Appendix G: GRADE tables and meta-analysis results

G.1 Recognition, referral and diagnosis

G.1.1 Signs, symptoms and risk factors of spondyloarthritis

Review questions 1 & 2

- What signs and symptoms should prompt a healthcare professional to think of spondyloarthritis?
- What risk factors should increase suspicion of spondyloarthritis?
- G.1.1.1 Inflammatory back pain

IBP (ASAS criteria)

Table 1: IBP (ASAS criteria) – GRADE table

Measure AXIAL	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality		
LR+			Serious ^b	No serious	Serious ^c	No serious		1.61 (1.42, 1.83)	LOW		
LR-	4 studies ^a	Cross-sectional	Serious ^b	Serious ^d	Serious ^c	Serious ^e	1,776	0.55 (0.42, 0.74)	VERY LOW		
PERIPHER	PERIPHERAL										

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
LR+			-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXI	AL AND PER	IPHERAL							
LR+			-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDE	NCE POOLE	D							
LR+			Serious ^b	No serious	Serious	No serious		1.61 (1.42, 1.83)	LOW
LR-	4 studies ^a	Cross-sectional	Serious ^b	Serious ^d	Serious ^c	Serious ^e	1,776	0.55 (0.42, 0.74)	VERY LOW

b

 >33.3% of weight in meta-analysis comes from studies with serious risk of bias
 >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) с

d 12 ≥ 50%

At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5). е

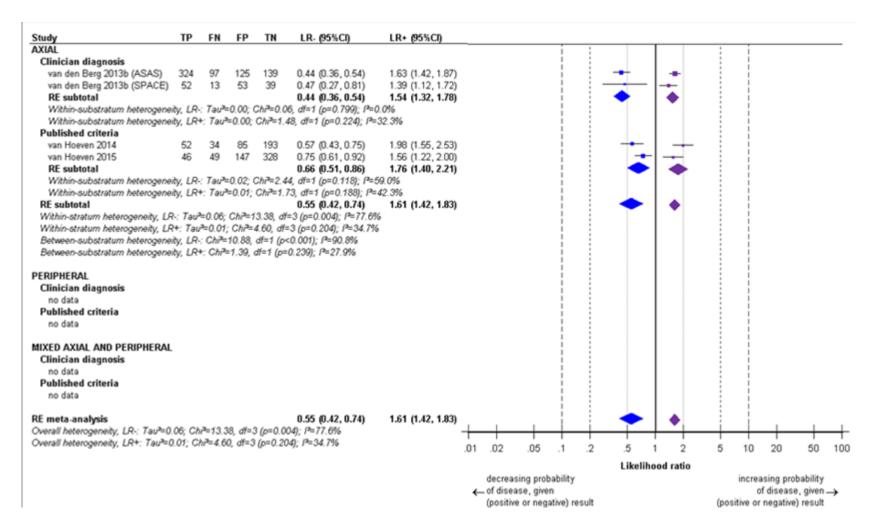


Figure 1 IBP (ASAS criteria) – forest plot: likelihood ratios

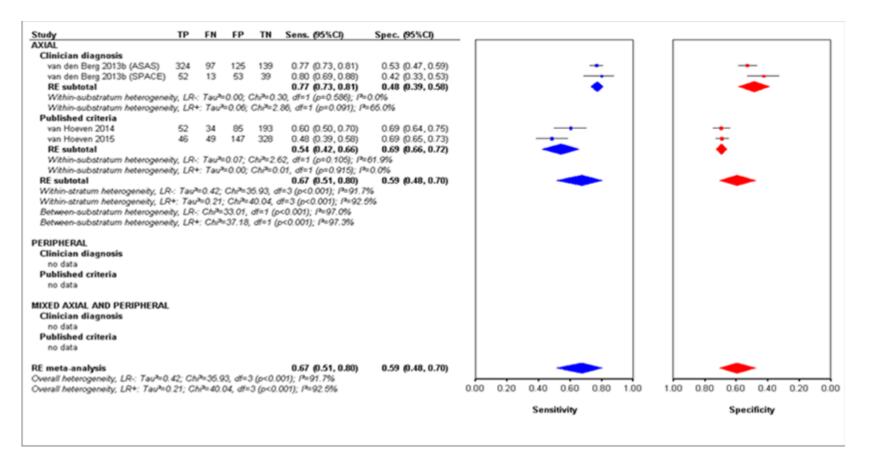


Figure 2: IBP (ASAS criteria) – forest plot: sensitivity and specificity

IBP (Berlin criteria) G.1.1.2

Table 2: IBP (Berlin criteria) – GRADE table

				ency	ess	цо			
Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	O studies?	Orean exetiment	Serious ^b	Serious ^c	Serious ^d	Serious ^e	4.040	1.43 (0.98, 2.11)	VERY LOW
LR-	2 studies ^a	Cross-sectional	Serious ^b	No serious	No serious	No serious	1,013	0.58 (0.50, 0.68)	MODERATE
PERIPHERAL			·			·			
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL	AND PERIPHERA	L							
LR+	0 studios		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	E POOLED								
LR+		studies ^a Cross-sectional	Serious ^b	Serious ^c	Serious ^d	Serious ^e	4.040	1.43 (0.98, 2.11)	VERY LOW
LR-	2 studies"		Serious ^b	No serious	No serious	No serious	1,013	0.58 (0.50, 0.68)	MODERATE

а

Rudwaleit 2009 (ASAS); van Hoeven 2014 >33.3% of weight in meta-analysis comes from studies with serious risk of bias b

с 12 ≥ 50%

>33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). d

е

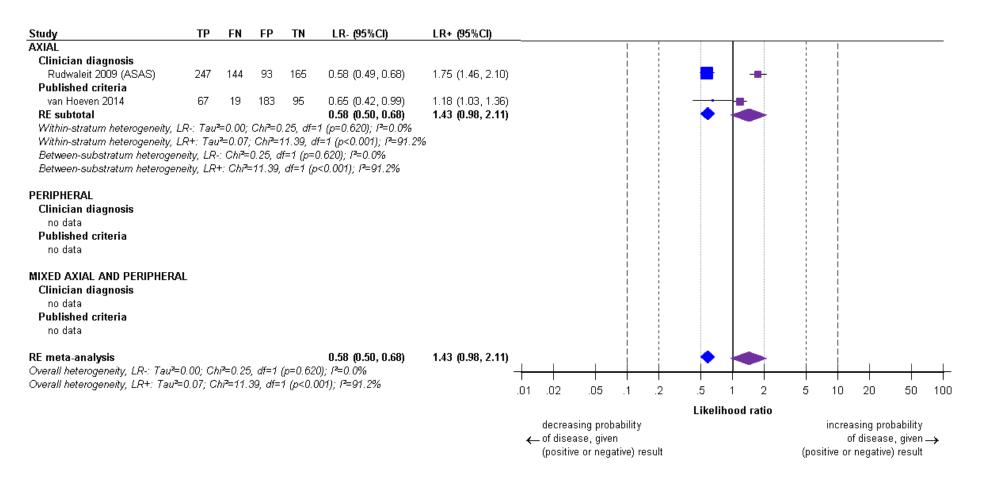


Figure 3: IBP (Berlin criteria) – forest plot: likelihood ratios

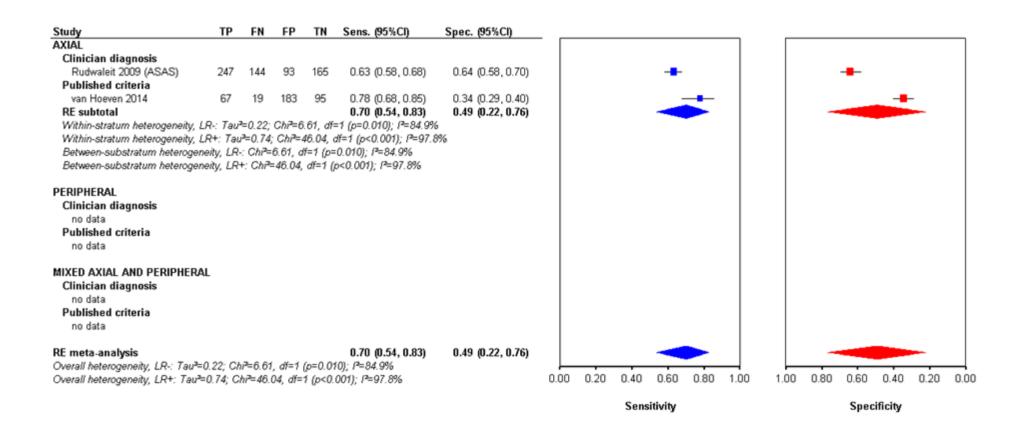


Figure 4: IBP (Berlin criteria) – forest plot: sensitivity and specificity

G.1.1.3 IBP (Calin criteria)

Table 3: IBP (Calin criteria) – GRADE table

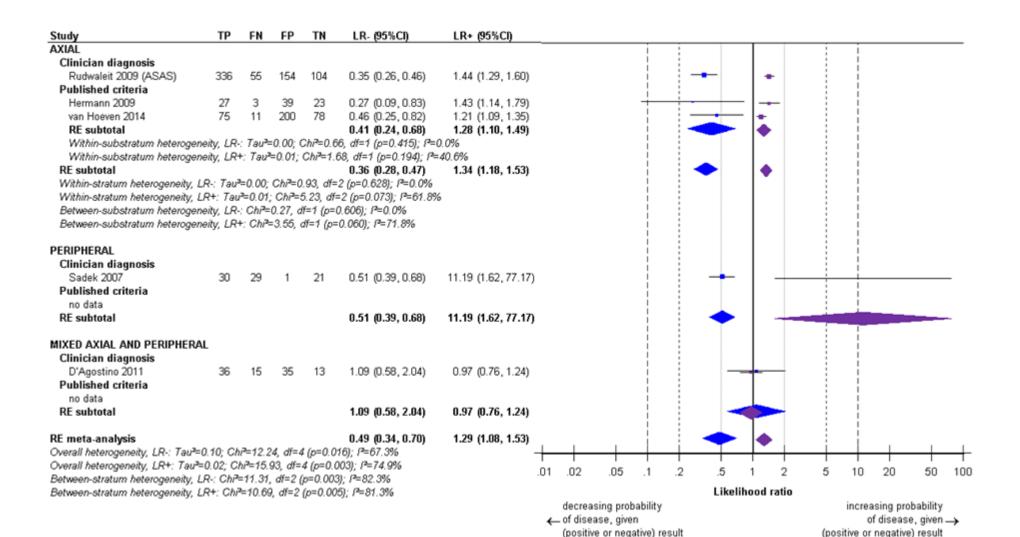
Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%CI)	Quality
AXIAL									
LR+	3 studies ^a	Cross sostional	Serious ^b	Serious ^c	Serious ^d	No serious	1,105	1.34 (1.18, 1.53)	VERY LOW
LR-	5 Studies	Cross-sectional	Serious ^b	No serious	Serious ^d	No serious	1,105	0.36 (0.28, 0.47)	LOW
PERIPHERAL									
LR+	1 at a d of	Cross-sectional	Serious	n/a	No serious	Serious ^f	81	11.19 (1.62, 77.17)	LOW
LR-	1 study ^e	Cross-sectional	Serious	n/a	No serious	Serious ^g	01	0.51 (0.39, 0.68)	LOW
MIXED AXIAL	AND PERIPHER	AL .							
LR+	1 - to she	Crease as at is not	No serious	n/a	No serious	No serious	00	0.97 (0.76, 1.24)	HIGH
LR-	1 study ^h	Cross-sectional	No serious	n/a	No serious	Serious ^g	99	1.09 (0.58, 2.04)	MODERATE
ALL EVIDENC	E POOLED								
LR+	E studio si	N	No serious	Serious ^c	Serious ^d	No serious	4.005	1.29 (1.08, 1.53)	LOW
LR-	5 studies ⁱ Cross-sectional	Cross-sectional	Serious ^b	Serious ^c	No serious	Serious ^g	1,285	0.49 (0.34, 0.70)	VERY LOW

^a Hermann 2009; Rudwaleit 2009 (ASAS); van Hoeven 2014

^b >33.3% of weight in meta-analysis comes from studies with serious risk of bias

° 12 ≥ 50%

^d >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis)


e Sadek 2007

^f At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2).

^g At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5).

^h D'Agostino 2011

ⁱ D'Agostino 2011; Hermann 2009; Rudwaleit 2009 (ASAS); Sadek 2007; van Hoeven 2014

9

Figure 5: IBP (Calin criteria) – forest plot: likelihood ratios

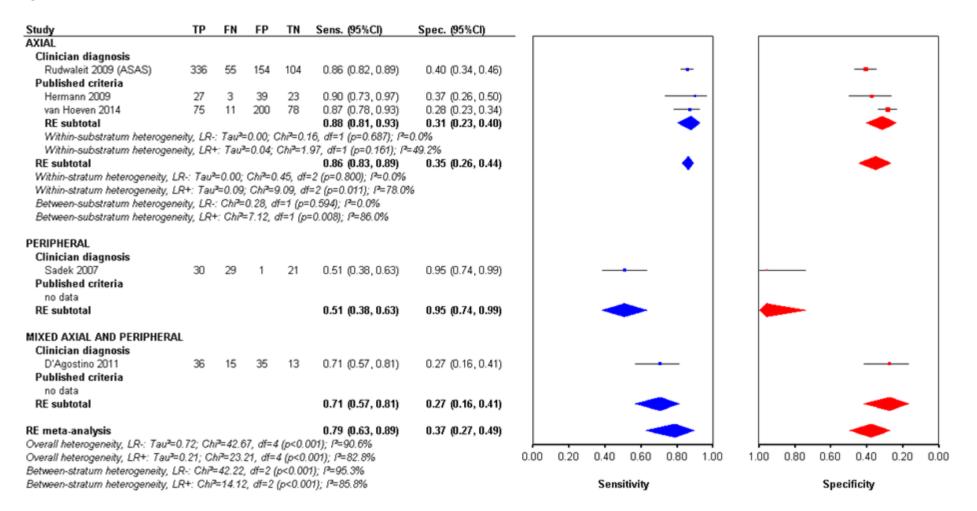


Figure 6: IBP (Calin criteria) – forest plot: sensitivity and specificity

IBP (ad hoc or unspecified definitions) G.1.1.4

Table 4: IBP (ad hoc or unspecified definitions) – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	3 studies ^a	Cross-sectional	Serious ^b	Serious ^c	No serious	No serious	2,107	1.25 (0.97, 1.60)	LOW
LR-	5 studies	CIUSS-Sectional	Serious ^b	Serious ^c	No serious	Serious ^d	2,107	0.51 (0.23, 1.13)	VERY LOW
PERIPHERAL									
LR+	1 atual of	Cross sastianal	No serious	n/a	No serious	Serious ^f	266	1.42 (0.69, 2.91)	MODERATE
LR-	1 study ^e	Cross-sectional	No serious	n/a	No serious	No serious	200	0.95 (0.87, 1.04)	HIGH
MIXED AXIAL	AND PERIPHERA	L							
LR+	O studie d	Orean eastional	No serious	Serious ^c	No serious	Serious ^f	000	1.47 (1.03, 2.08)	LOW
LR-	2 studies ^g	Cross-sectional	Serious ^b	Serious ^c	Serious ^h	Serious ^d	880	0.60 (0.44, 0.83)	VERY LOW
ALL EVIDENCE	POOLED								
LR+	0 studies/	S	Serious ^b	Serious ^c	No serious	No serious	0.050	1.31 (1.10, 1.57)	LOW
LR-	6 studies ⁱ Cross-sectional	Cross-sectional	Serious ^b	Serious ^c	No serious	Serious ^d	3,253	0.60 (0.42, 0.87)	VERY LOW

а Poddubnyy 2011; Rudwaleit 2009 (ASAS); Sieper 2013

>33.3% of weight in meta-analysis comes from studies with serious risk of bias b

с 12 ≥ 50%

d At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5).

е Rudwaleit 2011

f At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2).

g Althoff 2009; Tomero 2014

>33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) Althoff 2009; Poddubnyy 2011; Rudwaleit 2009 (ASAS); Rudwaleit 2011; Sieper 2013; Tomero 2014 h

i

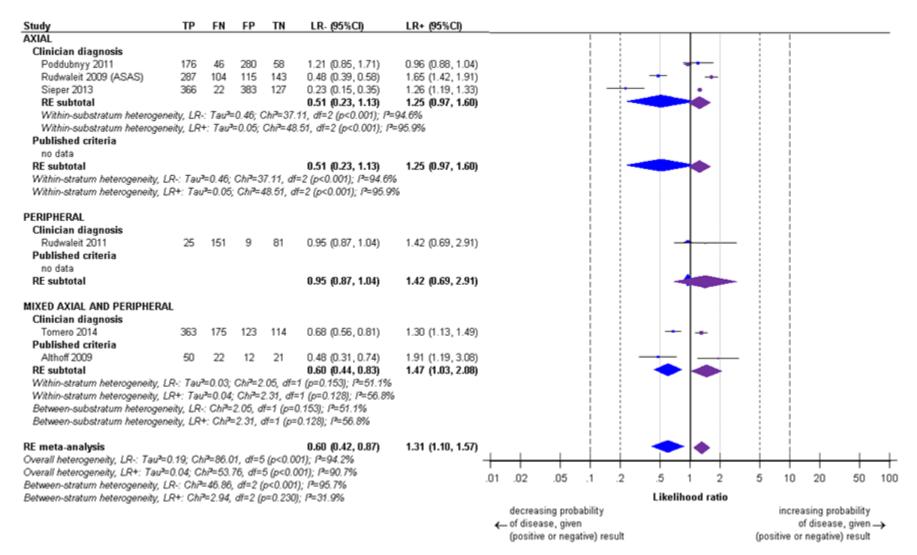
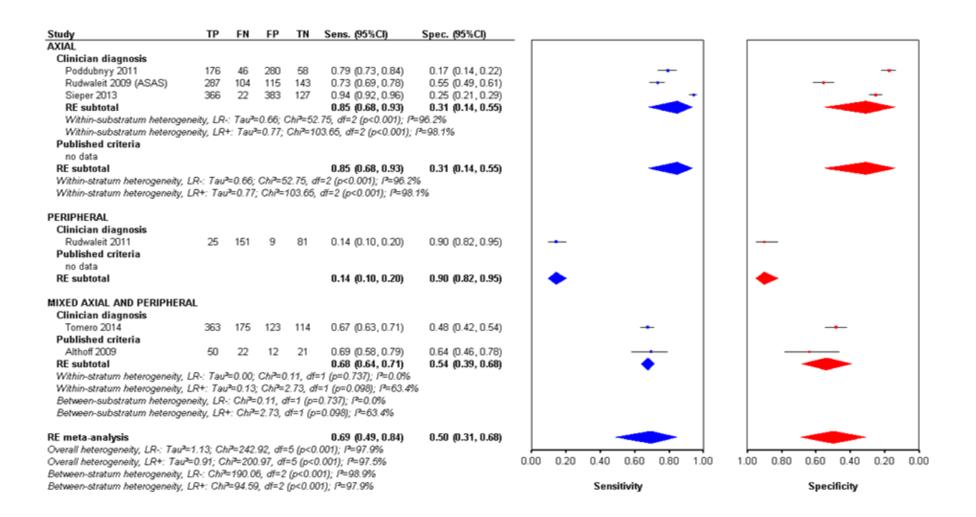



Figure 7: IBP (ad hoc or unspecified definitions) – forest plot: likelihood ratios

Figure 8: IBP (ad hoc or unspecified definitions) - forest plot: sensitivity and specificity

Back pain (in people with other presenting complaints) G.1.1.5

Table 5: Back pain (in people with other presenting complaints) – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
PERIPHERAL									
LR+	1 atudu/a	Cross-sectional	No serious	n/a	Serious ^b	Serious ^c	372	1.42 (0.88, 2.29)	LOW
LR-	1 study ^a	Cross-sectional	No serious	n/a	Serious ^b	No serious	312	0.89 (0.74, 1.07)	MODERATE
MIXED AXIAL	AND PERIPHERA	L							
LR+	2 studies ^d	Cross-sectional	No serious	Serious ^e	Serious ^f	No serious	876	0.98 (0.89, 1.09)	LOW
LR-	2 studies"	Cross-sectional	No serious	No serious	No serious	No serious	0/0	1.27 (0.95, 1.71)	HIGH
ALL EVIDENCI	E POOLED								
LR+	2 studies ^q		No serious	Serious ^e	Serious ^f	No serious	1 0 4 0	1.00 (0.89, 1.12)	LOW
LR-	3 studies ^g Cross-sectional	No serious	Serious ^e	Serious ^f	No serious	1,248	1.03 (0.73, 1.46)	LOW	

Kvien 1994 а

b

suboptimal reference standard (published classification criteria, rather than expert diagnosis) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). с

d Haroon 2015; Tomero 2014

12 ≥ 50% е

>33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) Haroon 2015; Kvien 1994; Tomero 2014 f

g

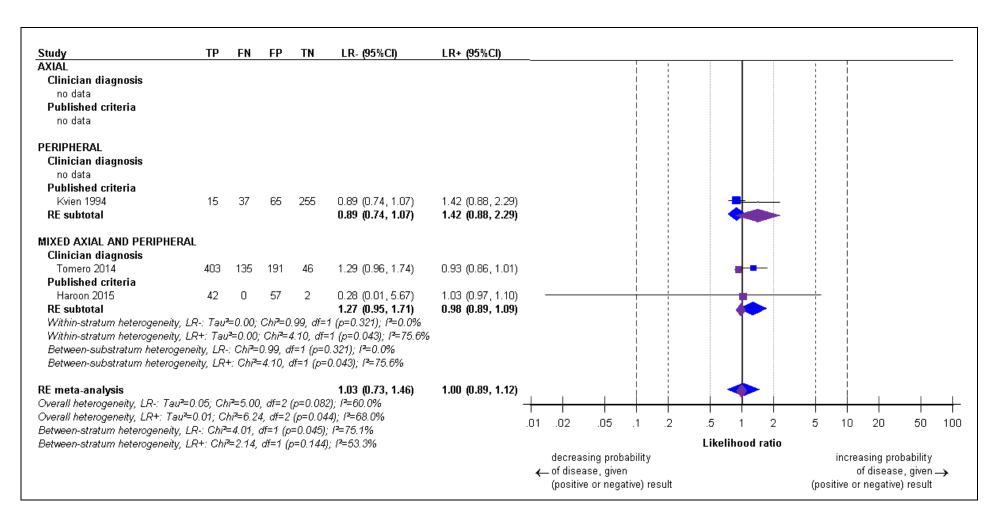
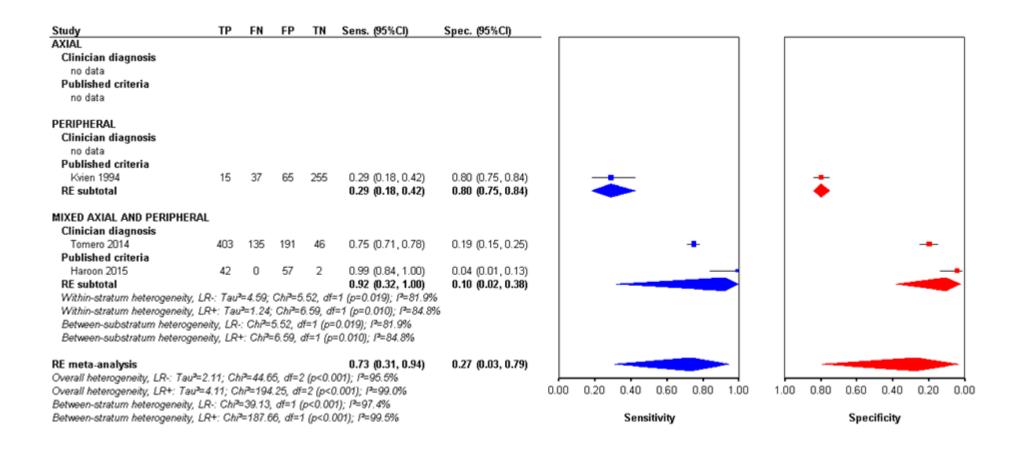



Figure 9 Back pain (in people with other presenting complaints) – forest plot: likelihood ratios

G.1.1.6 Age

Age <45 at onset of back pain

Table 6: Age <45 at onset of back pain – GRADE table</th>

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	0 studios		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
PERIPHERAL									
LR+	0 studios		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL AN	ID PERIPHERAL								
LR+	1 otudu ^a	Cross-sectional	Serious	n/a	Serious ^b	No serious	787	3.29 (2.74, 3.96)	LOW
LR-	1 study ^a	CI055-Sectional	Serious	n/a	Serious ^b	No serious	101	0.34 (0.24, 0.48)	LOW
ALL EVIDENCE	POOLED								
LR+	1 ctudu ^a	Cross soctional	Serious	n/a	Serious ^b	No serious	787	3.29 (2.74, 3.96)	LOW
LR-	1 study ^a	Cross-sectional	Serious	n/a	Serious ^b	No serious	101	0.34 (0.24, 0.48)	LOW

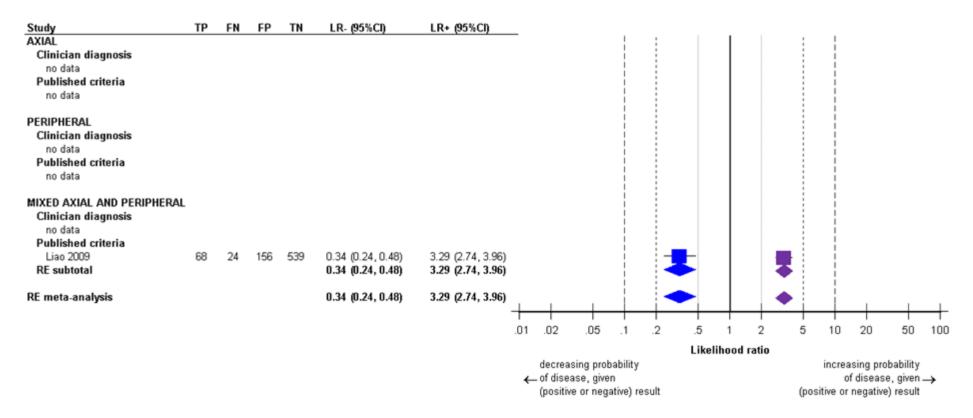


Figure 11: Age <45 at onset of back pain – forest plot: likelihood ratios

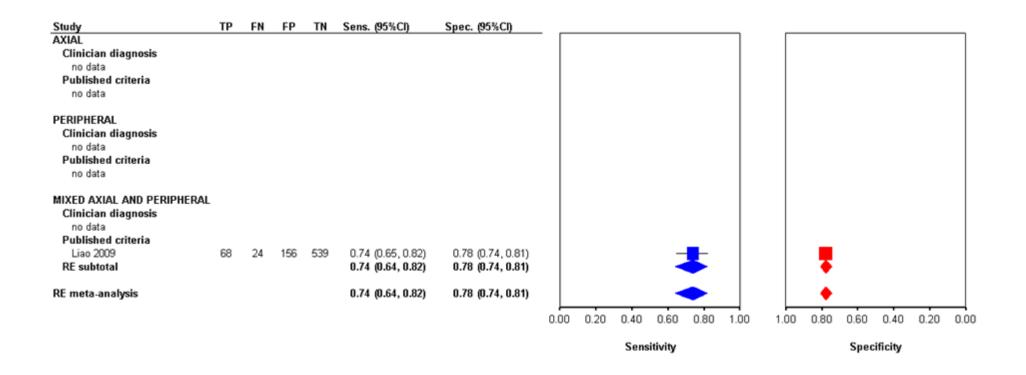



Figure 12: Age <45 at onset of back pain – forest plot: sensitivity and specificity

G.1.1.7 Age <35 at onset of back pain (in people aged <45 at onset of back pain)

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	1 otudu ^a	Cross-sectional	No serious	n/a	No serious	No serious	322	1.36 (1.17, 1.59)	HIGH
LR-	1 study ^a	Cross-sectional	No serious	n/a	No serious	Serious ^b	322	0.53 (0.36, 0.77)	MODERATE
PERIPHERAL									
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL A	ND PERIPHERAL	_							
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+		0 "	No serious	n/a	No serious	No serious		1.36 (1.17, 1.59)	HIGH
LR-	1 study ^a	Cross-sectional	No serious	n/a	No serious	Serious ^b	322	0.53 (0.36, 0.77)	MODERATE

a Braun 2011

^b At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5).

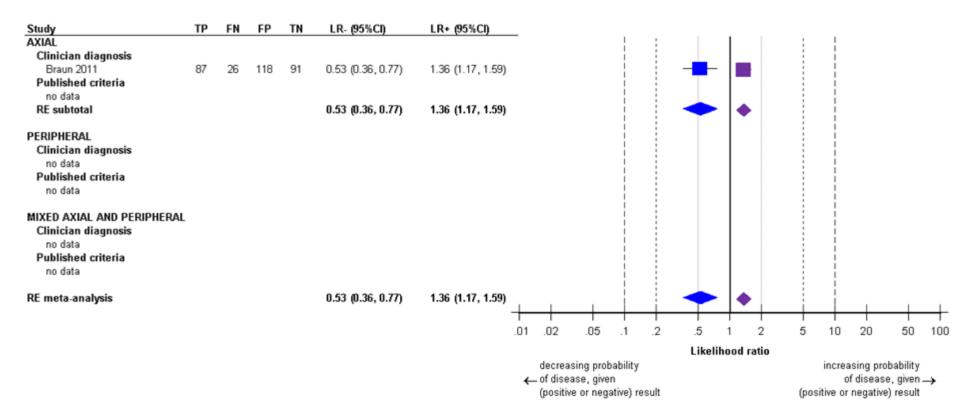


Figure 13: Age <35 at onset of back pain (in people aged <45 at onset of back pain) – forest plot: likelihood ratios

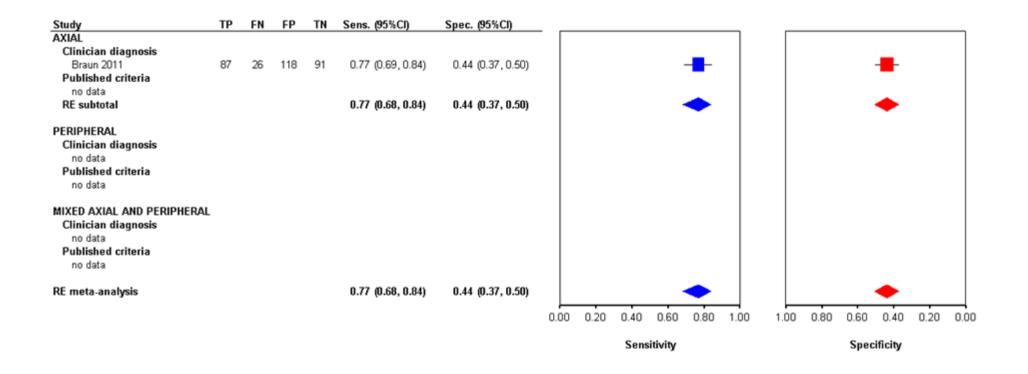


Figure 14: Age <35 at onset of back pain (in people aged <45 at onset of back pain) – forest plot: sensitivity and specificity

Age <40 at onset of back pain (in people aged <45 at onset of back pain) G.1.1.8

Table 8: Age <40 at onset of back pain (in people aged <45 at onset of back pain) – GRADE table</th>

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	1 study ^a	Cross-sectional	No serious	n/a	No serious	No serious	649	1.07 (1.01, 1.13)	HIGH
LR-	T Study	CI055-Sectional	No serious	n/a	No serious	Serious ^b	049	0.54 (0.33, 0.88)	MODERATE
PERIPHERAL									
LR+			-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL A	ND PERIPHERAL	_							
LR+			-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+		0 "	No serious	n/a	No serious	No serious		1.07 (1.01, 1.13)	HIGH
LR-	1 study ^a	Cross-sectional	No serious	n/a	No serious	Serious ^b	649	0.54 (0.33, 0.88)	MODERATE

а

Rudwaleit 2009 (ASAS) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5). b

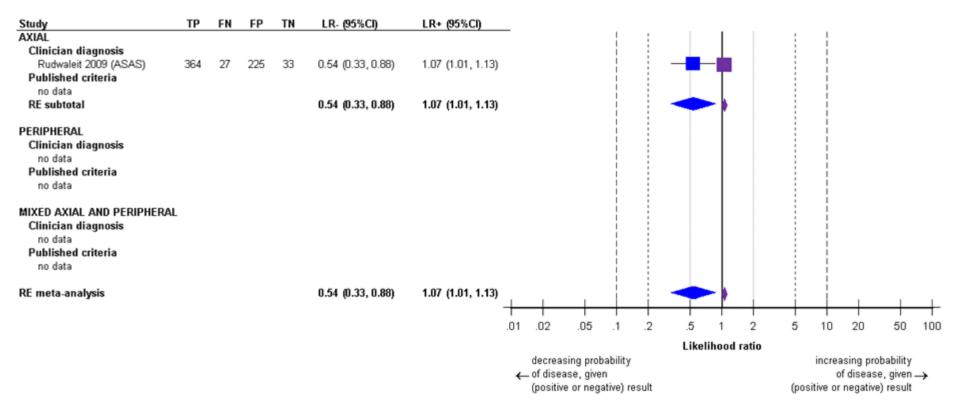


Figure 15: Age <40 at onset of back pain (in people aged <45 at onset of back pain) – forest plot: likelihood ratios

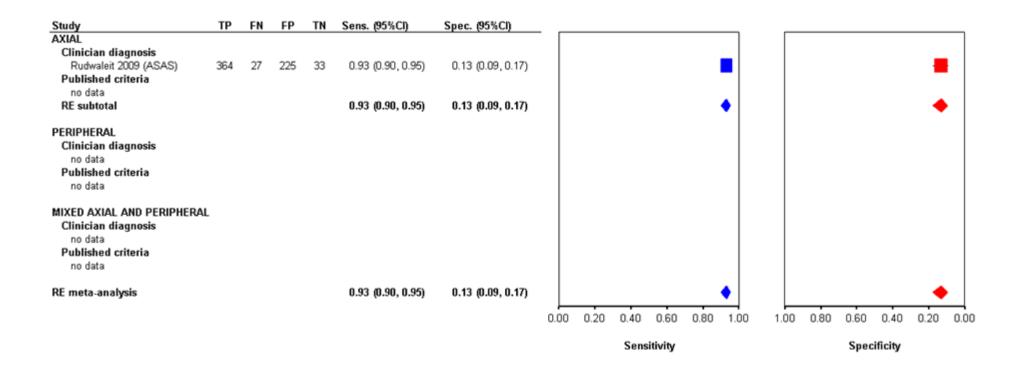


Figure 16: Age <40 at onset of back pain (in people aged <45 at onset of back pain) – forest plot: sensitivity and specificity

Back pain with age of onset <45 (in people with acute anterior uveitis) G.1.1.9

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
LR+									
LR+ LR-	0 studies	-	-	-	-	-	-	-	-
			-	-	-	-		-	-
PERIPHERAL									
LR+	0 studies	_	-	-	-	-	_	-	-
LR-	0 3100163		-	-	-	-		-	-
MIXED AXIAL A	ND PERIPHERAL								
LR+	1 atualuil	Cross sastianal	No serious	n/a	Serious ^b	No serious	101	1.50 (1.25, 1.81)	MODERATE
LR-	1 study ^a	Cross-sectional	No serious	n/a	Serious ^b	Serious ^c	101	0.03 (0.00, 0.55)	LOW
ALL EVIDENCE	POOLED								
LR+	1 atual d	Cross-sectional	No serious	n/a	Serious ^b	No serious		1.50 (1.25, 1.81)	MODERATE
LR-	1 study ^a		No serious	n/a	Serious ^b	Serious ^c	101	0.03 (0.00, 0.55)	LOW

а Haroon 2015

b

suboptimal reference standard (published classification criteria, rather than expert diagnosis) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5). с

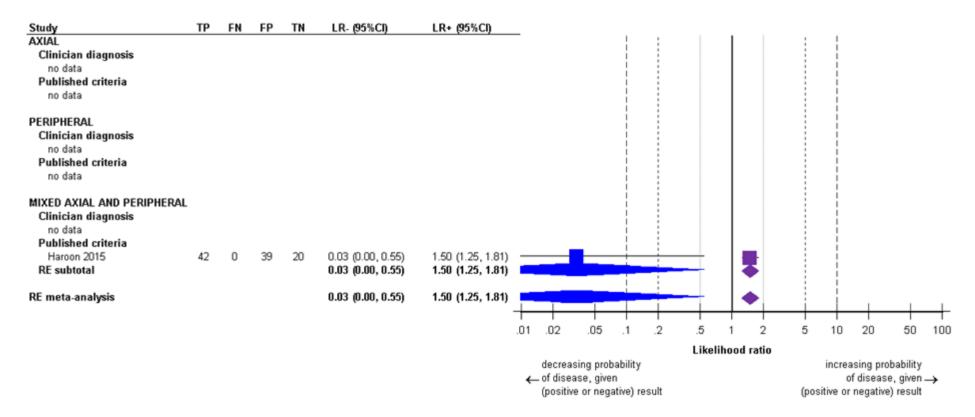


Figure 17: Back pain with age of onset <45 (in people with acute anterior uveitis) – forest plot: likelihood ratios

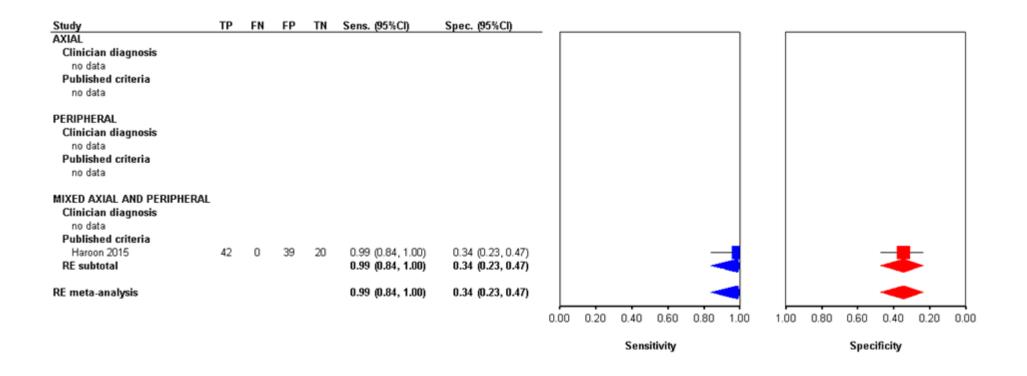


Figure 18: Back pain with age of onset <45 (in people with acute anterior uveitis) – forest plot: sensitivity and specificity

Morning stiffness G.1.1.10

Table 10: Morning stiffness – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	1 atudua	Cross-sectional	No serious	n/a	No serious	No serious	322	1.06 (0.77, 1.45)	HIGH
LR-	1 study ^a	Cross-sectional	No serious	n/a	No serious	No serious	322	0.97 (0.82, 1.15)	HIGH
PERIPHERAL									
LR+	0 studies	_	-	-	-	-	_	-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL	AND PERIPHERA	L							
LR+	1 studyb	Crease eachiered	Serious	n/a	Serious ^c	No serious	707	5.25 (4.18, 6.58)	LOW
LR-	1 study ^b	Cross-sectional	Serious	n/a	Serious ^c	No serious	787	0.33 (0.24, 0.45)	LOW
ALL EVIDENCE	E POOLED								
LR+		Cross-sectional	Serious ^e	Serious ^f	Serious ^g	V. serious ^h	4.400	2.36 (0.49, 11.37)	VERY LOW
LR-	2 studies ^d		Serious ^e	Serious ^f	Serious ^g	Serious ⁱ	1,109	0.57 (0.20, 1.65)	VERY LOW

а Braun 2011

b Liao 2009

с suboptimal reference standard (published classification criteria, rather than expert diagnosis)

d Braun 2011; Liao 2009

е >33.3% of weight in meta-analysis comes from studies with serious risk of bias

f 12 ≥ 50%

g >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis)

At a 95% confidence level, data are consistent with meaningful predictive value in either direction and no predictive value at all (i.e. 95% CI for LR+ spans both 0.5 and 2). At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5). h

i

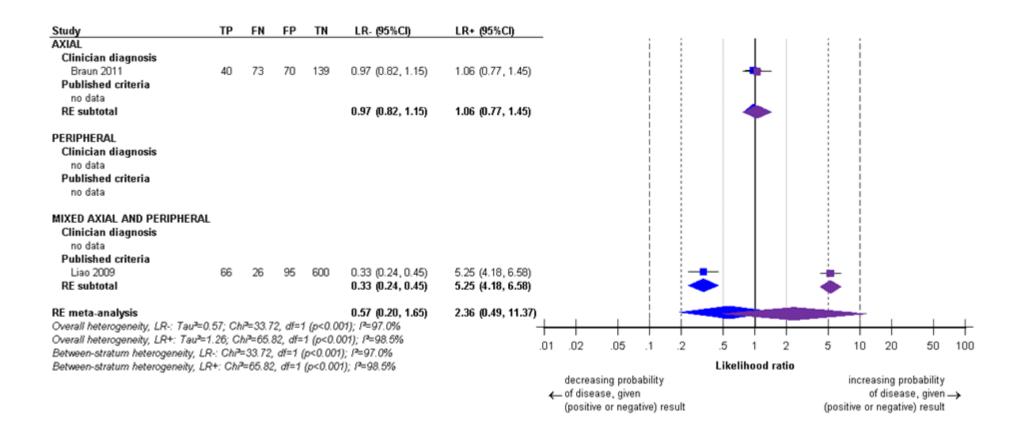


Figure 19: Morning stiffness – forest plot: likelihood ratios

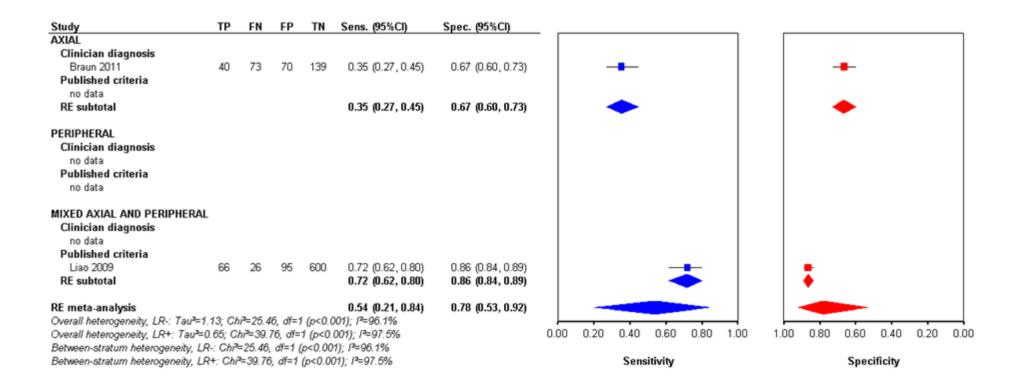


Figure 20: Morning stiffness – forest plot: sensitivity and specificity

Neck pain G.1.1.11

Table 11: Neck pain – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL						-			
LR+	1 study ^a	Cross-sectional	Serious	n/a	Serious ^b	Serious ^c	92	0.14 (0.04, 0.56)	VERY LOW
LR-	T Study	CIUSS-Sectional	Serious	n/a	Serious ^b	Serious ^d	92	1.75 (1.36, 2.26)	VERY LOW
PERIPHERAL									
LR+			-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL AN	ND PERIPHERAL					·			
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+		Cross-sectional	Serious	n/a	Serious ^b	Serious ^c		0.14 (0.04, 0.56)	VERY LOW
LR-	1 study ^a		Serious	n/a	Serious ^b	Serious ^d	92	1.75 (1.36, 2.26)	VERY LOW

а Hermann 2009

b

с

suboptimal reference standard (published classification criteria, rather than expert diagnosis) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 0.5). d

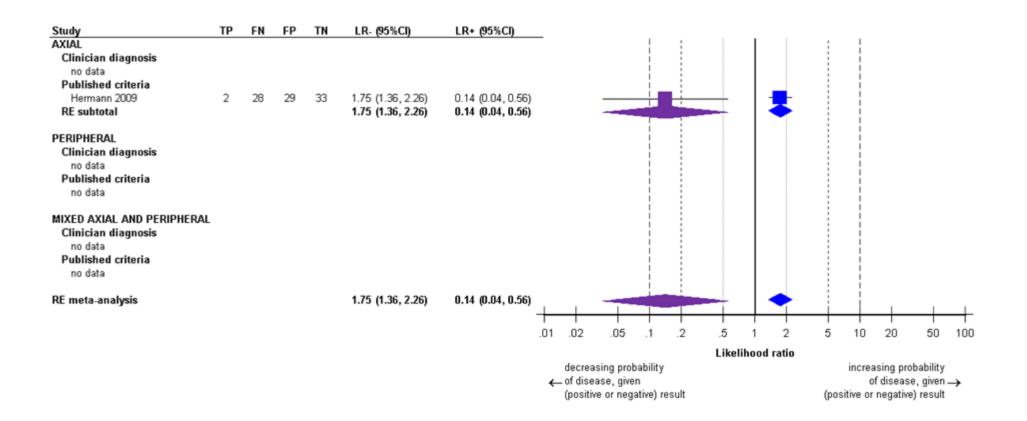


Figure 21: Neck pain – forest plot: likelihood ratios

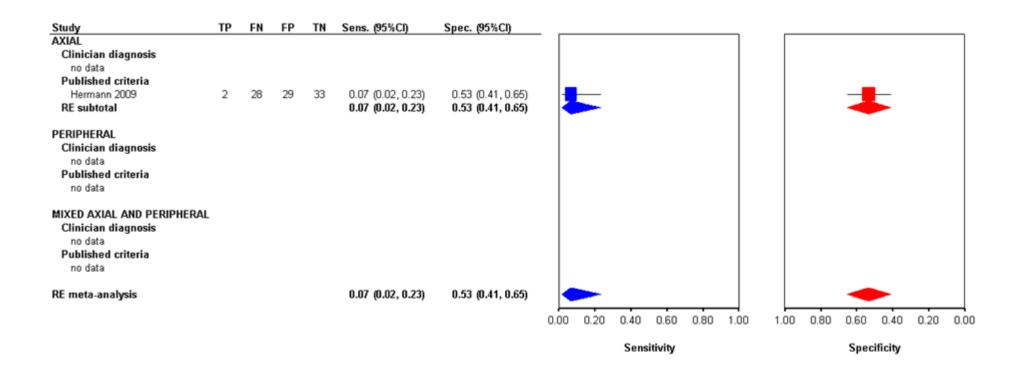
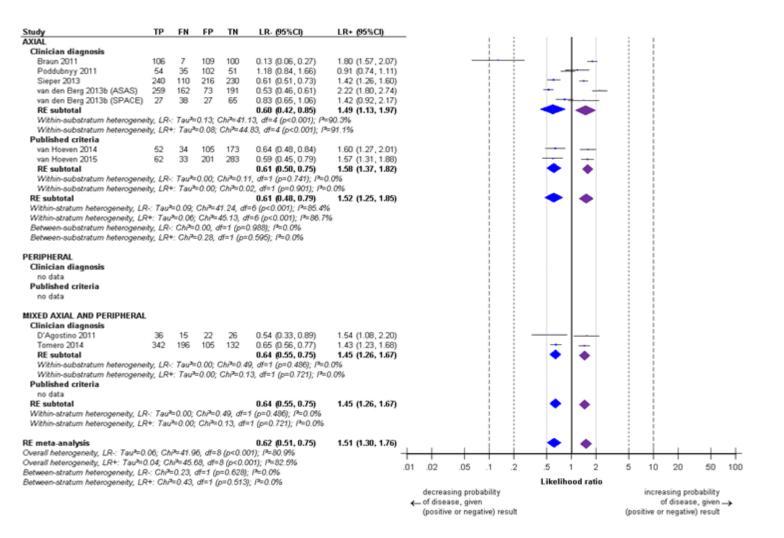


Figure 22: Neck pain – forest plot: sensitivity and specificity

G.1.1.12 Response to NSAIDs

Table 12 Response to NSAIDs – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	7 studies ^a	Cross-sectional	No serious	Serious ^b	No serious	No serious	3,145	1.52 (1.25, 1.85)	MODERATE
LR-			No serious	Serious ^b	No serious	Serious ^c		0.61 (0.48, 0.79)	LOW
PERIPHERAL									
LR+	0 studies	-	-	-	-	-	-	-	-
LR-			-	-	-	-		-	-
MIXED AXIAL AND PERIPHERAL									
LR+	2 studies ^d	Cross-sectional	No serious	No serious	No serious	No serious	874	1.45 (1.26, 1.67)	HIGH
LR-			No serious	No serious	No serious	No serious		0.64 (0.55, 0.75)	HIGH
ALL EVIDENCE POOLED									
LR+	9 studies ^e	Cross-sectional	No serious	Serious ^b	No serious	No serious	4,019	1.51 (1.30, 1.76)	MODERATE
LR-			No serious	Serious ^b	No serious	No serious		0.62 (0.51, 0.75)	MODERATE


^a Braun 2011; Poddubnyy 2011; Sieper 2013; van Hoeven 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

^b 12 ≥ 50%

^c At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5).

^d D'Agostino 2011; Tomero 2014

e Braun 2011; D'Agostino 2011; Poddubnyy 2011; Sieper 2013; Tomero 2014; van Hoeven 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

Figure 23: Response to NSAIDs – forest plot: likelihood ratios

Study	TP	FN	FP	TN	Sens. (95%Cl)	Spec. (95%Cl)										
AXIAL							— г									
Clinician diagnosis																
Braun 2011	106	7	109	100	0.94 (0.88, 0.9					-				_		
Poddubnyy 2011	54	35	102	51	0.61 (0.50, 0.7)	0) 0.33 (0.26, 0.41)				_					_	
Sieper 2013	240	110	216	230	0.69 (0.64, 0.7)	3) 0.52 (0.47, 0.56)			-					-		
van den Berg 2013b (ASAS)	259	162	73	191	0.62 (0.57, 0.6	 0.72 (0.67, 0.77) 			-				-	_		
van den Berg 2013b (SPACE)	27	38	27	65	0.42 (0.30, 0.5	 0.71 (0.61, 0.79) 							_	_		
RE subtotal					0.67 (0.55, 0.7)				-					-		
Within-substratum heterogenei																
Within-substratum heterogeneil	ly, LR+	: Tau ^a	=0.35;	ChP=72	2.72, df=4 (p<0.00	1); P=94.5%										
Published criteria																
van Hoeven 2014	52	34	105	173	0.60 (0.50, 0.7)	0) 0.62 (0.56, 0.68)				_				-		
van Hoeven 2015	62	33	201	283	0.65 (0.55, 0.7	4) 0.58 (0.54, 0.63)										
RE subtotal					0.63 (0.56, 0.7)	0) 0.60 (0.56, 0.63)				•				•		
Within-substratum heterogeneil	ty, LR-:	Tau=	:0.00; 0	Ch/2=0.4	45, df=1 (p=0.505),	P=0.0%			-							
Within-substratum heterogeneil	ly, LR+	: Tau ^a	=0.00;	ChP=1.	04, df=1 (p=0.308)	; P=3.6%										
RE subtotal					0.66 (0.57, 0.7	4) 0.57 (0.48, 0.65)								-		
Within-stratum heterogeneity, LR	-: Tau ^a	=0.22;	ChP=4	8.65, d	f=6 (p<0.001); P=8	37.7%										
Within-stratum heterogeneity, LR																
Between-substratum heterogeneil																
Between-substratum heterogeneil																
PERIPHERAL																
Clinician diagnosis																
no data																
Published criteria																
no data																
110 0010																
MIXED AXIAL AND PERIPHERAL																
Clinician diagnosis																
D'Agostino 2011	36	15	22	26	0.71 (0.57, 0.8	1) 0.54 (0.40, 0.68)										
Tomero 2014	342	196	105	132	0.64 (0.59, 0.6											
RE subtotal	342	130	105	132										-		
					0.64 (0.60, 0.6				· · · · ·					-		
Within-substratum heterogeneil																
Within-substratum heterogenei	ty, LR+	: 190	=0.00;	Chr=0.	.04, at=1 (p=0.840)]; /=0.0%										
Published criteria																
no data																
RE subtotal	_	_			0.64 (0.60, 0.6				•					-		
Within-stratum heterogeneity, LR				വിഷംഷം	1=1 (c=0.845): P=0	.0%										
Within-stratum heterogeneity, LR Within-stratum heterogeneity, LR	+: Tau	≈ 0.00;	Chr=l	2.04, ui	. De . e . e . e . e											
Within-stratum heterogeneity, LR	+: Tau	*=0.00;	Cubel	2.04, di												
Within-stratum heterogeneity, LR RE meta-analysis					0.66 (0.59, 0.7	1) 0.56 (0.49, 0.63)			•					٠		
Within-stratum heterogeneity, LR RE meta-analysis Overall heterogeneity, LR-: Tau ^a =0.:	13; Chi	P=49.6	i5, df=8	3 (p<0.0	0.66 (0.59, 0.7	1) 0.56 (0.49, 0.63)			-					•		
Within-stratum heterogeneity, LR RE meta-analysis Dverail heterogeneity, LR-: Tau ² =0: Overail heterogeneity, LR+: Tau ² =0	13; Chi 16; Ch	P=49.60	i6, df=8 47, df=i	8 (p<0.0 8 (p<0.0	0.66 (0.59, 0.7)01); <i>P</i> =83,9%)01); <i>P</i> =89,9%	1) 0.56 (0.49, 0.63)	0.00	0.20	0.40 0.60	0.80	1.00	1.00	0.80	0.60	0.40	0.20 0
Within-stratum heterogeneity, LR RE meta-analysis	13; Chi 16; Ch	P=49.60 hP=79.4 =0.01, c	i5, df=8 47, df=1 df=1 (p	8 (p<0.0 8 (p<0.1 =0.940)	0.66 (0.59, 0.7)01); P=83.9%)01); P=89.9%); P=0.0%	1) 0.56 (0.49, 0.63)		0.20	0.40 0.60 Sensitivity	0.80	1.00	1.00	0.80	0.60 Speci		0.20 0

Figure 24 Response to NSAIDs – forest plot: sensitivity and specificity

Enthesitis G.1.1.13

Table 13: Enthesitis – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL				-					
LR+	Zatudiaad	Crease eastioned	No serious	No serious	Serious ^b	No serious	2.022	1.05 (0.81, 1.37)	MODERATE
LR-	7 studies ^a	Cross-sectional	No serious	Serious ^c	Serious ^b	No serious	3,023	1.00 (0.95, 1.05)	LOW
PERIPHERAL									
LR+	1 studies d	Crease eastioned	No serious	Serious ^c	No serious	Serious ^e	0.07	3.42 (0.54, 21.57)	LOW
LR-	4 studies ^d	Cross-sectional	No serious	Serious ^c	Serious ^b	Serious ^f	867	0.70 (0.47, 1.03)	VERY LOW
MIXED AXIAL	AND PERIPHERAL	<u> </u>				·			·
LR+	2 studies ⁽⁷⁾	Cross sectional	No serious	Serious ^c	No serious	Serious ^e	907	1.86 (1.16, 3.00)	LOW
LR-	3 studies ^g	Cross-sectional	No serious	No serious	No serious	No serious	907	0.79 (0.74, 0.85)	HIGH
ALL EVIDENC	E POOLED								
LR+	4.4 studies b	Crease eastioned	No serious	Serious ^c	Serious ^b	No serious	4 707	1.37 (0.99, 1.89)	LOW
LR-	14 studies ^h	Cross-sectional	No serious	Serious ^c	Serious ^b	No serious	4,797	0.90 (0.82, 0.98)	LOW

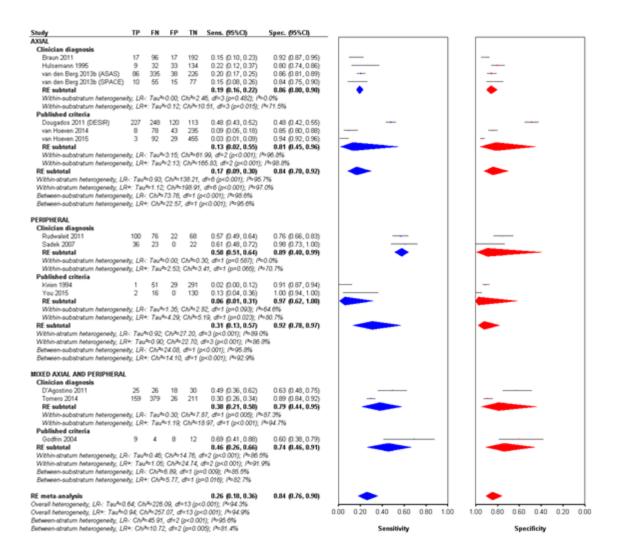
Braun 2011; Dougados 2011 (DESIR); Hulsemann 1995; van Hoeven 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE) а

>33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) b

с 12 ≥ 50%

d Kvien 1994; Rudwaleit 2011; Sadek 2007; You 2015

е


At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5). f

D'Agostino 2011; Godfrin 2004 ; Tomero 2014 g

Braun 2011; Dougados 2011 (DESIR); D'Agostino 2011; Godfrin 2004 ; Hulsemann 1995; Kvien 1994; Rudwaleit 2011; Sadek 2007; Tomero 2014; You 2015; van Hoeven 2014; van Hoeven h 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

