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Purpose of the early value assessment report 

The purpose of this external assessment report (EAR) by an external assessment 
group (EAG) for early value assessment is to review the evidence currently available 
for technologies within the decision problem and advise what further evidence should 
be collected to help inform future decisions on whether the technologies should be 
widely adopted in the NHS. NICE has commissioned this work and provided the 
template for the report. The report forms part of the papers considered by the 
Committee when it is making decisions about the early value assessment. 
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Executive summary 

Background 

The topic of this Early Value Assessment (EVA) is artificial intelligence (AI) 

assisted echocardiography to support the diagnosis and monitoring of heart 

failure. There are 4 technologies in the scope of this EVA: EchoGo Heart 

Failure (Ultromics Ltd), Us2.ai (EKO Pte Ltd), Ligence Heart (Ligence, UAB) 

and EchoConfidence (MyCardium AI Ltd).  

The decision problem is described in detail in the published scope and the 

EAG approach to the assessment is described in the published protocol. 

Clinical evidence 

There were 17 studies identified as the clinical evidence base: 3 for EchoGo 

Heart Failure, 9 for Us2.ai, 2 for Ligence Heart and 3 for EchoConfidence. For 

EchoGo Heart Failure, all studies were retrospective case-control studies. For 

Us2.ai, there were 9 studies. Four of these were prospective comparative 

studies, 2 were retrospective comparative studies (Tromp et al. 2022a, Myhre 

et al. 2024a), 2 were retrospective validation studies and one study was a 

randomised controlled crossover trial. For Ligence Heart, there were 2 

comparative studies, one of which was a prospective, the other was 

retrospective. For EchoConfidence, there were 3 comparative studies, one of 

which was prospective. Two of these studies were interim analyses of ongoing 

studies. Human operators, or manual measurements, were the comparator in 

all comparative and validation studies.  

The EAG considers there to be some evidence of moderate quality to support 

the use of EchoGo Heart Failure. There was evidence that the AI technology 

had good performance in aiding detection of HFpEF, in comparison to two 

validated multiparametric manual clinical scoring tools. Us2.ai had the largest 

volume of evidence, relative to other technologies in scope, and was the only 

technology to have an associated RCT (reported in a non-peer reviewed pre-

print) which demonstrated some time savings in TTE procedures following the 

implementation of AI-assistance. However, this evidence was of limited 

https://www.nice.org.uk/guidance/gid-hte10067/documents/final-scope
https://www.nice.org.uk/guidance/gid-hte10067/documents/final-protocol
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generalisabiity to the NHS. One study based in the NHS demonstrated the 

potential utility of Us2.ai in automating measurements alongside handheld 

TTE acquisition. Evidence of Us2.ai’s diagnostic accuracy in comparison to 

humans was largely observed to be good, as was the technology’s 

performance in discrimination of cases of HF from controls without HF. 

However, the outcome measures and comparisons reported across the 

evidence base were heterogeneous, which makes it difficult to synthesize 

consistent overall findings. Evidence for Ligence Heart was limited and of 

moderate quality. Outcome measures reported for Ligence Heart were limited 

to correlation and agreement with human measurements, with some evidence 

on high yield of measurements from TTE images. Correlation was observed to 

be strong with human comparators, but agreement was variable. Evidence for 

EchoConfidence was very limited and of uncertain quality. No published 

evidence was identified for this technology and all data included in the clinical 

evidence review was provided by the company. However, this evidence was 

from NHS settings and provided some limited evidence of potential system 

benefits through decreasing TTE analysis time. Diagnostic test accuracy 

results were mixed, with good specificity for both HFrEF and HFpEF, with a 

moderate false negative rate for HFrEF. Correlation with human 

measurements was observed to moderate.  

Overall, the clinical evidence is mixed. There is potential for these AI 

technologies to successfully assist with automation of measurements and 

report creation following TTE acquisition, and diagnostic test accuracy 

outcomes are generally reported to be good in comparison to measurements 

and reports made by humans. However, there is some evidence to suggest 

that agreement and correlation is low between AI and human measurements 

for some parameters. There was considerable variation across the evidence 

base with respect to the measurements which were compared and the 

comparator (e.g. different HCPs in different settings and clinical pathways). 

Few of the included studies were conducted in a UK/NHS setting, reducing 

the generalisability of the results. Clinical evidence is discussed in detail in 

Section 5.2, with quality assessment reported in Section 5.1. 
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The EAG noted there was not enough evidence to determine whether the 

EchoGo Heart Failure, Us2.ai and Ligence Heart technologies had been 

adequately validated in UK populations (or populations similar to that of the 

UK), to ensure their suitability for use in the target population. This may pose 

clinical risk, which is discussed in Section 5.3.2. There is evidence that 

EchoConfidence has been externally validated in a UK population. 

There are significant evidence gaps which are outlined in Section 8.2. In 

summary, these are: impact on procedure time, impact on clinical outcomes 

(e.g. time to diagnosis and initiation of treatment), validity in UK cohorts and 

adverse events.  

Economic evidence  

The EAG did not identify any relevant economic studies related to the 

technologies in this assessment. An exploratory economic analysis was 

performed using an early Markov model over a one-year time horizon, to 

capture the impact of echocardiography waiting time with AI technology 

compared to standard care. However, the model is limited by the lack of data 

on current waiting time and uncertainty on evidence related to time saved with 

AI in terms of settings, time parameters measured, and person performing 

echocardiography in these studies. Therefore, the analysis undertaken should 

be considered as exploratory, and results should be interpreted with caution. 

As there is no evidence on time to diagnosis with AI-assistance, the EAG 

estimated the impact on waiting time using evidence on time saved and a 

number of assumptions. The analysis included two AI technologies: 

EchoConfidence and Us2.ai, using the available clinical evidence on the 

procedure time reduction. The model finds that EchoConfidence is potentially 

less costly and more effective and the proportion of patients meeting the 

target referral time of 6 weeks may increase by 15%. This is due to the 

estimated reduction in waiting time of 17%, driven by shorter 

echocardiography time, and thus resulting in small staff time savings. 

However, the EAG considers the evidence on time saved is not robust and is 

low quality due to a lack of detail on the raw data feeding into mean values, 

and the way in which any time savings from AI-assisted analysis would impact 
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TTE workflow on a practical level. While it appears EchoConfidence may be a 

cost-saving strategy, the uncertainty around the model and evidence 

outweighs the modest cost-saving. For Us2.ai, the results indicate that it may 

be dominated by standard care, as it is estimated that the modest reduction in 

echocardiography time would not lead to any change in waiting time. Results 

are sensitive to the impact of waiting time reduction and the proportion of 

patients diagnosed in a one stop diagnostic clinic. Currently there are 

considerable areas of uncertainty including current waiting time, the proportion 

of patients attending a one stop diagnostic clinic, clinical evidence on time 

saved, and evidence on waiting time change. These uncertainties mean that 

the validity of the economic findings is limited. 

Evidence gaps are identified and outlined in Section 8.2. In summary, these 

are: long-term impact on time to diagnosis, impact of downstream diagnostic 

costs. In addition, there are evidence gaps related to baseline model inputs 

including waiting time and utilities of HF.  

Key points for decision makers  

• There are significant gaps in the evidence base which mean the 

benefits of introducing AI-assisted echocardiography into the heart 

failure diagnosis and monitoring pathway are currently unclear. 

• There is potential for AI-assisted echocardiography to facilitate faster 

echocardiography analysis and reporting, but data on this are limited. 

• Evidence should be generated on impact on procedure time and the 

subsequent impact on health-related outcomes, such as time to 

diagnosis and time to initiation of treatment. 

• The AI technologies should be externally validated in cohorts 

representative of UK populations, to evidence their suitability for use in 

the NHS. 

• Shifting echocardiography out of secondary care to primary or 

community care settings to improve patient access may be aided by AI 

technologies, but there is a paucity of evidence to support this.  
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1. Decision problem 

The topic of this Early Value Assessment (EVA) is artificial intelligence (AI) 

assisted echocardiography to support the diagnosis and monitoring of heart 

failure. The decision problem is described in detail in the published scope. 

The EAG made no further changes or comments on the scope.  

2. Technologies 

There are 4 technologies in the scope of this EVA: EchoGo Heart Failure 

(Ultromics Ltd), Us2.ai (EKO Pte Ltd), Ligence Heart (Ligence, UAB) and 

EchoConfidence (MyCardium AI Ltd).  

EchoGo Heart Failure (Ultromics Ltd) is an automated machine learning-

based decision support system intended to aid clinicians in detecting heart 

failure with preserved ejection fraction (HFpEF). This technology automates 

echocardiographic measurements including left ventricular volumes, ejection 

fraction and global longitudinal strain. Us2.ai (EKO Pte Ltd) is an AI software 

that can be used to automate measurements, analysis and reporting of  

transthoracic echocardiography (TTE) images, to support decision making of 

healthcare professionals for various cardiac conditions, including heart failure. 

Ligence Heart (Ligence, UAB) is an AI software used to automate 

echocardiographic measurements and the generation of echocardiographic 

reports, to be reviewed and approved by human operators. EchoConfidence 

(MyCardium AI Ltd) is an AI software that assists the user in reviewing 

acquired images, automating measurements and automating report 

generation. 

 
Details on technology versions, use cases and regulatory status can be found 

in Table 1. This summary is based on information provided by NICE, 

information submitted by the companies, and publicly available information. 

Please see the published scope for further details on the properties of these 

technologies. The EAG comments column contains any clarifications sought 

from the companies on versions and generalisability of evidence. 

https://www.nice.org.uk/guidance/gid-hte10067/documents/final-scope
https://www.nice.org.uk/guidance/gid-hte10067/documents/final-scope
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Table 1: Description of technologies. 

Technology 
(manufacturer) 

Version history Use cases 
Regulatory 

status 
EAG comments 

EchoGo Heart 
Failure 
(Ultromics Ltd) 

EchoGo Heart Failure 
v1.0  

• Launched Nov 
2022 

 

EchoGo Heart Failure 
v2.0  

• Launched 
Sept 2024 

• Update to v1.0 
to include 
EchoGo score 
and 
“explainability 
features” 

 

Intended use: to provide adjunctive 
information on a patient’s 
cardiovascular condition (diagnostic 
aid for HFpEF). 

 

Indications for use: diagnostic aid for 
adult populations over 25 years of 
age undergoing routine functional 
cardiovascular assessment using 
diagnostic echocardiography or those 
suspected of heart failure. 

 

Exclusions: NR 

 

Class IIa (EU 
MDR 
2017/745) 
expected June 
2026 (version 
not specified) 

 

DTAC not in 
place. 

The EAG noted in the literature the existence of 
other ‘EchoGo’ devices. These included Echo Go 
Pro, Echo Go Core and Echo Go Cardiac 
Amyloidosis. The company confirmed that these are 
all separate technologies. This assessment only 
considers EchoGo Heart Failure (v1.0 and v2.0), in 
line with the scope and in agreement with NICE. 

 

The company stated that v1.0 and v2.0 are separate 
from a regulatory perspective, but evidence can be 
considered generalisable between them (supported 
by company test data showing a 0.1% increase in 
inconclusive studies, and small increases in 
sensitivity (~2%) and specificity (~4%) from v1.0 to 
v.2.0).   

EchoConfidence 
(MyCardium AI 
Ltd) 

EchoConfidence 
v01.01.00 

• Launched May 
2025 

XXXXXXXXXX 
XXXXX 

• XXXXXX 
XXXXXX 

• XXXXXXX 
XXXXXXX 

Intended use: for detection and 
diagnosis of heart failure via 
screening or clinical 
echocardiograms, for stratifying heart 
failure (HFrEF, HFmrEF vs HFpEF), 
and for monitoring disease 
progression and response to 
treatment. 

 

Indications for use: patients, both 
healthy or with underlying cardiac 
disease, requiring review or analysis 

Class IIb (EU 
MDR 
2017/45), 
awarded May 
2025 (for 
v01.01.00) 

 

XXXX 
XXXXXXXXX 
XXXXXX 

 

The company stated that “evidence is generalisable 
between versions, but the test datasets (for FDA, 
CE and precision) are re-run with each version 
release to ensure that performance is stable/ 
improves”.  
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XXXXXXX 
XXXXX 

XXXXXXXXXX 
XXXXX 

• XXXXXX 
XXXXXX 

• XXXXXX 
XXXXXX 

XXXXXX 
XXXXXX 

of their echocardiographic images 
acquired for their cardiac anatomy, 
structure and function. 

 

Exclusions: patients with a known 
congenital cardiac abnormality, 
paediatric patients (age<18). 

It has no special features to detect or 
make allowances for myocardial 
tumours. 

XXXXXXX 
XXXXXXXX 
XXXXXXX 
XXXXXXXX. 

 

DTAC in place. 

Ligence Heart 
(Ligence, UAB) 

Ligence Heart v3.42.0 

• Launched Jan 
2025 

 

XXXXXXXXXXXXX 

• XXXXXXXXX 
XXXX 

• XXXXXX 
XXXXXX 
XXXXX 

• XXXXXXX 
XXXXXXX 

Intended use: to detect, measure, 
and calculate various specifications 
of structure and function of the heart 
and great vessels by analysing 
echocardiographic images and 
automatically providing 
echocardiographic reports. 

 

Indications for use: patients who are 
not in a life-threatening state of 
health, time is not critical for medical 
decisions and no major therapeutic 
interventions are required. 

 

Exclusions: complex or critical 
congenital heart disease, heart 
tumours, prosthetic valves, post-
operative heart valves, cardiac 
geometry changing cardiothoracic 
surgeries, implantable intracardiac 
devices, heart arrhythmias (atrial 
flutter, atrial fibrillations), aorta 
dissection. 

Class IIa (EU 
MDR 
2017/45), 
awarded June 
2022 (for 
v3.42.0). 

 

XXXXXXXX 
XXXXXXXX   
XXXXXX 
XXXXX 

 

DTAC not in 
place. 

 

None. 
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Us2.ai (EKO Pte 
Ltd) 

Us2.ai v1 

• Launched 
June 2022 

 

Us2.ai v2  

• Launched 
June 2025 

• Additional 
measurements 

 

Intended use: to process acquired 
transthoracic cardiac ultrasound 
images, to analyse and make 
measurements on images in order to 
provide automated estimation of 
cardiac structural and functional 
parameters. 

 

Indications for use: in adult patients 
as decision support for the detection 
of specific cardiac conditions such as 
heart failure, pulmonary 
hypertension, cardiac amyloidosis, 
hypertrophic cardiomyopathy and 
valve disease (aortic stenosis, mitral 
regurgitation). 

 

Exclusions: NR 

Class IIb EU 
MDR 2017/45, 
date awarded 
unknown (for 
both v1 and 
v2) 

 

DTAC in place. 

The company stated that v1 and v2 have separate 
MDR certification, but evidence for v1 may be 
considered generalisable to v2.  

 

There is a ‘cardiac amyloid model’ which is included 
as a subset of the v2 software.  

Abbreviations: AI: artificial intelligence; DICOM: digital imaging and communications in medicine; DTAC: digital technology assessment criteria; EU MDR: European Union 

Medical Device Regulation; HF: heart failure; HFmEF: heart failure with mid-range ejection fraction; HFpEF: heart failure with preserved ejection fraction; HFrEF: heart failure 

with reduced ejection fraction; LV: left ventricle; NR: not reported. 
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3. Clinical context 

This early value assessment (EVA) will focus on the use of artificial 

intelligence (AI) assisted echocardiography to support the diagnosis and 

monitoring of heart failure (HF). This section describes the clinical context of 

this assessment, including the condition, the echocardiography procedure and 

relevant clinical pathways.  

 

3.1 Heart failure (HF) 

Heart failure (HF) is a condition where the heart is unable to pump blood 

around the body properly. This can be due to structural or functional 

abnormalities. While not usually curable, some symptoms of HF can be 

managed. Common symptoms of HF include breathlessness (dyspnoea), 

chronic exhaustion, and swollen legs and ankles. HF can be chronic (due to 

cardiovascular comorbidities such as hypertension) or acute (e.g., secondary 

to acute coronary syndrome). It usually affects older populations but can also 

occur in younger individuals. 

 

HF is common, with over a million people being affected in the UK. It is 

becoming more prevalent as the population ages. There are approximately 

200,000 new HF diagnoses every year in the UK, with over 800,000 people on 

their GP’s HF register (British Heart Foundation, 2025). Of those diagnosed 

with HF, an estimated 87% involved the use of echocardiography in the 

diagnostic work up (National Heart Failure Audit Data (NHFA) 2025). 

 

Heart failure is categorised according to the left ventricular ejection fraction 

(LVEF) measurements, which may be acquired through echocardiography 

The categories are: ‘heart failure with preserved ejection fraction’ (HFpEF, 

LVEF of ≥50%), ‘heart failure with reduced ejection fraction’ (HFrEF, LVEF is 

≤40%), or the intermediate class of ‘heart failure with mildly reduced ejection 

fraction’ (HFmrEF, LVEF between 41-49%).  

 

https://www.bhf.org.uk/what-we-do/our-research/heart-statistics/heart-statistics-publications
https://www.nicor.org.uk/interactive-reports/national-heart-failure-audit-nhfa
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3.2 Echocardiography 

Transthoracic echocardiography (TTE) is used to aid diagnosis of HF, in 

combination with presence of clinical symptoms, elevated biomarker levels (N-

terminal pro-B-type natriuretic peptide (NT-proBNP)) and other cardiac 

imaging modalities. TTE facilitates detection of abnormalities and defects in 

the heart’s chambers and valves and provides measurements of blood flow 

and the heart’s pumping ability. Where an echocardiogram detects abnormal 

ejection heart fraction, abnormalities in the heart’s walls’ motions, or 

hypertrophy, this can be indicative of HF. 

 

Cardiac magnetic resonance imaging (CMRI) may also be used for some 

complex cases or in the rare instances when TTE is inconclusive or 

contraindicated, but it is not readily available in all centres. TTE is usually 

performed in the NHS by a specialist cardiac physiologist or cardiologist, 

although the settings and type of technology used may vary depending on the 

referral pathway. 

 

Potential place for AI-assisted echocardiography technologies in the 

care pathway 

Transthoracic echocardiography (TTE) is typically conducted in the secondary 

care setting, in dedicated clinics or suites with static equipment. While not the 

focus of this assessment, clinical experts highlighted the concept of “one-stop 

clinics” for people with suspected heart failure, where multiple diagnostic 

investigations (including TTE) are combined into a single visit, with the goal of 

quicker time to diagnosis and initiation of treatment. Point-of-care 

echocardiography (e.g. handheld TTE) may be used in urgent situations such 

as presentation to the emergency department. The EAG has focused on 

evidence from secondary care, in line with the scope, but has included 

evidence from primary care and community settings in the UK where 

available. A typical elective TTE appointment in the outpatient setting is 

depicted in Figure 1, with an indication of where the AI technologies may be 

used. The EAG have developed this figure based on discussions in the 

scoping workshop, information from the published scope and responses from 

https://www.nice.org.uk/guidance/gid-hte10067/documents/final-scope
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clinical experts (Appendix A). The AI technologies may assist with automation 

of measurements, automation of report generation and classification of HF. 

AI-assisted TTE image acquisition is not in scope for this assessment.    

 

 

Figure 1: Echocardiography procedure. 

Abbreviations: TTE: transthoracic echocardiogram. 

3.3 Clinical pathways 

Initial clinical assessments for patients presenting with symptoms indicative of 

suspected heart failure (HF) include blood tests for detection of biochemical 

markers (NT-proBNP) followed by a transthoracic echocardiogram (TTE). A 

summary of NICE guidelines relevant TTE and the suspected acute and 

chronic HF clinical pathway is presented in Table 2. 

 

The differentiation between acute and chronic HF is the onset of symptoms, 

the referral route and recommended time for receiving TTE. However, the 

TTE procedure itself does not differ between those suspected of acute and 

those suspected of chronic HF. 

 

Table 2: NICE guidance relevant to heart failure. 

Guideline Topic Relevant guidance 

CG187 (NICE, 
2014) 

Diagnosis and 
management of 
(possible) acute heart 

In people presenting with new suspected acute 
heart failure with raised natriuretic peptide levels, 
transthoracic Doppler 2D echocardiography to 

https://www.nice.org.uk/guidance/cg187
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failure in individuals 
aged 18 and over 

establish the presence or absence of cardiac 
abnormalities. 

In people presenting with new suspected acute 
heart failure, consider performing transthoracic 
Doppler 2D echocardiography within 48 hours of 
admission to guide early specialist management. 

NG106 (NICE, 
2018) 

Diagnosis and 
management of 
chronic heart failure in 
individuals aged 18 
and over. 

 

Because very high levels of NT-proBNP carry a 
poor prognosis, refer people with suspected heart 
failure and an NT-proBNP level more than 2,000 
nanogram per litre (236 picomole per litre) 
urgently, to have specialist assessment and 
transthoracic echocardiography within 2 weeks.  

 

Refer people with suspected heart failure and an 
NT-proBNP level between 400 and 2,000 
nanogram per litre (47 to 236 pmol per litre) to 
have specialist assessment and transthoracic 
echocardiography within 6 weeks.  

Abbreviations: CG: Clinical Guidance; NG: National Guidance; NICE: National Institute of Health and 

Care Excellence; NT-proBNP: N-terminal pro-B-type natriuretic peptide; 2D: two-dimensional.  

3.4 Equality issues  

Equality issues and considerations for this early value assessment are 

described in the equalities impact assessment (EIA) alongside the scope. No 

additional equality issues have been identified during the assessment. 

4. Clinical evidence 

4.1 Search strategies and study selection  

The EAG conducted literature searches to identify evidence relevant to the 

decision problem of this assessment. Inclusion and exclusion criteria for this 

assessment is outlined in the published protocol. Details of the EAG searches 

are provided in Appendix B.  

The titles and abstracts of the identified studies were screened by one 

reviewer and 20% of excluded records were checked by a second reviewer 

against the pre-specified inclusion and exclusion criteria. Full texts of the 

included records were obtained and screened by one reviewer and a random 

20% of exclusions were checked by a second reviewer.  

In line with the published protocol, studies with full-text publications were 

prioritised for inclusion in this assessment. Conference proceedings were 

https://www.nice.org.uk/guidance/ng106
https://www.nice.org.uk/guidance/gid-hte10067/documents/801
https://www.nice.org.uk/guidance/gid-hte10067/documents/final-protocol
https://www.nice.org.uk/guidance/gid-hte10067/documents/final-protocol
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included if they reported data that could be used as inputs in the economic 

model (Section 6.2). Other studies only reported in conference proceedings 

are summarised in Appendix C. Results were not extracted from these 

conference proceedings due to the lack of detail available to facilitate 

assessment of study quality and the time constraints of this assessment.  

Studies where outcomes were not considered relevant to the diagnosis or 

monitoring of HF were excluded e.g. studies investigating AI-automation of 

aortic measurements or AI-aided assessment of aortic stenosis.  

Community care settings were not included by NICE in the scope of this 

assessment. However, during the scoping phase, specialist committee 

members (SCMs) and clinical experts highlighted the potential for these 

technologies to facilitate the shifting of echocardiography from secondary care 

to community settings. In the published protocol, the EAG stated that relevant 

evidence from community care settings may be considered for inclusion, if 

feasible in the given timescale. In agreement with NICE, the EAG decided to 

include studies from a community setting that were based in the UK, where 

results were expected to be generalisable to the population of interest in this 

assessment. Evidence from community care settings outside of the UK was 

excluded. Evidence from community care settings did not inform the economic 

modelling, as this is outside of the scope. 

4.2 Included and excluded studies 

A PRISMA diagram depicting the study selection process is in Appendix B.  

A total of 17 key studies were included in this assessment. 14 studies had full-

text publications available. Where multiple publications were identified for the 

same study, only the most recent and comprehensive publication was used 

for data extraction and is used as the primary study reference throughout this 

report. Additional publications identified as related to the key studies are listed 

in Appendix C. The remaining 3 studies were provided by the company (all for 

EchoConfidence), of which 2 were interim analyses of ongoing studies. These 

were provided by the company as part of their ‘request for evidence’ (RFE) 

submissions submitted to NICE.  

https://www.nice.org.uk/guidance/gid-hte10067/documents/final-protocol
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Six studies focused on training, testing and validation of the AI technologies, 

reporting outcomes on diagnostic test accuracy (e.g., sensitivity and 

specificity) and performance in aiding detection of HF (e.g., classification, 

discrimination of cases), with manual measurements as the comparator. Nine 

studies drew comparisons between AI-assisted TTE with manual TTE 

(including cart-based and handheld equipment). One study compared novice 

operated AI-assisted handheld TTE with expert sonographer operated 

standard cart-based TTE. The remaining study was a randomised controlled 

trial (RCT) which investigated the impact of introducing AI-assisted technology 

(Us2.ai) on examination time, image quality and staff experience. This study 

also compared AI performance against human operators.  

Studies comparing AI-assisted TTE with manual TTE included outcomes such 

as interchangeability, correlation and agreement of AI measurements with 

human measurements. Where the diagnostic accuracy or performance of AI 

technologies was being evaluated or validated, this was usually in comparison 

to diagnoses made by humans, which is in line with current clinical practice in 

the NHS. However, the type of healthcare professional (HCP) conducting the 

‘manual’ TTE acquisition, analysis and reporting in the comparator group 

across the studies varied, and included cardiologists, sonographers, nurses, 

analysts, and technologists. For EchoGo Heart Failure, the studies also 

compared the performance of the AI model in detecting HFpEF with existing 

manual multiparametric clinical scoring tools.  

Table 3 summarises the 17 included studies. A rating of GREEN indicates an 

element that meets the scope fully, AMBER meets the scope partially, and 

RED does not meet the scope. The EAG noted there was inconsistency in the 

description of HCPs involved in the studies, so descriptors of comparators 

have been extracted verbatim from the publications for transparency.  

Studies reported only in conference proceedings which met all aspects of the 

scope are reported in Appendix C.  
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7 ongoing studies have been identified as relevant to this assessment, 5 of 

which were identified through the company submissions (reported in Section 

8.1).
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Table 3: Description of studies selected by the EAG as the evidence base. 

Study name, design and 
location 

Participants and setting 
Intervention(s) and 

comparator 
Outcomes 

EchoGo Heart Failure 

Study: Akerman 2025a 
 
Design: Retrospective case-
control study (external 
validation) 
 
Location: Beth Israel Deaconess 
Medical Center, MA, USA 
 
Publication status: Published 
 
  

Participants: 
- Cases with HFpEF: n=240 
- Controls: n=256 

 
Demographics: 
Cases 

• Mean age: 74.2 ± 12.1 
years 

• F/M: 54.2% female 

• Ethnicity: 
- 68.3% White 
- 18.3% Black 
- 5.8% Asian 
- 7.1% Other 

 
Controls 

• Mean age: 75.0 ± 13.0 
years 

• F/M: 55.1% female 

• Ethnicity: 
- 78.1% White 
- 6.6% Black 
- 5.5% Asian 
- 9.0% Other 

 
Setting: Academic tertiary 
medical centre (secondary care) 
 
GREEN 

Intervention: EchoGo Heart 
Failure v2.0 
 
Comparator: Manual 
clinical scoring tools 
(HF2PEF, HFA-PEFF) 
 
AMBER 

1) Diagnostic performance of AI HFpEF model vs H2FPEF  

• Discrimination (AUROC) 

• Calibration 

• Classification and re-classification 

• Sensitivity 

• Specificity 

• Re-classification 

• Clinical utility 

 
2) Diagnostic performance of AI HFpEF model HFA-PEFF scores 

 
3) Patient outcomes 

• Mortality 

• HF hospitalisation 

 
GREEN 

https://pubmed.ncbi.nlm.nih.gov/40133291/
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Study: Akerman 2023a 
 
Design: Retrospective case-
control study (training, validation 
and external testing) 
 
Location: UK and USA 
 
Publication status: Published 
 
 
 

Participants:   
Training and validation: 

• Cases with HF: n=2,971 

• Controls: n=3,785 
Independent testing: 

• Cases with HF: n=646 

• Controls: n=638  
 
Demographics: 
Training 
Controls: 

• Mean age: 55.8± 15.7 years  

• F/M: 52.2% female 

• Ethnicity: 
- 90.0% White, non-

Hispanic 
- 3.0% African American 
- 1.7% Other 
 

Cases: 

• Mean age: 73.2 ± 11.5 
years  

• F/M: 50.5% female 

• Ethnicity: 
- 89.1% White, non-

Hispanic 
- 1.9% African American 
- 1.7% Other 

 
Validation 
Controls: 

• Mean age: 57.5 ± 15.8 
years 

• F/M: 52.4% female 

• Ethnicity: 
- 3.2% African American 
- 91.8% White, non-

Hispanic 
- 0.8% Other 

Intervention: EchoGo Heart 
Failure v1.0 
 
Comparator: Manual 
clinical scoring tools 
(HF2PEF, HFA-PEFF) 
 
AMBER 

1) Discrimination (training and validation) 

• AUROC 

 
2) Sensitivity and specificity (independent testing) 

• Sensitivity 

• Specificity 

• PPV 

• NPV 

 
3) Reclassification 

 
4) Mortality  

 
GREEN 

https://pubmed.ncbi.nlm.nih.gov/38939447/
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Study name, design and 
location 

Participants and setting 
Intervention(s) and 

comparator 
Outcomes 

Cases: 
Mean age: 73.7 ±11.5 years 
F/M: 53.7% female 

• 87.3% White, non-Hispanic 

• 1.4% African American 

• 1.8% Other 
 

Independent testing 
Controls: 

• Mean age: 64.6±17.4 years 

• F/M: 51.1% female 

• Ethnicity 
- 60.0% White, non-

Hispanic 
- 19.9% African 

American 
- 20.1% Other 

Cases: 

• Mean age: 72.4±13.3 years 

• F/M: 52.2% female 

• Ethnicity: 
- 61.8% White, non-

Hispanic  
- 19.2% African 

American 
- 19.0% Other 

 
Setting: 7 hospitals, 1 
community outreach centre 
(mixed secondary and primary 
care) 
 
GREEN 
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Study name, design and 
location 

Participants and setting 
Intervention(s) and 

comparator 
Outcomes 

Study: Cassianni 2024 
 
Design: Retrospective case-
control study (external 
validation) 
 
Location: NR 
 
Publication status: Published 
 
 
 
 
 
 

Participants (same as Akerman 
2023a independent testing 
cohort):  

• Cases with HF: n=646 

• Controls: n=638  
 
Demographics: 
Controls: 

• Mean age: 64.6±17.4 years 

• F/M: 51.1% female 
- 60.0% White, non-

Hispanic 
- 19.9% African 

American 
- 20.1% Other 

Cases: 

• Mean age: 72.4±13.3 years 

• F/M: 52.2% female 
- 61.8% White, non-

Hispanic  
- 19.2% African 

American 
- 19.0% Other 

 
Setting: 7 hospitals, 1 
community outreach centre 
(mixed secondary and primary 
care) 
 

AMBER 

Intervention: EchoGo Heart 
Failure v2.0 
 
Comparator: Manual 
clinical scoring tools 
(HF2PEF, HFA-PEFF) 
 
AMBER 

1) HF hospitalisation and deaths according to predicted group 

 
2) Association between AI output and risk for HF hospitalisation 

 
3) Association between AI output and cardiac mortality  

 
4) Application of AI model to nondiagnostic H2FPEF outputs 

 
5) HF hospitalisation risk according to H2FPEF classification 

(positive and negative) 

 
6) HF hospitalisation risk according to H2FPEF category 

(indeterminate) 

 
GREEN  

Us2.ai 

https://pubmed.ncbi.nlm.nih.gov/38964666/
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Study name, design and 
location 

Participants and setting 
Intervention(s) and 

comparator 
Outcomes 

Study: Campbell 2025 
 
Design: Prospective 
comparative study (diagnostic 
accuracy) 
 
Location: Glasgow, UK 
 
Publication status: Published 
 
 
 
 
 
 

Participants: 867 patients with 
suspected HF 
 
Demographics: 

• Median age: 77 years (69-
83) 

• F/M: 51% female 

• Ethnicity: 
- 98% White 

 
Setting: Outpatient sites 
(secondary care) 
 
GREEN 

Intervention: Us2.ai 
 
Comparator: Expert 
accredited sonographers 
 
GREEN  

1) Diagnostic test accuracy 

• (true positive + true negative) / (true positive + true negative + 

false positive +false negative) 

• Sensitivity 

• Specificity 

• NPV 

• PPV 

• AUROC  

 
2) A) Interchangeability of LVEF measurements between AI-

automated TTE and human cart-based TTE  

B) Interchangeability of HFpEF measurements between AI-
automated handheld/cart-based TTE and human reporting of 
cart-based TTE 

• IEC  

 
3) Interchangeability of LVEF measurements between AI-

automated cart-based TTE and human reporting of cart-based 

TTE  

• IEC  

 
4) Agreement between AI and human analysis  

• IEC  

• Pearson correlation coefficient analysis 

 
GREEN  

https://pubmed.ncbi.nlm.nih.gov/40702880/
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Study name, design and 
location 

Participants and setting 
Intervention(s) and 

comparator 
Outcomes 

Study: Hirata 2024 
 
Design: Prospective 
comparative study 
 
Location: Japan 
 
Publication status: Published 
 
 

Participants: 23 patients who 
underwent echocardiography 
 
Demographics: 

• Mean age: 57±17 years 

• F/M: 70% female 

• Ethnicity: NR 
 
Setting: NR 
 
AMBER 

Intervention: Us2.ai 
 
Comparator: Experienced, 
certified echocardiography 
technologist 
 
GREEN  

1) Agreement between human and AI-automated measurements 

• ICC 

 
2) Time required for AI and manual measurements and reporting 

• Mean time in seconds ±SD 

 
GREEN  

Study: Huang 2024a 
 
Design: Prospective 
comparative study 
 
Location: National Heart Centre, 
Singapore 
 
Publication status: Published 

Participants: 100 patients with 
≥1 HF symptom 
 
Demographics: 

• Average (presumed mean) 
age: 61.2±15.0 years 

• F/M: 44% female 

• Ethnicity: NR 
 
Setting: Cardiac imaging 
laboratory (secondary care) 
 
GREEN 

Intervention: Novice-
operated Us2.ai-assisted 
handheld TTE  
 
Comparator: Expert-
operated standard cart-
based TTE 
 
AMBER  

1) Accuracy of AI-enhanced novice-performed POC 

echocardiogram and AI-interpreted LVEF to detect a reduced 

LVEF<50% 

• AUC 

• Sensitivity 

• Specificity 

• PPV 

• NPV 

 
2) Yield and learning curve of novice performing POC cardiac 

ultrasound 

• Yield: exams with AI-measurable LVEF compared to cart-based 

cardiologist reported LVEFs 

• Learning curve: mean exam time, learning rate. 

