Methods for reanalyses of cost-effectiveness of TMZ based on subgroups

Method overview

The reanalysis was performed on subgroups for which only median overall survival was provided. We assumed that any extra life was accrued in the "Stable disease" state of the PenTAG model (i.e. extended progression free survival, PFS). Figure 1 shows how the extra time was allocated in the reanalysis for different subgroups.

Mathematical theory used in subgroup analyses.

As was explained in the main report, both types of survival (progression free and overall) were modelled using Weibull curves. These curves are manipulated by two parameters (gamma and lamda) which control the shape and scale of the fitted curve.

Standard statistical theory states that for any given Weibull curve, the median survival is calculated using the formula:

$$Median\,survival = \left\{\frac{1}{\lambda} * \ln(2)\right\}^{\frac{1}{\gamma}}$$

Sensitivity analysis showed that the fitted curve was relatively robust to changes in the lamda parameter and sensitive to changes in the gamma parameter. Therefore, for the subgroup analyses we assumed that the lamda parameter was constant and that the gamma parameter changed as the median survival changed. Rewriting the above equation, gives the following equation used to calculate gamma for a particular median survival.

 $\gamma = \frac{(\ln(\ln(2)) - \ln(\lambda))}{\ln(Median \, survival)} \tag{1}$

Algorithm used in the derivation of ICERs for each subgroup

For both treatment and control cohorts the following process was used.

i) Fix Lamda values for both progression free (PFS) and overall survival (MOS).

For overall median survival:

- ii) Input overall median survival for a given subgroup in equation (1) and calculate corresponding gamma value.
- iii) Fit Weibull curve for overall survival using this value
- For progression free survival
- iv) Calculate the difference in median survival between original PenTAG model and particular subgroup (incorporated as increase in PFS)
- v) Calculate corresponding gamma value using equation (1).
- vi) Fit Weibull curve for overall survival using this value.

Implementation in Excel model.

Table 2 shows the ICERs derived for each of the subgroup analyses, together with the estimated increase in survival and the lamda and gamma values used in the curve fitting process derived using the above algorithm. The values presented have been rounded for clarity of presentation and as a result there may by slight deviations from the output ICERS if these are re-run. These results can be simulated by replacing the gamma values for PFS and median overall survival (MOS) in the "parameters" sheet of the PenTAG model. These are to be found in the cells shown in Table 1.

Table 1: Cells in PenTAG model for changing gamma inputs for progression free and overall survival

cell number	PFS Gamma	MOS gamma
Control	E231	E225
treatment	E243	E237

	Model inputs (months)		Weibull Parameters				
	Cohort	Increase in	PFS	PFS	MOS	MOS	ICER
		Med.	Lamda	Gamma	Lamda	gamma	
		Overall					
		survival					
PenTAG Base	Control	-	0.01337	1.31083	0.00057	1.79414	
Case	Treatment	-	0.00889	1.25111	0.0006	1.68798	45,778
Age <50	Control	1.1	0.01337	1.20573	0.00057	1.75511	
-	Treatment	2.8	0.00889	1.16522	0.0006	1.631299	37,881
Resection	Control	0.8	0.01337	1.22459	0.00057	1.76514	
surgery							
	Treatment	1.2	0.00889	1.22426	0.0006	1.668531	52,558
WHO	Control	1.2	0.01337	1.19977	0.00057	1.75185	
performance							
status 0	Treatment	2.8	0.00889	1.16522	0.0006	1.631299	38,886
WHO	Control	-0.2	0.01337	1.30095	0.00057	1.80126	
performance							
status 1	Treatment	-0.6	0.00889	1.317297	0.0006	1.71769	67,430

Table 2: Lamda and gamma values used in the subgroup analyses

Methods for reanalyses of cost-effectiveness of carmustine implants based on subgroups

The industry submissions for BCNU wafers presented information on median overall survival AND median progression free survival. A different approach to that used for TMZ for apportioning increased survival could therefore be used as it was possible to fit curves for both types of survival separately.

The method used to generate the lamda and gamma values used to drive the Weibull curve for overall survival is exactly the same as outlined in the temozolomide analysis. In the PenTAG TAR, survival in patients using BCNU-W was informed by the Westphal and colleagues trial which did not publish a Kaplan-Meier curve for progression free survival; we therefore assumed an exponential model for PFS. Survival data modelled in such a way is only dependant one parameter, lamda, and not on two as was the case with a Weibull model. Standard Theory states that, for a given median survival value, the corresponding value of Lamda can be calculated using the formula:

$$\lambda = \ln(2) / Median Survival$$

Table 1 below shows the original reanalysis produced by PenTAG and Table 2 shows the lamda and gamma values used to derive these results. The values presented for both inputs and outputs have been rounded so small differences from the published ICERS are again to be expected.

	M	Iodel inputs (months)			Model outputs			
Model	Overall	Overall	Mean	Median	Differential	Differential	ICER	
arm	Median	mean	PFS	PFS	Costs	QALYs		
	survival	survival						
Original m	odel							
Placebo	11.6	16.73		5.9				
Treatment	13.9	20.05		5.9	6,104,273	107	56,954	
PFS deterr	PFS determined by Radiological imaging							
Placebo	12.6	18.17	8.5	5.9				
Treatment	14.75	21.28	8.8	6.1	6,391,583	135	47,444	
PFS deterr	PFS determined by mean time to KPS decline							
Placebo	12.6	18.03	12.4	8.6				
Treatment	14.75	21.06	15.0	10.4	5,712,415	156	36,676	
PFS determined by the Mean (of mean) times to neuro-performance decline								
Placebo	12.6	18.03	12.09	8.4				
Treatment	14.75	21.06	15.15	10.5	5,621,585	158	35,598	

Table 1: BCNU-W Reanalysis 1 based on all patients receiving total resection

Table 2: Lamda and Gamma values used in BCNU-W Reanalysis 1.

Model inpu	uts (months)	Parameters used in Survival analysis					
Cohort	Med.	MOS	MOS	Med PFS	PFS	ICER	
	Overall	Lamda	gamma	(Months)	Lamda		
	survival						
	(Months)						
Original PenTAG model							
Control	11.6	0.00018	2.078381	5.9	0.02711		
Treatment	13.9	0.00044	1.794639	5.9	0.02711	56,954	

PFS determined by Radiological imaging								
Control	12.6	0.00018	2.064416	5.9	0.02711			
Treatment	14.75	0.00044	1.77061	6.1	0.026222	47,444		
PFS determ	PFS determined by mean time to KPS decline							
Control	12.6	0.00018	2.064416	8.6	0.018599			
Treatment	14.75	0.00044	1.77061	10.4	0.01538	36,676		
PFS determined by the Mean (of mean) times to neuro-performance decline								
Control	12.6	0.00018	2.064416	8.4	0.019042			
Treatment	14.75	0.00044	1.77061	10.5	0.015234	35,598		