Figure 25: Enthesitis – forest plot: likelihood ratios

Figure 26: Enthesitis – forest plot: sensitivity and specificity

Enthesitis (heel) G.1.1.14

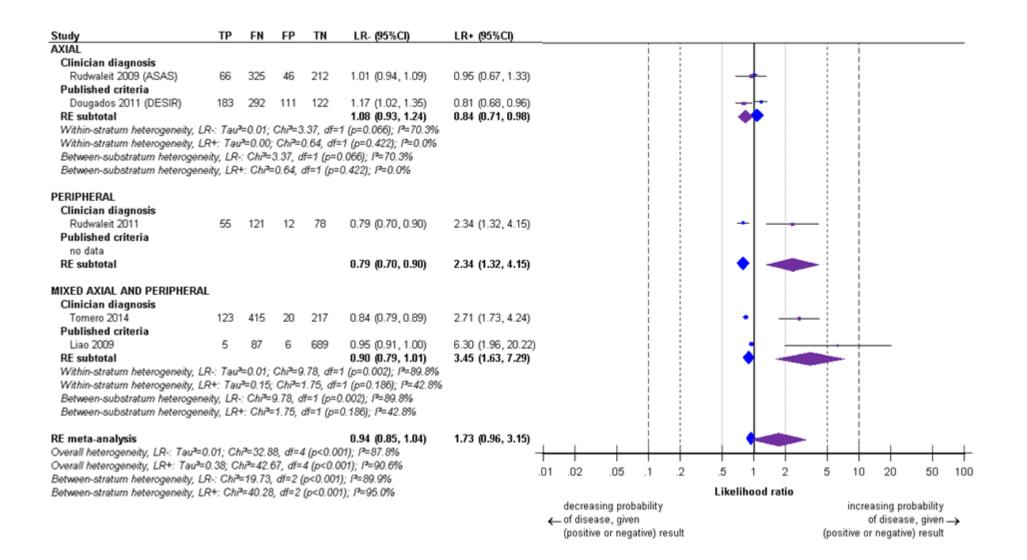
Table 14: Enthesitis (heel) - GRADE table

		Ĩ							
Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL		·						·	
LR+	0 studies?	Orean anational	No serious	No serious	Serious ^b	No serious	4 057	0.84 (0.71, 0.98)	MODERATE
LR-	2 studies ^a	Cross-sectional	No serious	Serious ^c	Serious ^b	No serious	1,357	1.08 (0.93, 1.24)	LOW
PERIPHERAL									
LR+	1 abudud	Cross-sectional	No serious	n/a	No serious	Serious ^e	266	2.34 (1.32, 4.15)	MODERATE
LR-	1 study ^d	Cross-sectional	No serious	n/a	No serious	No serious	200	0.79 (0.70, 0.90)	HIGH
MIXED AXIAL	AND PERIPHERA	L							
LR+	2 studies f	Cross costional	Serious ^g	No serious	Serious ^b	Serious ^e	1 560	3.45 (1.63, 7.29)	VERY LOW
LR-	2 studies ^f	Cross-sectional	Serious ^g	Serious ^c	Serious ^b	No serious	1,562	0.90 (0.79, 1.01)	VERY LOW
ALL EVIDENCI	E POOLED								
LR+	5 atudiaah	Cross costional	No serious	Serious ^c	Serious ^b	Serious ^e	2 1 9 5	1.73 (0.96, 3.15)	VERY LOW
LR-	5 studies ^h	Cross-sectional	No serious	Serious ^c	Serious ^b	No serious	3,185	0.94 (0.85, 1.04)	LOW

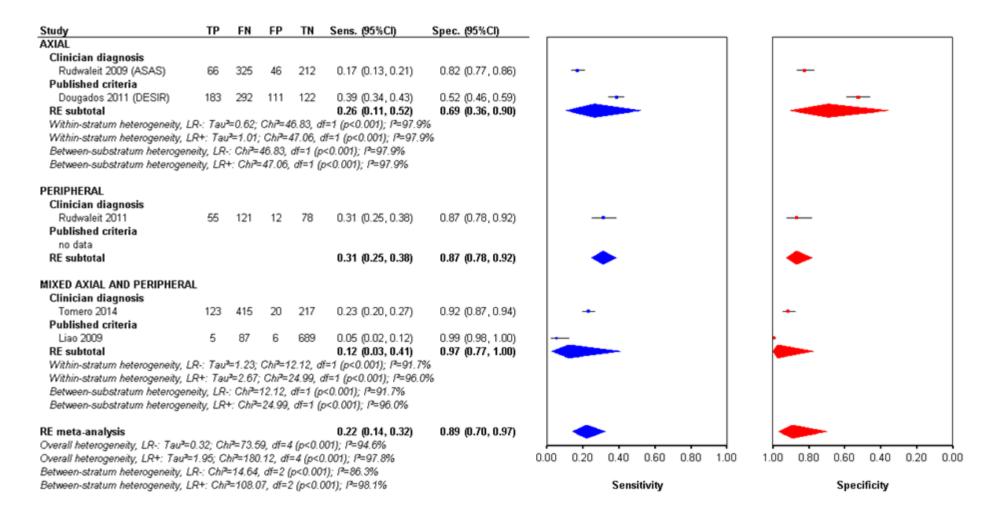
Dougados 2011 (DESIR); Rudwaleit 2009 (ASAS) а

>33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) b

с 12 ≥ 50%


d Rudwaleit 2011

At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). е


f Liao 2009; Tomero 2014

g

>33.3% of weight in meta-analysis comes from studies with serious risk of bias Dougados 2011 (DESIR); Liao 2009; Rudwaleit 2009 (ASAS); Rudwaleit 2011; Tomero 2014 h

Figure 27: Enthesitis (heel) – forest plot: likelihood ratios

Figure 28: Enthesitis (heel) – forest plot: sensitivity and specificity

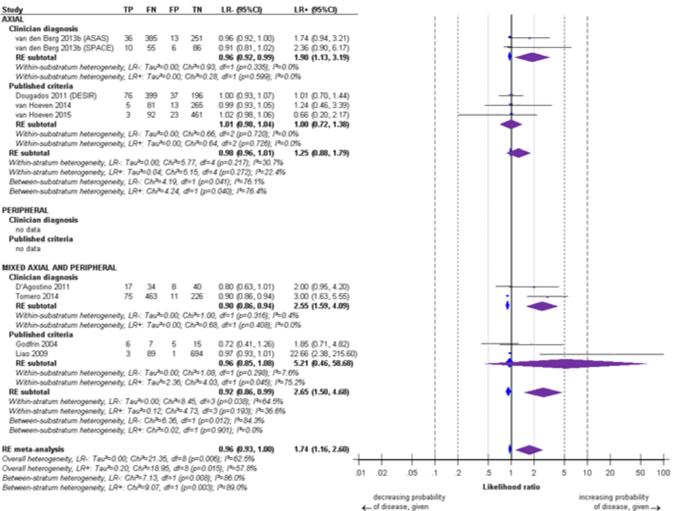
G.1.1.15 Psoriasis

Table 15: Psoriasis – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	5 studies ^a	Cross-sectional	No serious	No serious	Serious ^b	No serious	2,493	1.25 (0.88, 1.79)	MODERATE
LR-	5 studies	CIUSS-Sectional	No serious	No serious	Serious ^b	No serious	2,495	0.98 (0.96, 1.01)	MODERATE
PERIPHERAL									
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL	AND PERIPHERA	L							
LR+		0 "	No serious	No serious	No serious	Serious ^d	4.004	2.65 (1.50, 4.68)	MODERATE
LR-	4 studies ^c	Cross-sectional	Serious ^e	Serious ^f	Serious ^b	No serious	1,694	0.92 (0.86, 0.99)	VERY LOW
ALL EVIDENCE	E POOLED								
LR+		0 "	No serious	Serious ^f	Serious ^b	Serious ^d	4.407	1.74 (1.16, 2.60)	VERY LOW
LR-	9 studies ^g	Cross-sectional	No serious	Serious ^f	Serious ^b	No serious	4,187	0.96 (0.93, 1.00)	LOW

а

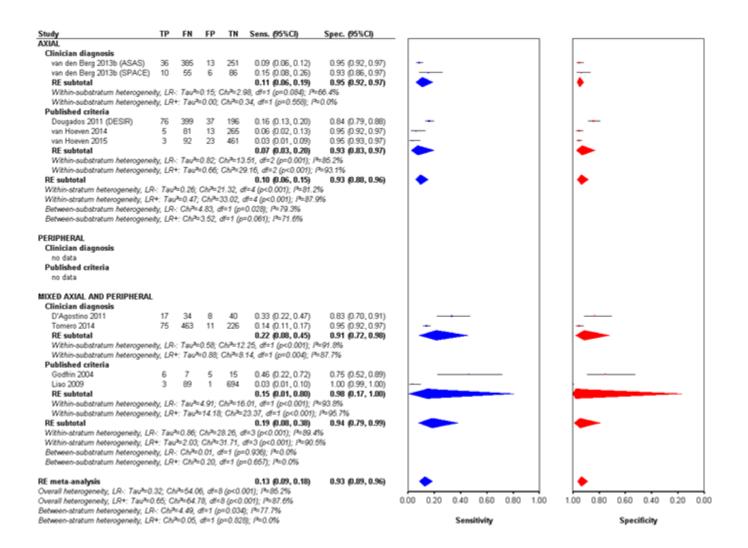
Dougados 2011 (DESIR); van Hoeven 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE) >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) b


с D'Agostino 2011; Godfrin 2004 ; Liao 2009; Tomero 2014

At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). >33.3% of weight in meta-analysis comes from studies with serious risk of bias d

е

f 12 ≥ 50%


Dougados 2011 (DESIR); D'Agostino 2011; Godfrin 2004 ; Liao 2009; Tomero 2014; van Hoeven 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE) g

(positive or negative) result

(positive or negative) result

Figure 29:Psoriasis – forest plot: likelihood ratios

Figure 30 Psoriasis – forest plot: sensitivity and specificity

Uveitis G.1.1.16

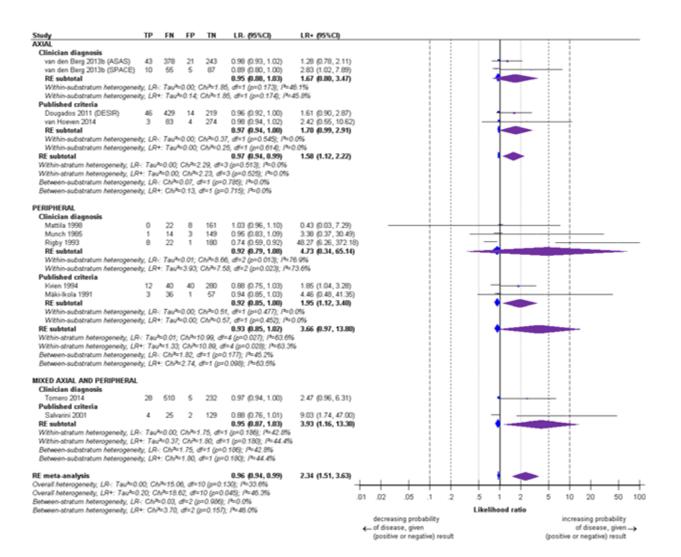
Table 16: Uveitis – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	1 studies?	Crease continuel	No serious	No serious	Serious ^b	Serious ^c	1 014	1.58 (1.12, 2.22)	LOW
LR-	4 studies ^a	Cross-sectional	No serious	No serious	Serious ^b	No serious	1,914	0.97 (0.94, 0.99)	MODERATE
PERIPHERAL									
LR+	E i i d	One se stiened	No serious	Serious ^e	Serious ^b	Serious ^c	4 000	3.66 (0.97, 13.80)	VERY LOW
LR-	5 studies ^d	Cross-sectional	Serious ^f	Serious ^e	Serious ^b	No serious	1,038	0.93 (0.85, 1.02)	VERY LOW
MIXED AXIAL	AND PERIPHERAL	-	·						·
LR+	O studio d	Crease continuel	No serious	No serious	No serious	Serious ^c	935	3.93 (1.16, 13.30)	MODERATE
LR-	2 studies ^g	Cross-sectional	No serious	No serious	No serious	No serious	932	0.95 (0.87, 1.03)	HIGH
ALL EVIDENC	E POOLED								
LR+	11 studies h	Crease continuel	No serious	No serious	Serious ^b	Serious ^c	2.007	2.34 (1.51, 3.63)	LOW
LR-	11 studies ^h	Cross-sectional	No serious	No serious	Serious ^b	No serious	3,887	0.96 (0.94, 0.99)	MODERATE

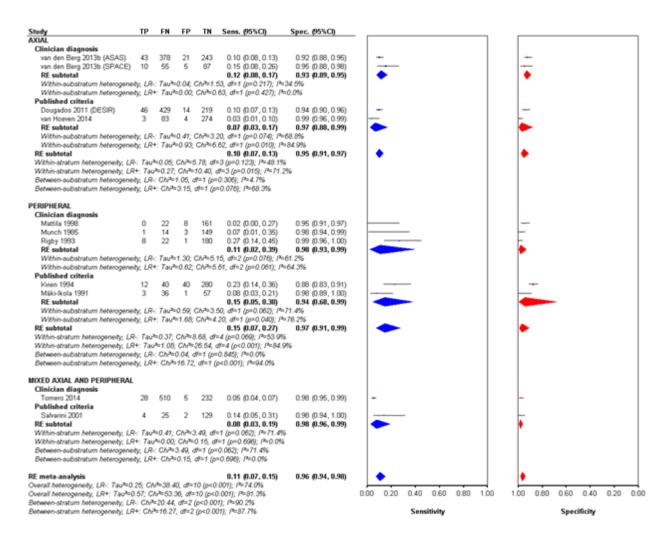
а

Dougados 2011 (DESIR); van Hoeven 2014; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE) >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). b

с


Kvien 1994; Mattila 1998; Munch 1985; Mäki-Ikola 1991; Rigby 1993 d

е 12 ≥ 50%


f >33.3% of weight in meta-analysis comes from studies with serious risk of bias

g Salvarini 2001; Tomero 2014

Dougados 2011 (DESIR); Kvien 1994; Mattila 1998; Munch 1985; Mäki-Ikola 1991; Rigby 1993; Salvarini 2001; Tomero 2014; van Hoeven 2014; van den Berg 2013b (ASAS); van den Berg h 2013b (SPACE)

Figure 31: Uveitis – forest plot: likelihood ratios

Figure 32: History of uveitis

Table 17: History of uveitis – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	1 studed	Orean eastional	No serious	n/a	Serious ^b	Serious ^c	579	1.42 (0.54, 3.72)	LOW
LR-	1 study ^a	Cross-sectional	No serious	n/a	Serious ^b	No serious	5/9	0.98 (0.94, 1.03)	MODERATE
PERIPHERAL									
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL A	ND PERIPHERAL								
LR+	0 studios		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+	4	Orean eastional	No serious	n/a	Serious ^b	Serious ^c	570	1.42 (0.54, 3.72)	LOW
LR-	1 study ^a	Cross-sectional	No serious	n/a	Serious ^b	No serious	579	0.98 (0.94, 1.03)	MODERATE

а van Hoeven 2015

b

suboptimal reference standard (published classification criteria, rather than expert diagnosis) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). с

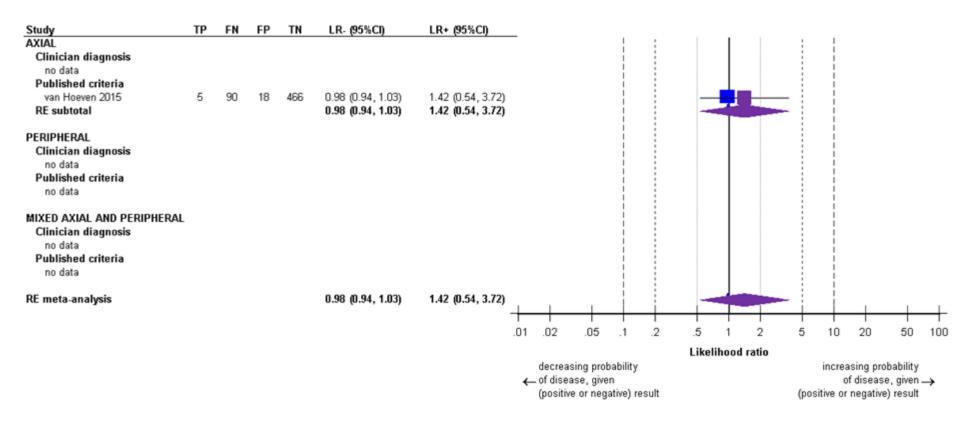


Figure 33: History of uveitis – forest plot: likelihood ratios

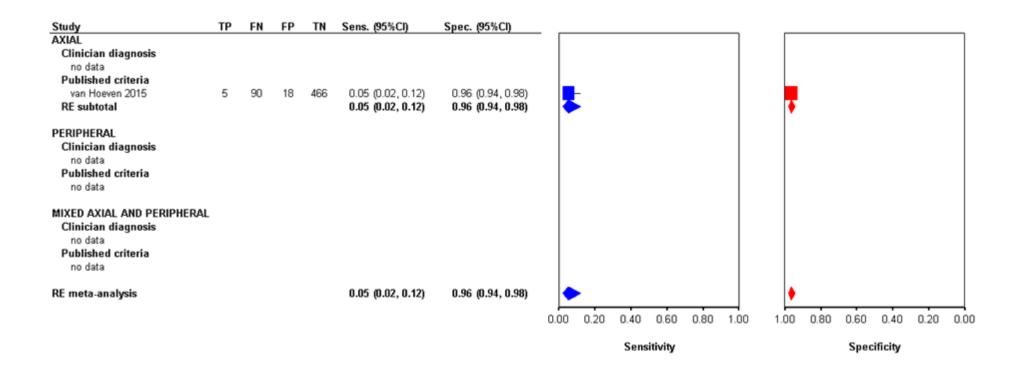


Figure 34: History of uveitis – forest plot: sensitivity and specificity

Inflammatory bowel disease G.1.1.17

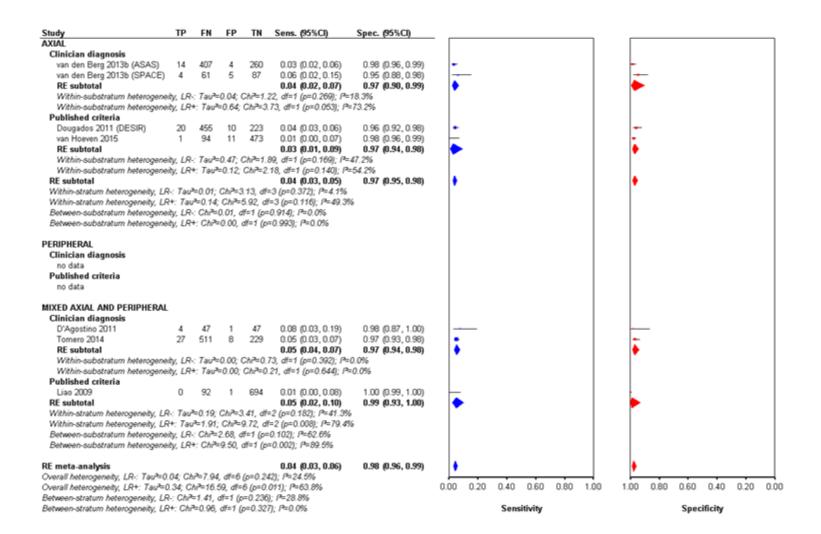
Table 18 Inflammatory bowel disease – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL			-	-	-				
LR+	1 atudiaa?	Cross costional	No serious	No serious	Serious ^b	No serious	2 1 2 0	1.16 (0.68, 1.97)	MODERATE
LR-	4 studies ^a	Cross-sectional	No serious	No serious	Serious ^b	No serious	2,129	1.00 (0.98, 1.01)	MODERATE
PERIPHERAL									
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL	AND PERIPHERA	L							
LR+		Omen en et innel	No serious	No serious	No serious	Serious ^d	4.004	1.69 (0.83, 3.43)	MODERATE
LR-	3 studies ^c	Cross-sectional	Serious ^e	No serious	Serious ^b	No serious	1,661	0.99 (0.98, 1.01)	LOW
ALL EVIDENCE	E POOLED								
LR+	f	0 "	No serious	No serious	Serious ^b	Serious ^d	0 700	1.33 (0.86, 2.03)	LOW
LR-	7 studies ^f	Cross-sectional	Serious ^e	No serious	Serious ^b	No serious	3,790	0.99 (0.98, 1.00)	LOW

а

Dougados 2011 (DESIR); van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE) >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) b

D'Agostino 2011; Liao 2009; Tomero 2014 с


At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). d

е >33.3% of weight in meta-analysis comes from studies with serious risk of bias

f Dougados 2011 (DESIR); D'Agostino 2011; Liao 2009; Tomero 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

AXIAL	TP	FN	FP	TN LE	R- (95%CI)	LR+ (95%CI)	_												
													I			1			
Clinician diagnosis										i						÷ .			
van den Berg 2013b (ASAS)	14	407	4		8 (0.96, 1.00)	2.19 (0.73, 6.60)						-	1	•	+				
van den Berg 2013b (SPACE)	4	61	5		9 (0.92, 1.07)	1.13 (0.32, 4.06)				i	: -	_	1	-	· i				
RE subtotal					8 (0.96, 1.00)	1.65 (0.72, 3.81)						-							
Within-substratum heterogene										i			I .			- i -			
Within-substratum heterogene	ity, LR+	r: Tau ^a	0.00;	ChP=0.59, dl	=1 (p=0.441); P=	0.0%							1						
Published criteria										i			I .			i			
Dougados 2011 (DESIR)	20	455	10		0 (0.97, 1.03)	0.98 (0.47, 2.06)						-	•	÷					
van Hoeven 2015	1	94	11		1 (0.99, 1.04)	0.46 (0.06, 3.55)					-		1	-		1			
RE subtotal					1 (0.99, 1.03)	0.90 (0.45, 1.80)													
Within-substratum heterogene										1			I .			1			
Within-substratum heterogene	ity, LR+	r: Tau²=	:0.00;																
RE subtotal					0 (0.98, 1.01)	1.16 (0.68, 1.97)								-					
Within-stratum heterogeneity, Li										i			1			i .			
Within-stratum heterogeneity, LF													1		1				
Between-substratum heterogene										i			1		:	i .			
Between-substratum heterogene	ity, LR+	r: Chi≇≡	1.21, 6	ff=1 (p=0.270)); P≡17.7%								I .						
COLORA													I .						
PERIPHERAL										i			I .						
Clinician diagnosis													I .						
no data										i			I .			i .			
Published criteria													I .						
no data										i			I			i.			
													I						
MIXED AXIAL AND PERIPHERAL										1			I .			1			
Clinician diagnosis		47		17 0/	1 0 00 1 00	2.75 0.44 22.67													
D'Agostino 2011	4 27	47	1		4 (0.86, 1.03)	3.76 (0.44, 32.50				1		_		_	:	Ť			
T 0011	27	511	8		8 (0.95, 1.01)	1.49 (0.69, 3.22)						_	-						
Tomero 2014	a. 1			0.9	18 (0.95, 1.01)	1.65 (0.80, 3.43)													
RE subtotal		T	0.00.0	1.7.0.00	1 1-0 0742 0-1	0.007													
RE subtotal Within-substratum heterogene	nty, LR-									i			I .						
RE subtotal Within-substratum heterogene Within-substratum heterogene	nty, LR-																		
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria	nity, LR+ nity, LR+	+: Tau≯⊨		ChP=0.63, dl	=1 (p=0.427); /*=	0.0%													
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009	nty, LR-			Chi2=0.63, df 694 1.0	=1 (p=0.427); P= 0 (0.98, 1.01)	2.49 (0.10, 60.79	0			_						-			
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009 RE subtotal	nity, LR+ nity, LR+ 0	+: Tau≉ 92	=0.00; 1	Chi ² =0.63, df 694 1.0 0.9	=1 (p=0.427); P= 0 (0.98, 1.01) 19 (0.98, 1.01)	0.0%	0												
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009 RE subtotal Within-stratum heterogeneity, Li	nity, LR+ nity, LR+ 0 R-: TauP	+: Tau≯= 92 ⊨0.00; (=0.00; 1 Ch/P=2	ChP=0.63, df 694 1.0 0.9 .01, df=2 (p=	=1 (p=0.427); P= 10 (0.98, 1.01) 19 (0.98, 1.01) 0.366); P=0.6%	2.49 (0.10, 60.79	0												
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009 RE subtotal Within-stratum heterogeneity, Lf Within-stratum heterogeneity, Lf	nity, LR+ nity, LR+ 0 R-: Tau ^A R+: Tau	+: Tau≯= 92 ⊨0.00; (≈=0.00;	=0.00; 1 ChP=2 ChP=6	Ch≥=0.63, df 694 1.0 0.9 .01, df=2 (p= 0.69, df=2 (p=	=1 (ρ=0.427); P= 10 (0.98, 1.01) 19 (0.98, 1.01) 0.366); P=0.6% =0.707); P=0.0%	2.49 (0.10, 60.79	0				-								
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009 RE subtotal Within-stratum heterogeneity, Li Between-substratum heterogeneity, Li	nity, LR+ nity, LR+ 0 R+: Tau ² nity, LR+	+: Tau≯ 92 =0.00; (≥=0.00; : Chi≥=1	=0.00; 1 ChP=2. ChP=0 1.21, d	Chi ² =0.63, df 694 1.0 0.9 .01, df=2 (p= 0.69, df=2 (p= f=1 (p=0.271)	=1 (p=0.427); P= 10 (0.98, 1.01) 19 (0.98, 1.01) 0.366); P=0.6% =0.707); P=0.0% 1; P=17.3%	2.49 (0.10, 60.79	0					-							
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009 RE subtotal Within-stratum heterogeneity, Lf Within-stratum heterogeneity, Lf	nity, LR+ nity, LR+ 0 R+: Tau ² nity, LR+	+: Tau≯ 92 =0.00; (≥=0.00; : Chi≥=1	=0.00; 1 ChP=2. ChP=0 1.21, d	Chi ² =0.63, df 694 1.0 0.9 .01, df=2 (p= 0.69, df=2 (p= f=1 (p=0.271)	=1 (p=0.427); P= 10 (0.98, 1.01) 19 (0.98, 1.01) 0.366); P=0.6% =0.707); P=0.0% 1; P=17.3%	2.49 (0.10, 60.79	0												
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009 RE subtotal Within-stratum heterogeneity, Li Between-substratum heterogeneity, Li Between-substratum heterogeneity	nity, LR+ nity, LR+ 0 R+: Tau ² nity, LR+	+: Tau≯ 92 =0.00; (≥=0.00; : Chi≥=1	=0.00; 1 ChP=2. ChP=0 1.21, d	Chi ² =0.63, df 694 1.0 0.9 01, df=2 (p= 0.69, df=2 (p= f=1 (p=0.271) df=1 (p=0.806	=1 (p=0.427); P= 10 (0.98, 1.01) 19 (0.98, 1.01) 0.366); P=0.6% :0.707); P=0.0% ; P=17.3% ; P=0.0%	0.0% 2.49 (0.10, 60.7% 1.69 (0.83, 3.43)	0												
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009 RE subtotal Within-stratum heterogeneity, Lf Within-stratum heterogeneity, Lf Between-substratum heterogeneit Between-substratum heterogeneit RE meta-analysis	tity, LR- tity, LR+ 0 R+: Tau ² R+: Tau ² tity, LR+ tity, LR+	+: 7au ² 92 =0.00; (2=0.00; =0.00; : Chi ² =1 +: Chi ² =1	=0.00; 1 ChP=2. ChP=6 1.21, d 0.06, d	Chi ² =0.63, df 694 1.0 0.9 0.01, df=2 (p= 0.69, df=2 (p= f=1 (p=0.271) df=1 (p=0.806 0.9	=7 (p=0.427); P= 10 (0.98, 1.01) 19 (0.98, 1.01) 0.366); P=0.6% :0.707); P=0.0% 1; P=17.3% 3); P=0.0% 19 (0.98, 1.00)	2.49 (0.10, 60.79	0		1										
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009 RE subtotal Within-stratum heterogeneity, Li Within-stratum heterogeneity, Li Between-substratum heterogeneit Between-substratum heterogeneit Between-subst	nity, LR- nity, LR+ 0 R-: Tau ² R+: Tau ² R+: Tau ² nity, LR+ nity, LR+	+: Tau ² = 92 ≈0.00; (≈0.00; : Chi ² =1 +: Chi ² =1 i ² =5,44,	=0.00; 1 ChP=2. ChP=0 1.21, d 0.06, d , df=6 (ChP=0.63, df 694 1.0 0.9 .01, df=2 (p= 0.69, df=2 (p= f=1 (p=0.271) df=1 (p=0.806 0.9 (p=0.489); P=	=7 (p=0.427); P= 10 (0.98, 1.01) 9 (0.98, 1.01) 0.366); P=0.6% =0.707); P=0.0% 1; P=17.3% 3); P=0.0% 19 (0.98, 1.00) =0.0%	0.0% 2.49 (0.10, 60.7% 1.69 (0.83, 3.43)	0												_
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009 RE subtotal Within-stratum heterogeneity, LF Within-stratum heterogeneity, LF Between-substratum heterogene Between-substratum heterogene RE meta-analysis Doverall heterogeneity, LR-: Tau ² =0 Doverall heterogeneity, LR-: Tau ² =0	nity, LR- nity, LR+ 0 R-: Tau ² R+: Tau ² Nty, LR+ nity, LR+ 0.00; Ch 0.00; Ch	+: 7au ² 92 ≈0.00; (≈0.00; : Ch2=1 +: Ch2=1 +: Ch2=1 h2=5.44, h2=3.66	=0.00; = 1 ChP=2. ChP=0 1.21, d =0.06, d ; df=6 (5, df=6 (Ch ² =0.63, df 694 1.0 0.9 0.01, df=2 (p=1 0.69, df=2 (p=1 f=1 (p=0.271) df=1 (p=0.806 0.9 (p=0.499); / ² (p=0.723); / ²	=7 (p=0.427); P= 10 (0.98, 1.01) 9 (0.98, 1.01) 0.366; P=0.6% 0.707); P=0.6% 1; P=17.3% 5; P=0.0% 9 (0.98, 1.00) 0.0%	0.0% 2.49 (0.10, 60.7% 1.69 (0.83, 3.43)	» +	02	.05		2	.5		2	5	10	20	50	
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009 RE subtotal Within-stratum heterogeneity, LF Between-substratum heterogeneity, LF Between-substratum heterogeneit RE meta-analysis Overall heterogeneity, LR-: Tau ² Deverall heterogeneity, LR-: Tau ² Between-stratum heterogeneity, LF	nity, LR+ nity, LR+ 0 R+: Tau ² R+: Tau ² Nty, LR+ nity, LR+ 0.00; Ch 0.00; Ch 0.00; Ch R-: Ch ² =	+: 7au ² 92 =0.00; (~0.00; : Chi ² =1 +: Chi ² =1 h ² =5.44, h ² =3.66 =0.15, o	=0.00; = 1 ChP=2: ChP=0 1.21, dt 0.06, dt 0.06, dt 1.41=6 (dt 0.41=6 (dt) 0.41=6 (dt)	Chi ² =0.63, df 694 1.0 0.9 01, df=2 (p=1 0.69, df=2 (p=1 f=1 (p=0.271) df=1 (p=0.806 0.9 (p=0.489); P=1 (p=0.723); P=0	=1 (p=0.427); P= 10 (0.98, 1.01) 19 (0.98, 1.01) 19 (0.98, 1.01) 0.366); P=0.6% 0.707); P=0.6% 1; P=17.3% 3; P=0.0% 19 (0.98, 1.00) 0.0% =0.0%	0.0% 2.49 (0.10, 60.7% 1.69 (0.83, 3.43)	» +	02	.05		2			-	5	10	20	50	
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009 RE subtotal Within-stratum heterogeneity, LF Within-stratum heterogeneity, LF Between-substratum heterogene Between-substratum heterogene RE meta-analysis Doverall heterogeneity, LR-: Tau ² =0 Doverall heterogeneity, LR-: Tau ² =0	nity, LR+ nity, LR+ 0 R+: Tau ² R+: Tau ² Nty, LR+ nity, LR+ 0.00; Ch 0.00; Ch 0.00; Ch R-: Ch ² =	+: 7au ² 92 =0.00; (~0.00; : Chi ² =1 +: Chi ² =1 h ² =5.44, h ² =3.66 =0.15, o	=0.00; = 1 ChP=2: ChP=0 1.21, dt 0.06, dt 0.06, dt 1.41=6 (dt 0.41=6 (dt) 0.41=6 (dt)	Chi ² =0.63, df 694 1.0 0.9 01, df=2 (p=1 0.69, df=2 (p=1 f=1 (p=0.271) df=1 (p=0.806 0.9 (p=0.489); P=1 (p=0.723); P=0	=1 (p=0.427); P= 10 (0.98, 1.01) 19 (0.98, 1.01) 19 (0.98, 1.01) 0.366); P=0.6% 0.707); P=0.6% 1; P=17.3% 3; P=0.0% 19 (0.98, 1.00) 0.0% =0.0%	0.0% 2.49 (0.10, 60.7% 1.69 (0.83, 3.43)	.01				2	.5 Likelih	1 ood ra	-	-				10
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009 RE subtotal Within-stratum heterogeneity, LF Between-substratum heterogeneity, LF Between-substratum heterogeneit RE meta-analysis Overall heterogeneity, LR-: Tau ² Deverall heterogeneity, LR-: Tau ² Between-stratum heterogeneity, LF	nity, LR+ nity, LR+ 0 R+: Tau ² R+: Tau ² Nty, LR+ nity, LR+ 0.00; Ch 0.00; Ch 0.00; Ch R-: Ch ² =	+: 7au ² 92 =0.00; (~0.00; : Chi ² =1 +: Chi ² =1 h ² =5.44, h ² =3.66 =0.15, o	=0.00; = 1 ChP=2: ChP=0 1.21, dt 0.06, dt 0.06, dt 1.41=6 (dt 0.41=6 (dt) 0.41=6 (dt)	Chi ² =0.63, df 694 1.0 0.9 01, df=2 (p=1 0.69, df=2 (p=1 f=1 (p=0.271) df=1 (p=0.806 0.9 (p=0.489); P=1 (p=0.723); P=0	=1 (p=0.427); P= 10 (0.98, 1.01) 19 (0.98, 1.01) 19 (0.98, 1.01) 0.366); P=0.6% 0.707); P=0.6% 1; P=17.3% 3; P=0.0% 19 (0.98, 1.00) 0.0% =0.0%	0.0% 2.49 (0.10, 60.7% 1.69 (0.83, 3.43)	.01	ecreasin	g probab		2		1 nood ra	-	-	increas	sing pro	bability	10
RE subtotal Within-substratum heterogene Within-substratum heterogene Published criteria Liao 2009 RE subtotal Within-stratum heterogeneity, LF Between-substratum heterogeneity, LF Between-substratum heterogeneit RE meta-analysis Overall heterogeneity, LR-: Tau ² Deverall heterogeneity, LR-: Tau ² Between-stratum heterogeneity, LF	nity, LR+ nity, LR+ 0 R+: Tau ² R+: Tau ² Nty, LR+ nity, LR+ 0.00; Ch 0.00; Ch 0.00; Ch R-: Ch ² =	+: 7au ² 92 =0.00; (~0.00; : Chi ² =1 +: Chi ² =1 h ² =5.44, h ² =3.66 =0.15, o	=0.00; = 1 ChP=2: ChP=0 1.21, dt 0.06, dt 0.06, dt 1.41=6 (dt 0.41=6 (dt) 0.41=6 (dt)	Chi ² =0.63, df 694 1.0 0.9 01, df=2 (p=1 0.69, df=2 (p=1 f=1 (p=0.271) df=1 (p=0.806 0.9 (p=0.489); P=1 (p=0.723); P=0	=1 (p=0.427); P= 10 (0.98, 1.01) 19 (0.98, 1.01) 19 (0.98, 1.01) 0.366); P=0.6% 0.707); P=0.6% 1; P=17.3% 3; P=0.0% 19 (0.98, 1.00) 0.0% =0.0%	0.0% 2.49 (0.10, 60.7% 1.69 (0.83, 3.43)) .01		g probab , given	oility	-		1 aood ra	-	ir	increa: of		bability e, given.	

 Figure 35:
 Inflammatory bowel disease – forest plot: likelihood ratios

57

Figure 36: Inflammatory bowel disease - forest plot: sensitivity and specificity

G.1.1.18 Dactylitis

Table 19: Dactylitis – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	4 studies ^a	Cross-sectional	No serious	No serious	Serious ^b	Serious ^c	1,785	2.28 (1.31, 3.96)	LOW
LR-	4 Studies	CIUSS-Sectional	No serious	No serious	Serious ^b	No serious	1,705	0.96 (0.94, 0.98)	MODERATE
PERIPHERAL									
LR+	0 studies d	Cross sectional	Serious ^e	Serious ^f	Serious ^b	Serious ^c	220	9.59 (1.15, 80.06)	VERY LOW
LR-	2 studies ^d	Cross-sectional	No serious	Serious ^f	No serious	Serious ^g	229	0.66 (0.28, 1.57)	LOW
MIXED AXIAL	AND PERIPHER	AL							·
LR+	2 studios ^h	Cross sectional	No serious	No serious	No serious	No serious	074	14.67 (2.87, 75.08)	HIGH
LR-	2 studies ^h	Cross-sectional	No serious	No serious	No serious	No serious	874	0.92 (0.90, 0.95)	HIGH
ALL EVIDENC	E POOLED								
LR+	0 studiosi	Cross sectional	No serious	Serious ^f	Serious ^b	Serious ^c	0.000	4.26 (1.90, 9.56)	VERY LOW
LR-	8 studies'	Cross-sectional	No serious	Serious ^f	No serious	No serious	2,888	0.95 (0.92, 0.98)	MODERATE

а

van Hoeven 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE) >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) b

с At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2).

d Sadek 2007; You 2015

е >33.3% of weight in meta-analysis comes from studies with serious risk of bias

f 12 ≥ 50%

g At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5).

D'Agostino 2011; Tomero 2014 h

i D'Agostino 2011; Sadek 2007; Tomero 2014; You 2015; van Hoeven 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

Study	TP	FN	FP	TN	LR-	(95%Cl)	LR+ (95%C	ŋ					
AXIAL.													
Clinician diagnosis											i .		
van den Berg 2013b (ASAS)	28	393	-5	259	0.95	(0.92, 0.98)	3.51 (1.37,	8.98)					
van den Berg 2013b (SPACE)	4	61	2	90	0.96	(0.90, 1.03)	2.83 (0.53,	15.00)			i		
RE subtotal						(0.93, 0.98)	3.33 (1.47,	7.56)					
Within-substratum heterogenei	ty, LR-	Tau*	0.00;	ChP=0.04	¢, d∜=1	(p=0.833); P=	0.0%				1		
Within-substratum heterogenei	ty, LR4	: Tau ^a	=0.00,	; Chi²=0.0	6, <i>di</i> =1	1 (p=0.825); Pi	=0.0%						
Published criteria											1		
van Hoeven 2014	4	82	9	269	0.99	(0.94, 1.04)	1.44 (0.45,	4.55)					
van Hoeven 2015	5	90	14	470		(0.93, 1.03)	1.82 (0.67,						
RE subtotal						(0.95, 1.02)	1.64 (0.77,	3.50)			i .		
Within-substratum heterogenei													
Within-substratum heterogenei	ty, LR4	: Tau ^a	=0.00,	; Chi²=0.0							i .	1	
RE subtotal						(0.94, 0.98)	2.28 (1.31,	3.96)					
Within-stratum heterogeneity, LR											1	1	
Within-stratum heterogeneity, LR													
Between-substratum heterogenei													
Between-substratum heterogenei	ty, LR4	: Chi ²	1.55,	df=1 (p=(0.213);	P=35.5%							
ERIPHERAL													
Clinician diagnosis													
Sadek 2007	2	57	0	22	0.99	(0.90, 1.06)	1.92 (0.10,	39.47)			i		
Published criteria	*	34		44	0.00	(0.30, 1.00)	1.52 (0.10,	30.42)				-	
You 2015	11	7	4	126	0.40	(0.22, 0.72)	19.86 (7.07,	55 79)			1	-	_
RE subtotal		r	~	120		(0.28, 1.57)	9.59 (1.15,						_
Within-stratum heterogeneity, LR	Tail	0.35	cha-	8 03 <i>d</i> f=1				00.00)					
Within-stratum heterogeneity, LR													
Between-substratum heterogenei							0						
Between-substratum heterogenei											- i		
berneter-outoritation neterogenet	iy, 671	- Quin -		01-1 00-0	e cango	1-04-170							
MIXED AXIAL AND PERIPHERAL													
Clinician diagnosis											1		
D'Agostino 2011	4	47	0	48	0.92	(0.84, 1.01)	8.48 (0.47,	153.45)					
Tomero 2014	43	495	1	236	0.92	(0.90, 0.95)	18.94 (2.62,	136.75)			1		
RE subtotal					0.92	(0.90, 0.95)	14.67 (2.87,	75.08)					
Within-substratum heterogenei	ty, LR-	Tau ^a	0.00;	ChP=0.00), df=1	(p=0.980); P=	0.0%						
Within-substratum heterogenei	ty, LR4	: Tau ^a	=0.00,	; Chi²=0.2	0, df='	1 (p=0.653); P=	=0.0%				i .		
Published criteria													
no data											i .		
RE subtotal						(0.90, 0.95)	14.67 (2.87,	75.08)					
Within-stratum heterogeneity, LR											1		
Within-stratum heterogeneity, LR	+: Tau	≈ 0.00;	ChP=	=0.20, d#=	1 (p=0	.653); P=0.0%							
E mota anabreio					0.05	0.02 0.095	4 26 (1 00	9.565					
E meta-analysis	00.04	3-16 7	0.4	7 (+=0.04		(0.92, 0.98)	4.26 (1.90,	3.30)		1		i .	
Overall heterogeneity, LR-: Tau≇0.								-					-
Overall heterogeneity, LR+: Tau ² =0								.0	1 .02	.05	.1	.2	
letween-stratum heterogeneity, LR													
letween-stratum heterogeneity, LR	+: Gar	-13.80	ç ai≃2	: (p=0.00)	1, 1-20	0.0%			dearee	aina arab	ability		
									decte9	ising prob	CHECKING A		

decreasing probability ← of disease, given (positive or negative) result

т

 \rightarrow

59

Figure 37: Dactylitis – forest plot: likelihood ratios

Study	TP	FN	FP	114	Sen	s. (95'	aru)		Spec.	60%C	.g	· _					_						_
AXIAL Clinician diamonia																							
Clinician diagnosis	~~	222		0.00	~ ~			L	0.00		0.00												
van den Berg 2013b (ASAS)	28	393	5	259		7 (0.0				(0.96,		· · · ·	-					-					
van den Berg 2013b (SPACE)	4	61	2	90		6 (0.0				(0.92,													
RE subtotal						0.0) 71				(0.96,	0.99)		•					•					
Within-substratum heterogeneit												- I											
Within-substratum heterogeneit	y, LRH	r: Tau ^a	=0.00;	Chi ² =0	.03, d	=1 (p=	0.860	3); P=0	.0%			- I											
Published criteria												- I.											
van Hoeven 2014	4	82	9	269	0.0	0.0) 3(12, 0.1	2)	0.97	(0.94,	0.98)	-	_					•					
van Hoeven 2015	5	90	14	470	0.0	6 (0.0	2,0.1	2)	0.97	(0.95,	0.98)	-	_					-					
RE subtotal					0.0	0.0) 21	3, 0.0	19)	0.97	(0.95,	0.98)	- I I						•					
Within-substratum heterogeneit	v. LR-	: Tau ^s =	0.00;	ChP=0.	04. df:	:1 (p=	0.850	: P=0.	0%		,	- I.						1					
Within-substratum heterogeneit												- I											
RE subtotal	,,		,			16 Ň.O				(0.96,	0.98)	- 14						•					
Within-stratum heterogeneity, LR-	Tau	=0.00	Ch2=I	2.64 df						(a)	,	- 11						· ·					
Within-stratum heterogeneity, LR												- I.											
Between-substratum heterogeneit												- I.											
Between-substratum heterogeneit												- I.											
berneter-out-out-out-out-out-out-out-out-out-out	y, 1211	- on -		on- 1 (b	-0.071	9, 1 - 1						- I											
PERIPHERAL																							
Clinician diagnosis												- I.											
Sadek 2007	2	57	0	22	0.0	4 (0.0	1 0 1	30	0.99	0.73.	1.000												
Published criteria	*	34		44	0.4	- (0.0		3)	0.30	(a. r.a.	1.00)												
You 2015	11	7		126	0.0	1.0.5	0.00	200	0.07	0.92.	0.000	- I.											
	11	1	4	120		1 (0.3									<u> </u>								
RE subtotal						1 (0.0			0.97	(0.93,	0.99)	_ r						•					
Within-stratum heterogeneity, LR-												- I.											
Within-stratum heterogeneity, LR												- I.											
Between-substratum heterogeneit								á				- I.											
Between-substratum heterogeneit	y, LR4	r: Chi²=	=0.06,	df=1 (p	=0.814	l); P=(2.0%																
MIXED AXIAL AND PERIPHERAL																							
Clinician diagnosis												- I.											
D'Agostino 2011	4	47	0	48	0.0	0.0) 0	8.03	200	0.99	(0.86,	1.000		-						_				
Tomero 2014	43	495	1	236		0.0				0.97		1											
RE subtotal	40	430		230		0.0,8				0.97.		- L											
		. T	0.00	012-0						ioran'	1.00)	- 1	•										
Within-substratum heterogeneit												- I.											
Within-substratum heterogeneit	у, <i>Ц</i> яч	r: 1aun	=0.00;	CUI=0	20, di	=1 (p=	0.005	<i>l</i>); <i>P</i> ≈0	.0%			- I											
Published criteria												- I.											
no data												- I.						L .					
RE subtotal						0.0) 81			0.99	(0.97,	1.00)		•					•					
Within-stratum heterogeneity, LR-												- I.											
Within-stratum heterogeneity, LR+	t: Tau	≈ 0.00;	Ch/2=	0.26, d	1=1 (p:	0.609)); P=I	0.0%															
DF									0.07	0.00	0.00		•					. I.					
RE meta-analysis		7- 40 -		7 6		ia (oro		io)	0.97	(0.96,	0.96)	I '	•										
Overall heterogeneity, LR-: Tau=0.5													0.00	0.00	0.00	0.00	100	-	0.00	0.00	0.10	0.00	-
Overall heterogeneity, LR+: Tau ² =0.	00; Cł	w=5.14	\$, d1=i	(p=0.6	143); P	=0.0%						0.00	0.20	0.40	0.60	0.80	1.00	1.00	0.80	0.60	0.40	0.20	
	_																						
Between-stratum heterogeneity, LR- Between-stratum heterogeneity, LR-														Sensit							ificity		

Figure 38: Dactylitis – forest plot: sensitivity and specificity

G.1.1.19 Arthritis

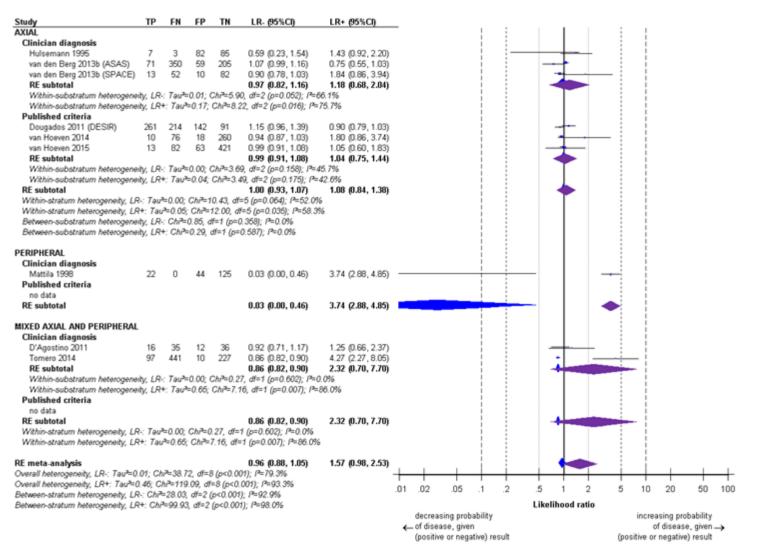
Arthritis / peripheral arthritis

Table 20: Arthritis / peripheral arthritis – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	6 studies ^a	Cross-sectional	No serious	Serious ^b	Serious ^c	No serious	2,670	1.08 (0.84, 1.38)	LOW
LR-	0 3000183	01033-300101101	No serious	Serious ^b	Serious ^c	No serious	2,070	1.00 (0.93, 1.07)	LOW
PERIPHERAL									
LR+	4 1 J d	One of the set	Serious	n/a	No serious	No serious	404	3.74 (2.88, 4.85)	MODERATE
LR-	1 study ^d	Cross-sectional	Serious	n/a	No serious	No serious	191	0.03 (0.00, 0.46)	MODERATE
MIXED AXIAL	AND PERIPHERA	L							
LR+	2 studios	Cross-sectional	No serious	Serious ^b	No serious	Serious ^f	874	2.32 (0.70, 7.70)	LOW
LR-	2 studies ^e	CIUSS-Sectional	No serious	No serious	No serious	No serious	0/4	0.86 (0.82, 0.90)	HIGH
ALL EVIDENC	E POOLED								
LR+	0 studies g	Cross sectional	No serious	Serious ^b	Serious ^c	Serious ^f	2 725	1.57 (0.98, 2.53)	VERY LOW
LR-	9 studies ^g	Cross-sectional	No serious	Serious ^b	Serious ^c	No serious	3,735	0.96 (0.88, 1.05)	LOW

^a Dougados 2011 (DESIR); Hulsemann 1995; van Hoeven 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

^b 12 ≥ 50%


° >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis)

d Mattila 1998

e D'Agostino 2011; Tomero 2014

f At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2).