 

GREEN 

https://pubmed.ncbi.nlm.nih.gov/38308797/
https://pubmed.ncbi.nlm.nih.gov/38866831/
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Study name, design and 
location 

Participants and setting 
Intervention(s) and 

comparator 
Outcomes 

Study: Lafitte 2025 
 
Design: Prospective 
comparative study 
 
Location: Bordeaux University 
Hospital, France 
 
Publication status: Published 
 
 

Participants: 894 
echocardiographic examinations 
 
Demographics: 

• Mean age: 64.8 ± 16.3 
years 

• F/M: 43% female 

• Ethnicity: NR 
 
Setting: Echocardiography 
department (secondary care) 
 
AMBER 

Intervention: Us2.ai 
 
Comparator: Human 
operators with three 
different expertise levels: 
nurses, residents and 
experts. 
 
GREEN  

1) Agreement between automatic AI measurements and manual 

measurements  

• Pearson correlation coefficients 

• ICC  

• Bland-Altman analyses (LoA) 

 
3) GREEN  

Study: Myhre 2024a 
 
Design: Retrospective 
comparative study 
 
Location: Cardiology echo lab of 
the University Hospital of 
Parma, Italy 
 
Publication status: Published 
 
 
 

Participants: 109 patients who 
underwent 2D and 3D 
transthoracic echocardiography 
 
Demographics: 

• Mean age: 56 ± 15 years 

• F/M: 71% female 

• Ethnicity: NR 
 
Setting: Tertiary care centre, 
cardiology echocardiography 
laboratory (secondary care) 
 
AMBER 

Intervention: Us2.ai 
 
Comparator: Experienced 
human operators with 
echocardiography 
certification 
 
AMBER  

1) Agreement, correlation and reliability between human 

operators and AI for LVEDV, LVESV, LVEF, GLS measures 

• Bias and level of agreement (LOA) 

• Pearson’s correlation  

• Average k 

 
4) GREEN  

https://pubmed.ncbi.nlm.nih.gov/40340211/
https://pubmed.ncbi.nlm.nih.gov/39081366/
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Study name, design and 
location 

Participants and setting 
Intervention(s) and 

comparator 
Outcomes 

Study: Myhre 2024b 
 
Design: Retrospective 
comparative study (external 
validation in 3 cohorts) 
 
Location: 1) Taiwan; 2) Sweden, 
Finland, USA, Singapore; 3) 
Qatar 

 
Publication status: Published 
 
 
 

Participants: 
1) Participants with and 

without HF (n=4,228) 
2) PROMIS-HFpEF study 

data (n=183),  
3) HMC-QU-MI study of 

patients with suspected 
AMI (n=162) 

 
Demographics: 
1)  

• Mean age: 55 ± 15 years 

• F/M: 33% female 

• Ethnicity:  
- 100% Asian 

2)  

• Mean age: 74 ± 9 years 

• F/M: 44% female 

• Ethnicity:  
- 88% White 
- 8% Asian 
- 4% African American  
 

3) NR 
 
Setting: 1) community, 2) 
secondary care, 3) secondary 
care  
 
GREEN 

Intervention: Us2ai 
 
Comparator:  

1) Sonographers or 
cardiologists 

2) Experienced 
research 
sonographers 

3) NR 
 
GREEN  

1) Agreement between AI and manual measurements 

 
2) Ability to identify HF 

 
3) Yield  

 
GREEN 

https://pubmed.ncbi.nlm.nih.gov/38264705/
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Study name, design and 
location 

Participants and setting 
Intervention(s) and 

comparator 
Outcomes 

Study: Sakamoto 2025 
 
Design: Randomised controlled 
trial (single-blinded crossover) 
 
Location: Jutendo University 
Hospital (Tokyo, Japan) 
 
Publication status: Pre-print 

Participants: 585 participants 
with known or unknown cardiac 
diseases 
 
Demographics: 
Non-AI days 

• Mean age: 64y ± 16 years 

• F/M: 54% female 

• Ethnicity: NR 
 
AI-days 

• Mean age: 65y ± 15 years 

• F/M: 60% female 

• Ethnicity: NR 
 
Setting: echocardiography 
laboratory (secondary care) 
 
AMBER 

Intervention: Us2.ai 
 
Comparator: Certified 
sonographers (average 
experience in 
echocardiography 9.0 ± 4.4 
years); expert 
echocardiologists reviewed 
and finalised reports. 
 
GREEN  

1) Examination efficiency 

• Examination time per patient 

• Number of examinations per day 

 
2) Sonographer fatigue 

• Self-reported questionnaire  

 
3) Number of analysed echocardiographer parameters 

 
4) Image quality on days using AI vs days without AI 

 
5) AI performance 

• Rate of AI analysis 

• Concordance between AI measurements and measurements 

finalised by humans 

 
AMBER  

Study: Tromp 2022a 
 
Design: Retrospective case-
control study (external 
validation) 
 
Location: Brigham and Women’s 
Hospital Cardiac Imaging Core 
Laboratory (Boston, MA, USA) 
 
Publication status: Published 
 
 

Participants: 
n=600 (602 echocardiographic 
studies) 

- Control (without HF): 

n=179 

- Cases with HFrEF: n=421  

 
Demographics: 

• Mean age: 57 ±16 years 

• F/M: 69% female 

• Ethnicity: NR 
 
Setting: imaging laboratory 
(secondary care) 
 
GREEN 

Intervention: Us2.ai 
 
Comparator: human expert 
measurements 
 
GREEN  

1) Interchangeability 

• IEC 

 
2) Agreement between automated and human measurements 

• ICC 

• MAD 

• wCV 

• RMSE 

• LoA 

 
3) Yield 

 
GREEN  

https://pubmed.ncbi.nlm.nih.gov/36351912/


External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to support diagnosis of heart failure: Early Value Assessment 
Date: December 2025  35 of 192 

Study name, design and 
location 

Participants and setting 
Intervention(s) and 

comparator 
Outcomes 

Study: Tromp 2022b 
 
Design: retrospective 
comparative study (training, 
internal testing and external 
validation) 
 
Location: China, Hong Kong, 
India, Indonesia, Japan, 
Malaysia, Philippines, 
Singapore, South Korea, 
Taiwan, and Thailand, Canada, 
USA 
 
Publication status: Published 

Participants:   

• ATTRaCT: n=1,076 
participants 

• HEART: n=621 participants 

• Taiwan cohort: n=9,289 
participants 

 
Demographics: 
ATTRaCT: NR 
 
HEART cohort: 

• Mean age: 66y ±12 years 

• F/M: 43% female 

• Ethnicity: 
- 91% Caucasian 
- 2% Aboriginal 
- 1% African American 
- 5% Asian 
- 1% other 

 
Taiwan cohort 

• Mean age: 66 ±15 years 

• F/M: 48% female 

• Ethnicity:  
- 100% Asian 
 

 
Setting: NR 
 
AMBER 

Intervention: Us2ai 
 
Comparator: Expert 
sonographers 
 
GREEN  

1) Difference between automated versus manual measurements 

 
2) Ability to identify patients with LVEF<40%, e’ lateral wave 

velocity <10cm/s, E/e’ ratio ≥13 

 
GREEN  

Ligence Heart 

https://pubmed.ncbi.nlm.nih.gov/34863649/
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Study name, design and 
location 

Participants and setting 
Intervention(s) and 

comparator 
Outcomes 

Study: Karužas 2025 
 
Design: Prospective 
comparative study 
 
Location: Hospital of Lithuanian 
University of Health Sciences, 
Lithuania 
 
Publication status: Published 
 
 
 

Participants: 302 adult patients 
in sinus rhythm at the time of 
examination and experiencing 
dyspnea 
 
Demographics: 

• Mean age: 60.07 ± 16.14 
years 

• F/M: 58.3% female 

• Ethnicity 
- 100% Caucasian 

 
Setting: University hospital clinic 
(secondary care) 
 
AMBER 

Intervention: Ligence Heart 
software version 3.32.0 
 
Comparator: Single expert 
cardiologist 
 
GREEN  

1) Yield 

 
2) Difference between AI and manual values  

 
3) Range of variation between automated and manual 

measurements 

 
4) Agreement between manual and AI measurements 

 
5) Accuracy of grading 

 
GREEN  

https://pubmed.ncbi.nlm.nih.gov/40892533/
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Study name, design and 
location 

Participants and setting 
Intervention(s) and 

comparator 
Outcomes 

Study: Mołek-Dziadosz 2025 
 

Design: Retrospective 

comparative study 

 

Location: St. John Paul II 

Hospital, Kraków, Poland 

 

Publication status: Published 

 

 

 

Participants: n=118 adult 

patients with clinical indications 

for CMR  

 

Demographics: 

• Median age: 54 years (37-

67) 

• F/M:  32% female 

• Ethnicity: NR 

 

 

Setting:  

Department of Coronary Artery 

Disease and Heart Failure 

(secondary care) 

 

 

AMBER 

Intervention: Ligence Heart 

version 3.42.0 

 

Comparator: 2 independent 

human experts 

 

AMBER 

1) Variability between multi-loop AI analysis and expert 1, and 

expert 2 

• Pearson’s R 

• Concordance index 

• Cohen K 

 

2) Variability between single-loop AI analysis and expert 1, and 

expert 2 

• Pearson’s R 

• Concordance index 

 

3) Systematic bias of multi-loop AI analysis relative to expert 1 

and expert 2 

• LoA 

 

4) Systematic bias of single-loop AI analysis relative to expert 1 

and expert 2 

• LoA 

 

5) Mean absolute LVEF difference between modalities  

• LVEF MAD between single-loop AI analysis vs expert 1  

• LVEF MAD between single-loop AI analysis vs expert 2 

• LVEF MAD between single-loop AI analysis vs multi-loop analysis 

 

6) Patient outcomes 

• Number of deaths during follow-up period 
 

7) Survival analysis 

 

GREEN  

EchoConfidence 

https://pubmed.ncbi.nlm.nih.gov/40888426/
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Study name, design and 
location 

Participants and setting 
Intervention(s) and 

comparator 
Outcomes 

Study: Almeida 2025 
(FEATHER, unpublished) 
 
Design: Retrospective 
comparative study 
 
Location: UK 
 
Publication status: Unpublished  
 
 
 
 
 
 
 

Participants: 300 consecutive 
patients referred to for HF 
investigation, of which n=299 
(99.7%) echocardiograms used 
 
Demographics: 

• Mean age: 73.1 ± 12.2 
years 

• F/M: 44% male 

• Ethnicity 
- 30.4% White 
- 14.4% Asian 
- 12% Black 
- 43.1% Other 

 
Setting: Community sites 
 
GREEN 
 

Intervention: 
EchoConfidence v1.3 
 
Comparator: BSE-
accredited sonographers 
 
GREEN 
 

1) Sensitivity of AI to diagnose HFrEF, HFmrEF, HFpEF (human 

1, then human 2 as reference) 

 
2) Specificity of AI to diagnose HFrEF, HFmrEF, HFpEF  human 1, 

then human 2 as reference) 

 
3) Diagnostic accuracy of AI to diagnose HFrEF, HFmrEF, HFpEF 

(human 1, then human 2 as reference) 

 
4) NPV, PPV, FP rate, FN rate, LR+, LR- 

 
5) Time taken for analysis 

 
6) Comparison of survival curves  

 
7) Categorisation performance by human 1, human 2 and AI, and 

discordance rate 

 
GREEN 
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Study name, design and 
location 

Participants and setting 
Intervention(s) and 

comparator 
Outcomes 

Study: RECARDIO-TOX 
 
Design:  Prospective 
comparative study 
 
Publication status: Unpublished 
 
 
 
 
 
 

Participants: 60 patients with 
cancer undergoing cardiotoxicity 
surveillance echocardiography 
 
Demographics 

• Mean age: 52±12years 

• F/M: 83% female 

• Ethnicity: 
- 53% White 
- 22% Asian 
- 18% Black 
- 7% Other 

 
Setting:  Barts Heart Centre 
(secondary care) 
 
AMBER 
 

Intervention: 
EchoConfidence 
 
Comparator: Professionally 
accredited expert readers 
(median 7 years’ post 
accredited clinical 
experience) 
 
GREEN 
 

1) Test re-test (paired studies) variability in LVEF and GLS, 

between average of experts’ and AI’s measurements 

• MAD 

• Correlation, r value 

 
2) Secondary outcome – Evaluation of other precision metrics 

• MDC 

• WSCoV 

• LOA Bland-Altman method 

 
3) Inter-observer precision 

 
4) Comparison of 3DE LVEF measurements to 2DE LVEF 

measurements, both expert and AI 

• MAD 

• MDC 

 
GREEN 

Study: ACE-HEART 
 
Design:  Retrospective 
comparative study 
 
Location: NR 
 
Publication status: Unpublished 

Participants: 10 patients 
undergoing long-term anti-HER2 
therapy (interim analysis from a 
total of n=191 patients) 
 
Demographics: NR 
 
Setting: NR 
 
AMBER 

Intervention: 
EchoConfidence v1.2 
 
Comparator: expert human 
reader 
 
GREEN 

1) Variability of LVEF and GLS measurements  

• CoV  

 
2) Correlation between AI and unblinded human reader 

• Pearson’s r 

 
GREEN 

 

Abbreviations: AI: artificial intelligence; AMI: acute myocardial infarction; ATTRaCT: Asian Network for Translational Research and Cardiovascular Trials; AUROC/AUC: area 

under the receiver operating characteristic curve; CoV: coefficient of variability; E/e’ ratio: early diastolic mitral inflow velocity to early diastolic mitral annulus velocity ratio; e’ 

lateral: early diastolic velocity of the mitral annulus; F/M: female/male; GLS: global longitudinal strain; HEART: (Alberta) Heart Failure Etiology and Analysis Research Team; 
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HER2: human epidermal growth factor receptor 2; HF: heart failure; H2PEF: score for Heart Failure With Preserved Ejection Fraction; HFA-PEFF: heart Failure Association 

Pre-test assessment, Echocardiography and natriuretic peptide, Functional testing, Final etiology; HFmrEF: heart failure with mildly reduced ejection fraction; HFpEF: heart 

failure with preserved ejection fraction; HFrEF: heart failure with reduced ejection fraction; HMC-QU-MI: Hamad Medical Corporation Heart Hospital and Qatar University and 

Tampere University Myocardial Infarction (dataset); ICC: intraclass correlation coefficient; IEC: individual equivalence coefficient; LoA: limits of agreement; LR+/LR-: positive 

and negative likelihood ratio; LVEF: left ventricular ejection fraction; MAD: mean absolute deviation; MDC: minimal detectable change; NA: not applicable; NPV: negative 

predictive value; NR: not reported; POC: point-of-care; PPV: positive predictive value; PROMIS-HFpEF: prevalence of microvascular dysfunction-HF and preserved ejection 

fraction (study); RMSE: root mean square error; SD: standard deviation; TTE: transthoracic echocardiogram; wCV/WSCoV: within-subject coefficient of variation. 
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5. Clinical evidence review 

5.1 Quality appraisal of studies  

This section outlines key risks of bias identified for each study, as well as 

consistent limitations identified across the evidence base (Table 4). As 

outlined in the protocol, the EAG did not use formal critical appraisal 

checklists to assess the quality of evidence. This is in accordance with the 

methods described in the NICE EVA interim statement. Therefore, this section 

does not constitute a comprehensive summary of the quality of each study. 

There were 17 studies identified as the clinical evidence base: 3 for EchoGo 

Heart Failure, 9 for Us2.ai, 2 for Ligence Heart and 3 for EchoConfidence.  

EchoGo Heart Failure 

The 3 studies included for EchoGo Heart Failure were all retrospective case-

control studies focusing on the training and validation of the AI model. The 

study by Akerman et al. (2023a) was split into two stages. In the first stage, 

study authors developed EchoGo Heart Failure v1.0, by training the AI model 

on a mixture of cases (n=2,971) and controls (n=3,785) from UK and USA-

based datasets to detect HFpEF using a single apical 4-chamber 

transthoracic echocardiogram (TTE) video clip. In the second stage, the AI 

model was validated in a USA-based multisite dataset, consisting of 646 

cases and 638 controls. Its performance was also compared against existing 

clinical scoring tools intended to aid detection of HFpEF. The EAG notes the 

clinical scores used as a comparator were retrospectively calculated and were 

not required for the original clinical diagnoses. While the control group was 

randomly sampled, the cases group were significantly older, meaning 

complete matching was not possible.  

The study by Akerman et al. (2025a) compared the diagnostic performance of 

the updated version of EchoGo Heart Failure (v2.0) against the same existing 

clinical scoring tools (n=240 cases and n=256 controls from a single centre in 

the USA). The same limitations described for the previous study with respect 

to retrospective calculation of the clinical scores also apply to this study. 

https://www.nice.org.uk/guidance/gid-hte10067/documents/final-protocol
https://www.nice.org.uk/process/pmg39/chapter/introduction
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Cases and controls were matched on age and sex. Study authors noted that 

analysts calculating the clinical scores were not blinded to the case/control 

status of that individual.  

The study by Cassianni et al. (2024) reported on the validation of EchoGo 

Heart Failure v2.0, using the same cases and controls test data used for 

external validation by Akerman et al. (2023a). The study compared HF 

classifications made by the AI technology to those made by existing clinical 

scoring tools. This study also reported incident HF-related hospitalisation and 

HF-related mortality post-echocardiography.  

Us2.ai 

In the prospective comparative study by Campbell et al. (2025), participants 

(n=867) received 2 echocardiograms on the same day at the same clinic visit: 

one with a handheld portable device and one using conventional cart-based 

equipment. Both echocardiograms were then analysed using Us2.ai software. 

Diagnostic accuracy and interchangeability of AI measurements on handheld 

echocardiograms were compared with human analysis of cart-based 

echocardiography. This study was based in the UK (Glasgow) and was co-

developed with people with lived experience of HF. The handheld scan was 

performed prior to the cart-based scan for all participants, introducing potential 

bias as the acquisition of the first scan may have influenced HCP performance 

when acquiring the second scan. Assessment of the primary endpoint 

(detection of LVEF ≤40%) was only possible in 51% participants.  

The prospective comparative study by Hirata et al. (2024) was a single-centre 

study based in Japan where a single operator conducted echocardiographic 

examinations on 23 consecutive patients. Images were assessed by both a 

human expert and AI. Measurement time and report creation time were 

compared between AI and manual methods. The small sample size, single 

centre and single operator design of this study limits generalisability of the 

results to a wider population. 

The prospective comparative study by Huang et al. (2024a) was a single-

centre study based in Singapore, in which participants (n=100) underwent 
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echocardiography by AI-assisted novices and trained echocardiographers (the 

images of which were reported by a cardiologist). Study authors compared 

diagnostic accuracy of AI-assisted novice echocardiography to standard 

echocardiography. 94% of participants had sinus rhythm, meaning the AI 

software was not tested in more complex cases. The study authors could not 

conclude if suboptimal image quality (present in 4% of images) was 

attributable to the AI software or to the operator.  

Tromp et al. (2022a) reported a retrospective comparative study based in a 

single centre in the USA. In this study, 2 expert sonographers evaluated 

images (n=602, which had already been evaluated once), giving rise to three 

human measurements. Automated measurements were then compared to the 

human measurements, with respect to agreement, correlation and yield. Only 

high-quality images were analysed due to limitations in the AI software in 

analysing low quality images, and the cohort did not include those with HFpEF 

or atrial fibrillation. The EAG noted a breakdown of the ethnicity of participants 

was not reported. 

The study by Lafitte et al. (2025) was a single centre prospective comparative 

study based in France. AI-assistance was implemented in 2 echocardiography 

examination rooms. 894 echocardiographic examinations were conducted 

during the study period, and both human measurements and AI 

measurements were made. 31 paired measurements were identified, where 

both AI and humans performed the same measurement, and were assessed 

for concordance and correlation. The short data collection period (2 months) 

means the results may not have captured the full range of clinical scenarios. 

The study authors note that the study was conducted in a controlled setting, 

without the pressures of ‘real world’ practice, meaning results may not be 

generalisable to a wider range of settings.  

Myhre et al. (2024a) reported on a retrospective single centre study in Italy, 

where analysis was conducted on 109 participants who underwent 2D and 3D 

transthoracic echocardiography. LV end-diastolic and end-systolic volumes 

(LVEDV, LVESV) and ejection fraction (LVEF) were measured by two human 

operators the Us2.ai software, and the 3D Heart Model. Study participants 
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largely had LV volumes and EF measurements within the normal range, 

limiting generalisability to the diverse range of cases present in real practice. 

In the retrospective validation study by Myhre et al. (2024b) Study authors 

developed and trained a deep learning algorithm (Us2.ai) for left ventricular 

(LV) strain measurements in an internal dataset. Then, global longitudinal 

strain (GLS) was validated externally against human measurements in 3 

cohorts, with data from Taiwan, Sweden, Finland, the USA, Singapore and 

Qatar. The study authors noted that a lack of a ‘gold standard’ approach in 

manually calculating strain measurements may limit generalisability of the 

results. 

In the retrospective validation study by Tromp et al. (2022b), study authors 

developed an AI-assisted (Us2.ai) workflow for making measurements and 

classifications of echocardiographic images. A training dataset of 1145 

images was used, followed by an internal test set of 406 images. Validation 

was then conducted against manual measurements from 3 datasets from 

Canada, Taiwan and the USA. Only images of ‘sufficient’ quality were able to 

be analysed and annotated by the AI software, as the model was trained on 

expert annotations by trained human operators.  

The study by Sakamoto et al. (2025) was a single centre prospective 

crossover randomised controlled trial (RCT) based in Japan, reported in a 

non-peer reviewed pre-print publication. Echocardiograms (n=585) were 

conducted with AI in one arm (across 19 days) and without AI in the other arm 

(across 19 days) to evaluate the impact on efficiency of examinations. The 

study had a relatively short duration of 2.5 months, meaning the full range of 

potential clinical scenarios may not have been captured, and operators being 

aware of using AI in the intervention arm may have introduced performance 

bias (although this would have been unavoidable).  

Ligence Heart 

Mołek-Dziadosz et al. (2025) conducted a retrospective comparative study, 

investigating the performance of Ligence Heart in measuring LVEF in a single 

centre in Poland (n=118). The EAG notes the main comparator in this study 
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was cardiac magnetic resonance (CMR). However, the study also drew 

comparisons between AI-assisted echocardiography and manual 

echocardiography. Only outcomes relating to AI-assisted echocardiography 

versus manual measurements were extracted and reported by the EAG in this 

assessment. In this study, participants were only included if they had clinical 

indications for CMR, which limits generalisability to wider populations 

suspected of HF. 

Karuzas et al. (2025) reported a retrospective comparative study set in a 

single centre in Lithuania (n=302), comparing the performance of Ligence 

Heart against human operators in assessing left ventricular diastolic function. 

The study authors noted an under-representation of patients with more severe 

degrees of diastolic dysfunction. 

EchoConfidence 

All studies for EchoConfidence were supplied by the company (n=3). No 

published peer-reviewed evidence was identified by the EAG relating to this 

technology. Two studies were interim analyses of ongoing trials.  

The FEATHER study (Almeida et al.: unpublished data 2025) was a 

retrospective comparative study where the diagnostic performance of 

EchoConfidence was compared to human operators, using data from the UK 

(n=300). Participants were consecutively included in the study, representing 

an ‘all-comers’ population. There is a lack of information around the reported 

AI analysis time, making it difficult to interpret results.  

RECARDIO-TOX was a prospective single centre study based in the UK 

(n=60), where EchoConfidence was evaluated against human operators, in 

the context of monitoring those with potential post-cancer therapy 

cardiotoxicity (which can lead to HF). The study authors noted that the 

controlled setting of this study is unlikely to be representative of real-world 

settings. 

ACE-HEART was a retrospective multi-centre comparative study in which 

EchoConfidence was compared against human operators, with respect to 
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performance in monitoring post-cancer therapy cardiac dysfunction. This 

report lacked detail on the study design, participants, setting and results to 

facilitate adequate quality assessment.  

The EAG notes that both the RECARDIO-TOX and ACE-HEART studies are 

set in niche populations (post cancer surveillance) and so findings may not be 

generalisable to the wider population in the scope of this assessment. 

Table 4: Key limitations of the evidence base. 

Key limitations EAG comments  

Retrospective study 
designs 

11 studies were retrospective, which means they are subject 
to inherent bias such as the reliance on completeness of 
medical records, potential for selection bias and variation in 
practice where echocardiograms were acquired across 
multiple sites.  

Lack of UK-based data 13 studies were set outside of the UK or used non-UK 
participant data. This limits the generalisability of the 
findings due to potential differences in clinical practice and 
population demographics.  

Controlled settings not 
reflective of real-world 
populations and practice 

7 studies noted the exclusion of ‘complex’ cases in the study 
cohorts, either actively through case selection or passively 
through short study periods. This may introduce spectrum 
bias and limit the generalisability of findings to real-world 
settings. Additionally, some prospective studies were 
conducted in ‘controlled’ environments which meant the 
conditions were not reflective of real workflow e.g. time 
pressure. 

Exclusion of poor-quality 
images 

5 studies stated that poor-quality images were either 
excluded prospectively as it was known the AI software 
cannot analyse them adequately, or poor-quality images 
were excluded from retrospective analyses as the AI 
software was unable to read and take measurements. This 
may impact upon the suitability of AI tools in real practice, 
where image quality may vary. 

Single centre (and 
occasionally single 
operator) studies  

9 studies were based in a single centre or used data from a 
single site. Furthermore, one study had one operator 
conducting echocardiograms. This does not allow for inter-
centre or inter-operator variability and could limit 
generalisability of findings. 

Lack of clarity on 
technology versions used 

11 studies did not specify the generation or version of 
technology being investigated. The EAG sought clarification 
on versions where possible and has included this 
information in the report.  

Lack of downstream 
health-related outcomes 
recorded  

There was a paucity of health-related outcomes reported in 
relation to the implementation of any of the AI technologies 
in scope. This means it is difficult to determine any clinical 
benefit to patients through introducing these technologies 
into the care pathway. There is some evidence to suggest 
the AI technologies could support shifting echocardiography 
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to community/mobile care settings to improve access and 
decrease time to diagnosis, but this evidence is limited.  

Abbreviations: AI: artificial intelligence; EAG: external assessment group; HF: heart failure; UK: United 

Kingdom. 

5.2 Results from the evidence base 

The evidence base consisted of 17 key studies across the 4 technologies in 

scope: 

• EchoGo: n=3 studies  

• Us2.ai: n=9 studies 

• Ligence Heart: n=2 studies 

• EchoConfidence: n=3 studies 

 

Table 5 summarises the outcomes which are reported across the studies, split 

by technology. 
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Table 5: Summary of outcomes reported, split by technology. 

  EchoGo Heart Failure Us2.ai Ligence Heart EchoConfidence 

Outcome 

grouping 
Outcome 

Akerman 

2025a 

Akerman 

2023a 

Cassianni 

2024 

Campbell 

2025 
Hirata 2024 

Huang 

2024a 
Lafitte 2025 

Myhre 

2024a 

Myhre 

2024b 

Sakamoto 

2025 

Tromp 

2022a 

Tromp 

2022b 

Molek-
Dziadosz 

2025 

Karužas 

2025 

Almeida 
2025 

(FEATHER) 

RECARDIO

-TOX 

ACE-

HEART 

Diagnostic 

 

Diagnostic test 
accuracy 

√ √  √  √         √   

Detection and 
classification of 

HF 
√ √  √  √   √   √      

Validation 

Interchangeability    √       √       

Correlation            √ √ √  √ √ 

Agreement    √ √  √ √ √ √ √  √ √    

Clinical 

Clinical endpoints 

following AI 
analysis 

√ √ √            √   

Procedural 

Yield      √   √  √   √    

Impact on 
procedure time 

    √     √     √   

Abbreviations: AI: artificial intelligence; HF: heart failure. 
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Table 6 summarises the key outcomes reported across the evidence base 

and how results should be interpreted. 

Table 6: Included outcome measures and descriptions.  

Measure Definitions and Interpretation 

Individual 
equivalence 
coefficient (IEC) 

Compares the disagreement between deep learning and human 
readers relative to the disagreement among human readers. 

Interpretation: 

A mean IEC of -0.25 means the variability between AI and human 
measurements was 25% lower than the variability among 
humans. 

A mean IEC of 0.25 means that the variability between AI and 
human measurements were 25% higher than the variability 
among humans. 

Intraclass correlation 
coefficient (ICC) 

Used to determine if measurements or ratings are consistent with 
each other.  

Interpretation: 

<0.5: poor reliability 

0.5-0.75: moderate reliability 

0.75-0.9: good reliability 

>0.9: excellent reliability 

κ value (Cohen’s 
kappa coefficient) 

Used to measure inter-rater reliability. 

Interpretation:  

A value of +1 indicates perfect agreement,  

A value of 0 indicates agreement by chance, 

Values <0 indicate agreement is worse than chance. 

Limit of agreement 

(LoA) 

Results are reported as lower LoA, upper LoA. 

Interpretation: 

A narrow range (between upper and lower LoA) indicates better 
agreement. 

A wide range suggests the two methods may not be 
interchangeable. 

Mean absolute 
deviation (MAD) 

The mean (average) of the absolute values of the deviations 
(errors) between actual and forecast data.  

Interpretation: 

The larger the MAD, the greater variability there is in the data  

Negative predictive 
value (NPV) 

(true negative)/(true negative+false negative) 

Probability that following a negative test result, the individual 
will truly not have the condition. 

Pearson’s r Indicates the linear correlation between two sets of data. 

Interpretation: 

The closer the value is to -1 or +1, the stronger the relationship. 

Positive predictive 
value (PPV) 

(true positive)/(true positive+false positive) 

Probability that following a positive test result, the individual 
will truly have the condition. 
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Receiver operating 
characteristic (ROC) 
curve, area under the 
curve (AUC)/ or 
discrimination 

Measures how well an AI model can differentiate patients with the 
condition from those without the outcome. 

Interpretation: 

A higher AUC indicates better performance (where 1 is a perfect 
fit) 

A random model would have an AUC of 0.5. 

Root mean standard 
error (RMSE) 

Measure of how spread out the residuals (difference between 
actual and predicted value) are from the regression line (line of 
best fit which shows the relationship between two variables in a 
dataset). 

Interpretation: 

The lower the RMSE, the better the agreement among the 
different measurements. 

Sensitivity 

(true positive rate) 

(true positives)/(true positives+true negatives) 

Interpretation: a sensitivity rate of 90% means 90% of individuals 
who have the condition will test positive. 

Specificity 

(true negative rate) 

(true negative)/(true negative+false positive) 

Interpretation: a specificity rate of 90% means 90% of individuals 
who do not have the condition will test negative. 

Within subject 
coefficient of 
variation 

(wCV or WSCoV) 

Within-patient variability of individual measurements relative to 
the within-patient mean. 

Interpretation: 

Low wCV indicates high reproducibility, meaning measurements 
on the same person are similar. 

High wCV suggests greater day-to-day or test-retest variability 
within that individual. 

Yield (%) Proportion of echocardiogram exams/studies where AI could 
successfully measure the relevant variable, such as the 
proportion of exams with an AI-measurable LVEF or GLS. 

Interpretation: 

If an AI technology could successfully produce a read on LVEF or 
GLS measurement for 96 of 100 studies, the yield was 96%. 

Abbreviations: AI: artificial intelligence; AUC: area under the curve; GLS: global longitudinal strain; 

ICC: intraclass correlation coefficient; IEC; individual equivalence coefficient; LoA: level of agreement; 

LVEF: left ventricular ejection fraction; MAD: mean absolute deviation; NPV: negative predictive value; 

PPV: positive predictive value; RMSE: root mean standard error; ROC: Receiver Operating 

Characteristic; wCV/WSCoV: within subject coefficient of variation. 

5.2.1 Diagnostic test accuracy  

Diagnostic test accuracy was assessed using sensitivity, specificity, negative 

predictive value (NPV) and positive predictive value (PPV), (Table 6). These 

outcomes are reported across 5 studies, for 3 of the technologies: 

- EchoGo Heart Failure: n=2 studies 

- Us2.ai: n=2 studies 

- EchoConfidence: n=1 study 
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Evidence for EchoGo Heart Failure  

Akerman et al. (2025a) compared EchoGo Heart Failure V2 to two existing 

multiparametric clinical scoring tools (H2FPEF and HFA-PEFF), reporting 

sensitivity, specificity, NPV and PPV in detection of HFpEF in a case-control 

study. Cases were retrospectively identified as those recorded as having 

grade II-III diastolic dysfunction. Results show that, when considering all 

available data, EchoGo Heart Failure v2.0 had improved sensitivity and 

specificity in comparison to the H2FPEF and HFA-PEFF scores, but there was 

no difference in NPV or PPV in comparison to H2FPEF and lower NPV and 

PPV in comparison to HFA-PEFF. Akerman et al. (2023a) reported the same 

diagnostic test accuracy outcomes for the validation of EchoGo Heart Failure 

v1.0 in detecting HFpEF cases. Sensitivity and specificity were observed to 

exceed average reported data in the literature (sensitivity of 74% and 

specificity of 65%), used by study authors as a priori benchmark, with 

corresponding NPV and PPV values (Table 7). 

Table 7: Diagnostic test accuracy results for EchoGo Heart Failure. 

Model/score Sensitivity Specificity NPV PPV 

EchoGo Heart 
Failure v2.0 

77.4% (95% CI 
74.6–79.6%) 

50.2% (95% CI 
48.6–52.1%) 

81.6% (95% CI 
73.6%–87.6%) 

67.3% (95% CI 
59.6%–71.7%) 

H2FPEF 53.9% (95% CI 
50.2–58.2%) 

12.8% (95% CI 
11.8–13.9%) 

90.3% (95% CI 
75.0–100.0%) 

73.6% (95% CI 
64.9–79.3%) 

HFA-PEFF 63.2% (95% CI 
58.3–68.0%) 

29.0% (95% CI 
26.9–31.0%) 

98.5% (95% CI 
94.7–100.0%) 

86.3% (95% CI 
79.3–91.1%) 

EchoGo Heart 
Failure v1.0 

(87.8%; 95% CI: 
84.5%-90.9%) 

(81.9%; 95% CI: 
78.2%-85.6%) 

86.5% (95% CI: 
83.0%-90.0%) 

83.6% (95% CI: 
80.2%-87.0%) 

Abbreviations: CI: confidence interval; H2FPEF: Heavy, Hypertensive, Atrial Fibrillation, Pulmonary 

Hypertension, Elderly, Filling Pressure); HFA-PEFF: Heart Failure Association Pre-test assessment, 

Echocardiographic and Natriuretic Peptide Score, Functional Testing in Case of Uncertainty, and Final 

Etiology; NPV: negative predictive value; PPV: positive predictive value. 

