17,
D=c(1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 6, 7, 8))

| na[]<br>3 | t[.1]<br>1  | t[,2]<br>8            | t[,3]<br>13 | y[.1]<br>32 | y[.2]<br>31 | y[.3]<br>33.1 | se[,1] se[,2]<br>0.780013495 | se[,3]<br>0.475 | #<br>0.75707 | Study<br>1922 | Year<br># |
|-----------|-------------|-----------------------|-------------|-------------|-------------|---------------|------------------------------|-----------------|--------------|---------------|-----------|
| 3         | Cotton<br>3 | 1984<br>5             | 7           | 37.2        | 38.4        | 38.1          | 0.632455532                  | 0.158113        | 3883         | 0.31622       | 7766      |
| 3         | #<br>3<br># | Sawdy<br>8<br>Klauser |             | 31.8        | 31.2        | 31.8          | 0.450287265                  | 0.423014        | 4393         | 0.44126       | 1304      |

| 2 | 1<br>Zuckerma   | 3                 | NA<br>1984 | 31.2          | 36.4  | NA  | 0.164991 | 582      | 0.164991 | 582 | NA    | #     |
|---|-----------------|-------------------|------------|---------------|-------|-----|----------|----------|----------|-----|-------|-------|
| 2 | 1<br>Niebyl     | 3<br>1980         | NA         | 33            | 35.2  | NA  | 0.309838 | 668      | 0.284018 | 779 | NA    | #     |
| 2 | 1               | 3                 | NA         | 29.1          | 29.1  | NA  | 1.107800 | 624      | 1.4      | NA  | #     |       |
| 2 | Panter<br>1     | 1999<br>8         | NA         | 33            | 33.8  | NA  | 0.055901 | 699      | 0.057353 | 933 | NA    | #     |
| 2 | Cox<br>1        | 1990<br>8         | NA         | 36.5          | 35.7  | NA  | 0.401663 | 209      | 0.367423 | 461 | NA    | #     |
| 2 | How<br>1        | 2006<br>10        | NA         | 32.9          | 38.7  | NA  | 0.242535 | 625      | 0.114707 | 867 | NA    | #     |
| 2 | Casapo<br>1     | 1977<br>11        | NA         | 33.4          | 34    | NA  | 0.095399 | 809      | 0.090610 | 304 | NA    | #     |
| 2 | CPLIG<br>1      | 1992<br>11        | NA         | 32.5          | 34.6  | NA  | 0.190125 | 067      | 0.226694 | 451 | NA    | #     |
| 2 | Merkatz<br>1    | 1980<br>11        | NA         | 32.6          | 32.8  | NA  | 0.291217 | 603      | 0.421856 | 567 | NA    | #     |
| 2 | Leveno<br>1     | 1986<br>11        | NA         | 36.3          | 37.2  | NA  | 0.296984 | 848      | 0.442857 | 143 | NA    | #     |
| 2 | Larsen<br>1     | 1986<br>17        | NA         | 34.1          | 35.2  | NA  | 0.742558 | 015      | 0.569613 | 43  | NA    | #     |
| 2 | Smith<br>1      | 2007<br>18        | NA         | 38.3          | 37.8  | NA  | 0.280624 | 304      | 0.467707 | 173 | NA    | #     |
| 2 | Goodwin<br>1    | 1994<br>19        | NA         | 30.1          | 31    | NA  | 0.509201 |          | 0.504825 |     | NA    | #     |
| 2 | Weiner<br>2     | 1988<br>3         | NA         | 35.7          | 35.7  | NA  | 1.068097 |          | 0.952627 |     | NA    | #     |
| 2 | Stika<br>2      | 2002<br>8         | NA         | 35.5          | 35.7  | NA  | 0.291217 |          | 0.402157 |     | NA    | #     |
|   | Borna           | 2007              |            |               |       |     |          |          |          |     |       | #     |