⁹ Dougados 2011 (DESIR); D'Agostino 2011; Hulsemann 1995; Mattila 1998; Tomero 2014; van Hoeven 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

Figure 39: Arthritis / peripheral arthritis – forest plot: likelihood ratios

Study	TP	FN	FP	TN	Sens. (95%Cl)	Spec. (95%Cl)					
AXIAL											
Clinician diagnosis											
Hulsemann 1995	7	3	82	85	0.70 (0.38, 0.90) 0.51 (0.43, 0.58)					
van den Berg 2013b (ASAS)	71	350	59	205	0.17 (0.14, 0.21	0.78 (0.72, 0.82)		-			
van den Berg 2013b (SPACE)	13	52	10	82	0.20 (0.12, 0.31	0.89 (0.81, 0.94)					
RE subtotal					0.27 (0.13, 0.48	0.75 (0.51, 0.90)					
Within-substratum heterogene	ity, LR-	: Tau²=	0.48; (Chi ² =12	2.24, df=2 (p=0.002)	P=83.7%					
Within-substratum heterogene	ly, LRH	: Tau ^a	=0.84;	Chi2=4	8.62, df=2 (p<0.001); P=95.9%					
Published criteria											
Dougados 2011 (DESIR)	261	214	142	91	0.55 (0.50, 0.59	0.39 (0.33, 0.45)		-	⊷		
van Hoeven 2014	10	76	18	260	0.12 (0.06, 0.20	0.94 (0.90, 0.96)		-			
van Hoeven 2015	13	82	63	421	0.14 (0.08, 0.22	0.87 (0.84, 0.90)	- -	•		-	
RE subtotal					0.23 (0.05, 0.61	0.80 (0.38, 0.96)	- I -		-		
Within-substratum heterogene	iy, LR-	: Tau ^a	2.11; (ChP=77	.36, df=2 (p<0.001)	P=97.4%					
Within-substratum heterogene											
RE subtotal					0.26 (0.12, 0.49	0.78 (0.57, 0.90)					
Within-stratum heterogeneity, LR	: Tau ²	±1.40;	Chi?=1	79.55	df=5 (p<0.001); P=	7.2%					
Within-stratum heterogeneity, LR	+: 7au	=1.42;	Chi2=	257.38,	df=5 (p<0.001); P=	98.1%					
Between-substratum heterogene	ty, LR-	Chr=	89.95	df=1 (c	<0.001); /=98.9%						
Between-substratum heterogene											
Clinician diagnosis Mattila 1998 Published criteria no data RE subtotal	22	0	44	125	0.98 (0.73, 1.00 0.98 (0.73, 1.00					•	
										· · ·	
MIXED AXIAL AND PERIPHERAL											
Clinician diagnosis											
D'Agostino 2011	16	35	12	36	0.31 (0.20, 0.45	0.75 (0.61, 0.85)					
Tomero 2014	97	441	10	227	0.18 (0.15, 0.22	0.96 (0.92, 0.98)				-	
RE subtotal					0.23 (0.13, 0.38						
Within-substratum heterogene											
Within-substratum heterogene	ity, LR4	: Tau	=1.94;	Chi2=1	9.00, df=1 (p<0.001); P=94.7%					
Published criteria											
no data								_			
RE subtotal					0.23 (0.13, 0.38						
Within-stratum heterogeneity, LR								-			
Within-stratum heterogeneity, LR	+: Tau	≈1.94;	Ch/2=	19.00, (df=1 (p<0.001); P=9	4.7%					
RE meta-analysis					0.30 (0.17, 0.47	0.80 (0.66, 0.90)					
Overall heterogeneity, LR-: Tau ² =1.								· ·		· · · · · ·	-
Overall heterogeneity, LR+: Tau ² =1							0.00	0.20 0.40	0.60 0.80 1.00	1.00 0.80 0.60 0.40 0.20	0.00
Determined at the balance and the	- Ch-3	-66.99	-K-2.	(0 00	H. 12-120 MV						
Between-stratum heterogeneity, LR Between-stratum heterogeneity, LR											

Figure 40: Arthritis / peripheral arthritis – forest plot: sensitivity and specificity

G.1.1.20 Oligoarthritis (in people with symptoms of peripheral arthritis)

Table 21 Oligoarthritis – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality		
AXIAL											
LR+	0 studies	-	-	-	-	-	-	-	-		
LR-			-	-	-	-		-	-		
PERIPHERAL	PERIPHERAL										
LR+	2 studios?	Cross-sectional	Serious ^b	No serious	Serious ^c	No serious	299	28.58 (2.85, 286.02)	LOW		
LR-	2 studies ^a		Serious ^b	Serious ^d	Serious ^c	No serious	299	0.76 (0.64, 0.90)	VERY LOW		
MIXED AXIAL	MIXED AXIAL AND PERIPHERAL										
LR+	0 studios	-	-	-	-	-		-	-		
LR-	0 studies		-	-	-	-	-	-	-		
ALL EVIDENCE	ALL EVIDENCE POOLED										
LR+	O studies a	Cross-sectional	Serious ^b	No serious	Serious ^c	No serious	299	28.58 (2.85, 286.02)	LOW		
LR-	2 studies ^a		Serious ^b	Serious ^d	Serious ^c	No serious		0.76 (0.64, 0.90)	VERY LOW		

* Sadek 2007; Tinazzi 2012

^b >33.3% of weight in meta-analysis comes from studies with serious risk of bias

^c >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis)

d 12 ≥ 50%

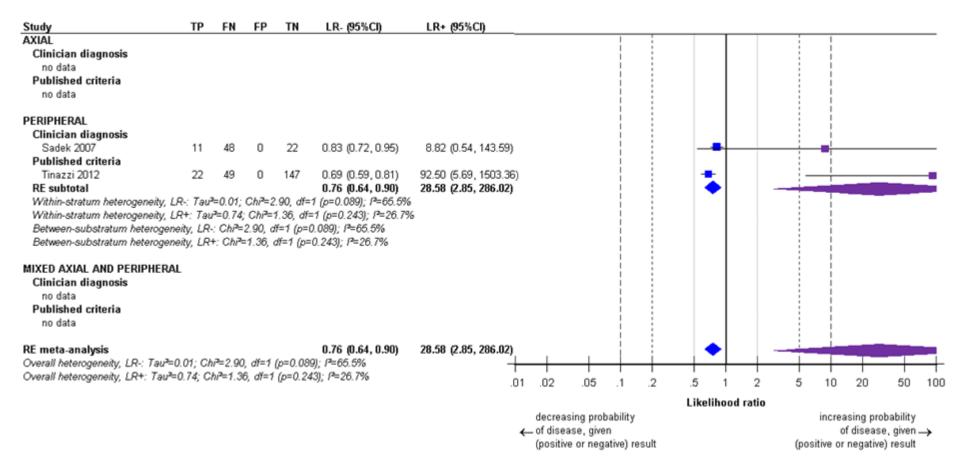


Figure 41: Oligoarthritis (in people with symptoms of peripheral arthritis) – forest plot: likelihood ratios

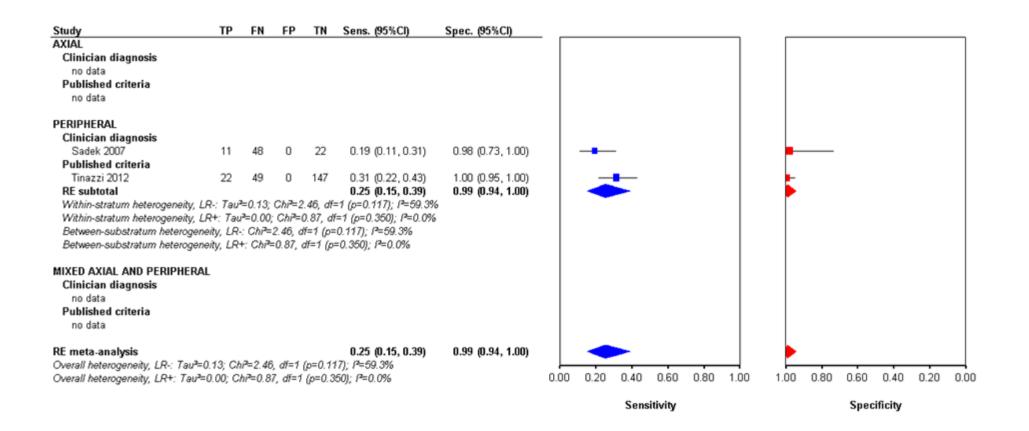


Figure 42: Oligoarthritis (in people with symptoms of peripheral arthritis) – forest plot: sensitivity and specificity

Nail disease G.1.1.21

Table 22: Nail disease – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality		
AXIAL											
LR+	0 studios	-	-	-	-	-	-	-	-		
LR-	0 studies		-	-	-	-		-	-		
PERIPHERAL											
LR+	E studies a	Cross-sectional	Serious ^b	Serious ^c	Serious ^d	Serious ^e	3,568	1.60 (1.03, 2.47)	VERY LOW		
LR-	5 studies ^a		Serious ^b	No serious	Serious ^d	No serious		0.76 (0.64, 0.91)	LOW		
MIXED AXIAL A	MIXED AXIAL AND PERIPHERAL										
LR+	0 studios	-	-	-	-	-	-	-	-		
LR-	0 studies		-	-	-	-		-	-		
ALL EVIDENCE	ALL EVIDENCE POOLED										
LR+	E studies a	dies ^a Cross-sectional	Serious ^b	Serious ^c	Serious ^d	Serious ^e	3,568	1.60 (1.03, 2.47)	VERY LOW		
LR-	5 studies ^a		Serious ^b	No serious	Serious ^d	No serious		0.76 (0.64, 0.91)	LOW		

а

Haroon 2013; Tinazzi 2012; Wilson 2009; Yang 2011; You 2015 >33.3% of weight in meta-analysis comes from studies with serious risk of bias b

с 12 ≥ 50%

>33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). d

е

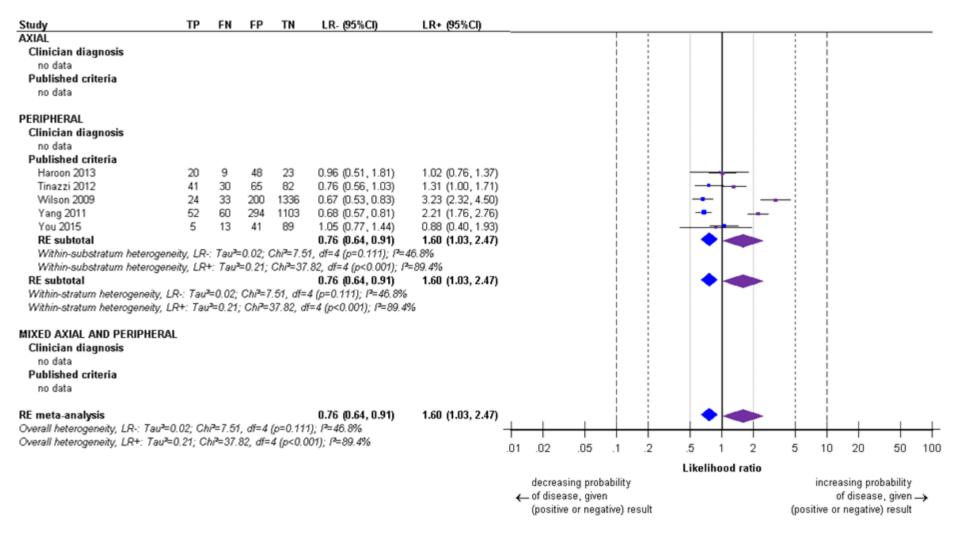


Figure 43: Nail disease – forest plot: likelihood ratios

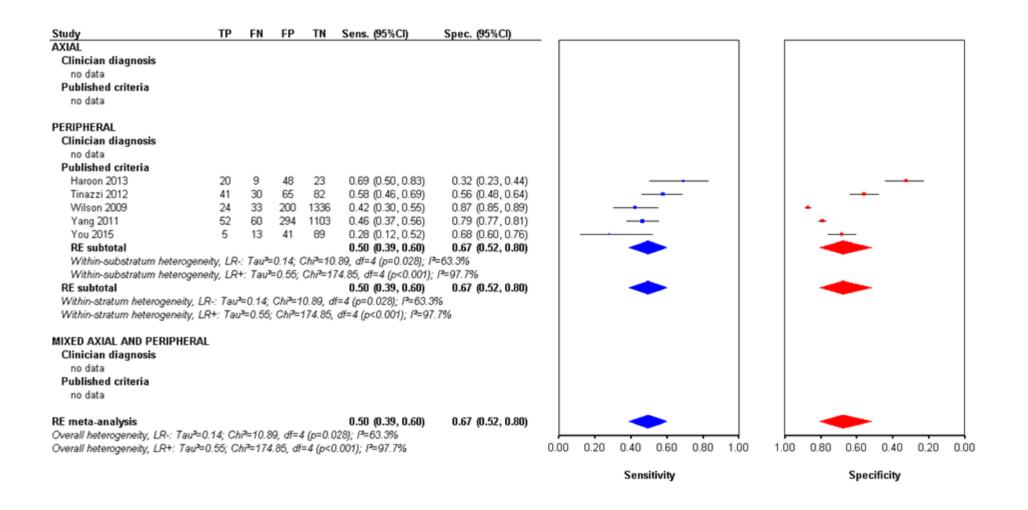


Figure 44: Nail disease – forest plot: sensitivity and specificity

Fatigue / malaise G.1.1.22

Table 23: Fatigue / malaise – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality		
AXIAL											
LR+	0 studios	-	-	-	-	-		-	-		
LR-	0 studies		-	-	-	-	-	-	-		
PERIPHERAL											
LR+	0 studies?	Cross-sectional	No serious	No serious	Serious ^b	No serious	329	0.93 (0.70, 1.24)	MODERATE		
LR-	2 studies ^a		Serious ^c	No serious	Serious ^b	No serious		1.14 (0.89, 1.45)	LOW		
MIXED AXIAL	MIXED AXIAL AND PERIPHERAL										
LR+	0 studios	-	-	-	-	-	-	-	-		
LR-	0 studies		-	-	-	-		-	-		
ALL EVIDENCE	ALL EVIDENCE POOLED										
LR+	O studie s	Cross-sectional	No serious	No serious	Serious ^b	No serious	329	0.93 (0.70, 1.24)	MODERATE		
LR-	2 studies ^a		Serious ^c	No serious	Serious ^b	No serious		1.14 (0.89, 1.45)	LOW		

Kvien 1996; Mattila 1998 а

 >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis)
 >33.3% of weight in meta-analysis comes from studies with serious risk of bias b

с

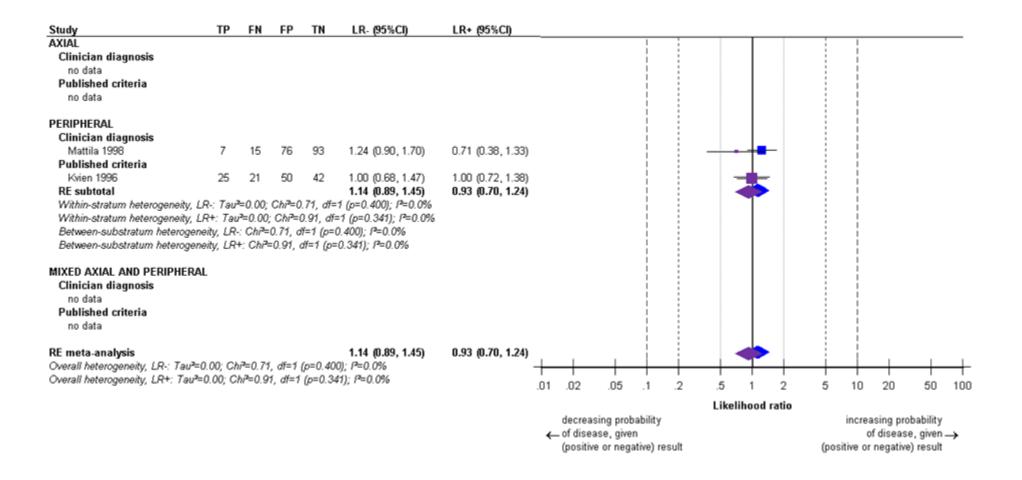


Figure 45: Fatigue / malaise – forest plot: likelihood ratios

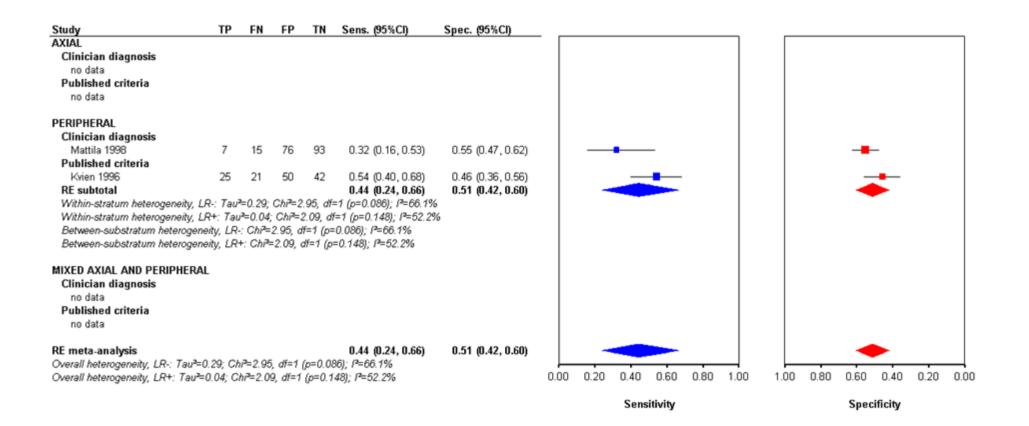


Figure 46: Fatigue / malaise – forest plot: sensitivity and specificity

Family history of spondyloarthritis

Table 24: Family history of spondyloarthritis – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	6 studies ^a	Cross-sectional	No serious	No serious	No serious	No serious	2,908	1.63 (1.33, 1.98)	HIGH
LR-	o studies	CI055-Sectional	No serious	No serious	No serious	No serious	2,900	0.91 (0.86, 0.96)	HIGH
PERIPHERAL									
LR+	2 studies ^b	Cross-sectional	No serious	Serious ^c	No serious	Serious ^d	666	5.35 (0.87, 32.86)	LOW
LR-	2 studies"	CIUSS-Sectional	Serious ^e	Serious ^c	No serious	No serious	000	0.91 (0.84, 0.98)	LOW
MIXED AXIAL	AND PERIPHERAL	-							
LR+	1 atudiaat	Cross sectional	No serious	Serious ^c	No serious	Serious ^d	1 0 0 1	2.13 (1.13, 4.01)	LOW
LR-	4 studies ^f	Cross-sectional	Serious ^e	Serious ^c	Serious ^g	No serious	1,821	0.89 (0.79, 1.00)	VERY LOW
ALL EVIDENCE	E POOLED								
LR+	12 studiosh	Cross sectional	No serious	No serious	No serious	Serious ^d	5 205	1.81 (1.46, 2.23)	MODERATE
LR-	12 studies ^h	Cross-sectional	Serious ^e	Serious ^c	No serious	No serious	5,395	0.91 (0.87, 0.94)	LOW

а Poddubnyy 2011; Sieper 2013; van Hoeven 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

b Rudwaleit 2011; Tey 2010

с 12 ≥ 50%

d At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2).

>33.3% of weight in meta-analysis comes from studies with serious risk of bias е

f D'Agostino 2011; Liao 2009; Salvarini 2001; Tomero 2014

g

>33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) D'Agostino 2011; Liao 2009; Poddubnyy 2011; Rudwaleit 2011; Salvarini 2001; Sieper 2013; Tey 2010; Tomero 2014; van Hoeven 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van h den Berg 2013b (SPACE)

	TP	FN	FP	TN	LR- (95%CI)	LR+ (95%CI)									-		
AXIAL										1					1		
Clinician diagnosis										1 1							
Poddubnyy 2011	21	68	25	128	0.91 (0.80, 1.05)	1.44 (0.86, 2				1 1		+	-		1		
Sieper 2013	48	324	45	464	0.96 (0.91, 1.00)	1.46 (0.99, 2				1 1		+	-				
van den Berg 2013b (ASAS)	106	315	52	212	0.93 (0.86, 1.01)	1.28 (0.95, 1	.72)			i :		+-	-		i		
van den Berg 2013b (SPACE)	31	34	25	67	0.72 (0.55, 0.93)	1.76 (1.15, 2	67)			1 1	-		-				
RE subtotal					0.93 (0.87, 0.99)	1.43 (1.18, 1.	.73)			1 1		•	•		i		
Within-substratum heterogenei	by LR-	Tau*	0.00; (ChP=4.67	, df=3 (p=0.197); P	-35.8%				1 1		1.1					
Within-substratum heterogenei										1 1					i .		
Published criteria					.,					1 1							
van Hoeven 2014	17	69	23	255	0.87 (0.78, 0.98)	2.39 (1.34, 4	26)			1 1					i		
van Hoeven 2015	24	71	56	428	0.85 (0.75, 0.95)	2.18 (1.43, 3				1 1			_				
RE subtotal					0.86 (0.79, 0.93)	2.25 (1.60, 3				1 1		•	-		i .		
Within-substratum heterogenei	N 18-	Tault	0.00	068-0-17						1 1		· I					
Within-substratum heterogenei										1 1					÷ .		
RE subtotal	19, 1944	100	10.00;	GM-0.0	0.91 (0.86, 0.96)	1.63 (1.33, 1	005			1 1					1		
Within-stratum heterogeneity, LR	. Tod	-0.00	chard a							1 1							
Within-stratum heterogeneity, LR										1 1							
						5 9				1 1							
Between-substratum heterogenei										1					1		
Between-substratum heterogenei	IV, LR+	CN/4	0.76, (31=3 (b=0	023); 1*=80.6%					1 1				1	1		
PERIPHERAL										1					1		
Clinician diagnosis										1					1		
Rudwaleit 2011	36	140	7	83	0.86 (0.78, 0.95)	2.63 (1.22, 5	CT)			1 1		-		1	1		
	30		- 1							1 1				-	i		
Tey 2010	9	125	1	265	0.94 (0.89, 0.96)	17.87 (2.29, 1				1 1				1			
RE subtotal					0.91 (0.84, 0.98)	5.35 (0.87, 3	2,86)			1 1		-			-		
Within-substratum heterogenei										1 1							
Within-substratum heterogenei	iy, LR+	: Taun	41.21;	ChP=2.9	3, df=1 (p=0.087); F	≈65.8%				1 1					i .		
Published criteria										1 1							
no data																	
RE subtotal					0.91 (0.84, 0.96)	5.35 (0.87, 3	2,86)			1 1			-				
Within-stratum heterogeneity, LR	: TauP	0.00;	ChP=2	1.29, df=1	(p=0.131); P=56.3	16				1 1					1		
Within-stratum heterogeneity, LR	+: Tau	h=1.21;	ChPs;	2.93, df=	1 (p=0.087); P=66.8	196				1 1					1		
										1					1		
MIXED AXIAL AND PERIPHERAL										1 1					1		
Clinician diagnosis										1 1							
D'Agostino 2011	18	33	5	43	0.72 (0.58, 0.90)	3.39 (1.37, 8				1 1	-			-	1		
Tomero 2014	166	372	44	193	0.85 (0.78, 0.92)	1.66 (1.24, 2				1			+		1		
					0.81 (0.70, 0.94)	2.07 (1.09, 3	.95)			1 1		<			1		
RE subtotal			- market 1	Ch2+1 76	dist (web 195) 0					1 1		1 I I			1		
RE subtotal Within-substratum heterogenei	N. LR .:	: Tau*	0.07; 0	ALM	C 01-1 [D-0.100]C 1.												
															1		
Within-substratum heterogenei																	
Within-substratum heterogenei Within-substratum heterogenei						₩53.1%	73.431										
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009	iy, LR+ 2	90	60.13; 0	ChP=2.1	3, d=1 (p=0.144); / 0.97 (0.94, 1.01)	№53.1% 37.42 (1.81,7)							_		-		
Within-substratum heterogenei Within-substratum heterogenei Published criteria Lies 2009 Salvarini 2001		: Tauh	60.13; 0	Ch7=2.1	0, df=1 (p=0.144); / 0.97 (0.94, 1.01) 0.95 (0.80, 1.14)	**53.1% 37.42 (1.81, 7 1.33 (0.53, 3	(31)				_		_				
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009 Salvarini 2001 RE subtotal	ές, LR+ 2 5	90 24	0.13; 0 17	695 114	0, d=1 (p=0.144); / 0.97 (0.94, 1.01) 0.95 (0.80, 1.14) 0.97 (0.94, 1.01)	*53.1% 37.42 (1.81, 7 1.33 (0.53, 3 5.09 (0.21, 1)	(31)						_				
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009 Salvaini 2001 RE substrat Within-substratum heterogenei	λγ, LR+ 2 5 λγ, LR-:	90 24 7au*	0.13; 0 17 0.00; (Chille 2.1 695 114 Chille 0.07	3, d=1 (p=0.144); 1 0.97 (0.94, 1.01) 0.95 (0.80, 1.14) 0.97 (0.94, 1.01) 1, d=1 (p=0.798); 1 ⁹	**53.1% 37.42 (1.81, 7 1.33 (0.53, 3 5.09 (0.21, 1 *0.0%	(31)						-				_
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009 Salvaini 2001 RE substratum heterogenei Within-substratum heterogenei	λγ, LR+ 2 5 λγ, LR-:	90 24 7au*	0.13; 0 17 0.00; (Chille 2.1 695 114 Chille 0.07	3, df=1 (p=0.144); 1 0.97 (0.94, 1.01) 0.95 (0.80, 1.14) 0.97 (0.94, 1.01) 1, df=1 (p=0.798); P 8, df=1 (p=0.039); I	≈53.1% 37.42 (1.81, 7) 1.33 (0.53, 3 5.09 (0.21, 1) ≈0.0% ≈78.6%	.31) 26.03)						-				_
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009 Salvarini 2001 RE subtotal Within-substratum heterogenei RE subtotal	2 5 8, LR+ 8, LR+ 8, LR+	90 24 7au* 7au*	0.13; 0 17 0.00; (4.27;	Chille 2.1 695 114 Chille 0.07 Chille 4.2	3, df=1 (p=0.144); / 0.97 (0.94, 1.01) 0.95 (0.80, 1.14) 0.97 (0.94, 1.01) ; df=1 (p=0.798); / 0.89 (0.79, 1.00)	*53.1% 37.42 (1.81, 7 1.33 (0.53, 3 5.09 (0.21, 1) *0.0% *76.6% 2.13 (1.13, 4	.31) 26.03)				_						
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009 Salvarini 2001 RE substratum heterogenei Within-substratum heterogenei RE substratum heterogeneity, LR	ly, LR+ 2 5 ly, LR- ly, LR+ ly, LR+	90 24 : Tau ^a : Tau ^a : Tau ^a	0.13; 0 17 0.00; 0 4.27; ChP=1	Chi=2.1 695 114 Chi=0.07 Chi=4.2 4.82, df=	3, df=1 (p=0.144); / 0.97 (0.94, 1.01) 0.95 (0.80, 1.14) 0.97 (0.94, 1.01) ; df=1 (p=0.798); / ² 8, df=1 (p=0.039); / 0.89 (0.79, 1.00) 3 (p=0.002); / ² =79.1	*53.1% 37.42 (1.81, 7 1.33 (0.53, 3 5.09 (0.21, 1) *0.0% *78.6% 2.13 (1.13, 4 %	.31) 26.03)				_	• -					-
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liso 2009 Salvarini 2001 RE subtotal Within-substratum heterogenei RE subtotal Within-stratum heterogeneity, LR Within-stratum heterogeneity, LR	ly, LR+ 2 5 ly, LR+ ly, LR+ ly, LR+ H; Tau ^A	90 24 : Tau ^a : Tau ^a : Tau ^a : Tau ^a	0.13; 0 17 0.00; (4.27; ChP=1 ; ChP=1	Chi ² =2.1 695 114 Chi ² =0.07 Chi ² =4.2 4.82, df= 6.41, df=	3, d=1 (p=0.144); / 0.97 (0.94, 1.01) 0.95 (0.80, 1.14) 0.97 (0.94, 1.01) , d=1 (p=0.798); / 0.89 (0.79, 100) 3 (p=0.002); /=53.2 3 (p=0.093); /=53.2	*53.1% 37.42 (1.81, 7 1.33 (0.53, 3 5.09 (0.21, 1) *0.0% *78.6% 2.13 (1.13, 4 %	.31) 26.03)				_	• -					_
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009 Salvaini 2001 RE subtotal Within-substratum heterogenei Within-substratum heterogeneily, LR Within-stratum heterogeneily, LR Between-substratum heterogeneily, LR Between-substratum heterogeneily, LR	hy, LR+ 2 5 hy, LR- hy, LR+ hy, LR+ hy, LR+	90 24 : Tau ³ : Tau ³ : Tau ³ : Tau ³ : Tau ³ : Ch ³ : Ch ³	0.13; 0 17 0.00; (4.27; ChP=1 ; ChP=(13.00,	Chi ² =2.1 695 114 Chi ² =0.07 Chi ² =4.2 (4.82, df= 6.41, df= df=1 (p<)	3, d=1 (p=0.144); l 0.37 (0.34, 1.01) 0.37 (0.34, 1.01) 0.37 (0.34, 1.01) , d=1 (p=0.798); l 0.49 (0.79, 1.00) 3 (p=0.002); l=793, 3 (p=0.002); l=753, 2001); l=92.3%	*53.1% 37.42 (1.81, 7 1.33 (0.53, 3 5.09 (0.21, 1) *0.0% *78.6% 2.13 (1.13, 4 %	.31) 26.03)					• -					_
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liso 2009 Salvarini 2001 RE subtotal Within-substratum heterogenei RE subtotal Within-stratum heterogeneity, LR Within-stratum heterogeneity, LR	hy, LR+ 2 5 hy, LR- hy, LR+ hy, LR+ hy, LR+	90 24 : Tau ³ : Tau ³ : Tau ³ : Tau ³ : Tau ³ : Ch ³ : Ch ³	0.13; 0 17 0.00; (4.27; ChP=1 ; ChP=(13.00,	Chi ² =2.1 695 114 Chi ² =0.07 Chi ² =4.2 (4.82, df= 6.41, df= df=1 (p<)	3, d=1 (p=0.144); l 0.37 (0.34, 1.01) 0.37 (0.34, 1.01) 0.37 (0.34, 1.01) , d=1 (p=0.798); l 0.49 (0.79, 1.00) 3 (p=0.002); l=793, 3 (p=0.002); l=753, 2001); l=92.3%	*53.1% 37.42 (1.81, 7 1.33 (0.53, 3 5.09 (0.21, 1) *0.0% *78.6% 2.13 (1.13, 4 %	.31) 26.03)				_	• -					_
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009 Salvarini 2001 RE subtotal Within-substratum heterogenei RE subtotal Within-stratum heterogeneity, LR Between-substratum heterogeneity Between-substratum heterogeneity	hy, LR+ 2 5 hy, LR- hy, LR+ hy, LR+ hy, LR+	90 24 : Tau ³ : Tau ³ : Tau ³ : Tau ³ : Tau ³ : Ch ³ : Ch ³	0.13; 0 17 0.00; (4.27; ChP=1 ; ChP=(13.00,	Chi ² =2.1 695 114 Chi ² =0.07 Chi ² =4.2 (4.82, df= 6.41, df= df=1 (p<)	3, df=1 (p=0.144); / 0.97 (0.94, 1.01) 0.95 (0.80, 1.14) 0.97 (0.94, 1.01) 0.97 (0.94, 1.01) 8, df=1 (p=0.039); / 0.039 (0.798); P=3, 2 3 (p=0.023); P=53, 2 0.001); P=52, 2% 1.976); P=0.0%	 1% 37.42 (1.81, 7) 1.33 (0.53, 3) 5.09 (0.21, 1) 0.0% 70.6% 2.13 (1.13, 4) % 	.31) 26.03) .01)					• -					
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009 Salvaini 2001 RE substratum heterogenei Within-substratum heterogenei Within-stratum heterogeneily, LR Between-substratum heterogeneil Between-substratum heterogeneil Between-substratum heterogeneil RE meta-analysis	hy, LR+ 2 5 hy, LR- hy, LR+ :- Tauh hy, LR+ hy, LR+	90 24 : Tau ^a : Tau ^a : Tau ^a : Tau ^b : Ch ^a : : Ch ^a :	0.13; 0 17 0.00; (=4.27; Chi≥1; Chi≥1; 13.00, 0.00; (Chille 2.11 695 114 Chille 4.2 14.82, dt= 6.41, dt= dt=1 (p<) dt=1 (p<)	3, df=1 (p=0.144); F 0.97 (0.94, 1.01) 0.95 (0.80, 1.14) (.df=1 (p=0.798); F 8, df=1 (p=0.038); F 9, df=1 (p=0.038); F 0.95 (0.798, 1.80) 3 (p=0.002); F=79.1 3 (p=0.002); P=79.1 3 (p=0.002); P=2.36 0.976); P=0.096 0.91 (0.87, 0.94)	*53.1% 37.42 (1.81, 7 1.33 (0.53, 3 5.09 (0.21, 1) *0.0% *78.6% 2.13 (1.13, 4 %	.31) 26.03) .01)				_	• -					_
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liso 2009 Salvairi 2001 RE subtotal Within-substratum heterogenei Within-substratum heterogenei RE subtotal Within-stratum heterogenei Retween-substratum heterogenei Between-substratum heterogenei Between-substratum heterogenei Between-substratum heterogenei Between-substratum heterogenei Between-substratum heterogenei Between-substratum heterogenei Between-substratum heterogenei Between-substratum heterogenei Between-substratum heterogenei	by, LR+ 2 5 by, LR+ by, LR+ 1+: Tau ² by, LR+ by, LR+ 00; Ch ²	90 24 : Tau ² : Tau ² : Tau ² : Tau ² : Tau ² : Ch ² : Ch ² : Ch ²	=0.13; 0 17 =4.27; ChP=1 : ChP=1 13.00, =0.00, 0 19, d=1	Chille 2.11 695 114 Chille 4.21 14.82, df= 6.41, df=1 df=1 (p=0 11 (p=0.0	3, d=1 (p=0.144); / 0.97 (0.94, 1.01) 0.95 (0.80, 1.14) 0.97 (0.24, 1.01) 0.97 (0.24, 1.01) 0.97 (0.24, 1.01) 0.97 (0.24, 1.01) 0.99 (0.73, 1.00) 0.99 (0.73, 1.00) 0.00); /=752. 0.001; /=762. 0.075; /=760.0% 0.91 (0.07, 0.94) 0.9; /=50.96	 1% 37.42 (1.81, 7) 1.33 (0.53, 3) 5.09 (0.21, 1) 0.0% 70.6% 2.13 (1.13, 4) % 	.31) 26.03) .01)	+	+			• -				-	+
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009 Salvarini 2001 RE subiotal Within-substratum heterogenei RE subiotal Within-stratum heterogeneity, LR Between-substratum heterogeneit Between-substratum heterogeneit Between-substratum heterogeneit Between-substratum heterogeneit Between-substratum heterogeneit Between-substratum heterogeneit Between-substratum heterogeneit Between-substratum heterogeneit Between-substratum heterogeneit Between-substratum heterogeneit	by, LR+ 2 5 by, LR+ by, LR+ by, LR+ by, LR+ 00; Ch/ 105; Ch	90 24 : Tau ² : Tau ² : Tau ² : Tau ² : Tau ² : Ch ² : Ch ² : Ch ² : Ch ²	0.13; 0 17 0.00; (4.27; ChP=1 ChP=(13.00; 0.00; (13.00; 0.00; (13.00; 0.00; (13.00; 0.00; (13.00; (13.00; (13.00; (13.00; (14.27; 13.00; (13.00; (14.27; 13.00; (13.00; (14.27; 13.00; (13.00; (Chille 2.1: 695 114 Chille 0.07 Chille 4.2: 4.82, df= 6.41, df=: df=1 (p=0.0 11 (p=0.0 11 (p=0.0	3, df=1 (p=0.144); / 0.97 (0.94, 1.01) 0.95 (0.00, 1.14) , df=1 (p=0.798); / 8, df=1 (p=0.798); / 8, df=1 (p=0.038); / 0.89 (0.79, 1.00) 3 (p=0.002); /p=53, 3 0.001); /p=62, 3 0.001); /p=62, 3 0.001); /p=62, 3 0.001; /p=62, 3 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	 1% 37.42 (1.81, 7) 1.33 (0.53, 3) 5.09 (0.21, 1) 0.0% 70.6% 2.13 (1.13, 4) % 	.31) 26.03) .01)	.02	.05			• •	2	5	10		50
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009 Salvaini 2001 RE subtotal Within-substratum heterogenei Within-substratum heterogenei Within-stratum heterogeneity, LR Between-substratum heterogenei RE meta-analysis Overall heterogeneity, LR : Tau ² e0, Overall heterogeneity, LR : Tau ² e0, Overall heterogeneity, LR : Tau ² e0,	by, LR+ 2 5 by, LR- by, LR+ 1, Tau ^b by, LR+ by, LR+ 00; Chi 105; Chi 105; Chi	-: Tau ^A 90 24 :: Tau ^A :: Tau ^A :: Ch ^A :: Ch ^A :: Ch ^A :: Ch ^A :: Ch ^A :: Ch ^A	0.13; 0 17 0.00; (4.27; ChP=1 ChP=(13.00; (13.00; (13	Chille 2.1: 695 114 Chille 2.0.07 Chille 4.2 dist 0, exit dist 0,	3, df=1 (p=0.144); / 0.97 (0.94, 1.01) 0.95 (0.80, 1.14) 0.97 (0.94, 1.01) df=1 (p=0.0768); / 0.97 (0.94, 1.01) df=1 (p=0.0768); / 0.98 (0.97, 1.00) 3 (p=0.002); /P=72; 3 (p=0.096); /P=62; 0.91 (0.87, 0.54) 0.91 (0.87, 0.54) 0.91 (0.87, 0.54) 0.91 (0.87, 0.54) 0.91 (0.95, 25) (0.91 (0.95, 25) (0.95, 2	 1% 37.42 (1.81, 7) 1.33 (0.53, 3) 5.09 (0.21, 1) 0.0% 70.6% 2.13 (1.13, 4) % 	(31) 26.03) .01) .23)	.02	.05	.1 .2		• •	_	5	10 :	1	50
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009 Salvarini 2001 RE subtotal Within-substratum heterogenei RE subtotal Within-stratum heterogeneity, LR Between-substratum heterogeneity Between-substratum heterogeneity	by, LR+ 2 5 by, LR- by, LR+ 1, Tau ^b by, LR+ by, LR+ 00; Chi 105; Chi 105; Chi	-: Tau ^A 90 24 :: Tau ^A :: Tau ^A :: Ch ^A :: Ch ^A :: Ch ^A :: Ch ^A :: Ch ^A :: Ch ^A	0.13; 0 17 0.00; (4.27; ChP=1 ChP=(13.00; (13.00; (13	Chille 2.1: 695 114 Chille 2.0.07 Chille 4.2 dist 0, exit dist 0,	3, df=1 (p=0.144); / 0.97 (0.94, 1.01) 0.95 (0.80, 1.14) 0.97 (0.94, 1.01) df=1 (p=0.0768); / 0.97 (0.94, 1.01) df=1 (p=0.0768); / 0.98 (0.97, 1.00) 3 (p=0.002); /P=72; 3 (p=0.096); /P=62; 0.91 (0.87, 0.54) 0.91 (0.87, 0.54) 0.91 (0.87, 0.54) 0.91 (0.87, 0.54) 0.91 (0.95, 25) (0.91 (0.95, 25) (0.95, 2	 1% 37.42 (1.81, 7) 1.33 (0.53, 3) 5.09 (0.21, 1) 0.0% 70.6% 2.13 (1.13, 4) % 	(31) 26.03) .01) .23) .01					e e	_				
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009 Salvaini 2001 RE subtotal Within-substratum heterogenei Within-substratum heterogenei Within-stratum heterogeneity, LR Between-substratum heterogenei RE meta-analysis Overall heterogeneity, LR : Tau ² e0, Overall heterogeneity, LR : Tau ² e0, Overall heterogeneity, LR : Tau ² e0,	by, LR+ 2 5 by, LR- by, LR+ by, LR+ by, LR+ by, LR+ 00; Chi 105; Chi 5; Chiller	-: Tau ^A 90 24 :: Tau ^A :: Tau ^A :: Ch ^A :: Ch ^A :: Ch ^A :: Ch ^A :: Ch ^A :: Ch ^A	0.13; 0 17 0.00; (4.27; ChP=1 ChP=(13.00; (13.00; (13	Chille 2.1: 695 114 Chille 2.0.07 Chille 4.2 dist 0, exit dist 0,	3, df=1 (p=0.144); / 0.97 (0.94, 1.01) 0.95 (0.80, 1.14) 0.97 (0.94, 1.01) df=1 (p=0.0768); / 0.97 (0.94, 1.01) df=1 (p=0.0768); / 0.98 (0.97, 1.00) 3 (p=0.002); /P=72; 3 (p=0.096); /P=62; 0.91 (0.87, 0.54) 0.91 (0.87, 0.54) 0.91 (0.87, 0.54) 0.91 (0.87, 0.54) 0.91 (0.95, 25) (0.91 (0.95, 25) (0.95, 2	 1% 37.42 (1.81, 7) 1.33 (0.53, 3) 5.09 (0.21, 1) 0.0% 70.6% 2.13 (1.13, 4) % 	(31) 26.03) .01) .23) .01	decreasir	ng proba			ilihood a	_		ncreasir	ng probab	bility
Within-substratum heterogenei Within-substratum heterogenei Published criteria Liao 2009 Salvaini 2001 RE subtotal Within-substratum heterogenei Within-substratum heterogenei Within-stratum heterogeneity, LR Between-substratum heterogenei RE meta-analysis Overall heterogeneity, LR : Tau ² e0, Overall heterogeneity, LR : Tau ² e0, Overall heterogeneity, LR : Tau ² e0,	by, LR+ 2 5 by, LR- by, LR+ by, LR+ by, LR+ by, LR+ 00; Chi 105; Chi 5; Chiller	-: Tau ^A 90 24 :: Tau ^A :: Tau ^A :: Ch ^A :: Ch ^A :: Ch ^A :: Ch ^A :: Ch ^A :: Ch ^A	0.13; 0 17 0.00; (4.27; ChP=1 ChP=(13.00; (13.00; (13	Chille 2.1: 695 114 Chille 2.0.07 Chille 4.2 dist 0, exit dist 0,	3, df=1 (p=0.144); / 0.97 (0.94, 1.01) 0.95 (0.80, 1.14) 0.97 (0.94, 1.01) df=1 (p=0.0768); / 0.97 (0.94, 1.01) df=1 (p=0.0768); / 0.98 (0.97, 1.00) 3 (p=0.002); /P=72; 3 (p=0.096); /P=62; 0.91 (0.87, 0.54) 0.91 (0.87, 0.54) 0.91 (0.87, 0.54) 0.91 (0.87, 0.54) 0.91 (0.95, 25) (0.91 (0.95, 25) (0.95, 2	 1% 37.42 (1.81, 7) 1.33 (0.53, 3) 5.09 (0.21, 1) 0.0% 70.6% 2.13 (1.13, 4) % 	(31) 26.03) .01) .01 .01		ng proba e, given	bility		e e	_	ir	ncreasir of d		bility piven

Figure 47: Family history of spondyloarthritis – forest plot: likelihood ratios

Study	TP	FN	FP	TN	Sens. (95%)	n,	Spec.	(95%CI)	
AXIAL						-			
Clinician diagnosis									
Poddubnyy 2011	21	68	25	128	0.24 (0.16,			(0.77, 0.89)	
Sieper 2013	43	324	45	464	0.13 (0.10,			(0.88, 0.93)	
van den Berg 2013b (ASAS)	106	315	52	212	0.25 (0.21,			(0.75, 0.85)	
van den Berg 2013b (SPACE)	31	34	25	67	0.48 (0.36,			(0.63, 0.81)	
RE subtotal				013-0	0.25 (0.15,			(0.74, 0.90)	
Within-substratum heterogene Within-substratum heterogene									
Published criteria	iy, De	*. /au	-0.30	- UNI-2	Kieol, du-o llove	1.001); 1~	09.078		
van Hoeven 2014	17	69	23	255	0.20 (0.13,	0.30	0.92	(0.88, 0.94)	
van Hoeven 2015	24	71	56	428	0.25 (0.18,			(0.85, 0.91)	
RE subtotal	2.4		~~	420	0.23 (0.17,			(0.86, 0.93)	
Within-substratum heterogene	iv. LR	Tauh	0.00:	Ch7=0.				former and a	· · · · · · · · · · · · · · · · · · ·
Within-substratum heterogene									
RE subtotal					0.24 (0.17,			(0.80, 0.90)	
Within-stratum heterogeneity, LR	l-: Tau	NO.28;	ChP+	42.66, d	f=5 (p<0.001);	19=88.3%			
Within-stratum heterogeneity, LR	t+: Tau	P=0.23;	Chill	40.59,	df=5 (p<0.001);	P=87.7%	5		
Between-substratum heterogene	ity, LR	ChP=	0.00,	df=1 (pr	0.980); /%=0.09	16			
Between-substratum heterogene	ity, LR	*: ChP	-9.09,	df=1 (p	=0.003); /==89	0%			
PERIPHERAL									
Clinician diagnosis									
Rudwaleit 2011	36	140	7	83	0.20 (0.15,	0.27)	0.92	(0.85, 0.96)	
Tey 2010	9	125	1	265	0.07 (0.04,	0.12)	1.00	(0.97, 1.00)	-
RE subtotal					0.12 (0.04,	0.33)	0.98	(0.70, 1.00)	
Within-substratum heterogene	ity, LR	: Tauh	0.73;	ChP=10	1.52, df=1 (p=0.	001); P=1	90.5%		
Within-substratum heterogene	ity, LR	+: Tau ^a	►4.25	ChP=8	33, df=1 (p=0.	004); P=8	8.0%		
Published criteria									
no data									
RE subtotal					0.12 (0.04,	0.33)	0.98	(0.70, 1.00)	
Within-stratum heterogeneity, LR									
Within-stratum heterogeneity, LR	₹*: 7au	<i>i</i> ≈4.25;	Chill	8.33, d	f=1 (p=0.004);	P=83.0%			
MIXED AXIAL AND PERIPHERAL									
Clinician diagnosis									
D'Agostino 2011	18	33	5	43	0.35 (0.23,			(0.77, 0.96)	
Tomero 2014	166	372	44	193	0.31 (0.27)			(0.76, 0.86)	
RE subtotal			_		0.31 (0.28,			(0.75, 0.91)	
Within-substratum heterogene									
Within-substratum heterogene	ity, LR	*: Tau*	₩0.10	; Ch/=1	.80, df=1 (p=0.	179); P=4	4.6%		
Published criteria		~		000	0.00 0.01	0.000			
Liao 2009	2	90	0	695	0.03 (0.01,			(0.99, 1.00)	
Salvarini 2001	5	24	17	114	0.17 (0.07,			(0.80, 0.92)	
RE subtotal Within-substratum heterogene				013-6	0.07 (0.01,			(0.30, 1.00)	
Within-substratum heterogene Within-substratum heterogene								-	
RE subtotal	еу, сн	*: /au*	=73.2	0; Chre	0.19 (0.09,			。 (0.80, 0.96)	
Within-stratum heterogeneity, LR	- Taul	-0.66	cha-	24.27				(0.00, 0.36)	
Within-stratum heterogeneity, LR									
Between-substratum heterogene									
Between-substratum heterogene									
RE meta-analysis					0.21 (0.16,	0.225	0.99	(0.84, 0.92)	
Overall heterogeneity, LR-: Tau ^a =0.	20.04	3-054	e de	11 (000			0,00	(0.04, 0.32)	
Overall heterogeneity, LR+: TauP=0.									0.00 0.20 0.40 0.60 0.80 1.00 1.00 0.80 0.60 0.40 0.20 0.00
Between-stratum heterogeneity, LRT.									
Between-stratum heterogeneity, LA									Sensitivity Specificity
		a. 645							second granted

Figure 48: Family history of spondyloarthritis - forest plot: sensitivity and specificity

G.1.1.23 Family history of psoriasis

Table 25: Family history of psoriasis – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	0 studies	_	-	-	-	-	_	-	-
LR-	0 3100163		-	-	-	-		-	-
PERIPHERAL									
LR+	2 studios	Cross-sectional	Serious ^b	No serious	Serious ^c	No serious	1 000	1.34 (1.06, 1.70)	LOW
LR-	2 studies ^a	Cross-sectional	Serious ^b	No serious	Serious ^c	No serious	1,909	0.91 (0.84, 0.99)	LOW
MIXED AXIAL A	ND PERIPHERAL								
LR+	0 studies	_	-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+	2 studios	Cross-sectional	Serious ^b	No serious	Serious ^c	No serious	1 000	1.34 (1.06, 1.70)	LOW
LR-	2 studies ^a	01055-560101181	Serious ^b	No serious	Serious ^c	No serious	1,909	0.91 (0.84, 0.99)	LOW

а

b

Tey 2010; Yang 2011 >33.3% of weight in meta-analysis comes from studies with serious risk of bias >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) с

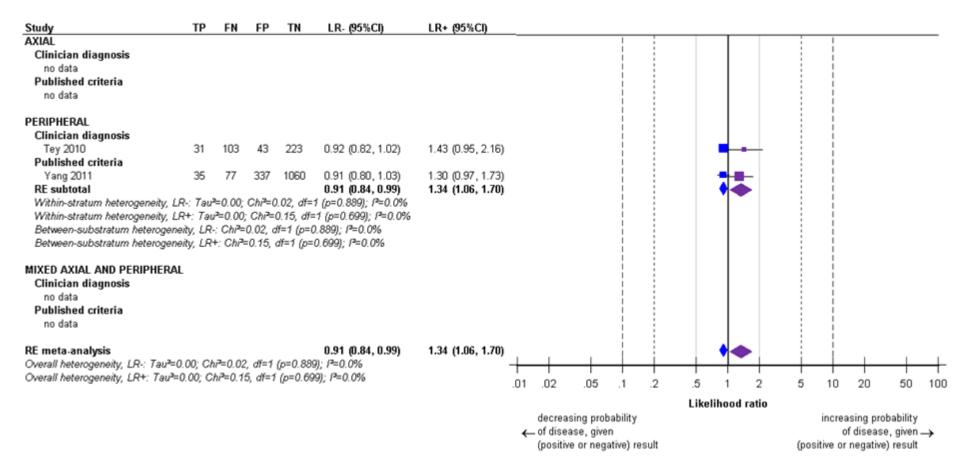


Figure 49: Family history of psoriasis – forest plot: likelihood ratios

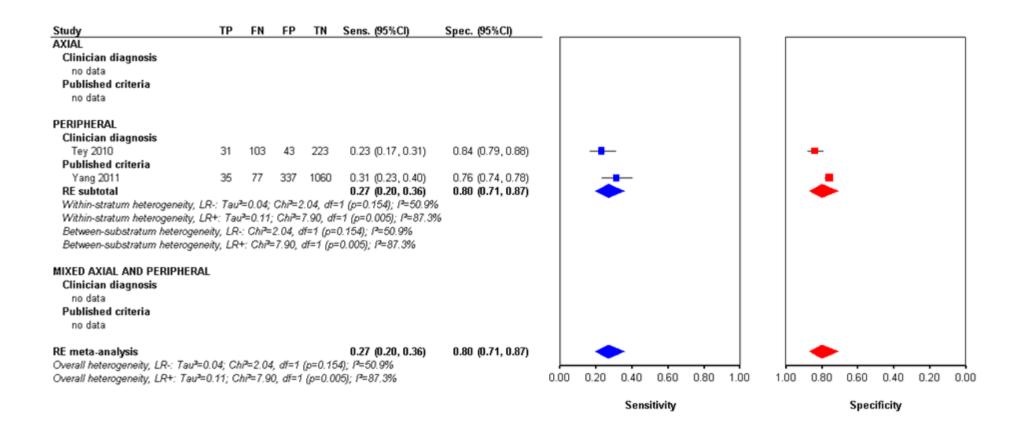


Figure 50: Family history of psoriasis – forest plot: sensitivity and specificity

G.1.1.24 **Preceding infection**

Table 26: Preceding infection – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL					-	-			
LR+	2 studies ^a	Cross-sectional	No serious	No serious	No serious	Serious ^b	842	1.77 (0.67, 4.70)	MODERATE
LR-	2 studies*	CIUSS-Sectional	No serious	No serious	No serious	No serious	042	0.99 (0.97, 1.01)	HIGH
PERIPHERAL									
LR+	2 studies ^c	Cross-sectional	No serious	Serious ^d	Serious ^e	Serious ^b	638	3.80 (1.08, 13.33)	VERY LOW
LR-	2 studies	CIUSS-Sectional	No serious	Serious ^d	No serious	Serious ^f	030	0.63 (0.25, 1.55)	LOW
MIXED AXIAL	AND PERIPHERA	۱L							
LR+			Serious ^h	No serious	No serious	Serious ^b		2.11 (1.01, 4.39)	LOW
LR-	3 studies ^g	Cross-sectional	No serious	Serious ^d	No serious	No serious	1,337	0.94 (0.87, 1.03)	MODERATE
ALL EVIDENC	E POOLED								
LR+	Zatudiaal	Cross costional	No serious	Serious ^d	No serious	Serious ^b	0.017	2.71 (1.36, 5.38)	LOW
LR-	7 studies ⁷	Cross-sectional	No serious	Serious ^d	No serious	No serious	2,817	0.96 (0.92, 1.00)	MODERATE

van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

b At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2).

с Kvien 1994; Rudwaleit 2011

d 12 ≥ 50%

а

>33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5). е

f

g Granfors 1983; Hulsemann 1995; Tomero 2014

h >33.3% of weight in meta-analysis comes from studies with serious risk of bias

Granfors 1983; Hulsemann 1995; Kvien 1994; Rudwaleit 2011; Tomero 2014; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE) i

Study	ТР	FN	FP	TN	LR- (95%CI)	LR+ (95%CI)												
AXIAL										i i					i			
Clinician diagnosis																		
van den Berg 2013b (ASAS)	12	409	5	259	0.99 (0.97, 1.01)	1.50 (0.54, 4.2)				1					. i			
van den Berg 2013b (SPACE)	2	63	0	92	0.97 (0.92, 1.02)	7.05 (0.34, 144	.36)											_
RE subtotal					0.99 (0.97, 1.01)	1.77 (0.67, 4.7)	ŋ			1								
Within-substratum heterogeneit										i					- i			
Within-substratum heterogeneit	y, LR+	: Tau²	:0.00; (ChP=0.9	10, dř=1 (p=0.343); /²	=0.0%												
Published criteria										i .					- i			
no data										1								
RE subtotal					0.99 (0.97, 1.01)	1.77 (0.67, 4.7)	ŋ			i.					i			
Within-stratum heterogeneity, LR-																		
Within-stratum heterogeneity, LR4	⊦: Tau'	=0.00;	ChP=0	1.90, df=	1 (p=0.343); P=0.0%					1					- i			
PERIPHERAL										1					i			
Clinician diagnosis											1				- i			
Rudwaleit 2011	10	166	3	87	0.98 (0.93, 1.03)	1.70 (0.48, 6.0	i)			i .					- i			
Published criteria					, ,		, ,				1							
Kvien 1994	34	18	33	287	0.39 (0.27, 0.56)	6.34 (4.34, 9.2)	5)			i i	· —	-		÷	i			
RE subtotal					0.63 (0.25, 1.55)	3.80 (1.08, 13.)	Ś)											
Within-stratum heterogeneity, LR-	: Tau ^a	=0.41;	Ch/=2	2.99, dfi	=1 (p<0.001); P=95.7	%				1					1			
Within-stratum heterogeneity, LR+	+: Taui	=0.64;	ChP=3	3.80, df=	1 (p=0.051); P=73.7	16								1				
Between-substratum heterogeneit	Y. LR-	Chr=:	22.99,	df=1 (p<	0.001); P=95.7%													
Between-substratum heterogeneit	y, LR+	: Chi²=	3.80, c	lf=1 (p=1	0.051); P=73.7%					÷					. i			
MIXED AXIAL AND PERIPHERAL											1			1	- i			
Clinician diagnosis Granfors 1983	12	50	20	272	0.07 /0.76 0.00	2 02 /1 AC E A	n					_		_				
Hulsemann 1995	10	31	31	136	0.87 (0.76, 0.98)	2.83 (1.46, 5.4)	~			i				-	- i			
Tomero 2014	10	528	0	237	0.93 (0.77, 1.12) 0.98 (0.97, 1.00)	1.31 (0.70, 2.4 9.27 (0.55, 157				1					1			
RE subtotal	10	520	U	231	0.98 (0.97, 1.00)	2.11 (1.01, 4.3				i					1			_
Within-substratum heterogeneit		. Tau2-	0.00.7	1.2-11			9											
Within-substratum heterogeneit										i i					i			
Published criteria	y, De	: /au~	0.19, 1	JM-= 3.9	0, a=2 (p=0.142); 1-	-40.778												
no data																		
RE subtotal					0.04 /0.07 1.025	2 44 /4 04 4 2												
Within-stratum heterogeneity, LR-	Tavi	-0.00	Ch2-4	47 -1-	0.94 (0.87, 1.03)	2.11 (1.01, 4.3	9			1								
within-anatum neterodeneity. Lre-										÷ .								
		=0.79;	Unr=3	190, di=	2 (p=0.742); 1=48.1	78				1								
Within-stratum heterogeneity, LR4	+: Tau									í								
	+: Tau				0.96 (0.92, 1.00)	2.71 (1.36, 5.3	ŋ			- i	:							
Within-stratum heterogeneity, LR4			5, df=6	(p<0.00		2.71 (1.36, 5.3	n +	_	_	<u> </u>	-	•	<			_	_	_
Within-stratum heterogeneity, LR+ RE meta-analysis	00; Chi	<i>₽</i> =28.8)1); P=79.2%	2.71 (1.36, 5.3	+	+	05	+	-							+
Within-stratum heterogeneity, LR+ RE meta-analysis Overall heterogeneity, LR-: Tau ² =0.0	00; Chi 51; Ch	P=28.8	74, df=6	5 (p<0.0)1); P=79.2% 01); P=74.7%	2.71 (1.36, 5.3	n .01	.02	.05	.1	.2	.5	2	5	10	20	50	10
Within-stratum heterogeneity, LR+ RE meta-analysis Overall heterogeneity, LR-: Tau ² =0.0 Overall heterogeneity, LR+: Tau ² =0.1	00; Chi 51; Ch : Chi ² =	₽=28.8 h₽=23.7 =1.00, d	74, df=0 df=2 (p:	5 (p<0.0 =0.608);)1); P=79.2% 01); P=74.7% P=0.0%	2.71 (1.36, 5.3	+	.02	.05	.1	.2		2 od ratio	5	10	20	50	10
Within-stratum heterogeneity, LR+ RE meta-analysis Overall heterogeneity, LR-: Tau ² =0.0 Overall heterogeneity, LR+: Tau ² =0. Between-stratum heterogeneity, LR-	00; Chi 51; Ch : Chi ² =	₽=28.8 h₽=23.7 =1.00, d	74, df=0 df=2 (p:	5 (p<0.0 =0.608);)1); P=79.2% 01); P=74.7% P=0.0%	2.71 (1.36, 5.3	+		.05 sing proba		.2		-	5	incre	asing pro	bability	
Within-stratum heterogeneity, LR+ RE meta-analysis Overall heterogeneity, LR-: Tau ² =0.0 Overall heterogeneity, LR+: Tau ² =0. Between-stratum heterogeneity, LR-	00; Chi 51; Ch : Chi ² =	₽=28.8 h₽=23.7 =1.00, d	74, df=0 df=2 (p:	5 (p<0.0 =0.608);)1); P=79.2% 01); P=74.7% P=0.0%	2.71 (1.36, 5.3	.01	decreas		ability	.2		-	5	incre		bability	

 Figure 51:
 Preceding infection – forest plot: likelihood ratios

Study	тр	FN	FP	TN	Sens. (95%Cl)	Spec. (95%Cl)		
AXIAL								
Clinician diagnosis								
van den Berg 2013b (ASAS)	12	409	5	259	0.03 (0.02, 0.05)	0.98 (0.96, 0.99)	-	-
van den Berg 2013b (SPACE)	2	63	0	92	0.04 (0.01, 0.12)	0.99 (0.92, 1.00)		
RE subtotal					0.03 (0.02, 0.05)	0.98 (0.96, 0.99)	•	•
Within-substratum heterogenei	ity, LR	-: Tau ² =	0.00;	ChP=0.	17, df=1 (p=0.678); P=	0.0%		
Within-substratum heterogenei	ity, LR	+: Tau ²	=0.00,	; Ch/2=0.	73, df=1 (p=0.392); P	=0.0%		
Published criteria								
no data								
RE subtotal					0.03 (0.02, 0.05)	0.98 (0.96, 0.99)	•	•
Within-stratum heterogeneity, LR	-: Tau	2=0.00;	Ch/2=	0.17, df	=1 (p=0.678); P=0.0%			
Within-stratum heterogeneity, LR	+: Tau	P=0.00;	ChP=	=0.73, dt	f=1 (p=0.392); P=0.0%			
PERIPHERAL								
Clinician diagnosis								
Rudwaleit 2011	10	166	3	87	0.06 (0.03, 0.10)	0.97 (0.90, 0.99)		
Published criteria					,			
Kvien 1994	34	18	33	287	0.65 (0.52, 0.77)	0.90 (0.86, 0.93)		+
RE subtotal					0.25 (0.01, 0.91)	0.93 (0.82, 0.98)		
Within-stratum heterogeneity, LR	-: Tau	=5.84;	Ch/=	62.15, d	#=1 (p<0.001); P=98.4	%		-
Within-stratum heterogeneity, LR	+: Tax	2=0.54;	ChP	3.83, dt	f=1 (p=0.050); P=73.9	6		
Between-substratum heterogenei	ity, LR	-: Chi?=i	62.15,	df=1 (p	<0.001); /2=98.4%			
Between-substratum heterogenei	ity, LR	+: Ch/2=	3.83,	df=1 (p	=0.050); /²=73.9%			
MIXED AXIAL AND PERIPHERAL								
Clinician diagnosis								
Granfors 1983	12	50	20	272	0.19 (0.11, 0.31)	0.93 (0.90, 0.96)		+
Hulsemann 1995	10	31	31	136	0.24 (0.14, 0.40)	0.81 (0.75, 0.87)		
Tomero 2014	10	528	Ū.	237	0.02 (0.01, 0.04)	1.00 (0.97, 1.00)	-	_
RE subtotal		020	~	2.01	0.10 (0.02, 0.40)	0.93 (0.80, 0.98)		
Within-substratum heterogenei	ity I R	- Tau ² =	2.34	ChP=44				
Within-substratum heterogenei								
Published criteria	, <i></i>		0.06,		a			
no data								
RE subtotal					0.10 (0.02, 0.40)	0.93 (0.80, 0.98)		
Within-stratum heterogeneity, LR	. Tau	=2.34	ChP=	44.66 d				
Within-stratum heterogeneity, LR								
Within Gratam neterogeneity, 24	·. / drs	r-0.52,	On -	-22.44, 1	ai-2 (p<0.001), 1-31.			
RE meta-analysis					0.10 (0.03, 0.29)	0.95 (0.90, 0.98)		
Overall heterogeneity, LR-: Tau ² =3.	01: CI	2=165	25. di	=6 (p<0		0100 (0100) 0100)		-
Overall heterogeneity, LR+: Tau ² =0							0.00 0.20 0.40 0.60 0.80 1.00	1.00 0.80 0.60 0.40 0.20 0.00
Between-stratum heterogeneity, LR								
Between-stratum heterogeneity, LR							Sensitivity	Specificity
something and the second s	-, v m	20.44	, un-12	0010.01	01j, 1 - 00.270		Schauvry	specificity

Figure 52: Preceding infection – forest plot: sensitivity and specificity

G.1.2 Indicators for referral

Review Question 12

• What are the indications (signs, risk factors, test or scan findings) for referral for specialist advice at initial diagnosis?

Table 27: Indicators for referral for suspected axial spondyloarthritis – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
Sensitivity	Broup (2011)	Cohort study	No serious	No serious	No serious	Serious ^a	322⁵	See evidence table	MODERATE
Specificity	Braun (2011)	Cohort study	No serious	No serious	No serious	Serious ^a	322-	See evidence table	MODERATE
AXIAL					·			·	
Sensitivity	D (0040)		No serious	No serious	No serious	Serious ^a	aaab	See evidence table	MODERATE
Specificity	Braun (2013)	Cohort study	No serious	No serious	No serious	Serious ^a	322 ^b	See evidence table	MODERATE
AXIAL									
Sensitivity	(0045-)	O a h a st a t a d	No serious	No serious	Serious ^c	Serious ^a	570b	See evidence table	LOW
Specificity	van Houeven (2015a)	Cohort study	No serious	No serious	Serious ^c	Serious ^a	579 ^b	See evidence table	LOW
AXIAL									
Sensitivity	(00451)		No serious	No serious	Serious ^c	Serious ^a	FTOb	See evidence table	LOW
Specificity	van Houeven (2015b)	Cohort study	No serious	No serious	Serious ^c	Serious ^a	579 ^b	See evidence table	LOW

а

Wide confidence intervals around sensitivity and specificity Total number with a confirmend diagnosis of either spondyloarthritis or not spondyloarthritis b

с All participants in the study underwent imaging for sacroiliitis, which is not the case in the relevant UK population

G.1.3 Comparative effectiveness of referral strategies

Review Question 6

• What is the comparative effectiveness of different referral strategies in diagnosing spondyloarthritis?