 

Evidence for Us2.ai 

Huang et al. (2024a) and Campbell et al. (2025) report on the diagnostic 

accuracy of the Us2.ai technology in conjunction with handheld TTE (Table 8). 

In the study by Huang et al. (2024a) comparisons were drawn between AI-

https://pubmed.ncbi.nlm.nih.gov/40133291/
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assisted novice-performed handheld TTE and standard sonographer-

performed cart-based TTE as the reference standard. In the study by 

Campbell et al. (2025), comparisons were drawn between AI-assisted 

sonographer-performed handheld TTE and manual sonographer-performed 

cart-based TTE as the reference standard. The results are mixed, with higher 

specificity and NPV values, and lower sensitivity and PPV values observed for 

the AI technology, particularly in the study by Campbell et al. (2025).  

Table 8: Diagnostic test accuracy results for Us2.ai-assisted handheld TTE. 

Study Sensitivity Specificity NPV PPV 

Huang et al. 
2024a 

85% 

 

91% 

 

94% 79% 

Campbell et al. 
2025 

61% 

 

95% 97% 50% 

Abbreviations: NPV: negative predictive value; PPV: positive predictive value. 

Evidence for EchoConfidence 

The FEATHER study interim analysis reported on diagnostic test accuracy of 

EchoConfidence for detection of HFrEF and HFpEF with human 

measurements as the reference standard. Results were mixed, with a 

moderately high FN rate reported for HFrEF (Table 9). 

Table 9: Diagnostic test accuracy outcomes (FEATHER). 

Condition FP Rate FN Rate NPV PPV Specificity 

HFrEF 

 

2.83% 41.2% 

 

90.8% 83.3% 91.1% (95% 
CI 88.6-
93.5%) 

 

HFpEF 

 

7.23% 15.3% 95.8% 75.8% 95.2% (95% 
CI 93.2-
97.2%) 

Abbreviations: CI: confidence interval; FP: false positive; FN: false negative; HFpEF: heart failure with 

preserved ejection fraction; HFrEF: heart failure with reduced ejection fraction; NPV: negative predictive 

value; PPV: positive predictive value. 
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Using human measurements as the reference standard, specificity of 

EchoConfidence in detecting HF of any subtype was 83.1% (95% CI 78.8-

87.4%). Specificity to detect HFmrEF was 90.0% (95% CI 87.2-92.8%).  

5.2.2 Detection and classification of HF 

This section refers to outcomes measuring a technology’s ability to detect 

echocardiographic findings which are indicative of HF, including differentiation 

between types of HF (e.g. HFrEF and HFpEF). This can be evaluated using 

the area under the curve (AUC) of the receiver operating characteristic (ROC) 

curve, (Table 6). This outcome is reported across 6 studies, across 2 

technologies: 

• EchoGo Heart Failure: n=2 studies 

• Us2.ai: n=4 studies 

 

Evidence for EchoGo Heart Failure 

Akerman et al. (2025a) compared the ability to detect HFpEF of EchoGo 

Heart Failure v2.0 with that of an existing clinical scoring tool (H2FPEF). 

There was no significant difference between the two, with a mean difference 

in AUROC of 0.01 (95% CI -0.043-0.064, p=0.710); EchoGo Heart Failure 

v2.0 AUROC of 0.798 (95.0% CI: 0.756-0.799 vs H2FPEF AUROC of 0.788 

(95.0% CI: 0.745-0.789). 

 

Akerman et al. (2023a) assessed EchoGo Heart Failure v1.0’s ability to aid 

detection of HFpEF in a cohort of 2,971 patients with diagnosed HF (training 

set) and 646 patients with diagnosed HF (validation set). The AUROC was 

0.97 (95% CI: 0.96-0.97) in the training set and 0.95 (95% CI: 0.93-0.96) in 

the validation set. This indicates good performance in aiding detection of 

HFpEF.  

 

Evidence for Us2.ai 

Myhre et al. (2024b) assessed Us2.ai’s ability to discriminate between 

patients with HF from those without, as well as between HFrEF and non-HF 

patients, and between HFpEF and non-HF patients, using automated 

https://pubmed.ncbi.nlm.nih.gov/38264705/
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measurement of GLS. Validation was performed in two cohorts, where the 

AUC related to the ability to identify region wall-motion abnormalities. 

In the first cohort the following AUC values were reported: 

• AUC=0.89 (95%CI 0.87–0.89, identifying HF from non-HF) 

• AUC=0.98 (95%CI 0.97–0.98, identifying HFrEF from non-HF) 

• AUC=0.82 (95%CI 0.80–0.82, identifying HFpEF from non-HF) 

In the second cohort the average AUC was 0.80 (CIs not reported).  

 

Tromp et al. (2022b) assessed Us2.ai’s ability to automate 3 common 

echocardiographic measures which may be indicative of HFpEF: e’ lateral 

wave velocity <10cm/s, LVEF <40% and E/e’ ratio ≥13, using the AUC of 

ROC. Internal validation was conducted using one dataset (ATTRaCT) and 

external validation was conducted in 3 cohorts (HEART, Taiwan cohort, 

EchoNet Dynamic). 

 

The results suggest good performance in both internal and external datasets, 

with high AUC values reported across all cohorts (Table 10). 

Table 10: AUC values from study by Tromp et al. (2022b). 

Cohort LVEF <40% e’ lateral wave 

velocity <10cm/s 

E/e’ ratio 

ATTRaCT AUC 0.96 (95% CI 

0.92–0.99) 

AUC 0.95 (0.88–0.99) AUC 0.96 (0.92–0.99) 

HEART AUC 0.91 (95% CI 

0.88–0.94) 

AUC 0.88 (0.84–0.92) AUC 0.91 (0.88–0.94) 

EchoNet 

Dynamic 

AUC 0.92 (0.91–0.94) NR NR 

Taiwan AUC 0.90 (0.89–0.90) AUC 0.94 (0.93–0.95) AUC 0.91 (0.89–0.93) 

Abbreviations: AUC: area under curve; CI: confidence interval. 

 

Huang et al. (2024a) reported the AUC for novice-operated handheld TTE 

assisted by Us2.ai in detecting LVEF <50% as 0.880 (95% CI 0.802-0.958). 

Campbell et al. (2025) reported the AUROC for handheld TTE assisted by 

Us2.ai in detecting LVEF ≤40% as 0.96 (95% CI 0.94-0.98). These results 

https://pubmed.ncbi.nlm.nih.gov/34863649/
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suggest that the Us2.ai technology has good performance detecting left 

ventricular dysfunction that is indicative of HF.  

5.2.3 Interchangeability between human and AI 

measurements 

Interchangeability between human and AI measurements refers to the extent 

to which the AI model’s measurements match measurements made by human 

healthcare professionals (HCPs) It is measured using the individual 

equivalence coefficient (IEC, see Table 6). This outcome is reported across 2 

studies, both of which relate to the Us2.ai technology. 

 

Evidence for Us2.ai 

Campbell et al. (2025) report the IEC between Us2.ai-automated analysis and 

human analysis. The IEC between handheld transthoracic echocardiogram 

(TTE) Us2.ai analysis with two human sonographers’ analysis of cart-based 

TTE was -0.40 (95% CI -0.60 to -0.16). IEC between cart-based TTE Us2.ai-

automated analysis with two human sonographers’ analysis of cart-based was 

-0.39 (95% CI -0.60 to -0.12). IEC between Us2.ai-automated analysis of 

handheld TTE with two human sonographers’ analysis of handheld TTE was -

0.34 (95% CI -0.53 to -0.11). The negative IEC values reported suggest less 

variability between AI-automated analysis and human analysis relative to the 

variability between two measurements made by humans. Tromp et al. (2022a) 

reported mean IEC between AI-assisted TTE and manual TTE across several 

parameters, from -0.04 (left ventricular posterior wall diameter) to -0.81 (left 

ventricular diastolic volume). All are below 0, indicating low levels of variability 

between AI-automated analysis and human analysis, relative to variability 

between human measurements. 

5.2.4 Correlation between human and AI measurements 

Correlation between human and AI measurements is a measure of how 

closely the two measurements align. It differs from agreement, reported in the 

subsequent section, as it is a simple measure of the linear relationship 

between two measurements, and has no bearing on whether they are 

consistent with each other. 
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This outcome is reported across 4 studies: 

• Us2.ai: n=1 study 

• Ligence Heart: n=1 study 

• EchoConfidence: n=2 studies 

 

Evidence for Us2.ai 

Tromp et al. (2022b) retrospectively assessed the correlation between 

automated and manual measurements for 3 clinically relevant parameters in 

aiding HF diagnosis, using Pearson’s r correlation coefficient: left ventricular 

ejection fraction (LVEF), early diastolic velocity of the mitral annulus (e’ 

lateral), and E/e’ ratio which is used to estimate the left ventricular (LV) filling 

pressure. Each clinical parameter was assessed for correlation using an 

internal dataset (ATTRaCT) and then assessed using 3 external datasets from 

Canada (HEART), the USA (EchoNet Dynamic) and Taiwan. Overall, the 

results suggest moderate correlation between automated and manual 

measurements across all 4 datasets (Table 11). 

Table 11: Correlation results from Tromp et al. (2022b). 

Cohort LVEF e’lateral E/e’ ratio 

ATTRaCT r = 0.89 (MAE: 5.5%) r=0.92 (MAE 0.7cm/s) r=0.90 (MAE 1.7) 

HEART r=0.75 (MAE 8.6%) r= 0.79 (MAE 1.2cm/s) r=0.75 (MAE 2.2) 

EchoNet 
Dynamic 

r=0.76 (MAE 6.5%) 

 

NR NR 

Taiwan 
cohort 

r=0.75 (MAE 10.2%) r=0.87 (MAE 1.6cm/s) r=0.79 (MAE 1.8) 

Abbreviations: LVEF: left ventricular ejection fraction; MAE: mean absolute error. 

 

Evidence for Ligence Heart 

Karužas et al. (2025) reported mixed results with respect to correlation 

between AI and manual measurements. Strong correlation was observed in 

some parameters (left atrium volume index: r=0.92, E velocity: r=0.93, E/A 

https://pubmed.ncbi.nlm.nih.gov/40892533/
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ratio r=0.94). Correlation for other parameters ranged from 0.55 (for maximum 

tricuspid regurgitant velocity) to 0.89 (for E/Le’ ratio (mitral velocity).  

Mołek‑Dziadosz et al. (2025) compared single-loop AI analysis and multi-loop 

AI analysis with human expert measurements. Multi-loop AI analysis was 

observed to have strong correlation with the two human experts (r = 0.88 and 

r = 0.9, respectively). Single‑loop AI analysis also demonstrated strong 

agreement with both human experts (r = 0.89 and r = 0.92, respectively). 

Evidence for EchoConfidence 

The results presented here are interim results for the RECARDIO-TOX and 

ACE-HEART studies. In the RECARDIO-TOX study, the authors report 

moderate correlation coefficients between AI and human measurements for 

LVEF and GLS: 

o LVEF: r=0.74 

o GLS: r=0.72 

In the ACE-HEART study, EchoConfidence (v.1.1) measurements were 

assessed for correlation with a blinded human expert, and with the 

participants’ original clinical reports, for both LVEF and GLS. Moderate 

correlation was observed across all comparisons, with a lower correlation 

observed between blinded expert and AI measurements for GLS (Table 12). 

Table 12: Correlation results between EchoConfidence and human 

measurements. 

Comparison LVEF (Pearson’s r) GLS (Pearson’s r) 

Blinded expert versus AI 0.739 (0.630-0.819) r=0.584 (0.429-0.706) 

Blinded expert versus 
clinical report 

0.773 (0.676-0.844) r=0.615 (0.440-0.745) 

AI versus clinical report: 0.779 (0.687-0.846) r=0.689 (0.544-0.794) 

https://pubmed.ncbi.nlm.nih.gov/40888426/
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Abbreviations: AI: artificial intelligence; GLS: global longitudinal strain; LVEF: left ventricular ejection 

fraction.  

5.2.5 Agreement between human and AI measurements 

Agreement refers to the concordance between measurements produced by 

humans (HCPs) versus those produced by AI. It can be measured using the 

intraclass correlation coefficient (ICC), the level of agreement (LoA), the mean 

absolute difference (MAD) (Table 6) and the mean difference (MD). This 

outcome is reported across 9 studies, for 2 of the technologies: 

• Us2.ai: n=7 studies 

• Ligence Heart: n=2 studies 

 

Evidence for Us2.ai 

In post-hoc analyses, Campbell et al. (2025) reported the agreement between 

human and AI measurements using the MD between AI-automated and 

human measurements of LVEF. For AI-automated LVEF vs human core 

laboratory analyses for handheld scans, MD was 5.2% (95% CI 4.2 - 6.2; 

p<0.0001). For AI-automated LVEF and human core laboratory analyses for 

cart scans, MD was 4.2% (95% CI 3.4 - 5.0); (p<0.0001). Both MD values 

were smaller than the difference between human clinical assessment and 

human core laboratory measurements of cart-scans (6.5%, 95% CI 5.7, 7.3; 

p<0.0001). 

 

Hirata et al. (2024) used the ICC to assess the agreement between AI and 

human measurements. The ICC values ranged from 0.48 (95% CI 0.09-0.75) 

for deceleration time (DecT) to 1.00 (95% CI 0.99-1.00) for aortic valve 

maximum velocity (AoV VMAX). This indicates variability in levels of agreement 

across the tested parameters.  

 

Lafitte et al. (2025) report the ICC values for AI measurements versus human 

measurements, which ranged from 0.35 (95% CI 0.26-0.43) for DecT, to 0.97 

(95% CI 0.95-0.98) for mitral valve E wave velocity (MV-E). This indicates a 

wide range of agreement between AI and human measurements. The authors 

https://pubmed.ncbi.nlm.nih.gov/38308797/
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also report a global MD of -4% (SD 15%) between AI and human 

measurements.  

 

Myhre et al. (2024a) assessed the ICC between AI-automated measurements 

and the mean of human operator measurements. The ICC between AI-

automated and mean operator measurements for left ventricular end-diastolic 

volumes (LVEDV) (0.941 (95% CI 0.913–0.959)) was higher than that 

between two human operators (0.847 (95% CI 0.777–0.896)), and similar to 

that of two measurements by the same reader (0.944 (95% CI 0.918–0.962)). 

For left ventricular end-systolic volumes (LVESV) measurements, ICC was 

highest for that of two measurements by the same reader (0.947 (95% CI 

0.922–0.964)), and lowest for AI-automated versus mean operator 

measurements (0.600 (95% CI 0.415–0.726)). For LVEF, the ICC between AI-

automated and mean operator measurements (0.818 (95% CI 0.734–0.875)) 

was similar to the ICC between two operators (0.812 (95% CI 0.725–0.871). 

This suggests that the AI model showed high agreement with human 

measurements, except for LVESV measurements where agreement was 

slightly lower. Myhre et al. (2024b) reported the agreement between 

automated and manual measurements of GLS using RMSE (2.6), suggesting 

good agreement between both methods. 

 

Tromp et al. (2022a) reported that the ICC between automated and human 

measurements was higher than amongst human experts, although this was an 

exploratory analysis. Both within subject coefficient variance (wCV) and 

RMSE were, however, higher for automated versus human measurements. 

The LoA ranged from 0.05 ± 0.39 for tricuspid regurgitation maximum velocity 

(TR VMAX) to 11.12 ± 88.10 for DecT, demonstrating mixed results with 

respect to agreement calculated for different parameters. 

 

Sakamoto et al. (2025) report that the ICC between AI and sonographers 

were all >0.8 across 301 measured parameters (all p-values <0.001) which 

suggests good concordance between initial measurements made by AI and 

final report values.  
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Evidence for Ligence Heart 

Mołek-Dziadosz et al. (2025) reported moderate concordance of multi-loop AI 

analysis with human experts for categorization of LVEF into subgroups, 

Cohen κ values 0.74 and 0.76 for two human experts respectively. Karuzas et 

al. (2025) reported mixed results with respect to lower and upper LoA across 

various echocardiographic parameters, indicating some variation in level of 

agreement with manual measurements. Lower and upper LoA values were 

noticeably wide for DecT (-62.28 to 73.27).  

5.2.6 Clinical outcomes 

Clinical outcomes are reported in 4 studies, 3 of which relate to the EchoGo 

Heart Failure technology. The remaining study relates to EchoConfidence. 

These studies investigated clinical endpoints being met by those assessed 

with AI, to determine the usefulness of the AI technologies in the HF clinical 

pathway. Outcomes included HF-related hospitalisations and mortality. 

 

Evidence for EchoGo Heart Failure 

Akerman et al. (2025a) reported on the prognostic association between AI-

assisted analysis and a composite endpoint of HF hospitalisations or death. In 

the study cohort, at a median follow-up of 25.0 (IQR: 15.0-35.0) months, there 

were 45 HF hospitalisations (10.3%) and 61 deaths (14.2%). The authors 

stated that a diagnostic positive result indicated by EchoGo Heart Failure was 

associated with a two-fold risk of the composite endpoint. However, a similar 

increase in risk was also observed for ‘positive’ results from the manual 

clinical scoring tool comparators. Cassianni et al. (2024) also reported on the 

risk of HF hospitalisation and death in the study cohort of 1284 patients 

followed for a median of 3.4 (IQR: 1.7-6.5) years (n=252 and n=540, 

respectively). Again, the increased risk in the adverse clinical endpoints were 

associated ‘positive’ outputs from EchoGo Heart Failure and both clinical 

scoring tool comparators. Akerman et al. (2023a) observed that during follow-

up (median: 2.3 years), 444 (34.6%) patients died. Mortality was observed to 

be higher in patients classified as HFpEF by AI [HR: 1.9 (95% CI: 1.5-2.4) in 

comparison to those classified without having HFpEF by AI. 
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External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to 
support diagnosis of heart failure: Early Value Assessment 
Date: December 2025  61 of 192 

The results reported from these studies suggest EchoGo Heart Failure may 

be useful in aiding detection of HF, but its benefit over other methods (such as 

existing manual clinical scoring tools) is unclear, with respect to clinical 

outcomes such as HF-related hospitalisation and HF-related death.   

 

Evidence for EchoConfidence 

Interim results from the FEATHER study report freedom from death or HF 

hospitalization, and compared differences in survival curves for those with HF 

diagnoses (HF, HFrEF, HFmrEF or HFpEF) to those without HF diagnoses,  

as classified by the AI model and 2 human comparators (Table 13).  

Table 13: Differences in survival curves between HF cases and non-cases 

(FEATHER). 

Comparison Human 1 Human 2 EchoConfidence 

HF and no HF p=0.225 p<0.05 p=0.078 

HFrEF and no HF p<0.05 p<0.01 p<0.001 

HFmrEF or HFrEF 

and no HF 

p<0.05 p<0.01 p<0.01 

HFpEF and no HF p=0.737 p=0.143 p=0.846 

Abbreviations: HF: heart failure; HFpEF: heart failure with preserved ejection fraction; HFmrEF: heart 

failure with mildly reduced ejection fraction; HFrEF: heart failure with reduced ejection fraction. 

There is limited information reported beyond p values, so it is not possible to 

interpret and draw conclusions from this data.  

5.2.7 Yield of measurements 

The yield of AI models, with respect to generating or automating 

measurements, is reported across 4 studies, of which 3 studies are for Us2.ai 

(Huang et al. 2024a, Myhre et al. 2024b, Tromp et al. 2022a) and one study 

for Ligence Heart (Karužas et al. 2025).  

Evidence for Us2.ai 
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In the study by Huang et al. (2024a), yield was defined as the proportion of 

images acquired by novices using Us2.ai-assisted handheld TTE where an 

LVEF measurement was successfully generated, using the number of 

standard cart-based TTEs with cardiologist-reported LVEFs as the 

denominator. Yield was reported to be 96%.  

Myhre et al. (2024b) defined yield as the proportion of GLS measurements 

generated by Us2.ai-assisted TTE, in comparison to the original manual 

methods of measurement in 3 retrospective datasets. Yield was 89% in the 

Taiwan cohort, 96% in the PROMIS-HFpEF cohort, and 98% in the HMC-QU-

MI cohort. 

In the study by Tromp et al. (2022a), average yield proportion using Us2.ai 

was 0.88 (range 0.69-0.97) across 23 echocardiographic parameters, in 

comparison to the average measurements yielded by 3 humans.  

Evidence for Ligence Heart  

Karužas et al. (2025) reported that Ligence Heart achieved a perfect yield 

(1.0) for all Doppler parameters relevant to diastolic function. Yield of left atrial 

area measurements ranged from 0.82–0.95.  

5.2.8 Impact on procedure time 

Impact on reporting, scanning or analysis time is reported across 3 studies, 2 

for Us2.ai and 1 study for EchoConfidence.  

 

Evidence for Us2.ai 

In the study by Hirata et al. (2024), it was reported that using Us2.ai-

asisstance achieved time savings in making echocardiographic 

measurements (mean manual measurement time of 325 ± 94 seconds versus 

mean AI measurement time of 159 ± 66 seconds, p<0.01). Report creation 

time was also reportedly shorter when using AI (mean manual report creation 

time of 429 ± 128s versus mean AI report creation time of 71±39s, p<0.01). 

The mean time for measurement and report creation per case reduced by 

524s (70%) with AI assistance. This was a small single-centre, single-operator 

study with just 23 participants, based in Japan.   
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In the study by Sakamoto et al. (2025), examination time per patient was 

reported to be shorter with AI assistance (Us2.ai) (13.0 ± 3.5 minutes versus 

14.3 ± 4.2 minutes without AI, p<0.001). Number of examinations per day was 

also reported to be greater with AI assistance (16.7 ± 2.5) versus without AI 

(14.1 ± 2.5, p=0.003). This study is reported in a pre-print publication, and so 

it must be noted that these findings have not been subject to peer review. 

Only the mean values were reported so it was not possible for the EAG to 

assess the data in detail. Reports of significant differences should be 

interpreted with caution. 

Evidence for EchoConfidence 

In the FEATHER study (Almeida et al.: unpublished data 2025), it was 

reported that EchoConfidence reduced mean time for analysis of 

echocardiographic parameters (3.2 ± 0.4 seconds) versus 2 humans (553 ± 

44 seconds and 587 ± 64 seconds). Only the mean values were reported so it 

was not possible for the EAG to assess the data in detail.   

5.2.9 Impact on echocardiography setting and operators  

Clinical experts highlighted the potential for the AI technologies to support a 

shift of echocardiography out of secondary care, into primary or community 

settings. As outlined in Section 4.1, studies from a community setting were 

only included by the EAG if conducted in the UK (as community settings were 

not formally included in the published scope). The EAG has summarised any 

evidence of AI-assisted echocardiography in community care, or evidence 

relating to a change in setting or operator as a result of implementation of AI-

assisted echocardiography. 

Of the 17 key studies identified by the EAG, 1 included data from a UK 

community care setting (Almeida et al.: unpublished data 2025, 

EchoConfidence). However, this was an interim analysis. The company states 

further data will be reported in December 2025 (see Section 8.1). Results from 

this study relating to the technology’s performance have been discussed in 

previous sections. The interim results reported indicate there may be potential 

for EchoConfidence to be safely implemented in community care, but 
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evidence to demonstrate its impact on procedure time and the type of 

operator is limited.  

Two studies reported data which may be considered relevant to the use of 

echocardiography in community settings, but the studies themselves were in 

secondary care settings. The use of AI-assisted (Us2.ai) handheld 

echocardiography, as opposed to cart-based standard echocardiography, is 

reported in the study by Campbell et al. (2025). Huang et al. (2024a) 

compared the diagnostic accuracy of AI-assisted (Us2.ai) echocardiography 

performed by ‘novice’ operators, compared to standard expert-led 

echocardiography. Results from these studies have been discussed in 

previous sections. Evidence from studies demonstrate there is potential for 

the AI technologies to be successfully integrated with handheld TTE. The 

feasibility of using AI to assist to automate measurements on handheld 

systems and automating measurements to assist novice operators may 

demonstrate potential for these technologies to be used in community 

settings.  

No studies reported in conference proceedings identified by the EAG were set 

in community settings in the UK (Appendix C). Ongoing trials that were 

identified as relevant to supporting the shifting of TTE to community settings 

are discussed in Section 8.1. 

5.3 Adverse events and clinical risk  

5.3.1 Adverse events 

A search of the MAUDE database and MHRA (field safety notices/device 

safely information) did not identify any adverse events or safety concerns 

relating to any of the included technologies. Adverse events were not reported 

in any of the studies included in the clinical evidence review. This may reflect 

the largely retrospective nature of the evidence base.  
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5.3.2 Clinical risk 

Artificial intelligence (AI) models such as those used by the technologies in 

the scope of this assessment typically undergo the following stages of 

development:  

1) Training: teaching the model how to perform its intended function by 

using a training population 

2) Internal validation: testing if the model works as intended on the same 

type of population it was trained on  

3) External validation: testing if the model works as intended on a different 

type of population to that it was trained on 

During the scoping phase of this assessment, SCMs and clinical experts 

highlighted that if AI models have not been validated on a UK population, or a 

cohort similar to that of the UK population, this may limit its suitability for use 

in UK settings (i.e. the ‘target’ population in this assessment) and pose a 

clinical risk. Therefore, the demographics (age, sex, ethnicity, key 

comorbidities) of external validation cohorts (either from published studies or 

from information submitted by companies to NICE) have been extracted by 

the EAG and presented alongside the demographics of HF admissions in the 

UK (National Heart Failure Audit, 2025) (Table 14). While there is an 

argument to suggest models may be suitable for use in the target population if 

the internal validation “test” population during a train-test split was similar to 

that target population, the likelihood of that occurring is very low. Therefore, 

the EAG have focused on comparison between the external validation 

populations to the target population in question. The EAG notes that 

EchoConfidence was validated on a UK population as part of its CE marking 

process. Inconsistency between the format of demographic data reported 

between studies/datasets and the reference data used from the UK NHFA 

audit makes it difficult to draw conclusions about the suitability of the 

remaining AI technologies for use in the UK population. The EAG believes 

there is a lack of evidence to determine whether EchoGo Heart Failure, 

https://www.nicor.org.uk/interactive-reports/national-heart-failure-audit-nhfa
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US2.ai or Ligence Heart have been adequately externally validated in a UK 

population, or a population with demographics close to that of UK population.
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Table 14: Comparison between demographics of external validation cohorts and UK HF cohort.  

Technology (source) Age Sex Ethnicity Demographics 

EchoGo Heart Failure v1.0 

(Akerman 2023a) 

Controls 

Mean age: 64.6±17.4 
years  

Cases 

Mean age: 72.4±13.3 
years  

Controls 

51.1% female  

Cases 

52.2% female  

Controls 

• 19.9% African American  

• 60.0% White, non-Hispanic  

• 20.1% Other  

Cases 

• 19.2% African American 

• 61.8% White, non-Hispanic  

• 19.0% Other  

Controls 

• 35.8% hypertension 

• 12.5% AF 

• 7.9% CAD 

• 11.6% DM 

 

Cases 

• 78.8% hypertension 

• 35.0% AF 

• 33.6% CAD 

• 39.6% DM  

 

EchoGo Heart Failure v2.0 

(Akerman 2025a) 

Controls 

Mean age: 75.0 ± 
13.0 years 

Cases 

Mean age: 74.2 ± 
12.1 years 

 

Controls 

55.1% female  

Cases 

54.2% female 

Controls 

• 78.1% White 

• 6.6% African American 

• 5.5% Asian 

• 9.0% other 

Cases 

• 68.3% White 

• 18.3% African American 

• 15.8% Asian 

• 7.1% other 

  

 

Controls 

• 87.1% hypertension  

• 45.0% AF  

• 41.7% diabetes 

• 34.2% CAD 

• 17.5% COPD 

 

Cases 

• 69.5% hypertension 

• 18.85 AF 

• 21.5% diabetes 

• 19.5% CAD 

• 5.9% COPD 
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Us2.ai 

Tromp (2022b) 

HEART Cohort 

Mean age: 66 ± 12 
years 

Taiwan Cohort 

Mean age: 66 ± 15 
years 

HEART Cohort 

43% female 

Taiwan Cohort 

48% female 

 

HEART Cohort 

• 2% Aboriginal 

• 1% African American 

• 91% Caucasian 

• 5% Asian 

• 1% Other 

Taiwan Cohort 

• 100% Asian 

 

HEART Cohort 

• 32% diabetes 

• 34% CAD 

• 31% AF 

• 14% COPD 

 

Taiwan Cohort 

• 30% diabetes 

• 30% CAD 

• 16% AF 

• 8% COPD 

 

Ligence Heart No validation data 
identified. 

No validation data 
identified. 

No validation data identified. No validation data identified. 

EchoConfidence 

(provided by company in 
RFE) 

Age split:  

• 5% 18-40 
years 

• 42% 41-60 
years 

• 53% 61-90 
years 

50% female • 47% White 

• 13% Black 

• 12% Hispanic/Asian 

•  28% Other 

NR 

NICOR NHFA HF 

admissions data 

Mean age: 77.5 

years 
44% female All data/excluding missing data: 

• 52%/86% White/White 
British 

• 4%/6% Asian/Asian British 

• 2%/3% Black 

• 3%/5% Other/Mixed 

• 39% Unknown 

 

  

HFrEF 

• Hypertension: 55.16%  

• AF 39.13% 

• IHD 38.48% 

• Diabetes 35.73% 

• Valve disease 27.65% 

• COPD 15.05% 

• Asthma 10.44% 

Non-HFrEF 
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• Hypertension: 69.94%  

• AF 51.57% 

• IHD 31.94% 

• Diabetes 37.41% 

• Valve disease 35.82% 

• COPD 19.24% 

• Asthma 11.55% 

Abbreviations: AF: atrial fibrillation; CAD: coronary artery disease; COPD: chronic obstructive pulmonary disorder; DM: diabetes mellitus; HF: heart failure; HFrEF: Heart 

Failure with Reduced Ejection Fraction; NHFA: National Heart Failure Audit; NICOR: NR: not reported; RFE: request for evidence.
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Additional clinical risks identified by clinical experts, SCMs and professional 

organisations are:  

• Potential over-reliance on AI measurements and automation resulting 

in inaccurate results 

• Some AI technologies use just one image to assess ejection fraction, 

which could result in other pathology being missed (that would have 

otherwise been detected on additional images) 

• Where AI is being used to detect one cardiac diagnosis (e.g. HFpEF), 

this raises the possibility of a missed diagnosis due to other cardiac 

pathologies 

5.4 Clinical evidence summary and interpretation 

In this section, key findings from the evidence are summarised narratively for 

each technology. It was not appropriate to undertake meta-analysis of 

outcomes reported across the evidence base for any of the technologies in 

this EVA due to the clinical and methodological heterogeneity observed 

between studies. Evidence gaps are discussed in Section 8. 

EchoGo Heart Failure  

The EAG considers there to be limited evidence of moderate quality to 

support the use of EchoGo Heart Failure in the diagnosis and monitoring of 

heart failure (HF). The 3 studies identified for this technology were concerned 

with comparing the performance of EchoGo Heart Failure (v1.0 and v2.0) in 

aiding detection of HFpEF using a single TTE video clip. There was evidence 

that the AI technology had good performance in comparison to two validated 

multiparametric manual clinical scoring tools, with respect to sensitivity and 

specificity. However, there was no observed difference in NPV or PPV in 

comparison to H2FPEF and lower NPV and PPV in comparison to HFA-PEFF. 

Additionally, there was no significant difference in AUROC between EchoGo 

Heart Failure v2.0 and existing clinical scoring tools with respect to classifying 

HFpEF. The impact of implementing EchoGo Heart Failure on clinical 

outcomes and health-related quality of life downstream of receiving AI-
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assisted TTE as part of the HF diagnosis or monitoring pathway is unclear. 

There is limited evidence to suggest that those receiving a ‘positive’ output 

from AI-assisted TTE are at an increased risk of developing adverse events 

linked with HF, such as hospitalisation or death. However, an increase in risk 

was also observed following ‘positive’ results from the manual clinical scoring 

tools. Overall, there is a lack of evidence demonstrating clinical benefit to 

patients following TTE assisted by EchoGo Heart Failure. There is also a lack 

of evidence to suggest system benefits such as increased echocardiography 

capacity or shifting care from secondary to community care settings.  

 

Us2.ai 

The EAG considers there to be good evidence of moderate quality for Us2.ai. 

This technology had the largest volume of evidence, relative to other 

technologies in scope, and was the only technology to have an associated 

RCT (reported in a non-peer reviewed pre-print) and published evidence 

relating to potential system benefits such as time saved during TTE 

appointments.  

Evidence of Us2.ai’s diagnostic accuracy and performance in comparison to 

humans was largely observed to be good. However, the outcome measures 

and comparisons reported across the evidence base were heterogeneous, 

which makes it difficult to synthesize consistent overall findings. There was 

evidence from a UK setting to suggest that AI-assisted handheld TTE had 

high specificity and NPV values in comparison to cart-based standard TTE, 

but specificity and PPV values were observed to be lower. The technology’s 

ability to discriminate cases of HF from controls without HF was observed to 

be good, with high AUC values observed for both HFrEF and HFpEF. Good 

AUC values were also observed with respect to Us2.ai’s ability to detect 

echocardiographic parameter measurements indicative of HF. Good levels of 

agreement between AI-automated LVEF measurements and human-

generated LVEF measurements were also observed, but other parameters 

showed lower levels of agreement. 
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There was some evidence of potential increases in appointment efficiency and 

throughput by shortening the TTE procedure time (through AI-automation of 

measurements and report creation), but this was of limited generalisabiilty to 

the NHS and of low quality. It should also be noted that findings have not 

been subjected to peer-review.  

There was very limited evidence to suggest that Us2.ai may be effective in 

assisting handheld TTE analysis performed by novices (in comparison to 

standard expert-performed TTE) and performed by trained sonographers (in 

comparison to standard TTE without AI assistance. Again, this was of limited 

generalisability to the NHS.  