| 2 | 3<br>Rasanen    |                   | NA         | 39            | 39    | NA  | 0.807961 |          | 0.807961 |     | NA    | -     |
| 2 | 3<br>Parilla    | 8<br>1997         | NA         | 30.8          | 31.1  | NA  | 1.096965 |          | 1.241303 |     | NA    | #     |
| 2 | 3<br>Besinger   | 11<br>1991        | NA         | 35.5          | 33.8  | NA  | 0.620414 | 085      | 0.853242 | 183 | NA    | #     |
| 2 | 3<br>Kurki      | 14<br>1991        | NA         | 36.7          | 35.2  | NA  | 0.146059 | 349      | 0.146059 | 349 | NA    | #     |
| 2 | 3<br>Kashania   | 16<br>n           | NA<br>2011 | 35.2          | 34.1  | NA  | 0.352281 | 938      | 0.432049 | 38  | NA    | #     |
| 2 | 4<br>Schorr     | 8<br>1998         | NA         | 34.9          | 34.8  | NA  | 0.536656 | 315      | 0.655743 | 852 | NA    | #     |
| 2 | 6<br>McWhorte   | 8                 | NA<br>2004 | 35.3          | 34.7  | NA  | 0.331806 | 025      | 0.402287 | 04  | NA    | #     |
| 2 | 8<br>Suricham   | 13                | NA<br>2001 | 36.21         | 36.01 | NA  | 0.46     | 0.474976 | 691      | NA  | #     |       |
| 2 | 8               | 15<br>1999        | NA         | 35.5          | 35.6  | NA  | 0.396911 | 151      | 0.490076 | 972 | NA    | #     |
| 2 | 8               | 16                | NA         | 34.1          | 34.3  | NA  | 0.191502 | 0.176162 | 803      | NA  | #     |       |
| 2 | Taherian<br>8   | 16                | NA         | 35.2          | 34.5  | NA  | 0.484138 | 662      | 0.448358 | 831 | NA    | #     |
| 2 | Glock<br>8      | 1993<br>16        | NA         | 35.8          | 36    | NA  | 0.354474 | 504      | 0.31     | NA  | #     | Lyell |
| 2 | 2007            | 11                | NA         | 37.4          | 36.9  | NA  | 0.346410 | 162      | 0.404145 | 188 | NA    | #     |
| 2 | Essed<br>10     | 1978<br>11        | NA         | 35            | 35.6  | NA  | 0.547722 | 558      | 0.481995 | 851 | NA    | #     |
| 2 | Sirohiwal       | 16                | NA         | 33.46         | 34.98 | NA  | 0.394360 | 241      | 0.411889 | 7   | NA    | #     |
| 2 | Rayamaji<br>11  | 11                | 2003<br>NA | 35.7          | 35.4  | NA  | 0.308461 | 529      | 0.31     | NA  | #     |       |
| 2 | Holleboor<br>11 | m<br>16           | 1996<br>NA | 29.5          | 30.2  | NA  | 0.434659 | 144      | 0.474692 | 883 | NA    | #     |
| 2 | Al-Qattan<br>11 | 2000<br>16        | NA         | 36.1          | 36.2  | NA  | 0.384307 | 569      | 0.384307 | 569 | NA    | #     |
| 2 | Cararach<br>11  | 2006<br>16        | NA         | 32.1          | 33.4  | NA  | 0.464233 | 584      | 0.461690 | 258 | NA    | #     |
| 2 | Papatson<br>11  | is (1997/2)<br>16 | 000)<br>NA | 1997<br>34.07 | 34.71 | NA  | 0.794197 |          | 0.495710 |     | NA    | #     |
| 2 | Fan<br>11       | 2003              | NA         | 31.8          | 33.3  | NA  | 0.656392 |          | 0.593295 |     | NA    | #     |
| 2 | Koks<br>11      | 1998<br>18        | NA         | 37.4          | 37.1  | NA  | 0.511681 |          | 0.521286 |     | NA    | #     |
| 2 | Lin             | 2009              | 194        | 31.4          | 37.1  | 144 | 0.011081 | 18       | 0.021280 | 030 | NPA . | *     |
|   |                 |                   |            |               |       |     |          |          |          |     |       |       |