Table 28: Poddubnny 2011 referral strategies for axial spondyloarthritis – GRADE table

	Studies	Design	Risk of bias	Inconsist	Indirectne	Imprecisio	Total N	Summary of findings (95%Cl)	Quality
Proportion of those referred	ed diagnosed with axial	spondyloarthritis							
Mean difference Po	oddubnny (2011)	Cohort study	No serious	No serious	No serious	Serious ^a	560 ^b	-5.1% (-13.1%, 3.1%)	MODERATE
Proportion of those referred	d diagnosed with poss	ible axial spondyld	parthritis						
Mean difference Po	oddubnny (2011)	Cohort study	No serious	No serious	No serious	Serious ^a	560 ^b	2.2% (-3.7%, 8.3%)	MODERATE
Proportion of those referred	d diagnosed as not hav	ving axial spondylo	oarthritis						
Mean difference Po	oddubnny (2011)	Cohort study	No serious	No serious	No serious	Serious ^a	560 ^b	2.9% (-5.4%, 11.1%)	MODERATE

^a No differences detected between referral strategies

^b Total number of people referred through either strategy

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
Proportion of those refe	rred diagnosed with	axial spondyloarth	ritis						
Mean difference	Sieper (2013)	Cohort study	No serious	No serious	No serious	Serious ^a	1,049 ^b	4.2% (-1.7%, 10.0%)	MODERATE
Proportion of those refe	rred diagnosed with	possible axial spor	ndyloarthritis						
Mean difference	Sieper (2013)	Cohort study	No serious	No serious	No serious	Serious ^a	1,049 ^b	-0.3% (-2.9%, 3.7%)	MODERATE
Proportion of those refe	rred diagnosed as n	ot having axial spor	ndyloarthritis						
Mean difference	Sieper (2013)	Cohort study	No serious	No serious	No serious	Serious ^a	1,049 ^b	3.9% (-2.2%, 9.9%)	MODERATE

Table 29: Sieper 2013 referral strategies for axial spondyloarthritis – GRADE table

No differences detected between referral strategies
 Total number of people referred through either strategy

G.1.4 Obstacles to prompt diagnosis

Review Question 3

• What are the obstacles to a prompt diagnosis of spondyloarthritis?

G.1.4.1 Quality assessment

For the type of evidence included in this question (cross-sectional interview and survey based studies) the GRADE framework is not considered to be appropriate. A checklist developed by the British Medical Journal was used in the quality assessment of these studies.

Using this checklist all of the included studies were considered to be of very low quality. The studies included limited detail of any decisions on sampling, most were single-centre studies, they did not included any details of questions asked, any evidence of a piloting process, any validation of questionnaires/interview questions or provide details on who administered the questionnaires/interviews or any training they may have had.

G.1.4.2 BMJ checklist

(http://www.bmj.com/content/suppl/2004/05/27/328.7451.1312.DC1#e)

Research question and study design

- What information did the researchers seek to obtain?
- Was a questionnaire the most appropriate method and if not, what design might have been more appropriate?
- Were there any existing measures (questionnaires) that the researchers could have used? If so, why was a new one developed and was this justified?
- Were the views of consumers sought about the design, distribution, and administration of the questionnaire?
- Validity and reliability

Validity and reliability

- What claims for validity have been made, and are they justified? (In other words, what evidence is there that the instrument measures what it sets out to measure?)
- What claims for reliability have been made, and are they justified? (In other words, what evidence is there that the instrument provides stable responses over time and between researchers?)

Format

- Was the title of the questionnaire appropriate and if not, what were its limitations? What format did the questionnaire take, and were open and closed questions used appropriately?
- Were easy, non-threatening questions placed at the beginning of the measure and sensitive ones near the end?
- Was the questionnaire kept as brief as the study allowed?
- Did the questions make sense, and could the participants in the sample understand them? Were any questions ambiguous or overly complicated?

Instructions

- Did the questionnaire contain adequate instructions for completion—eg example answers, or an explanation of whether a ticked or written response was required?
- Were participants told how to return the questionnaire once completed?
- Did the questionnaire contain an explanation of the research, a summary of what would happen to the data, and a thank you message?

Piloting

- Was the questionnaire adequately piloted in terms of the method and means of administration, on people who were representative of the study population?
- How was the piloting exercise undertaken—what details are given?
- In what ways was the definitive instrument changed as a result of piloting?

Sampling

- What was the sampling frame for the definitive study and was it sufficiently large and representative?
- Was the instrument suitable for all participants and potential participants? In particular, did it take account of the likely range of physical/mental/cognitive abilities, language/literacy, understanding of numbers/scaling, and perceived threat of questions or questioner?

Distribution, administration and response

- How was the questionnaire distributed?
- How was the questionnaire administered?
- Were the response rates reported fully, including details of participants who were unsuitable for the research or refused to take part?
- Have any potential response biases been discussed?

Coding and analysis

- What sort of analysis was carried out and was this appropriate? (eg correct statistical tests for quantitative answers, qualitative analysis for open ended questions)
- What measures were in place to maintain the accuracy of the data, and were these adequate?
- Is there any evidence of data dredging—that is, analyses that were not hypothesis driven?
- Results
- What were the results and were all relevant data reported?
- Are quantitative results definitive (significant), and are relevant non-significant results also reported?
- Have qualitative results been adequately interpreted (e.g. using an explicit theoretical framework), and have any quotes been properly justified and contextualised?

Conclusions and discussion

- What do the results mean and have the researchers drawn an appropriate link between the data and their conclusions?
- Have the findings been placed within the wider body of knowledge in the field (eg via a comprehensive literature review), and are any recommendations justified?

G.1.5 Blood tests for spondyloarthritis

Review questions 7-9

- What is the diagnostic utility of a HLA B27 test for investigating suspected spondyloarthritis?
- What is the diagnostic utility of an erythrocyte sedimentation rate test for investigating suspected spondyloarthritis?
- What is the diagnostic utility of a C-reactive protein test for investigating suspected spondyloarthritis?

G.1.5.1 HLA-B27

Table 30: GRADE table for HLA-B27

Measure	Studies	Design	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	13 studiesa	Cross-sectional	No serious	Seriousb	Seriousc	No serious	4,645	4.14 (3.09, 5.56)	LOW
LR-			No serious	Seriousb	Seriousc	Seriousd		0.37 (0.27, 0.50)	VERY LOW
PERIPHER	AL								
LR+	7 studiese	Cross-sectional	No serious	Seriousb	Seriousc	Seriousf	1,005	3.51 (1.78, 6.90)	VERY LOW
LR-			Seriousg	Seriousb	Seriousc	Seriousd		0.66 (0.49, 0.87)	VERY LOW
MIXED AXI	AL AND PERIPH	ERAL							
LR+	10 studiesh	Cross-sectional	Seriousg	Seriousb	Seriousc	No serious	2,475	2.98 (2.16, 4.11)	VERY LOW
LR-			Seriousg	Seriousb	Seriousc	Seriousd		0.50 (0.37, 0.69)	VERY LOW
ALL EVIDE	NCE POOLED								
LR+	30 studiesi	Cross-sectional	Seriousg	Seriousb	Seriousc	No serious	8,125	3.60 (2.95, 4.40)	VERY LOW
LR-			Seriousg	Seriousb	Seriousc	Seriousd		0.48 (0.40, 0.57)	VERY LOW

(a) Braun 2011; Davis 1978; Dougados 2011 (DESIR); Goie The 1985; Hermann 2009; Linssen 1983; Poddubnyy 2011; Sieper 2013; Song 2010; van Hoeven 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

(b) 12 ≥ 50%

(c) >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis)

(d) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5).

(e) Esdaile 1997; Kvien 1994; Kvien 1996; Mattila 1998; McColl 2000; Rohekar 2008; Rudwaleit 2011

(f) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2).

(g) >33.3% of weight in meta-analysis comes from studies with serious risk of bias

 (h) Althoff 2009; Brandt 1999; D'Agostino 2011; Godfrin 2004; Granfors 1983; Hulsemann 1995; Hulsemann 1995; Liao 2009; Salvarini 2001; Tomero 2014
 (i) Althoff 2009; Brandt 1999; Braun 2011; Davis 1978; Dougados 2011 (DESIR); D'Agostino 2011; Esdaile 1997; Godfrin 2004; Goie The 1985; Granfors 1983; Hermann 2009; Hulsemann 1995; Hulsemann 1995; Kvien 1994; Kvien 1996; Liao 2009; Linssen 1983; Mattila 1998; McColl 2000; Poddubnyy 2011; Rohekar 2008; Rudwaleit 2011; Salvarini 2001; Sieper 2013; Song 2010; Tomero 2014; van Hoeven 2014; van Hoeven 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

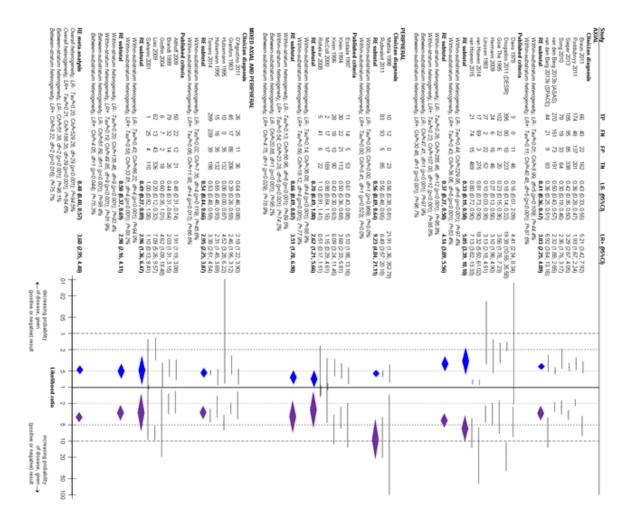


Figure 53 HLA-B27 – forest plot: likelihood ratios

RE meta-analysis Overall heterogeneity, LEV: 7au ² -0.55, Ch ² -308.47, df=29 (p<0.001), Pe92 1% Overall heterogeneity, LEV: 7au ² -0.55, Ch ² -308.47, df=29 (p<0.001), Pe92 1% Overall heterogeneity, LEV: 7au ² -0.55, Ch ² -308.42, df=22 (p<0.001), Pe94 7% Between-stratum heterogeneity, LEV: Ch ² -53, 27, df=2 (p<0.001), Pe94 5%	50 22 12 21 73 32 14 25 6 7 2 18 6 7 2 18 1 25 4 10 1 25 4 10 7 24-0 22 Ch2-51 Ch2-56 7 heterogeneity, LA: Tau2-0 22 Ch2-50 6 d 1 heterogeneity, LA: Tau2-0 22 Ch2-50 6 d 1 heterogeneity, LA: Tau2-0 22 Ch2-50 6 d 1 heterogeneity, LA: Tau2-0 22 Ch2-51 d 1 heterogeneity, LA: Tau2-0 22 Ch2-51 d 1 heterogeneity, LA: Tau2-0 22 Ch2-51 d 1 heterogeneity, LA: Ch2-51 d 1 he	INXED AXIAL AND PERIPHERAL Clinician diagnosis D'Agostino 2011 26 25 11 36 0.51 (0.38, 0.64) D'Agostino 2011 26 25 17 86 0.73 (0.58, 0.65) Grantors 1983 45 17 86 20 0.73 (0.58, 0.65) Huiseman 1995 10 0 35 132 0.46 (0.32, 0.65) Huiseman 1995 15 16 35 132 0.46 (0.32, 0.65) Tomes 2014 269 233 39 0.55 (0.61, 0.69) Re subtoat 269 239 39 0.56 (0.51, 0.69) Within-substratum helenogeneity, LA: Tau ² -0.13; Chi ² -11.59, dir-4 (p=0.02) Within-substratum helenogeneity, LA: Tau ² -0.03; Chi ² -11.59, dir-4 (p=0.02) Within-substratum helenogeneity, LA: Tau ² -0.06; Chi ² -13.18, dir-4 (p=0.012) Within-substratum helenogeneity, LA: Tau ² -0.08; Chi ² -13.18, dir-4 (p=0.012)	11 14 5 53 0.4 30 22 21 113 0.5 28 18 10 90 0.6 2 17 17 182 0.1 5 14 5 20 0.1 5 14 5 20 0.1 6 14 5 20 0.1 6 14 5 20 0.1 7 au ³ =0.0 Ch ³ =30.7 df n keterogeneity, LR+ 7 au ³ =0.05 Ch ³ =50 r orgeneity, LR+ 7 au ³ =0.42 Ch ³ =30.7 df =60 r orgeneity, LR+ 7 au ³ =0.42 Ch ³ =30.7 df =60 r orgeneity, LR+ 7 au ³ =0.42 Ch ³ =30.7 df =60 r orgeneity, LR+ 7 au ³ =0.42 Ch ³ =30.7 df =60 r orgeneity, LR+ 7 au ³ =0.42 Ch ³ =30.7 df =60 r orgeneity, LR+ Ch ³ =4.2 df =1 (p=0.03)	PERIPHERAL Clinician diagnosis 10 12 0 23 0.46 Mattia 1980 10 12 0 23 0.46 Reuwalet 2011 83 93 5 56 0.47 Re subtoal 12 0.45 7.47±0.00 C/h ² =0.02 d=1 Within-substratum heterogeneity, LR+: Tau ⁺ =0.00 C/h ²⁼⁰ =0.02 d=1 Within-substratum heterogeneity, LR+: Tau ⁺ =0.00 C/h ²⁼⁰ =0.40 d=1	0 11 80 10 82 6 8 16 8 16 8 16 8 16 74 15 74 15 74 74 74 74 74 74 74 74 74 74 74 74 74	Study TP FN FP TN Sens. (95%C) Spec. AXIA Clinician diagnosis 66 40 22 162 0.62 0.53 0.71 0.68 Deam 2011 174 64 137 201 0.76 0.72 0.83 0.69 0.71 0.68 Seng 2010 165 96 63 33 0.60 0.07.10.87 0.68 0.69 0.79 0.84 0.69 0.69 0.69 0.79 0.84 0.79 0.84 0.79 0.70 0.84 0.79
0.50 (0.52, 0.67) 0.85 (0.80, 0.88) 07): /~92.1% 070): /~97.4% /~97.7% /~97.4%	0.69 0.62 0.64 0.45 0.78 0.71 0.62 0.79 0.66 0.49 0.78 0.47 0.62 0.72 0.90 0.68 0.85 0.91 0.48 0.22 0.72 0.90 0.68 0.85 0.91 0.44 0.04 0.23 0.56 0.91 0.92 0.85 0.93 0.44 0.42 0.77 0.58 0.86 0.83 0.83 0.84 0.86 0.93 0.84 0.86 0.93 0.83 0.64 0.46 0.85 0.93 0.84 0.86 0.93 0.85 0.62 0.91 0.86 0.83 0.83 0.85 0.83 0.85 0.83 0.85 0.83 0.85 0.83 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.95 0.85 0.95 0.95 0.95 0.95 0.95	0.51 (0.33, 0.64) 0.77 (0.62, 0.87) 0.057 (0.63, 0.63) 0.77 (0.62, 0.75) 0.056 (0.55, 1.00) 0.79 (0.72, 0.04) 0.48 (0.23, 0.65) 0.79 (0.72, 0.05) 0.48 (0.23, 0.65) 0.78 (0.78, 0.08) 0.49 (0.44 (0.48) 0.59 (0.78, 0.78) 0.49 (0.44 (0.48) 0.59 (0.72, 0.43) 0.49 (0.44 (0.49) 0.74 (0.78) 0.72) 0.49 (0.44 (0.49) 0.74 (0.78) 0.72)	0.44 (0.26, 0.65) 0.91 (0.81, 0.95) 0.85 (0.44, 0.70) 0.81 (0.77, 0.95) 0.81 (0.45, 0.74) 0.90 (0.82, 0.84) 0.11 (0.65, 0.24) 0.97 (0.86, 0.84) 0.11 (0.65, 0.24) 0.97 (0.86, 0.84) 0.11 (0.65, 0.24) 0.77 (0.86, 0.84) 1.94 (0.60 (0.97); 1.96) 0.88 (0.84, 0.81) 1.94 (0.60 (0.97); 1.96) 0.89 (0.85, 0.82) 0.96 (0.00); 1.94 (0.85) 0.96 (0.00); 1.94 (0.95) 0.96 (0	6 (0.27, 0.66) 0.98 (0.74, 1.00) 7 (0.40, 0.55) 0.94 (0.87, 0.98) 7 (0.40, 0.54) 0.95 (0.89, 0.98) 7 (1.60, 0.92), (7=0.0% 1 (1.60, 0.98), (7=0.0%	46 0.88 (0.27, 0.99) 0.80 (0.68, 0.89) 223 0.82 (0.80, 0.88) 0.77 (0.57, 0.89) 46 0.80 (0.27, 0.88) 0.77 (0.57, 0.89) 45 0.20 (0.75, 0.88) 0.77 (0.57, 0.89) 46 0.22 (0.15, 0.39) 0.74 (0.22, 0.41) 46 0.22 (0.15, 0.39) 0.97 (0.95, 0.88) 46 0.22 (0.15, 0.39) 0.97 (0.95, 0.88) 47 (0.87, 0.48) 0.97 (0.95, 0.88) 48 0.22 (0.15, 0.39) 0.97 (0.95, 0.88) 49 0.27 (0.57, 0.39) 0.97 (0.95, 0.88) 49 0.27 (0.57, 0.78) 0.90 (0.77, 0.99) 40 0.89 (0.27, 0.78) 0.90 (0.77, 0.99) 40 0.89 (0.27, 0.78) 0.96 (9.64) 40 0.97 (0.26) (1.64, 0.96) 40 0.27 (1.64, 0.77, 0.99) 40 0.27 (1.64, 0.77, 0.99) 40 0.27 (1.64, 0.77) 0.99 (0.95, 0.77) 40 0.27 (1.64, 0.77) 0.99 (0.95, 0.77) 40 0.27 (1.64, 0.77) 0.99 (0.95, 0.77) 40 0.77 (0.97) (1.64, 0.96) 40 0.77 (0.97) (1.64, 0.96) 40 0.77 (0.97) (1.64, 0.96) 40 0.77 (0.97) (1.64, 0.96) 40 0.77 (0.97) (1.64, 0.96) 41 0.77 (0.97) (1.64, 0.96) 42 0.77 (0.97) (1.64, 0.96) 42 0.77 (0.97) (1.64, 0.96) 42 0.77 (0.97) (1.64, 0.96) 43 0.77 (0.97) (1.64, 0.96) 44 0.77 (0.97) (1.64, 0.96) 45 0.77 (1.64, 0.96) 47 0.77	Sens. (95%C) Spec. (95%C) 062 053 071 088 (063 063 076 076 078 (063 063 <td< td=""></td<>
000 020 040 050 050 100 Sensitivity	♦	↓	↓	♦		• 1 +
1.00 0.80 0.60 0.40 0.20 0.00 Specificity	 <!--</td--><td> I I</td><td> </td><td>◆ I</td><td> ◆ </td><td>I 1 I</td>	 I I	 	◆ I	 ◆ 	I 1 I

Figure 54: HLA-B27 – forest plot: sensitivity and specificity

G.1.5.2 ESR

Table 31: GRADE table for ESR

Measure	Studies	Design	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Total N	Summary of findings (95%Cl)	Quality		
AXIAL											
LR+	1 studya	Cross-sectional	Serious	n/a	Seriousb	Seriousc	92	1.72 (0.84, 3.53)	VERY LOW		
LR-			Serious	n/a	Seriousb	No serious		0.83 (0.62, 1.09)	LOW		
PERIPHERAL											
LR+	0 studies	-	-	-	-	-	-	-	-		
LR-			-	-	-	-		-	-		
MIXED AXI	AL AND PERIP	HERAL									
LR+	1 studyd	Cross-sectional	No serious	n/a	No serious	No serious	775	3.52 (2.07, 6.01)	HIGH		
LR-			No serious	n/a	No serious	No serious		0.84 (0.80, 0.89)	HIGH		
ALL EVIDE	NCE POOLED										
LR+	2 studiese	Cross-sectional	Seriousf	Seriousg	Serioush	Seriousc	867	2.57 (1.28, 5.16)	VERY LOW		
LR-			No serious	No serious	No serious	No serious		0.84 (0.80, 0.89)	HIGH		

(a) Hermann 2009

(b) suboptimal reference standard (published classification criteria, rather than expert diagnosis)
 (c) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2).

(d) Tomero 2014

(e) Hermann 2009; Tomero 2014

(f) >33.3% of weight in meta-analysis comes from studies with serious risk of bias

(g) 12 ≥ 50%

(h) >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis)

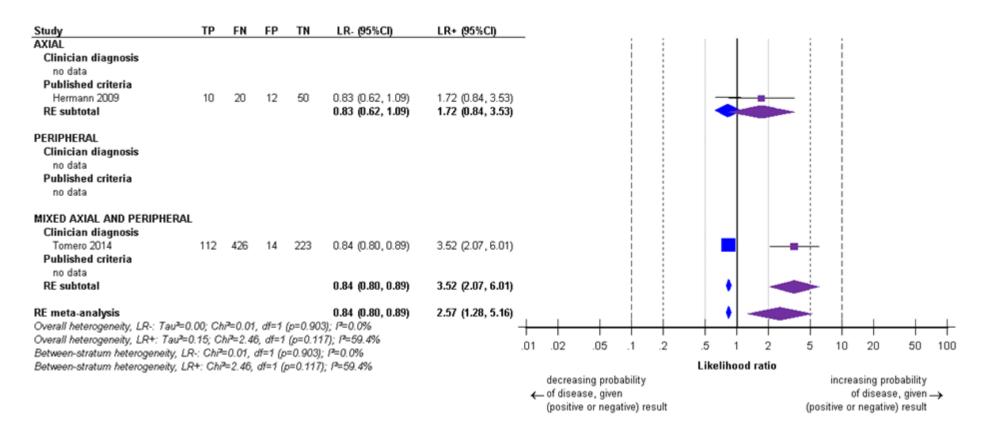


Figure 55 ESR – forest plot: likelihood ratios

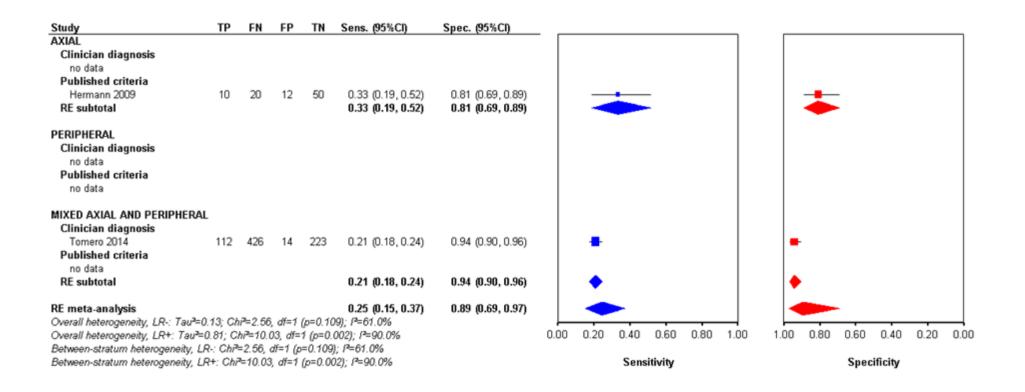


Figure 56 ESR – forest plot: sensitivity and specificity

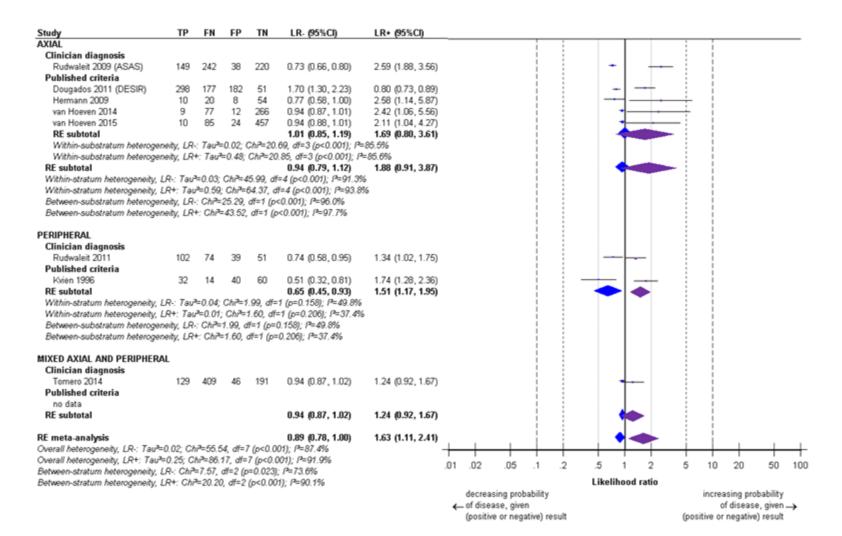
CRP G.1.5.3

Table 32 GRADE table for ESR

Measure	Studies	Design	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Total N	Summary of findings (95%Cl)	Quality		
AXIAL											
LR+	5 studiesa	Cross-sectional	No serious	Seriousb	Seriousc	Seriousd	2,389	1.88 (0.91, 3.87)	VERY LOW		
LR-			No serious	Seriousb	Seriousc	No serious		0.94 (0.79, 1.12)	LOW		
PERIPHERAL											
LR+	2 studiese	Cross-sectional	No serious	No serious	Seriousc	No serious	412	1.51 (1.17, 1.95)	MODERATE		
LR-			No serious	No serious	No serious	Seriousf		0.65 (0.45, 0.93)	MODERATE		
MIXED AXI	AL AND PERIF	PHERAL									
LR+	1 studyg	Cross-sectional	No serious	n/a	No serious	No serious	775	1.24 (0.92, 1.67)	HIGH		
LR-			No serious	n/a	No serious	No serious		0.94 (0.87, 1.02)	HIGH		
ALL EVIDE	NCE POOLED										
LR+	8 studiesh	Cross-sectional	No serious	Seriousb	Seriousc	Seriousd	3,576	1.63 (1.11, 2.41)	VERY LOW		
LR-			No serious	Seriousb	Seriousc	No serious		0.89 (0.78, 1.00)	LOW		

(a) Dougados 2011 (DESIR); Hermann 2009; Rudwaleit 2009 (ASAS); van Hoeven 2014; van Hoeven 2015

 $\dot{(c)}$ >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) (d) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2).


(e) Kvien 1996; Rudwaleit 2011

(f) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5).

(g) Tomero 2014

(h) Dougados 2011 (DESIR); Hermann 2009; Kvien 1996; Rudwaleit 2009 (ASAS); Rudwaleit 2011; Tomero 2014; van Hoeven 2014; van Hoeven 2015

⁽b) 12 ≥ 50%

Figure 57 CRP – forest plot: likelihood ratios

Study	ТР	FN	FP	TN	Sens. (95%Cl)	Spec. (95%Cl)	
AXIAL							
Clinician diagnosis							
Rudwaleit 2009 (ASAS)	149	242	38	220	0.38 (0.33, 0.43)	0.85 (0.80, 0.89)	
Published criteria							
Dougados 2011 (DESIR)	298	177	182	51	0.63 (0.58, 0.67)	0.22 (0.17, 0.28)	
Hermann 2009	10	20	8	54	0.33 (0.19, 0.52)	0.87 (0.76, 0.93)	
van Hoeven 2014	9	77	12	266	0.10 (0.06, 0.19)	0.96 (0.93, 0.98)	·
van Hoeven 2015	10	85	24	457	0.11 (0.06, 0.18)	0.95 (0.93, 0.97)	+
RE subtotal					0.25 (0.06, 0.62)	0.84 (0.30, 0.98)	
Within-substratum heterogene	ity, LR	-: Tau ² =	2.55;	ChP=10	09.36, df=3 (p<0.001); P	=97.3%	
Within-substratum heterogene	ity, LR	+: Tau ^a	=6.47;	ChP=3	45.37, df=3 (p<0.001); /	⊨ 99.1%	
RE subtotal					0.28 (0.14, 0.48)	0.84 (0.46, 0.97)	
Within-stratum heterogeneity, Li	R-: Tau	=0.94;	Chi2=1	129.70,	df=4 (p<0.001); P=96.9	16	
Within-stratum heterogeneity, Li	R+: Tau	2=4.31;	Chi?=	366.25	df=4 (p<0.001); P=98.9	%	
Between-substratum heterogene	xity, LR	-: ChP=	20.34,	df=1 (s	<0.001); P=95.1%		
Between-substratum heterogene							
5							
PERIPHERAL							
Clinician diagnosis							
Rudwaleit 2011	102	74	39	51	0.58 (0.51, 0.65)	0.57 (0.46, 0.66)	
Published criteria					,	,	
Kvien 1996	32	14	40	60	0.70 (0.55, 0.81)	0.60 (0.50, 0.69)	
RE subtotal					0.62 (0.51, 0.72)	0.58 (0.51, 0.65)	
Within-stratum heterogeneity, Li	R-: Tau	=0.06:	Chi2=2	2.03. df		,	
Within-stratum heterogeneity, Li							
Between-substratum heterogene							
Between-substratum heterogene							
gen			,	an 1 (b	0.010,1		
MIXED AXIAL AND PERIPHERAL							
Clinician diagnosis	-						
Tomero 2014	129	409	46	191	0.24 (0.21, 0.28)	0.81 (0.75, 0.85)	_
Published criteria	12.0	400	40	101	0.24 (0.21, 0.20)	0.01 (0.10, 0.00)	
no data							
RE subtotal					0.24 (0.21, 0.28)	0.81 (0.75, 0.85)	
					024 (021, 020)	0.01 (0.75, 0.05)	
RE meta-analysis					0.36 (0.23, 0.51)	0.79 (0.56, 0.91)	
Overall heterogeneity, LR-: Tau ² =0	79.04	2=237	10 df	=7 (pc0		5.15 (0.00, 0.01)	
Overall heterogeneity, LR+: Tau ² =							0.00 0.20 0.40 0.60 0.80 1.00 1.00 0.80 0.60 0.40 0.20 0.00
Between-stratum heterogeneity, Li							
Between-stratum heterogeneity, Li							Sensitivity Specificity
Decheorrowana an necerogeneity, Li	17. QM	-27.20	5 W-2	00000	017, 1 - 82.170		senaturity specificity

Figure 58 CRP – forest plot: sensitivity and specificity

G.1.6 Imaging for diagnosis of spondyloarthritis

Review Question 10

• What is the diagnostic utility of imaging (alone or in sequence) for investigating suspected spondyloarthritis?

G.1.6.1 X-ray

Sacroiliitis on x-ray

Table 33: Sacroiliitis on x-ray – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL			·		·				
LR+	0 - 1 - 1 2	Cross-sectional	No serious	Serious ^b	No serious	No serious	4 550	18.22 (4.12, 80.69)	MODERATE
LR-	3 studies ^a		No serious	Serious ^b	Serious ^c	No serious	1,550	0.72 (0.62, 0.85)	LOW
PERIPHERAL									·
LR+	d	One of the set	Serious ^e	Serious ^b	Serious ^c	No serious	754	6.84 (2.47, 18.89)	VERY LOW
LR-	5 studies ^d	Cross-sectional	No serious	Serious ^b	Serious ^c	No serious	751	0.75 (0.60, 0.94)	LOW
MIXED AXIAL	AND PERIPHER	AL							
LR+	1 study!	Cross sectional	No serious	n/a	No serious	No serious	775	89.64 (5.59, 1436.83)	HIGH
LR-	1 study ^f	Cross-sectional	No serious	n/a	No serious	No serious	115	0.81 (0.78, 0.85)	HIGH
ALL EVIDENC	E POOLED								
LR+	0 studies d	Crease esstiened	No serious	Serious ^b	No serious	No serious	2.070	10.15 (5.10, 20.23)	MODERATE
LR-	9 studies ^g	Cross-sectional	No serious	Serious ^b	Serious ^c	No serious	3,076	0.76 (0.68, 0.84)	LOW

^a Dougados 2011 (DESIR); van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

^b 12 ≥ 50%

° >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis)

^d Esdaile 1997; Rigby 1993; Rudwaleit 2011; Sadek 2007; You 2015

e >33.3% of weight in meta-analysis comes from studies with serious risk of bias

f Tomero 2014

^g Dougados 2011 (DESIR); Esdaile 1997; Rigby 1993; Rudwaleit 2011; Sadek 2007; Tomero 2014; You 2015; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

Study	TP	FN	FP	TN	LR- ((95%CI)	LR+	(95%CI)												
AXIAL												i .					i			
Clinician diagnosis																				
van den Berg 2013b (ASAS)	123	298	9	255	0.73 ((0.69, 0.78)	8.57	(4.43, 18	5.57)			i .		-		+				
	11	54	1	91	0.84 ((0.75, 0.94)	15.57	(2.06, 1	7.64)					-	l k					
RE subtotal					0.78	(0.68, 0.89)	9.08	(4.85, 10	5.98)			i .		•		-				
Within-substratum heterogeneity	y, LR-:	Tau²=0	0.01; 0	;hi≥=4.26	s, df=1 ((p=0.039); P=	76.5%													
Within-substratum heterogeneity	y, LR+	: Tau=	0.00; (Chi?=0.3	0, df=1	(p=0.582); P	=0.0%					i					i			
Published criteria																				
Dougados 2011 (DESIR)	181	294	0	233	0.62 ((0.58, 0.67)	178.45	(11.17.3	2851.25)			1		-			1			
RE subtotal					0.72	(0.62, 0.85)	18.22	(4.12, 8	1.69)					•						-
Within-stratum heterogeneity, LR-:	Tau*	0.02; 0	ChP=2	3.37, df=	2 (p<0.	.001); P=91.4	%		-			1					1			
Within-stratum heterogeneity, LR+	Tau ²	=0.98;	ChP=4	1.53, df=	2 (p=0.1	104); P=55.85	16													
Between-substratum heterogeneity	V. LR .:	Chr=1	19.11.	df=1 (p<)	0.001);	P=94.8%						1								
Between-substratum heterogeneity	y, LR+	ChP=	4.22, 6	#=1 (p=0	0.040); /	P=76.3%														
PERIPHERAL												1								
Clinician diagnosis	-				0.07							i					- i			
Rigby 1993	28	2	17	165		(0.02, 0.28)		(6.29, 1				-					-			
Rudwaleit 2011	32	132	2	61		(0.76, 0.91)		(1.52, 2				1		-					_	
Sadek 2007	23	36	0	22		(0.50, 0.77)		(1.14, 2												
RE subtotal						(0.38, 0.92)		(6.27, 1	1.93)			1					-			
Within-substratum heterogeneity																				
Within-substratum heterogeneity	y, LR+	: Tau²=	-0.00; (Chi2=0.6	2, df=2	(p=0.734); P	=0.0%					1								
Published criteria																				
Esdaile 1997	3	22	6	52		(0.83, 1.16)		(0.31, 4				1	i —		-	i				
You 2015	4	14	1	129	0.78 ((0.61, 1.00)	28.89	(3.42, 2	14.35)											
RE subtotal						(0.72, 1.11)		(0.22, 1	(9.43)			1		-						
Within-substratum heterogeneity																				
Within-substratum heterogeneity	y, LR+	: Tau=	:4.35; (Chi=6.3																
RE subtotal						(0.60, 0.94)		(2.47, 1	1.89)											
Within-stratum heterogeneity, LR-:																				
Within-stratum heterogeneity, LR+							196					- i								
Between-substratum heterogeneity																				
Between-substratum heterogeneity	y, LR+	: ChP=/	4.19, c	£=1 (p=0).041); I	P=76.1%						- i								
MIXED AXIAL AND PERIPHERAL												1								
Clinician diagnosis																				
	101	437	0	237	0.01	(0.78, 0.85)	00.04	(5.59, 1	100 001			1								
Published criteria	101	43/	0	237	0.01 ((0.70, 0.00)	09.64	(5.59, 1	(30.03)											
no data												1								
RE subtotal					0.04	0.70.0.00	00.04	# 60 A	120.025											
					0.81 ((0.78, 0.85)	89.64	(5.59, 1	(36.83)					· · ·				_		
					0.76	(0.68, 0.84)	10.15	(5.10, 2	J.23)			1		•			-			
									+	_	_		1	1 1						
RE meta-analysis	2: Chi	=73.91	1. df=8	(p<0.00	1); P=8	9.2%													_	
RE meta-analysis Overall heterogeneity, LR-: Tau ^a =0.0													1	1 1		1		-		
RE meta-analysis Overall heterogeneity, LR-: Tau ³ =0.0 Overall heterogeneity, LR+: Tau ³ =0.4	48; Ch	r=18.7	5, df=8	8 (p=0.01	16); P=5	57.3%			.01	.02	.05	.1 .2	2	.5 1	2	5	5 10	0 20) 50	1
RE meta-analysis Overall heterogeneity, LR-: Tau ³ =0.0 Overall heterogeneity, LR+: Tau ³ =0. Between-stratum heterogeneity, LR-	48; Ch : ChP=	P=18.7 26.99,	5, df=8 df=2 (j	8 (p=0.01 p<0.001)	16); P=5 ; P=92.	57.3% .6%			.01	.02	.05	.1 .3	-	.5 1 Likeliho	-	<u> </u>	; 10	0 20) 50	1
RE meta-analysis Overall heterogeneity, LR-: Tau ³ =0.0 Overall heterogeneity, LR+: Tau ³ =0. Between-stratum heterogeneity, LR-	48; Ch : ChP=	P=18.7 26.99,	5, df=8 df=2 (j	8 (p=0.01 p<0.001)	16); P=5 ; P=92.	57.3% .6%			.01				-		-	<u> </u>				
RE meta-analysis Dverall heterogeneity, LR-: Tau ² =0.0 Overall heterogeneity, LR+: Tau ² =0. Between-stratum heterogeneity, LR+ Between-stratum heterogeneity, LR+	48; Ch : ChP=	P=18.7 26.99,	5, df=8 df=2 (j	8 (p=0.01 p<0.001)	16); P=5 ; P=92.	57.3% .6%					ing prob	ability	-		-	<u> </u>		reasing) 50 probabilit ease, give	Y

Figure 59:Sacroiliitis on x-ray – forest plot: likelihood ratios

Study	тр	FN	FP	TN	Sens. (95%Cl)	Spec. (95%Cl)		
AXIAL								
Clinician diagnosis								
van den Berg 2013b (ASAS)	123	298	9	255	0.29 (0.25, 0.34)	0.97 (0.94, 0.98)	-	-
van den Berg 2013b (SPACE)	11	54	1	91	0.17 (0.10, 0.28)	0.99 (0.93, 1.00)		
RE subtotal					0.24 (0.14, 0.38)	0.97 (0.94, 0.99)		•
Within-substratum heterogenei	ity, LR-	: Tau ² =	0.19;	Chi ² =4.	12, df=1 (p=0.042); P=7	5.8%		- I
Within-substratum heterogenei	ty, LR	+: 7au ^a	=0.12;	ChP=1	21, df=1 (p=0.272); P=1	7.3%		
Published criteria								
Dougados 2011 (DESIR)	181	294	0	233	0.38 (0.34, 0.43)	1.00 (0.97, 1.00)	-	- I
RE subtotal					0.29 (0.21, 0.39)	0.99 (0.94, 1.00)		► I
Within-stratum heterogeneity, LR								
Within-stratum heterogeneity, LR	+: Tau	≈0.99;	Ch?=	4.62, d	f=2 (p=0.099); P=56.8%			
Between-substratum heterogenei								
Between-substratum heterogenei	iy, LR	+: ChP=	3.42,	df=1 (p	=0.065); /2=70.7%			
PERIPHERAL								
Clinician diagnosis		-						
Rigby 1993	28	2	17	165	0.93 (0.77, 0.98)	0.91 (0.85, 0.94)		
Rudwaleit 2011	32	132	2	61	0.20 (0.14, 0.26)	0.97 (0.88, 0.99)		-
Sadek 2007	23	36	0	22	0.39 (0.28, 0.52)	0.98 (0.73, 1.00)		
RE subtotal		-			0.51 (0.20, 0.82)	0.94 (0.86, 0.97)		•
Within-substratum heterogene								
Within-substratum heterogenei	ity, LR	+: Tau ^a	=0.28;	ChP=3	.20, df=2 (p=0.202); P=3	37.4%		
Published criteria								
Esdaile 1997	3	22	6	52	0.12 (0.04, 0.31)	0.90 (0.79, 0.95)		
You 2015	4	14	1	129	0.22 (0.09, 0.46)	0.99 (0.95, 1.00)		
RE subtotal					0.17 (0.08, 0.32)	0.97 (0.67, 1.00)		
Within-substratum heterogene								
Within-substratum heterogene	ty, LR	*: 7au*	=3.05;	Chi ² =6				
RE subtotal					0.35 (0.16, 0.60)	0.95 (0.89, 0.98)		•
Within-stratum heterogeneity, LR								
Within-stratum heterogeneity, LR								
Between-substratum heterogenei								
Between-substratum heterogene	iy, LR	+: Ch/*	0.09,	d1=1 (p	=0.760); P=0.0%			
MIXED AXIAL AND PERIPHERAL								
Clinician diagnosis Tomero 2014	101	477	0	227	0.40.00.40.0.000	1 00 0 07 1 00		
	101	437	U	237	0.19 (0.16, 0.22)	1.00 (0.97, 1.00)	-	F
Published criteria no data								
					0 40 /0 46 0 225	100 007 100		
RE subtotal					0.19 (0.16, 0.22)	1.00 (0.97, 1.00)	■ ■	
RE meta-analysis					0.29 (0.21, 0.38)	0.97 (0.94, 0.99)		
Overall heterogeneity, LR-: Tau ² =0.	31: Ch	2=86.3	5. df=	8 (p<0)		(ano.1, anoa)		•
Overall heterogeneity, LR+: Tau ² =0							0.00 0.20 0.40 0.60 0.80 1.00	1.00 0.80 0.60 0.40 0.20 0.00
Between-stratum heterogeneity, LR								
Between-stratum heterogeneity, LR							Sensitivity	Specificity
contraction in the second seco		14.01		00.00.0			summer a	spectruly

Figure 60 Sacroiliitis on x-ray – forest plot: sensitivity and specificity

Finger or toe pathology on x-ray

Table 34: Finger or toe pathology on x-ray – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	0 studios	-	-	-	-	-		-	-
LR-	0 studies		-	-	-	-	-	-	-
PERIPHERAL									
LR+	1 atualua	Cross-sectional	No serious	n/a	No serious	Serious ^b	52	10.57 (0.66, 169.08)	MODERATE
LR-	1 study ^a	Cross-sectional	No serious	n/a	No serious	No serious	52	0.71 (0.56, 0.90)	HIGH
MIXED AXIAL A	ND PERIPHERA	۱L							
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+	1 otudu ²	Cross-sectional	No serious	n/a	No serious	Serious ^b	52	10.57 (0.66, 169.08)	MODERATE
LR-	1 study ^a	CIUSS-Sectional	No serious	n/a	No serious	No serious	52	0.71 (0.56, 0.90)	HIGH

^a De Simone 2011

^b At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2).

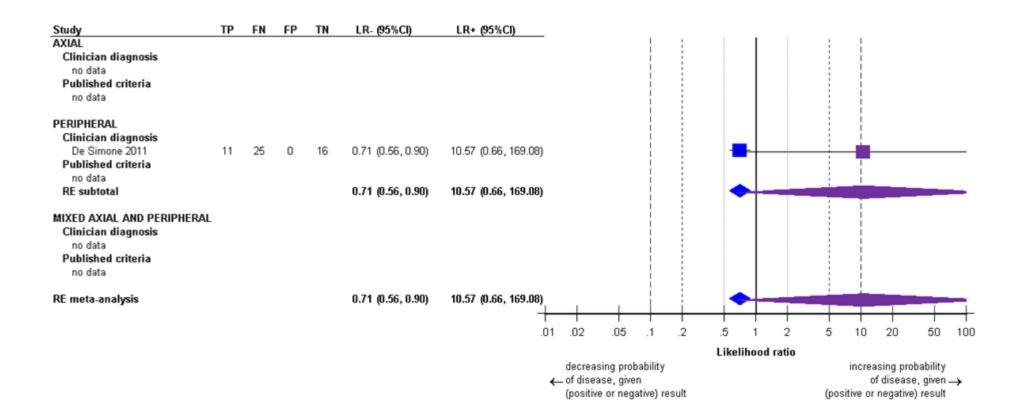


Figure 61: Finger or toe pathology on x-ray – forest plot: likelihood ratios

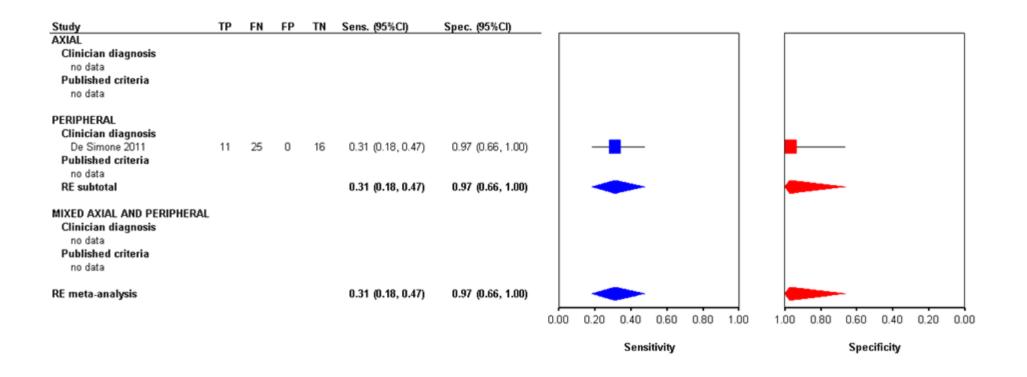


Figure 62: Finger or toe pathology on x-ray – forest plot: sensitivity and specificity

Enthesitis on x-ray

Table 35: Enthesitis on x-ray – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	0 studies	-	-	-	-	-	_	-	-
LR-	0 studies		-	-	-	-		-	-
PERIPHERAL						-			
LR+	1 atudu ⁸	Cross-sectional	No serious	n/a	No serious	Serious ^b	81	1.57 (0.92, 2.69)	MODERATE
LR-	1 study ^a	CIUSS-Sectional	No serious	n/a	No serious	Serious ^c	01	0.60 (0.37, 0.98)	MODERATE
MIXED AXIAL	AND PERIPHER	AL							
LR+	1 shirts d	Cross costional	No serious	n/a	Serious ^e	Serious ^b	33	25.50 (1.60, 407.29)	LOW
LR-	1 study ^d	Cross-sectional	No serious	n/a	Serious ^e	Serious ^c	33	0.40 (0.21, 0.77)	LOW
ALL EVIDENC	E POOLED								
LR+	O studie of	Crease continued	No serious	Serious ^g	Serious ^h	V. serious ⁱ	444	4.49 (0.32, 63.10)	VERY LOW
LR-	2 studies ^f	Cross-sectional	No serious	No serious	Serious ^h	Serious ^c	114	0.52 (0.35, 0.77)	LOW
Sadek 2	2007								

Sadek 2007

b At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2).

At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR-spans 0.5). с

d Godfrin 2004

е suboptimal reference standard (published classification criteria, rather than expert diagnosis)

f Godfrin 2004 ; Sadek 2007

g 12 ≥ 50%

h >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis)

i At a 95% confidence level, data are consistent with meaningful predictive value in either direction and no predictive value at all (i.e. 95% CI for LR+ spans both 0.5 and 2).

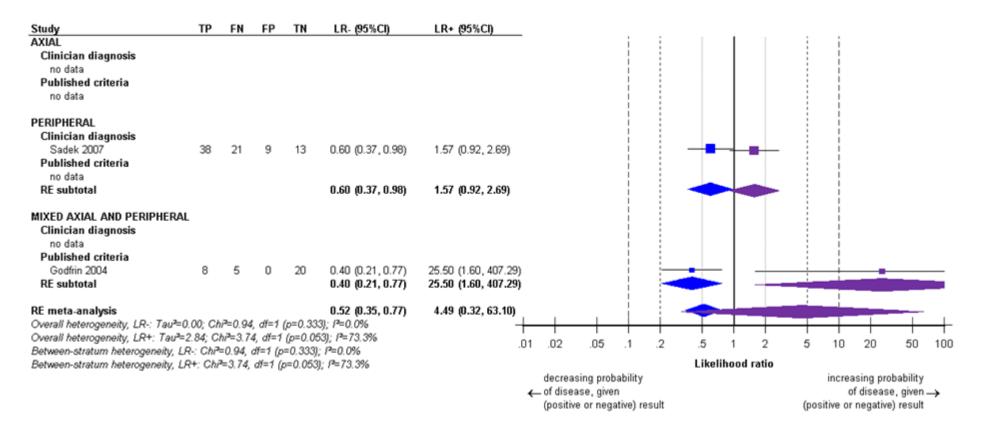


Figure 63: Enthesitis on x-ray – forest plot: likelihood ratios

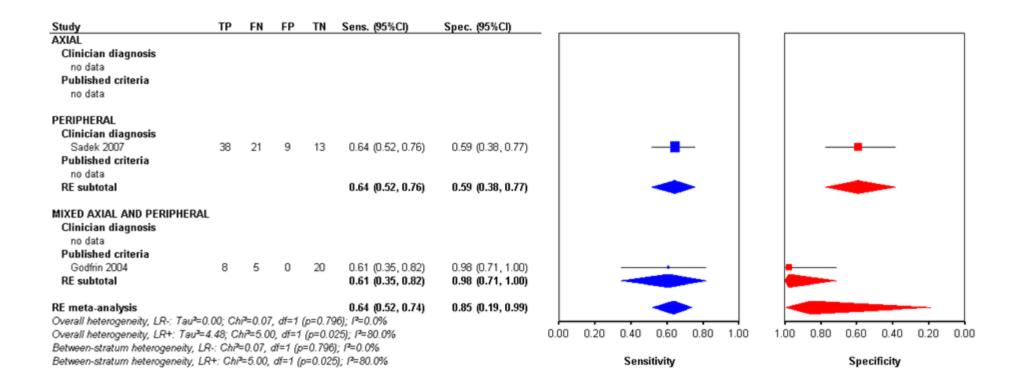


Figure 64: Enthesitis on x-ray – forest plot: sensitivity and specificity

MRI G.1.6.2

Sacroiliitis on MRI

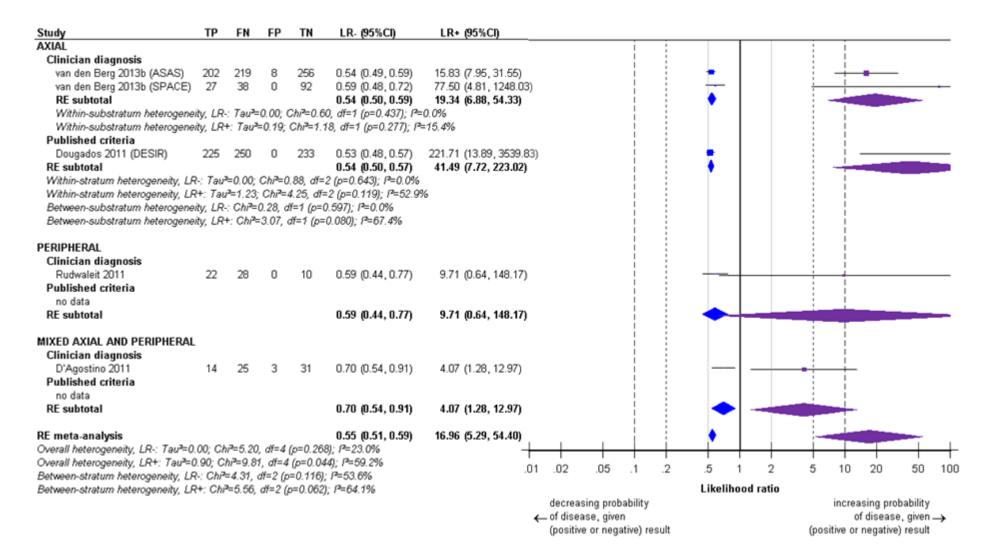
Table 36: Sacroiliitis on MRI – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	0 studies a	Cross-sectional	No serious	Serious ^b	No serious	No serious	1,550	41.49 (7.72, 223.02)	MODERATE
LR-	3 studies ^a	CIOSS-Sectional	No serious	No serious	Serious ^c	No serious	1,550	0.54 (0.50, 0.57)	MODERATE
PERIPHERAL									
LR+	1 - to at at	Orean anotional	No serious	n/a	No serious	Serious ^e	60	9.71 (0.64, 148.17)	MODERATE
LR-	1 study ^d	Cross-sectional	No serious	n/a	No serious	Serious ^f	60	0.59 (0.44, 0.77)	MODERATE
MIXED AXIAL	AND PERIPHER	AL							
LR+	1 otudu ⁰	Cross costional	No serious	n/a	No serious	Serious ^e	73	4.07 (1.28, 12.97)	MODERATE
LR-	1 study ^g	Cross-sectional	No serious	n/a	No serious	No serious	13	0.70 (0.54, 0.91)	HIGH
ALL EVIDENC	ENCE POOLED								
LR+	E atualia ah	Cross sectional	No serious	Serious ^b	No serious	No serious	1 692	16.96 (5.29, 54.40)	MODERATE
LR-	5 studies ^h	Cross-sectional	No serious	No serious	Serious ^c	No serious	1,683	0.55 (0.51, 0.59)	MODERATE

а Dougados 2011 (DESIR); van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

b 12 ≥ 50%

с >33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis)


d Rudwaleit 2011

At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5). е

f

g D'Agostino 2011

h Dougados 2011 (DESIR); D'Agostino 2011; Rudwaleit 2011; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

Figure 65 Sacroiliitis on MRI – forest plot: likelihood ratios

Study	ТР	FN	FP	TN	Sens. (95%Cl)	Spec. (95%Cl)		
AXIAL								
Clinician diagnosis								
van den Berg 2013b (ASAS)	202	219	8	256	0.48 (0.43, 0.53)	0.97 (0.94, 0.98)	-	-
van den Berg 2013b (SPACE)	27	38	0	92	0.42 (0.30, 0.54)	0.99 (0.92, 1.00)		
RE subtotal					0.47 (0.43, 0.52)	0.98 (0.92, 0.99)		
Within-substratum heterogene			-					
Within-substratum heterogene	ity, LR	+: Tau ^a	=0.47;	; Chi²=1	.44, df=1 (p=0.230); l ² =	30.5%		
Published criteria								
Dougados 2011 (DESIR)	225	250	0	233	0.47 (0.43, 0.52)	1.00 (0.97, 1.00)	+	
RE subtotal					0.47 (0.44, 0.50)	0.99 (0.94, 1.00)	•	
Within-stratum heterogeneity, LR								
Within-stratum heterogeneity, LR		-		-	9 77			
Between-substratum heterogene					<i>,,</i>			
Between-substratum heterogene	ity, LR	+: Chi?=	:3.12,	df=1 (p	=0.077); /²=67.9%			
PERIPHERAL								
Clinician diagnosis								
Rudwaleit 2011	22	28	0	10	0.44 (0.31, 0.58)	0.95 (0.55, 1.00)		
Published criteria	~~	20		10	0.44 (0.01, 0.00)	0.00 (0.00, 1.00)		
no data								
RE subtotal					0.44 (0.31, 0.58)	0.95 (0.55, 1.00)		
					0111 (0101) 0100)	0.00 (0.00, 1.00)		
MIXED AXIAL AND PERIPHERAL								
Clinician diagnosis								
D'Agostino 2011	14	25	3	31	0.36 (0.23, 0.52)	0.91 (0.76, 0.97)		- -
Published criteria								
no data								
RE subtotal					0.36 (0.23, 0.52)	0.91 (0.76, 0.97)		
RE meta analysis					0.47 (0.44, 0.50)	0.97 (0.92, 0.99)		
Overall heterogeneity, LR-: Tau ² =0.	00: CA	r=2.97	df=4	(p=0.5	, , , , ,	5.57 (area, area)		-
Overall heterogeneity, LR+: Tau ² =0							0.00 0.20 0.40 0.60 0.80 1.00	1.00 0.80 0.60 0.40 0.20 0.0
Between-stratum heterogeneity, LR								
Between-stratum heterogeneity, LR							Sensitivity	Specificity
berneen oronan nereregeneny, En		4.04,	W1 E	0.10	9,1 00.070		o choice in g	openning

Figure 66 Sacroiliitis on MRI – forest plot: sensitivity and specificity

Spinal features on MRI

Table 37 Spinal features on MRI – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	1 at the	Cross sectional	No serious	n/a	Serious ^b	Serious ^c	708	2.70 (1.76, 4.13)	LOW
LR-	1 study ^a	Cross-sectional	No serious	n/a	Serious ^b	No serious	700	0.82 (0.77, 0.88)	MODERATE
PERIPHERAL									
LR+	0 studios		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL A	ND PERIPHERAL								
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+	4 - 4 - 4 - 8	Orace continuel	No serious	n/a	Serious ^b	Serious ^c	700	2.70 (1.76, 4.13)	LOW
LR-	1 study ^a	Cross-sectional	No serious	n/a	Serious ^b	No serious	708	0.82 (0.77, 0.88)	MODERATE

Dougados 2011 (DESIR) а

b

suboptimal reference standard (published classification criteria, rather than expert diagnosis) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). с