 
Ligence Heart  

Evidence for Ligence Heart was limited and of moderate quality, with 2 studies 

identified as relevant to the decision problem. Mixed results were reported 

with respect to correlation between AI and manual measurements, but 

agreement was reported to be high for some measurements such as E 

velocity and E/A ratio. Agreement varied for other measurements. There was 

a general lack of evidence of downstream impacts on health-related outcomes 

and quality of life as a result of introducing Ligence Heart to the clinical 

pathway. 

 

EchoConfidence 

Evidence for EchoConfidence was very limited and of uncertain quality. No 

published evidence was identified for this technology and all data included as 

part of the clinical evidence review was provided by the company (3 studies). 

Two studies were reports of interim analyses of ongoing studies. The 

evidence included had limited relevance to the general acute or chronic HF 

diagnostic or monitoring pathway, with 2 of the 3 studies focusing on cancer 

therapy-induced cardiotoxicity (which may lead to HF). One study was based 

in the UK and did report time savings following introduction of 

EchoConfidence into the TTE procedure, in comparison to manual TTE. 

However, there was a lack of detail to assess the significance of these results.  
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The EAG consulted with clinical experts, many of whom suggested that the 

main benefits to be expected from introducing AI-assisted echocardiography 

technologies would be a reduction in examination times and report generation, 

leading to increased capacity for examinations and the subsequent alleviation 

of long waiting lists (Appendix A). However, in the current evidence base, 

there was little evidence to demonstrate these potential improvements in the 

heart failure patient pathway. Where studies did report on the impact on 

examination time or report creation (n=3), all had notable risks of potential 

bias as described in Section 5.1 and 5.2.8 (Sakamoto et al. 2025, Hirata et al. 

2024, Almeida et al.: unpublished data 2025 (FEATHER)). Additionally, one 

clinical expert commented that AI-assisted echocardiography could facilitate 

acquisition of echocardiograms in community or ‘mobile’ settings or by 

‘trained’ novice operators. There is a small amount of indirect evidence to 

support this, discussed in Section 5.2.9.   

Across all the technologies, there is potential that with further evidence 

generation, the unmet need described in the decision problem may be 

addressed. However, there are currently considerable gaps to be addressed 

which are discussed in Section 8.2. 

6. Economic evidence 

6.1 Existing economic evidence 

The search strategy outlined in Section 4.1 was sufficiently broad to identify 

any relevant economic studies. Any additional studies provided by the 

companies were considered if they were relevant to the scope. The EAG did 

not identify any relevant economic studies. 

Relevant economic models  

The EAG conducted a search on the NICE clinical guidelines to identify any 

economic modelling on HF. A total of three economic models from two NICE 

guidelines were identified: (i) Chronic heart failure in adults: diagnosis and 

management (NG106) 2018 and 2025 and (ii) Acute heart failure: diagnosis 

https://www.nice.org.uk/guidance/ng106
https://www.nice.org.uk/guidance/ng106/evidence/economic-analysis-report-for-chronic-heart-failure-with-reduced-ejection-fraction-pdf-15434373709
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and management (CG187). The EAG found that the NICE NG106 2018 model 

and CG187 model were relevant to the scope.  

The 2018 NICE guidance NG106 economic analysis was performed to identify 

the natriuretic peptide testing (NT-proBNP) cut-off where it would be the most 

cost-effective for referral from primary care for echocardiography and 

specialist clinical assessment. The model population was patients presenting 

with HF symptoms in primary care and tested for their NT-proBNP levels. The 

model consisted of a decision tree attached to Markov models. In the decision 

tree, patients were separated into 5 groups based on the diagnostic accuracy 

outcomes and NT-proBNP test results: (i) true positive, NT-proBNP 

>400pg/ml, (ii) true positive, NT-proBNP <400pg/ml, (iii) false negative, NT-

proBNP <400pg/ml, (iv) false positive (NT-proBNP >400pg/ml and NT-proBNP 

level <400pg/ml, and (v) true negative. A Markov model for each patient group 

was attached at the end of the decision tree, to estimate the costs and 

outcomes over a lifetime time horizon. The waiting time for echocardiography 

and clinical assessment following the NT-proBNP testing was modelled in the 

Markov model. A 2-week cycle length was used to allow for the estimation of 

costs and outcomes during the wait. While there were variations in health 

states included in each Markov model, they shared some common health 

states: “waiting for echocardiography and specialist clinical assessment” and 

“HF (treated)”. Additionally, hospitalisation during the waiting period was 

considered and patients were assumed to be diagnosed and treated during 

their hospital stay. For true negative cases, the Markov model incorporated a 

health state to simulate the wait for further testing, and the true conditions 

considered were chronic obstructive pulmonary disease, myocardial ischemia 

and obesity.  

In NICE guidance CG187, the economic analysis considered patients 

presenting to emergency department (ED) with acute dyspnoea and 

suspected acute heart failure, over 4 years’ time horizon. A decision tree 

combined with 11 Markov models was constructed to simulate 11 patient 

subgroups by condition (HF with or without left ventricular systolic dysfunction 

or no HF), diagnostic accuracy outcomes and subsequent treatment. A model 

https://www.nice.org.uk/guidance/ng106
https://www.nice.org.uk/guidance/cg187
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cycle length of 3 months was used, and the health states included were 

“suspected acute HF”, “chronic HF”, “readmission”, “usual health” and “dead”.  

These NICE models were used to inform the EAG early economic model. In 

addition, a conceptual economic model provided by a company was 

considered in the early model development. As these AI technologies would 

be used as an adjunct to standard TTE and a specialist clinical assessment is 

required for HF diagnosis, it is unlikely that there would be any differences in 

diagnostic outcomes between technologies. It was therefore not necessary to 

consider false negative and false positive outcomes in this assessment. 

6.2 Early economic model 

An economic model was developed by the EAG, by making adaptations using 

the NICE models for this assessment. The model was used to assess the 

potential cost-effectiveness of AI-assisted echocardiography in HF diagnosis 

or monitoring, compared to standard care using standard TTE. A one-year 

time horizon was chosen as it would be sufficiently long to capture the impact 

of waiting time resulting from the reduced echocardiography time using AI 

technologies. While earlier diagnosis would improve downstream outcomes, 

this was not modelled in the EAG model given the significant uncertainties on 

the current waiting time. The perspective of NHS and Personal Social 

Services was undertaken. Costs were expressed in 2023/2024 prices and 

where applicable, costs were inflated using NHS Cost Inflation Index 

(NHSCII). The primary outcome in the economic analysis was quality-adjusted 

life years (QALYs), measured using utility values for each intervention. No 

discounting was applied. 

6.2.1 Model structure 

A Markov model with 2-week cycle length was developed in Microsoft Excel. 

This enabled the EAG to explore the impact of reduced waiting time driven by 

AI technologies by accounting for costs and outcomes of events (such as 

hospitalisation) during the wait. Following the assumption in NICE NG106, 

both sensitivity and specificity of standard TTE and specialist clinical 

assessment were 100%, suggesting that the model should consider only true 
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positive and true negative outcomes. Patients with undiagnosed HF or 

diagnosed HF waiting for monitoring (true positive) are assumed to progress 

to treatment with a reduced waiting time with AI technology. Patients without 

HF (true negative), may require subsequent investigations, however the EAG 

have assumed that a change in waiting time would not have a significant 

effect due to the complexity of pathways and the paucity of available 

evidence. Therefore, only true positive cases were considered in the EAG 

model.  

Based on inputs from clinical experts on the clinical pathway, the EAG early 

model is illustrated in Figure 2, where 4 health states were included: 

(i) Symptomatic on waiting list, where patients are waiting for 

echocardiography and clinical assessment or one stop diagnostic 

clinic, 

(ii) acute episode, 

(iii) treated HF and  

(iv) dead. 
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Figure 2: Schematic representation of the EAG early economic model. 

During the scoping workshop, the EAG noted that some patients would 

require further magnetic resonance imaging (MRI) investigation after an 

echocardiogram. However, the proportion of patients needing additional tests 

and the associated waiting time based on clinical experts’ feedback were 

highly variable. The EAG believe the availability of MRI facility in each site 

may contribute to this high variability. Additionally, the relevant evidence is 

lacking to indicate any differences in patients needing additional MRI between 

technologies in scope, and thus this was not considered in the EAG model. 

As only true positive cases were accounted for in the model, all patients who 

entered the model would have diagnosed or undiagnosed HF. They would 

enter through “symptomatic on waiting list” or “acute episode” health states.  

“Symptomatic on waiting list” state: Patients with HF symptoms on the 

waiting list for echocardiography and specialist clinical assessment or one 

stop diagnostic clinic may develop acute symptoms and require 

hospitalisation. These patients would move to the “acute episode” state. 

“Acute episode” state: These patients would be hospitalised as they 

developed acute onset of symptoms. Some of these patients may not have a 

diagnosis prior to discharge and are subsequently placed on the waiting list. 

Treated HF

Symptomatic, on 

waiting list

Acute episode, 

hospitalisation

Dead
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These patients would transition to “Symptomatic on waiting list”. In addition, 

some patients on the waiting list may develop acute symptoms and become 

hospitalised. 

“Treated HF” state: Patients would transition to the “treated HF” state when 

a diagnosis was confirmed, either during a hospital admission or at a clinic 

appointment. In this state, patients would receive treatment.  

“Dead” state: This is an absorbing state, where patients from other health 

states may move to this state and remain in this state.  

Costs and utilities were attached to each health state, to derive the total costs 

and QALYs over 1 year for each intervention. Compared to standard care, 

incremental costs and QALYs were calculated, alongside the estimated 

percentage of patients that met the target referral time (6 weeks). 

6.2.2 Model assumptions 

• Standard TTE plus specialist clinical assessment is 100% accurate, as 

described in Section 6.2.3 (NICE NG106 2018). 

• The accuracy is assumed to be unaltered when using AI-assisted 

echocardiography, followed by a specialist clinical assessment. 

• Patients remain in the “treated HF” state following diagnosis until they 

die or until the end of the 1-year time horizon. It is assumed that the 

treatment is sufficient to manage their condition and prevent any acute 

episodes resulting in hospital admission. In reality, some patients would 

require inpatient admission if they experience symptoms worsening. 

For model simplicity, transition from “treated HF” to “acute episode” is 

not explicitly captured due to the short time horizon. 

• The model assumes a proportion of patients would attend a one stop 

diagnostic clinic, where they receive echocardiography and specialist 

clinical review in one appointment. The cost of a one stop diagnostic 

clinic is assumed to be the same as the combined costs of an 
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echocardiography appointment and a separate outpatient specialist 

clinic visit.  

• For model simplicity, all patients who developed acute symptoms would 

enter through an ED and subsequently be hospitalised. In reality, 

patients could be admitted through a number of different routes 

including GP, community HF teams or other clinics.  

6.2.3 Clinical parameters 

Patient characteristics: The UK National Institute for Cardiovascular 

Outcomes Research (NICOR) reports nationwide data on adults admitted to 

hospitals in England and Wales with a primary diagnosis of HF. In the most 

recent National Heart Failure Audit Data (NHFA) 2025 annual report (data up 

to 2023/24) approximately 49% of patients admitted had HFrEF, the average 

age at first presentation was 77.5 years, and 56.1% of patients were male. 

Proportion of acute episodes: An observational study using the Clinical 

Practice Research Datalink (CPRD) between 2010 and 2013, found 79.2% 

had HF symptoms first recorded during a hospital admission (Bottle et al., 

2017). This was used to represent those first entering the model through 

“acute episode” state. 

Proportion of inpatients that were discharged without a HF diagnosis: 

The model assumes that a proportion of inpatients are discharged without a 

HF diagnosis. This proportion was obtained from clinical experts’ feedback 

and the 2018 National Confidential Enquiry into Patient Outcome and Death 

(NCEPOD) report. The NCEPOD report found that 44.2% patients received 

echocardiography during their hospital stay. The estimated proportion ranged 

between 10% to 55.8%, thus giving an average of 32.9%. However, the NICE 

guideline recommends that all inpatients should be diagnosed before 

discharged, and thus a sensitivity analysis was conducted to explore this 

variation. 

Sensitivity and specificity of echocardiography plus specialist clinical 

assessment for diagnosis of HF: These values were extracted from NG106 

https://www.nicor.org.uk/interactive-reports/national-heart-failure-audit-nhfa
https://pubmed.ncbi.nlm.nih.gov/28982720/
https://pubmed.ncbi.nlm.nih.gov/28982720/
https://www.ncepod.org.uk/2018report2/AHF%20full%20report.pdf
https://www.ncepod.org.uk/2018report2/AHF%20full%20report.pdf


External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to 
support diagnosis of heart failure: Early Value Assessment 
Date: December 2025  80 of 192 

and were based upon a committee assumption. To be consistent with this 

guidance, the same assumption - that standard TTE plus specialist clinical 

assessment is 100% accurate - has been applied.  

Mortality for HF: Standardised mortality ratio (SMR) was calculated from a 

published 1-year survival rate (Taylor et al., 2019). This retrospective, 

population-based cohort study used Clinical Practice Research Datalink 

(CPRD) data from 2000–2017, including over 55,000 patients with newly 

diagnosed heart failure. An observed 1-year survival of 75.9% corresponded 

to a 24.1% mortality rate. Using the expected sex weighted 1-year mortality at 

the average diagnosis age (77.5 years) from Office for National Statistics 

(ONS) 2021-23 life tables, the SMR was calculated as observed / expected 

mortality, giving an SMR of 7.37. This was applied to patients with treated HF 

in the model. 

In the most recent data summary, NICOR presented in-hospital mortality for 

acute HF admissions was 10.4%, and was applied to patients who were 

admitted due to acute symptoms in the model.   

Hospitalisation: This rate is used to model the movement from 

“symptomatic” state to “acute episode” state. Heart-failure–related 

hospitalisation rates were extracted from the PULSE study (Linden, Gollop & 

Famer, 2023). The study included 383,896 adults in England diagnosed with 

heart failure between 2015 and 2019. Using Hospital Episode Statistics (HES) 

data, admissions with HF listed as the primary diagnosis were counted as HF-

related hospitalisations. Rates were expressed as events per 1,000 person-

years, crude rates for all HF patients, and age and sex adjusted rates for 

specific subtypes (HFrEF and HFpEF) were used to calculate the weighted 

two-week hospitalisation probabilities used in this model. 

Length of Stay (LOS): The NICOR NHFA presents median LOS in the most 

recent annual summary reports, however, older reports (e.g., 2020, 2021 and 

2023) graphically presented mean LOS for patients who had been admitted to 

hospital. In each report, mean LOS was less than 14 days, therefore, the 

model assumed that the inpatient stay for a patient with acute HF would last 

https://www.bmj.com/content/bmj/364/bmj.l223.full.pdf
https://openheart.bmj.com/content/openhrt/10/2/e002467.full.pdf
https://openheart.bmj.com/content/openhrt/10/2/e002467.full.pdf
https://www.nicor.org.uk/national-cardiac-audit-programme/previous-reports/heart-failure-3/2020-2/national-heart-failure-audit-2020-final?layout=file
https://www.nicor.org.uk/national-cardiac-audit-programme/previous-reports/heart-failure-3/2021-4/nhfa-domain-report-2021-final?layout=file
https://www.nicor.org.uk/national-cardiac-audit-programme/previous-reports/heart-failure-3/2023-4/10633-nicor-annual-summary-reports-nhfa-v5-ac?layout=file
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for one cycle, meaning they would transition to another health state after one 

cycle (2 weeks).  

Baseline time to diagnosis and proportion of diagnosed: The dataset 

from NHS England Diagnostics Waiting Times and Activity was explored to 

deduce the total time waited for standard TTE, with the distribution to allow 

modelling at 2-week intervals. However, the dataset reported the number of 

people waiting at different time points, but not the overall length of their wait. 

The EAG contacted the NHS England Diagnostics Waiting Times and Activity 

team to explore if there was any relevant data available. It was noted that the 

total time waited by patients for echocardiography was not routinely collected. 

Potentially, the Hospital Episode Statistics (HES) data may capture this 

information under outpatient appointments and day case, but 

echocardiography is not coded routinely on the outpatient dataset. Given the 

short timeframe of this assessment, it was not possible for the EAG to explore 

this further.  

Baseline time to diagnosis was calculated from clinical experts’ estimates of 

waiting time and the NHS diagnostic waiting time & activity data (NHS 

England, July 2025). Wait list activity data indicated that 10.6% of patients 

referred wait 13 weeks or more to receive echocardiography, therefore 

approximately 89.4% of patients wait under 13 weeks in the model.  

According to estimates from clinical experts, in settings without a one-stop 

diagnostic clinic, the average waiting time for an echocardiogram from point of 

referral ranges from 6 to 12 weeks. Assuming that waiting times follow a 

normal distribution, that no patients receive an echocardiogram before 6 

weeks, and that 10.6% of patients wait more than 13 weeks, a normal 

distribution curve was modelled to estimate the proportion of patients who 

received an echocardiogram in two-week intervals.  

Clinical experts estimated that the average interval between echocardiogram 

and subsequent clinical assessment is 1 to 4 weeks. It was therefore 

assumed that 50% of patients receive clinical assessment in the first 2 weeks 

post-echocardiography and 50% receive clinical assessment in week 3 and 4 

https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostics-waiting-times-and-activity/monthly-diagnostics-waiting-times-and-activity/monthly-diagnostics-data-2025-26/
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostics-waiting-times-and-activity/monthly-diagnostics-waiting-times-and-activity/monthly-diagnostics-data-2025-26/
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post-echocardiography. Finally, a combined wait time was then derived by 

aggregating these wait times, yielding the proportion of the HF population 

diagnosed at two-week intervals. Details of the calculation are outlined in 

Appendix D. 

Based on estimates from clinical experts, one stop diagnostic clinics have a 

wait time from referral to diagnosis of between 2-10 weeks. In the model, a 

mean waiting time of 6 weeks was assumed, with patient waiting times 

represented by a normal distribution. This distribution was applied to estimate 

the proportion of the HF population diagnosed at two-week intervals. The 

calculation is described in Appendix D. 

It has been reported that 51.9% of patients with HF are diagnosed in a one 

stop diagnosis clinic (Kwok et al., 2025). The weighted proportion of patients 

diagnosed in each two-week interval has been calculated based on the 

proportion of patients diagnosed in settings with or without a one stop 

diagnostic clinic (Table 16). 

Effect of reduced echocardiography time with AI technologies on the 

waiting times: Two technologies presented evidence on procedural time 

saved using AI-assisted echocardiography – EchoConfidence and Us2.ai. 

EchoConfidence provided evidence comparing the time taken for human or AI 

analysis of an echocardiogram from an interim analysis (Almeida et al.: 

unpublished data 2025 (FEATHER)).  Us2.ai provided two relevant studies 

evidencing time reduction for AI-assisted echocardiography: the first was a 

pre-print randomised crossover trial used in the base case analysis, the 

second a pilot study used to inform the sensitivity analysis. A number of 

limitations with these studies should be considered. First, the setting and type 

of operators in each study. Both Us2.ai studies were conducted in Japan, 

therefore both setting and operators are unlikely to be comparable to the 

NHS. While the FEATHER study was based in community settings in the UK, 

the results were derived from an interim analysis with very limited information 

(Almeida et al.: unpublished data 2025). This limits its comparability with the 

NHS secondary care practice. Second, as these AI technologies impact 

different stages of the procedure, the time measurements reported in these 
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studies are unclear. For Us2.ai, Sakomoto et al. (2025) reported an 

examination time per patient of 14.3 mins without AI, whereas the combined 

measurement and report creation time was 12.5 mins without AI in Hirata et 

al. (2024). The EAG could not ascertain whether the examination time 

measured in Sakomoto et al. (2025) was for a full echocardiography 

procedure, as the time reported was much lower than the average procedure 

time in the NHS (45 mins), obtained from clinical experts. Similarly, in the 

FEATHER study (Almeida et al.: unpublished data 2025) an analysis was 

conducted on the time taken for EchoConfidence to automate steps which 

make up part of an echocardiographic assessment. Due to the lack of detail in 

the FEATHER study, it is not clear how these steps fit into the overall TTE 

procedure, and how the time savings reported would impact TTE workflow on 

a practical level. It was not possible to determine if the procedure was 

comparable to the NHS. While the EAG consider that the evidence is not 

robust and of low quality, these study results are used in the EAG model to 

explore the plausible cost effectiveness of these AI technologies, therefore the 

EAG advise that the economic analysis should be considered as exploratory. 

Details of these studies and their limitations are summarised in Table 15. 
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Table 15: Studies reporting time saved with AI and their limitations. 

Study Setting Sample size Comparator 
(operator 
type) 

Parameter 
measured 

EAG comments 

EchoConfidence: 
FEATHER 
unpublished 
study, Almeida 
et al. 
(unpublished, 
2025)  

UK 
community 
settings 

300 Sonographer Analysis time 
(27 steps in 
each TTE 
procedure) 

It is unclear how the analysis time measured fits into the 
overall TTE procedure, and if the operator used is 
comparable to NHS practice in secondary care. This data 
is unpublished and has not been subject to peer review. 

Us2.ai: 
Sakomoto et al. 
(2025) 

Japan 585 Sonographer Examination 
time 

The EAG considers the setting is unlikely to be 
comparable to NHS practice. In addition, it is unclear if the 
staff qualifications and experience are similar to the NHS 
staff delivering echocardiography, and what the 
examination entails. This is non-peer reviewed data. 

Us2.ai: Hirata et 
al. (2024) 

Japan 23 Not reported Measurement 
process and 
report creation 

The EAG considers the setting is unlikely to be 
comparable to NHS practice. The EAG also notes the 
small sample size and single centre design, which limits 
the generalisabilty of the findings. 

Abbreviations:  EAG: external assessment group; TTE: transthoracic echocardiography
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As there is no direct evidence on time to diagnosis with AI, the EAG estimated 

the change in waiting time using the evidence on reduced time with AI-

assisted echocardiography. The patient load in standard care was calculated 

based on the number of procedures per full day and the average wait for 

echocardiography, by assuming 5 working days per week. This yielded a 

patient load of 575. A shorter procedure time was used to calculate a new 

number of procedures per day. The average wait time using AI-assisted 

echocardiography was then calculated by dividing the patient load of 575 by 

the new number of procedures per full day. Subsequently, the percentage 

reduction in average wait time was applied to generate a new distribution of 

echocardiography wait time. The model also assumed the same reduction for 

the one stop diagnostic clinic wait time. The reduction in average wait time 

with EchoConfidence was estimated to be 17%, and 0% for Us2.ai (base 

case). Assuming the wait for specialist clinical assessment would remain 

unchanged, the proportion of the HF population diagnosed for each 

technology was populated. The calculation is described in Appendix E.  

Table 16: Main clinical parameters. 

Variable Value Source EAG commentary on 
availability, quality, 
reliability and relevance 
of the source/s 

Patient characteristics 

Average age of 
heart failure 
patients at first 
presentation 

77.5 years NICOR, 2025  

Diagnosis parameters 

Sensitivity of 
standard TTE plus 
clinical 
assessment 

1.00 NICE NG 106 
(2018) 

Committee assumption 

Specificity of 
standard TTE plus 
clinical 
assessment 

1.00 NICE NG 106 
(2018) 

Committee assumption 

Proportion of 
acute episodes  

79.2% Bottle et al., 
2017 

 



External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to 
support diagnosis of heart failure: Early Value Assessment 
Date: December 2025  86 of 192 

Proportion of HF subtypes 

HFrEF 0.49 NICOR, 2025  

non-HFrEF 
(includes HFpEF 
and HFmrEF) 

0.51 NICOR, 2025 Patients with clinical 
symptoms and signs of HF 
who have preserved heart 
pump function (HFpEF) or 
intermediate levels 
(HFmrEF) were collectively 
designated as 'non-HFrEF' 

Mortality 

1-year survival 
rates after a 
diagnosis of HF 

75.9% Taylor et al., 
2019 

The assumed mortality rate 
of 24.1% was used based 
on the observed survival 
rate of 75.9% 

SMR - 1-year 
following 
diagnosis 

7.37 EAG  
calculation 

Based on published 1-year 
mortality rate following 
diagnosis (Taylor et al., 
2019) 

In-hospital 
mortality 

10.4% NICOR, 2025  

2-week hospitalisation probabilities 

Hospitalisation 
probability for 
HFpEF 

0.16%  EAG 
calculation 

Annual rate (Linden et al, 
2023) was converted to a 
two-week probability 

Hospitalisation 
probability for 
HFrEF 

0.39%  EAG 
calculation 

Annual rate (Linden et al, 
2023) was converted to a 
two-week probability 

Weighted 
hospitalisation 
probability 

0.27% EAG 
calculation 

Weighted using the 
proportion of HFpEF and 
HFrEF 

LOS  Less than 14 
days 

 NICOR   

Baseline time to diagnosis, proportion of diagnosed 

Waiting time from 
referral to 
echocardiography 

6-12 weeks Clinical 
experts 

 

Waiting time from 
echocardiography 
to specialist 
clinical 
assessment 

1-4 weeks Clinical 
experts 

 

Waiting time from 
referral to one 
stop diagnostic 
clinic 

2-10 weeks Clinical 
experts 

 



External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to 
support diagnosis of heart failure: Early Value Assessment 
Date: December 2025  87 of 192 

Proportion of 
patients who have 
been waiting for > 
13 weeks 

10.6% NHS 
Diagnostic 
Waiting Times 
and Activity, 
July 2025 

Assumed that these 
patients would be wating at 
week 14 and receive an 
echocardiography at week 
16. 

Proportion of one 
stop diagnostic 
clinic 

51.9% Kwok et al., 
2025 

 

Weighted cumulative proportion of patients diagnosed, all settings  

≤4 weeks 3.4% EAG 
calculation 

Based on the proportion of 
patients diagnosed in 
settings with and without a 
one-stop diagnostic clinic 
calculated from clinical 
experts’ estimates and NHS 
diagnostic waiting time & 
activity data (2025) 

Weighted using the 
proportion of one stop 
diagnostic clinic (Kwok et 
al., 2025) 

≤6 weeks 26.0% 

≤8 weeks 48.5% 

≤10 weeks 52.9% 

≤12 weeks 58.3% 

≤14 weeks 71.7% 

≤16 weeks 87.8% 

≤18 weeks 97.5% 

≤20 weeks 100.0% 

Impact on time to diagnosis with AI assisted echocardiography 

Standard 
echocardiography 
appointment 

45 mins (0.75 hr) Clinical 
experts 

 

Number of 
standard 
echocardiography 
performed (per 
day) 

10 EAG 
calculation 

Based on a 7.5 hour 
working day and the time 
taken for an appointment 

Patient load 575 EAG 
calculation 

Based on mean 11.5 used 
to derive the normal 
distribution of patients 
receiving echocardiography 
and assuming 5 days per 
week (11.5 weeks x 5 
working days per week x 10 
procedures per day = 575) 

Average wait time 11.5 weeks EAG 
calculation 

 

Echocardiography 
appointment: 
EchoConfidence 

36 mins (0.59 hr) EAG 
calculation, 
Almeida et al.: 
unpublished 
data 2025 

Based on time reduction of 
9.45 mins (Human 9.5mins 
average vs AI 0.05mins) 
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Number of 
echocardiography 
performed (per 
day): 
EchoConfidence 

12 EAG 
calculation 

 

Average wait 
time: 
EchoConfidence 

9.58 weeks EAG 
calculation 

Based on the patient load 
and new number of 
procedures per day (575 
patients / (12 procedures 
per day x 5 working days 
per week) 

Reduction in 
average wait time: 
EchoConfidence 

17% EAG 
calculation 

Calculated using the AI wait 
time and current wait time  

Echocardiography 
appointment: 
Us2.ai 

Base case: 44 
mins (0.73 hr) 

Sensitivity 
analysis: 36 mins 
(0.60 hr) 

EAG 
calculation, 
Sakomoto et 
al., 2025, 
Hirata et al., 
2025 

Based on time reduction of 
1.3 mins in base case 
(human 14.3mins vs AI 
13.0mins), and 8.7 mins in 
sensitivity analysis (human 
12.6mins vs AI 3.8mins) 

Number of 
echocardiography 
performed (per 
day):  

Us2.ai  

Base case: 10  

Sensitivity 
analysis: 12 

EAG 
calculation 

 

Average wait 
time: Us2.ai 

Base case: 11.5 
weeks 

Sensitivity 
analysis: 9.58 
weeks 

EAG 
calculation 

Based on the patient load 
and new number of 
procedures per day  

Reduction in 
average wait time: 
Us2.ai 

Base case: 0% 

Sensitivity 
analysis: 17% 

EAG 
calculation 

Calculated using the AI wait 
time and current wait time  

Abbreviations: TTE: transthoracic echocardiography; EAG: external assessment group; HFrEF: heart 

failure with reduced ejection fraction; HFpEF: heart failure with preserved ejection fraction; HFmrEF: 

heart failure with mildly reduced ejection fraction; LOS: length of stay; NICOR: National Institute for 

Cardiovascular Outcomes Research; SMR: standardised mortality ratio. 

6.2.4 Resource use and cost parameters 

Technology costs: The costs and other resource use requirements for each 

technology are described in Table 17.  

For implementation, costs included were the set-up fee and hardware 

(server). As hardware requirements for integrating the technology vary 
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depending on the IT system at each site, the additional hardware costs for 

each technology were included in the EAG base case but removed for 

sensitivity analysis. The implementation (set up and hardware) and training 

costs were split over a 3-year period. The cost per scan for implementation 

and training were derived from an assumed number of scans per year. 

The annual scans per site were estimated using the median monthly scans 

per site from the NHS England Diagnostic Waiting Times and Activity July 

2025 dataset, to represent typical usage. Given the time limitation, only the 

July 2025 dataset was used in the calculation. This was then used to derive 

the costs per scan, where the license fee, system implementation, training, 

information technology (IT) support and staff time were included. The actual 

costs will vary according to the actual number of scans, and this should be 

considered for implementation locally.  

Per-scan costs were varied by volume in the sensitivity analysis. The annual 

scans per site for Guy’s and St Thomas’ NHS Trust (21,000 scans per year) 

was used to represent high volume usage (Freitas et al., 2023). For low 

volume usage, the first quartile of monthly scans per site from the NHS 

England Diagnostic Waiting Times and Activity July 2025 dataset was used to 

derive the annual scans per site (5,000 scans per year).   

These AI technologies are delivered by the same staff delivering standard 

echocardiography and thus costed at a band 7 cardiac physiologist. Staff time 

for AI-assisted echocardiography is derived by subtracting the time reduction 

reported in clinical papers from the standard echocardiography time of 45 

minutes. The calculation is described in Section 6.2.3.  

The cost of reversing a decision is estimated using any up-front costs to 

purchase the equipment and setting up the service, training costs and any 

costs associated with the pricing model that could not be recouped. 

EchoConfidence  

The software is priced at £4 per use, excluding VAT. Set up fees apply, 

however if the site requires additional hardware, this may be provided by the 

https://bmjopenquality.bmj.com/content/12/3/e002317
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vendor at a cost. The hardware cost is currently unknown, and thus not 

included in the EAG model. Staff training consists of 2 days on site and 

additional remote training as required. This is costed as an additional package 

and included in the EAG model. Any IT support for hardware (if provided by 

the company) and software is provided at an additional fee. During the 

integration process, a minimal IT staff time is required, but the information 

provided was not sufficient to be included in the EAG calculation. The 

company noted that there is additional training available to minimise the need 

for ongoing support. The cost of reversing the decision would primarily be the 

set-up fee, any additional hardware and staff training.  

EchoGo Heart Failure 

This is offered as a package of £25 to £50 per use, excluding VAT. This 

includes software use, IT support, any cloud support, integration and staff 

training. The company provided an indicative cost breakdown, but did not 

provide additional information on the type of contract that would be used and 

therefore the EAG cannot comment on the costs of reversing the decision. 

The company also noted that the technology would require minimal training 

and no additional equipment.  

Ligence Heart 

Two software pricing models are available: (i) unlimited license model offered 

for 1 or 3 years, including support, with pricing based on the number of 

workstations, and (ii) tier-based model (pay per case) based on the number of 

scans and users. The company charges only for software use, however a 

server can be provided at an additional cost depending on the contract. A 

one-hour training per person is provided at no additional cost. The service 

provided by the company includes server delivery (if server purchased), 

software installation and ongoing support. The company also noted that any 

installation costs are included in the pricing models.   

The company costs were provided in Euro’s, and this was converted at the 

rate of €1 to £0.87 (obtained from xe.com, 15 October 2025). In the EAG cost 

calculation, the tier-based pricing model was applied using the estimated 
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annual scan volumes from the NHS England Diagnostic Waiting Times and 

Activity dataset.  

The cost of reversing the decision would be the server fee and any unused 

scans from the committed pricing model.  

Us2.ai  

The software pricing model is based on the scan volumes. The installation can 

be done as cloud implementation or on-site installation, at an additional cost. 

There is rental server available from the company for piloting the software or 

transitioning to full adoption. The price of the server varies with the 

specification. The rental server costs are currently unknown. In the EAG 

calculation, an on-site installation of a basic server is applied. Routine 

support, clinical and IT support are provided at no additional fee. However, it 

is unclear if this includes staff training, therefore training costs are not 

included in the EAG calculation.  

The cost of reversing the decision would be the server fee and any unused 

scans from the committed pricing model.   
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Table 17: Technology cost parameters. 

 EchoConfidence EchoGo Heart Failure Ligence Heart Us2.ai 

License Available as cost per use. Cost per use with software use, 
IT support, integration fee and 
training included. 

Two pricing models are 
available: unlimited (by number 
of users) and tier-based (by 
number of scans) 

Pricing is based on volume per 
year. Consolidating sites or 
multiple years usage could be 
negotiated. 

System 
implementation 

Included consultancy with IT 
department for integration, site 
visits, creation of the instance of 
the software and user access 
controls. 

Included in the per-use costs. Includes complete installation 
of the software and integration 
to the hospital IT system. 

Available as “on premises” and 
cloud integration.  

Supporting 
hardware and other 
infrastructure if 
provided by the 
company 

Not included, cost currently 
unknown if provided by vendor. 
The requirement depends on the 
complexity of integration required 
and if adaptations required. 

No additional hardware is 
required. 

Server to be provided by 
vendor at an additional cost, 
subjected to the contract. This 
will depend on the integration. 

Server and cloud are provided 
at an additional cost. Rental 
server is offered by vendor for 
pilot. Costs are not provided by 
the vendor. 