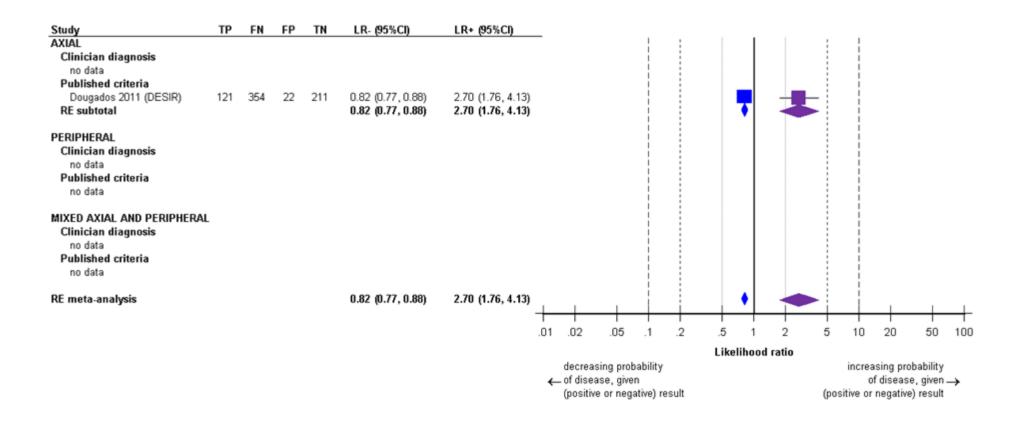


Figure 67 Spinal features on MRI – forest plot: likelihood ratios

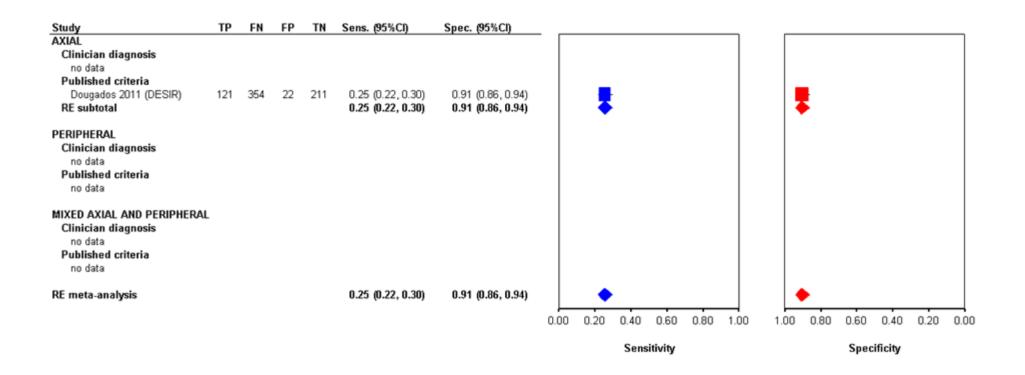


Figure 68 Spinal features on MRI – forest plot: sensitivity and specificity

Enthesitis on MRI

Table 38: Enthesitis on MRI – GRADE table

			Risk of bias	Inconsistency	Indirectness	Imprecision		Summary	
Measure	Studies	Design	Risk o	Incon	Indire	Impre	Total N	of findings (95%Cl)	Quality
AXIAL									
LR+	0 studios		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
PERIPHERAL									
LR+	0 studies	-	-	-	-	-		-	-
LR-	U Studies	-	-	-	-	-	-	-	-
MIXED AXIAL AN	ND PERIPHERAL								
LR+	1 aturdud	Cross-sectional	No serious	n/a	Serious ^b	Serious ^c	33	4.62 (1.53, 13.93)	LOW
LR-	1 study ^a	Cross-sectional	No serious	n/a	Serious ^b	Serious ^d	33	0.36 (0.16, 0.84)	LOW
ALL EVIDENCE	POOLED								
LR+		Orace excition of	No serious	n/a	Serious ^b	Serious ^c	00	4.62 (1.53, 13.93)	LOW
LR-	1 study ^a	Cross-sectional	No serious	n/a	Serious ^b	Serious ^d	33	0.36 (0.16, 0.84)	LOW

а Godfrin 2004

b

suboptimal reference standard (published classification criteria, rather than expert diagnosis) At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 0.5). с

d

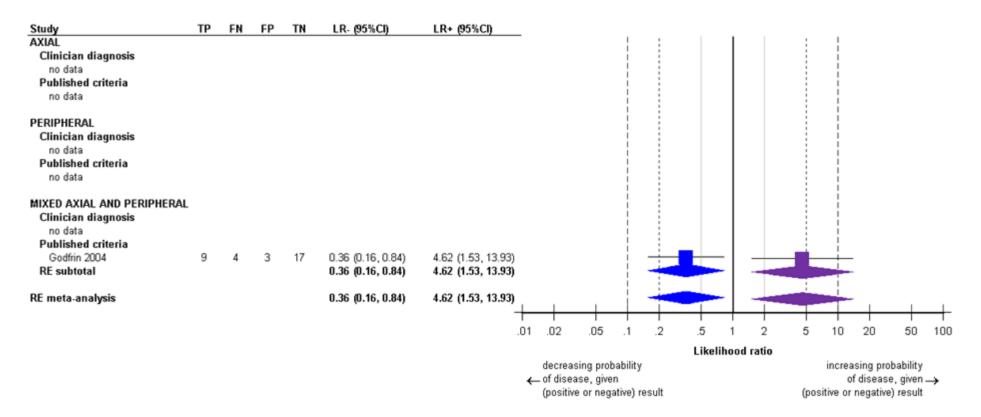


Figure 69 Enthesitis on MRI – forest plot: likelihood ratios

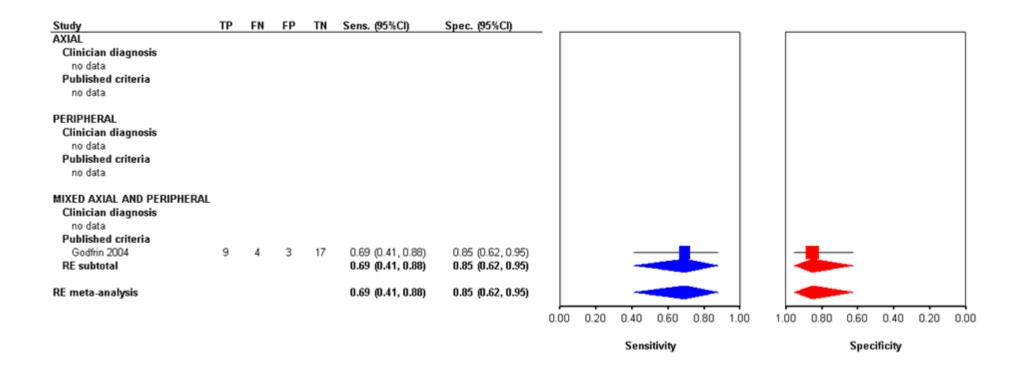


Figure 70 Enthesitis on MRI – forest plot: sensitivity and specificity

G.1.6.3 Ultrasound

Finger or toe pathology on ultrasound

Table 39: Finger or toe pathology on ultrasound – GRADE table

	<u> </u>	0,7							
Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL	•		•				1		
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
PERIPHERAL		·							
LR+	1 aturdu d	Cross castional	No serious	n/a	No serious	No serious	52	33.54 (2.19, 514.79)	HIGH
LR-	1 study ^a	Cross-sectional	No serious	n/a	No serious	No serious	52	0.01 (0.00, 0.22)	HIGH
MIXED AXIAL A	AND PERIPHERAL	-							
LR+	0 atudiaa		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+	1 $du du^{a}$	Cross-sectional	No serious	n/a	No serious	No serious	52	33.54 (2.19, 514.79)	HIGH
LR-	1 study ^a	01055-560101101	No serious	n/a	No serious	No serious	52	0.01 (0.00, 0.22)	HIGH
								, . ,	

^aDe Simone 2011

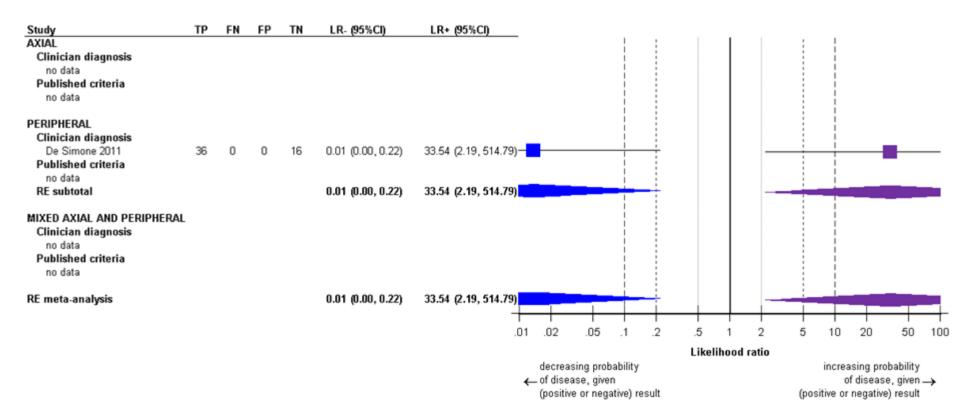


Figure 71 Finger or toe pathology on ultrasound – forest plot: likelihood ratios

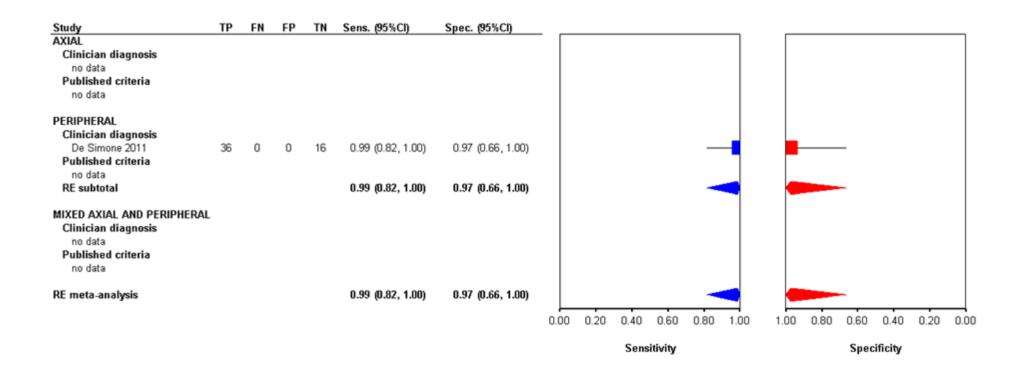


Figure 72 Finger or toe pathology on ultrasound – forest plot: sensitivity and specificity

Finger or toe pathology on power Doppler ultrasound

Table 40 Finger or toe pathology on power Doppler ultrasound – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	0 studies	-	-	-	-	-	_	-	-
LR-	0 studies		-	-	-	-		-	-
PERIPHERAL									
LR+	1 atudua	Cross-sectional	No serious	n/a	No serious	Serious ^b	52	2.15 (1.12, 4.13)	MODERATE
LR-	1 study ^a	CIUSS-Sectional	No serious	n/a	No serious	Serious ^c	52	0.31 (0.14, 0.67)	MODERATE
MIXED AXIAL A	ND PERIPHERAL								
LR+	0 studies		-	-	-	-		-	-
LR-	U SIUUIES	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+	1 atudua	Crease continuel	No serious	n/a	No serious	Serious ^b	52	2.15 (1.12, 4.13)	MODERATE
LR-	1 study ^a	Cross-sectional	No serious	n/a	No serious	Serious ^c	52	0.31 (0.14, 0.67)	MODERATE

^aDe Simone 2011

^bAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). ^cAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 0.5).

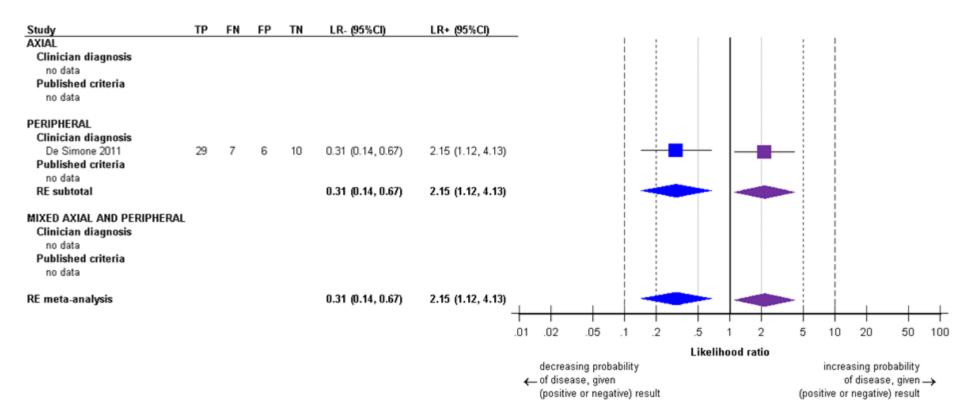


Figure 73 Finger or toe pathology on power Doppler ultrasound – forest plot: likelihood ratios

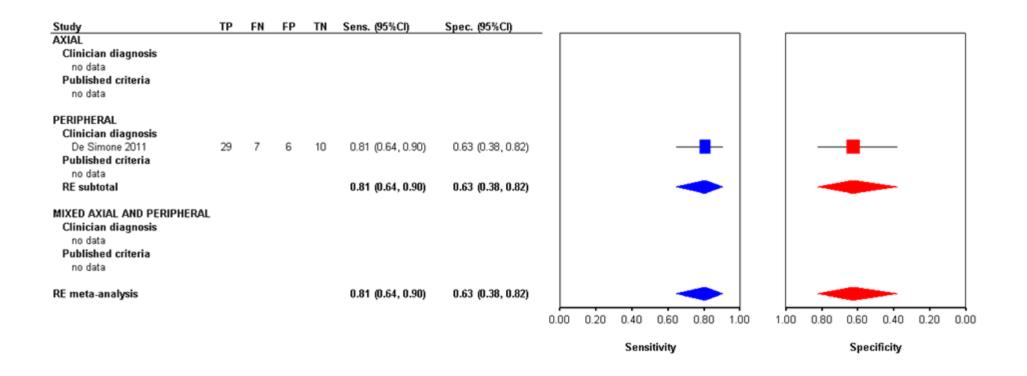


Figure 74 Finger or toe pathology on power Doppler ultrasound – forest plot: sensitivity and specificity

Enthesitis on power Doppler ultrasound

Table 41 Enthesitis on power Doppler ultrasound – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	0 studios		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
PERIPHERAL									
LR+	0 studios		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL A	ND PERIPHERAL	-							
LR+	1 atudud	Cross sectional	No serious	n/a	No serious	No serious	99	1.43 (1.11, 1.84)	HIGH
LR-	1 study ^a	Cross-sectional	No serious	n/a	No serious	Serious ^b	99	0.35 (0.16, 0.75)	MODERATE
ALL EVIDENCE	POOLED								
LR+		One of the set	No serious	n/a	No serious	No serious	00	1.43 (1.11, 1.84)	HIGH
LR-	1 study ^a	Cross-sectional	No serious	n/a	No serious	Serious ^b	99	0.35 (0.16, 0.75)	MODERATE

a D'Agostino 2011

^b At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5).

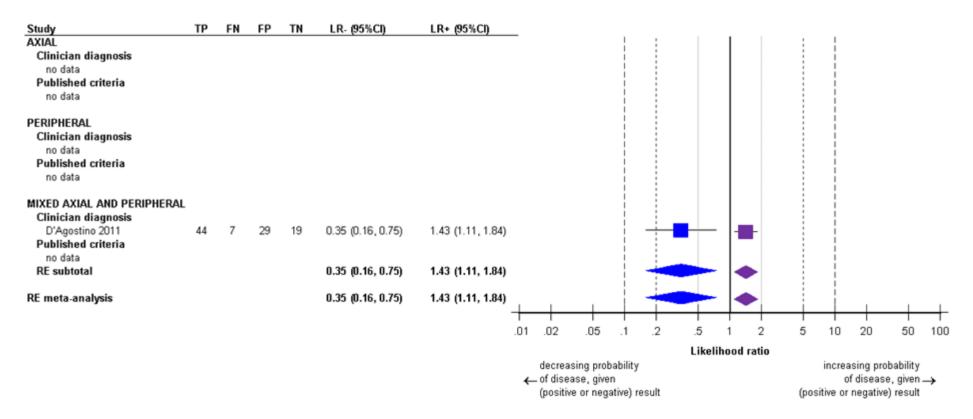


Figure 75 Enthesitis on power Doppler ultrasound – forest plot: likelihood ratios

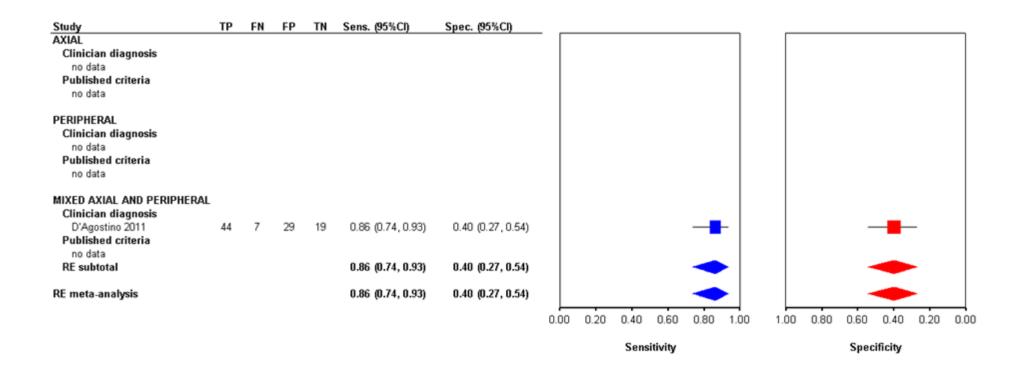


Figure 76: Enthesitis on power Doppler ultrasound – forest plot: sensitivity and specificity

Scintigraphy G.1.6.4

Sacroiliitis on scintigraphy

Table 42: Sacroiliitis on scintigraphy – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL						-			
LR+	1 atualui?	Cross-sectional	Serious	n/a	No serious	No serious	194	1.31 (1.02, 1.68)	MODERATE
LR-	1 study ^a	Cross-sectional	Serious	n/a	No serious	Serious ^b	194	0.69 (0.50, 0.97)	LOW
PERIPHERAL									
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL A	ND PERIPHERAL								
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+		One of the set	Serious	n/a	No serious	No serious	101	1.31 (1.02, 1.68)	MODERATE
LR-	1 study ^a	Cross-sectional	Serious	n/a	No serious	Serious ^b	194	0.69 (0.50, 0.97)	LOW

^aSong 2010 ^bAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5).

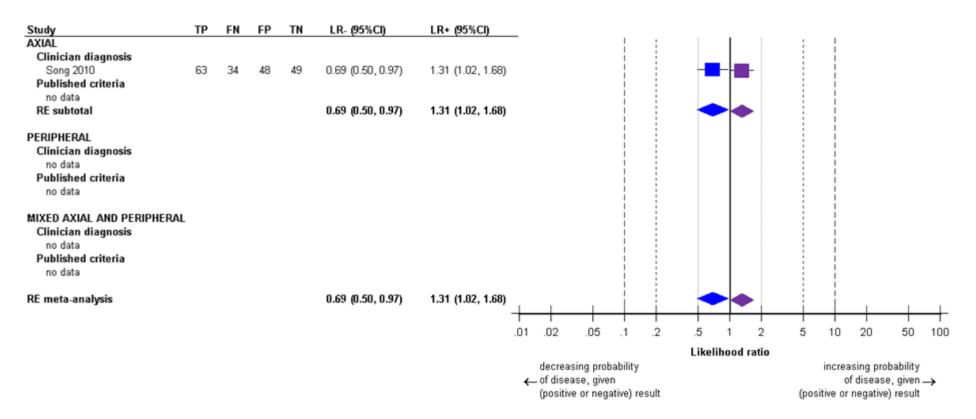


Figure 77: Sacroiliitis on scintigraphy – forest plot: likelihood ratios

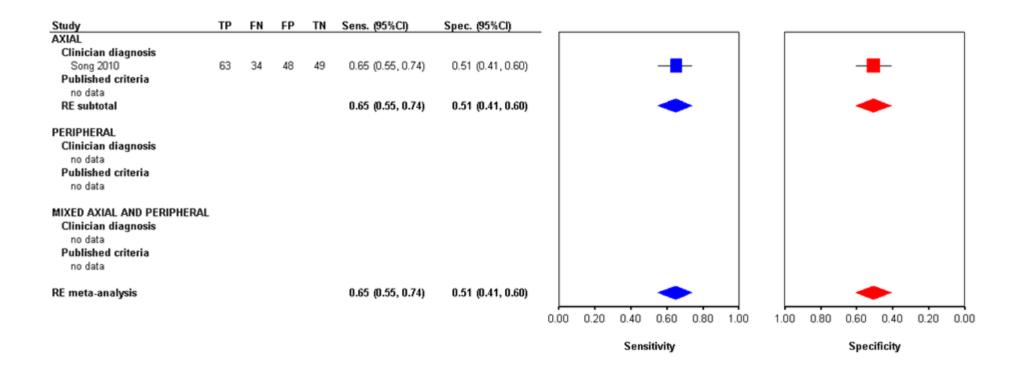


Figure 78: Sacroiliitis on scintigraphy – forest plot: sensitivity and specificity

G.1.7 Information gathering to improve early diagnosis

Review Question 5

• What is the usefulness of information gathering (for example family history, self-report questionnaires, and screening criteria) in improving early diagnosis of spondyloarthritis?

None

GRADE tables and meta-analysis results

G.1.8 Diagnostic risk scores and models

Review Question 4

• What is the diagnostic utility of a risk assessment score for identifying spondyloarthritis?

GRADE tables and meta-analysis results

G.1.8.1 Amor criteria

Original Amor criteria

 Table 43: Original Amor criteria – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	2 studies ^a	Cross-sectional	Serious ^b	Serious ^c	No serious	Serious ^d	1,357	1.97 (0.80, 4.84)	VERY LOW
LR-	2 studies	CIOSS-Sectional	Serious ^k	No serious	No serious	No serious	1,357	0.39 (0.34, 0.46)	MODERATE
PERIPHERAL									
LR+	1 study ^e	Cross-sectional	No serious	n/a	No serious	No serious	266	15.85 (3.97, 63.33)	HIGH
LR-	,		No serious	n/a	No serious	No serious	200	0.66 (0.59, 0.74)	HIGH
	AND PERIPHER	AL							
LR+	3 studies ^f	Cross-sectional	No serious	Serious [/]	Serious ^g	Serious ^m	907	3.03 (1.36, 6.78)	VERY LOW
LR-	o staales		No serious	No serious	No serious	Serious ^h	001	0.47 (0.42, 0.53)	MODERATE
ALL EVIDENC	E POOLED								
LR+	6 studies ⁱ	Cross-sectional	No serious	Serious [/]	No serious	Serious ^m	2,530	2.98 (1.68, 5.31)	LOW
LR-	o otdaleo		No serious	Serious [/]	No serious	Serious ^q	2,000	0.47 (0.37, 0.59)	LOW
AXIAL									
LR+	2 studies ^j	Cross-sectional	Serious ^k	Serious [/]	No serious	Serious ^m	1,357	1.97 (0.80, 4.84)	VERY LOW
LR-	2 300003		Serious ^k	No serious	No serious	No serious	1,001	0.39 (0.34, 0.46)	MODERATE
PERIPHERAL									
LR+	1 study ⁿ	Cross-sectional	No serious	n/a	No serious	No serious	266	15.85 (3.97, 63.33)	HIGH
LR-			No serious	n/a	No serious	No serious		0.66 (0.59, 0.74)	HIGH
	AND PERIPHER	AL							
LR+	3 studies ^o	Cross-sectional	No serious	Serious [/]	Serious ^p	Serious ^m	907	3.03 (1.36, 6.78)	VERY LOW
LR-			No serious	No serious	No serious	Serious ^q		0.47 (0.42, 0.53)	MODERATE
ALL EVIDENC	E POOLED								
LR+	6 studies ^r	Cross-sectional	No serious	Serious [/]	No serious	Serious ^m	2,530	2.98 (1.68, 5.31)	LOW
LR-			No serious	Serious [/]	No serious	Serious ^q	_,000	0.47 (0.37, 0.59)	LOW

^jDougados 2015 (DESIR); Rudwaleit 2009 (ASAS) ^k>33.3% of weight in meta-analysis comes from studies with serious risk of bias

′12 ≥ 50%

^{*m}*At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). ^{*n*}Rudwaleit 2011</sup>

°D'Agostino 2011; Godfrin 2004 ; Tomero 2014

P>33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis)
 ^qAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5).
 ^rDougados 2015 (DESIR); D'Agostino 2011; Godfrin 2004; Rudwaleit 2009 (ASAS); Rudwaleit 2011; Tomero 2014

Study	ТР	FN	FP	TN	LR- (95%CI)	LR+ (95%CI)	
AXIAL							
Clinician diagnosis							
Dougados 2015 (DESIR)	282	37	275	114	0.40 (0.28, 0.56)	1.25 (1.16, 1.35	
Rudwaleit 2009 (ASAS)	271	120	57	201	0.39 (0.33, 0.46)	3.14 (2.47, 3.98	
RE subtotal					0.39 (0.34, 0.46)	1.97 (0.80, 4.84	4) i 🔷 🚽 🛶 👘 i
Within-substratum heterogenei	ity, LR-	: Tau²=	:0.00; 0	ChP=0.00), df=1 (p=0.981); l²=0.	0%	
Within-substratum heterogenei	ity, LR+	t: Tau≯	=0.41;	ChP=51.	98, df=1 (p<0.001); l²=	98.1%	
Published criteria							
no data							
RE subtotal					0.39 (0.34, 0.46)	1.97 (0.80, 4.84	4) 🔷 🚽 🛶 🛶 🛶 🛶 🛶 🛶 🛶 🛶 🛶 🛶 🛶
Within-stratum heterogeneity, LR	-: Tau ²	=0.00;	Chi ² =0.	.00, df=1	(p=0.981); P=0.0%		
Within-stratum heterogeneity, LR	+: Tau	≈0.41;	Chi ² =5	51.98, df	=1 (p<0.001); P=98.19	5	
PERIPHERAL							
Clinician diagnosis							
Rudwaleit 2011	62	114	2	88	0.66 (0.59, 0.74)	15.85 (3.97, 63.3	.33) -
Published criteria							
no data							
RE subtotal					0.66 (0.59, 0.74)	15.85 (3.97, 63.3	.33)
MIXED AXIAL AND PERIPHERAL							
Clinician diagnosis							
D'Agostino 2011	31	20	6	42	0.45 (0.31, 0.64)	4.86 (2.23, 10.6	S1)
Tomero 2014	317	221	33	204	0.48 (0.43, 0.53)	4.23 (3.06, 5.85	
RE subtotal	317	221	35	204	0.47 (0.43, 0.53)	4.32 (3.20, 5.83	
Within-substratum heterogenei	av 10.	Tour	0.00-0	362-0-11			
Within-substratum heterogenei							
Published criteria	sy, 270	. / 80 -	-0.00,	0m-0.7	0, 0/-7 (p=0.747), 7-0	.078	
Godfrin 2004	13	0	13	7	0.10 (0.01, 1.61)	1.50 (1.07, 2.10	m
RE subtotal	15	0	15	'	0.47 (0.42, 0.53)	3.03 (1.36, 6.78	
Within-stratum heterogeneity, LR	Tour	E0.00	Ch2=1	31 df=3		5.05 (1.50, 0.70	0)
Within-stratum heterogeneity, LR						<u>.</u>	
Between-substratum heterogenei						2	
Between-substratum heterogenei							
Detricer of Detriction in the original	iy, Eri	. 0111	21.00,	ar - r Qo	0.0017, 1 - 30.070		
RE meta-analysis					0.47 (0.37, 0.59)	2.98 (1.68, 5.31	m 🔶 📥 🗌
Overall heterogeneity, LR-: Tau ² =0.	05: Ch	<i>P</i> =35.3	6. df=5	(p<0.00			
Overall heterogeneity, LR+: Tau ² =0							
Between-stratum heterogeneity, LR							.01 .02 .05 .1 .2 .5 1 2 5 10 20 50
Between-stratum heterogeneity, LR							Likelihood ratio
concervation interesting in any, or							decreasing probability increasing probability
sense in an interrogeneity, Er							decreasing probability increasing probability of disease, given of disease, given of disease, given .

 Figure 79:
 Original Amor criteria – forest plot: likelihood ratios

Study	ТР	FN	FP	TN	Sens. (95%Cl)	Spec. (95%Cl)			
AXIAL									
Clinician diagnosis									
Dougados 2015 (DESIR)	282	37	275	114	0.88 (0.84, 0.91)	0.29 (0.25, 0.34)		-	
Rudwaleit 2009 (ASAS)	271	120	57	201	0.69 (0.65, 0.74)	0.78 (0.72, 0.83)		-	
RE subtotal					0.80 (0.56, 0.93)	0.55 (0.13, 0.91)	-		
Within-substratum heterogene									
Within-substratum heterogene	nty, LR	+: Tau ²	≥ 2.27;	ChP=1	31.22, df=1 (p<0.001);	P=99.2%			
Published criteria									
no data									
RE subtotal					0.80 (0.56, 0.93)	0.55 (0.13, 0.91)	-		
Within-stratum heterogeneity, Li									
Within-stratum heterogeneity, Li	R+: Tau	P=2.27	; Chi²=	131.22,	df=1 (p<0.001); P=99	.2%			
PERIPHERAL									
Clinician diagnosis									
Rudwaleit 2011	62	114	2	88	0.35 (0.29, 0.43)	0.98 (0.92, 0.99)			•
Published criteria						,			
no data									
RE subtotal					0.35 (0.29, 0.43)	0.98 (0.92, 0.99)	-		►
MIXED AXIAL AND PERIPHERAL	L								
Clinician diagnosis	-								
D'Agostino 2011	31	20	6	42	0.61 (0.47, 0.73)	0.88 (0.75, 0.94)		•••	
Tomero 2014	317	221	33	204	0.59 (0.55, 0.63)	0.86 (0.81, 0.90)	-	-	-
RE subtotal					0.59 (0.55, 0.63)	0.86 (0.82, 0.90)			
Within-substratum heterogene	aity, LR	-: Tau ²	=0.00;	ChP=0.	07, df=1 (p=0.796); /=	0.0%		·	•
Within-substratum heterogene									
Published criteria					- u 1-				
Godfrin 2004	13	0	13	7	0.96 (0.62, 1.00)	0.36 (0.19, 0.58)			
RE subtotal					0.62 (0.50, 0.72)	0.75 (0.42, 0.92)			
Within-stratum heterogeneity, Li	R-: Tau	2=0.09;	Chi?=4	4.19, di	=2 (p=0.123); P=52.29	6		-	
Within-stratum heterogeneity, LI	R+: Tat	2=1.42	; ChP=	24.95,	df=2 (p<0.001); P=92.0	0%			
Between-substratum heterogene									
Between-substratum heterogene	əity, LR	+: Chi ²	=24.88	, df=1 (o<0.001); P=96.0%				
RE meta-analysis					0.68 (0.51, 0.81)	0.76 (0.47, 0.92)	-		
Overall heterogeneity, LR-: Tau ² =0	.64: CF	h7=139	96. df	=5 (p<0		ine (arrit, ener)			
Overall heterogeneity, LR+: Tau ² =							0.00 0.20 0.40 0.	60 0.80 1.00	1.00 0.80 0.60 0.40 0.20 0.00
Between-stratum heterogeneity, Li									
Between-stratum heterogeneity, Li							Sensitivi	ity	Specificity

Figure 80: Original Amor criteria – forest plot: sensitivity and specificity

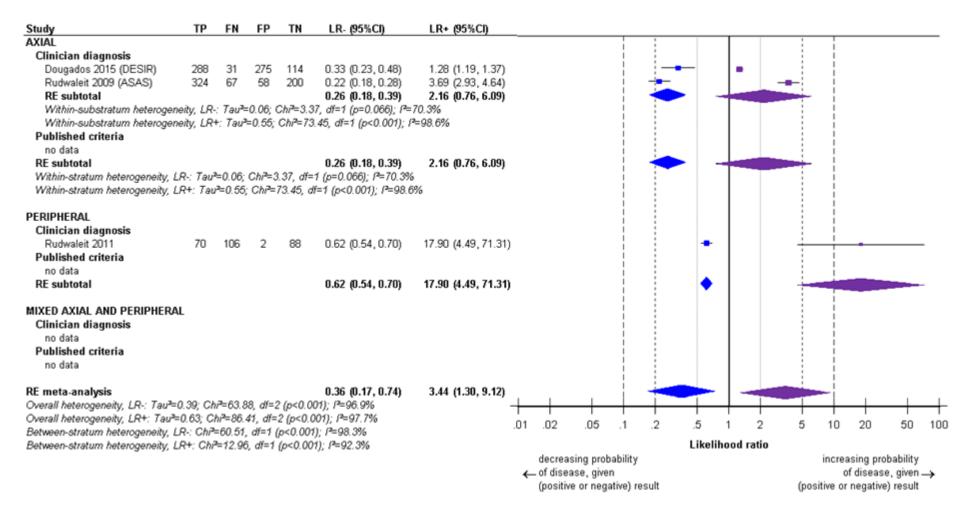
Modified Amor criteria

Table 44: Modified Amor criteria – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	O a tradici a d	Omen en etime l	Serious ^b	Serious ^c	No serious	Serious ^d	4.057	2.16 (0.76, 6.09)	VERY LOW
LR-	2 studies ^a	Cross-sectional	Serious ^b	Serious ^c	No serious	No serious	1,357	0.26 (0.18, 0.39)	LOW
PERIPHERAL									
LR+	4 study B	Omen and in all	No serious	n/a	No serious	No serious	000	17.90 (4.49, 71.31)	HIGH
LR-	1 study ^e	Cross-sectional	No serious	n/a	No serious	No serious	266	0.62 (0.54, 0.70)	HIGH
MIXED AXIAL	AND PERIPHERA	L							
LR+	0 studies		-	-	-	-		-	-
LR-	U Studies	-	-	-	-	-	-	-	-
ALL EVIDENCI	E POOLED								
LR+		Crease exettioned	Serious ^b	Serious ^c	No serious	Serious ^d	4 000	3.44 (1.30, 9.12)	VERY LOW
LR-	3 studies ^f	Cross-sectional	No serious	Serious ^c	No serious	Serious ^g	1,623	0.36 (0.17, 0.74)	LOW

а

Dougados 2015 (DESIR); Rudwaleit 2009 (ASAS) >33.3% of weight in meta-analysis comes from studies with serious risk of bias b


с 12 ≥ 50%

At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). d

е Rudwaleit 2011

f

Dougados 2015 (DESIR); Rudwaleit 2009 (ASAS); Rudwaleit 2011 At a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5). g

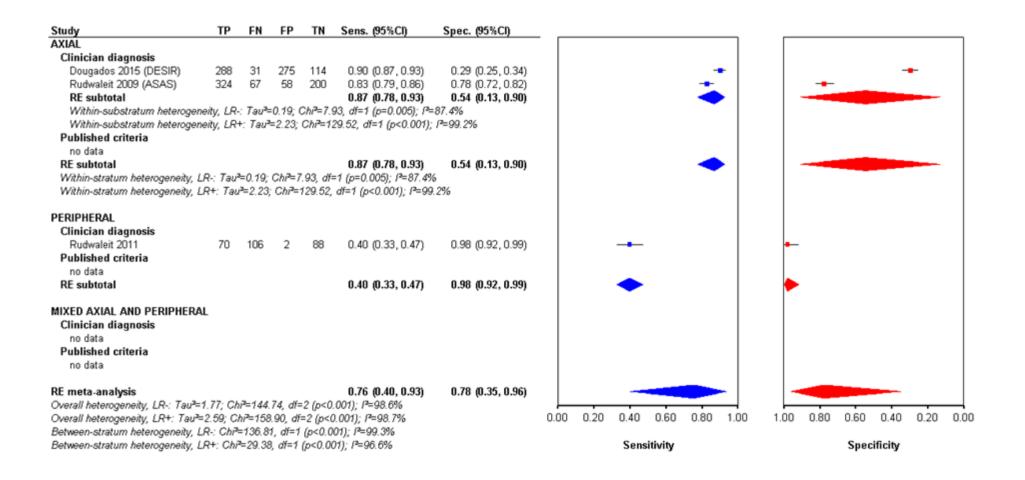


Figure 82: Modified Amor criteria – forest plot: sensitivity and specificity

G.1.8.2 ASAS axial criteria

Table 45: ASAS axial criteria – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	2 studies ^a	Cross-sectional	Serious ^b	Serious ^c	No serious	Serious ^d	1,357	2.71 (0.72, 10.12)	VERY LOW
LR-			Serious ^b	Serious ^c	No serious	Serious ^e		0.30 (0.14, 0.66)	VERY LOW
PERIPHERAL									
LR+	0 studies	-	-	-	-	-	-	-	-
LR-			-	-	-	-		-	-
MIXED AXIAL AND PERIPHERAL									
LR+	1 study ^f	Cross-sectional	No serious	n/a	No serious	Serious ^d	43	3.26 (1.29, 8.23)	MODERATE
LR-			No serious	n/a	No serious	Serious ^e		0.43 (0.24, 0.79)	MODERATE
ALL EVIDENCE POOLED									
LR+	3 studies ^g	Cross-sectional	Serious ^b	Serious ^c	No serious	Serious ^d	1,400	2.85 (0.98, 8.35)	VERY LOW
LR-			Serious ^b	Serious ^c	No serious	Serious ^e		0.33 (0.18, 0.62)	VERY LOW

^aDougados 2015 (DESIR); Rudwaleit 2009 (ASAS) ^b>33.3% of weight in meta-analysis comes from studies with serious risk of bias

°I2 ≥ 50%

^dAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). ^eAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 0.5). ^fD'Agostino 2011

^gDougados 2015 (DESIR); D'Agostino 2011; Rudwaleit 2009 (ASAS)

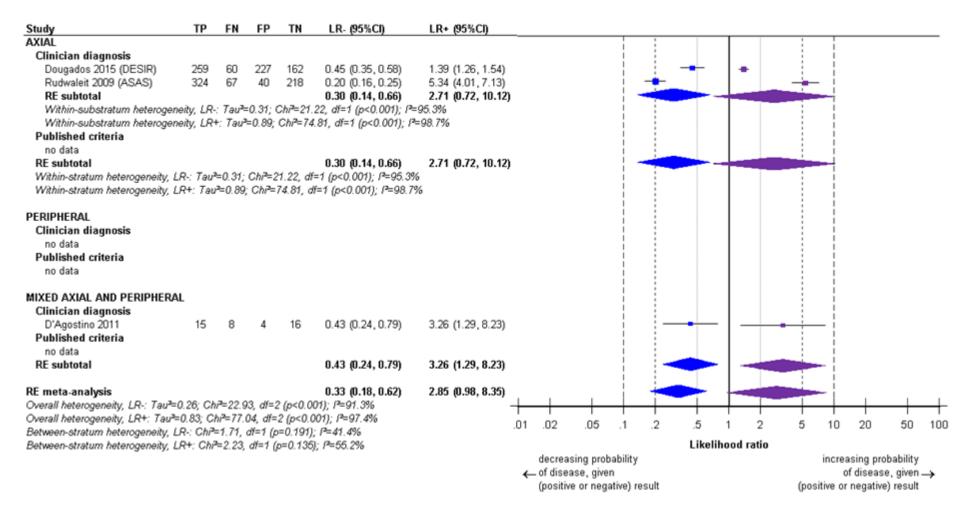


Figure 83: ASAS axial criteria – forest plot: likelihood ratios

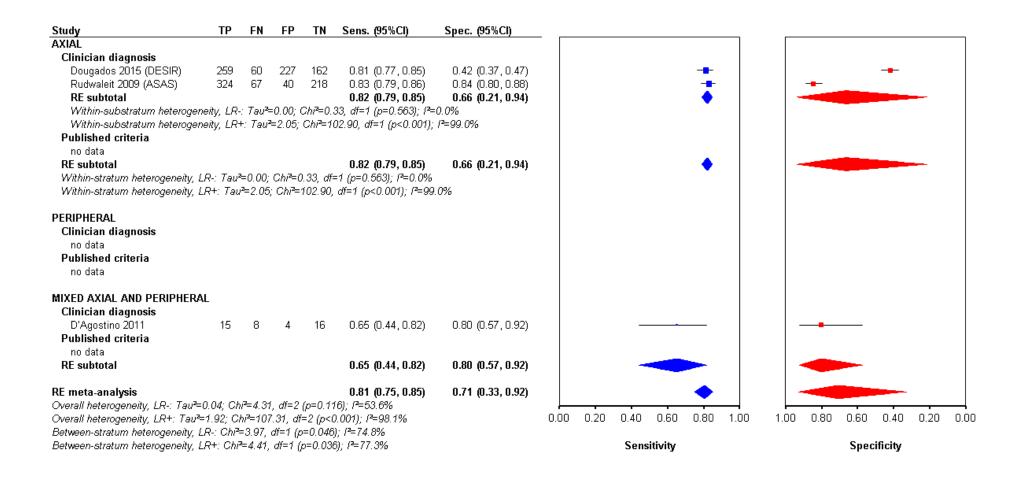


Figure 84: ASAS axial criteria – forest plot: sensitivity and specificity

ASAS axial criteria (imaging 'arm' only)

Table 46: ASAS axial criteria (imaging 'arm' only) – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	4 -4 - 4 - 8	Crease anational	No serious	n/a	No serious	No serious	040	24.41 (11.72, 50.87)	HIGH
LR-	1 study ^a	Cross-sectional	No serious	n/a	No serious	No serious	649	0.35 (0.30, 0.40)	HIGH
PERIPHERAL									
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL A	ND PERIPHERAL	-							
LR+			-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+			No serious	n/a	No serious	No serious	0.40	24.41 (11.72, 50.87)	HIGH
LR-	1 study ^a	Cross-sectional	No serious	n/a	No serious	No serious	649	0.35 (0.30, 0.40)	HIGH

^aRudwaleit 2009 (ASAS)

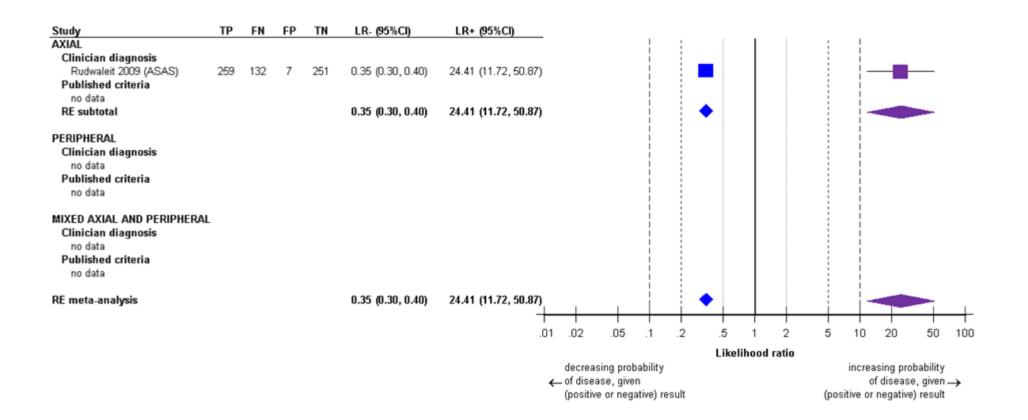


Figure 85: ASAS axial criteria (imaging 'arm' only) – forest plot: likelihood ratios

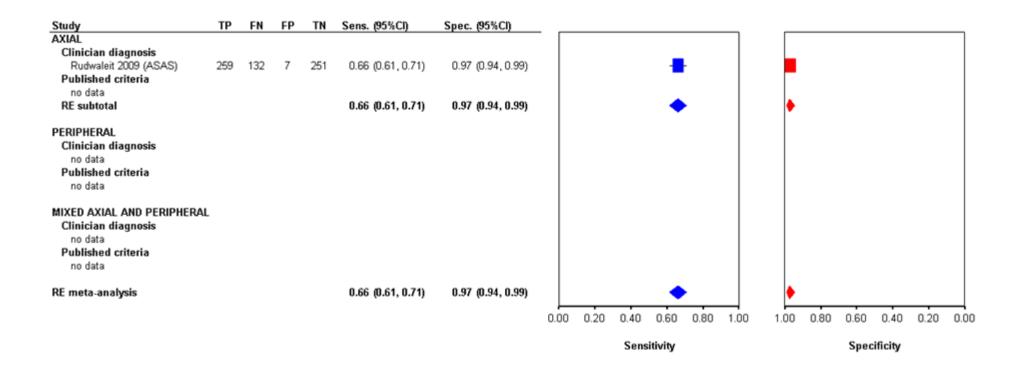


Figure 86: ASAS axial criteria (imaging 'arm' only) – forest plot: sensitivity and specificity

Berlin algorithm G.1.8.3

Original Berlin algorithm

Table 47: Original Berlin algorithm – GRADE table

		Studies Design		Inconsistency	Indirectness	Imprecision		Summary	
Measure	Studies	Design	Risk of bias	Incol	Indir	Impr	Total N	of findings (95%Cl)	Quality
AXIAL									
LR+	2 studies ^a	Cross-sectional	No serious	No serious	No serious	No serious	842	3.30 (2.65, 4.11)	HIGH
LR-		CIUSS-SECIIONAI	No serious	No serious	No serious	No serious	042	0.43 (0.38, 0.50)	HIGH
PERIPHERAL									
LR+	0 studies	_	-	-	-	-	_	-	-
LR-	U Studies		-	-	-	-	-	-	-
MIXED AXIAL	AND PERIPHERA	L							
LR+	1 atudub	Cross sectional	No serious	n/a	No serious	Serious ^c	40	3.04 (1.19, 7.76)	MODERATE
LR-	1 study ^b	Cross-sectional	No serious	n/a	No serious	Serious ^d	43	0.49 (0.28, 0.85)	MODERATE
ALL EVIDENCI	E POOLED								
LR+	2 studies f	Cross sostional	No serious	No serious	No serious	No serious	885	3.29 (2.65, 4.07)	HIGH
LR-	3 studies ^e	Cross-sectional	No serious	No serious	No serious	No serious	000	0.44 (0.38, 0.50)	HIGH

^avan den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

^bD'Agostino 2011

^cAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). ^dAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5).

^eD'Agostino 2011; van den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

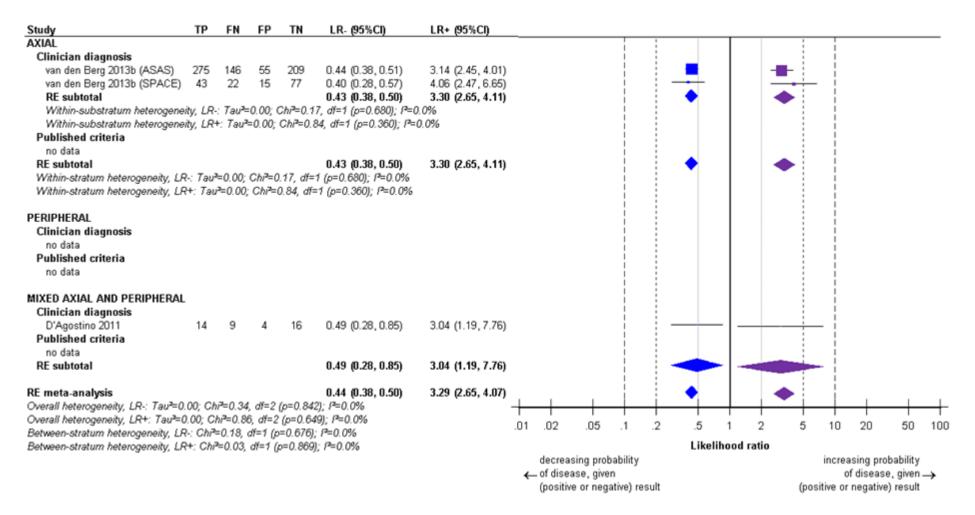
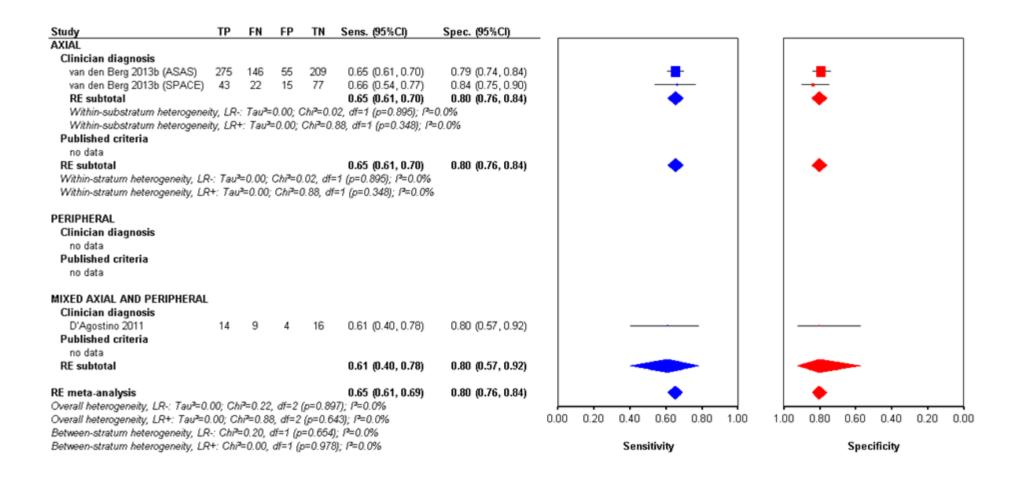
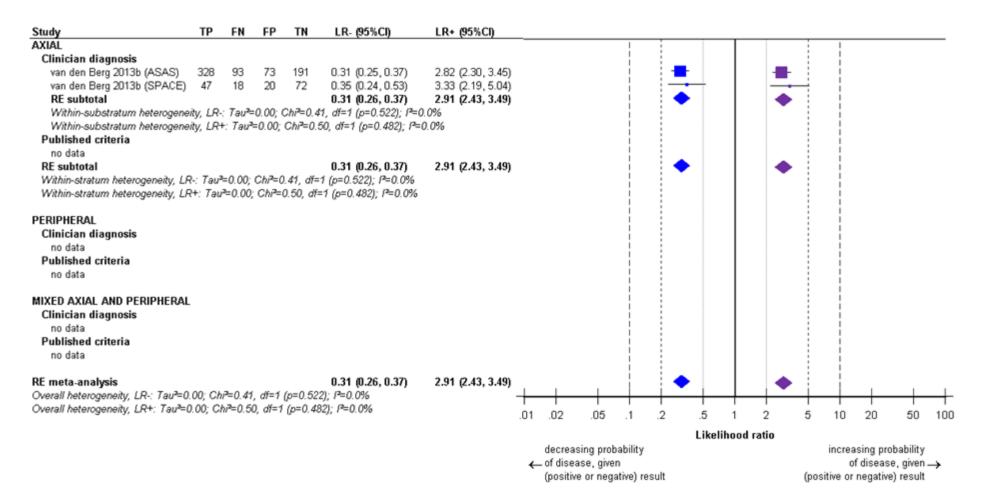
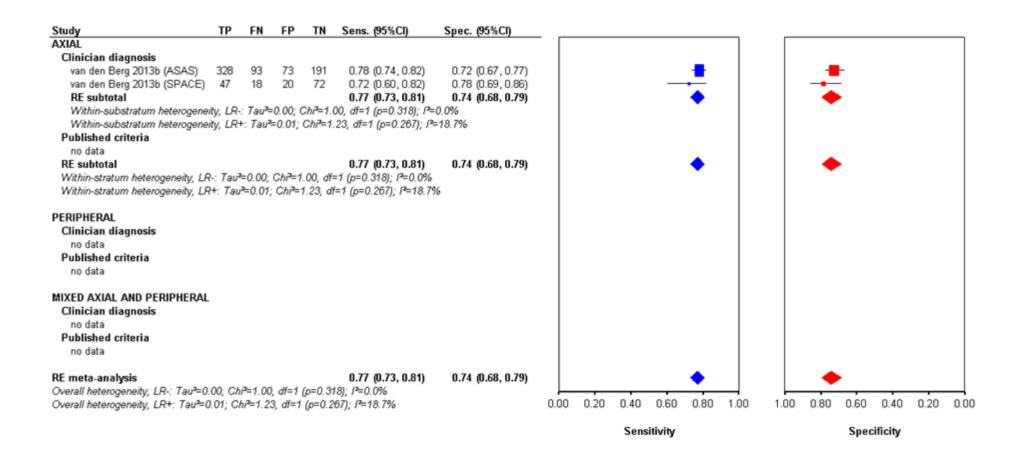



Figure 87: Original Berlin algorithm – forest plot: likelihood ratios

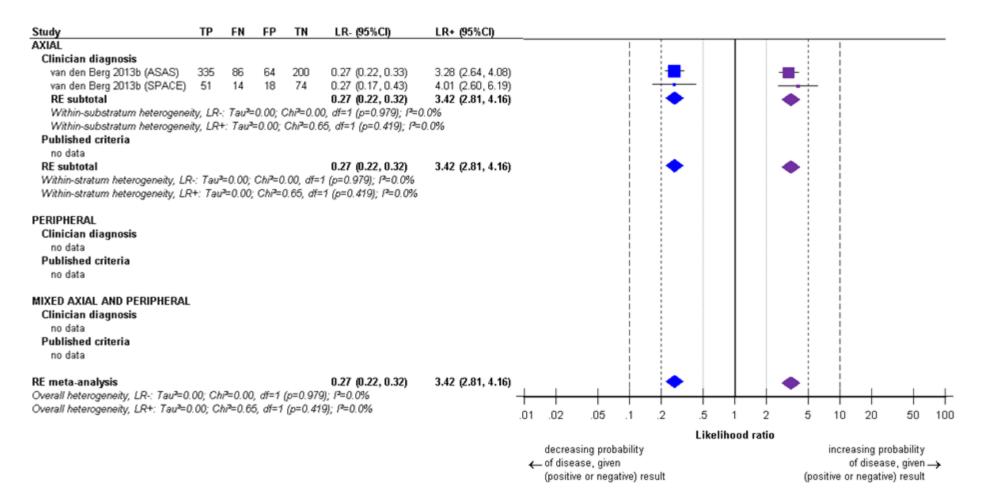

Figure 88: Original Berlin algorithm – forest plot: sensitivity and specificity

Berlin algorithm -- modification #1

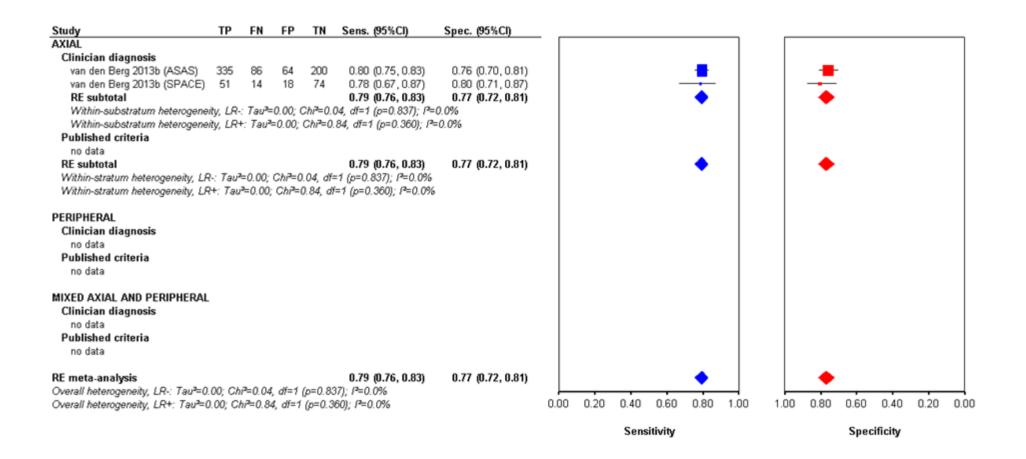

Table 48: Berlin algorithm -- modification #1 – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	0 - 4 1 3	Crease assticated	No serious	No serious	No serious	No serious	0.40	2.91 (2.43, 3.49)	HIGH
LR-	2 studies ^a	Cross-sectional	No serious	No serious	No serious	No serious	842	0.31 (0.26, 0.37)	HIGH
PERIPHERAL									
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL A	ND PERIPHERAL				·				
LR+			-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+			No serious	No serious	No serious	No serious	0.40	2.91 (2.43, 3.49)	HIGH
LR-	2 studies ^a	Cross-sectional	No serious	No serious	No serious	No serious	842	0.31 (0.26, 0.37)	HIGH

^avan den Berg 2013b (ASAS); van den Berg 2013b (SPACE)



Berlin algorithm -- modification #2


Table 49: Berlin algorithm -- modification #2 – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	0 - to all - all	Crease assticated	No serious	No serious	No serious	No serious	0.40	3.42 (2.81, 4.16)	HIGH
LR-	2 studies ^a	Cross-sectional	No serious	No serious	No serious	No serious	842	0.27 (0.22, 0.32)	HIGH
PERIPHERAL									
LR+	0 atudiaa		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL A	ND PERIPHERAL								
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+		One and the set	No serious	No serious	No serious	No serious	0.40	3.42 (2.81, 4.16)	HIGH
LR-	2 studies ^a	Cross-sectional	No serious	No serious	No serious	No serious	842	0.27 (0.22, 0.32)	HIGH

^avan den Berg 2013b (ASAS); van den Berg 2013b (SPACE)

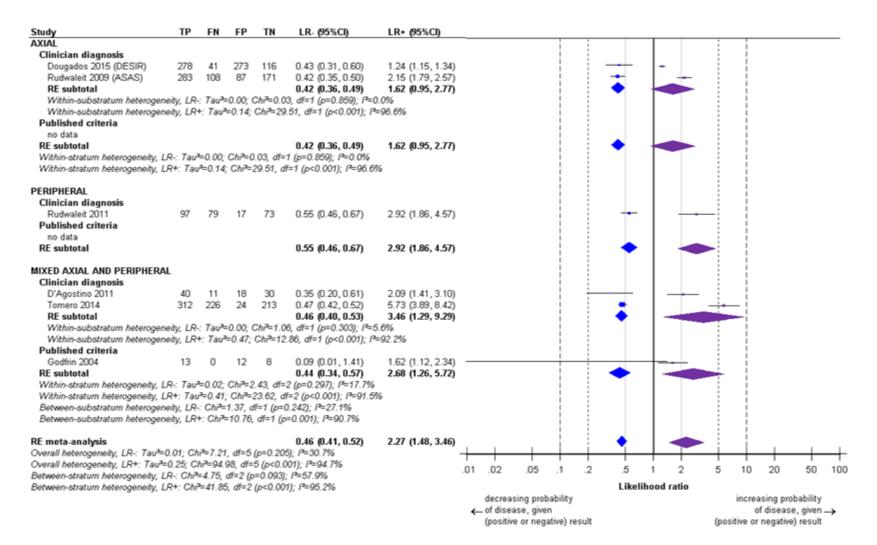
G.1.8.4 ESSG criteria

Original ESSG criteria

Table 50: Original ESSG criteria – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL	-		-	-	-	-			
LR+	2 studies ^a	Cross-sectional	Serious ^b	Serious ^c	No serious	Serious ^d	1,357	1.62 (0.95, 2.77)	VERY LOW
LR-	2 studies"	CIUSS-Sectional	No serious	No serious	No serious	No serious	1,307	0.42 (0.36, 0.49)	HIGH
PERIPHERAL									
LR+	1 atudu [®]	Cross-sectional	No serious	n/a	No serious	Serious ^d	266	2.92 (1.86, 4.57)	MODERATE
LR-	1 study ^e	CIUSS-Sectional	No serious	n/a	No serious	Serious ^f	200	0.55 (0.46, 0.67)	MODERATE
MIXED AXIAL	AND PERIPHERA	L							
LR+	0 studies d	Crease assettioned	No serious	Serious ^c	Serious ^h	Serious ^d	007	2.68 (1.26, 5.72)	VERY LOW
LR-	3 studies ^g	Cross-sectional	No serious	No serious	No serious	Serious ^f	907	0.44 (0.34, 0.57)	MODERATE
ALL EVIDENC	E POOLED								
LR+	0 studies i	Crease assettioned	No serious	Serious ^c	No serious	Serious ^d	0.500	2.27 (1.48, 3.46)	LOW
LR-	6 studies'	Cross-sectional N	No serious	No serious	No serious	Serious ^f	2,530	0.46 (0.41, 0.52)	MODERATE

^aDougados 2015 (DESIR); Rudwaleit 2009 (ASAS)


^b>33.3% of weight in meta-analysis comes from studies with serious risk of bias

°I2 ≥ 50%

^dAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). ^eRudwaleit 2011

^fAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5). ^gD'Agostino 2011; Godfrin 2004; Tomero 2014

^h>33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis) Dougados 2015 (DESIR); D'Agostino 2011; Godfrin 2004 ; Rudwaleit 2009 (ASAS); Rudwaleit 2011; Tomero 2014

Figure 93: Original ESSG criteria – forest plot: likelihood ratios

Study	ТР	FN	FP	TN	Sens.	(95%C	ŋ	Spec.	. (95	i%Cl)
AXIAL										
Clinician diagnosis Dougados 2015 (DESIR)	278	41	273	116	0.87	n 93	0.001	0.30	0.00	25, 0.35
Rudwaleit 2009 (ASAS)	2/0	108	273	171	0.87					25, 0.35 60, 0.72
RE subtotal	203	100	07	17.1		0.62,				17, 0.80
Within-substratum heterogene	itv. LR-	: Tau ²	0.43:	ChP=2						17, 0.00
Within-substratum heterogene										
Published criteria							1			
no data										
RE subtotal						(0.62,			3 (0.1	17, 0.80
Within-stratum heterogeneity, LR										
Within-stratum heterogeneity, LR	l+: Tau	<i>≈</i> 1.16	Chi ² =	79.18,	d1=1 (p<0).001);	I*=98.7	%		
PERIPHERAL										
Clinician diagnosis										
Rudwaleit 2011	97	79	17	73	0.55	(0.48,	0.62)	0.81	(0.7	72, 0.88
Published criteria										
no data										
RE subtotal					0.55	(0.48,	0.62)	0.81	1 (0.3	72, 0.88
MIXED AXIAL AND PERIPHERAL										
Clinician diagnosis										
D'Agostino 2011	40	11	18	30		(0.65,		0.63	8 (0.4	48, 0.75
Tomero 2014	312	226	24	213	0.58	(0.54	0.62)	0.90	0.0)	85, 0.93
RE subtotal						(0.45,			0, (0,	43, 0.95
Within-substratum heterogene										
Within-substratum heterogene	ity, LR	+: Tau²	=1.33;	Chi ² =2	20.68, d¥=	1 (p<0	0.001); P	≥ 95.2%	6	
Published criteria	10	~	10		0.00					~ ~ ~ ~
Godfrin 2004	13	0	12	8		0.62,				22, 0.62
RE subtotal Within-stratum heterogeneity, LR		-0.67.	012-	11 87		(0.50,			, ín:	33, 0.91)
Within-stratum heterogeneity, LR										
Between-substratum heterogene								00		
Between-substratum heterogene										
2.5. The second and the second second	.y, en	. only		, ur-r	(p 10.001),	34				
RE meta-analysis					0.73	(0.60,	0.83)	0.65	i (0.4	40, 0.84
Overall heterogeneity, LR-: Tau ³ =0.										
Overall heterogeneity, LR+: Tau ² =1							6			
Between-stratum heterogeneity, LR				-10						
Between-stratum heterogeneity, LR	t+: Chi	≈95.92	, d¶=2	(p<0.0	01); F=97	.9%				

Figure 94: Original ESSG criteria – forest plot: sensitivity and specificity

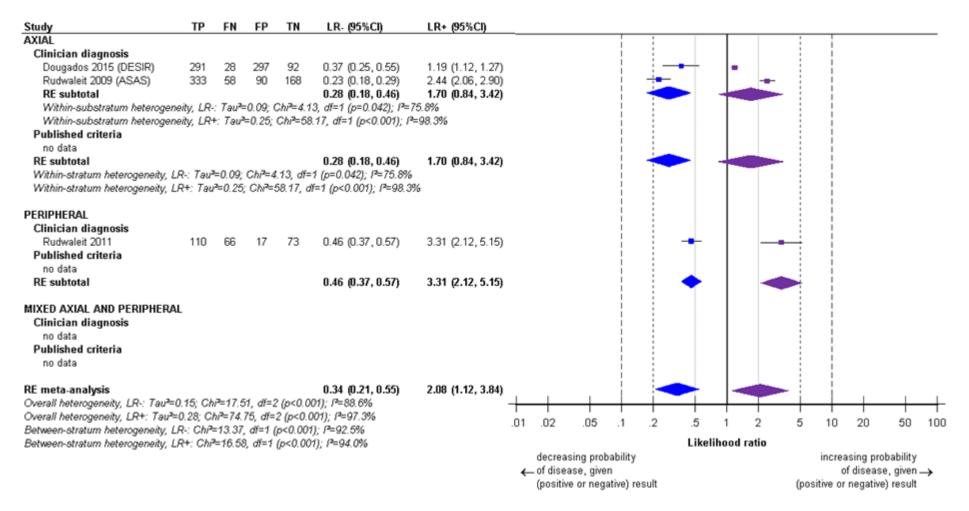
Modified ESSG criteria

Table 51 Modified ESSG criteria – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
LR+			Serious ^b	Serious ^c	No serious	Serious ^d		1.70 (0.84, 3.42)	VERY LOW
LR-	2 studies ^a	Cross-sectional	Serious ^b	Serious ^c	No serious	No serious	1,357	0.28 (0.18, 0.46)	LOW
PERIPHERAL			Genous	Centous				0.20 (0.10, 0.10)	2011
LR+			No serious	n/a	No serious	No serious		3.31 (2.12, 5.15)	HIGH
LR-	1 study ^e	Cross-sectional	No serious	n/a	No serious	Serious ^f	266	0.46 (0.37, 0.57)	MODERATE
MIXED AXIAL	AND PERIPHERA	L						· · ·	
LR+	0 studios		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	E POOLED								
LR+	O studies (Orean eastional	Serious ^b	Serious ^c	No serious	Serious ^d	1 000	2.08 (1.12, 3.84)	VERY LOW
LR-	3 studies ^g	Cross-sectional	No serious	Serious ^c	No serious	Serious ^f	1,623	0.34 (0.21, 0.55)	LOW

^aDougados 2015 (DESIR); Rudwaleit 2009 (ASAS)

^b>33.3% of weight in meta-analysis comes from studies with serious risk of bias


°I2 ≥ 50%

^dAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2).

^eRudwaleit 2011

^fAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5).

⁹Dougados 2015 (DESIR); Rudwaleit 2009 (ASAS); Rudwaleit 2011

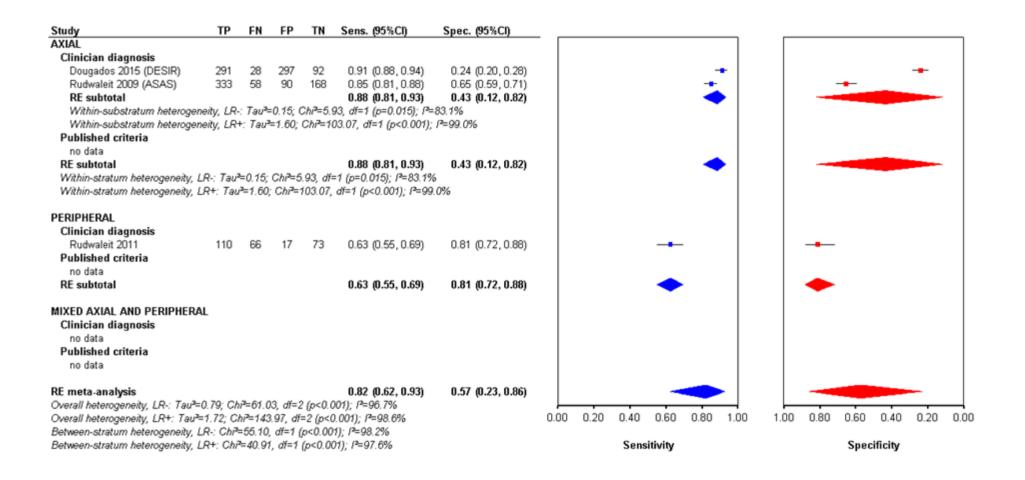


Figure 96: Modified ESSG criteria – forest plot: sensitivity and specificity

New York criteria G.1.8.5

Original New York criteria

Table 52: Original New York criteria – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	1 studed	Crease exertisered	Serious	n/a	No serious	No serious	040	16.68 (8.19, 33.97)	MODERATE
LR-	1 study ^a	Cross-sectional	Serious	n/a	No serious	Serious ^b	212	0.28 (0.15, 0.51)	LOW
PERIPHERAL									
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL A	ND PERIPHERAL	-							
LR+	0 studios		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+	4	Cross-sectional	Serious n/a		No serious	No serious	040	16.68 (8.19, 33.97)	MODERATE
LR-	1 study ^a		Serious	n/a	No serious	Serious ^b	212	0.28 (0.15, 0.51)	LOW

^aRigby 1993 ^bAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR- spans 0.5).

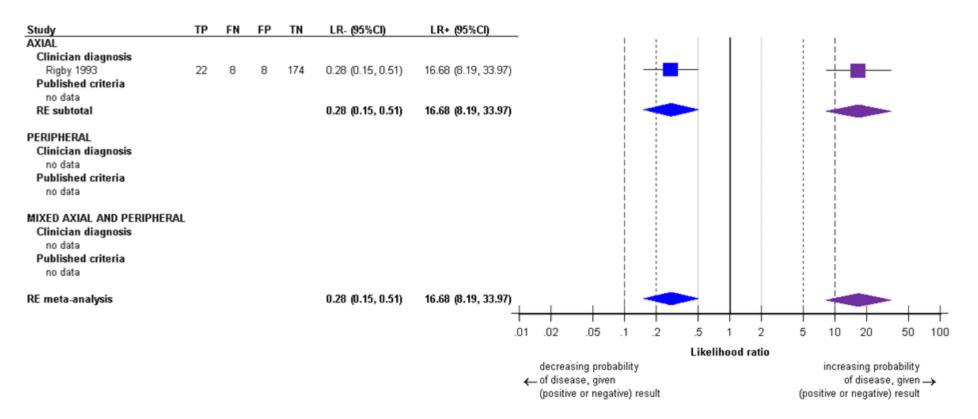


Figure 97: Original New York criteria – forest plot: likelihood ratios

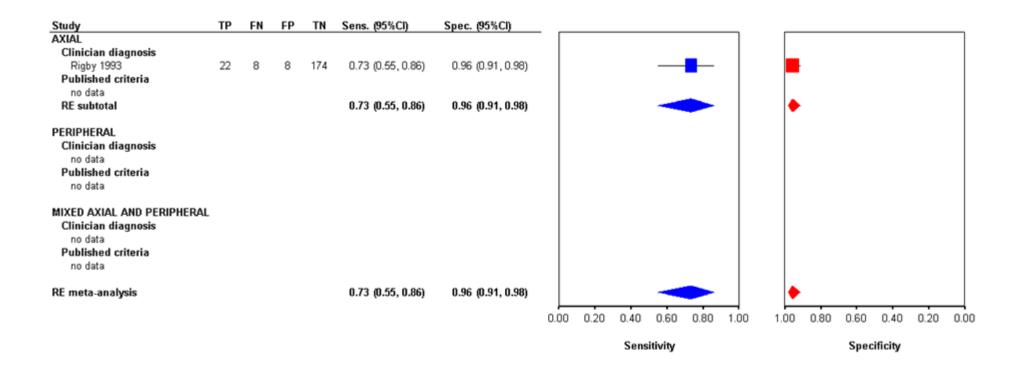


Figure 98: Original New York criteria – forest plot: sensitivity and specificity

Modified New York criteria

Table 53: Modified New York criteria – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	O studie s	Orean and the set	Serious ^b	Serious ^c	No serious	Serious ^d	000	7.75 (0.88, 67.89)	VERY LOW
LR-	2 studies ^a	Cross-sectional	Serious ^b	Serious ^c	No serious	Serious ^e	920	0.40 (0.12, 1.34)	VERY LOW
PERIPHERAL				·		·			
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL A	ND PERIPHERAL								
LR+	0 studios		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+	O studies?	Orace eastioned	Serious ^b	Serious ^c	No serious	Serious ^d	000	7.75 (0.88, 67.89)	VERY LOW
LR-	2 studies ^a	Cross-sectional	Serious ^b	Serious ^c	No serious	Serious ^e	920	0.40 (0.12, 1.34)	VERY LOW

^aDougados 2015 (DESIR); Rigby 1993 ^b>33.3% of weight in meta-analysis comes from studies with serious risk of bias

°I2 ≥ 50%

^dAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2). ^eAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 0.5).

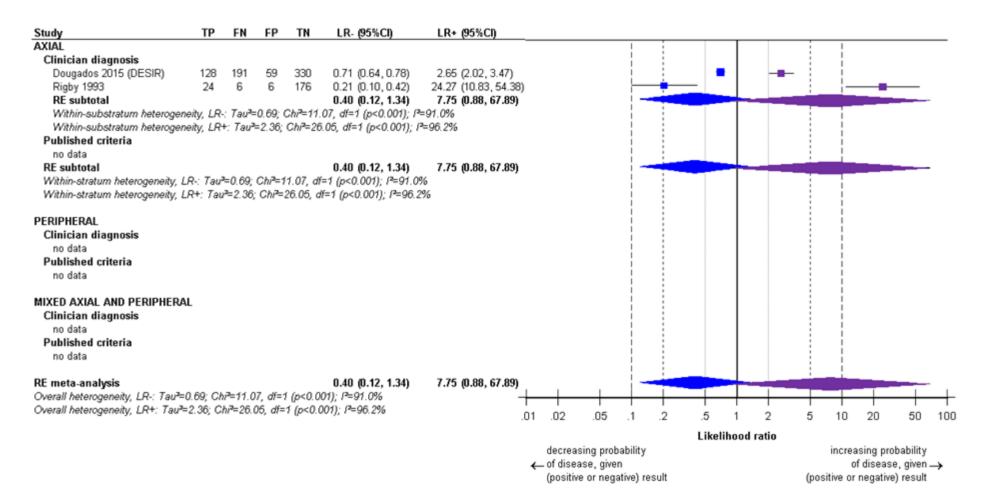


Figure 99: Modified New York criteria – forest plot: likelihood ratios

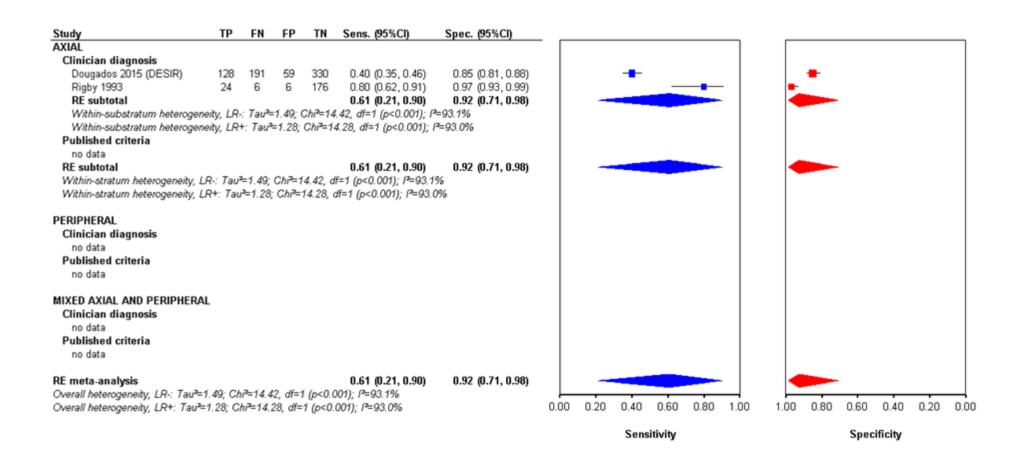


Figure 100: Modified New York criteria – forest plot: sensitivity and specificity

Rome criteria G.1.8.6

Rome criteria (clinical)

Table 54: Rome criteria (clinical) – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	1 atual a	Crass sectional	Serious	n/a	No serious	Serious ^b	212	2.21 (1.08, 4.49)	LOW
LR-	1 study ^a	Cross-sectional	Serious	n/a	No serious	No serious	212	0.83 (0.67, 1.04)	MODERATE
PERIPHERAL									
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL A	ND PERIPHERAL								
LR+	0 studios		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+	1 atual a	Cross-sectional	Serious	n/a	No serious	Serious ^b	212	2.21 (1.08, 4.49)	LOW
LR-	1 study ^a		Serious	n/a	No serious	No serious	212	0.83 (0.67, 1.04)	MODERATE

^aRigby 1993 ^bAt a 95% confidence level, data are consistent with both meaningful predictive value and no predictive value (i.e. 95% CI for LR+ spans 2).

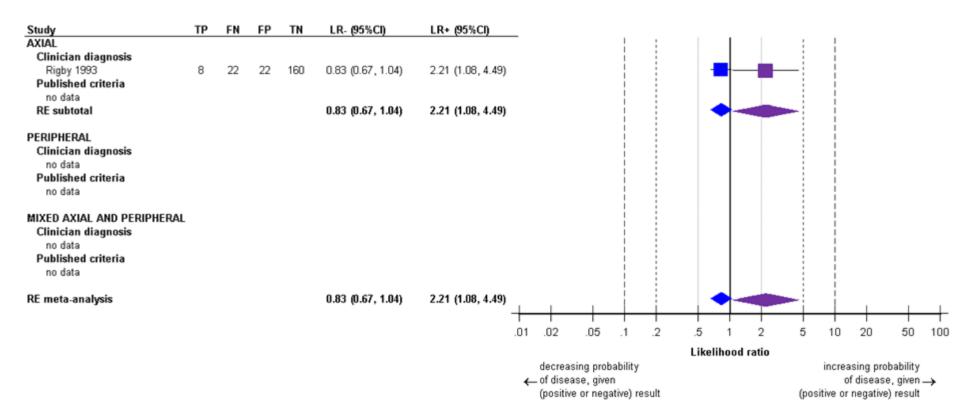
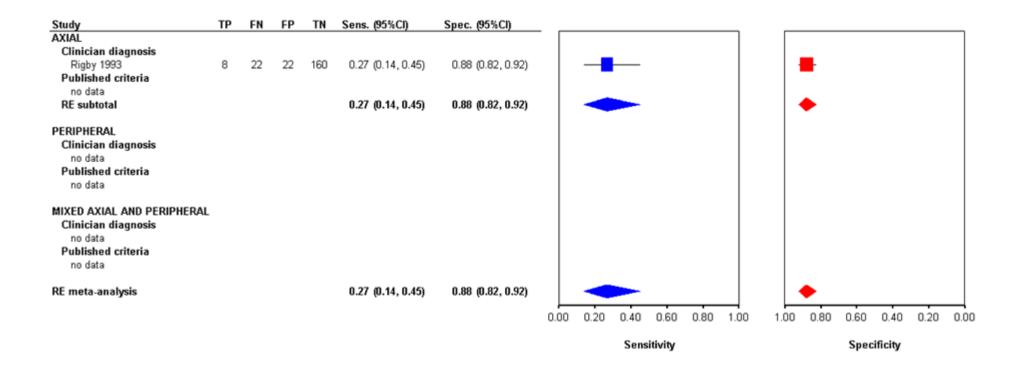
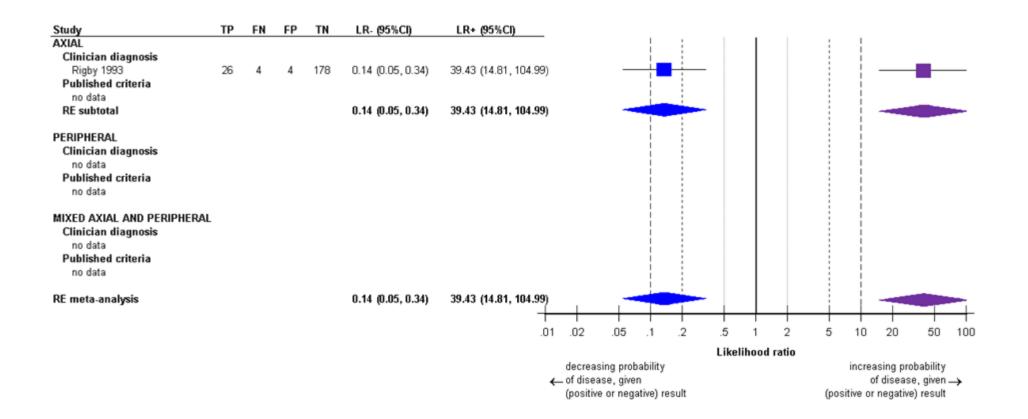


Figure 101: Rome criteria (clinical) – forest plot: likelihood ratios




Figure 102: Rome criteria (clinical) – forest plot: sensitivity and specificity

Rome criteria (radiographic)

Table 55: Rome criteria (radiographic) – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+		Orean another al	Serious	n/a	No serious	No serious	040	39.43 (14.81, 104.99)	MODERATE
LR-	1 study ^a	Cross-sectional	Serious	n/a	No serious	No serious	212	0.14 (0.05, 0.34)	MODERATE
PERIPHERAL									
LR+			-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL A	ND PERIPHERA	L							
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+		Orecesset	Serious	n/a	No serious	No serious	0.10	39.43 (14.81, 104.99)	MODERATE
LR-	1 study ^a	Cross-sectional	Serious	n/a	No serious	No serious	212	0.14 (0.05, 0.34)	MODERATE

°Rigby 1993

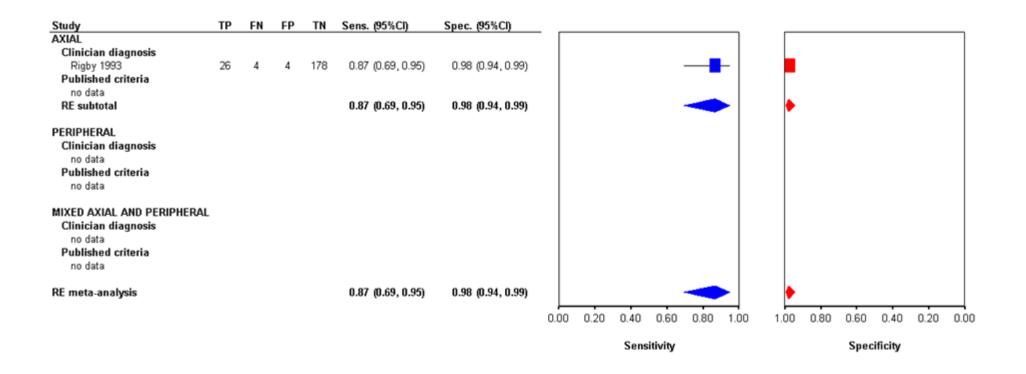


Figure 104: Rome criteria (radiographic) – forest plot: sensitivity and specificity

G.1.8.7 ASAS peripheral criteria

Table 56: ASAS peripheral criteria – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	0 studios		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
PERIPHERAL									
LR+	1 atual a	Cross sectional	No serious	n/a	No serious	No serious	266	4.38 (2.79, 6.88)	HIGH
LR-	1 study ^a	Cross-sectional	No serious	n/a	No serious	No serious	200	0.27 (0.20, 0.36)	HIGH
MIXED AXIAL A	ND PERIPHERAL								
LR+	0 studies		-	-	-	-		-	-
LR-	0 studies	-	-	-	-	-	-	-	-
ALL EVIDENCE	POOLED								
LR+			No serious	n/a	No serious	No serious		4.38 (2.79, 6.88)	HIGH
LR-	1 study ^a	Cross-sectional No	No serious	n/a	No serious	No serious	266	0.27 (0.20, 0.36)	HIGH
LR-			No serious	n/a	No serious	No serious		0.27 (0.20, 0.36)	HIGH

^aRudwaleit 2011

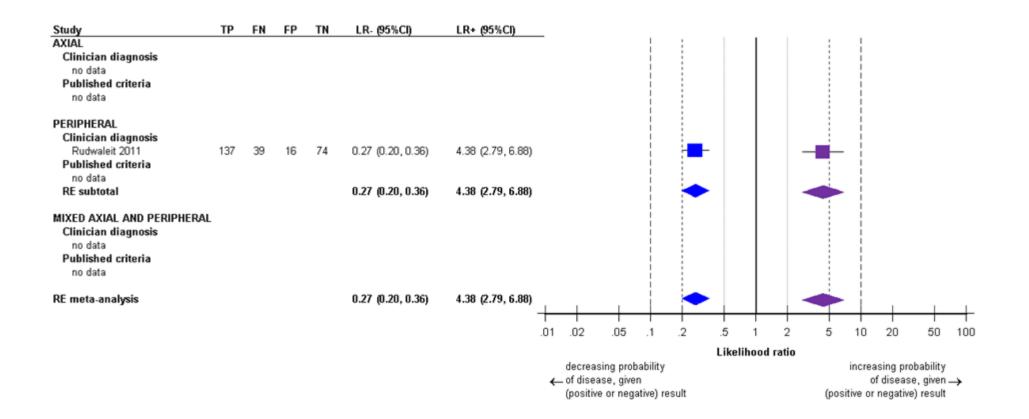


Figure 105: ASAS peripheral criteria – forest plot: likelihood ratios

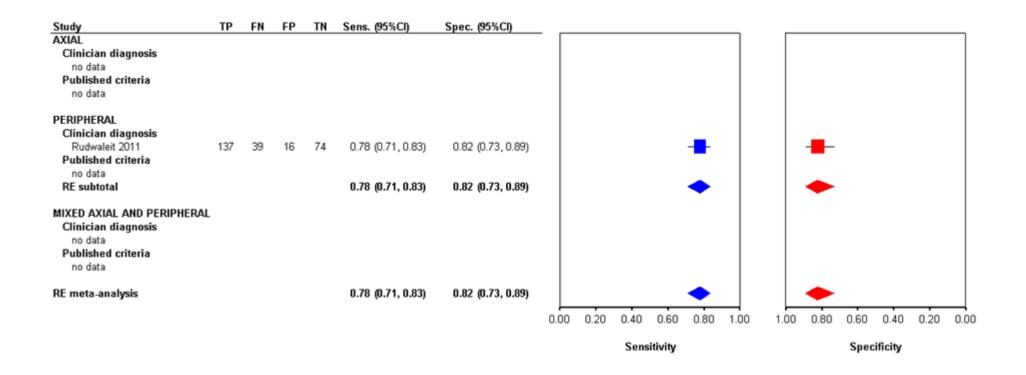


Figure 106: ASAS peripheral criteria – forest plot: sensitivity and specificity

G.1.8.8 French Society for Rheumatology criteria for reactive arthritis

 Table 57 French Society for Rheumatology criteria – GRADE table

Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL									
LR+	0 studies	-	-	-	-	-	-	-	-
LR-			-	-	-	-		-	-
PERIPHERAL									
LR+	1 study ^a	Cross-sectional	Serious	n/a	No serious	No serious	217	10.19 (6.01, 17.26)	MODERATE
LR-			Serious	n/a	No serious	No serious		0.23 (0.10, 0.49)	MODERATE
MIXED AXIAL AND PERIPHERAL									
LR+	0 studies	-	-	-	-	-	-	-	-
LR-			-	-	-	-		-	-
ALL EVIDENCE POOLED									
LR+	1 study ^a	Cross-sectional	Serious	n/a	No serious	No serious	217	10.19 (6.01, 17.26)	MODERATE
LR-			Serious	n/a	No serious	No serious		0.23 (0.10, 0.49)	MODERATE

^aHulsemann 1999

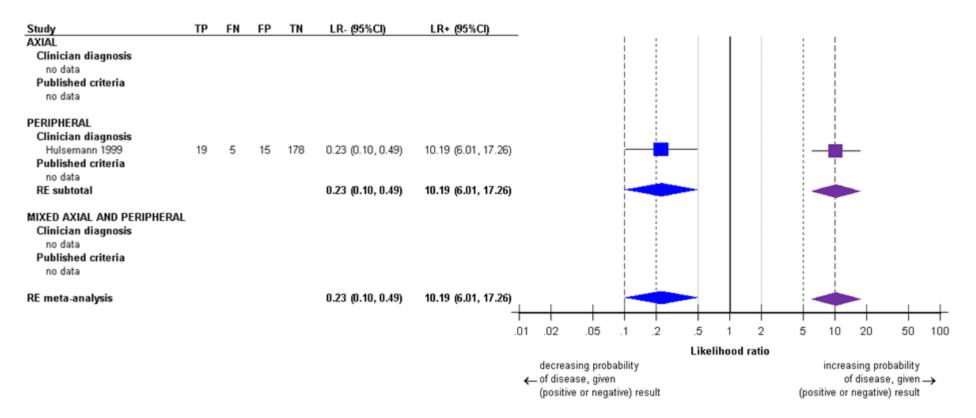
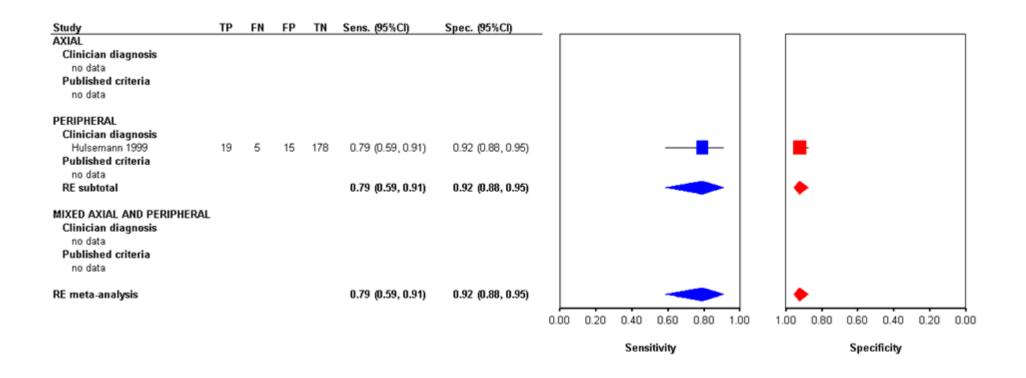




Figure 107: French Society for Rheumatology criteria for reactive arthritis – forest plot: likelihood ratios

Diagnosis of spondyloarthritis in people presenting with acute anterior uveitis G.1.8.9

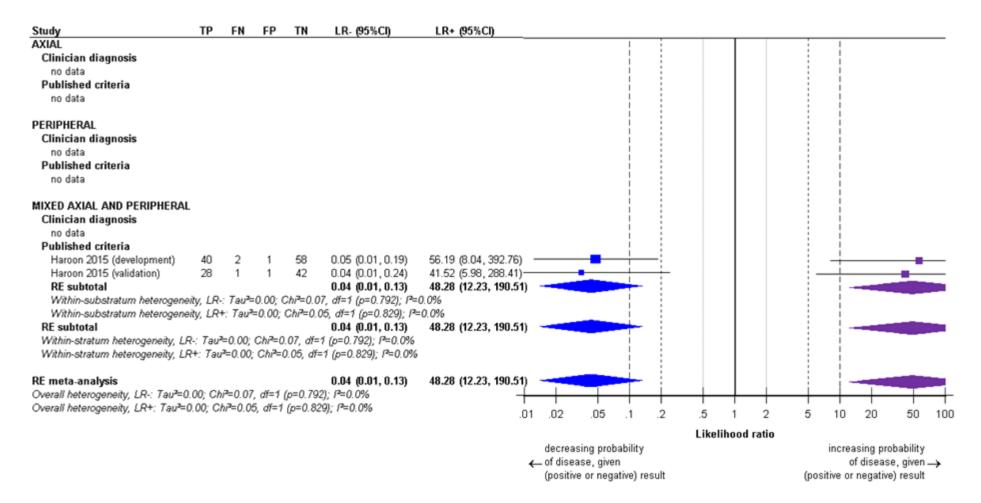
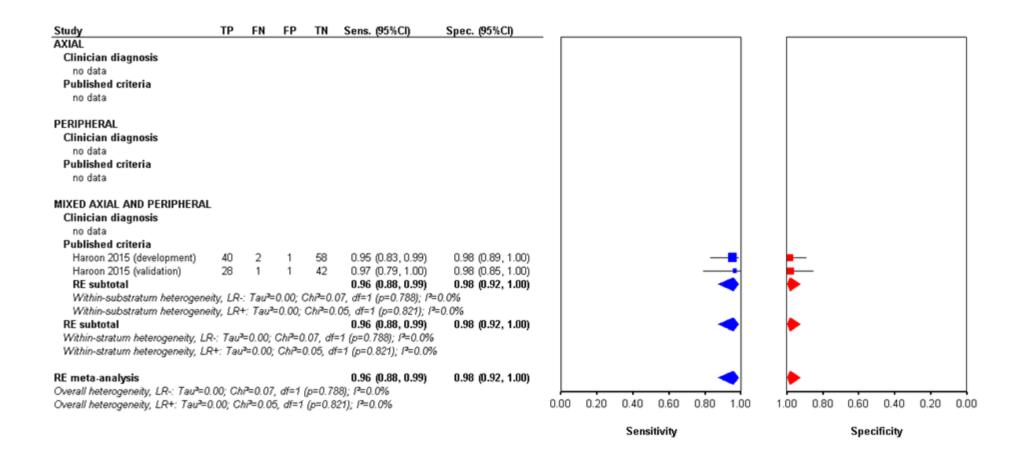

DUET algorithm for acute anterior uveitis

Table 58: DUET algorithm for acute anterior uveitis – GRADE table


Measure	Studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Total N	Summary of findings (95%Cl)	Quality
AXIAL			-	-					
LR+	0 studies	-	-	-	-	-		-	-
LR-	0 300003		-	-	-	-	-	-	-
PERIPHERAL			-	-					-
LR+	0 studies	_	-	-	-	-	_	-	-
LR-	0 studies	-	-	-	-	-	-	-	-
MIXED AXIAL	AND PERIPHER	AL .	-	-					-
LR+	0 studios?	Cross sectional	No serious	No serious	Serious ^b	No serious	173	48.28 (12.23, 190.51)	MODERATE
LR-	2 studies ^a	Cross-sectional	No serious	No serious	Serious ^b	No serious	173	0.04 (0.01, 0.13)	MODERATE
ALL EVIDENC	E POOLED								
LR+	0 studies?	Cross sectional	No serious	No serious	Serious ^b	No serious	173	48.28 (12.23, 190.51)	MODERATE
LR-	2 studies ^a	Cross-sectional	No serious	No serious	Serious ^b	No serious	175	0.04 (0.01, 0.13)	MODERATE
Haroon	2015; Haroon 201	5							

b

>33.3% of weight in meta-analysis comes from studies with suboptimal reference standard (published classification criteria, rather than expert diagnosis)

G.1.9 Microbiology testing in Reactive Arthritis

Review Question 11

• What is the diagnostic utility of testing for infection such as salmonella, shigella, yersinia, campylobacter and chlamydia in cases of suspected reactive arthritis?

Table 59 GRADE table for microbiology testing in reactive arthritis

Measure	Studies	Design	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Other	Total N	Summary of findings (95%Cl)	Quality
Salmonella	- stool culture	– post-outbreak								
LR+	1 (Locht)	Cross-sectional	Not	n/a	Serious ¹	Serious ²	-	29	1.25 (0.89, 1.78)	LOW
LR-			serious	n/a		Serious ²			0.24 (0.03, 2.00)	LOW
Salmonella	- any antibodi	es – post-outbreak								
LR+	1 (Mattila)	Cross-sectional	Not	n/a	Serious ¹	Serious ²	-	45	1.57 (0.89, 1.78)	LOW
LR-			serious	n/a		Serious ²			0.38 (0.14, 1.02)	LOW
Salmonella	– IgA antibodi	es – post-outbreak								
LR+	1 (Mattila)	Cross-sectional	Not	n/a	Serious ¹	Serious ²	-	45	2.61 (0.56, 12.10)	LOW
LR-			serious	n/a		Serious ²			0.85 (0.65, 1.10)	LOW
Salmonella	 IgM antibod 	ies – post-outbreak								
LR+	1 (Mattila)	Cross-sectional	Not	n/a	Serious ¹	Serious ²	-	45	1.48 (0.94, 2.33)	LOW
LR-			serious	n/a		Serious ²			0.48 (0.20, 1.15)	LOW
Salmonella	 IgG antibod 	ies – post-outbreak								
LR+	1 (Mattila)	Cross-sectional	Not	n/a	Serious ¹	Serious ²	-	45	1.57 (1.01, 2.43)	LOW
LR-			serious	n/a		Serious ²			0.38 (0.14, 1.02)	LOW
Campyloba	cter, Salmone	lla and Yersinia – antil	oodies – post-o	outbreak						
LR+	1 (Uotila)	Cross-sectional	Not	n/a	Serious ¹	Serious ²	-	45	1.71 (0.56, 5.26)	LOW
LR-			serious	n/a		Serious ²			0.86 (0.62, 1.19)	LOW
Campyloba	cter, Salmone	lla and Yersinia – faeo	al culture – po	st-outbreak						

Measure	Studies	Design	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Other	Total N	Summary of findings (95%Cl)	Quality
LR+	1 (Uotila)	Cross-sectional	Not	n/a	Serious ¹	Serious ²	-	45	0.76 (0.14, 4.13)	LOW
LR-			serious	n/a		Serious ²			1.03 (0.84, 1.27)	LOW
Yersinia – Ig	A – 1-2 montl	าร								
LR+	2 (Granfors,	Prospective cohort	Not serious	Not serious	Serious ¹	Serious ²	-	138	1.07 (0.98, 1.16)	LOW
LR-	Toivanen)			Not serious		Serious ²			0.15 (0.01, 1.52)	LOW
Yersinia – Ig	M – 1-2 mont	hs								
LR+	2 (Granfors,	Prospective cohort	Not serious	Not serious	Serious ¹	Serious ²	-	138	0.97 (0.83, 1.13)	LOW
LR-	Toivanen)			Not serious		Serious ²			1.17 (0.53, 2.57)	LOW
Yersinia – Ig	G – 1-2 mont	hs								
LR+	2 (Granfors,	Prospective cohort	Not serious	Not serious	Serious ¹	Serious ²	-	138	0.99 (0.91, 1.07)	LOW
LR-	Toivanen)			Not serious		Serious ²			1.43 (0.33, 6.22)	LOW
Yersinia – Ig	A – 6-8 montl	าร								
LR+	2	Prospective cohort	Not	Serious	Serious ¹	Serious ²	-	129	3.46 (0.81, 14.84)	VERY LOW
LR-	(Granfors, Toivanen)		serious	Not serious		Not serious			0.26 (0.15, 0.46)	MODERATE
Yersinia – Ig	M – 6-8 mont	hs								
LR+	2 (Granfors,	Prospective cohort	Not serious	Not serious	Serious ¹	Serious ²	-	129	0.93 (0.57, 1.54)	LOW
LR-	Toivanen)			Not serious		Serious ²			1.02 (0.91, 1.15)	LOW
Yersinia – Ig	G – 6-8 mont	hs								

Measure	Studies	Design	Risk of bias	Inconsi stency	Indirect ness	Impreci sion	Other	Total N	Summary of findings (95%Cl)	Quality
LR+	2 (Granfors,	Prospective cohort	Not serious	Not serious	Serious ¹	Serious ²	-	129	1.27 (1.02, 1.59)	LOW
LR-	Toivanen)			Not serious		Serious ²			0.39 (0.16, 0.96)	LOW
Yersinia – Ig	A – 12-16 mo	onths								
LR+	2 (Granfors,	Prospective cohort	Not serious	Not serious	Serious ¹	Serious ²	-	85	3.35 (1.36, 8.27)	LOW
LR-	Toivanen)			Not serious		Not serious			0.19 (0.08, 0.42)	MODERATE
Yersinia – Ig	M – 12-16 mc	onths								
LR+	2 (Granfors,	Prospective cohort	Not serious	Not serious	Serious ¹	Serious ²	-	85	1.09 (0.44, 2.71)	LOW
LR-	Toivanen)			Not serious		Serious ²			1.01 (0.87, 1.16)	LOW
Yersinia – Ig	G – 12-16 mc	onths								
LR+	2 (Granfors,	Prospective cohort	Not serious	Not serious	Serious ¹	Serious ²	-	85	1.76 (0.87, 3.53)	LOW
LR-	Toivanen)			Not serious		Serious ²			0.48 (0.28, 0.81)	LOW
¹ Does not co	over full popula	ation of interest. ² Conf	idence interva	ls for likelihoo	d ratio conf	ain multiple c	linically d	stinct sce	enarios.	

G.2 Pharmacological management

G.2.1 Pharmacological interventions for axial symptoms of spondyloarthritis

Review question 20

• What is the comparative effectiveness of non-steroidal anti-inflammatory drugs (NSAIDs) for management of axial symptoms of spondyloarthritis?

Table 60 NSAID therapy – network meta-analyses

Outcome	No. of studies	Risk of bias	Inconsistency	Indirectness	Imprecision	Estimate (CI)	Overall quality
Global pain (VAS)*	24 ^a	Serious ¹	Serious ²	Not serious	Not serious	See NMA graph	Low
Discontinuation due to adverse events	19 ^b	Serious ¹	Serious ²	Not serious	Not serious	See NMA graph	Low
Discontinuation due to lack of efficacy	14 ^c	Serious ¹	Not serious	Not serious	Not serious	See NMA graph	Moderate

*All outcomes from studies were converted to a 0-100 scale before running the analysis. Missing standard deviations were imputed based on the distribution of standard deviations from those studies were they were reported.

^aAstorga 1987; Barkhuizen 2006; Batlle-Gualda 1996; Bird 1986; Burry 1980; Dougados 1999, Dougados 2001; Gibson 1980; Good 1977; Johnsen 1992; Juvakoski 1982, Khan 1987, Lomen 1986; Nahir 1980; Pasero 1994; Rejholec 1980; Schwarzer 1990; Shipley 1980; Sieper 2008; Sturrock 2008; Tannenbaum 1984; van der Heijde 2005; Villa Alcazar 1996; Walker 2016

^bBarkhuizen 20066; Batlle Gualda 1996; Bird 1986; Burry 1980; Dougados 1999; Dougados 2001; Good 1977; Juvakoski 1982; Khan 1987; Lomen 1986; Mayrhofer 1990; Shipley 1980; Sieper 2008; Sturrock 1974; Sydnes 1984; Tannenbaum 1984; Van der Heijde 2005; Villa Alacazar 1996; Walker 2016 ^cBarkhuizen 2006; Batlle Gualda 1996; Dougados 1999; Dougados 2001; Juvakoski 1982; Khan 1987; Lomen 1986; Mayrhofer 1990; Schwarzer 1990; Shipley 1980; Sieper 2008; Tannenbaum 1984; Van der Heijde 2005; Villa Alacazar 1996; Sieper 2008; Shipley 1980; Sieper 2008; Tannenbaum 1984; Van der Heijde 2005; Villa Alacazar 1990; Schwarzer 1990; Shipley 1980; Sieper 2008; Tannenbaum 1984; Van der Heijde 2005; Villa Alacazar 1996

¹Many included studies have poorly reported methods, which makes it difficult to rule out the possibility of high levels of bias in the studies ²Random effects model selected using Deviance Information Criterion

Meta-analysis - Pain

Table 61 Model fit

Model	Number of data points	Residual Deviance over studies with complete data	Residual Deviance over all studies	DIC
RE consistency	53	30.96	52.26	847.67
RE inconsistency	53	32.5	54.16	855.21
FE consistency	53	41.03	84.64	872.49

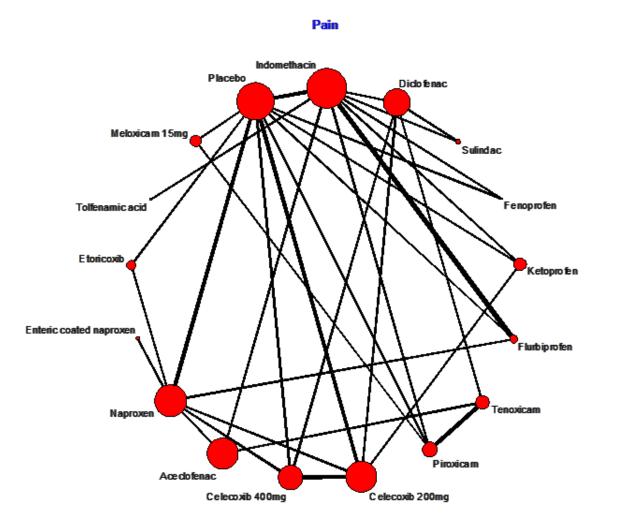
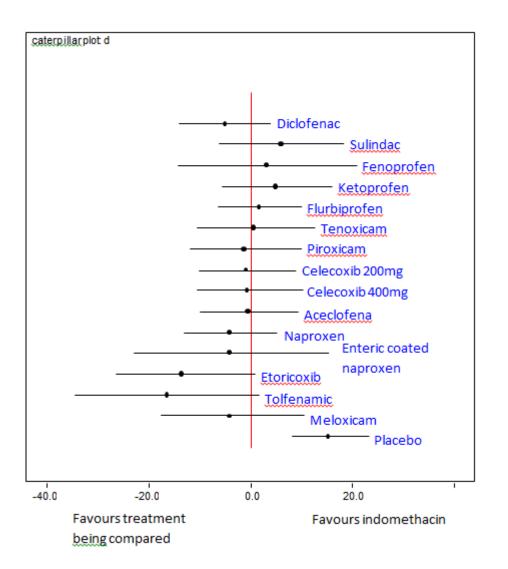


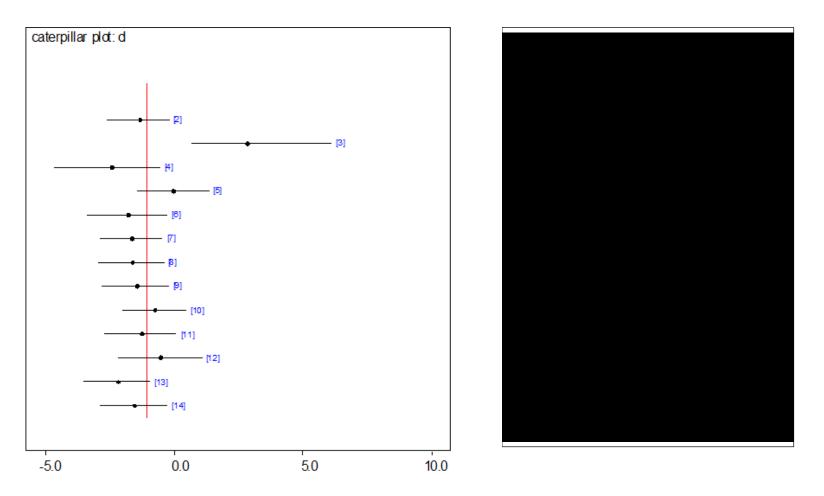
Figure 111 Network diagram

Indomet hacin													
-5.0 (-13.9, 3.9)	Diclofe nac												
6.0 (-6.3, 18.3)	11.0 (-1.0, 23.0)	Sulinda c											
3.1 (-14.2, 20.7)	8.1 (-10.9 <i>,</i> 27.4)	-2.9 (-23.7, 18.3)	Fenopr ofen										
4.9 (-5.6, 15.8)	9.9 (-2.5, 22.8)	-1.1 (-16.6, 14.7)	1.8 (-18.0, 21.6)	Ketopr ofen									
1.7 (-6.4, 9.9)	6.7 (-4.6, 18.1)	-4.3 (-18.7, 10.2)	-1.4 (-20.2, 17.1)	-3.2 (-15.9 <i>,</i> 9.1)	Flurbipr ofen								
0.6 (-10.7, 12.5)	5.6 (-6.7, 18.5)	-5.4 (-21.1 <i>,</i> 10.9)	-2.5 (-22.8, 17.9)	-4.3 (-18.9, 10.6)	-1.2 (-14.1, 12.7)	Tenoxi cam							
-1.4 (-11.9, 9.9)	3.7 (-8.7, 16.9)	-7.4 (-22.8, 8.8)	-4.5 (-24.2 <i>,</i> 15.5)	-6.3 (-20.1, 8.1)	-3.2 (-15.3 <i>,</i> 10.0)	-2.0 (-13.5, 9.7)	Piroxic am						
-0.9 (-10.0, 8.9)	4.2 (-5.4, 14.3)	-6.9 (-20.7, 7.6)	-4.0 (-22.8 <i>,</i> 14.8)	-5.8 (-17.0, 5.5)	-2.7 (-13.4, 8.8)	-1.4 (-14.8, 11.6)	0.6 (-12.3, 12.9)	Celecoxib 200mg					
-0.7 (-10.7, 10.1)	4.4 (-5.7, 15.0)	-6.7 (-21.0, 8.2)	-3.8 (-23.2, 15.7)	-5.6 (-18.4, 7.4)	-2.4 (-14.0, 9.8)	-1.2 (-15.1, 12.4)	0.8 (-12.9 <i>,</i> 13.8)	0.2 (-8.9, 9.2)	Celecoxib 400mg				

Table 62 Random effects consistency model: mean difference (95% credible interval) – positive value indicates worse outcome for row

-0.5 (-9.8, 9.3)	4.6 (-7.0, 16.4)	-6.5 (-21.3, 8.6)	-3.6 (-23.1, 15.8)	-5.4 (-18.9, 8.1)	-2.2 (-13.7, 9.56)	-1.0 (-12.1, 9.5)	1.0 (-11.8, 13.0)	0.5 (-11.7, 12.1)	0.2 (-12.5, 12.6)	Aceclof enac						
-4.2 (-12.9, 5.3)	0.8 (-9.7, 12.1)	-10.3 (-24.3, 4.7)	-7.3 (-25.8, 11.4)	-9.1 (-21.1, 3.4)	-6.1 (-15.5, 4.4)	-4.8 (-17.3, 7.7)	-2.8 (-14.9, 9.2)	-3.4 (-12.8, 6.5)	-3.6 (-13.6, 7.0)	-3.8 (-13.7, 6.9)	Naprox en					
-4.2 (-22.8, 15.3)	0.9 (-18.8, 21.2)	-10.2 (-31.8, 12.2)	-7.3 (-32.2, 17.8)	-9.1 (-29.5, 11.8)	-6.0 (-25.1, 13.9)	-4.8 (-25.5, 16.1)	-2.8 (-23.4, 17.8)	-3.4 (-22.4, 16.2)	-3.6 (-23.0, 16.12)	-3.8 (-23.1, 16.2)	0.0 (-16.8, 16.8)	Enteric coated Naproxe n				
-13.4 (-26.5, 0.8)	-8.4 (-22.9, 7.1)	-19.4 (-36.8, -1.2)	-16.5 (-37.4, 4.5)	-18.3 (-33.9 <i>,</i> -2.3)	-15.3 (-29.0 <i>,</i> -0.2)	-14.0 (-30.3, 2.3)	-12.0 (-27.7, 3.6)	-12.6 (-26.6, 1.8)	-12.9 (-27.4, 2.2)	-13.1 (-27.6, 2.4)	-9.2 (-21.4, 3.0)	-9.3 (-30.0, 11.3)	Etorico xib			
-16.5 (-34.5, 1.6)	-11.5 (-31.6, 8.7)	-22.5 (-44.2 <i>,</i> -0.6)	-19.6 (-44.9, 5.5)	-21.4 (-42.6, -0.5)	-18.2 (-38.1, 1.7)	-17.0 (-38.7, 4.2)	-15.1 (-36.5, 5.7)	-15.6 (-36.1, 4.6)	-15.8 (-36.8, 4.8)	-16.0 (-36.5, 4.4)	-12.2 (-32.8, 7.6)	-12.2 (-39.0, 13.7)	-2.9 (-26.0, 19.2)	Tolfenam ic acid		
-4.1 (-17.7, 10.4)	0.9 (-14.2 <i>,</i> 16.8)	-10.2 (-27.8, 8.4)	-7.3 (-28.4, 14.4)	-9.1 (-25.1 <i>,</i> 7.5)	-6.0 (-20.6, 9.7)	-4.8 (-20.4, 11.0)	-2.7 (-15.8, 10.0)	-3.3 (-18.2, 11.9)	-3.5 (-18.9, 12.3)	-3.8 (-18.8, 12.2)	0.1 (-14.5, 14.7)	0.1 (-22.2, 22.2)	9.3 (-8.1, 26.7)	12.3 (-10.2, 35.4)	Meloxica m 15mg	
15.5 (8.2, 23.0)	20.2 (10.8, 30.5)	9.2 (-4.1, 23.1)	12.1 (-5.3, 29.5)	10.2 (-0.2, 21.1)	13.3 (4.9, 22.9)	14.6 (2.8, 26.4)	16.6 (6.1, 26.9)	16.0 (7.7, 24.7)	15.8 (6.4, 25.6)	15.6 (5.6, 26.3)	19.4 (11.5, 27.1)	19.3 (0.9, 37.8)	28.6 (16.4, 40.7)	31.6 (12.4, 51.4)	19.3 (6.5, 32.1)	Plac ebo




Figure 112 Pain NMA results

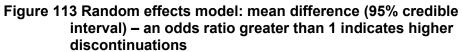
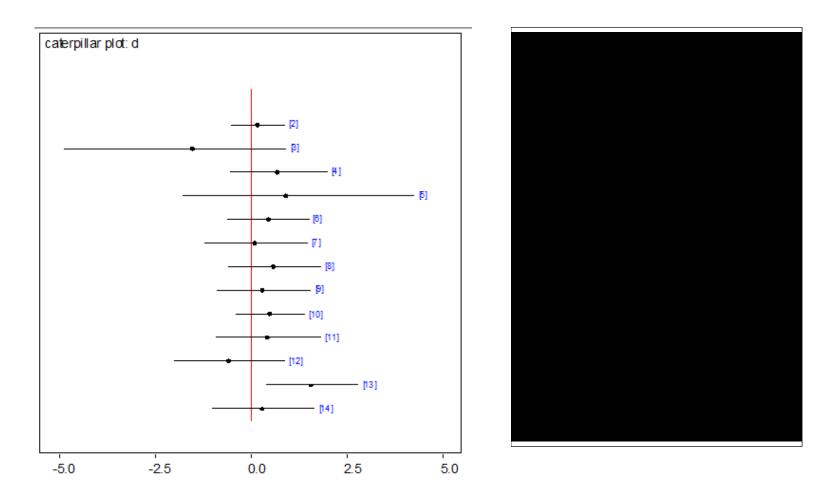
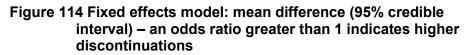

Meta-analysis – discontinuation due to adverse events

Table 63 Model fit

Model	Number of data points	Residual Deviance over all studies	DIC
Random Effects	43	58.4	197.55
Fixed Effects	43	63.24	200.86

GRADE tables and meta-analysis results


Meta-analysis – discontinuation due to lack of efficacy


Table 64 Model fit

Model	Number of data points	Residual Deviance over all studies	DIC
Random Effects	33	28.52	171.89
Fixed Effects	33	28.11	171.07

GRADE tables and meta-analysis results

GRADE tables and meta-analysis results

Table 65 Continuous versus on-demand NSAID therapy

Outcome	No. of studies	Risk of bias	Inconsistency	Indirectness	Imprecision	Estimate (CI)	Overall quality
Global pain (VAS)	1 ^a	Not serious	N/A	Not serious	Serious ¹	MD -3.00 (-9.02, 3.02)	Moderate
Radiographic progression (m- SASSS)	1 ^a	Not serious	N/A	Not serious	Not serious	MD -1.10 (-1.68, -0.52)	High
Serious adverse events	1 ^a	Not serious	N/A	Not serious	Serious ¹	RR 0.78 (0.41, 1.49)	Moderate
Depression	1 ^a	Not serious	N/A	Not serious	Not serious	RR 3.91 (1.25, 12.19)	High
^a Guellec 2014							
¹ Non-significant resu	ılt						

G.2.2 Pharmacological management of peripheral spondyloarthritis

Review Question 21

- What is the comparative effectiveness of the following pharmacological interventions for the management of peripheral spondyloarthritis:
 - \circ corticosteroids
 - o non-steroidal anti-inflammatory drugs (NSAIDs)
 - standard disease-modifying anti-rheumatic drugs (DMARDs)?