Training 2 days on site and then remote as 
required. 

No significant training is 
required.  Included in the per-
use costs. 

1 hour per person. Clinical support is available. No 
information on training and the 
associated costs. 

IT support and/or 
maintenance 

Hardware and software support is 
offered at an additional cost. 
Trainings are provided by the 
company to ensure that any 
support requests are minimal. 

Included in the per-use costs. Support is available. Support is available. 

Per patient costs excluding VAT, no discounting applied (annual scans: 10,000 per site) 

License/software 
per scan 

£4  70% of per-scan costs = £26.25 
per scan 

£2.61 £8.00 
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System set up per 
scan 

£4,500 spread over 3 years = 
£0.15 per scan 

20% of per-scan costs = £7.50 
per scan 

Server £2,611 spread over 3 
years = £0.09 per scan 

Basic server £6,000 spread 
over 3 years = £0.20 per scan 

Training costs per 
scan 

£750 per day for 2 days over 3 
years = £0.05 per scan 

10% of per-scan costs = £3.75 
per scan 

0 No information provided by 
vendor 

IT support costs 
per scan 

10% of the per scan cost for 
hardware, 5% for software 

Assuming 10% scans needed IT 
supports per year, 15% of per scan 
costs for each support (£0.6 per 
support) and spread across the 
annual scans = £0.06 per scan 

Included in the license per scan 0 0 

Staff time per scan 35.6 mins (Almeida et al.: 
unpublished data 2025) 

No data available No data available 43.7 mins (Sakomoto et al., 
2025) 

Staff time costs per 
scan using band 7 
cardiac 
physiologist 

£39.11 NA NA £48.07 

Total costs per 
scan, not including 
HCP costs 

£4.26 £37.50 (average derived from 
the range provided by vendor, 
£25-50) 

£2.70 £8.20 

Total costs per 
scan (low volume, 
5,000 per site per 
year) 

£4.46 No additional information 
provided 

£2.79 £8.40 

Total costs per 
scan (high volume, 
21,000 per site per 
year) 

£4.16 No additional information 
provided 

£2.22 £6.50 

 

EAG assumes a 20% reduction 
in license cost per scan for high 
volume usage 
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Total costs per 
scan, excluding 
hardware 

£4.26 No additional information 
provided 

£2.61 £8.00 

Abbreviations: VAT: value added tax.
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Standard TTE costs: AI technologies are used as an adjunct to standard 

TTE, therefore the cost of standard echocardiography was not included in 

either arm of the model. Staff time is included for both arms, as this is the key 

element that may change with the introduction of AI technologies. Staff time 

required to deliver each technology was costed using a band 7 cardiac 

physiologist. 

Heart failure hospitalisation and emergency department (ED) costs: 

These costs were taken from the 2025 economic modelling in NICE guidance 

NG 106.  

Follow-up costs post-HF diagnosis: In the model, all patients would be 

reviewed in an outpatient cardiology specialist clinic for a formal diagnosis, 

and therefore it was not necessary to include the costs of this first 

appointment. Follow up costs were valued using the resource requirement for 

heart failure obtained from the NICE guidance NG106. These estimates were 

validated through consultation with clinical experts, ensuring that the resource 

use assumptions reflected current UK clinical practice. The costs of specialist 

nurse visits were costed using a band 6 nurse, following the approach taken in 

NICE guidance NG106.  

Heart failure treatment costs: Weighted drug treatment costs were 

calculated based on the proportion of patients receiving each treatment 

(NICOR, 2025), and converted from a 3-monthly cost, as in NG106, to a 2-

weekly cost. NICOR data indicated that 91% of patients with HFrEF were 

prescribed beta blockers (BB), 68% were prescribed mineralocorticoid 

receptor antagonists (MRAs), and 85% were prescribed either angiotensin-

converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARBs) or 

angiotensin receptor-neprilysin inhibitors (ARNIs). The weighted cost does not 

include ARNIs which are recommended as a replacement for ACEi’s in the 

case that the patient remains symptomatic (NG106, 2025).   

Table 18: Key cost parameters. 

Parameter Value  Source Comment 

https://www.nicor.org.uk/interactive-reports/national-heart-failure-audit-nhfa
https://www.nice.org.uk/guidance/ng106
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HF 
hospitalisations 

£2,885.47 NHS cost 
collection 
23/24 

Heart failure or shock 
(EB03A-E with CC score 0-
14+) – weighted average of 
non-elective long and short 
stay  

ED attendance 
for HF 

£652.87 NHS cost 
collection 
23/24 

Heart failure or shock 
(EB03A-E with CC score 0-
14+) - weighted average of 
heart failure day case.  

Follow-up costs for HF 

Specialist visit 
(cardiology) - 
Follow up 
appointment 

£164.25 NHS cost 
collection 
23/24 

Weighted average of 
consultant led, and non-
consultant led non-admitted 
face-to-face attendance, 
follow up appointment 
(WF01A) 

GP appointment 
(10 minutes) 

£45.00 PSSRU 2024 Including qualification costs 
and direct care staff costs 

Band 6 Nurse 
appointment (30 
minutes) 

£31.00 PSSRU 2024 Including qualification costs. 
Calculated based on £62.00 
per working hour 

Number of HCP 
appointments in 
year 1: 

HFrEF; 
HFpEF:  
 

NICE NG106 
(2018) 

Resource use for patients 
with HFrEF and HFpEF was 
obtained from NG106 and 
validated by clinical experts - GP 2; 1 

- Outpatient 
cardiology 
visits 

2; 1 

- Specialist 
HF nurse 
visits 

10; 1 

Two-week 
weighted 
average drug 
therapy cost (BB, 
MRA, and 
ACEi/ARB) 

£2.42 EAG 
calculation 

Three-monthly weighted 
costs obtained from NG106, 
proportion receiving each 
treatment obtained from 
NICOR, 2024 

Abbreviations: ED; emergency department; GP; general practitioner; PSSRU; Personal Social 

Services Research Unit; HFrEF: heart failure with reduced ejection fraction; HFpEF: heart failure with 

preserved ejection fraction; BB; beta blocker; MRA; mineralocorticoid receptor antagonist; ACEi; 

angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blockers. 

6.2.5 Health state utilities 

Patients were assigned to different utility values for each health state in the 

model. Utility values were obtained from TA773 and NG106. The utility value 

of 0.58 (untreated and treated HF patients) was obtained from NG106 (2018). 

This value was derived from EQ-5D data in the REFER study (Taylor et al., 

https://www.nice.org.uk/guidance/ta773
https://pubmed.ncbi.nlm.nih.gov/27919937/
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2017, unpublished data), which NICE used as the basis for its model cohort in 

NG106. The REFER population consisted of predominantly older patients 

(mean age 77, 50.6% male) with mostly HFpEF (86.5%). In contrast, the 

NG106 (2025) economic analysis reported a higher utility of 0.78 for treated 

HFrEF patients. However, because this estimate applies only to that 

subgroup, the original utility value of 0.58 was retained for treated HF in the 

EAG model, and assumed a 10% disutility for untreated HF. 

 

The HF-related hospitalisation utility decrement, extracted from TA773 and 

also reported in NG106, represents the temporary reduction in health-related 

quality of life experienced by a patient during and immediately after a hospital 

admission for HF.  

Table 19: Utility values. 

Variable Value Source Comment 

Treated HF 0.58 NICE NG106 
(2018) 

Unpublished data from 
the REFER trial (Taylor 
et al., 2017) 

Untreated HF 
disutility 

0.058 EAG assumption  

HF-related 
hospitalisation 
disutility  

0.019 NICE TA773; 
NG106 (2025) 

 

Abbreviations: EAG: external assessment group; HF: heart failure. 

6.2.6 Key assumptions 

• The wait time for standard TTE and one stop diagnostic clinic was 

assumed to follow a normal distribution. 

• To model the effect of reduced echocardiography time with AI 

technologies on waiting time, it was assumed that the reduced 

procedure time would proportionately increase the number of patients 

per day, and that the calculated reduction in average wait time would 

shift the entire wait time distribution forward by the same magnitude.  

• The number of patients referred to echocardiography was assumed to 

be constant. In reality, when waiting time becomes shorter, a number of 

https://pubmed.ncbi.nlm.nih.gov/27919937/
https://www.nice.org.uk/guidance/ng106/evidence/economic-analysis-report-for-chronic-heart-failure-with-reduced-ejection-fraction-pdf-15434373709
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factors may lead to an increase of referrals, such as a change in the 

referral pattern.  

• It was assumed that the waiting time for a specialist clinical 

assessment following echocardiography would remain unchanged. 

However, if the specialist clinic is already running at full capacity and 

there is no additional capacity available, this would limit the number of 

patients receiving an earlier diagnosis despite having an earlier 

echocardiography.  

6.2.7 Model validation 

For model validation, the economic model was reviewed by a second health 

economist independently. The validation process included checks on the 

calculations used to derive model inputs, the movement between health states 

and the computations generating total costs, QALYs and other outcomes. All 

model inputs were verified against their primary data sources, and the inputs 

were varied to check if the results were consistent with a priori expectations. 

6.2.8 Presentation of results 

Given the significant uncertainty with various model inputs and the number of 

assumptions required, the cost effectiveness analysis undertaken by the EAG 

should be considered as exploratory. In the base case analysis, only AI 

technologies with evidence related to their impact on procedure time were 

included: EchoConfidence and Us2.ai. These AI technologies were compared 

to standard care using standard TTE, and an ICER was calculated for each 

comparison. 

One-way sensitivity analyses have been carried out as it is more appropriate 

to identify the key drivers and to explore the impact of a wide range of 

plausible inputs where there is either variation across sites, or in practice. A 

probabilistic sensitivity analysis to quantify the level of confidence with the 

ICER would provide little value on determining key drivers of the economic 

model to guide further evidence generation, and thus this was not undertaken.  
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A range of one-way and scenario sensitivity analyses were performed 

including: 

Table 20: One-way sensitivity analyses and the value used 

One-way sensitivity analyses Low value High value 

Waiting time reduction of EchoConfidence 
driven by the reduced echocardiography 
time: ±50% from base case 

8% 25% 

Reduced echocardiography time with Us2.ai 
using alternative paper (Hirata et al., 2024) 

NA 8.7mins 

Longer echocardiography waiting times  NA 36 weeks 

Proportion of acute episode: -20% from 
base case 

63% NA 

Technology costs, excluding hardware EchoConfidence: 
£4.26 

Us2.ai: £8.00 

NA 

Technology costs: high volume, low volume  EchoConfidence: 
£4.16 

Us2.ai: £6.50 

EchoConfidence: 
£4.46 

Us2.ai: £8.40 

All patients receive an echocardiogram 
during hospital stay 

0% NA 

Band 8a cardiac physiologist in 
echocardiography delivery 

NA EchoConfidence: 
£43.85 

Us2.ai: £53.90 

Proportion diagnosed in one stop 
diagnostic clinic 

20% 40% 

Abbreviations: NA: not applicable. 

Scenario analyses were chosen based on the uncertainty in the model and 

the key drivers indicated by the one-way sensitivity analyses results: 

1. Analysis comparing EchoConfidence and standard care: 

•  combining longer waiting times of 36 weeks and a lower proportion 

diagnosed in a one stop diagnostic clinic (20%) 

• combining a lower waiting time reduction with EchoConfidence (8%) 

and a lower proportion diagnosed in a one stop diagnostic clinic (20%) 

2. Analysis comparing Us2.ai and standard care: 

• combining time reduction reported by Hirata et al., 2024 and a lower 

proportion diagnosed in a one stop diagnostic clinic (20%) 
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6.3 Results from the economic modelling 

Base case and sensitivity analyses results are reported in Table 21 and Table 

22. Both incremental costs and incremental QALYs were calculated as the 

differences between the AI technology and standard care. 

EchoConfidence 

From the base case results, it appears that EchoConfidence is potentially 

more effective and less costly than standard care, and therefore a cost-saving 

strategy. The proportion that met the target referral time of 6 weeks post-

referral may increase by 15% with EchoConfidence from 26% to 40%. 

However, there is a lot of uncertainty surrounding the model and the very 

limited clinical evidence used in this analysis, this limits the validity of the 

results. 

The cost-saving results are primarily attributable to the reduction in staff time 

per scan cost of £10, which is able to offset EchoConfidence’s cost per use. 

As the base case assumes a 17% reduction in waiting time driven by the 

shorter procedure time with EchoConfidence, some patients would receive 

earlier diagnosis and treatment, resulting in modest QALYs gained. 

Results from the one-way sensitivity analyses suggest that the economic 

findings are sensitive to the proportion diagnosed in a one stop diagnostic 

clinic and the impact of waiting time reduction with EchoConfidence. When the 

proportion of patients diagnosed in a one stop diagnostic clinic is reduced to 

20%, only 16% of patients would meet the target referral time with 

EchoConfidence, yielding an increase of 6% compared to standard care. 

Similarly, when the EchoConfidence impact of waiting time reduction is 

lowered to 8%, the increase of those meeting the target referral time reduces 

from 15% in the base case to 7%. Additionally, in the scenario combining a 

lower proportion diagnosed in a one stop diagnostic clinic (20%) and a lower 

reduction in waiting time (8%), this results in a small increase of 3% in those 

meeting the target referral time (EchoConfidence 13%, standard care 10%). 

The model appears to be relatively insensitive to the longer waiting time of 36 

weeks based on the one-way sensitivity analyses results. This is likely due to 
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the high proportion diagnosed in a one stop diagnostic clinic used in the base 

case. However, in a combined scenario (20% diagnosed in a one stop 

diagnostic clinic, 36-week waiting time), the increase in those that met the 

target referral time reduces from 15% in the base case to 6%.  

While the results appear to suggest that EchoConfidence is potentially a cost-

saving strategy, the considerable uncertainty surrounding the current waiting 

time and how the shorter procedure time with EchoConfidence would impact 

the echocardiography workflow. In turn, the change in waiting time would 

outweigh the modest cost savings with EchoConfidence. Therefore, the 

results should be interpreted with caution. 
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Table 21: Base case and sensitivity analyses results: EchoConfidence (EC) vs standard care 

 
  

Total 
costs,  

EC 

Total 
costs, 

Std Care 

Total 
QALYs, 

EC 

Total 
QALYs, 
Std Care 

Incremental 
costs (£) 

Incremental 
QALYs 

ICER Proportion 
meeting the 

target 
referral 
time, 
EC 

Proportion 
meeting the 

target 
referral time, 

Std Care 

Difference 
between EC 

and standard 
care 

Base case £3,230 £3,233 0.4742 0.4736 -£3.14 0.0005 Cost saving 40.5% 26.0% 14.5% 

% waiting time reduction: 8% £3,229 £3,233 0.4739 0.4736 -£4.59 0.0003 Cost saving 33.3% 26.0% 7.3% 

% waiting time reduction: 25% £3,231 £3,233 0.4744 0.4736 -£1.94 0.0008 Cost saving 45.2% 26.0% 19.2% 

Echocardiography waiting 
time: 6 to 36 weeks 

£3,230 £3,233 0.4741 0.4736 -£3.20 0.0005 Cost saving 40.5% 26.0% 14.5% 

% diagnosed in hospital: -20% 
from base case (63%) 

£2,681 £2,684 0.4835 0.4828 -£2.45 0.0007 Cost saving 40.5% 26.0% 14.5% 

Technology costs, no 
hardware costs 

£3,230 £3,233 0.4742 0.4736 -£3.14 0.0005 Cost saving 40.5% 26.0% 14.5% 

Technology costs, low volume £3,230 £3,233 0.4742 0.4736 -£2.94 0.0005 Cost saving 40.5% 26.0% 14.5% 

Technology costs, high 
volume 

£3,230 £3,233 0.4742 0.4736 -£3.24 0.0005 Cost saving 40.5 26.0% 14.5% 

All inpatients receive echo £3,242 £3,246 0.4763 0.4760 -£4.81 0.0003 Cost saving 40.5% 26.0% 14.5% 

Band 8a cardiac physiologist £3,230 £3,234 0.4742 0.4736 -£4.33 0.0005 Cost saving 40.5% 26.0% 14.5% 

% one stop diagnostic clinic: 
20% 

£3,224 £3,226 0.4729 0.4722 -£2.36 0.0007 Cost saving 15.7% 10.0% 5.7% 

% one stop diagnostic clinic: 
60% 

£3,231 £3,234 0.4744 0.4738 -£3.20 0.0005 Cost saving 46.8% 30.0% 16.8% 

Combining 36-week waiting 
time and 20% one stop 
diagnostic clinic 

£3,220 £3,222 0.4721 0.4713 -£1.97 0.0008 Cost saving 15.8% 10.0% 5.7% 

Combining 8% waiting time 
reduction and 20% one stop 
diagnostic clinic 

£3,222 £3,226 0.4725 0.4722 -£4.22 0.0003 Cost saving 12.8% 10.0% 2.8% 

Abbreviations: EC: EchoConfidence; ICER: Incremental cost-effectiveness ratio; QALY: Quality adjusted life year. 
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Us2.ai 

Base case results show that Us2.ai may be more costly than standard care, 

but with no change in QALYs, suggesting that standard care dominates. This 

is because of the small procedure time reduction with Us2.ai (mean difference 

1.30 mins), reported by Sakomoto et al. (2025). Similarly, the clinical evidence 

on the time saved is unlikely to be generalisable to the NHS setting, as well as 

the uncertainty with other key model inputs. These have implications on the 

validity of the economic results.  

Given no change in the waiting time with Us2.ai is modelled, overall results 

from one-way sensitivity analyses remain consistent with the base case 

results. However, when a shorter procedure time (36 mins) using the findings 

from a pilot study by Hirata et al. (2024), it shows that Us2.ai is more costly 

and more effective (cost difference £1.40, QALY difference 0.0005), giving an 

ICER of £2,547 per QALY, below the NICE willingness to pay (WTP) 

threshold of £20,000 per QALY. This results in a 15% increase in those 

meeting the target referral time. In a combined scenario (20% diagnosed in a 

one stop diagnostic clinic, 36 mins echocardiography), the ICER increases to 

£3,090 per QALY and the increase in those meeting the target referral time 

reduces to 6%. This suggests that the results are sensitive to the proportion 

diagnosed in a one stop diagnostic clinic.   
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Table 22: Base case and sensitivity analyses: Us2.ai vs standard care 

 
  

Total 
costs,  
Us2.ai 

Total 
costs, 

Std Care 

Total 
QALYs, 
Us2.ai 

Total 
QALYs, 
Std Care 

Incremental 
costs (£) 

Incremental 
QALYs 

ICER Proportion 
meeting the 

target 
referral 
time, 

Us2.ai 

Proportion 
meeting the 

target 
referral time, 

Std Care 

Difference 
between 

Us2.ai and 
standard 

care 

Base case £3,240 £3,233 0.4736 0.4736 £6.49 0.0000 Dominated 26.0% 26.0% 0.0 

Echocardiography time 
reduction, Hirata et al., 2024 

£3,235 £3,233 0.4742 0.4736 £1.40 0.0005 2,547 40.5% 26.0% 14.5% 

Echocardiography waiting 
time: 6 to 36 weeks 

£3,239 £3,233 0.4736 0.4736 £6.49 0.0000 Dominated 26.0% 26.0% 0.0 

% diagnosed in hospital: -20% 
from base case (63%) 

£2,690 £2,684 0.4828 0.4828 £6.50 0.0000 Dominated 26.0% 26.0% 0.0 

Technology costs, no 
hardware costs 

£3,240 £3,233 0.4736 0.4736 £6.30 0.0000 Dominated 26.0% 26.0% 0.0 

Technology costs, low volume £3,240 £3,233 0.4736 0.4736 £6.68 0.0000 Dominated 26.0% 26.0% 0.0 

Technology costs, high 
volume 

£3,238 £3,233 0.4736 0.4736 £4.85 0.0000 Dominated 26.0% 26.0% 0.0 

All inpatients receive echo £3,253 £3,246 0.4760 0.4760 £6.72 0.0000 Dominated 26.0% 26.0% 0.0 

Band 8a cardiac physiologist £3,240 £3,234 0.4736 0.4736 £6.32 0.0000 Dominated 26.0 26.0% 0.0 

% one stop diagnostic clinic: 
20% 

£3,232 £3,226 0.4722 0.4722 £6.46 0.0000 Dominated 10.0% 10.0% 0.0 

% one stop diagnostic clinic: 
60% 

£3,241 £3,234 0.4738 0.4738 £6.49 0.0000 Dominated 30.0% 30.0% 0.0 

Combining time reduction 
reported by Hirata et al., 2024 
and 20% one stop diagnostic 
clinic 

£3,228 £3,226 0.4729 0.4722 £2.16 0.0007 3,090 15.7% 10.0% 5.7% 

Abbreviations: ICER: Incremental cost-effectiveness ratio; QALY: Quality adjusted life year. 
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6.4 Summary and interpretation of the economic 

evidence 

An exploratory cost-effectiveness analysis using an early economic model 

was conducted. Based on the limited clinical evidence, the cost-effectiveness 

results suggest that EchoConfidence has the potential to be a cost-saving 

intervention for NHS use. With similar limitations in evidence, Us2.ai may be 

dominated by standard care, indicating it may be more costly and less 

effective than standard care. However, the evidence used to model the impact 

on waiting time with AI technologies is very limited and it is unclear if the 

settings, operators and measurement taken are comparable to that of NHS 

practice. Additionally, there is significant variation and uncertainty around the 

current waiting time, which makes it challenging to model the current practice 

reliably. As indicated by the sensitivity analyses results, one of the key drivers 

is the proportion of patients diagnosed in a one stop diagnostic clinic. These 

clinics are likely to have a shorter waiting time, but the proportion of patients 

on this pathway is unclear. This proportion can be very different at different 

sites, and result in different impacts. Additionally, the current wait time is likely 

to be underestimated, leading to an overestimation of AI technology impact in 

the model. Given these uncertainties, the results should be interpreted with 

caution. 

Waiting time is inherently dynamic and influenced by a number of factors 

including staff shortage, increase demand for services and funding 

constraints. Given this complexity, the use of a dynamic model such as 

discrete event simulation could be a more appropriate approach in capturing 

the patient flow and system capacity. However, this approach is more data-

intensive and the current evidence is not adequate to support this modelling 

approach. During this modelling exercise, the EAG identified key data gaps: 

• waiting time distribution for echocardiography, 

• proportion of inpatients entering the outpatient echocardiography 

waiting list 
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• proportion of further investigations 

• proportion of patients diagnosed in a one stop diagnostic clinic 

In order to create an exploratory model, the EAG were required to use 

multiple assumptions. Some of this uncertainty that could be addressed by 

additional data collection.  

While the clinical evidence shows a reduction in echocardiography time with 

EchoConfidence, it is unclear whether its introduction would change the 

workflow in practice. The EAG have noted different views on the potential 

changes driven by AI technology on the echocardiography workflow. Given 

the lack of any supporting data, an assumption was made to model the impact 

of waiting time with AI in the EAG model based on reduced measurement and 

reporting time. Waiting time is a key model driver, and the only input 

parameter that changes between the comparator and intervention.  It is crucial 

to assess this impact in future studies.  

The introduction of AI may lead to reduced waiting times, resulting in earlier 

diagnosis and treatment. This helps to slow down disease progression and 

potentially prevent subsequent acute episodes requiring hospitalisation. A 

one-year time horizon was applied in the EAG model, therefore long-term 

impacts were not captured. Results showed that there was a modest QALY 

gained with EchoConfidence due to earlier diagnosis and fewer 

hospitalisations. However, the model is limited by a lack of utility data that 

differentiates between untreated and treated HF, limiting the estimation of 

QALY differences between these two patient groups. The EAG had to assume 

an arbitrary 10% disutility for untreated HF. 

While the costs per use for some AI technologies are small, these costs can 

become substantial when used at high volume. There are initial 

implementation costs such as set-up fee and hardware costs, but the costs 

are not large when spread across a few years. These costs vary depending 

on the complexity of integrating the AI technology into NHS IT systems. 

Therefore, the cost of reversing a decision may vary depending on local 

implementation and usage. 
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7. Integration into the NHS 

Key considerations identified by the EAG related to integration of AI-assisted 

echocardiography into the NHS are summarised in this section. This is 

informed by evidence from studies identified that were set in the UK, 

responses to questions posed by the EAG to SCMs and clinical experts 

(Appendix A) and submissions received by NICE from the companies and 

professional organisations during this assessment.  

Clinical pathway 

These AI technologies are designed to work in conjunction with existing NHS 

processes, including compatibility with current software and image processing 

methods. Changes to the clinical pathway may be required to introduce the 

technologies into the NHS, but this is dependent on when and how they are 

implemented. These changes are mainly related to procedure time and 

resources and are discussed below. Two SCMs commented on the ability of 

AI technologies to potentially make echocardiography more accessible for 

patients, by facilitating a shift from TTEs being performed in secondary care to 

primary or community care. There was limited evidence identified to support 

this. Additionally, there was a consensus that, should the technologies be 

clinically effective, this would shorten time to diagnosis and initiation of 

treatment. There was a lack of health-related outcomes reported in the 

evidence base. 

Impact on procedure time and resources  

The views from SCMs and clinical experts on the anticipated impact on 

procedure time and requirement of resources were mixed. The general 

consensus from SCMs was that AI-assisted echocardiography technologies 

may increase efficiency of procedures, shortening TTE appointment times and 

increasing overall capacity. However, one clinical expert commented that they 

would expect that introduction of these AI-assisted technologies would reduce 

TTE throughput due to additional time being needed for AI analysis and 

additional time needed in a typical clinic day to allow for human quality 

assurance checks of AI-generated reports. There was some evidence of 
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limited quality to support the concept of a reduction in procedure time 

following implementation of AI-assisted TTE. 

Time required for audit and measurement of outputs was also cited by clinical 

experts as a potential increase in resources required following implementation 

of these technologies. 

IT integration and ongoing technical support 

SCMs and clinical experts consistently raised IT integration and infrastructure 

in the NHS as a key consideration for implementation of these AI 

technologies. One clinical expert commented on IT infrastructure in the NHS 

potentially not being advanced enough to support the AI technologies. One 

SCM stated that IT integration may be an issue that can be overcome. 

Data governance and privacy 

Information received from a professional organisation indicated that data 

governance and privacy should be considered if the AI technologies are to be 

implemented in the NHS. It was stated that transparency over data sharing, 

storage and ownership should be clear to patients and NHS organisations. 

Staff training  

SCMs and clinical experts stated that additional practical training for 

healthcare professionals who conduct TTE would be required to successfully 

implement the AI technologies. This is supported by information submitted by 

the companies for this assessment. It is expected that training may need to 

include AI literacy and an understanding of the technologies’ limitations, risk of 

errors/bias and how outputs should be monitored.  

8. Evidence gap analysis 

8.1 Ongoing studies 

The EAG identified 7 ongoing studies which were relevant to the decision 

problem (Table 23). The TARTAN-HF and SYMPHONY-HF studies are both 

RCTs investigating a targeted screening strategy to detect undiagnosed heart 
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failure in high-risk patients, where Us2.ai-assisted echocardiography is part of 

the interventional arm. The TARTAN-HF study is specific to a population with 

diabetes. The AI software is not the focus of these studies, but the EAG has 

included them to demonstrate the potential utility of Us2.ai in wider clinical 

contexts. Additionally, these two ongoing studies involve the use of AI-

assisted handheld TTE, which may provide evidence to support the use of 

Us2.ai in community or primary care settings. The company provided 3 AIC 

studies for Us2.ai, XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX  

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXX 

Ligence provided 2 ongoing studies (1 AIC). XXXXXXXXXXXXXXXXXXXXXX  

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX, and the other is 

evaluating Ligence Heart for assessing left ventricular systolic and diastolic 

parameters. 

The key study (Almeida et al.: unpublished data 2025 (FEATHER)) for 

EchoConfidence included in the clinical evidence review is an interim analysis, 

and further data is expected to be reported in December 2025 (n=1200). The 

company describe this as a “double-blind evaluation of AI for heart failure 

diagnosis and stratification on unselected consecutive patients referred for 

evaluation to community cardiology services”. 

These studies may add further evidence of the accuracy and validity of the AI 

technologies, in comparison to human measurements. However, none of the 

studies appear to address the key evidence gaps identified by the EAG, which 

are outlined in Section 8.2. Additionally, none of the conference proceedings 

identified appear to report outcomes that would address the key evidence 

gaps (Appendix C). 
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Table 23: Summary of relevant ongoing studies. 

Study details, status Population Device, Comparator Outcomes relevant to scope 

Us2.ai (n=5 studies) 

Study name:  
TARTAN-HF – Targeted Assessment In High 
Risk patient With dIAbetes to identify  
Undiagnosed Heart Failure 
 
Study number: NCT05705869 
 
Study design: prospective, multicentre, 
unblinded, RCT 
 
Location: NHS Greater Glasgow and Clyde, 
NHS Lanarkshire, UK 
 
Status: Recruiting  
 
Estimated study completion date: 12.2032 
 
Aim: to assess a targeted screening strategy 
to detect undiagnosed heart failure in high-risk 
patients with diabetes 

Population: patients with 
diabetes at high risk of HF 
 
Estimated enrolment: n=1,000 
 
Inclusion criteria: 

• ≥40 years of age 

• Provide informed consent 

• An established diagnosis 
of diabetes (type 1 or type 
2) 

• At least one additional risk 
factor for heart failure 
(coronary artery disease, 
persistent or permanent 
AF, previous ischemic or 
embolic stroke, peripheral 
arterial disease, CKD, 
regular loop diuretic use, 
COPD) 

 
Exclusion criteria: 

• Inability to give informed 
consent  

• Previous documented 
diagnosis of HF 

• Currently receiving 
scheduled RRT 

Device: Us2.ai 
 
Intervention: 
NT-proBNP and other 
biomarker testing, as well as 
KCCQ-12, ED-5D 
questionnaires, followed by 
AI-assisted 
echocardiography. 
 
Comparator: Routine care  
 
 

Primary outcome(s): 
1. Diagnosis of HFmrEF within six months 
2. Diagnosis of HFpEF within six months 
3. Diagnosis of asymptomatic LV dysfunction 

(LVEF≤40%) within six months 
 
Secondary outcome(s): 
1. Time to first HF hospitalisation at 1, 2, 5 years 
2. All-cause mortality at 1, 2, 5 years 
3. Time to first occurrence of any components of 

the following clinical composite 1) heart failure 
hospitalisation 2) all-cause mortality 

4. Accuracy of handheld TTE with AI-automated 
reporting compared to full cart-based TTE and 
manual reporting for the measurement of 
LVEF 

5. ICER over a 5-year time-horizon 

https://clinicaltrials.gov/study/NCT05705869?cond=Targeted%20Assessment%20in%20High-Risk%20paTients%20With%20dIAbetes%20to%20ideNtify%20Undiagnosed%20Heart%20Failure%20(TARTAN-HF)&rank=1&tab=table
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• Anyone not suitable to 
participate in the trial, in 
investigators’ opinion 

Study name:  
Screening for earlY Heart Failure Diagnosis 
and Management in Primary Care or at HOme 
Using Natriuretic Peptides and 
echocardiographY "SYMPHONY-HF" 
(SYMPHONY-HF) 
 
Study number: NCT05919342 
 
Location: Scotland, Denmark, Canda, USA, 
Sweden  
 
Study design: prospective, multicentre, 
unblinded RCT 
 
Status: Recruiting  
 
Estimated study completion date: 
21.12.2032 
 
Aim: to assess a targeted screening strategy 
to detect undiagnosed HF in high-risk patients 

Population: Patients at high 
risk of HF 
 
Estimated enrolment: n=3,904 
 
Inclusion criteria: 

• > 40 years of age  

• Can provide informed 

consent 

• Has 2 or more of the 

following risk factors 

for heart failure:  

Coronary artery 
disease, established 
diagnoses of 
diabetes, persistent 
or permanent AF, 
previous ischemic or 
embolic stroke, 
peripheral arterial 
disease, CKD, 
regular loop diuretic 
use, COPD 

 
Exclusion criteria: 

• Inability to give 
informed consent  

• Previous documented 
diagnosis of HF 

• Current RTT 

• Anyone not suitable 
to participate in the 
trial, in investigators’ 
opinion 

Device: Us2.ai 
 
Intervention:  
NT-proBNP blood sample 
measurement. Then patients 
with elevated Roche NT-
proBNP will undergo a 
clinical exam, ECG and  AI-
assisted echocardiography. 
 
Comparator:  
Routine care  
 

Primary outcome(s): 
1 – diagnosis of HF within 6 months  
 
Secondary outcome(s): 
1 – Diagnosis of HFrEF within 6 months  
2 – People diagnosed with HFrEF receiving 
GDMT within 6 months  
 
Other outcome(s) 
1 – Diagnosis of HFmrEF or HFpEF within 6 
months 
2 – People with HFmrEF or HFpEF receiving 
SGLT2i therapy within 6 months 
3 – Diagnosis of asymptomatic LVEF (≤40%) 
within 6 months 
4 – Time to first HF hospitalisation at 1,2 and 5 
years  
5- All-cause mortality at 1,2 and 5 years  
6 – ICER over a 5-year time horizon 
7 – number of patients in the NT-proBNP / echo 
group with echo features of potential amyloid as 
assessed by the Us2.ai algorithm report 
conclusion of ‘amyloid to be considered’ 

https://clinicaltrials.gov/study/NCT05919342
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Study name:  
Automated Left Ventricular Analysis in 
Real-World 2D Transthoracic 
Echocardiography 
 
Study number: NR 
 
Location: NR 

Population: 100 cases with 
reported LV biplane EF. 
 
Estimated enrolment: NR 
 
 
Inclusion criteria: NR 
 

Device: Ligence Heart 
 
Intervention:  automated 
echocardiography analysis 
 
Comparator: NR 

Primary outcome(s): 
1. Agreement between automated and human 

measurements (RMSE, Pearson correlation 
coefficient (r) and bias 
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Study design: NR 
 
Status: NR 

- publication expected 2025 Q4 
 

Estimated study completion date: NR 
 
 
Aim: to evaluate an investigational automated 
2D TTE software (Ligence Heart) for 
assessing LV systolic and 
diastolic parameters in routine clinical cases. 