GRADE profiles, DMARD vs DMARD

Table 66 Pain related outcomes

Quality No of studies	assessment Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	No of patie Interventio n	onts Comparat or	Effect Relative Effect	Qualit y
Pain, 24	weeks (pain s	score via VAS	S, 100mm)							
Salvar ani 2001	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	36 (ciclospori n) 32 (sulfasala zine)	31	Mean difference (95%CI) Ciclosporin vs sulfasalazine, -9.90 (- 22.04 to 2.24) Ciclosporin vs symptomatic therapy, - 14.7 (-27.85 to -1.55) Sulfasalazine vs symptomatic therapy, - 4.80 (-14.96 to 5.36),	VERY LOW
Tender j	oint counts, 24	1 weeks								
Salvar ani 2001	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	36 (ciclospori n)	31	Mean difference (95%CI) Ciclosporin vs	VERY LOW

Quality a	assessment						No of patie	nts	Effect	
No of studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Interventio n	Comparat or	Relative Effect	Qual y
							32 (sulfasala zine)		sulfasalazine, -1.90 (- 6.05 to 2.25) Ciclosporin vs symptomatic therapy, - 4.10 (-8.54 to 0.34) Sulfasalazine vs symptomatic therapy, - 2.20 (-5.92 to 1.52),	
Painful jo	oints, 12 month	าร								
Sparda ro 1995	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	10	13	Mean difference (95%Cl), -2.00 (-4.94 to 0.94)	VER LOW

Table 67 Swollen joints

	owenen jon									
Quality	assessment						No of patie	ents	Effect	
No of studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Interventio n	Comparato r	Relative Effect	Qualit y
Swollen	joint counts, 2	4 weeks								
Salvar ani 2001	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	36 (ciclospori n)	31	Mean difference (95%CI) Ciclosporin vs sulfasalazine, 0.40 (- 3.57 to 2.77)	VERY LOW

Quality a	assessment						No of patie	nts	Effect	
No of studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Interventio n	Comparato r	Relative Effect	Qualit y
							32 (sulfasala zine)		Ciclosporin vs symptomatic therapy,3.00 (-6.12 to 0.12) Sulfasalazine vs symptomatic therapy, 2.60 (-5.39 to 0.19),	
Swollen	joints, 12 mon	ths								
Sparda ro 1995	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	10	13	Mean difference (95%Cl), -0.90 (-2.92 to 1.12)	VERY LOW

¹Open label, allocation concealment unclear ²Differences not statistically significant

Table 68 Global assessment outcomes

Quality	assessment						No of patie	nts	Effect	
No of studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Interventio n	Comparato r	Relative Effect	Qualit y
Patient g	lobal disease	assessment,	24 weeks							
Salvar ani 2001	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	36 (ciclospori n)	31	Decrease by ≥1 point ciclosporin 61% vs symptomatic therapy 33%	VERY LOW

Quality a	assessment						No of patie	nts	Effect	
No of studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Interventio n	Comparato r	Relative Effect	Qual y
							32 (sulfasala zine)			
Patient a	ssessment of	disease, 12	months (mm)							
Sparda ro 1995	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	10	13	Mean difference (95%Cl), 7.30 (-14.82 to 29.42)	VER LOV
Physicia	n global disea	se assessme	ent, 24 weeks							
Salvar ani 2001	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	36 (ciclospori n) 32 (sulfasala zine)	31	Decrease by ≥1 point ciclosporin 66% vs symptomatic therapy 32% Decrease by ≥2 points ciclosporin 24% vs symptomatic therapy 0%; ciclosporin 24% vs sulfasalazine 3%	VEF
Physicia	n assessment	of disease, ?	12 months (mm)						
Sparda ro 1995	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	10	13	Mean difference (95%Cl) -14.80 (-27.20 to -2.40)	VEF LOV

Table 69 CRP

Quality a	assessment						No of patie	nts	Effect	
No of studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Interventio n	Comparato r	Relative Effect	Qualit y
CRP, 24	weeks (mg/dl))								
Salvar ani 2001	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	36 (ciclospori n) 32 (sulfasala zine)	31	Mean difference (95%CI) Ciclosporin vs sulfasalazine, -1.90 (- 6.05 to 2.25) Ciclosporin vs symptomatic therapy, - 4.10 (-8.54 to 0.34) Sulfasalazine vs symptomatic therapy, - 2.20 (-5.92 to 1.52),	VERY LOW
CRP, 12	months (mg/d	II)								
Sparda ^r o 1995	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	17	18	Mean difference (95%Cl) 4.20 (-11.87 to 20.27)	VERY LOW

²Differences not statistically significant

Table 70 ACR criteria

Quality	assessment						No of patie	nts	Effect	
No of studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Interventio n	Comparato r	Relative Effect	Qualit y

ACR20 response rate, 24 weeks

Quality	assessment						No of patie	nts	Effect	
No of studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Interventio n	Comparato r	Relative Effect	Qualit y
Salvar ani 2001	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	36 (ciclospori n) 32 (sulfasala zine)	31	Difference 6.9% (ciclosporin vs sulfasalazine), 12.1% (ciclosporin vs symptomatic therapy), 5.2% (sulfasalazine vs symptomatic therapy)	VERY LOW
ACR50 I	esponse rate,	24 weeks								
Salvar ani 2001	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	36 (ciclospori n) 32 (sulfasala zine)	31	Difference 15.2% (ciclosporin vs sulfasalazine), 24.5% (ciclosporin vs symptomatic therapy), 9.3% (sulfasalazine vs symptomatic therapy)	VERY LOW
ACR70 I	esponse rate,	24 weeks								
Salvar ani 2001	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	36 (ciclospori n) 32 (sulfasala zine)	31	Difference 13.8% (ciclosporin vs sulfasalazine and vs symptomatic therapy), 0% (sulfasalazine vs symptomatic therapy)	VERY LOW

¹Open label, allocation concealment unclear ²Lack of appropriate measures of uncertainty

GRADE profiles, NSAID vs NSAID

Table 71 Pain related outcomes

Quality a	assessment						No of patie	ents	Effect	
No of studie s	Clinical population	Risk of bias	Inconsiste ncy	Indirectnes s	Imprecisio n	Other consideratio ns	Interventi on	Comparat or	Relative Effect	Qualit y
Pain sco	ores, 17 weeks	s (scale not	reported)							
Juvako ski & Lassus , 1982	Reactive arthritis	Serious ¹	N/A	None	Serious ²	None	50	50 (crossover)	No significant difference between the groups	LOW

²Differences not statistically significant

G.2.3 Switching or augmenting pharmacological interventions for spondyloarthritis

Review Question 23

- When a first-line treatment has failed, what is the effectiveness of the following for managing spondyloarthritis:
 - o switching to a different pharmacological intervention?
 - augmenting with a second pharmacological intervention?

Table 72 GRADE profiles, ciclosporin and methotrexate vs placebo and methotrexate

Quality	assessment						No of patie	ents	Effect	
No of studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Interventio n	Comparato r	Relative Effect	Qualit y
Patient g	global pain (via	VAS, cm), 1	2months							
Fraser 2005	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	38	34	Mean difference -1.00 (95%Cl - 3.97 to 1.97)	, VERY LOW
Tender j	oint counts, 12	months								
Fraser 2005	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	38	34	Mean difference 4.40 (95%CI - 3.58 to 12.38)	, VERY LOW
Swollen	joint counts, 12	2 months								
Fraser 2005	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	38	34	Mean difference -1.20 (95%CI -	, VERY LOW

Quality	assessment						No of patie	nts	Effect		
No of studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Interventio n	Comparato r	Rela Effe		Qualit y
										3.90 to 1.50)	
Patient g	lobal assessm	ent of diseas	se activity (via V	VAS, cm), 12 m	onths						
Fraser 2005	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	38	34		Mean difference, -0.80 (95%Cl - 2.07 to 0.47)	VERY LOW
HAQ sco	ore, 12 months										
Fraser 2005	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ²	None	38	34		Mean difference, 0.00 (95%Cl - 0.26 to 0.26)	VERY LOW

¹No details on randomisation, allocation concealment unclear ²Differences not statistically significant

Table 73 GRADE profiles, tight control in early psoriatic arthritis

Quality	assessment						No of patie	nts	Effect	
No of studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Interventio n	Comparato r	Relative Effect (95%CI)	Qualit y
ACR20,	48weeks									

Quality assessment								nts	Effect		
No of studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Interventio n	Comparato r	Relative Effect (95%CI)		Qualit y
Coates 2015	Psoriatic arthritis	Very serious ¹	N/A	Serious ²	Serious ³	None	101	105	OR 1.91 (1.03 to 3.55)	p=0.039	VERY LOW
ACR50,	48weeks										
Coates 2015	Psoriatic arthritis	Very serious ¹	N/A	Serious ²	None	None	101	105	OR 2.36 (1.25 to 4.47)	p=0.0081	VERY LOW
ACR70,	48weeks										
Coates 2015	Psoriatic arthritis	Very serious ¹	N/A	Serious ²	None	None	101	105	OR 2.64 (1.32 to 5.26)	p=0.0058	VERY LOW
BASDAI	MCID*, 48wee	eks									
Coates 2015	Psoriatic arthritis	Very serious ¹	N/A	Serious⁴	Serious ³	None	81	79	RR 1.26 (1.00 to 1.61)		VERY LOW
BASFI M	ICID*, 48week	S									
Coates 2015	Psoriatic arthritis	Very serious ¹	N/A	Serious ⁴	Serious ³	None	81	80	RR 1.51 (1.10 to 2.09)		VERY LOW
HAQ MC	ID*, 48weeks										
Coates 2015	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ³	None	91	90	RR 1.42 (1.05 to 1.92)		VERY LOW
ASAS20	, 48weeks										
Coates 2015	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ³	None	80	79	RR 1.47 (1.07 to 2.01)		VERY LOW

Quality assessment								ents	Effect	
No of studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Interventio n	Comparato r	Relative Effect (95%CI)	Qualit y
ASA40, 4	48weeks									
Coates 2015	Psoriatic arthritis	Very serious ¹	N/A	None	Serious ³	None	80	81	RR 1.50 (1.00 to 2.24)	VERY LOW

¹Open-label, standard care not defined ²Measure not in clinical use, rheumatoid arthritis tool ³Using GRADE default MID interval for dichotomous outcomes of (0.8, 1.25) ⁴Measure for ankylosing spondylitis

G.2.4 Biological DMARDs for spondyloarthritis

Review questions 24, 25, and 26

- What is the effectiveness of systemic biological disease-modifying anti-rheumatic drugs for managing symptoms of enteropathic arthritis?
- What is the effectiveness of systemic biological disease-modifying anti-rheumatic drugs for managing symptoms of reactive arthritis?
- What is the effectiveness of systemic biological disease-modifying anti-rheumatic drugs for managing symptoms of undifferentiated spondyloarthritis, excluding non-radiographic ankylosing spondylitis?

Comparison of adalimumab vs placebo over a 12 week period in people with peripheral spondyloarthritis (excluding ankylosing spondylitis and psoriatic arthritis)

Table 74 GRADE tables

Quality assessment							No of patients		Effect		
No of studies	Design	Risk of bias	Inconsisten cy	Indirectne ss	Imprecision	Other consideration s	Intervention	Control	Relativ e (95% CI)	Absolut e	Qualit y
Swollen j	joint count (E	Better indica	ted by lower val	ues)							
1 (Param arta 2013)	RCT	serious ¹	N/A	serious ²	serious imprecision ³	none	19	19	-	MD 2.1 lower (4.07 to 0.13 lower)	VERY LOW
Tender jo	oint count (B	etter indicate	ed by lower valu	ies)							
1 (Param arta 2013)	RCT	serious ¹	N/A	serious ²	serious imprecision ³	none	19	19	-	MD 3.5 lower (8.57 lower to 1.57 higher)	VERY LOW
BASDAI	(Better indic	ated by lowe	er values)								
1 (Param	RCT	serious ¹	N/A	serious ²	no serious imprecision	none	19	19	-	MD 1.5 lower	LOW

Quality assessment								No of patients			
No of studies	Design	Risk of bias	Inconsisten cy	Indirectne ss	Imprecision	Other consideration s	Intervention	Control	Relativ e (95% CI)	Absolut e	Qualit y
arta 2013)										(2.85 to 0.15 lower)	
ESR (Be	tter indicated	d by lower v	alues)								
1 (Param arta 2013)	RCT	serious ¹	N/A	serious ²	no serious imprecision	none	19	19	-	MD 7.7 lower (14.71 to 0.69 lower)	LOW
CRP (Be	tter indicate	d by lower v	alues)								
1 (Param arta 2013)	RCT	serious ¹	N/A	serious ²	serious imprecision ³	none	19	19	-	MD 9.7 lower (21.41 lower to 2.01 higher)	VERY LOW
QoL: HA	Q-DI (Better	indicated by	y lower values)								
1 (Param arta 2013)	RCT	serious ¹	N/A	serious ²	serious imprecision ³	none	19	19	-	MD 0.1 lower (0.55 lower to 0.35 higher)	VERY LOW
QoL: HU	I-3 (Better in	dicated by h	nigher values)								
1 (Param arta 2013)	RCT	serious ¹	N/A	serious ²	serious imprecision ³	none	19	19	-	MD 0.04 higher (0.21 lower to	VERY LOW

Quality assessment								No of patients Effect			
No of studies	Design	Risk of bias	Inconsisten cy	Indirectne ss	Imprecision	Other consideration s	Intervention	Control	Relativ e (95% CI)	Absolut e	Qualit y
										0.29 higher)	
Adverse	events (n pe	eople with A	Es)								
1 (Param arta 2013)	RCT s	serious ¹	s ¹ N/A	serious ²	serious imprecision ³	none	10/19 (52.6%)	10/19 (52.6%)	OR 1 (0.28 to 3.57)	0 fewer per 1000 (from 289 fewer to 272 more)	VERY LOW
								52.6%		0 fewer per 1000 (from 289 fewer to 272 more)	
Adverse	events: seri	ous (n event	ts)								
1 (Param arta 2013)	RCT	serious ¹ N/A	serious ¹ N/A	serious ²	serious imprecision ³	none	1/19 (5.3%)	1/19 (5.3%)	OR 1 (0.06 to 17.25)	0 fewer per 1000 (from 49 fewer to 437 more)	VERY LOW
							5.3%		0 fewer per 1000 (from 50 fewer to 438 more)		

¹Some risk of bias due to lack of detail in reporting of trial methodology (i.e. allocation methods and concealment) ²Study did not directly address any of the pre-specified review questions as it involved a mixed population of people with either reactive, enteropathic or undifferentiated spondyloarthropathy ³Not a statistically significant difference

G.2.5 Long-term antibiotics for reactive arthritis

Review Question 19

• What is the effectiveness of long-term (4 weeks or longer) treatment with antibiotics for first-line management of reactive arthritis compared with standard treatment?

GRADE profiles

Table 75 All interventions and eligible triggers of reactive arthritis

Quality assessment	No of patients		Effect							
No of studies	Design	Risk of bias	Inconsisten cy	Indirectnes s	Imprecisi on	Other consideratio ns	All interventions and triggers of ReA	Con trol	Absolute (95% CI)	Quality
Painful/tender joints/arthralgia										
Carter (2010), Hoogkamp-Kostanje (2000), Kvien (2004), Putschsky (2006), Sieper (1999), Toivanen (1993), Wakefield (1999), Whaley (1969)	RCTs	very serio us ¹	very serious ²	no serious indirectnes s ³	serious imprecisi on ⁴	none	214	192	SMD 0.2 lower (0.83 lower to 0.44 higher)	VERY LOW
Swollen joints										
Carter (2010), Kvien (2004), Putschsky (2006), Toivanen (1993), Yli-Kerttula (2000)	RCTs	very serio us¹	serious ⁵	no serious indirectnes s ³	serious imprecisi on⁴	none	172	152	SMD 0.02 higher (0.28 lower to 0.32 higher)	VERY LOW
Pain intensity										

Quality assessment							No of patients		Effect	
No of studies	Design	Risk of bias	Inconsisten cy	Indirectnes s	Imprecisi on	Other consideratio ns	All interventions and triggers of ReA	Con trol	Absolute (95% CI)	Quali
Putschsky (2006)	RCTs	serio us ⁶	N/A	no serious indirectnes s ³	serious imprecisi on ⁴	none	17	15	MD 1.4 higher (0.23 lower to 3.03 higher)	LOW
Pain at movement										
Toivanen (1993)	RCTs	serio us ⁶	N/A	no serious indirectnes s ³	serious imprecisi on⁴	none	17	19	MD 0.39 lower (2.35 lower to 1.57 higher)	LOW
Morning stiffness (0-10 scale)										
Toivanen (1993)	RCTs	serio us ⁶	N/A	no serious indirectnes s ³	serious imprecisi on⁴	none	17	19	MD 1.65 lower (3.74 lower to 0.44 higher)	LOW
Morning stiffness (mins)										
Putschsky (2006)	RCTs	serio us ⁶	N/A	no serious indirectnes s ³	serious imprecisi on⁴	none	17	15	MD 16 higher (26.95 lower to 58.95 higher)	LOW
ESR (Erythrocyte Sedimentation Ra	ate)									
Carter (2010), Putschsky (2006), Toivanen (1993), Whaley (1969), Yli-Kerttula (2000)	RCTs	very serio us¹	serious ⁵	no serious indirectnes s ³	serious imprecisi on⁴	none	102	92	SMD 0 higher (0.39 lower to 0.0.39 higher)	VERY LOW
CRP (C-reactive protein)										

Quality assessment							No of patients		Effect	
No of studies	Design	Risk of bias	Inconsisten cy	Indirectnes s	Imprecisi on	Other consideratio ns	All interventions and triggers of ReA	Con trol	Absolute (95% CI)	Quality
Carter (2010), Kvien (2004), Putschsky (2006), Toivanen (1993)	RCTs	very serio us ⁸	no serious inconsisten cy ⁷	no serious indirectnes s ³	serious imprecisi on ⁴	none	142	120	SMD 0.08 higher (0.19 lower to 0.34 higher)	LOW
Fatigue										
Putschsky (2006)	RCTs	serio us ⁶	N/A	no serious indirectnes s ³	serious imprecisi on ⁴	none	17	15	MD 40 higher (94.3 lower to 174.3 higher)	LOW

¹ Very serious risk of bias due to lack of reporting on randomisation, allocation concealment and blinding, selective outcome reporting and missing data handling. Some studies only presented data in ² Very serious inconsistency (I² > 66%)
 ³ Study/studies complied with review protocol requirements
 ⁴ Not a statistically significant difference

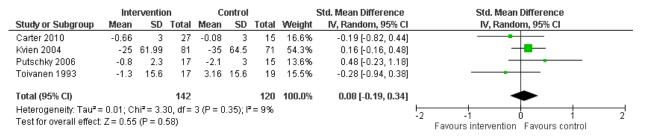
⁵ Serious inconsistency (33% < I^A2 <= 66%)
 ⁶ Some risk of bias due to lack of reporting on randomisation, allocation concealment and blinding, and missing data handling.

⁷ No/Low inconsistency (I² <=33%)

⁸ Very serious risk of bias due to lack of reporting on randomisation, allocation concealment and blinding, and missing data handling. One study only presented data in graphs from which values had to be estimated

Painful or tender joints/arthralgia (assorted scales)

	Inte	erventio	n	C	ontrol		9	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Carter 2010	-5.3	2.2	27	1.7	2.2	15	11.2%	-3.12 [-4.07, -2.18]	_ -
Hoogkamp-Kostanje 2000	-2.9	2.2	7	-2.6	2.2	11	11.1%	-0.13 [-1.08, 0.82]	
Kvien 2004	-1.79	3.97	81	-1.76	7.57	71	14.3%	-0.01 [-0.32, 0.31]	+
Putschky 2006	0.1	1.8	17	-2.2	2.2	15	12.3%	1.12 [0.37, 1.88]	
Sieper 1999	-4.6	4.2	27	-7.3	4.9	28	13.4%	0.58 [0.04, 1.12]	
Toivanen 1993	-1.76	2.95	17	-0.16	2.95	19	12.7%	-0.53 [-1.20, 0.14]	
Wakefield 1999	-7.74	12.95	27	-6.68	11.68	22	13.3%	-0.08 [-0.65, 0.48]	-+-
Whaley 1969	-3.2	4.7	11	-4.39	4.51	11	11.8%	0.25 [-0.59, 1.09]	
Total (95% CI)			214			192	100.0%	-0.20 [-0.83, 0.44]	•
Heterogeneity: Tau ² = 0.71; (Chi² = 57	.85, df=	:7 (P <	0.0000	1); I 2 = 8	38%			
Test for overall effect: Z = 0.6	i1 (P = 0.	54)	•						-4 -2 U 2 4 Favours intervention Favours Control


Swollen joints (assorted scales, lower values indicating favourable outcomes)

	Inte	rventio	on	C	Control Std. Mean Difference				Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Carter 2010	-3.8	4.9	27	-3	4.9	15	16.0%	-0.16 [-0.79, 0.47]	
Kvien 2004	-1.44	2.27	81	-1.44	1.83	71	34.0%	0.00 [-0.32, 0.32]	+
Putschky 2006	-0.6	1.7	17	-2.1	1.7	15	13.0%	0.86 [0.13, 1.59]	
Toivanen 1993	-1.24	4.15	17	-0.1	4.15	19	15.1%	-0.27 [-0.93, 0.39]	
Yli-Kerttula 2000	-3.15	2.46	30	-2.9	2.55	32	21.9%	-0.10 [-0.60, 0.40]	
Total (95% CI)			172			152	100.0%	0.02 [-0.28, 0.32]	•
Heterogeneity: Tau ² =	= 0.04; Cl	hi² = 6	.36, df:	= 4 (P =	0.17);	I ^z = 37 ⁰	%		
Test for overall effect	Z= 0.15	5 (P = (0.88)						Favours intervention Favours control

ESR (mm/hr / mm at end of first hr/ no units)

	Inte	erventio	n	(Control Std. Mean Differe				Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Carter 2010	-11.1	17.33	27	-0.5	17.33	15	20.4%	-0.60 [-1.25, 0.05]	
Putschky 2006	-7	14	17	-14	18	15	18.5%	0.43 [-0.28, 1.13]	
Toivanen 1993	-2.11	17.33	17	-2.99	17.33	19	20.1%	0.05 [-0.60, 0.70]	_
Whaley 1969	-6.95	5.26	11	-5.3	3.73	11	14.7%	-0.35 [-1.19, 0.50]	
Yli-Kerttula 2000	-45	31.77	30	-56	32.8	32	26.3%	0.34 [-0.17, 0.84]	
Total (95% CI)			102			92	100.0%	0.00 [-0.39, 0.39]	-
Heterogeneity: Tau ² =	= 0.09; C	hi² = 7.0)9, df=	4 (P = 0	.13); I² =	= 44%			
Test for overall effect			•	•					-2 -1 U 1 2 Favours intervention Favours control

CRP (hsCRP/CRP (mg/l))

Adverse events (all)

				Incidence Rate Ratio	Incidence Rate Ratio
Study or Subgroup	log[Incidence Rate Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Carter 2010	0.175	0.32	16.0%	1.19 [0.64, 2.23]	
Hoogkamp-Kostanje 2000	-0.971	0.264	19.3%	0.38 [0.23, 0.64]	
Toivanen 1993	-0.365	0.196	24.1%	0.69 [0.47, 1.02]	
Wakefield 1999	-0.148	0.275	18.6%	0.86 [0.50, 1.48]	
Whaley 1969	-3.137	3.23	0.3%	0.04 [0.00, 24.38]	←
Yli-Kerttula 2000	3.653	3.215	0.3%	38.59 [0.07, 21042.18]	
Yli-Kerttula 2003	-0.178	0.233	21.4%	0.84 [0.53, 1.32]	
Total (95% CI)			100.0%	0.73 [0.52, 1.03]	•
Heterogeneity: Tau ² = 0.09; C	chi ² = 11.57, df = 6 (P = 0.07)	; I ² = 48	%		
Test for overall effect: $Z = 1.7$	9 (P = 0.07)				0.01 0.1 1 10 100 Favours intervention Favours control

Table 76 Urogenital triggers only

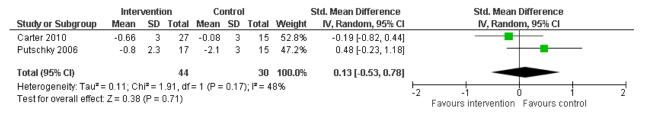
Quality assessme	nt				No of patie	ents	Effect	Qualit y		
No of studies	Design	Risk of bias	Inconsist ency	Indirectness	Imprecisio n	Other consideratio ns	UG triggers only	Co ntr ol	Absolute (95% Cl)	
UG_painful/tender	joints/arthralg	gia								
Carter (2010); Putschky (2006)	RCTs	seriou s ¹	very serious ²	no serious indirectness ³	serious imprecision ⁴	none	62	30	SMD 0.99 lower (5.15 lower to 3.17 higher)	VERY LOW

Quality assessme	ent				No of patients		Effect	Qualit y		
No of studies	Design	Risk of bias	Inconsist ency	Indirectness	Imprecisio n	Other consideratio ns	UG triggers only	Co ntr ol	Absolute (95% Cl)	
UG_swollen joints										
Carter (2010); Putschky (2006)	RCTs	seriou s ¹	very serious ²	no serious indirectness ³	serious imprecision ⁴	none	44	30	SMD 0.33 higher (0.67 lower to 1.33 higher)	VERY LOW
UG_ Pain intensity										
Putschky (2006)	RCTs	seriou s¹	N/A	no serious indirectness ³	serious imprecision ⁴	none	17	15	MD 1.4 higher (0.23 lower to 3.03 higher)	LOW
UG_morning stiffne	ess (mins)									
Putschky (2006)	RCTs	seriou s¹	N/A	no serious indirectness ³	serious imprecision ⁴	none	17	15	MD 16 higher (26.95 lower to 58.95 higher)	LOW
UG_ESR										
Carter (2010); Putschky (2006)	RCTs	seriou s ¹	very serious ²	no serious indirectness ³	serious imprecision ⁴	none	44	30	SMD 0.1 lower (-1.10 lower to 0.91 higher)	VERY LOW
UG_CRP										
Carter (2010); Putschky (2006)	RCTs	seriou s ¹	serious ⁵	no serious indirectness ³	serious imprecision ⁴	none	44	30	SMD 0.13 higher (0.53 lower to 0.78 higher)	VERY LOW
UG_Fatigue										
Putschky (2006)	RCTs	seriou s¹	N/A	no serious indirectness ³	serious imprecision ⁴	none	17	15	MD 40 higher (94.3 lower to 174.3 higher)	LOW

¹ Some risk of bias due to lack of reporting on randomisation, allocation concealment and blinding, and missing data handling.
 ² Very serious inconsistency (I² > 66%)
 ³ Study/studies complied with review protocol requirements
 ⁴ Not a statistically significant difference
 ⁵ Serious inconsistency (33% < I² <= 66%)

Painful or tender joints/arthralgia

	Expe	rimen	tal	Cc	ontro	I		Std. Mean Difference	Std. Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	Mean SD Total Weig			IV, Random, 95% Cl	IV, Random, 95% Cl			
Carter 2010	-5.3	2.2	27	1.7	2.2	15	49.8%	-3.12 [-4.07, -2.18]	-8-			
Putschky 2006	0.1	1.8	17	-2.2	2.2	15	50.2%	1.12 [0.37, 1.88]	-			
Total (95% Cl)			44			30	100.0%	-0.99 [-5.15, 3.17]				
Heterogeneity: Tau ² = Test for overall effect:				í=1 (P <	< 0.0I	0001); I	≈ = 98%		-10 -5 0 5 10 Favours intervention Favours control			


Swollen joints

	Inter	venti	on	Co	ontrol	I		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Carter 2010	-3.8	4.9	27	-3	4.9	15	51.7%	-0.16 [-0.79, 0.47]	
Putschky 2006	-0.6	1.7	17	-2.1	1.7	15	48.3%	0.86 [0.13, 1.59]	
Total (95% CI)			44			30	100.0%	0.33 [-0.67, 1.33]	
Heterogeneity: Tau ^z : Test for overall effect				= 1 (P =	0.04); ² = 7	7%		-2 -1 0 1 2 Favours intervention Favours control

ESR (mm/hr / mm at end of first hr)

	Intervention						Std. Mean Difference Std. Mean Difference					
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl			
Carter 2010	-11.1	17.33	27	-0.5	17.33	15	51.0%	-0.60 [-1.25, 0.05]				
Putschky 2006	-7	14	17	-14	18	15	49.0%	0.43 [-0.28, 1.13]				
Total (95% Cl)			44			30	100.0%	-0.10 [-1.10, 0.91]				
Heterogeneity: Tau² = Test for overall effect:				1 (P = 0	1.03); I² =	= 78%		H	-2 -1 0 1 2 Favours intervention Favours control			

CRP (hsCRP/CRP (mg/l))

Table 77 Gastrointestinal triggers only

										Quali ty
Quality assessment							No of pat	ients	Effect	
No of studies	Design	Risk of bias	Inconsist ency	Indirectness	Imprecisio n	Other consideratio ns	GI triggers only	Co ntr ol	Absolute (95% Cl)	
GI_painful/tender joints	s/arthralgia									
Hoogkamp-Korstanje (2010), Sieper (1999)	RCTs	very seriou s ¹	very serious ²	no serious indirectness ³	serious imprecision 4	none	21	36	SMD 0.53 higher (0.68 lower to 1.75 higher)	VERY LOW

¹ Serious risk of bias due to a number of issues with study reporting, including issues around missing data handling, potential selective outcome reporting, and need to estimate outcome values from graphs. ² Very serious inconsistency (I^2=77%)

³ Both studies met with review protocol requirements.

⁴ Not a statistically significant differnece

Painful or tender joints/arthralgia

	Inter	ventio	on	Co	ontrol	I	:	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Hoogkamp-Kostanje 2000	-2.9	2.2	7	-2.6	2.2	11	46.6%	-0.13 [-1.08, 0.82]	_
Sieper 1999	-2.2	4.5	14	-6.75	3.7	25	53.4%	1.11 [0.41, 1.82]	
Total (95% CI)			21			36	100.0%	0.53 [-0.68, 1.75]	
Heterogeneity: Tau ² = 0.59; 0	⊳hi² = 4.2	6, df=	= 1 (P =	: 0.04); I	z = 77	7%			
Test for overall effect: Z = 0.8	6 (P = 0.3	39)							Favours intervention Favours control

Table 78 Long-term secondary follow up

Quality	assessment						No of patients		Effect		Quality
No of studies	Design	Risk of bias	Inconsiste ncy	Indirectn ess	Imprecision	Other consideratio ns	Long term secondary follow up	Con trol	Relative (95% CI)	Absolute	
Long ter	m_ESR										
Yli- Kerttul a (2003)	observatio nal studies	very seriou s ¹	N/A	serious ²	serious imprecision 3	none	26	27	-	MD 10.2 higher (4.39 lower to 24.79 higher)	VERY LOW
Long ter	m_MRI finding	IS									
Yli- Kerttul a	observatio nal studies	very seriou s ¹	N/A	serious ²	serious imprecision 4	none	0/3 (0%)	3/3 (100 %)	RR 0.14 (0.01 to 1.96)	860 fewer per 1000 (from 990 fewer to 960 more)	VERY LOW
(2003)								100 %		860 fewer per 1000 (from 990 fewer to 960 more)	
Long ter	m_radiograph	ic finding	s								
Yli- Kerttul a	observatio nal studies	very seriou s ¹	N/A	serious ²	serious imprecision 4	none	1/5 (20%)	3/6 (50 %)	RR 0.4 (0.06 to 2.75)	300 fewer per 1000 (from 470 fewer to 875 more)	VERY LOW
(2003)								50%		300 fewer per 1000 (from 470 fewer to 875 more)	
Long ter	m_clinical find	ings of S	pА								
Yli- Kerttul a (2003)	observatio nal studies	very seriou s ¹	N/A	serious ²	serious imprecision 4	none	2/26 (7.7%)	11/2 7 (40. 7%)	RR 0.19 (0.05 to 0.77)	330 fewer per 1000 (from 94 fewer to 387 fewer)	VERY LOW

Quality	assessment						No of patients		Effect		Quality
No of studies	Design	Risk of bias	Inconsiste ncy	Indirectn ess	Imprecision	Other consideratio ns	Long term secondary follow up	Con trol	Relative (95% CI)	Absolute	
								40.7 %		330 fewer per 1000 (from 94 fewer to 387 fewer)	

¹ Original study lacked clarity regarding reporting of randomisation, blinding and allocation. This follow up study did not capture all of the original patient population.
 ² Study design does not entirely match protocol.
 ³ Not a statistically significant difference
 ⁴ Using GRADE default MID interval for dichotomous outcomes of (0.8, 1.25)

G.3 Non-pharmacological management

G.3.1 Manual therapies for spondyloarthritis

Review question 14

• What is the effectiveness of manual therapies compared with standard care for managing spondyloarthritis?

Table 79 GRADE tables

Number			Qu	ality assessment			Number of	people	Effect	
of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other	Individualised programme	Standard care	Absolute (95% Cl)	Quality
Composite	e measures:	: BASFI (foll	ow-up 8 weeks; Bett	er indicated by lov	wer values)					
1 (Widberg 2009)	RCT	serious ¹	N/A	serious ²	serious ³	none	16	16	MD -0.3 (-1.63 to +1.03)	VERY LOW
Composit	e measures:	: BASDAI (fo	ollow-up 8 weeks; Be	etter indicated by I	ower values)					
1 (Widberg 2009)	RCT	serious ¹	N/A	serious ²	serious ³	none	16	16	MD 0 (-1.27 to +1.27)	VERY LOW
Composit	e measures:	: BASMI (fol	low-up 8 weeks; Bet	ter indicated by lo	wer values)					
1 (Widberg 2009)	RCT	serious ¹	N/A	serious ²	not serious	none	16	16	MD -1.2 (-2.27 to - 0.13)	LOW
Joint mob	ility - Finger	r to floor dis	tance (cm) (follow-u	p 4 months; Bette	r indicated by lov	ver values)			
1 (Silva 2012)	ССТ	very serious ⁴	N/A	serious ²	not serious	none	20	15	MD 2.3 (1.23 to 3.37)	VERY LOW
Joint mob	ility, Modifie	ed Schober I	Index (cm) (follow-u	p 4 months; Better	indicated by hig	her values	s)			
1 (Silva 2012)	ССТ	very serious ⁴	N/A	serious ²	not serious	none	20	15	MD 0.7 (0.48 to 0.92)	VERY LOW
Joint mob	ility, Cervica	al rotation (o	degrees) (follow-up 4	4 months; Better in	ndicated by highe	er values)				

Number			Qu	ality assessment			Number of p	people	Effect	
of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other	Individualised programme	Standard care	Absolute (95% Cl)	Quality
1 (Silva 2012)	ССТ	very serious ⁴	N/A	serious ²	not serious	none	20	15	MD 7 (6.28 to 7.72)	VERY LOW
Composite	e measures:	: BASDAI (fo	ollow-up 4 months; E	Better indicated by	lower values)					
1 (Silva 2012)	ССТ	very serious ⁴	N/A	serious ²	not serious	none	20	15	MD -1.4 (-1.62 to - 1.18)	VERY LOW
Composite	e measures	: HAQ-S (fol	low-up 4 months; Be	etter indicated by l	ower values)					
1 (Silva 2012)	ССТ	very serious ⁴	N/A	serious ²	not serious	none	20	15	MD -0.6 (-0.7 to -0.5)	VERY LOW
QoL: SF36	- ECS (follo	ow-up 4 mor	nths; Better indicate	d by higher values)					
1 (Silva 2012)	ССТ	very serious ⁴	N/A	serious ²	no serious	none	20	15	MD 3.6 (0.89 to 6.31)	VERY LOW
QoL: SF36	- PCS (follo	ow-up 4 mor	nths; Better indicate	d by higher values)					
1 (Silva 2012)	ССТ	very serious ⁴	N/A	serious ²	not serious	none	20	15	MD 15.5 (13.49 to 17.51)	VERY LOW

¹ Small study with no details provided of the blinding procedures for the outcome assessors
 ² Intervention comprised combination of exercise and manual therapy
 ³ Not a significant difference
 ⁴ Small, non-randomised controlled trial with baseline differences in age and cervical pain; unclear blinding procedures for outcome assessors

Forest plots for individualised programmes of manual therapy and exercise vs. control (no treatment or usual care)

Joint mobility (data from CCT, Silva 2012)

N.	fultimoda	l program	me	Stand	dard ca	are		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
1.2.1 Finger to floor dista	ance (cm)	, 4 months	;						
Silva 2012	9.7	1.75	20	7.4	1.48	15	100.0%	2.30 [1.23, 3.37]	
Subtotal (95% CI)			20			15	100.0%	2.30 [1.23, 3.37]	◆
Heterogeneity: Not applic	able								
Test for overall effect: Z =	4.21 (P <	0.0001)							
1.2.2 Modified Schober I	ndex (cm)	, 4 month	s						
Silva 2012	0.8	0.32	20	0.1	0.33	15	100.0%	0.70 [0.48, 0.92]	
Subtotal (95% CI)			20			15	100.0%	0.70 [0.48, 0.92]	•
Heterogeneity: Not applic	able								
Test for overall effect: Z =	6.29 (P <	0.00001)							
1.2.3 Cervical rotation (d	legrees), 4	f months							
Silva 2012	11.5	0.88	20	4.5	1.19	15	100.0%	7.00 [6.28, 7.72]	
Subtotal (95% CI)			20			15	100.0%	7.00 [6.28, 7.72]	● ●
Heterogeneity: Not applic	able								
Test for overall effect: Z =	19.19 (P	< 0.00001))						
									-10 -5 0 5 1
Test for subgroup differen	neae: Chil	- 276 42	d - 2	/P ~ 0.0	00011	P - 00	206		Favours standard care Favours multimodal

Test for subgroup differences: Chi² = 276.42, df = 2 (P < 0.00001), I² = 99.3%

Quality of life (data from CCT, Silva 2012)

	Multimoda	al progra	mme	Stan	dard ca	are		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
1.4.1 SF36 - ECS									
Silva 2012	22.2	4.19	20	18.6	3.93	15	100.0%	3.60 [0.89, 6.31]	
Subtotal (95% CI)			20			15	100.0%	3.60 [0.89, 6.31]	◆
Heterogeneity: Not app	plicable								
Test for overall effect 2	Z = 2.61 (P =	= 0.009)							
1.4.2 SF36 - PCS									
Sllva 2012	32.7	3.06	20	17.2	2.96	15	100.0%	15.50 [13.49, 17.51]	· · · ·
Subtotal (95% CI)			20			15	100.0%	15.50 [13.49, 17.51]	▲
Heterogeneity: Not app	plicable								
Test for overall effect 2	Z = 15.11 (P	< 0.0000	1)						
									-20 -10 0 10 20
									Favours standard care Favours multimodal
Test for subgroup diffs	meneer Chi	3 - 47.05	M = 4.75	> ~ 0.00	0.043 8	I = 07.0	06		

Test for subaroup differences: Chi² = 47.85, df = 1 (P < 0.00001), P = 97.9%

Composite measures (data from RCT, Widberg 2009)

	Multimod	al progran	nme	No tr	eatme	int		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
1.1.1 BASFI, 8 weeks									
Widberg 2009	-0.7	1.75	16	-0.4	2.07	16	100.0%	-0.30 [-1.63, 1.03]	
Subtotal (95% CI)			16			16	100.0%	-0.30 [-1.63, 1.03]	
Heterogeneity: Not app	olicable								
Test for overall effect 2	Z = 0.44 (P =	= 0.66)							
1.1.2 BASDAI, 8 weeks	s								
Widberg 2009	-0.5	1.57	16	-0.5	2.05	16	100.0%	0.00 [-1.27, 1.27]	
Subtotal (95% CI)			16			16	100.0%	0.00 [-1.27, 1.27]	-
Heterogeneity: Not app	olicable								
Test for overall effect 2	Z = 0.00 (P =	= 1.00)							
1.1.3 BASMI, 8 weeks									_
Widberg 2009	-1	0.76	16	0.2	2.05	16	100.0%	-1.20 [-2.27, -0.13]	
Subtotal (95% CI)			16			16	100.0%	-1.20 [-2.27, -0.13]	-
Heterogeneity: Not app	olicable								
Test for overall effect 2	Z = 2.20 (P =	= 0.03)							
									-4 -2 0 2 4
T						-			Favours multimodal Favours no treatment
Test for subgroup diffe	rences: Ch	r = 2.26, 0	If = 2 (P:	= 0.32),	1*= 11	.7%			

Composite measures (data from CCT, Silva 2012)

	Multimoda	l prograr	nme	Stan	dard c	are		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
1.3.1 BASDAI, 4 month	15								
Silva 2012	-3.5	0.39	20	-2.1	0.26	15	100.0%	-1.40 [-1.62, -1.18]	
Subtotal (95% CI)			20			15	100.0%	-1.40 [-1.62, -1.18]	◆
Heterogeneity: Not app	plicable								
Test for overall effect 2	Z=12.72 (P	< 0.0000	1)						
1.3.2 HAQ-S, 4 months	s								
Sliva 2012	-1.4	0.18	20	-0.8	0.13	15	100.0%	-0.60 [-0.70, -0.50]	
Subtotal (95% CI)			20			15	100.0%	-0.60 [-0.70, -0.50]	•
Heterogeneity: Not app	plicable								
Test for overall effect 2	Z = 11.45 (P	< 0.0000	1)						
									-2 -1 0 1 2
Test for subgroup diffe	renees: Chi	- 42.07	df = 1 /2	~ 0.00	0.043 8	- 07 7	w.		Favours multimodal Favours standard care

Test for subgroup differences: Chi² = 43.07, df = 1 (P < 0.00001), l² = 97.7%

Table 80 GRADE profile for group and individualised multimodal inpatient programme including manual therapy vs. no treatment (data from Lubrano 2006 and 2007)

			Qu	ality assessment			Number of	people	Effect	
Number of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other	Inpatient programme	No treatment	Absolute (95% Cl)	Quality
Pain - Visua	l analogue	e scale (follo	ow-up 3 weeks; Bette	er indicated by low	ver values)					
1 (Lubrano 2007)	case series	very serious ¹	N/A	serious ²	not serious	none	52	52	MD -25.5 (- 28.18 to -22.82)	VERY LOW
Pain - Visua	l analogue	e scale (follo	w-up 6 weeks; Bette	er indicated by low	ver values)					
1 (Lubrano 2007)	case series	very serious ¹	N/A	serious ²	not serious	none	52	52	MD -17.8 (- 20.14 to -15.46)	VERY LOW
Pain - Visua	l analogue	e scale (follo	w-up 12 weeks; Bet	ter indicated by lo	wer values)					
1 (Lubrano 2007)	case series	very serious ¹	N/A	serious ²	not serious	none	52	52	MD -10.3 (- 12.49 to -8.11)	VERY LOW
Joint mobili	ty - Modifi	ed Schober'	s test, cm (follow-u	o 3 weeks; Better i	ndicated by high	er values)				
2 (Lubrano 2006 and 2007)	observ ational	very serious ¹	N/A	serious ²	not serious	none	71	71	MD 0.49 (0.29 to 0.69)	VERY LOW
Joint mobili	ty - Modifi	ed Schober'	's test, cm (follow-u	o 6 weeks; Better i	ndicated by high	er values)				
1 (Lubrano 2007)	case series	very serious ¹	N/A	serious ²	not serious	none	52	52	MD 0.4 (0.17 to 0.63)	VERY LOW
Joint mobili	ty - Modifi	ed Schober'	s test, cm (follow-u	p 12 weeks; Better	indicated by hig	her values)			
1 (Lubrano 2007)	case series	very serious ¹	N/A	serious ²	not serious	none	52	52	MD 0.3 (0.07 to 0.53)	VERY LOW
Joint mobili	tv - Traqus	s to wall dis	tance, cm (follow-up	o 3 weeks: Better ii	ndicated by high	er values)				

			Qu	ality assessment			Number of	people	Effect	
Number of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other	Inpatient programme	No treatment	Absolute (95% Cl)	Quality
2 (Lubrano 2006 and 2007)	observ ational	very serious ¹	N/A	serious ²	not serious	none	71	71	MD 4.09 (1.69 to 6.49)	VERY LOW
Joint mobili	ty - Tragus	s to wall dis	tance, cm (follow-up	o 6 weeks; Better ii	ndicated by high	er values)				
1 (Lubrano 2007)	case series	very serious ¹	N/A	serious ²	not serious	none	52	52	MD 4.9 (3.46 to 6.34)	VERY LOW
Joint mobili	ty - Tragus	s to wall dis	tance, cm (follow-up	o 12 weeks; Better	indicated by hig	her values)			
1 (Lubrano 2007)	case series	very serious ¹	N/A	serious ²	not serious	none	52	52	MD 3.3 (1.49 to 5.11)	VERY LOW
Quality of lif	e - EQ-5D	VAS, 0-100	(follow-up 3 weeks;	Better indicated b	y higher values)					
1 (Lubrano 2006)	observ ational	very serious ¹	N/A	serious ²	not serious	none	19	19	MD 6.6 (1.11 to 12.09)	VERY LOW
Composite i	neasures	(change fro	m baseline) - BASFI	(follow-up 3 week	s; Better indicate	ed by lowe	r values)			
2 (Lubrano 2006 and 2007)	observ ational	very serious ¹	N/A	serious ²	not serious	none	71	71	MD -1.25 (-2.28 to -0.2)	VERY LOW
Composite I	neasures	(change fro	m baseline) - BASFI	(follow-up 6 week	s; Better indicate	ed by lowe	r values)			
1 (Lubrano 2007)	case series	very serious ¹	N/A	serious ²	not serious	none	52	52	MD -1.34 (-1.64 to -1.04)	VERY LOW
Composite i	neasures	(change fro	m baseline) - BASFI	(follow-up 12 wee	ks; Better indica	ted by low	er values)			
1 (Lubrano 2007)	case series	very serious ¹	N/A	serious ²	not serious	none	52	52	MD -0.92 (-1.21 to -0.63)	VERY LOW
Composite I	neasures	(change fro	m baseline) - BASD	Al (follow-up 3 wee	eks; Better indica	ted by low	ver values)			

			Qu	ality assessment			Number of	people	Effect	
Number of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other	Inpatient programme	No treatment	Absolute (95% Cl)	Quality
1 (Lubrano 2006)	observ ational	very serious ¹	N/A	serious ²	serious ³	none	19	19	MD -0.71 (-1.49 lower to +0.07)	VERY LOW
Composite	measures	(change fro	m baseline) - Revise	ed Leeds Disability	Questionnaire (0-3) (follow	/-up 3 weeks; Bette	r indicated by	lower values)	
2 (Lubrano 2006 and 2007)	observ ational	very serious ¹	N/A	serious ²	not serious	none	71	71	MD -0.38 (-0.60 to -0.17)	VERY LOW
Composite	measures	(change fro	m baseline) - Revise	ed Leeds Disability	Questionnaire (0-3) (follow	/-up 6 weeks; Bette	r indicated by	lower values)	
1 (Lubrano 2007)	case series	very serious ¹	N/A	serious ²	not serious	none	52	52	MD -0.40 (-0.57 to -0.23)	VERY LOW
Composite	measures	(change fro	m baseline) - Revise	ed Leeds Disability	Questionnaire (0-3) (follow	/-up 12 weeks; Bett	er indicated by	y lower values)	
1 (Lubrano 2007)	case series	very serious ¹	N/A	serious ²	not serious	none	52	52	MD -0.30 (-0.49 to -0.11)	VERY LOW

¹ Small prospective case series of patients with active ankylosing spondylitis; no details were provided of the methods of outcome assessments; no comparative group
 ² Intervention comprised combination of exercise and manual therapy
 ³ Not a statistically significant difference

Forest plots for group and individualised multimodal inpatient programme including manual therapy vs. no treatment

Pain (data from prospective case series, Lubrano 2007)

	Post-t	reatme	int	Pre-tr	eatme	nt		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
2.1.1 Visual analogu	e scale, p	ost-tre	atmer	nt at 3 w	eeks				
Lubrano 2007 Subtotal (95% CI)	51.1	8.5	52 52	76.6	5	52 52		-25.50 [-28.18, -22.82] -25.50 [-28.18, -22.82]	₽
Heterogeneity: Not a	pplicable								
Test for overall effect	Z=18.65	5 (P < 0	.0000	1)					
2.1.2 Visual analogu	e scale, a	t 6 wee	eks						
Lubrano 2007 Subtotal (95% CI)	58.8	7	52 52	76.6	5	52 52		-17.80 [-20.14, -15.46] -17.80 [-20.14, -15.46]	‡
Heterogeneity: Not ap	pplicable								
Test for overall effect	Z=14.92	2 (P < 0	.0000	1)					
2.1.3 Visual analogu	e scale, a	t 12 we	eeks						
Lubrano 2007 Subtotal (95% CI)	66.3	6.3	52 52	76.6	5	52 52	100.0% 100.0%	-10.30 [-12.49, -8.11] -10.30 [-12.49, -8.11]	
Heterogeneity: Not a	pplicable								-
Test for overall effect	Z=9.23	(P < 0.0	00001))					
									-20 -10 0 10 20
	_								Favours intervention Favours no intervention
Test for subgroup dif	ferences:	Chi ² =	75.13	df = 2 (F	² < 0.0	0001),	P = 97.39	6	

Joint mobility (data from Lubrano 2006 and 2007)

Study or Subgroup Mean Dif	foronco 6	E Mojakt	Mean Difference IV, Random, 95% Cl	Mean Difference IV, Random, 95% Cl
2.2.1 Modified Schober's test, c			, ,	IV, Random, 95% Ci
_ubrano 2006	0.48 0.1		0.48 [0.15, 0.81]	-
_ubrano 2007	0.5 0.127		0.50 [0.25, 0.75]	
Subtotal (95% CI)		100.0%	0.49 [0.29, 0.69]	•
Heterogeneity: Tau ² = 0.00; Chi ²	= 0.01, df = 1 (i	^o = 0.93); l ^z =	0%	
Test for overall effect: Z = 4.82 (F	< 0.00001)			
2.2.2 Modified Schober's test, c	m (at 6 weeks)		
_ubrano 2007	0.4 0.117	7 100.0%	0.40 [0.17, 0.63]	
Subtotal (95% CI)		100.0%	0.40 [0.17, 0.63]	•
Heterogeneity: Not applicable				
Test for overall effect: Z = 3.40 (F	= 0.0007)			
2.2.3 Modified Schober's test, c	m (at 12 week	s)		
_ubrano 2007	0.3 0.117	7 100.0%	0.30 [0.07, 0.53]	
Subtotal (95% Cl)		100.0%	0.30 [0.07, 0.53]	•
Heterogeneity: Not applicable				
Test for overall effect: Z = 2.55 (F	= 0.01)			
2.2.4 Tragus to wall distance, c	m (post-treatn		eks)	
_ubrano 2006	2.74 1.1		2.74 [0.56, 4.92]	│ ──∎ ──
_ubrano 2007	5.2 0.795		5.20 [3.64, 6.76]	
Subtotal (95% Cl)		100.0%	4.09 [1.69, 6.49]	
Heterogeneity: Tau² = 2.09; Chi² Fest for overall effect: Z = 3.34 (F		° = 0.07); I² =	69%	
2.2.5 Tragus to wall distance, c	m (at 6 weeks)		
_ubrano 2007	4.9 0.735	51 100.0%	4.90 [3.46, 6.34]	
Subtotal (95% Cl)		100.0%	4.90 [3.46, 6.34]	
Heterogeneity: Not applicable				
Test for overall effect: Z = 6.67 (F	< 0.00001)			
2.2.6 Tragus to wall distance, c	,	,		
_ubrano 2007	3.3 0.925	51 100.0%	3.30 [1.49, 5.11]	
Subtotal (95% Cl)		100.0%	3.30 [1.49, 5.11]	
Heterogeneity: Not applicable				
Test for overall effect: Z = 3.57 (F	= 0.0004)			
			-	-4 -2 0 2 4
				-4 -7 11 7 4

Test for subgroup differences: $Chi^2 = 56.91$, df = 5 (P < 0.00001), $I^2 = 91.2\%$

234

GRADE tables and meta-analysis results

Composite measures (data from Lubrano 2006 and 2007)

Study or Subgroup Mean	Difference SE	Weight	Mean Difference IV, Random, 95% Cl	Mean Difference IV, Random, 95% Cl
2.5.1 BASFI (post-treatment		Trongin	14,14114011,007.01	
Lubrano 2006 Lubrano 2007	-0.71 0.23 -1.76 0.1501	48.6% 51.4%	-0.71 [-1.16, -0.26] -1.76 [-2.05, -1.47]	
Subtotal (95% CI)		100.0%	-1.25 [-2.28, -0.22]	
Heterogeneity: Tau² = 0.51; C Fest for overall effect: Z = 2.3		= 0.0001)	; I² = 93%	
2.5.2 BASFI (at 6 weeks)				_
Lubrano 2007 Subtotal (95% CI)	-1.34 0.152	100.0% 100.0 %	-1.34 [-1.64, -1.04] - 1.34 [-1.64, -1.04]	-
Heterogeneity: Not applicable Fest for overall effect: Z = 8.8;				
2.5.3 BASFI (at 12 weeks)				_
ubrano 2007 Subtotal (95% CI)	-0.92 0.1482	100.0% 100.0 %	-0.92 [-1.21, -0.63] - 0.92 [-1.21, -0.63]	
Heterogeneity: Not applicable Fest for overall effect: Z = 6.2				
2.5.4 BASDAI (post-treatmer	nt at 3 weeks)			_
ubrano 2006 Subtotal (95% CI)	-0.71 0.4	100.0% 100.0 %	-0.71 [-1.49, 0.07] - 0.71 [-1.49, 0.07]	
Heterogeneity: Not applicable Fest for overall effect: Z = 1.73				
2.5.5 Revised Leeds Disabili	ty Questionnaire (0-3	3; post-tre	atment at 3 weeks)	
ubrano 2006	-0.28 0.08	53.3%	-0.28 [-0.44, -0.12]	
Lubrano 2007 Subtotal (95% CI)	-0.5 0.0981	46.7% 100.0 %	-0.50 [-0.69, -0.31] - 0.38 [-0.60, -0.17]	↓
Heterogeneity: Tau² = 0.02; C Fest for overall effect: Z = 3.49		0.08); I² =	67%	
2.5.6 Revised Leeds Disabili	ty Questionnaire (0-3	3; at 6 we	eks)	_
Lubrano 2007 Subtotal (95% CI)	-0.4 0.0888	100.0% 100.0 %	-0.40 [-0.57, -0.23] - 0.40 [-0.57, -0.23]	—
Heterogeneity: Not applicable Fest for overall effect: Z = 4.50				
2.5.7 Revised Leeds Disabili	ty Questionnaire (0-3	3; at 12 w	eeks)	
Lubrano 2007 Subtotal (95% CI)	-0.3 0.0981	100.0% 100.0 %	-0.30 [-0.49, -0.11] - 0.30 [-0.49, -0.11]	₹
Heterogeneity: Not applicable Fest for overall effect: Z = 3.00				
			_	<u> </u>
Fest for subgroup differences				-2 -1 Ó 1 2 Favours intervention Favours no intervention

Test for subgroup differences: $Chi^2 = 46.81$, df = 6 (P < 0.00001), $l^2 = 87.2\%$

Table 81 GRADE profile for group and individualised multimodal inpatient programme including manual therapy vs. no treatment (data from a retrospective case series)

			Qu	ality assessment			Number of	people	Effect	
Number of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other	Group and individualised programme	No treatment	Absolute (95% Cl)	Quality
Joint mobili	ty: Finger	to floor dist	tance (cm) (follow-u	p 2 weeks; Better i	ndicated by lowe	er values)				
(Eppeland 2013)	case series	very serious ¹	N/A	serious ²	not serious	none	49	49	MD -6 (-11.29 to -0.71)	VERY LOW
Composite	measures:	BASFI (foll	ow-up 2 weeks; Bet	ter indicated by lo	wer values)					
(Eppeland 2013)	case series	very serious ¹	N/A	serious ²	not serious	none	59	59	MD -0.8 (-1.5 to -0.1)	VERY LOW
Composite	measures:	BASFI (foll	ow-up mean 9.3 mo	nths; Better indica	ted by lower valu	les)				
(Eppeland 2013)	case series	very serious ¹	N/A	serious ²	serious ³	none	48	48	MD -0.3 (-1.23 to +0.63)	VERY LOW
Composite	measures:	BASDAI (fo	ollow-up 2 weeks; B	etter indicated by I	ower values)					
(Eppeland 2013)	case series	very serious ¹	N/A	serious ²	not serious	none	59	59	MD -1.2 (-1.98 to -0.42)	VERY LOW
Composite	measures:	BASDAI (fo	ollow-up mean 9.3 m	onths; Better indi	cated by lower va	lues)				
(Eppeland 2013)	case series	very serious ¹	N/A	serious ²	serious ³	none	48	48	MD -0.3 (-1.2 to +0.6)	VERY LOW
Composite	measures:	BASMI (fol	low-up 2 weeks; Be	tter indicated by lo	wer values)					
(Eppeland 2013)	case series	very serious ¹	N/A	serious ²	not serious	none	87	87	MD -0.9 (-1.61 to -0.19)	VERY LOW
Composite	measures:	BASMI (fol	low-up mean 9.3 mc	onths; Better indica	ated by lower val	ues)				
(Eppeland 2013)	case series	very serious ¹	N/A	serious ²	serious ³	none	48	48	MD -0.6 (-1.62 to +0.42)	VERY LOW

			Qua	ality assessment		Number of	people	Effect		
Number of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other	Group and individualised programme	No treatment	Absolute (95% Cl)	Quality

¹ Retrospective case series including participants likely to benefit from a 2-week inpatient rehabilitation programme; unclear whether the physiotherapist administering the intervention also assessed the outcomes; there were substantial missing data for all the outcomes (except BASMI) ² Intervention comprised exercises (including water-based exercises) in a group setting and individual physiotherapy consisting of massage, stretching,

mobilisation/articulation and advice on body posture enhancing exercises; delivered by a multidisciplinary team

³ Not a statistically significant difference

Forest plots for group and individualised multimodal inpatient programme including manual therapy vs. no treatment (data from a retrospective case series)

Composite measures (data from retrospective case series, Eppeland 2013)

	Post-tr	eatm	ent	Pre-tr	eatme	ent		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
3.2.1 BASFI, 2 weeks									_
Eppeland 2013 Subtotal (95% CI)	2.3	2	59 59	3.1	1.9	59 59		-0.80 [-1.50, -0.10] - 0.80 [-1.50, -0.10]	
Heterogeneity: Not ap	plicable								
Test for overall effect: .	Z = 2.23 ((P = 0.	03)						
3.2.2 BASFI, 9.3 mont	hs								
Eppeland 2013	3.2	2	48	3.5	2.6	48	100.0%	-0.30 [-1.23, 0.63]	
Subtotal (95% CI)			48			48	100.0%	-0.30 [-1.23, 0.63]	
Heterogeneity: Not ap	plicable								
Test for overall effect: .	Z = 0.63 ((P = 0.	53)						
3.2.3 BASDAI, 2 week									_
Eppeland 2013 Subtotal (95% CI)	3.1	2.1	59 59	4.3	2.2	59 59		-1.20 [-1.98, -0.42] - 1.20 [-1.98, -0.42]	
Heterogeneity: Not ap	plicable								
Test for overall effect: .	Z = 3.03 ((P = 0.	002)						
3.2.4 BASDAI, 9.3 moi	nths								
Eppeland 2013 Subtotal (95% CI)	4.1	2.3	48 48	4.4	2.2	48 48	100.0% 100.0 %	-0.30 [-1.20, 0.60] - 0.30 [-1.20, 0.60]	
Heterogeneity: Not ap	plicable								
Test for overall effect: .	Z = 0.65 ((P = 0.	51)						
3.2.5 BASMI, 2 weeks	;								_
Eppeland 2013 Subtotal (95% Cl)	2.3	2.4	87 87	3.2	2.4	87 87		-0.90 [-1.61, -0.19] - 0.90 [-1.61, -0.19]	
Heterogeneity: Not ap	plicable								
Test for overall effect: .	Z = 2.47 ((P = 0.	01)						
3.2.6 BASMI, 9.3 mon	ths								
Eppeland 2013 Subtotal (95% Cl)	2.7	2.5	48 48	3.3	2.6	48 48	100.0% 100.0 %	-0.60 [-1.62, 0.42] - 0.60 [-1.62, 0.42]	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 1.15 ((P = 0.	25)						
								-	-4 -2 0 2 4
				√r – 5 (P ·					Favours intervention Favours no intervention

Test for subgroup differences: Chi² = 3.42, df = 5 (P = 0.63), l² = 0%

Table 82: GRADE table for retrospectively analysed prospective cohort study with self-reported physiotherapy

Quality a	ssessment					No	Effect		
Studies	Рор	Risk of bias	Inconsistency	Indirectness	Imprecision	Total	Units	Effect	Quality
Improvem	nent of 20% i	n BASFI at 6 mo	onths (unadjusted)						
Escalas 2016	Axial SpA	serious ¹	not serious	serious ²	serious ³	689	RR (95% CI)	0.96 (0.77, 1.18)	VERY LOW
Improvem	nent of 20% i	n BASFI at 6 mo	onths (propensity m	natched)					
Escalas 2016	Axial SpA	serious ¹	not serious	serious ²	serious ³	689	RR (95% CI)	1.15 (0.91, 1.45)	VERY LOW
Improvem	nent of 20% i	n BASFI at 12 m	nonths (propensity	matched)					
Escalas 2016	Axial SpA	serious ¹	not serious	serious ²	serious ³	671	RR (95% CI)	0.94 (0.80, 1.11)	VERY LOW
Improvem	nent of 20% i	n BASFI at 24 m	nonths (propensity	matched)					
Escalas 2016	Axial SpA	serious ¹	not serious	serious ²	serious ³	629	RR (95% CI)	1.09 (0.90, 1.33)	VERY LOW

¹ Observational study design

² Study evaluated physiotherapy and did not explicitly describe any manual therapy components ³ Using GRADE default MID interval for dichotomous outcomes of (0.8, 1.25)

G.3.2 Exercise for spondyloarthritis

Review Question 15

What is the effectiveness of structured exercise compared with standard care for managing spondyloarthritis?

Quality assessment						No of patients		Effect	Quality
No of studies	Design	Risk of bias	Inconsistenc y	Indirectness	Imprecision	Unsupervised structured home exercise	Standard care	Absolute	
Pain (Better indicated by lo	wer values)								
Kraag (1990), Rodriguez- Lozano (2013), Sweeney (2002),	randomised trials	serious 1	serious ²	not serious	serious ³	478	481	MD 0.12 lower (0.63 lower to 0.39 higher)	Very Iow
BASDAI (Better indicated b	y lower values)								
Rodriguez-Lozano (2013), Sweeney (2002), Fang (2016), Hseih (2014), Jennings (2015)	randomised trials	serious	not serious	not serious	serious ³	521	513	MD 0.14 lower (0.38 lower to 0.1 higher)	Low
BASFI (Better indicated by	lower values)								
Rodriguez-Lozano (2013), Sweeney (2002), Fang (2016), Hseih (2014), Jennings (2015)	multiple methodologie s	serious 1	not serious	not serious	not serious	521	513	MD 0.33 lower (0.53 to 0.12 lower)	Moderat e
BASG (Better indicated by	lower values)								
Kraag (1990), Hseih (2014),	multiple methodologie s	not serious	not serious	not serious	serious ³	84	90	MD 0.05 higher (0.77 lower to 0.88 higher)	Moderat e
BASMI (Better indicated by	lower values)								

Quality assessment						No of patients		Effect	Quality
Fang (2016), Jennings (2015)	multiple methodologie s	serious 1	not serious	not serious	serious ³	56	48	MD 0.05 lower (0.9 lower to 0.79 higher)	Low
HAQ-S (Better indicated by	v lower values)								
Jennings (2015)	randomised trial	not serious	N/A	not serious	serious ³	35	35	MD 0.08 lower (0.36 lower to 0.2 higher)	Moderat e
ASQoL (Better indicated by	v lower values)								
Rodriguez-Lozano (2013)	randomised trial	not serious	N/A	not serious	not serious	381	375	MD 0.75 lower (1.18 to 0.32 lower)	High
Finger-floor distance (Bette	r indicated by lov	ver values)						
Kraag (1990)	randomised trial	not serious	N/A	not serious	not serious	22	26	MD 10 lower (14.14 to 5.16 lower)	High

¹ One study had high rate (20-25%) of loss to follow up and did not clearly report allocation concealment and method of randomisation.
 ² Moderate level of heterogeneity reported (33% =< I^2 <66%))
 ³ Not a statistically significant difference

Table 84 GRADE profile for supervised structured exercise (outpatient) vs standard care

Quality assessment							No of patients	Effect	Quality	
No of studies	Design	Risk of bias	Inconsisten cy	Indirectne ss	Imprecisi on	Other considerati ons	Supervised individual structured exercise (outpatient)	Stand ard care	Absolute (95% Cl)	
BASMI (Better indicat	ed by lower	values)								
Karapolat (2009) – 2 comparisons pooled	randomi sed trials	serio us¹	Serious ²	no serious indirectnes s ³	serious imprecisio n ⁴	none	25	12	MD 0.41 lower (2.99 lower to 2.18 higher)	VERY LOW

Quality assessment							No of patients		Effect	Quality
No of studies	Design	Risk of bias	Inconsisten cy	Indirectne ss	Imprecisi on	Other considerati ons	Supervised individual structured exercise (outpatient)	Stand ard care	Absolute (95% Cl)	
Pain (Better indicated	by lower va	lues)								
Karapolat (2009) – 2 comparisons pooled	randomi sed trials	serio us¹	Serious ²	no serious indirectnes s ³	serious imprecisio n ⁴	none	26	12	MD 0.70 higher (22.77 lower to 24.18 higher)	VERY LOW
Finger-floor distance (Better indic	ated by	lower values)							
Ince (2006), Karapolat (2009) – 2 comparisons pooled	randomi sed trials	very serio us ⁵	no serious inconsistenc y ⁶	no serious indirectnes s ³	serious imprecisio n⁴	none	41	27	MD 2.43 lower (9.17 lower to 4.31 higher)	VERY LOW

¹ Article has multiple errors and inconsistencies which may undermine the reliability of the results
 ² Serious inconsistency (33%<i^2<66%)
 ³ No indirectness as population, intervention and outcome were as specified in the review protocol
 ⁴ Not a statistically significant difference
 ⁵ Allocation concealment unclear in one study. Multiple reporting errors with the other study.
 ⁶ No serious inconsistency (i²<33%)

Table 85 GRADE profile for supervised individual structured (inpatient) exercise vs standard care

Quality	assessme	nt				No of patients		Effect	Qu alit y		
No of studie s	Design	Risk of bias	Inconsis tency	Indirectnes s	Imprec ision	Other considerati ons	Supervised individual structured exercise (inpatient)	Standa rd care	Absolute (95% Cl)		
BASDA	I (Better ind	icated by low	ver values)								
Kjeke n (2013)	randomi sed trials	no serious risk of bias ¹	N/A	no serious indirectness 2	serious 3	none	46	49	MD 5.8 lower (15.01 lower to 3.41 higher)	MO DE RA TE	
BASMI (Better indicated by lower values)											

Quality	assessmei	nt					No of patients		Effect	Qu alit y
No of studie s	Design	Risk of bias	Inconsis tency	Indirectnes s	Imprec ision	Other considerati ons	Supervised individual structured exercise (inpatient)	Standa rd care	Absolute (95% CI)	
Kjeke n (2013)	randomi sed trials	no serious risk of bias ¹	N/A	no serious indirectness 2	serious 3	none	46	49	MD 0.4 lower (1.29 lower to 0.49 higher)	MO DE RA TE
BASFI (Better indica	ated by lowe	r values)							
Kjeke n (2013)	randomi sed trials	no serious risk of bias ¹	N/A	no serious indirectness 2	serious 3	none	46	49	MD 3.2 higher (4.85 lower to 11.25 higher)	MO DE RA TE

¹ No substantial risk of bias detected
 ² No indirectness as population, intervention and outcome were as specified in the review protocol
 ³ Not a statistically significant difference

Table 86 GRADE profile for supervised structured group exercise vs home exercise

Quality ass	essment				No of patients		Effect	Qu alit y		
No of studies	Design	Risk of bias	Inconsiste ncy	Indirectne ss	Imprecis ion	Other considerat ions	Supervised structured group exercise	Unsupervised structured home exercise	Absolute (95% Cl)	
BASFI (Bet	ter indicated	by lower v	values)							
Analay (2003)	randomi sed trials	no serious risk of bias ¹	N/A	no serious indirectnes s ²	serious imprecisi on ³	none	23	22	MD 4.13 lower (14.17 lower to 5.91 higher)	MO DE RA TE

Quality ass	sessmen <u>t</u>						No of patients	i	Effect	Qu alit y
No of studies	Design	Risk of bias	Inconsiste ncy	Indirectne ss	Imprecis ion	Other considerat ions	Supervised structured group exercise	Unsupervised structured home exercise	Absolute (95% Cl)	
Finger-floor	distance (E	Better indica	ated by lower v	alues)						
Analay (2003, Cagliyan (2007))	randomi sed trials	serious ⁵	no serious inconsisten cy ⁵	no serious indirectnes s ²	serious imprecisi on ³	none	46	45	MD 3.68 lower (10.01 lower to 2.65 higher)	LO W
Stiffness (B	etter indicat	ed by lowe	r values)							
Analay (2003)	randomi sed trials	no serious risk of bias ¹	N/A	no serious indirectnes s ²	serious imprecisi on ³	none	23	22	MD 11.5 lower (32.84 lower to 9.84 higher)	MO DE RA TE
Pain (Better	r indicated b	y lower va	lues)							
Analay (2003, Cagliyan (2007))	randomi sed trials	serious ⁴	no serious inconsisten cy ⁵	no serious indirectnes s ²	serious imprecisi on ³	none	46	45	MD 0.27 lower (1.44 lower to 0.91 higher)	LO W

¹ No substantial risk of bias, though few RCTs for this question were able to blind participants to treatment allocation
 ² No indirectness as population, intervention and outcome were as specified in the review protocol
 ³ Not a statistically significant difference
 ⁴ One study at high risk of bias due to multiple issues
 ⁵ No evidence of inconsistency (i²<33%)

Table 87	GRADE profile for	supervised	structured group	exercise vs s	tandard care

Quality	assessment						No of patier	nts	Effect	Quality
No of studie s	Design	Risk of bias	Inconsistenc y	Indirectnes s	Imprecisio n	Other considerations	Supervise d structured group exercise	Standar d care	Absolute (95% CI)	
BASDA	(Better indica	ated by lo	wer values)							
Altan (2012); Maseir o 2014	RCTs	seriou s ¹	not serious	not serious ³	serious ⁴	none	51	46	MD 1.09 lower (1.92 to 0.27 lower)	LOW
BASMI (Better indicate	ed by low	ver values)							
Altan (2012); Maseir o 2014	RCTs	seriou s ¹	serious ²	not serious ³	serious ⁴	none	51	46	MD 0.37 lower (1.02 lower to 0.27 higher)	VERY LOW
BASFI (Better indicate	ed by low	er values)							
Altan (2012); Maseir o 2014	RCTs	seriou s ¹	not serious	not serious ³	not serious	none	51	46	MD 0.78 lower (1.32 to 0.24 lower)	MODERAT E
ASQoL	(Better indicat	ed by lov	ver values)							
Altan (2012)	RCTs	not seriou s	N/A	not serious ³	serious ⁴	none	30	25	MD 0.5 higher (0.89 lower to 1.89 higher)	MODERAT E

¹ Included studies at high risk of bias
 ² Serious inconsistency (i²>33%)
 ³ No indirectness as population, intervention and outcome were as specified in the review protocol
 ⁴ Not a statistically significant difference

Hydrotherapy for spondyloarthritis G.3.3

Review Question 16

• What is the effectiveness of hydrotherapy compared with standard care for managing spondyloarthritis?

GRADE tables for RTCs

Table 88: GRADE profile for active hydrotherapy vs standard care in people with axial symptoms (RCT)

Quality as	ssessment						No of patients		Effect	
No of studies	Design	Risk of bias	Inconsiste ncy	Indirectn ess	Impreci sion	Other considerations	Active hydrotherapy	Standard care	Absolute (95% CI)	Quality
BASMI (B	etter indicated	by lower va	alues)							
Ciprian (2013)	RCTs	serious ¹	N/A	serious ²	serious ³	none	15	15	MD 0.04 lower (1.76 lower to 1.68 higher)	VERY LOW
BASDAI (E	Better indicate	d by lower v	/alues)							
Ciprian (2013)	RCTs	serious ¹	N/A	serious ²	serious ³	none	15	15	MD 0.2 lower (1.17 lower to 0.77 higher)	VERY LOW
Quality of	Life HAQ (Bet	ter indicate	d by lower va	lues)						
Ciprian (2013)	RCTs	serious ¹	N/A	serious ²	serious ³	none	15	15	MD 0.15 lower (0.55 lower to 0.25 higher)	VERY LOW
Pain (VAS) (Better indica	ated by low	er values)							
Ciprian (2013)	RCTs	serious ¹	N/A	serious ²	serious ³	none	15	15	MD 6.26 lower (15.01 lower to 2.49 higher)	VERY LOW

¹ Information about treatment allocation method not available. knowledge of intervention not prevented during study.

² Active hydrotherapy delivered as part of a spa therapy package, and was preceded by mud pack application and passive thermal water immersion. ³ Not a statistically significant difference

Table 89	GRADE profile for	passive hydrotherapy v	s standard care in people with	i axial symptoms (RCT)

Quality assessment							No of patient	s	Effect	
No of studies	Design	Risk of bias	Inconsistency	Indirectn ess	Impreci sion	Other consideratio ns	Passive hydrotherap y	Standar d care	Absolute (95% CI)	Quali ty
BASDAI (Better indica	ated by lower	values)								
Altan (2006), Cozzi (2007)	RCTs	very seriou s ¹	no serious inconsistency ²	serious ³	serious ⁴	none	40	38	SMD 0.28 lower ⁹ (0.73 lower to 0.17 higher)	VERY LOW
Finger-floor distance	(Better indicat	ted by low	er values)							
Yurtkuran (2005)	RCTs	very seriou s ⁵	N/A	serious ⁶	serious ⁴	none	19	18	MD 0.4 lower (3.4 lower to 2.6 higher)	VERY LOW
BASFI/Dougados FI (Better indicate	ed by lowe	er values)							
Altan (2006), Cozzi (2007), Yurtkuran (2005)	RCTs	very seriou s ⁷	no serious inconsistency ²	serious ⁶	serious ⁴	none	59	56	SMD 0.33 lower ¹⁰ (0.7 lower to 0.04 higher)	VERY LOW
Pain (Better indicated	by lower valu	ues)								
Altan (2006), Cozzi (2007), Yurtkuran (2005)	RCTs	very seriou s ⁷	serious ⁸	serious ⁶	serious ⁴	none	59	56	MD 4.17 lower (12.07 lower to 3.74 higher)	VERY LOW
QoL(NHP) (Better ind	icated by low	er values)								
Altan (2006)	RCTs	very seriou s⁵	N/A	serious ⁶	serious ⁴	none	28	26	MD 3.10 lower (40.66 lower to 34.46 higher)	VERY LOW

¹ Both studies had omissions of detail required to assess adequacy of randomisation and allocation concealment. One study (Altan) additionally had some discrepancies in the reporting of results.
 ² No inconsistency detected (I^A2<33%)
 ³ Both studies looked at passive hydrotherapy (bathing)
 ⁴ Not a statistically significant difference
 ⁵ Study lacked clarity across a number of bias-assessment domains, with some reporting discrepancies
 ⁶ Study of passive hydrotherapy
 ⁷ All studies had risk of bias issues
 ⁸ Socious inconsistency (IA2=44%)

⁸ Serious inconsistency (I²=44%)

 9 SMD equates to MD of 0.44 on a BASDAI 0-10 scale 10 SMD equates to MD of 0.32 on a BASFI 0-10 scale

BASDAI

	Inte	rventio	on	C	ontrol			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Altan 2006	-1.77	1.7	28	-1.43	1.5	26	69.7%	-0.21 [-0.74, 0.33]	
Cozzi 2007	-11.5	21.5	12	-1.5	21.5	12	30.3%	-0.45 [-1.26, 0.36]	
Total (95% CI)			40			38	100.0%	-0.28 [-0.73, 0.17]	-
Heterogeneity: Tau² = Test for overall effect			•	= 1 (P =	0.63);	I ² = 0%			-2 -1 0 1 2 Favours intervention Favours control

BASFI or Dougados functional index

	Intervention Control						Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Altan 2006	-0.73	0.88	28	-0.36	0.64	26	46.5%	-0.47 [-1.01, 0.07]	
Cozzi 2007	-6.3	24.3	12	3.9	24.3	12	20.8%	-0.41 [-1.22, 0.40]	
Yurtkuran 2005	-0.2	1.8	19	0	2.6	18	32.8%	-0.09 [-0.73, 0.56]	
Total (95% CI)			59			56	100.0%	-0.33 [-0.70, 0.04]	-
Heterogeneity: Tau² = Test for overall effect:			•	= 2 (P =	0.66);	I ² = 0%			-2 -1 0 1 2 Favours intervention Favours control

Pain

	Inte	rventio	on	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Altan 2006	-1.68	2.05	28	-1.42	1.42	26	63.5%	-0.26 [-1.20, 0.68]	
Cozzi 2007	-7.7	19.5	12	4	19.5	12	18.3%	-11.70 [-27.30, 3.90]	
Yurtkuran 2005	-24.5	22.7	19	-14.3	25.7	18	18.2%	-10.20 [-25.86, 5.46]	
Total (95% Cl)			59			56	100.0%	-4.17 [-12.07, 3.74]	-
Heterogeneity: Tau² = Test for overall effect:				f= 2 (P:	= 0.17)); I ² = 4∙	4%		-50 -25 0 25 50 Favours intervention Favours control

Table 90 GRADE profile for passive hydrotherapy with electrical current vs standard care in people with axial and peripheral symptoms (RCT)

	(
Quality a	assessment				No of patients	Effect				
No of studie s	Design	Risk of bias	Inconsiste ncy	Indirectn ess	Imprecision	Other consideratio ns	Passive hydrotherapy+electrical current	Standar d care	Absolute (95% Cl)	Qualit y
BASMI (Better indica	ited by lov	ver values)							
Gurcay (2008)	RCTs	seriou s ¹	N/A	very serious ²	no serious imprecision	none	29	28	MD 0.56 lower (0.94 to 0.18 lower)	VERY LOW
BASFI (E	Better indicate	d by lower	values)							
Gurcay (2008)	RCTs	seriou s¹	N/A	very serious ²	no serious imprecision	none	29	40	MD 1.36 lower (1.83 to 0.89 lower)	VERY LOW
BASDAI	(Better indica	ted by low	er values)							
Gurcay (2008)	RCTs	seriou s ¹	N/A	very serious ²	no serious imprecision	none	29	28	MD 1.61 lower (2.18 to 1.04 lower)	VERY LOW
ASQoL (Better indicat	ed by lowe	r values)							
Gurcay (2008)	RCTs	seriou s ¹	N/A	very serious ²	no serious imprecision	none	29	28	MD 2.07 lower (3.00 to 1.14 lower)	VERY LOW

¹ No detail on method used to generate allocation sequence
 ³ Intervention involved passive hydrotherapy/bathing while an electrical current was administered.

GRADE tables and results for observational studies

Table 91 GRADE profile for active hydrotherapy in people with axial or axial and peripheral symptoms (observational studies

Quality asses	sment	:			No of patients		Effect			
No of studies	Des ign	Risk of bias	Inconsiste ncy	Indirectn ess	Imprecis ion	Other considerations	Active hydrotherapy	Standard care	Absolute (95% CI)	Quality
BASFI (Better indicated by lower values)										
Robertson (2004)	Coh ort	very serious ¹	N/A	not serious	serious ²	None	17	n/a	Mean change 3.98 (-5.0 to 12.9)	VERY LOW

1. Retrospective observational study, no comparison group, 34% of potential cases excluded for missing outcome data

2. Not a statistically significant difference

Table 92 GRADE profiles for passive hydrotherapy in people with axial symptoms (observational studies)

Tichler 1995

Quality a	assessment		No of patients		Effect					
No of studies	Design	Risk of bias	Inconsist ency	Indirect ness	Impreci sion	Other considerations	Passive hydrotherapy	Standar d care		
									Absolute (95% CI)	Quali ty
Morning	stiffness (Better ind	licated by	lower values	5)						
Tishler (1995)	Non- randomised intervention	very seriou s ¹	N/A	not serious	not serious	All participants received intervention: no comparison group	14	n/a	Mean change -23 (SD 7)	LOW
Finger-flo	Finger-floor distance (Better indicated by lower values)									
Tishler (1995)	Non- randomised intervention	very seriou s ¹	N/A	not serious	not serious	All participants received intervention: no comparison group	14	n/a	Mean change -14 (SD 4)	LOW

1. Participants randomly selected but no detail on method. Selective outcome reporting: outcomes displayed as graphs and only largest results presented numerically

Annegret 2013

Quality as	sessment		No of patients		Effect					
No of studies	Design	Risk of bias	Inconsist ency	Indirect ness	Imprecision	Other considerations	Passive hydrotherapy	Standar d care	Absolute (95% CI)	Qualit y
BASFI (Bet	tter indicated by lower v	alues)								
Annegret (2013)	Control group of randomised trial	serious	N/A	not serious	serious imprecision ²	-	19	n/a	Mean change 0.22 (SD 1.01)	LOW
Self-assessed pain (NRS) (Better indicated by lower values)										
Annegret (2013)	Control group of randomised trial	serious	N/A	not serious	serious imprecision ²	-	19	n/a	Mean change 5.50 (SD 22.18)	LOW

1. No serious risk of bias detected in study design, but no eligible comparison group available for our analysis

2. Not a statistically significant change

Table 93 GRADE profiles for active hydrotherapy as part of a complex intervention in people with axial symptoms (observational studies)

Colina, 2009

Quality a	assessment			No of patients	Effect					
No of studies	Design	Risk of bias	Inconsiste ncy	Indirectn ess	Impreci sion	Other considerations	Active hydrotherapy +physical therapy	Absolute (95% CI)	Qualit y	
BASFI (B	letter indicated by lowe	er values)								
Colina (2009)	Non-randomised intervention	very serious	N/A	serious ²	not serious	-	30	Mean change 2.1 (no SD), p<0.05	VERY LOW	
EQ-5D	EQ-5D									
Colina (2009)	Non-randomised intervention	very serious	N/A	serious ²	not serious	-	30	Mean change 33 (no SD), p<0.05	VERY LOW	

1. Patients self-selected into intervention or control group, according to whether they found the proposed exercise programme acceptable

2. Hydrotherapy only one component of a complex exercise programme

Aydemir 2010

Quality a	assessment						No of patients		Effect	
No of studies	Design	Risk of bias	Inconsist ency	Indirect ness	Impreci sion	Other consideration s	Active hydrotherapy +physical therapy	Standar d care	Absolute (95% CI)	Quali ty
BASMI (E	Better indicated by I	ower valu	es)							
Aydemi r (2010)	Non-randomised intervention	very seriou s ¹	N/A	serious ²	serious 3		28	n/a	Mean change -1.06 (No SD), p=0.48	VERY LOW
BASDAI	(Better indicated by	lower val	ues)							
Aydemi r (2010)	Non-randomised intervention	very seriou s ¹	N/A	serious ²	serious 3		28	n/a	Mean change -0.4 (No SD), p>0.05	VERY LOW
BASFI (B	Better indicated by lo	ower value	es)							
Aydemi r (2010)	Non-randomised intervention	very seriou s ¹	N/A	serious ²	serious 3		28	n/a	Mean change 0.2 (no SD) p not reported	VERY LOW
SF-36 pa	in (Better indicated	by lower	values)							
Aydemi r (2010)	Non-randomised intervention	very seriou s ¹	N/A	serious ²	serious 3		28	n/a	Mean change -0.89 (no SD), p=0.575	VERY LOW
SF-36 ph	ysical function (Bet	ter indicat	ed by lower	values)						
Ayede mir (2010)	Non-randomised intervention	very seriou s ¹	N/A	serious ²	serious 3		28	n/a	Mean change -1.85 (no SD), p=0.412	VERY LOW

No control group, no detail on how participants were recruited.
 Hydrotherapy only one component of a complex exercise programme
 Not a statistically significant difference

Eppeland 2013

Quality as	sessment						No of patients		Effect	
No of studies	Design	Risk of bias	Inconsist ency	Indirect ness	Impreci sion	Other consideratio ns	Active hydrotherapy +physical therapy	Standar d care	Absolute (95% CI)	
BASMI (Be	etter indicated by l	ower value	es)							
Eppeland (2013)	Retrospective case series	very seriou s ¹	N/A	serious ²	not serious	n/a	87	n/a	Mean change -0.9 (SD 2.4) p<0.001	VERY LOW
BASDAI (B	Better indicated by	lower valu	ues)							
Eppeland (2013)	Retrospective case series	very seriou s ³	N/A	serious ²	not serious	n/a	59	n/a	Mean change -0.8 (SD 2.2) p<0.001	VERY LOW
BASFI (Be	tter indicated by lo	ower value	es)							
Eppeland (2013)	Retrospective case series	very seriou s ³	N/A	serious ²	not serious	n/a	57	n/a	Mean change -0.8 (SD 2.0) p<0.001	VERY LOW
Finger-floo	r distance (Better	indicated	by lower valu	ues)						
Eppeland (2013)	Retrospective case series	very seriou s ³	N/A	serious ²	not serious	n/a	49	n/a	Median change -11 (IQR 25) p<0.001	VERY LOW

No control group, retrospective study
 Hydrotherapy only one component of a complex exercise programme
 No control group, retrospective study, missing data

Van Tubergen 2001

Quality as	sessment						No of patients		Effect	Quality
No of studies	Design	Risk of bias	Inconsist ency	Indirect ness	Impreci sion	Other consideratio ns	Active hydrotherapy +physical therapy	Standa rd care	Absolute	
BASFI (Better indicated by lower values)										
Van Tubergen (2001)	Control group of randomised trial	serio us¹	N/A	serious ²	serious 3	n/a	39	n/a	Mean change - 0.1(1.3)	LOW
BASDAI (B	etter indicated by	lower va	lues)							
Van Tubergen (2001)	Control group of randomised trial	serio us¹	N/A	serious ²	serious 3	n/a	39	n/a	Mean change 0.4 (1.5)	LOW
Morning sti	ffness (Better indi	cated by	lower value	s)						
Van Tubergen (2001)	Control group of randomised trial	serio us¹	N/A	serious ²	serious 4	n/a	39	n/a	Median change 0 (IQR -1.3 to 1.4)	LOW
ASQoL										
Van Tubergen (2001)	Control group of randomised trial	serio us¹	N/A	serious ²	serious 4	n/a	39	n/a	Median change 0.0 (IQR -1.0 to 1.8)	LOW

No serious risk of bias detected in study design, but no eligible comparison group available for our analysis
 Hydrotherapy only one component of a complex exercise programme
 Not a statistically significant difference
 Inter-quartile range around median crosses 0

Table 94 Summary of results from observational studies

Author	Year	Study type	Outcome	n	Baseline effect	Change from baseline or effect at follow up	Duration of follow up
7.000101	ivai		outcomo		onoot	Tonoti up	Bulation of follow up
A ative by drath area							

Active hydrotherapy alone, in people with axial symptoms

Author	Year	Study type	Outcome	n	Baseline effect	Change from baseline or effect at follow up	Duration of follow up
Robertson et al	2004	Retrospective cohort	BASFI	74		mean change: 3.98 (- 5.0 to 12.9), p=0.4	3 to 5 years
Passive hydrothe	erapy alo	ne, in people with axial sy	mptoms				
Annegret et al	2013	Control group of an RCT	BASFI (mean(sd))	19	3.9(2.3)	change score (sd): 0.22(0.92)	9 months
Tishler et al	1995	Non-controlled intervention study	morning stiffness, mins (mean (sd))	14	38(7)	15(4)	2 weeks
			Finger-floor distance, cm (mean (sd))		27(3)	13(4)	4 weeks
Active hydrothera	apy as pa	art of a complex intervention	on in people with axial sympt	oms			
Aydemir et al	2010	Non-controlled, non- randomised	Pain, SF-36 domain (mean)	28	43.48	42.59 (p value of change: 0.575)	1 month
		intervention study	Physical function, SF-36 domain (mean)		48.33	46.48 (p value of change: 0.412)	
			BASDAI (mean)		5.3	4.9 (p value of change: >0.05)	
			BASFI (mean)		4	4.2 (p value not reported)	
			BASMI (mean)		3.23	2.29 (p value of change: 0.48)	
Colina et al	2009	Intervention group	BASFI (mean (sd))	30	6.9 (1.6)*	2.1 (no SD, p<0.05)	8 months from study start, 6
		from a non- randomised controlled study	EQ-5D		16 (4.8)*	33 (no SD, p<0.05)	months from start of exercise intervention
Eppeland et al	2013	Retrospective case series	Finger-floor distance, cm (median (IQR))	49	11.0(25)	0(16)	2 weeks
			BASFI (mean (sd))	59	3.1(1.9)	2.3(2.0)	2 weeks
				48	3.2(2.)	3.5(2.6)	mean 9.3 months (sd=6.9)
			BASDAI (mean (sd))	57	4.3(2.2)	3.1(2.1)	2 weeks

Author	Year	Study type	Outcome	n	Baseline effect	Change from baseline or effect at follow up	Duration of follow up
				48	41(2.3)	4.4(2.2)	mean 9.3 months (sd=6.9)
			BASMI (mean (sd))	87	3.2(2.4)	2.3(3.4)	2 weeks
				48	3.3(2.6)	2.7(2.5)	mean 9.3 months (sd=6.9)
van Tubergen et al	2001	Control group of an RCT	pain, VAS (mean(sd))	39	4.8(2.8)	change -0.2(2.1)	40 weeks
			morning stiffness, mins (median (IQR))		30 (10;60)	change 0 (-13;14)	
			ASQoL (median, IQR)		8.0 (3.0;11.8)	change 0.0 (-1.0; 1.8)	
			BASFI (mean (sd))		4.2 (2.1)	change -0.1 (1.3)	
			BASDAI (mean (sd))		4.5 (2.0)	change 0.4 (1.5)	
*Also included bas	seline va	alues of the control group					

G.3.4 Acupuncture for spondyloarthritis

Review Question 17

• What is the effectiveness of acupuncture compared with sham acupuncture and standard care for managing spondyloarthritis?

GRADE tables

Table 95 Acupuncture vs sham acupuncture

Quality	assessment					No of pat	ients	Effect	Qualit y	
Study	Design	Risk of bias	Inconsist ency	Indirectness	Imprecision	Other consideration s	Acupun cture	Sham acupunctur e	Absolute (95% CI)	
Stiffness	(better indica	ated by lov	ver values)							
Emery (1986)	RCTs	very serious	N/A	no serious indirectness ²	serious imprecision ³	none	5	5	MD 2.5 lower (16.63 lower to 11.63 higher)	VERY LOW
Pain (be	tter indicated	by lower w	alues)							
Emery (1986)	RCTs	very serious	N/A	no serious indirectness ²	serious imprecision ³	none	5	5	MD 0.2 lower (16.93 lower to 16.53 higher)	VERY LOW

¹ Inadequate reporting of baseline characteristics makes it difficult to assess whether randomisation was successful at eliminating selection bias, or demonstrating whether trial participants were representative of the patient population. Report stated that chest expansion and spinal movement were assessed, but these were not reported.

² No indirectness as population, intervention and outcome were as specified in the review protocol

³ Not a statistically significant difference

Table 96 Acupuncture vs standard care

	·									Qu alit
Qualit	y assessme	nt					No of pa	tients	Effect	У
Stud y	Design	Risk of bias	Inconsis tency	Indirectness	Imprecision	Other consideratio ns	Acupun cture	Standar d care	Absolute (95% Cl)	
Finger	-floor distand	e (better	indicated by	lower values)						
Jia (200 6)	randomis ed trials	seriou s ¹	N/A	no serious indirectness ²	no serious imprecision	none	30	30	MD 4.91 lower (9.32 to 0.5 lower)	MO DE RA TE
Swolle	n and painfu	l peripher	al joins (bet	ter indicated by lo	ower values)					
Jia (200 6)	randomis ed trials	seriou s ¹	N/A	no serious indirectness ²	serious imprecision ³	none	30	30	MD 0.03 lower (0.23 lower to 0.17 higher)	LO W
Mornir	g stiffness (l	petter indi	cated by low	ver values)						
Jia (200 6)	randomis ed trials	seriou s¹	N/A	no serious indirectness ²	serious imprecision ³	none	30	30	MD -1.40 lower (-16.47 lower to 13.67 higher)	LO W

¹ Limited reporting of baseline participant characteristics - hard to assess potential for selection bias. No details of blinding or allocation method reported. No details of missing outcome or baseline data reported

² No indirectness as population, intervention and outcome were as specified in the review protocol
 ³ Not a statistically significant difference

G.3.5 Physical aids for spondyloarthritis

Review Question 18

• What is the effectiveness of physical aids (for example, braces) compared with standard care for managing spondyloarthritis? No evidence was identified for this review

G.4 Surgical Interventions

Review Questions 34 and 35

- What factors predict clinical improvement after spinal surgery (including osteotomy and fusion) in people with axial inflammation?
- What factors predict clinical improvement after joint replacement surgery?

GRADE profiles for Q34: predictors of successful spinal surgery

No studies identified

GRADE profiles for Q35: predictors of successful joint replacement surgery

Quality a	ssessment						No of patients	Effect		
Studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Total	Units	Effect	Qualit y
Age (per	year)									
Lehtima ki	Ankylosing spondylitis	very serious ¹	N/A	serious ²	none	n/a	76 operations in 54 patients	HR (95% CI)	0.98 (0.95 to 1.01)	VERY LOW
(2001)								P value	0.2	
Female s	ex									
Lehtima ki	Ankylosing spondylitis	very serious ¹	N/A	serious ²	serious ³	n/a	76 operations in 54 patients	HR (95% CI)	1.70 (0.66 to 4.40)	VERY LOW
(2001)								P value	0.3	
Weight (p	ber kg)									
	Ankylosing spondylitis	very serious ¹	N/A	serious ²	none	n/a	76 operations in 54 patients	HR (95% CI)	1.03 (0.99 to 1.07)	VERY LOW

Table 97 Hip arthroplasty in people with ankylosing spondylitis: predictors of arthroplasty revision due to loosening of prosthetic components

Quality a	ssessment						No of patients	Effect		
Studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Total	Units	Effect	Qualit y
Lehtima ki (2001)								P value	0.2	
Steroids										
Lehtima ki	Ankylosing spondylitis	very serious ¹	N/A	serious ²	serious ³	n/a	76 operations in 54 patients	HR (95% CI)	1.23 (0.82 to 1.83)	VERY LOW
(2001)								P value	0.3	
Bleeding	>median									
Lehtima ki	Ankylosing spondylitis	very serious ¹	N/A	serious ²	serious ³	n/a	76 operations in 54 patients	HR (95% CI)	0.85 (0.37 to 1.98)	VERY LOW
(2001)								P value	0.7	

¹Risk of bias due to observational and retrospective nature of study, some limitations in quality of reporting, and potential confounders not controlled for in the analysis ²Outcome not directly relevant to review protocol ³95% confidence interval contains multiple qualitatively different possible clinical results

Table 98 Hip arthroplasty in people with ankylosing spondylitis: predictors of postoperative function (flexion)

Quality a	assessment					No of patients	Effect			
Studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Total	Units	Effect	Qualit y
Female s	sex (diagnostic	test accuracy	y)							
Zhang (2014)	Ankylosing spondylitis	very serious ¹	N/A	none ²	none	n/a	167 hips in 100 patients	sensitivity	22.2% (14.0- 30.4%)	VERY LOW
								specificity	86.8% (78.7- 94.8%)	

Quality a	issessment	-			-		No of patients	Effect		
Studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Total	Units	Effect	Qualit y
Acetabula	ar profusion (d	iagnostic tes	t accuracy)							
Zhang (2014)	Ankylosing spondylitis	very serious ¹	N/A	none ²	none	n/a	167 hips in 100 patients	sensitivity	12.1% (5.7- 18.6%)	LOW
								specificity	95.6% (90.7- 100%)	
Ankylosis	(diagnostic te	est accuracy)								
Zhang (2014)	Ankylosing spondylitis	very serious ¹	N/A	none ²	none	n/a	167 hips in 100 patients	sensitivity	51.5% (41.7- 61.4%)	LOW
								specificity	35.3% (23.9- 46.7%)	
Preopera	tive C-reactive	e protein leve	:							
Zhang (2014)	Ankylosing spondylitis	very serious ³	N/A	serious ⁴	none	n/a	167 hips in 100 patients	multivariate OR (95% CI)	0.981 (0.968 to 0.994)	VERY LOW
								P value	0.004	
Heterotop	pic ossification	(diagnostic	test accuracy)							
Zhang (2014)	Ankylosing spondylitis	very serious ¹	N/A	none ²	none	n/a	167 hips in 100 patients	sensitivity	35.4% (25.9- 44.8%)	LOW
								specificity	35.3% (23.9- 46.7%)	
Heterotop	pic ossification									
Zhang (2014)	Ankylosing spondylitis	very serious ³	N/A	serious ⁴	none	n/a	167 hips in 100 patients	multivariate OR (95% CI)	0.237 (0.106 to 0.530)	VERY LOW
								P value	<0.001	
Use of a	32-mm femora	al head (diag	nostic test accu	racy)						

Quality a	assessment						No of patients	Effect		
Studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Total	Units	Effect	Qualit y
Zhang (2014)	Ankylosing spondylitis	very serious ¹	N/A	none ²	none	n/a	167 hips in 100 patients	sensitivity	74.8% (66.2- 83.3%)	LOW
								specificity	75.0% (64.7- 85.3%)	
Use of a	32-mm femora	al head								
Zhang (2014)	Ankylosing spondylitis	very serious ³	N/A	serious ⁴	none	n/a	167 hips in 100 patients	multivariate OR (95% CI)	3.902 (1.817 to 8.377)	VERY LOW
								P value	<0.001	

¹ Risk of bias due to observational and retrospective nature of study, some limitations in quality of reporting, and potential confounders not controlled for in the analysis

² Outcome directly relevant to review protocol

³ Risk of bias due to observational and retrospective nature of study and some limitations in quality of reporting

⁴ Outcome not directly relevant to review protocol

Table 99 Hip arthroplasty in people with ankylosing spondylitis: predictors of blood loss

Quality	assessment						No of patients	Effect		
Studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Total	Units	Effect	Qualit y
Underwe	eight (diagnost	ic test accura	асу)							
Zhao (2014)	Ankylosing spondylitis	very serious ¹	N/A	serious ²	none	n/a	236	sensitivity	43.4% (36.0- 50.7%)	VERY LOW
								specificity	74.6% (63.9- 85.4%)	

¹ Some risk of bias due to observational and retrospective nature of study, and potential confounders not controlled for in the analysis ² Outcome (blood loss) is not a outcome directly specified in the review protocol

Quality a	assessment						No of patients	Effect		
Studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Total	Units	Effect	Qualit y
Underwe	eight (diagnosti	c test accura	ісу)							
Zhao (2014)	Ankylosing spondylitis	very serious ¹	N/A	serious ²	none	n/a	236	sensitivity	42.9% (16.9- 68.8%)	VERY LOW
								specificity	61.7% (55.3- 68.1%)	

¹ Some risk of bias due to observational and retrospective nature of study, and potential confounders not controlled for in the analysis ² Outcome (blood loss) is not a outcome directly specified in the review protocol

Table 101 Hip arthroplasty in people with ankylosing spondylitis: predictors of heterotopic ossification

Quality a	assessment						No of patients	Effect		
Studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Total	Units	Effect	Qualit y
Age										
Thilak (2015)	Ankylosing spondylitis	very serious ¹	N/A	serious ²	serious ³	n/a	47 operations in 24 patients	OR (95% CI)	0.90 (0.79 to 1.03)	VERY LOW
Duration	of symptoms									
Thilak (2015)	Ankylosing spondylitis	very serious ¹	N/A	serious ²	serious ³	n/a	47 operations in 24 patients	OR (95% CI)	0.72 (0.39, 1.33)	VERY LOW
Female s	ex									
Thilak (2015)	Ankylosing spondylitis	very serious ¹	N/A	serious ²	not serious	n/a	47 operations in 24 patients	OR (95% CI)	11.79 (1.89, 73.58)	VERY LOW
Preopera	itive hip ankylc	osis								

Quality a	issessment						No of patients	Effect		
Studies	Clinical population	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Total	Units	Effect	Qualit y
Thilak (2015)	Ankylosing spondylitis	very serious ¹	N/A	serious ²	not serious	n/a	47 operations in 24 patients	OR (95% CI)	67.00 (3.44, 1306.20)	VERY LOW
Heterotop	oic ossification	in previous T	ГНА							
Thilak (2015)	Ankylosing spondylitis	very serious ¹	N/A	serious ²	not serious	n/a	24 operations in 24 patients	OR (95% CI)	37.86 (1.09, 713.10)	VERY LOW
Preopera	tive ESR									
Thilak (2015)	Ankylosing spondylitis	very serious ¹	N/A	serious ²	not serious	n/a	47 operations in 24 patients	OR (95% CI)	1.12 (1.03, 1.21)	VERY LOW
Preopera	tive CRP									
Thilak (2015)	Ankylosing spondylitis	very serious ¹	N/A	serious ²	not serious	n/a	47 operations in 24 patients	OR (95% CI)	1.27 (1.08, 1.48)	VERY LOW
Interval b	etween THAs									
Thilak (2015)	Ankylosing spondylitis	very serious ¹	N/A	serious ²	serious ³	n/a	47 operations in 24 patients	OR (95% CI)	1.06 (0.97, 1.18)	VERY LOW
Combine	d spinal epidur	al (versus ge	eneral anaesthe	esia)						
Thilak (2015)	Ankylosing spondylitis	very serious ¹	N/A	serious ²	serious ³	n/a	47 operations in 24 patients	OR (95% CI)	0.17 (0.02, 1.51)	VERY LOW
Hybrid im	plant (versus ι	uncemented	implant)							
Thilak (2015)	Ankylosing spondylitis	very serious ¹	N/A	serious ²	serious ³	n/a	47 operations in 24 patients	OR (95% CI)	0.75 (0.10, 5.58)	VERY LOW
Cemente	d implant (vers	sus uncemen	ted implant)							
Thilak (2015)	Ankylosing spondylitis	very serious ¹	N/A	serious ²	serious ³	n/a	47 operations in 24 patients	OR (95% CI)	0.50 (0.06, 4.33)	VERY LOW

¹ Risk of bias due to observational and retrospective nature of study, some limitations in quality of reporting, and potential confounders not controlled for in the analysis ² Outcome not directly relevant to review protocol ³ Non-significant result

GRADE tables and meta-analysis results

G.5 Organisation of care and long-term monitoring

G.5.1 Transistion to adult services for young people with spondyloarthritis

Review question 13

• How should transition from specialist paediatric services to specialist adult rheumatology services be managed for young people between the ages of 16 and 18?

This review was not carried out (see the chapter in the full guideline for details

G.5.2 Monitoring of pharmacological interventions used in spondyloarthritis

Review Question 22

• What is the usefulness of direct access to specialist care, compared with initial primary care access followed by specialist rheumatological care, in the management of flare episodes?

No evidence was identified for this review

G.5.3 Care setting for management of flare episodes

Review Question 29

• What is the usefulness of direct access to specialist care, compared with initial primary care access followed by specialist rheumatological care, in the management of flare episodes?

No evidence was identified for this review

G.5.4 Care setting for long-term management

Review Question 30

• What is the effectiveness of specialist-led long-term management of spondyloarthritis compared with primary-care-led long-term management? No evidence was identified for this review

GRADE tables and meta-analysis results

G.5.5 Cross-speciality care

Review Question 31

• How should cross-speciality care for people with spondyloarthritis be organised?

No evidence was identified for this review

G.5.6 Complications of spondyloarthritis

Review Question 32

• What are the complications associated with spondyloarthritis?

For a summary of the results from this review, see appendix E, section 5.6 (table 165)

GRADE profiles

Quality assessmen	t						
No of studies	Clinical population	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Quality
Ischaemic heart dise	ase						
4 (Chou, Brophy, Hung, Haroon)	Ankylosing spondylitis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LO
1 (Edson-Heredia)	Psoriatic arthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LO
Aortic valve insufficie	ency						
1 (Jantti)	Psoriatic arthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LO
1 (Kaarela)	Reactive arthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LO
Stroke/cerebrovascu	lar events						
4 (Brophy, Hung, Keller, Zoller)	Ankylosing spondylitis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LO
1 (Edson-Heredia)	Psoriatic arthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LO
1 (Zoller)	Reactive arthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LO
Uveitis/iritis							
1 (Kaarela)	Ankylosing spondylitis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LO
1 (Egeberg)	Psoriatic arthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LO
2 (Hart, Kaarela)	Reactive arthritis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LOV
Fracture							
4 (Kang, Maillefert, Munoz-Ortego, Weinstein)	Ankylosing spondylitis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LO

Osteoporosis/osteopenia

Quality assessment	:						
No of studies	Clinical population	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Quality
1 (Maillefer)	Ankylosing spondylitis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW
Inflammatory bowel of	lisease						
1 (Mielants)	Undifferentiated spondyloarthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW
1 (Edson-Heredia)	Psoriatic arthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW
Depression							
1 (Shen)	Ankylosing spondylitis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW
1 (Edson-Heredia)	Psoriatic arthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW
Psoriasis/pustolosis p	oalmoplantaris						
2 (Jantti, Theander)	Psoriatic arthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW
Surgery							
1 (Kaarela)	Ankylosing spondylitis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW
1 (Kaarela)	Reactive arthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW

¹ Multiple possible sources of bias: inconsistent reporting on length of follow up, outcome not well defined, diagnostic criteria were not well defined at baseline
 ² Inconsistent reporting of results between studies
 ³ Not possible to calculate meaningful measures of uncertainty

G.5.7 Complications of treatments for spondyloarthritis

Review Question 33

- What are the complications associated with treatments for spondyloarthritis?
- For a summary of the results from this review, see appendix E, section 5.7 (tables 166 and 167)

Table 102 GRADE: Biological DMARDs

Quality assessment							
No of studies	Clinical population	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Quality
Uveitis							
5 (Baraliakos, Davis, Fouache, Heldman, van der Heijde)	Ankylosing spondylitis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LOW
1 (Fouache)	Psoriatic arthritis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LOW
Infections							
9 (Braun, Carmona, Davis, Deodhar, Gossec, Heldman, Park, Tong, van der Heijde)	Ankylosing spondylitis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LOW
3 (Sieper, Song, Wallis)	Axial spondyloarthritis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LOW
9 (Bianchi, Carmona, de Vlam, Gladman, Kavanaugh(a), Kavanaugh(b), Mease, Saad, Zisman)	Psoriatic arthritis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LOW
1 (Carmona)	Undifferentiated spondyloarthritis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LOW

Quality assessment							
No of studies	Clinical population	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Quality
Tuberculosis							
5 (Heldman, Jung, Sengupta, van der Heijde)	Ankylosing spondylitis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LOW
2 (Kavanaugh(a), Saad)	Psoriatic arthritis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LOW
Hepatitis							
1 (Costa)	Psoriatic arthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW
Depression							
1 (Davis)	Ankylosing spondylitis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW
Rash							
3 (Davis, Gossec, van der Heijde)	Ankylosing spondylitis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LOW
1 (Gladman)	Psoriatic arthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW
Malignancy							
7 (Deodhar, Gossec, Haynes, Heldman, Hellgren, van der Heijde, Haynes)	Ankylosing spondylitis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LOW
7 (de Vlam, Gladman, Haynes, Hellgren, Kavanaugh(a), Kavanaugh(b), Mease)	Psoriatic arthritis	Very serious ¹	serious ²	none	serious ³	Risk of publication bias	VERY LOW
1 (Westhovens)	Undifferentiated spondyloarthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW
Cardiovascular adve	rse events						

Quality assessment										
No of studies	Clinical population	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Quality			
1 (Kavanaugh(b))	Psoriatic arthritis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW			
Demyelinating disea	Demyelinating disease									
1 (van der Heijde)	Ankylosing spondylitis	Very serious ¹	N/A	none	serious ³	Risk of publication bias	VERY LOW			
Poor reporting of study of	designs and outcomes; no co	ntrol group to comp	pare outcomes to.							

² Inconsistent results between studies

³ Not possible to calculate meaningful measures of uncertainty

Table 103 GRADE: standard DMARDs

Quality assessment								
No of studies Clinical population Risk of bias Inconsistency Indirectness Imprecision Other considerations								
Infections								
1 (Wallis)	Axial spondyloarthritis	Very serious ¹	N/A	none	serious ²	Risk of publication bias	VERY LOW	
1 (Zisman)	Psoriatic arthritis	Very serious ¹	N/A	none	serious ²	Risk of publication bias	VERY LOW	

¹ Poor reporting of study designs and outcomes; no control group to compare outcomes to. ² Not possible to calculate meaningful measures of uncertainty

Table 104 GRADE: NSAIDs

Quality assessment									
No of studies	o of studies Clinical population Risk of bias Inconsistency Indirectness Imprecision Other of								
Cardiovascular adverse events									
1 (Kristensen)	Ankylosing spondylitis	Very serious ¹	N/A	none	serious ²	Risk of publication bias	VERY LOV		
1 (Kristensen)	Undifferentiated spondyloarthritis	Very serious ¹	N/A	none	serious ²	Risk of publication bias	VERY LOV		
Renal adverse eve	ents								
1 (Kristensen)	Ankylosing spondylitis	Very serious ¹	N/A	none	serious ²	Risk of publication bias	VERY LOV		
1 (Kristensen)	Undifferentiated spondyloarthritis	Very serious ¹	N/A	none	serious ²	Risk of publication bias	VERY LOV		

¹Poor reporting of study designs and outcomes; no control group to compare outcomes to. ²Not possible to calculate meaningful measures of uncertainty

Table 105 GRADE: Corticosteroids

Quality assessment										
No of studies	of studies Clinical population Risk of bias Inconsistency Indirectness Imprecision Other considerations									
Infections										
1 (Wallis)	Axial spondyloarthritis	Very serious ¹	N/A	none	serious ²	Risk of publication bias	VERY LOW			
	¹ Poor reporting of study designs and outcomes; no control group to compare outcomes to. ² Not possible to calculate meaningful measures of uncertainty.									

² Not possible to calculate meaningful measures of uncertainty

Information for people with spondyloarthritis G.6

Information for people with spondyloarthritis G.6.1

Review Question 27

• What information on treatment, long-term complications and self-management do young people and adults with spondyloarthritis find useful?

•										
	Quality a	ssessme	nt							

Quality as	ssessme	nt							
No of studies	Desig n	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Number of patients	Findings	Quality
Summarie	es on lates	st research and	I medications						
(Cookse	Survey		N/A	No serious	N/A	none	155 (Internet)	95/155 (61)	LOW
y 2012)		concern ¹	concern ¹	concerns ²			211 (Written material)	138/211 (65)	
							"Generally greater information on the cause of AS and the known treatments available. Plus what new treatments are coming onto the market or will be available in the near future." (Male, aged 46)		
Stories an	d experie	nces from othe	er AS patients						
(Cookse	Survey	No serious	N/A	No serious	N/A	none	155 (Internet)	66 (43)	LOW
y 2012)		concern ¹		concerns ²			211 (Written material)	90 (43)	
							"Swapping stories an sufferers to socialise aged 34)	d self help, get AS with each other." (Male,	
Opportuni	ty to ask a	a doctor questi	ons						
	Survey		N/A		N/A	none	155 (Internet)	66 (43)	LOW

Quality a	ssessme	nt							
No of studies	Desig n	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Number of patients	Findings	Quality
(Cookse y 2012)		No serious concern ¹		No serious concerns ²			211 (Written material)	74 (35)	
							often seem to know li such as AS and my c (which is very good) 3–6 months. There is	consultants AS clinic only takes place every a need to be able to g from flare-ups while not weeks or months	
AS netwo									
(Cookse	Survey	urvey Very N/A serious concern ³	N/A	No serious concerns ²	N/A	none	155 (Internet)	39 (25)	VERY LOW
y 2012)							211 (Written material)	56 (27)	
						"Regular emails to provide recent findings and other peoples experiences," (Male, aged 36).			
Diagnosis	, medicati	ion, exercises	and how to impr	ove performance	e of daily activitie	es			
(Giacom elli 2015)	Survey	Serious concern ⁴	N/A	No serious concerns ²	N/A	none	743	446 (60)	VERY LOW
Informatic	on on dise	ase							
(Leung 2009)	Survey	No serious concern ¹	N/A	No serious concerns ²	N/A	none	105	72 (68)	LOW
Advice on	exercise								
(Leung 2009)	Survey	No serious concern ¹	N/A	No serious concerns ²	N/A	none	105	77 (73)	LOW
Use of alt	ernative m	nedicine							

Quality a	ssessme	nt							
No of studies	Desig n	Risk of bias	Inconsisten cy	Indirectness	Imprecision	Other consideration s	Number of patients	Findings	Quality
(Leung 2009)	Survey	No serious concern ¹	N/A	No serious concerns ²	N/A	none	105	35 (33)	LOW
Managing) pain (sca	le 0 – 24 : high	ner scores indica	ate greater need))				
(Dragoi 2013)	Survey	Serious concern ³	N/A	No serious concerns ²	N/A	none	125	Mean (SD) 14.29 (6.69)	VERY LOW
Arthritis p	rocess (s	cale 0 – 28 : hi	igher scores ind	icate greater nee	ed)				
(Dragoi 2013)	Survey	Serious concern ³	N/A	No serious concerns ²	N/A	none	125	Mean (SD) 19.44 (6.89)	VERY LOW
Treatmen	ts (scale 0) – 28 : higher	scores indicate	greater need)					
(Dragoi 2013)	Survey	Serious concern ³	N/A	No serious concerns ²	N/A	none	125	Mean (SD) 15.90 (7.59)	VERY LOW
Self-help	measures	(scale 0 – 24	: higher scores i	ndicate greater r	need)				
(Dragoi 2013)	Survey	Serious concern ³	N/A	No serious concerns ²	N/A	none	125	Mean (SD) 15.76 (5.90)	VERY LOW
Movemen	nt (0 - 20 :	higher scores	indicate greater	need)					
(Dragoi 2013	Survey	Serious concern ³	N/A	No serious concerns ²	N/A	none	125	Mean (SD) 9.79 (5.67)	VERY LOW
Feelings ((scale 0 –	16 : higher sco	ores indicate gre	ater need)					
(Dragoi 2013	Survey	Serious concern ³	N/A	No serious concerns ²	N/A	none	125	Mean (SD) 8.68 (4.73)	VERY LOW
Support s	ystems (s	cale 0 – 16 : hi	igher scores ind	icate greater nee	ed)				
(Dragoi 2013	Survey	Serious concern ³	N/A	No serious concerns ²	N/A	none	125	Mean (SD) 6.83 (4.40)	VERY LOW

¹ Concerns over response rate (50%) and how representative the study population is but overall considered to be a low risk of bias ² Population and outcomes as specified in the review protocol ³ Unclear methods and reporting

1 G.6.2 Information and education for flare management in spondyloarthritis

- 2 Review Question 28
 - What is the effectiveness of information and education in the management of flare episodes?
- 4 No evidence was identified for this review

5 6

3