Exclusion criteria: NR 

Abbreviations: AF: atrial fibrillation; AI: artificial intelligence; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; ECG: 

electrocardiogram; EF: ejection fraction; EQ-5D: EuroQol 5 dimension 5 level questionnaire; GDMT: guideline-direct medical therapy; GLS: global longitudinal 

strain; HF: heart failure; HFmrEF: heart failure with mildly reduced ejection fraction; HFpEF: heart failure with preserved ejection fraction; HFrEF: heart failure 

with reduced ejection fraction; ICC: intraclass correlation coefficient; ICER: incremental cost-effectiveness ratio; KCCQ-12: Kansas City Cardiomyopathy 

Questionnaire; LV: left ventricle; LVEF: left ventricular ejection fraction; NHS: national Health Service; NR: not reported; NT-proBNP: N-terminal pro-B-type 

natriuretic peptide; Q4: fourth quarter; RCT: randomised controlled trial; RMSE: root mean square error; RRT: renal replacement therapy; SGLT2i: sodium-

glucose transport 2 inhibitors; TTE: transthoracic echocardiogram. 
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8.2 Evidence gap analysis 

Table 24 summarises the evidence gaps relating to groups of outcomes in the 

scope of this assessment for each technology. GREEN indicates there is good 

evidence available, AMBER indicates there is partial evidence available, RED 

indicates there is no evidence available. 

Table 24: Evidence gap analysis 

Outcomes EchoGo 
Heart Failure 

Us2.ai Ligence 
Heart 

EchoConfidence 

Diagnostic test 
accuracy 

AMBER AMBER RED AMBER 

Diagnostic 
performance (HF 
detection/classification) 

GREEN GREEN RED RED 

Validation against 
manual measurements 

AMBER GREEN AMBER AMBER 

Clinical and patient-
reported outcomes 

RED RED RED RED 

Procedural outcomes 
(including changes to 
procedure time) 

RED AMBER RED AMBER 

Costs and resource use RED RED RED RED 

Changes to staff or 
setting for delivering 
echocardiography 

RED RED RED RED 

Costs of AI license AMBER GREEN GREEN GREEN 

Implementation RED AMBER AMBER  GREEN 

Training and support AMBER AMBER GREEN GREEN 

Cost of downstream 
diagnostic test 

RED RED RED RED 

Adverse events RED RED RED RED 

Abbreviations: HF: heart failure. 

Economic modelling inputs 
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Across all the technologies, there are gaps relating to the economic modelling 

including:  

• Downstream treatment costs  

• Utilities associated with untreated HF 

• Utilities associated with treated HF 

8.3 Key areas for evidence generation 

Across the evidence base, the main outcomes reported are measures of 

diagnostic accuracy and clinical validation. Key gaps identified by the EAG as 

priorities for evidence generation are summarised in Table 25.  

Table 25: Areas for evidence generation. 

Evidence gap Recommended outcomes to be collected 

Impact on procedure 
time 

• Time required for automation of echocardiographic 
measurements 

• Time taken for automation of echocardiography report  

• Overall procedure time  

 

Impact on clinical 
outcomes  

• Time to receive HF diagnosis 

• Time to initiation of treatment for HF  

• Patient-reported health-related quality of life  

Validity in cohorts 
representative of UK 
population 

• Diagnostic test accuracy 

• Interchangeability, agreement and correlation with human 
measurements 

• Diagnostic performance (in detecting and classifying HF) 

Acceptability of AI 
tool 

• Ease of use  

• Confidence in accuracy of automation  

• Feasibility of implementation in different settings (primary 
and secondary care) with staff of varying skill levels 

Adverse events • Inaccurate measurements, leading to incorrect diagnoses 

• Rate of AI failure to analyse images  

Abbreviations: HF: heart failure; UK: United Kingdom 
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Where evidence is generated for the technologies, sufficient detail should be 

collected and reported in relation to:  

• The demographics of included participants  

• The type of setting (primary/community or secondary care) 

• The staff involved in echocardiogram acquisition, analysis and 

reporting and their level of expertise 

• The specific generation or version of technology being investigated  

Where possible, studies should be prospective in design, to minimise the 

impact of selection bias and potential confounding. However, retrospective 

designs where previously acquired TTE images are analysed by AI could be 

beneficial in eliminating any potential clinical risk to patients. Ideally, operators 

participating in retrospective studies such as these should be blinded to the 

original diagnostic results (including measurement values) associated with the 

TTE images.  
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Appendix A: Summary of responses from SCMs and 

clinical experts 

Echocardiography procedure 

Q1: What stages make up an echocardiography appointment? E.g. image acquisition, 
taking measurements, annotations/reporting etc. 

SCM 
responses 

Consultant 
cardiologist 

Confirming patient identity, confirming indication for 
echo, explaining to patient regarding procedure, 
positioning patient, optimising device settings, image 
acquisition, taking measurements, reporting, if clinician 
performing echo- explaining result to patient 

Consultant 
cardiologist 

The patient comes into the room, give verbal consent 
for the procedure, undresses and puts on a hospital 
gown, lies on the examination couch in the left lateral 
position, the sonographer attaches a 3 lead ECG to 
the patient and places an echo probe in multiple 
places on their chest wall to acquire the images 
needed for a full echocardiogram. Measurements may 
be made on the machine in real-time or in post-
processing once the patient has left the consultation. 
Once the patient has dressed and left the room, the 
sonographer transfers the images from the echo 
machine to a computer where they then review the 
images, add necessary measurements and complete a 
report. 

Consultant 
cardiologist 

Referral for an echo. Triaging the request. Scheduling 
the request. Information to patient. Reminder for 
patient. Scanning the patients. Measurements during 
scanning then post procedure more complex 
measurements (3D etc). Reporting. Filing the report on 
electronic record and sending to referrer / GP 

GPwSI in cardiology Patient check-in, image acquisition, measurements, 
annotations, summary reporting 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

Checking the referral and relevant clinical details. 
Gaining patient blood pressure, height and weight. 
Patient identification, explanation and preparation. Set 
up of machine with patient details. Image acquisition, 
measurements, reporting, uploading / posting reports.  
Where patients are unwell / significant pathology is 
identified, a review maybe necessary, this would 
include doing a blood pressure, 12 lead 
electrocardiogram, being reviewed by a Medic (which 
often requires long waits as it is typically the on-call 
Medic who could be anywhere in the hospital dealing 
with multiple patients at any one time – on averaged 
waiting times can around 1-2 hrs). This review will then 
need documenting which is typically done on the 
echocardiogram report. 

Q2: Are these tasks all conducted ‘live’ during an appointment, or would some be 
conducted post-appointment? 
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SCM 
responses 

Consultant 
cardiologist 

Reporting usually performed (particularly by 
physiologists after appointment) 

Consultant 
cardiologist 

Some measurements and the writing of the report are 
performed after the appointment is complete and the 
patient has left. 

Consultant 
cardiologist 

Normally all acquisition measuring reporting and filing 
done within the 45 minute slot 

GPwSI in cardiology Mostly live; some review and clinical reporting done 
after. 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

The majority are conducted ‘live’. Some 
echocardiographers prefer to do measurements post 
scanning but within the allotted 45-60mins 
appointment time. We do not suffer the same reporting 
delays that X-ray, CT, CMR have. 

Q3: Roughly how long do these tasks/stages take? Please give approximate times, using 
minutes. 

SCM 
responses 

Consultant 
cardiologist 

Confirming identity, indications, explaining procedure, 
positioning patient, optimising device settings) – 10 
minutes. Image acquisition 25 minutes, taking 
measurements, 10 minutes, report 5 minutes 

Consultant 
cardiologist 

Depending on the complexity of the echocardiogram, 
the appointment takes 45mins to 1 hour. Scanning the 
patient takes between 20-40 minutes. 

Consultant 
cardiologist 

Scanning reporting and filing results around 45 
minutes. Triaging and scheduling maybe 15 mins 

GPwSI in cardiology Total 30–45 min: acquisition 20–30 min, reporting 5–
10 min. 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

45-60 minutes. 

Q4: 
A. Which healthcare professionals (and associated banding) are involved in 

echocardiography appointments?  
B. Are the same healthcare professionals involved in post appointment analysis and 

reporting? 

SCM 
responses 

Consultant 
cardiologist 

A. Receptionist, physiologist, cardiology registrar, 
consultant 
B. physiologist, cardiology registrar (if performing 
echo), consultant (if performing echo) 

Consultant 
cardiologist 

Both doctors and sonographers are involved in the 
appointments, both in scanning and post appointment 
analysis and reporting. 

Consultant 
cardiologist 

Scheduling band 3 or 4 
Scanning and reporting physiologist (band 6 7 or 8) 

GPwSI in cardiology Cardiac physiologist (Band 6–7), senior physiologist 
(Band 7–8a) 
 
Usually same physiologist; senior/cardiologist may 
over-read. 
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CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist) 

A. echocardiographers - band 7/ band 8a. Assistant 
technical officers – band 2 or 3. 
 
B. Only accredited echocardiographers – band 7/band 
8a. 

Q5: What is the average number of appointments in a single clinic/session? Please specify 
how long a clinic or session is. 

SCM 
responses 

Consultant 
cardiologist 

4-5 appointments 

Consultant 
cardiologist 

This is very variable between hospitals. A clinic 
session is usually half a day, so 4 hours, and the 
sonographer would be expected to perform between 5-
6 scans in this time. 

Consultant 
cardiologist 

Each simple echo is normally 45 minutes. Some more 
complex ones (eg ACHD) may be an hour. So 10-14 a 
day depending on length of the day 

GPwSI in cardiology 6-8 studies in a 4-hour session; 12–16 per full day 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

Morning clinic: 8am – 12pm. 6 patients. This is for 
outpatients and inpatients.  
 
Afternoon clinic: 12.30pm-4pm. 4 patients. 

The intervention: AI-assisted echocardiography  

Q6: How would the AI technologies in scope alter the workflow of an echocardiography 
appointment? 

SCM 
responses 

Consultant 
cardiologist 

- AI can aid image acquisition by trained healthcare 
professionals (GP, specialist nurses, cardiologist) in 
the community to acquire point of care images and 
the report without 15 minutes so prognostic life 
saving HF therapies can be started promptly 

- AI can also reduce the time required for image 
acquisition and reporting by physiologists 

- AI echocardiography can also help speed up image 
acquisition for patients requiring repeat focussed 
echo’s (post GDMT optimisation to decide about 
device therapy, cardio oncology patients receiving 
chemo) 

Consultant 
cardiologist 

Automated measurements and reporting using AI may 
shorten the appointment time. 

Consultant 
cardiologist 

Most of the technologies would automate some of the 
measurements and reporting, potentially shortening 
the time needed to do an echo. There is also the 
possibility of point of care or community echo, 
potentially with abbreviated protocols and alternative 
workforce 

GPwSI in cardiology AI gives view recognition, auto-measurements, draft 
reports → faster, more consistent workflow. 
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CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

It would be used within the reporting phase of the 
echocardiogram workflow. Consideration would be 
needed as to how this is implemented some of the AI 
technologies take up to 20-30 mins for analysis. 
Currently this would mean that the appointment time of 
45-60mins would need extending. Alternatively, clinics 
would be shortening to account for checking the AI 
generated report at a later point in the day. Either way 
this would reduce the echocardiography through put. 

Q7: Are there different generations of the AI technologies? If yes, would you consider 
evidence to be generalisable across different generations? 

SCM 
responses 

Consultant 
cardiologist 

- Yes 1st generation devices only report EF 

- 2nd generation devices have Doppler and 3rd 
generation devices have GLS, amyloidosis reporting 

Consultant 
cardiologist 

There are different types of AI software and evidence 
is not generalisable between them. For example, 
automated measurements can be checked by the 
sonographer and altered if incorrect, whereas other 
algorithms may not be so explainable and therefore 
need more robust evidence to be put in practice. Each 
generation requires its own validation, risk 
assessment, and governance frameworks. 

Consultant 
cardiologist 

I think each generation needs to be judged on its 
individual evidence 

GPwSI in cardiology Yes, newer generations are more capable; evidence 
partly generalisable. 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

Unsure. 

Q8: How do these AI technologies differ from existing software that work to automate 
measurements in echocardiography? 

SCM 
responses 

Consultant 
cardiologist 

AI technologies require less number of images to be 
acquired to still generate a full report, can also guide 
the image acquirer in real time regarding probe 
position to aid image acquisition. Certain AI echo 
providers are also validated for HFpEF and 
amyloidosis 

Consultant 
cardiologist 

Traditional software performed narrow specific tasks 
such as boundary detection of doppler measurements. 
AI algorithms, particularly those using deep learning, 
can perform broader tasks such as automated view 
classification, segmentation of cardiac structures, 
measurement prediction. The crucial difference is that 
AI models need validation on external datasets to 
ensure good performance. 

Consultant 
cardiologist 

Existing software is really very limited and is more of 
an aid to measure for example volumes, but still needs 
clinical input to adjust as necessary 

GPwSI in cardiology New AI automates full workflow, not just single 
measurements. 
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CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

Ultrometics and US2.ai use details within the image to 
diagnosis heart failure with preserved ejection 
particularly for the diagnosis of cardiac amyloidosis. 
How of the condition is detected is unknown due to the 
AI algorithm that is used.  
 
For the other AI technologies, it is my understanding 
that they automate the measurements that 
echocardiographers would normally do. These would 
still need checking to ensure accuracy and prevent 
misdiagnosis. Additionally, it is known that in poor 
image quality, AI analysis takes longer and is less 
reliable. 

Implementation 

Q9: Would there be extra training or resources required to successfully implement these 
technologies into the care pathway? 

SCM 
responses 

Consultant 
cardiologist 

Yes training of physiologists to use AI echo, training of 
non-physiologists for image acquisition, IT integration 
via Cloud or PACS for transfer or storage of images 

Consultant 
cardiologist 

Doctors and sonographers would need training in 
understanding how AI generates results, including it’s 
assumptions and limitations, and be able to recognise 
errors and bias. They would need an understanding of 
how models are trained, validated and updated as well 
as how they should be monitored and audited. 

Consultant 
cardiologist 

Yes 

GPwSI in cardiology Brief training, SOP updates, IT integration, governance 
checks 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

Additional training will be required for all 
echocardiographers to ensure they are aware of the 
basics of AI and data literacy. This will improve 
confidence in using AI which will support its clinical 
adoption.  
There also needs to be training to ensure 
echocardiographers maintain critical analysis skills to 
prevent over reliance on AI. This will reduce inaccurate 
results being provided.  
 
Consideration to IT infrastructure will be needed to 
ensure the technology can be used equitably across 
the UK. It also needs to be timely and seamless, as we 
know NHS IT systems are notoriously slow and 
fragmented. If this continues, there is a high risk that 
the AI technology will be brought, implemented but not 
used.  

Q10: Do you foresee any issues with implementing these technologies into the care 
pathway? 

SCM 
responses 

Consultant 
cardiologist 

IT integration but this is achievable 

Consultant 
cardiologist  

Increased resources would need to be deployed to 
ensure staff are adequately trained and that there are 
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robust systems in place to audit and monitor the AI 
technologies. 

Consultant 
cardiologist 

Reassurance for clinical staff that it is robust 
technology 

GPwSI in cardiology interoperability, over-reliance, accountability, cost, 
data security. 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

The technologies being considered here will ultimately 
not improve the detection of patients with heart failure 
with reduced ejection fraction as none are designed to 
assess this. There is It will also not reduce the 
echocardiography appointment time. In some 
instances, the use of AI will increase the 
echocardiography pathway time. For instance, one of 
the companies requires 20-30mins for results. 
Therefore, at some point during that working day, time 
will be needed to review the results and action the 
outcome which will reduce patient activity.  
 
Additionally, for some of the technologies, only one 
image is required for the assessment of heart failure 
with preserved ejection fraction. However, if only one 
image is acquired there is a high risk that heart failure 
with reduced ejection fraction or other significant 
pathology will be missed. If the echocardiography 
workflow is reduced to 10mins to acquire one image. It 
will ultimately lead to a patient requiring multiple 
echocardiograms (a focused one and a complete one). 
This will lead to increased waiting times for all 
echocardiography services. It is also unclear whether 
patients would be happy for multiple trips for the same 
test.  
 
IT infrastructure and funding to implement AI 
technologies maybe an issue. A national approach and 
commitment to funding to upgrade IT and implement 
AI across all healthcare settings will be important. 
Otherwise, it could lead to worsening of healthcare in 
poorer regions. 

Outcomes 

Q11: Which outcomes would you expect these technologies to improve or impact?  
Please consider both patient and system impacts. 

SCM 
respoNses 

Consultant 
cardiologist 

The patient impact will be the biggest as if AI image 
acquisition and reporting can be performed in 
community/ GP surgeries/ A&E (7 days a week 24 
hours), Critical Care settings (7 days, 24 hours) so 
prognostic therapies are not delayed  , this will prevent 
patient adverse outcomes such as rehospitalisation, 
death or poor quality of life 
System impact – quicker reporting will allow greater 
number of patients to be accommodated into echo 
lists, physiologists to have more time for complex 
echo’s (stress echo, 3D echo, TOEs), reduced waiting 
lists, health economic benefits by preventing 
hospitalisations and mortality, and leading to improved 
quality of life 
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Consultant 
cardiologist 

There is a chance that if the AI performs well, the 
diagnostic accuracy of echo would be improved. The 
time taken for a scan and report may be reduced, 
saving money for trusts and reducing pressure on 
staff.    

Consultant 
cardiologist 

More efficient patient flows. More patients scanned 
and in more suitable situations (primary care, A and E, 
CDHs, one stop clinics, surveillance scans)   

GPwSI in cardiology Faster diagnosis, fewer repeats, improved throughput 
and consistency.   

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

The AI technologies which focus on heart failure with 
preserved ejection and the detection of amyloidosis 
will be valuable. These patients are often difficult to 
diagnose and on averaged have multiple 
echocardiograms and wait 2 years for a diagnosis.  
Anything to improve this will improve access to 
echocardiography services and provide patients with a 
diagnosis and access to treatment quicker.  
 
The issues surrounding the detection of heart failure 
with reduced ejection fraction are more challenging 
and I don’t feel that the current AI technologies will 
help as the challenges more involve accessing the 
echocardiography service and delays in medics/heart 
failure nurses picking up the report, actioning an 
appointment and the patient then being seen in the 
heart failure clinic.  
There are now “one stop” clinics for patients with a 
BNP >2000 which reduces this wait however the 
funding to support this means often only one 
echocardiographer is able to support this service. 
There is also a need for more heart failure nurses to 
improve access to heart failure clinics. 

Patient Pathway (chronic heart failure) 

Q12: Could you describe the patient pathway from echocardiography referral to getting a 
diagnosis of chronic heart failure? 

SCM 
responses 

Consultant 
cardiologist 

Assessing patient’s symptoms and signs for heart 
failure in primary care by a clinician. Performing 
NTproBNP, baseline blood tests and ECG. Based on 
the above referring for echocardiogram to HF 
specialist clinic. Patient assessment by HF specialist 
Performance of echocardiogram with report.  
Interpretation of echo report and patient assessment 
by HF specialist to confirm or refute diagnosis of heart 
failure 

Consultant 
cardiologist 

Once the patient has had their echocardiogram, the 
report is made available to the referring doctor who 
then contacts the patient with the next management 
steps. Depending on the results this may be referral to 
a cardiologist in outpatient clinic or even hospital 
admission if there is acute decompensation.   
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Consultant 
cardiologist 

Clinical suspicion, then measurement of NTproBNP 
(blood test). If raised NTproBNP referral to one stop 
clinic for echo and clinical review within 2 or 6 weeks 
depending on how high the bnp is. Though very few 
areas meet these timelines. 

GPwSI in cardiology Referral → NT-proBNP → echocardiogram → 
specialist review → diagnosis → treatment start. 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

Echocardiogram referral – triage to within 4 or 6 weeks 
depending on BNP – If no relevant details referral 
rejected until details provided – echocardiogram – 
report – report posted out to referral team and 
uploaded onto patient electronic notes (these systems 
typically do not alert the referring team that the echo 
report is available to review and often relies on paper 
copy being received in the post) – if new finding of 
heart failure with reduced ejection fraction, email to 
heart failure team to inform them (done at time of 
echocardiogram) . 
 
Currently we are not allowed to provide results to 
patients so the patient would remain unaware.  

Q13: Are you aware of any sources that report waiting times for echocardiography? If no, 
please use your own knowledge to provide a “ballpark number” or a range for the following 

waiting times: 
A. The wait time for an echocardiogram from initial referral. 
B. The wait time for a formal diagnosis following echocardiography. 
C. If a one-stop diagnostic clinic for heart failure is available in your organisation, how 

long do patients wait for an appointment in this clinic, from referral? 

SCM 
responses 

Consultant 
cardiologist 

The wait time from initial referral in community for 
suspected heart failure varies in different parts of the 
country from few months to up to 8-9 months 
My organisation 2-6 weeks 
 
Wait time after echocardiography can be a a further 1 
month after diagnostic clinic appointment 
 
One-stop diagnostic clinic available selectively in my 
organisation (my clinic where I perform echo and a few 
other slots) 

Consultant 
cardiologist 

a.This is variable across trusts and I am currently 
moving between several trusts. My primary workplace 
aims to complete the echo within 8 weeks of the 
referral. The wait time for formal diagnosis is entirely 
dependent on the referring doctor and their individual 
practices.  
 
b.From my own perspective, I check my own results 
every 1-2 days when working, so the maximum wait 
time would be 2 weeks if I happened to be at the 
beginning of a period of annual leave. If there was an 
abnormal report which needed immediate action all 
trusts I have worked at have a pathway which allows 
the sonographer to escalate the report to an on-call 
doctor.  
 
c.I am unaware of such a pathway. 



External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to 
support diagnosis of heart failure: Early Value Assessment 
Date: December 2025  137 of 192 

Consultant 
cardiologist 

Waiting time for a routine echo in my region varies 
from 6 to around 35 weeks. 
For one stop clinics average wait is around 8 – 10 
weeks 

GPwSI in cardiology 13a) Echo wait 6–12 wks.  
 
b) Diagnosis 1–4 wks.  
 
c) One-stop clinic 4 wks. 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

NHS England diagnostic waiting times and activity 
report 
Approximate waiting times from my experience: 

a. 10-12 weeks 
b. Diagnosis is available immediately (or within a 

week if a review of the echo is need at an 
MDT). The time to diagnosis will depend on 
the referring team pick up with results. This 
can be up to 6 -12 months after the 
echocardiogram and depends on the backlog 
of the referring team.  

c. In our one stop clinic, patients with a BNP 
>2000 are typically waiting 6-10weeks. 
Patients with a BNP 400-2000 are waiting >10 
weeks. 

Q14: A. Can you estimate the proportion of patients requiring cardiac MRI investigation for 
heart failure diagnosis?  

B. How long do patients wait for a cardiac MRI from initial referral? 

SCM 
responses 

Consultant 
cardiologist 

80% 
3 -8 months (average 5-6 months) 
My organisation 2-3 months 

Consultant 
cardiologist 

Unknown 

Consultant 
cardiologist 

Probably 30-40% will get an MRI at the point of 
diagnosis, but ongoing monitoring is normally done by 
echo. In my trust waits are less than echo (around 6 
weeks) 

GPwSI in cardiology a) MRI needed ~10-15%.  
 
b) MRI wait 10–12 wks. 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

A. estimated at less than <1%. If echocardiography is 
limited, a contrast left ventricular opacification test 
using echocardiography would be the next test.  

B. Estimated at 6 months. 

Q15: Can you estimate the proportion of patients who would have acute onset of 
symptoms while waiting for an echocardiography appointment? 

SCM 
responses 

Consultant 
cardiologist 

30-35% (AED attendance, hospitalisation and 
mortality), 50-60% have acute worsening of symptoms 
leading to worsening quality of life, time off work etc. 

Consultant 
cardiologist 

Unknown, but if there is more than an 8 week wait for 
an echo, then I estimate that 5% patients with heart 
failure might experience an acute decompensation 
prior to echo. 
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Consultant 
cardiologist 

Difficult to know, but given the fact most heart failure 
patients are diagnosed as an inpatient probably quite 
high (hard to know in that group how many had had an 
echo ordered) 

GPwSI in cardiology About 5–15% deteriorate while waiting 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

<1%. In my experience patients either are 
symptomatic or remain asymptomatic whilst waiting for 
an echocardiogram. There are very few instances 
where I need to get patients reviewed / admitted at the 
point of the echocardiography due to acute onset of 
symptoms whilst waiting for an appointment. 

Q16: Could you comment on whether the description of appointments applicable to each 
patient group, outlined in the 2018 NICE Guideline for Chronic Heart Failure (NG106), is 

representative of current practice? 
See Figure 1 at the foot of this table. 

SCM 
responses 

Consultant 
cardiologist 

- 

Consultant 
cardiologist 

This seems correct except for the nurse appointments. 
This number in the first years seems higher than what 
I have experienced in practice although this is likely 
variable from trust to trust. 

Consultant 
cardiologist 

It is a reasonable guide but there are more treatments 
for hfpef now so they probably need more 
appointments. For HFREF we now push for more rapid 
uptitration so may not need 10 HF nurse appts. Lot of 
variability depending on pt and their comorbidities 

GPwSI in cardiology NICE NG106 still broadly accurate; timing targets often 
missed. 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

I would say neither is representative of current 

practice 
HF-REF: patients would be seen by heart failure 
nurse; this may include 1-3 appointments to titrate 
medications. Once stable patient would be discharge 
back to GP with no further follow-up. There may be 
instances where younger patients are reviewed in 
cardiology clinics, but this is not reflective of all 
patients.  
I am not aware of patients having that many 
appointments.  
HR-PEF: These patients typically have an 
echocardiogram and are then referred back to the GP 
for management with diuretics and co-morbidities 
management. They wouldn’t have the appointments 
are listed in the guidance.  

Patient Pathway (acute heart failure) 

Q17: Please read the below description (in italics) and comment on whether you think this 
is an accurate representation of the acute heart failure pathway. If not, please elaborate: 

 
“All patients with acute onset of symptoms would be hospitalised. During their inpatient 
stay, they receive echocardiography and MRI (if needed), then receive a diagnosis and 

start treatment.” 
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SCM 
responses 

Consultant 
cardiologist 

Depending on the expertise of centres (such as ours 
about 60% of acute heart failure can be managed in 
an ambulatory setting or virtual ward (at home) 

Consultant 
cardiologist 

This is an accurate representation of the acute heart 
failure pathway. 

Consultant 
cardiologist 

I think this depends on the setting. If the patients get 
admitted under a cardiology team this is probably 
correct. If managed in A and E / acute medical unit or 
care of the elderly beds then the treatment is perhaps 
more variable 

GPwSI in cardiology Mostly accurate, but MRI rarely acute; some managed 
ambulatory. 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

I think that is accurate of the majority of patients. 
Although whether patients are hospitalised is down to 
the patient, so you could have patients that are treated 
at home and attend urgent outpatient appointments. 

Q18: A. Would some of these hospitalised patients be discharged without having received 
an echocardiogram during their hospital stay, and be put onto the waiting list for an 

outpatient echocardiography? 
B. If yes, roughly what proportion? 

SCM 
responses 

Consultant 
cardiologist 

About 60% patients are discharged from A&E or 
hospital without having an echocardiogram AHF full 

report.pdf 

Consultant 
cardiologist 

At my current trust this does not occur. However I 
have heard of this happening in other trusts although I 
am unsure of the proportion of patients this affects. 

Consultant 
cardiologist 

Yes , but again very variable depending on the 
hospital / ward / team 
Overall across the country maybe 30% but that is a 
guess 

GPwSI in cardiology a) Yes.  
 
b) Around 10–20%. 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

Yes, this could happen if it was deemed that the 
patient was well to go home but would be very rare. 
Proportion wise would be <1%.  

Q19: What is the entry point to the care pathway for acute heart failure patients? e.g. 
emergency department, urgent referral from GP, other. 

SCM 
responses 

Consultant 
cardiologist 

Entry points A&E, GP, community HF teams, from 
other clinics 

Consultant 
cardiologist 

Emergency department, GP, other specialties, 
ambulatory care units 

Consultant 
cardiologist 

The entry point is nearly always A and E. If they see 
the GP first they are still normally directed to A and E 

GPwSI in cardiology Usually via ED or urgent GP referral. 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

Urgent referral from GP, IP requests. 

https://www.ncepod.org.uk/AHF%20full%20report.pdf
https://www.ncepod.org.uk/AHF%20full%20report.pdf


External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to 
support diagnosis of heart failure: Early Value Assessment 
Date: December 2025  140 of 192 

Q20: Do you have any other comments or information that you think would be helpful for 
our assessment? 

SCM 
responses 

Consultant 
cardiologist 

As also discussed previously the NICE EVA Topic is 
regarding AI assisted echocardiography to aid the 
diagnosis of HF. The above questions largely focus on 
the performance of echocardiography without enough 
emphasis regarding the  diagnostic pathway of HF 
which is performed by HF specialists and the main 
issues which are due to delays in diagnosis of HF due 
to the lack of availability of echocardiography promptly 
in primary care and community settings in order for 
prompt initiation of life-saving HF treatments. There 
are also similar delays in echocardiography in the 
hospital setting particularly if the patient presents on 
Friday g with acute HF and echocardiogram and 
prognostic therapies can be delayed for 4-5 days. The 
failings due to delays in hospital setting have been 
highlighted in the NCEPOD report AHF full report.pdf 

Consultant 
cardiologist 

- 

Consultant 
cardiologist 

- 

GPwSI in cardiology No 

CE 
responses 

Cardiac clinical 
scientist and cardiac 

physiologist 

N/A 

Abbreviations: A&E: accident and emergency; ACHD: adult congenital heart disease; AED: accident 

and emergency department; AI: artificial intelligence; CE: clinical expert; CMR: cardiac magnetic 

resonance; CT: computerised tomography; ECG: electrocardiogram; ED: emergency department; EF: 

ejection fraction; GDMT: guideline-directed medical therapy; GLS: global longitudinal strain; GP: general 

practitioner; GPwSI: general practitioner with special interest; HF: heart failure; HFpEF (HR-PEF): heart 

failure with preserved ejection fraction; HFrEF (HF-REF): heart failure with reduced ejection fraction; 

MDT: multidisciplinary team; MRI: magnetic resonance imaging; N/A: not applicable; NT-proBNP: N-

terminal pro-B-type natriuretic peptide; SCM: specialist committee member; TOE: trans-oesophageal 

echocardiogram. 

 

 

https://www.ncepod.org.uk/AHF%20full%20report.pdf
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Appendix B: Search strategies and PRISMA diagram 

The EAG performed a search for clinical evidence as directed by the scope. 

The following bibliographic databases were searched on 22nd and 23rd 

September 2025 from inception using a combination of free-text terms and 

controlled vocabulary: MEDLINE via Ovid, Embase via Ovid, Cochrane 

Library (CDSR and CENTRAL), and International HTA database (INAHTA). 

Two clinical trial registries were searched for ongoing and unpublished trials: 

ClinicalTrials.gov and the International Clinical Trials Registry Platform 

(ICTRP), and the pre-print server medRxiv was searched for pre-prints. The 

EAG also searched the companies’ websites for literature. The Medicines and 

Healthcare products Regulatory Agency’s (MHRA) alerts, recalls and safety 

information and the FDA MAUDE database were searched for adverse 

events.  

885 records were identified through the EAG database searches. 107 records 

were identified via searching company websites. Following de-duplication, 776 

records were then sifted at title and abstract stage, where 356 records were 

excluded. 420 records were sifted at full-text stage. Records supplied by the 

companies were deduplicated against the results of the EAG database and 

company website searches, resulting in 32 additional records. 17 key studies 

were included (reported across 27 publications), 7 ongoing trials were 

included and 21 additional studies reported only in conference proceedings 

were included in an appendix (Appendix C) (Figure 3). 

All records excluded at the full text screening stage are listed in Appendix F 

with reasons for exclusion. 
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Figure 3: PRISMA Study Selection Flow Diagram. 
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Database and company website searches. 

Search date Database / company website Searcher Number of 
hits 

22/09/25 Medline ALL (Ovid) MK 161 

22/09/25 Embase (Ovid) MK 614 

23/09/25 Cochrane Library CDSR 

Cochrane Library CENTRAL 

MK/SW 0 

35 

23/09/25 International HTA database (INAHTA) MK 1 

23/09/25 ClinicalTrials.gov MK 32 

23/09/25 International Clinical Trials Registry 
Platform (ICTRP) 

MK 11 

23/09/25 medRxiv MK 31 

Total from databases before deduplication 885 

27/08/25 Ultromics (The Proof) AR 45  

28/08/25 Us2.ai (Publications) AR 45 

28/08/25 EchoConfidence (Publication List) AR 8 

28/08/25 Ligence (Research highlights) AR 9 

Total from websites before deduplication 107 

Total from databases and websites before deduplication 992 

Total from databases and websites after deduplication 776 

 

Adverse event searches. 

Device Query Hits 

MHRA 23/10/25 (no filters) 

EchoConfidence (MyCardium) EchoConfidence 

MyCardium 

0 

0 

EchoGo Heart Failure (Ultromics) EchoGo 

Ultromics 

0 

0 

Ligence (Ligence UAB) Ligence 0 

Us2.v2 (Us2.ai) Us2.v2 

Us2.ai 

25 (0 relevant) 

4 (0 relevant) 

FDA MAUDE 23/10/25 (simple search, all years) 

EchoConfidence (MyCardium) EchoConfidence 

MyCardium 

0 

0 

EchoGo Heart Failure (Ultromics) EchoGo 

Ultromics 

0 

0 

Ligence (Ligence UAB) Ligence 0 

Us2.v2 (Us2.ai) Us2.v2 0 

https://www.ultromics.com/resources/the-proof
https://us2.ai/publications/
https://www.mycardium.com/research-papers
https://ligence.io/research-highlights/


External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to 
support diagnosis of heart failure: Early Value Assessment 
Date: December 2025  144 of 192 

Us2.ai 0 

 
 
Search strategies 
 

Ovid MEDLINE(R) ALL <1946 to September 19, 2025> 

# Query Hits 

1 EchoGo*.mp. 10 

2 Ultromics*.mp. 5 

3 ligence*.mp. 6 

4 "Us2.ai*".mp. 9 

5 "Us2.v2*".mp. 0 

6 "eko.ai*".mp. 0 

7 "A*STAR Biomedical Research Council".mp. 3 

8 ("A*STAR" and "Exploit Technologies").mp. 1 

9 EchoConfidence*.mp. 0 

10 MyCardium*.mp. 12 

11 or/1-10 40 

12 exp Heart Failure/ 161668 

13 ((heart or cardiac) adj2 (failure or insufficiency or 
decompensation)).tw. 

258642 

14 (HFrEF or HFmrEF or HFpEF).tw. 10384 

15 or/12-14 297576 

16 I ((echocardi* or "echo cardi*" or "transthoracic cardi*" or ((heart or 
cardi*) adj2 (ultraso* or sonogra*))) adj10 (AI or "artificial 
intelligence*" or "deep learning" or "machine learning" or "neural 
network*" or CNN or DNN or "augmented intelligence" or 
"automated recognition")).tw. 

905 

17 15 and 16 132 

18 11 or 17 170 

19 limit 18 to english language 165 

20 exp animals/ not humans.sh. 5376628 

21 19 not 20 161 

 

Embase <1974 to 2025 September 18> 

# Query Hits 

1 EchoGo*.mp. 29 

2 Ultromics*.mp. 21 

3 ligence*.mp. 25 

4 "Us2.ai*".mp. 29 

5 "Us2.v2*".mp. 1 
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6 "eko.ai*".mp. 7 

7 "A*STAR Biomedical Research Council".mp. 5 

8 ("A*STAR" and "Exploit Technologies").mp. 1 

9 EchoConfidence*.mp. 0 

10 MyCardium*.mp. 32 

11 or/1-10 126 

12 exp heart failure/ 766637 

13 ((heart or cardiac) adj2 (failure or insufficiency or 
decompensation)).tw. 

442290 

14 (HFrEF or HFmrEF or HFpEF).tw. 24027 

15 or/12-14 836026 

16 ((echocardi* or "echo cardi*" or "transthoracic cardi*" or ((heart or 
cardi*) adj2 (ultraso* or sonogra*))) adj10 (AI or "artificial 
intelligence*" or "deep learning" or "machine learning" or "neural 
network*" or CNN or DNN or "augmented intelligence" or "automated 
recognition")).tw. 

1664 

17 15 and 16 520 

18 11 or 17 630 

19 limit 18 to english language 614 

 

Cochrane Library (23/09/2025) 

ID Search Hits 

#1 (EchoGo*) 5 

#2 (Ultromics*) 4 

#3 (ligence*) 2 

#4 ("Us2.ai")  4 

#5 ("Us2.v2") 0 

#6 ("eko.ai") 0 

#7 ("A*STAR Biomedical Research Council") 0 

#8 ("A*STAR" and "Exploit Technologies") 0 

#9 (EchoConfidence*) 0 

#10 (MyCardium*) 1 

#11 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 12 

#12 MeSH descriptor: [Heart Failure] explode all trees 15009 

#13 ((heart or cardiac) NEAR/1 (failure or insufficiency or 
decompensation)):ti,ab,kw 

40910 

#14 (HFrEF or HFmrEF or HFpEF):ti,ab,kw 2803 

#15 #12 OR #13 OR #14 40981 

#16 ((echocardi* or (echo NEXT cardi*) or (transthoracic NEXT cardi*) or 
((heart or cardi*) NEAR/1 (ultraso* or sonogra*))) NEAR/9 (AI or 
(artificial NEXT intelligence*) or "deep learning" or "machine 

67 
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learning" or (neural NEXT network*) or CNN or DNN or "augmented 
intelligence" or "automated recognition")):ti,ab,kw 

#17 #15 AND #16 27 

#18 #11 OR #17 35 

 CDSR 

CENTRAL 

0 

35 

 

INAHTA (23/09/2025) 

Line  Query  Hits  

18  #17 OR #11  1  

17  #16 AND #15  0  

16  (echocardi* OR "echo cardi*" OR "transthoracic cardi*" OR ((heart 
OR cardi*) AND (ultraso* OR sonogra*))) AND (AI OR "artificial 
intelligence*" OR "deep learning" OR "machine learning" OR "neural 
network*" OR CNN OR DNN OR "augmented intelligence" OR 
"automated recognition")  

0  

15  #14 OR #13 OR #12  492  

14  (HFrEF OR HFmrEF OR HFpEF)  1  

13  ((heart OR cardiac) AND (failure OR insufficiency OR 
decompensation))  

444  

12  "Heart Failure"[mhe]  272  

11  #10 OR #9 OR #8 OR #7 OR #6 OR #5 OR #4 OR #3 OR #2 OR #1  1  

10  (MyCardium*)  0  

9  (EchoConfidence*)  0  

8  ("A*STAR" and "Exploit Technologies")  0  

7  ("A*STAR Biomedical Research Council")  0  

6  ("eko.ai*")  0  

5  ("Us2.v2*")  0  

4  ("Us2.ai*")  0  

3  (ligence*)  0  

2  (Ultromics*)  0  

1  (EchoGo*)  1  

 

Clinicaltrials.gov (23/09/2025) 

Query Hits Total hits 

EchoGo (Intervention/treatment) 3 3 

Ultromics (Intervention/treatment) 2 3 

Ligence (Intervention/treatment) 0 3 

Us2.ai (Intervention/treatment) 2 5 

Us2.v2 (Intervention/treatment) 0 5 

eko.ai (Intervention/treatment) 0 5 
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EchoConfidence (Intervention/treatment) 0 5 

MyCardium (Intervention/treatment) 0 5 

Heart Failure (Condition/disease) 

Artificial Intelligence (Other terms) 

Echocardiography (Intervention/treatment) 

22 26 

Heart Failure (Condition/disease) 

Deep learning (Other terms) 

Echocardiography (Intervention/treatment) 

4 26 

Heart Failure (Condition/disease) 

Machine Learning (Other terms) 

Echocardiography (Intervention/treatment) 

7 32 

Heart Failure (Condition/disease) 

Neural Network (Other terms) 

Echocardiography (Intervention/treatment) 

1 32 

Heart Failure (Condition/disease) 

augmented intelligence (Other terms) 

Echocardiography (Intervention/treatment) 

6 32 

Heart Failure (Condition/disease) 

automated recognition (Other terms) 

Echocardiography (Intervention/treatment) 

0 32 

 

ICTRP (23/09/2025) 

Query Hits 

EchoGo OR Ultromics OR ligence OR Us2.ai OR Us2.v2 OR eko.ai OR 
EchoConfidence OR MyCardium 

2 

heart failure (in the Condition) AND AI or "artificial intelligence" or "deep 
learning" or "machine learning" or "neural network" or CNN or DNN or 
"augmented intelligence" or "automated recognition" (in the Intervention) 

9 

Total deduplicated 11 (no 
duplicates) 

 

MedRxiv (23/09/2025) 

Query (in Full Text or Abstract or Title, words: all) Hits Total hits 

EchoGo 2 2 

Ultromics 18 19 

Ligence  2 21 

Us2.ai  10 31 

Us2.v2  0 31 

eko.ai  0 31 

EchoConfidence 0 31 

MyCardium  0 31 
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Appendix C: Associated publications and conference 

proceedings 

The table below lists publications identified as relevant by the EAG which are 

associated with key included studies. Where multiple publications were 

identified for the same study, only the most recent and comprehensive 

publication was used for data extraction and is used as the primary study 

reference throughout this report. 

# Reference Associated key study 

1 Akerman et al. 2024 Akerman et al. 2023a 

2 Akerman et al. 2023d Akerman et al. 2023a 

3 Akerman et al. 2023b Akerman et al. 2023a 

4 Campbell et al. 2023 Campbell et al. 2025 

5 Cassianni et al. 2023 Cassianni et al. 2024 

6 Dowsing et al. 2025 Associated with study provided AIC for 
EchoConfidence (no usable data) 

7 Huang et al. 2023 Huang et al. 2024a 

8 Sakamoto et al. 2024 Sakamoto et al. 2025 

9 Tromp et al. 2022c Tromp et al. 2022a 

10 Upton et al. 2024 Akerman et al. 2023a 
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The table below summarises conference proceedings identified as relevant to the decision problem by the EAG. Results were not 

extracted from conference proceedings due to the lack of detail available to facilitate assessment of study quality and the time 

constraints of this assessment. The EAG reviewed the conference abstracts for relevance to the evidence gaps identified (Section 

8). 

Author, year Study Design Population  Intervention Comparator Primary outcome 
measure(s) 

Setting (country) 

EchoGo Heart Failure 

Akerman 2023c Retrospective 
case-control 

Patients with ICD-10 
codes for HF 
(I50.X), LVEF≥50%, 
and grade II or III 
diastolic dysfunction 

EchoGo Heart 
Failure 

Clinical H2FPEF score Sensitivity, specificity Beth Israel 
Deaconess Medical 
Center, Harvard 
Medical School, USA 

Akerman 2025b Clinical 
validation 

Patients undergoing 
clinically indicated 
echocardiograms 

EchoGo Heart 
Failure 

H2FPEF and HFA-
PEFF scores 

Discrimination, 
calibration, 
classification, and 
clinical utility 

NR 

Akerman 2025c Clinical 
validation 

Patients with cardiac 
amyloidosis and 
HFpEF 

EchoGo 
Amyloidosis 
and Echo Go 
Heart Failure 

Models separately and 
combined  

Output and 
differentiation 

NR 
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Author, year Study Design Population  Intervention Comparator Primary outcome 
measure(s) 

Setting (country) 

Hamid 2024 Clinical 
validation 

Patients with New 
York Heart 
Association Class 
11, Ill or ambulatory 
IV heart failure with 
LVEF 40% and 
elevated PCWP 
during supine 
ergometry (2'25 
mmHg) 

EchoGo Heart 
Failure v2.0 

PCWP at rest and 
exercise, 6MWT and 
KCCQ. 

Association with 
hemodynamic, 
functional, and patient-
reported outcomes 

NR 

Karnik 2024  Clinical 
validation 

HFpEF  EchoGo Heart 
Failure 

Routine 
echocardiographic 
analysis using tools 
such as HF2PEF score  

Ability to detect HFpEF 
from echocardiogram 
alone without any 
additional clinical 
information  

NR 

Karnik 2025 Clinical 
validation 

Patients with 
preclinical HF and 
abnormal cardiac 
mechanics  

EchoGo HF  6MWT distance and 
KCCQ scores 

HFpEF probabilities 
and associated risk 
factors 

NR  

Subramanian 
2024 

Clinical 
validation 

Subclinical HFpEF EchoGo 
(version not 
named) 

Previously validated 
H2FpEF score 

HFpEF phenotype and 
the presence of 
subclinical HFpEF, 
VO2peak, exercise 
Stress E/e’, left 
ventricular strain, and 
left atrial strain 

UT Southwestern 
Medical Center, 
Texas, USA 

Yaros 2024 Clinical 
validation 

HFpEF EchoGo 
(version not 
named) 

Clinical history, normal 
ejection fraction 
(>45%), and evidence 
of elevated filling 

Diagnostic and 
prognostic 
performance – 

NR  
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Author, year Study Design Population  Intervention Comparator Primary outcome 
measure(s) 

Setting (country) 

pressure by resting 
(PCWP > 15 mm Hg) or 
exercise invasive 
hemodynamics (PCWP 
> 25 mm Hg) or 
echocardiogram (E/e’ 
>14) 

sensitivity, accuracy 
and specificity  

Us2.ai 

Dohse 2024 Clinical 
validation 

Patients with aortic 
root dilation  

Us2.ai Board certified 
cardiologist  

Manual measurements 
of LVOT, SoV, SJ 

University of Illinois, 
Chicago (USA)  

Ioannou 2023 Clinical 
validation 

Transthyretin 
amyloidosis 
cardiomyopathy 
patients  

Us2.ai Manual analysis  Parameters and  
prognosis prediction  

NR  

Karnik 2024 Clinical 
validation 

Patients who 
underwent routine, 
clinical 
echocardiograms 

Us2.ai Board-certified 
cardiologists 

Precision, accuracy, 
and agreement 
between the 
automated and manual 
measurements 

Northwestern 
Memorial Hospital, 
Chicago, IL (USA) 

Myhre 2023 Model 
development 
and validation 

Patients undergoing 
echocardiographic 
strain imaging  

Us2.ai  Manual strain analysis 
and measurements  

Interpretation of 
echocardiographic 
strain imaging  

Taiwan and USA  
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Author, year Study Design Population  Intervention Comparator Primary outcome 
measure(s) 

Setting (country) 

Palmer 2024 Clinical 
validation 

Patients undergoing 
contrast 
echocardiography to 
assess LV volumes 

US.2.ai Human reader LVEDV, LVESV, and 
LVEF 

 

Shrivastav 2024 Clinical 
validation 

Patients undergoing 
measurement of left 
ventricular 
diastology   

US.2.ai Gold standard 
measurements made 
by board-certified 
cardiologists  

Diastolic function  NR  

Teramoto 2022 Clinical 
validation 

PROMIS-HFpEF 
study cohort (not 
specified) 

Us.ai Conventional 
echocardiographic 
measurements 

Association of 
automated and manual 
parameters with N-
terminal pro-B-type 
natriuretic peptide 

Multinational (not 
specified) 

Tsourdinis 2024a  Clinical 
validation 

Patients undergoing 
transthoracic 
echocardiography 
(from 26 TTE 
studies selected) 

Us2.ai Board-certified 
cardiologists  

Feasibility of Us2.ai for 
assessment of aortic 
valve parameters was 
re-demonstrated 

NR 

Tsourdinis 2024b  Clinical 
validation 

Patients with left 
ventricular ejection 
fraction (from 25 
studies selected)  

Us2.ai Board-certified 
cardiologists 

Correlation between AI 
and human reads of 
LVEF assessment  

NR 

Venneri 2024 Prospective 
longitudinal 
cohort 

Patients with 
transthyretin cardiac 
amyloidosis  

Us2.ai N/A Association between 
changes in 
echocardiographic 
parameters and 
mortality 

National Amyloidosis 
Centre (UK) 
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Author, year Study Design Population  Intervention Comparator Primary outcome 
measure(s) 

Setting (country) 

Walser 2025 Retrospective 
longitudinal 
cohort 

Patients with cardiac 
transthyretin 
amyloidosis, who 
underwent serial 
echocardiograms  

Us2.ai Expert cardiologist  Automated 
measurements 
agreement and 
precision  

 

NR  

Yaku 2024 Clinical 
validation 

Patients with HF 
and LVEF ≥40% 

Us2.ai Core labs 

 
Association between 
test characteristics of 
core lab vs. deep 
learning-based 
measurements 

USA 

Ligence Heart 

Sveric 2025 Clinical 
validation 

Patients with 
symptomatic aortic 
valve stenosis, with 
mitral valve 
regurgitation, or with 
tricuspid valve 
regurgitation 

A fully 
automated 
artificial 
intelligence 
system for left 
ventricular 
mass 
measurement 
in Echo (not 
named) 

Experienced 
cardiologist 
measurements 

Pearson’s correlation 
coefficient, regression 
analysis, and mean 
absolute error to 
assess agreement 
between AI and 
human measurements 

NR 
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Appendix D: Baseline time to diagnosis and 

proportion of patients diagnosed in standard care 

Inputs from clinical experts and NHS Diagnostic waiting time and activity data 

were used to model a normal distribution curve (Figure 1) based on 10.6% of 

patients waiting more than 13 weeks for an echocardiogram, and the 

assumptions that no patients received an echocardiogram prior to 6 weeks 

and that patients who waited more than 13 weeks received an 

echocardiogram by week 16. A mean waiting time and standard deviation that 

met these assumptions was established through trial and error. From the 

normal distribution curve, the proportion of patients receiving an 

echocardiogram in two-week intervals was extracted (Table 1, Section A.2).  

Figure 1. Normal Distribution Curve of Baseline Waiting Time to 

Echocardiogram (in settings without a one-stop diagnostic clinic)

 

Once the time waited for echocardiography was established, the additional 

wait time between the echocardiography and clinical assessment (Section 

A.3) was aggregated to give the proportion of patients in each two-week 
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waiting time interval in settings without a one-stop diagnostic clinic (Section 

A.4).  

For settings with a one-stop diagnostic clinic, there was no data available on 

waiting list activity, therefore estimates from clinical experts was used. From 

the estimates provided, which ranged from 2 to 10 weeks from referral to 

diagnosis (because the echocardiography and clinical assessment occurred 

on the same day), the mean wait time was calculated to be 6 weeks. Using 

this information a normal distribution curve was modelled (Figure 2) to provide 

the proportions of patients diagnosed in each two-week interval in settings 

with a one-stop diagnostic clinic (Section B.2).  

Finally, weighting based on the proportion of patients who attend a one-stop 

diagnostic clinic was applied to the proportion of HF patients diagnosed in 

two-week intervals (Section C.2). The cumulative proportion diagnosed was 

used in the model. 

Figure 2. Normal Distribution Curve of Baseline Waiting Time to Diagnosis (in 
settings with a one-stop diagnostic clinic) 
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Table 1. Proportion of HF patients diagnosed in standard care 
Section  

 

A.1 Settings without one stop 
diagnostic clinic 

Value Source 

 Waiting time from referral to echo 6-12 weeks Clinical expert, excluding 
outliers 36 weeks 

 Waiting time from echo to clinical 
assessment 

1-4 weeks Clinical expert 

 Total wait from referral to clinical 
assessment 

7-16 weeks Calculation 

 % patient have been waiting for 13+ 
weeks in those waiting for 
echocardiography 

10.6 NHS diagnostic waiting 
time & activity, Jul 2025 

A.2 Time from referral to 
echocardiography (week) 

% received an 
echocardiogram 

cumulative % 

 0 0% 0% 

 2 0% 0% 

 4 0.01% 0% 

 6 0.29% 0% 

 8 3.71% 4% 

 10 18.65% 23% 

 12 37.21% 60% 

 14 29.57% 89% 

 16 10.56% 100% 

A.3 Time from echocardiography to 
clinical assessment (week) 

% seen a clinician cumulative % 

 0 0% 0% 

 2 50% 50% 

 4 50% 100% 

A.4 Total time from referral to clinical 
assessment (week) 

% diagnosed cumulative % 

 0 0% 0% 

 2 0% 0% 

 4 0% 0% 

 6 0% 0% 

 8 0% 0% 

 10 2% 2% 

 12 11% 13% 

 14 28% 41% 

 16 33% 75% 

 18 20% 95% 

 20 5% 100% 

B.1 Settings with one stop diagnostic 
clinic 

Value Source 

 Waiting time from referral to clinical 
assessment 

2-10 weeks Clinical expert 

B.2 Time from referral to clinical 
assessment (week) 

% diagnosed cumulative % 

 0 0% 0% 

 2 0% 0% 

 4 7% 7% 

 6 43% 50% 

 8 43% 93% 

 10 7% 100% 



External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to 
support diagnosis of heart failure: Early Value Assessment 
Date: December 2025  158 of 192 

C.1 All settings, weighted Value Source 

 % one stop diagnostic clinic 51.90 Kwok, 2025 

C.2 Weighted total time from referral 
to clinical assessment (week) 

% diagnosed cumulative % 

 0 0% 0.0% 

 2 0% 0% 

 4 3%. 3% 

 6 23% 26% 

 8 23% 49% 

 10 4% 53% 

 12 5% 58% 

 14 13% 72% 

 16 16% 88% 

 18 10% 98% 

 20 3% 100% 

Note. Due to rounding, figures may not add up to totals.   
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Appendix E: Effect of reduced echocardiography time 

with AI technologies on the waiting times  

Based on the time reduction derived from clinical studies, new 

echocardiography durations, time saved (in %) and therefore new number of 

procedures performed per day were calculated. The percentage reduction in 

average wait time was applied to generate a new distribution of 

echocardiography wait time. The model also assumed the same reduction for 

the one stop diagnostic clinic wait time. The reduction in average wait time 

with EchoConfidence was estimated to be 17%, and 0% for Us2.ai (base 

case). Using EchoConfidence as an example, the new distribution is 

illustrated as follows: 

Table 2. Proportion of HF patients diagnosed (EchoConfidence)  
 Settings without one stop 

diagnostic clinic 
Value Source 

 Average waiting time 11.50 weeks Mean used to generate 
distribution in base case 

 Number of procedures per day 10 Clinical experts 

 Time per procedure 0.75 hr Clinical experts 

 Patient load 575 Calculation 

 New time per procedure 0.59 hr Calculation, Almeida et al.: 
unpublished data 2025 

 New number of procedures per day 12 Calculation 

 New average waiting time 9.58 weeks Calculation 

 % time reduction 17% Calculation 

 Time from referral to 
echocardiography (week) 

% received an 
echocardiogram  

cumulative % 

 0 0% 0% 

 2 0% 0% 

 4 0% 0% 

 6 4% 4% 

 8 18% 22% 

 10 37% 59% 

 12 30% 89% 

 14 10% 99% 

 16 1% 100% 

 Time from echocardiography to 
clinical assessment (week) 

% seen a clinician cumulative % 

 0 0% 0% 

 2 50% 50% 

 4 50% 100% 

 Total time from referral to clinical 
assessment (week) 

% diagnosed cumulative % 

 0 0% 0% 

 2 0% 0% 

 4 0% 0% 
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 6 0% 0% 

 8 2% 2% 

 10 11% 13% 

 12 28% 41% 

 14 34% 74% 

 16 20% 94% 

 18 5% 99% 

 20 1% 100% 

 Settings with one stop diagnostic 
clinic 

Value Source 

 Time from referral to clinical 
assessment (week) 

% diagnosed cumulative % 

 0 0% 0% 

 2 1% 1% 

 4 22% 23% 

 6 55% 78% 

 8 21% 99% 

 10 1% 100% 

 All settings, weighted Value Source 

 % one stop diagnostic clinic 51.90 Kwok 2025 

 Weighted total time from referral 
to clinical assessment (week) 

% diagnosed cumulative % 

 0 0% 0% 

 2 0% 0% 

 4 11% 12% 

 6 29% 41% 

 8 12% 52% 

 10 6% 58% 

 12 13% 71% 

 14 16% 88% 

 16 10% 97% 

 18 3% 100% 

 20 0% 100% 

Note. Due to rounding, figures may not add up to totals.   
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Appendix F: Studies excluded at full text 

# Reference Exclusion 
reason 

1.  Abraham, N., Sanagala, T., Stoilova, M., & Karagodin, I. (2025). Artificial Intelligence in Echocardiography—Revolution or Replacement? Journal of the American Society of 
Echocardiography, 38(8), 733. https://doi.org/https://doi.org/10.1016/j.echo.2025.04.012 

Wrong 
publication 
type 

2.  Abramikas, Z., Jasiukeviciute, I., Balciunaite, G., Glaveckaite, S., Palionis, D., & Valeviciene, N. (2025). Artificial Intelligence Performance in Cardiac Magnetic Resonance Strain 
Analysis for Aortic Stenosis: Validation with Echocardiography and Healthy Controls. Medicina (Kaunas, Lithuania), 61(6). 
https://doi.org/https://dx.doi.org/10.3390/medicina61060950 

Wrong 
intervention 

3.  Abramikas, Z., Kazukauskiene, I., Sablauskas, K., Cesnaite, G., Vrublevska, G., Pugaciauskaite, K., Balciunaite, G., & Glaveckaite, S. (2025). Agreement between automated 
echocardiography and expert cardiologist for aortic valve hemodynamic parameters in severe aortic stenosis patients. European Heart Journal - Cardiovascular Imaging, 26, 
jeae333.033. https://doi.org/10.1093/ehjci/jeae333.033  

Wrong 
intervention 

4.  Adedinsewo, D. A., Morales-Lara, A. C., Afolabi, B. B., Kushimo, O. A., Mbakwem, A. C., Ibiyemi, K. F., Ogunmodede, J. A., Raji, H. O., Ringim, S. H., Habib, A. A., Hamza, S. M., 
Ogah, O. S., Obajimi, G., Saanu, O. O., Jagun, O. E., Inofomoh, F. O., Adeolu, T., Karaye, K. M., Gaya, S. A., . . . Carter, R. E. (2024). Artificial intelligence guided screening for 
cardiomyopathies in an obstetric population: a pragmatic randomized clinical trial. Nature Medicine, 30(10), 2897 EP - 2906. https://doi.org/https://dx.doi.org/10.1038/s41591-
024-03243-9  

Wrong 
intervention 

5.  Adedinsewo, D., Carter, R. E., Attia, Z., Johnson, P., Kashou, A. H., Dugan, J. L., Albus, M., Sheele, J. M., Bellolio, F., Friedman, P. A., Lopez-Jimenez, F., & Noseworthy, P. A. (2020). 
Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea. Circulation. 
Arrhythmia and electrophysiology, 13(8), e008437. https://doi.org/https://dx.doi.org/10.1161/CIRCEP.120.008437 (Comment in: Circ Arrhythm Electrophysiol. 2020 
Aug;13(8):e009111. doi: 10.1161/CIRCEP.120.009111  

Wrong 
intervention 

6.  Adhyapak, S. M., & Menon, P. G. (2024). Detecting Incipient Heart Failure in Asymptomatic Patients with Normal Ejection Fraction and comparisons with patients with heart failure 
and preserved ejection fraction using TimeSformer for classifying Echocardiography videos. medRxiv. https://doi.org/https://dx.doi.org/10.1101/2024.10.22.24315954   

OOS AI 
technology 

7.  Adhyapak, S., & Menon, P. (2024). Classification of Echocardiography Videos Using TimeSformer for Detecting Incipient Heart Failure in Asymptomatic Patients with Normal 
Ejection Fraction and Patients with Heart Failure. Circulation, 150. https://doi.org/https://dx.doi.org/10.1161/circ.150.suppl_1.4120990  (American Heart Association's 2024 
Scientific Sessions and the American Heart Association's 2024 Resuscitation Science Symposium. Chicago, IL United States.) 

OOS AI 
technology 

8.  Agency for Care Effectiveness. (2025). EchoGo Heart Failure to aid in the diagnosis of heart failure with preserved ejection fraction. https://www.ace-hta.gov.sg/healthcare-
professionals/ace-horizon-scanning/echogo-heart-failure-to-aid-in-the-diagnosis-of-heart-failure-with-preserved-ejection-fraction 

Wrong 
publication 
type 

9.  Aghezzaf, S., Coisne, A., Hamzi, K., Toupin, S., Bouleti, C., Fauvel, C., Brette, J. B., Montaigne, D., Rossanaly Vasram, R., Trimaille, A., Lemesle, G., Schurtz, G., Dillinger, J. G., 
Henry, P., & Pezel, T. (2023). Machine learning score focused only on echocardiographic data to predict in-hospital outcomes in ICCU patients. A study from the ADDICT ICCU 
cohort. European Heart Journal, 44. https://doi.org/https://dx.doi.org/10.1093/eurheartj/ehad655.015 (European Society of Cardiology Congress, ESC 2023. Amsterdam 
Netherlands.) 

Wrong 
intervention 

10.  Aghezzaf, S., Coisne, A., Hamzi, K., Toupin, S., Bouleti, C., Fauvel, C., Brette, J. B., Montaigne, D., Vasram, R. R., Trimaille, A., Lemesle, G., Schurtz, G., Dillinger, J. G., Henry, P., & 
Pezel, T. (2024). Machine learning score using only echocardiographic data for prediction of in-hospital outcomes in ICCU patients. Archives of Cardiovascular Diseases, 117(1), 
S66. https://doi.org/https://dx.doi.org/10.1016/j.acvd.2023.10.117 (JESFC 2024. Paris France.) 

Wrong 
intervention 
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11.  Ahluwalia, M., Almadani, A., Agu, E., & Kpodonu, J. (2023). HYPERTROPHIC CARDIOMYOPATHY DETECTION IN DIVERSE POPULATIONS USING DEEP LEARNING. Journal of the 
American College of Cardiology, 81(8), 417. https://doi.org/https://dx.doi.org/10.1016/S0735-1097%2823%2900861-6  (ACC.23. New Orleans United States.) 

OOS AI 
technology 

12.  Akerman, A. (2025). Echocardiography and Artificial Intelligence in the Cardiac Amyloidosis Referral Pathway. Wrong 
intervention 

13.  Akerman, A., Bernard, L., Deschamps, T., Foster, B., Hawkes, W., Mirhadi, E., Piotrowska, H., Sarwar, R., Tetlow, L., Woodward, G., & Becher, H. (2022). Automated contouring of 
non-contrast echocardiograms result in similar estimates of left ventricular function to manually contoured contrast-enhanced images in chemotherapy patients. European 
Heart Journal - Cardiovascular Imaging, 23, jeab289.013. https://doi.org/10.1093/ehjci/jeab289.013 

Wrong 
population 

14.  Akerman, A., Bernard, L., Deschamps, T., Foster, B., Hawkes, W., Mirhadi, E., Piotrowska, H., Sarwar, R., Tetlow, L., Woodward, G., & Becher, H. (2022). FULLY AUTOMATED 
CONTOURING OF CONTRAST ENHANCED ECHOCARDIOGRAMS IN CANCER THERAPY-RELATED CARDIAC DYSFUNCTION IS FEASIBLE AND PRECISE. Journal of the American 
College of Cardiology, 79(9), 1942. https://doi.org/https://dx.doi.org/10.1016/S0735-1097%2822%2902933-3 (ACC 22. Washington, DC United States.) 

Wrong 
intervention 

15.  Al-Alusi, M., Kopparapu, K., Singh, P., Achille, P. D., Lau, E. S. W., Reeder, C., Khurshid, S., Ellinor, P., Ho, J., Picard, M. H., Batra, P., & Lubitz, S. (2023). RV SIZE MEASURED BY DEEP 
LEARNING PREDICTS ATRIAL FIBRILLATION, HEART FAILURE AND MORTALITY. Journal of the American College of Cardiology, 81(8), 2275. 
https://doi.org/https://dx.doi.org/10.1016/S0735-1097%2823%2902719-5 (ACC.23. New Orleans United States.) 

Wrong 
intervention 

16.  Alenezi, F. (2025). AI-Automated Detection of Hypertrophic Cardiomyopathy by Echocardiography: Training and External Validation. ASE2025,  Wrong 
population 

17.  Ali, M. R., Lam, C. S. P., Stromberg, A., Hand, S. P. P., Booth, S., Zaccardi, F., McCann, G. P., Khunti, K., & Lawson, C. A. (2025). Heart failure symptoms predict hospitalization and 
mortality at diagnosis, 6 and 12 month follow-ups. medRxiv, 2024.2006.2012.24308679. https://doi.org/10.1101/2024.06.12.24308679 

Wrong 
intervention 

18.  Alishetti, S., Pan, W., Beecy, A. N., Liu, Z., Gong, A., Huang, Z., Clerkin, K. J., Goldsmith, R. L., Majure, D. T., Kelsey, C., vanMaanan, D., Ruhl, J., Tesfuzigta, N., Lancet, E., 
Kumaraiah, D., Sayer, G., Estrin, D., Weinberger, K., Kuleshov, V., . . . Uriel, N. (2025). Predicting Cardiopulmonary Exercise Testing Performance in Patients Undergoing 
Transthoracic Echocardiography - An AI Based, Multimodal Model. medRxiv. https://doi.org/https://dx.doi.org/10.1101/2025.07.05.25330921  

Wrong 
intervention 
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Wrong 
study 
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intervention 

21.  Alzahrani, T., Choi, B., Krepp, J., & Lewis, J. F. (2019). Predicting clinical outcomes of inpatients with heart failure based on echocardiogram reports using natural language 
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Wrong 
intervention 

22.  Andersson, P., Lindow, T., Lindqvist, P., & Venkateshvaran, A. (2025). Utilizing echocardiographic findings and machine learning to predict elevated left ventricular filling pressures 
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intervention 

23.  Andjelkovic, K., Kalimanovska Ostric, D., & Andjelkovic, I. (2014). Prediction of heart failure in adults with congenital heart disease. European Journal of Heart Failure, 16, 87. 
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intervention 
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Wrong 
intervention 
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Wrong 
intervention 
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Wrong 
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technology 
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Early-use assessment 

HTE10067 Artificial Intelligence assisted 

echocardiography to support diagnosis of 

heart failure 

Assessment report overview 

This overview summarises key information from the assessment and sets out 

points for discussion in the committee meeting. It should be read together with 

the final scope,  external assessment report and the addendum. A list of 

abbreviations used in this overview is in appendix A. 

1. The technologies 

This assessment included 4 technologies (EchoConfidence, EchoGo Heart 

Failure, Ligence Heart and Us2.ai) that use artificial intelligence (AI) software 

to aid the interpretation and quantification of echocardiography images, 

reduce operator dependency and variability, and enhance measurement 

accuracy and diagnostic consistency (see table 1). All the technologies 

included in this assessment are designed to aid the operator (adjunctive), not 

replace them (automative). See section 5 of the final scope and table 1 in the 

external assessment report (EAR) for further details about the included 

technologies.  

Table 1 Interventions 

Technology 
(company) 

Regulatory 
status  

and DTAC 

Intended use Target 
population 

EchoConfidence 
(MyCardium) 

 

Class IIb 

DTAC in place 

 

Software as a Medical Device 
that displays images from a 
transthoracic Echocardiogram, 
and assists the user in 
reviewing the images, making 
measurements and writing a 
report. 

Adults with or 
without underlying 
cardiac disease, 
requiring review 
or analysis of their 
echocardiographic 
images. 

https://www.nice.org.uk/guidance/indevelopment/gid-hte10067/documents
https://www.nice.org.uk/guidance/indevelopment/gid-hte10067/documents
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For detection and diagnosis of 
heart failure via screening or 
clinical echocardiograms, for 
stratifying heart failure (HFrEF, 
HFmrEF vs HFpEF), and for 
monitoring disease 
progression and response to 
treatment. 

 

EchoGo Heart 
Failure 
(Ultromics) 

Class IIa 
(expected 
June 2026) 

DTAC not in 
place 

Detecting heart failure with 
preserved ejection fraction 
(HFpEF). 

Diagnostic aid for patients 
undergoing routine functional 
cardiovascular assessment 
using echocardiography. To 
provide adjunctive information 
on a patient’s cardiovascular 
condition for detecting heart 
failure with preserved ejection 
fraction (HFpEF). 

Adults over 25 
years of age 
having routine 
functional 
cardiovascular 
assessment using 
diagnostic 
echocardiography 
or people 
suspected of 
heart failure 

Ligence Heart 
(Ligence UAB) 

Class IIa 

DTAC not in 
place 

Analysis of echocardiography 
images acquired from patients 
in accordance with the latest 
guidelines for 
echocardiography 
examination. Used to detect, 
measure, and calculate 
various specifications of 
structure and function of the 
heart and great vessels by 
analysing echocardiographic 
mages and automatically 
providing echocardiographic 
reports. 

Adults, 18 years 
and over who are 
not in a life-
threatening state 
of health, time is 
not critical for 
medical decisions 
and no major 
therapeutic 
interventions are 
required.  

US2.ai (EKO 
Pte Ltd) 

Class IIb 

DTAC in place 

To process acquired 
transthoracic cardiac 
ultrasound images, to analyse 
and make measurements on 
images in order to provide 
automated estimation of 
several cardiac structural and 
functional parameters. To 
accelerate and standardise the 
detection of most forms of 
heart failure, independent of 
ejection fraction.  

Detect, measure, and 
calculate various 
specifications of structure and 
function of the heart and great 

Adults as decision 
support for the 
detection of 
specific cardiac 
conditions such 
as heart failure, 
pulmonary 
hypertension, 
cardiac 
amyloidosis, 
hypertrophic 
cardiomyopathy 
and valve disease 
(aortic stenosis, 
mitral 
regurgitation). 
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vessels by analysing 
echocardiographic images.  

 

2. The condition  

Heart failure occurs when the heart cannot pump blood effectively due to 

structural or functional abnormalities. It is not usually curable, but symptoms 

such as breathlessness, fatigue, and ankle swelling can be managed (NHS, 

2025). Heart failure may develop gradually (chronic, often linked to 

hypertension or diabetes) or suddenly (acute, for example after myocardial 

infarction, arrhythmia, infection, or uncontrolled hypertension). Acute heart 

failure requires urgent care and often presents in emergency departments. 

Heart failure significantly impacts quality of life and can lead to disability and 

early death. Around 80% of heart failure diagnoses in England occur in 

hospital, despite 40% of patients having symptoms that could have prompted 

earlier assessment (British Heart Foundation, 2025). 

Heart failure is classified by left ventricular ejection fraction (LVEF) measured 

with echocardiography. Preserved ejection fraction (HFpEF) is defined as an 

LVEF of 50% or more, reduced ejection fraction (HFrEF) is defined as LVEF 

of 40% or less, whilst mildly reduced heart failure (HFmrEF) is an intermediate 

category with an LVEF of 41 to 49% 

Heart failure is common, affecting over 1 million people in the UK, with 

200,000 new diagnoses annually and 800,000 on GP registers (British Heart 

Foundation, 2025). Echocardiography is used in 87% of diagnoses (NHFA, 

2025). 

3. Current practice  

In the NHS, the diagnosis and management of heart failure follows 2 NICE 

guidelines: 

• Chronic heart failure in adults: diagnosis and management (NG106) 

• Acute heart failure: diagnosis and management (CG187) 

https://www.nhs.uk/conditions/heart-failure/symptoms/
https://www.nhs.uk/conditions/heart-failure/symptoms/
https://www.bhf.org.uk/what-we-do/our-research/heart-statistics/heart-statistics-publications
https://www.nhs.uk/conditions/heart-failure/symptoms/
https://www.nhs.uk/conditions/heart-failure/symptoms/
https://www.nicor.org.uk/interactive-reports/national-heart-failure-audit-nhfa
https://www.nicor.org.uk/interactive-reports/national-heart-failure-audit-nhfa
https://www.nice.org.uk/guidance/ng106
https://www.nice.org.uk/guidance/cg187
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Initial clinical assessments for patients presenting with symptoms indicative of 

suspected heart failure include blood tests for detection of biochemical 

markers followed by a transthoracic echocardiogram (TTE). For both acute 

and chronic onset of heart failure, NICE guidelines (NG106 and CG187) 

recommend testing to measure levels of N-terminal pro-B-type natriuretic 

peptide (NT-proBNP). When the thresholds are exceeded, confirmatory 

diagnosis with echocardiography is required. 

TTE is the primary diagnostic tool used for heart failure. It is usually performed 

in secondary care in the NHS by a specialist cardiac physiologist. TTE 

facilitates detection of abnormalities and defects in the heart’s chambers and 

valves and provides measurements of blood flow and the heart’s pumping 

ability. Where an echocardiogram detects abnormal ejection heart fraction, 

abnormalities in the heart’s walls’ motions, or hypertrophy, this can be 

indicative of heart failure. Diagnosis with echocardiography determines 

whether heart failure is left or right sided, or biventricular. The TTE process 

typically takes between 45 and 60 minutes (see Figure 1). 

 

Figure 1: Echocardiography procedure (taken from EAR) 

Cardiac magnetic resonance imaging (MRI) may also be used for some 

complex cases, to determine the nature of heart failure (HFrEF, HFmEF or 

HFmEF), for instances when echocardiography is inconclusive or the 

https://www.nice.org.uk/guidance/ng106
https://www.nice.org.uk/guidance/cg187
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procedure is contraindicated, or to determine the underlying cause. However, 

the availability and access to cardiac MRI may vary by locality.  

4. Unmet need  

There are long waiting lists for echocardiography caused by several factors, 

including the time the procedures take, the setting of the procedures (requiring 

referral), and an insufficient skilled workforce. This may lead to suboptimal 

outcomes for people with heart failure and increased use of healthcare 

resources. 

There is a significant backlog for echocardiography in England, with waiting 

lists rising to 235,476 people in June 2025 (NHS England, 2025). NICE quality 

standards require 90% of referrals to be investigated with echocardiography, 

but only half of hospitals meet this target (National Heart Failure Audit, 2025). 

Although suspected heart failure cases should be seen within 6 weeks, only 

about two thirds meet this standard (NHS England, 2024). 

Staff shortages and COVID-19-related backlogs have worsened access 

(British Society of Echocardiography, 2021). Delays can lead to poorer 

outcomes as reported in the REVOLUTION HF study (2025), which linked late 

diagnosis to higher mortality, morbidity, and resource use. It may also delay 

access to effective treatments such as SGLT2 inhibitors (Lewinski, 2023). 

Workforce pressures remain severe, with warnings of “unprecedented 

challenges” in recruitment and retention (British Society of Echocardiography, 

2021). 

AI technologies could help by automating measurements, interpretation, and 

report generation after TTE, potentially reducing procedure time and easing 

waiting lists. 

  

https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostics-waiting-times-and-activity/monthly-diagnostics-waiting-times-and-activity/
https://www.nicor.org.uk/interactive-reports/national-heart-failure-audit-nhfa
https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2024/03/DWTA-Report-January-2024.pdf
https://www.bsecho.org/Public/Public/Resources/Clinical-guidance/PSB001.aspx
https://academic.oup.com/eurheartj/article/46/16/1493/8009274
https://cardiab.biomedcentral.com/articles/10.1186/s12933-023-02000-5
https://www.bsecho.org/Public/Public/Resources/Clinical-guidance/PSB001.aspx
https://www.bsecho.org/Public/Public/Resources/Clinical-guidance/PSB001.aspx
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5. Innovative aspects 

Using automation to aid cardiac physiologists in measurement, interpretation, 

and report generation after TTE could potentially release time during 

appointments. It could improve throughput and workflow, reduce examination 

times and waiting lists, standardise diagnosis and characterisation of heart 

failure, track people with heart failure over time, and through this ultimately 

improve care and promote efficient use of NHS resources.  

Further details, including descriptions of the interventions, comparator, care 

pathway and outcomes, are in the final scope. 

6. Clinical effectiveness 

The external assessment group (EAG) did a literature search to identify 

relevant published clinical evidence. The search and selection methods are in 

section 4.1 and appendix B of the external assessment report (EAR).  

6.1 Overview of key studies 

The EAG identified 19 key studies across the 4 technologies. This included 11 

studies for Us2.ai (2 provided by the company following comments on the 

EAR. See section 2 in the addendum), 3 studies for EchoGo Heart Failure, 3 

studies for EchoConfidence and 2 studies for Ligence Heart. Full text 

publications were available for 14 of the studies, 3 were provided by the 

company for EchoConfidence and 2 of these were interim analyses of ongoing 

studies.  

The EAG appraised the studies for quality, risk of bias, and generalisability to 

the NHS. Overall, the studies on the technologies had several limitations. 

Most studies were retrospective, introducing risks such as selection bias and 

incomplete records. Fourteen studies used non-UK data, potentially limiting 

generalisability to NHS practice. Seven studies excluded complex cases or 

were conducted in controlled environments, which may not reflect real-world 

workflows. Additionally, poor-quality images were often excluded, raising 

concerns about applicability in routine care. The EAG noted that 10 studies 

https://www.nice.org.uk/guidance/indevelopment/gid-hte10067/documents
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were set in single-centres, and some relied on a single operator, possibly not 

reflecting the variability that would be expected in real world settings. Thirteen 

of the studies did not specify technology versions, although the EAG sought 

clarification where possible. Importantly, there was a lack of evidence reported 

on downstream health outcomes, making it difficult to directly assess patient 

benefit. 

A summary of the studies identified is reported in Table 3 of the EAR and a 

description of study limitations by technology is reported in Section 5.1 (Table 

4) of the EAR. The outcomes reported by each study are summarised in Table 

5 of the EAR. A description on the definitions of diagnostic and agreement 

measurements is reported in Table 6 of the EAR. The addendum includes full 

details of the 2 additional Us2.ai studies, provided following stakeholder 

comments on the EAR. 

6.2 Results of key studies 

6.2.1 Diagnostic accuracy 

Diagnostic test accuracy was assessed using sensitivity, specificity, negative 

predictive value (NPV) and positive predictive value (PPV). These outcomes 

are reported across 5 studies, for 3 of the technologies (EchoConfidence, 

EchoGo Heart Failure and Us2.ai). 

For EchoConfidence, with human interpretation of the measurements as the 

reference standard, the FEATHER interim analysis found EchoConfidence 

had high specificity for detecting heart failure subtypes but a notable 

false-negative rate for HFrEF (41%). Specificity was 91% for HFrEF and 95% 

for HFpEF, with predictive values generally high (see table 9 in the EAR). 

Overall specificity for any heart failure subtype was 83%. EchoGo Heart 

Failure was compared with existing literature benchmarks (EchoGo Heart 

Failure V1.0) or multiparametric clinical scoring tools (EchoGo Heart Failure 

V2.0) in 2 diagnostic case control studies (Akerman et al. 2025a and 2023a). 

V1.0 had a reported sensitivity of 88% and specificity of 82%, whereas V2 had 

higher sensitivity and specificity than the tools, but predictive values were 
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similar or lower (see table 7 in the EAR). Two studies assessed Us2.ai with 

handheld TTE (Huang et al. 2024a and Campbell et al. 2025). AI-assisted 

scans reported higher specificity and NPV, but lower sensitivity and PPV 

compared with manual cart-based TTE.  

The EAG reported no diagnostic accuracy data was available for Ligence.  

6.2.2 Detection and classification of heart failure 

Six studies (4 for Us2.ai and 2 for EchoGo Heart Failure) reported the area 

under the curve for the receiver operator characteristics curve (AUC) for 

detecting echocardiographic findings indicative of heart failure. AUC 

measures overall diagnostic accuracy by summarising sensitivity and 

specificity across all probability thresholds. 

EchoGo Heart Failure was assessed in 2 studies (Akerman et al. 2025a and 

2023a). One study on EchoGo Heart Failure V1 reported an AUC of 0.97 in 

the training set compared with 0.95 in a validation set, indicating good 

accuracy. One study reported EchoGo Heart Failure v2.0 performed similarly 

to multiparametric clinical scoring tools (AUROC 0.798 compared with 0.788 

respectively).  

Four studies evaluated Us2.ai for detecting heart failure and automation of 

related echocardiographic measures (Myhre et al. 2024b, Tromp et al. 2022b, 

Huang et al. 2024a and Campbell et al. 2025). Myhre et al. (2024b) reported 

strong discrimination between people with heart failure from those without 

(AUC=0.89), as well as between HFrEF and non-HF (AUC=0.98), and 

between HFpEF and non-HF (AUC=0.82), using global longitudinal strain 

(GLS). Tromp et al. (2022b) reported high AUCs (0.88 to 0.96) for key 

parameters across internal and external cohorts. Huang et al. (2024a) and 

Campbell et al. (2025) reported AUCs of 0.88 and 0.96 for handheld TTE 

detecting reduced LVEF. Overall, the EAG considered Us2.ai demonstrated 

consistently good diagnostic accuracy for identifying left ventricular 

dysfunction and other heart failure indicators. 

No data on these metrics were reported for EchoConfidence or Ligence.  
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6.2.3 Other clinical effectiveness metrics reported in the key studies 

The key studies also reported evidence for a number of other clinical 

effectiveness measures. These included: interchangeability between human 

and AI measurements; correlation between human and AI measurements; 

agreement between human and AI measurements; yield of measurement. Full 

details of this evidence is in sections 5.2.3 to 5.2.7 of the EAR. The 2 studies 

included in section 2 of the addendum reported evidence on coverage of 

echocardiographic parameters and concordance with clinical records (Oo et 

al. 2024) and acceptability of AI in TTE and relationship between variables 

and behavioural intention (Huang et al. 2024b).   

6.2.4 Clinical Outcomes 

Four studies investigated how clinical endpoints were met when 

echocardiography was assessed with AI, to determine the usefulness of the AI 

technologies in the heart failure clinical pathway. Outcomes included heart 

failure-related hospitalisations and mortality. The EAG stated that data 

comparing clinical outcomes was limited.  

Three studies using EchoGo Heart Failure (Akerman et al. 2025a, Akerman et 

al. 2023a and Cassianni et al. 2024), found that a positive diagnosis of HFpEF 

was associated with higher risk of heart failure hospitalisation and death, 

similar to manual clinical scoring tools. Akerman et al. (2023a) reported that 

AI-classified HFpEF was linked to increased mortality (hazard ratio [HR] 1.9) 

when compared with those classified as not having HFpEF by AI. Overall, the 

EAG concluded EchoGo Heart Failure may help detect heart failure, but its 

advantage over existing methods for predicting outcomes remains unclear. 

For EchoConfidence, interim data from the FEATHER study compared 

survival curves for heart failure diagnoses classified by AI and 2 human 

comparators. Significant differences were observed for HFrEF and HFmrEF 

compared with no heart failure across all methods, but not for HFpEF for 

human or AI diagnosis. However, limited detail beyond p values means 

conclusions cannot be drawn. 
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No clinical outcome data was identified for Ligence or Us2ai. Further details 

on clinical outcomes is in section 5.2.6 of the EAR.  

6.2.5 Impact on procedure time  

The impact of AI technologies on reporting, scanning or analysis time was 

reported in 3 studies for 2 technologies (EchoConfidence and Us2.ai). 

One interim study reporting on EchoConfidence found AI reduced the mean 

time for analysis of echocardiographic parameters to a mean of 3.2 seconds 

(SD 0.4) compared with a mean of 553 seconds (SD 44) and 587 seconds 

(SD 64) for 2 human readers. 

For US2ai, the study by Hirata et al. (2024) reported that the use of AI 

assistance reduced time for echocardiographic measurements from 325 

seconds (SD 94) to 159 seconds (SD 66) (p<0.01). Report creation time also 

decreased from 429 seconds (SD 128) to 71 seconds (SD 39) (p<0.01). 

Overall, measurement and report creation time per case was reduced by 524 

seconds (70%). This was a small, single-centre study with one operator and 

23 participants in Japan. 

The study by Sakamoto et al. (2025) found examination time per patient was 

shorter with AI, at 13.0 minutes (SD 3.5) compared with 14.3 minutes, (SD 

4.2) (p<0.001) without AI. The number of examinations per day was higher 

with AI (16.7, SD 2.5) than without AI (14.1, SD 2.5) (p=0.003). This study is 

reported in a pre-print and has not been peer reviewed. The EAG commented 

that as only mean values were reported, the data could not be assessed in 

detail, and reports of significant differences should be interpreted with caution. 

6.2.6 Adverse events 

The EAG did a search of the MAUDE database and MHRA safety notices and 

did not identify any adverse events or safety concerns for the included 

technologies. No adverse events were reported in any of the clinical studies 

reviewed.  
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6.2.7 Clinical risk 

Development of AI models for echocardiography typically involves training, 

internal validation and external validation. A lack of external validation on UK 

or similar populations may limit suitability of the technologies and pose clinical 

risks, or impact equality considerations. The EAG noted that EchoConfidence 

was validated in a UK population as part of its CE marking process. It also 

indicated that demographic inconsistencies make conclusions about the other 

technologies difficult. A comparison between demographics of external 

validation cohorts and UK heart failure cohorts is reported in Table 14 of the 

EAR. 

6.2.8 Meta-analysis 

The EAG considered it was not appropriate to undertake meta-analyses of 

outcomes reported across the evidence base for any of the technologies due 

to the clinical and methodological heterogeneity observed between studies. 

6.2.9 Ongoing studies 

The EAG identified 7 ongoing studies, listed in Table 23 of the EAR. For 

Us2.ai, the ongoing evidence generation included 2 RCTs (TARTAN-HF and 

SYMPHONY-HF) investigating the use of AI-assisted echocardiography as 

part of screening strategies, plus 3 company-led validation or pattern-

recognition studies. Ligence is being evaluated by 2 studies, with XXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX and 1 assessing systolic and 

diastolic parameters. The key study for EchoConfidence is the FEATHER 

study (Almeida et al. unpublished data 2025 (n=1200), with interim data 

included in the EAR and further data expected in December 2025. The 

company state this is a double-blind evaluation of AI for heart failure diagnosis 

and stratification on unselected consecutive patients referred for evaluation to 

community cardiology services.  

Overall, the EAG considered these studies may strengthen the evidence base 

on accuracy and validity of the AI technologies but will not address key gaps 
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such as impact of AI on clinical outcomes or system benefits. Further details 

of ongoing studies are in section 8.1 and table 23 of the EAR.  

6.3 Potential use of AI technologies to support echocardiography in 

community settings  

Echocardiography is currently done almost exclusively in secondary care, in 

bespoke cardiology units for elective referrals, or emergency or bedside 

settings using a point-of-care device. Examinations are usually done by a 

qualified cardiac physiologist. Clinical experts highlighted the potential for the 

AI technologies to support a shift of echocardiography out of secondary care, 

into primary or community settings. As this was not part of the decision 

problem in the final scope, the EAG only included studies from a community 

care setting if they were based in the UK. Only the interim report from the 

FEATHER study (Almeida et al. unpublished data 2025) included data from a 

UK community care setting (see section 6.2.9). The EAG stated that the 

interim results indicate there may be potential for EchoConfidence to be safely 

implemented in community care, but evidence to demonstrate its impact on 

procedure time and the type of operator is limited. Further details of studies 

and ongoing trials that the EAG considered may be relevant to the use of 

echocardiography in community settings are included in sections 5.2.9 and 

8.1 of the EAR.  

7. Health economic evidence  

The external assessment group (EAG) did a review of the literature to identify 

suitable health economic models. A total of 3 economic models from 2 NICE 

guidelines were identified, these were (i) Chronic heart failure in adults: 

diagnosis and management (NG106) 2018 and 2025 and (ii) Acute heart 

failure: diagnosis and management (CG187). The EAG found that the NICE 

NG106 2018 model and CG187 model were relevant to the scope. These 

NICE models were used to inform the EAG conceptual economic model. 

Further details of these models are presented in section 6.1 of the external 

assessment report (EAR).  

https://www.nice.org.uk/guidance/ng106
https://www.nice.org.uk/guidance/ng106/evidence/economic-analysis-report-for-chronic-heart-failure-with-reduced-ejection-fraction-pdf-15434373709
https://www.nice.org.uk/guidance/cg187
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7.1 Health economic model 

The EAG adapted the existing NICE models to assess the potential cost-

effectiveness of AI-assisted transthoracic echocardiography (TTE) for heart 

failure diagnosis compared with standard TTE. The Markov model used a 1-

year time horizon to capture the impact of reduced waiting times from shorter 

TTE durations. Downstream benefits of earlier diagnosis were not modelled 

because of the uncertainty around current waiting times. The standard NICE 

reference case was adopted, with QALYs based on utility values as the 

benefits outcome. As the time horizon was 1-year, no discounting was 

applied. 

The model had a 2-week cycle and maintained the assumptions made in 

NICE NG106, that the sensitivity and specificity for standard TTE and 

specialist assessment were set at 100%, so only true positive and true 

negative outcomes were considered. The EAG stated that because the AI 

technologies would be used as an adjunct to standard TTE and a specialist 

clinical assessment is required for heart failure diagnosis, it is unlikely that 

there would be any differences in diagnostic outcomes between technologies. 

So it was not necessary to consider false negative and false positive 

outcomes in this assessment. True positive patients were assumed to start 

treatment sooner with AI due to shorter waiting times. True negatives were 

assumed to be unaffected and so were excluded in the model. The model 

included 4 health states: (i) symptomatic on waiting list, (ii) acute episode, (iii) 

treated heart failure, and (iv) dead. These are shown in Figure 2. Further 

details on the model structure are presented in section 6.2.1 of the EAR.  
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Figure 2: Schematic representation of the EAG early economic model (from 

EAR) 

 

7.1.1 Key model assumptions 

• Standard TTE plus specialist clinical assessment is 100% accurate, as 

described in Section 6.2.3 (NICE NG106 2018). 

• Accuracy is assumed to be unaltered when using AI-assisted 

echocardiography, followed by a specialist clinical assessment. 

• Patients remain in the “treated heart failure” state following diagnosis until 

they die or until the end of the 1-year time horizon. It is assumed that the 

treatment is sufficient to manage their condition and prevent any acute 

episodes resulting in hospital admission. 

• Model assumes a proportion of patients would attend a one stop diagnostic 

clinic, where they receive echocardiography and specialist clinical review in 

one appointment. The cost of a one stop diagnostic clinic is assumed to be 

the same as the combined costs of an echocardiography appointment and 

a separate outpatient specialist clinic visit. 

• For model simplicity, all patients who developed acute symptoms would 

enter through an ED and subsequently be hospitalised. 

• The wait time for standard TTE and one stop diagnostic clinic was 

assumed to follow a normal distribution. 

Treated HF

Symptomatic, on 

waiting list

Acute episode, 

hospitalisation

Dead



Assessment report overview – HTE10067 Artificial Intelligence assisted echocardiography to support 
diagnosis of heart failure 
December 2025 

© NICE 2025. All rights reserved.  15 of 27 

• It was assumed that the reduced procedure time would proportionately 

increase the number of patients per day, and that the calculated reduction 

in average wait time would shift the entire wait time distribution forward by 

the same magnitude. 

• Number of patients referred to echocardiography was assumed to be 

constant. 

• Waiting time for a specialist clinical assessment following 

echocardiography would remain unchanged. However, if the specialist 

clinic is already running at full capacity and there is no additional capacity 

available, this would limit the number of patients receiving an earlier 

diagnosis despite having an earlier echocardiography. 

7.1.2 Description of population, health states, and transitions 

As only true positive cases were accounted for in the model, all patients who 

entered the model would have diagnosed or undiagnosed heart failure. They 

entered the model through “symptomatic on waiting list” or “acute episode” 

health states. 

Symptomatic, on waiting list 

Patients with symptoms of heart failure in primary care who are on the waiting 

list for echocardiography and specialist clinical assessment or one stop 

diagnostic, start on the “Symptomatic on waiting list” state. The National Heart 

Failure Audit (NHFA, 2025) from the National Institute for Cardiovascular 

Outcomes Research (NICOR) reports that 49% of patients admitted with heart 

failure had HFrEF. The average age at first presentation was 77.5 years, and 

56.1% were male. 

Based on data from Bottle et al., 2017 EAG assumed 21% entered the model 

on the waiting list with the remaining 79% entering the model in the acute 

episode state. 

People on the waiting list can transition to 3 states. They could be diagnosed 

with heart failure in secondary care using TTE with or without AI. This was the 

only part of the model affected by the AI technologies, through the reduction in 

https://www.nicor.org.uk/interactive-reports/national-heart-failure-audit-nhfa
https://pubmed.ncbi.nlm.nih.gov/28982720/
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waiting times, discussed in Section 7.1.2. People could also have an acute 

episode. Hospitalisation rates used in the model were based on real world 

data from the PULSE study (Linden et al., 2023). Rates were expressed per 

1,000 person-years and adjusted for age and sex by heart failure subtypes 

(HFrEF and HFpEF) to calculate weighted 2-week hospitalisation probabilities 

in the model. People could also die whilst on the waiting list, with mortality 

rates being based on a published 1-year survival rate of 75.9% (Taylor et al., 

2019), giving a 24.1% annual mortality rate whilst awaiting diagnosis. 

Acute episode, hospitalisation 

The “Acute episode, hospitalisation” state represents people who are 

hospitalised as they develop acute onset of symptoms of heart failure; these 

patients are therefore analogous to patients with acute heart failure, covered 

by NICE CG187, and most patients in the model start in this state. Length of 

hospital stay was based on the NICOR NHFA reports. As this was found to be 

consistently under 14 days, the model assumed an inpatient stay lasts one 

cycle (2 weeks) before transition to another health state. An in-hospital 

mortality rate of 10.4% was applied to patients admitted with acute symptoms, 

derived from NICOR data. 

The EAG assumed that people admitted for acute episodes of heart failure 

and who survived could transition to the waiting list, as they are discharged 

without a heart failure diagnosis. This was based on clinical expert input and a 

report by National Confidential Enquiry into Patient Outcome and Death 

(NCEPOD, 2018). Estimates ranged from 10% to 55.8%, giving an average of 

32.9%. Because NICE guidance recommends all inpatients should be 

diagnosed before discharge, a sensitivity analysis was done to explore this 

variation. The remaining people were assumed to transition to the “treated 

heart failure” state.  

Treated Heart Failure 

Once diagnosed, either from the waiting list or directly from hospital, the EAG 

assumed people remain in the “treated heart failure” state until they die or until 

https://pubmed.ncbi.nlm.nih.gov/38070884/
https://www.bmj.com/content/bmj/364/bmj.l223.full.pdf
https://www.bmj.com/content/bmj/364/bmj.l223.full.pdf
https://www.nice.org.uk/guidance/cg187
https://www.ncepod.org.uk/2018report2/AHF%20full%20report.pdf
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the end of the 1-year time horizon. It is assumed that the treatment is 

sufficient to manage their condition and prevent any acute episodes resulting 

in hospital admission. The EAG stated that, in reality, some patients would 

require inpatient admission if they experienced severe symptoms. However, 

for model simplicity, this transition is not explicitly captured due to the short 

time horizon. 

A standardised mortality ratio of 7.37 was applied to patients with treated 

heart failure in the model according to age and sex from the office for national 

statistics life tables. 

7.1.3 Waiting list times (time to diagnosis) 

Symptomatic people on the waiting list transition to being diagnosed and 

treated accordingly, with the time this takes being related to simulated waiting 

list times. People could access TTE from this state through standard referrals, 

where the TTE is performed first followed by a further wait for clinical 

assessment. The EAG also assumed a proportion of people would attend a 

one stop diagnostic clinic, where they receive echocardiography and specialist 

clinical review in one appointment.  

Baseline time to diagnosis and proportion diagnosed 

Total wait time for echocardiography is not routinely collected so the EAG 

based waiting time estimates on NHS diagnostic activity data (July 2025) and 

clinical expert input. National data show that around 10.6% of patients wait 13 

weeks or more for echocardiography, while most (approximately 89.4%) wait 

less than 13 weeks. Experts advised that, in settings without a one-stop 

diagnostic clinic, the typical waiting time from referral to echocardiogram is 

between 6 and 12 weeks. To model this, a normal distribution was assumed, 

where no patients received echocardiography before 6 weeks, and 10.6% 

waited beyond 13 weeks. This distribution was used to estimate the proportion 

of patients diagnosed at 2-week intervals. 

Clinical experts also estimated that the interval between echocardiography 

and subsequent clinical assessment is usually 1 to 4 weeks. The EAG 
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assumed that half of patients are assessed within the first 2 weeks after 

echocardiography and the remainder in weeks 3 and 4. These intervals were 

combined to calculate overall waiting times and the proportion of patients 

diagnosed at 2-week intervals. Clinical experts estimated one stop diagnostic 

clinics have a wait time from referral to diagnosis of between 2 to 10 weeks. In 

the model, a mean waiting time of 6 weeks was assumed, with patient waiting 

times represented by a normal distribution. This distribution was applied to 

estimate the proportion of the heart failure population diagnosed at 2-week 

intervals.  

Effect of AI technologies on wait times 

Two technologies (EchoConfidence and Us2.ai) reported evidence on time 

savings with AI-assisted echocardiography, these are reported in section 

6.2.5. The EAG considered these studies have important limitations. Both 

Us2.ai studies were conducted in Japan, so the setting and operators may not 

reflect NHS practice. The FEATHER study was UK-based but reported interim 

results with very limited detail. It included consecutive patients referred to 

community outpatient cardiology clinics and so has limited generalisability to 

standard NHS practice. Time measurements were also unclear because the 

studies reported the technology’s impact at different stages of the procedure. 

For example, Sakamoto et al. (2025) reported an examination time of 14.3 

minutes without AI, while Hirata et al. (2024) reported combined measurement 

and report creation time of 12.5 minutes without AI. The EAG were uncertain 

whether these times represent a full echocardiography procedure, as they are 

much shorter than the NHS average of 45 minutes (clinical expert estimate, 

see Figure 1). Similarly, FEATHER reported time savings for specific 

automated steps, but it is unclear how these fit into the overall TTE workflow 

or whether they would translate into practical efficiency gains. The EAG 

considers this evidence low quality and not robust, so the analysis should be 

regarded as exploratory. Details of these studies and their limitations are 

summarised in Table 15 of the EAR. 

The EAG estimated changes in waiting time using evidence on reduced 

procedure time with AI-assisted echocardiography. First, the current number 
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of patients that received an echocardiogram within the average wait time 

under standard care was calculated. This was estimated using the current 

number of procedures completed in a full day and the average waiting time for 

echocardiography, assuming a 5-day working week. This gave an estimated 

total of 575 patients under standard care. 

A shorter procedure time with AI was then applied to calculate the new 

number of procedures per day. The average wait time with AI-assisted 

echocardiography was estimated by dividing the same number of patients 

calculated for standard care (575) by this new daily capacity. The percentage 

reduction in average wait time was then applied to generate a revised 

distribution of echocardiography waiting times. The same reduction was 

assumed for one-stop diagnostic clinic waiting times. 

In the base case, the estimated reduction in average wait time was 17% for 

both EchoConfidence and Us2.ai (see section 6.2.3 in the EAR and section 4 

in the addendum). The model assumed that waiting time for specialist clinical 

assessment remained unchanged. These estimates were used to calculate 

the proportion of the heart failure population diagnosed for each technology. 

Full details of the calculation are provided in Appendix E of the EAR. 

7.1.4 Costs 

Standard of care and state costs 

Costs in the model were based on published sources and expert input. Staff 

time was included for both arms, costed using a band 7 cardiac physiologist. 

Hospitalisation and emergency department costs were taken from NICE 

guidance NG106 (2025 economic modelling). Follow-up costs after heart 

failure diagnosis were based on NG106 resource requirements and validated 

by clinical experts; specialist nurse visits were costed using a band 6 nurse. 

Drug treatment costs were weighted by prescribing patterns reported in 

NICOR (2025) and aligned with NG106 recommendations. These costs are 

listed in Table 18 of the EAR. The EAG excluded standard TTE costs because 

AI technologies are used as an adjunct to standard echocardiography. A 

https://www.nice.org.uk/guidance/ng106
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breakdown of technology costs included in the model are reported in Table 17 

of the EAR.  

EchoConfidence 

The EchoConfidence software is priced at £4 per use, with additional set-up 

and training costs. Hardware may be supplied by the vendor at extra cost, but 

these costs were not included in the EAG model because they are currently 

unknown. Staff training includes 2 days on site plus remote sessions and is 

costed as an additional package. Information technology (IT) support for 

integration and ongoing maintenance may incur extra fees, but limited 

information was available to include these in the model. Reversing 

implementation would mainly involve set-up, hardware, and training costs. 

EchoGo Heart Failure 

The EchoGo Heart Failure technology is offered as a package priced at £25 to 

£50 per use (excluding VAT), covering software, IT and cloud support, 

integration, and staff training. The company did not provide contract details, 

so reversal costs cannot be assessed. Minimal training is required, and no 

additional equipment is needed. 

Ligence Heart 

Ligence have 2 pricing models available: an unlimited licence (1 or 3 years) 

based on workstations, or a tiered pay-per-use model. For its cost calculation 

the EAG used the tier-based pricing model, using the estimated annual scan 

volumes from the NHS England Diagnostic Waiting Times and Activity 

dataset. This resulted in a cost per scan of £2.61. Costs cover software, 

installation, and support. A server may be provided at extra cost, and one-

hour training per person is included at no additional cost. Reversal costs 

would include any server fees and unused scans. 

US2ai 

The company offers a tier-based (pay per scan) package based on the 

number of scans. Using the estimated annual scan volumes from the NHS 
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England Diagnostic Waiting Times and Activity dataset resulted in a cost per 

scan of £7.50. Installation can be cloud-based or on-site, with optional rental 

servers for piloting or transition; server costs vary. In its cost calculation, the 

EAG included an on-site installation of a basic server. The costs include 

software use, clinical and IT support, training, installation and routine support 

updates. Reversal costs would include any server fees and unused scans 

(see section 3 of the addendum). 

7.1.5 Health state utilities 

Patients were assigned utility values for each health state in the model, based 

on NICE TA773 and NG106. The utility of 0.58 for both untreated and treated 

heart failure was derived from EQ-5D data in the REFER study (Taylor et al., 

2017, unpublished). The EAG noted the REFER population mainly included 

older patients (mean age 77, 50.6% male) with HFpEF (86.5%). The EAG 

retained a utility value of 0.58 for treated heart failure and applied a 10% 

disutility for untreated heart failure (EAG assumption). A temporary (1 cycle) 

utility decrement for heart failure-related hospitalisation of 0.019 was also 

included, based on TA773 and NG106, to reflect reduced quality of life during 

and immediately after admission. 

7.1.6 Presentation of results 

The EAG stated that the cost-effectiveness analysis should be considered 

exploratory due to significant uncertainty in input variables and multiple 

assumptions. The base case included only AI technologies with evidence of 

impact on procedure time (EchoConfidence and Us2.ai), compared with 

standard TTE. Probabilistic sensitivity analysis was not performed because 

the EAG stated it would add little value for guiding evidence generation. One-

way deterministic sensitivity analyses were undertaken to identify key drivers 

and explore plausible ranges. The values used are listed in Table 20 of the 

EAR.  

https://www.nice.org.uk/guidance/ta773
https://www.nice.org.uk/guidance/ng106
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7.2 Model results 

7.2.1 EchoConfidence 

The base case results suggest EchoConfidence may be cost-saving 

compared with standard care (cost difference of -£3.14), mainly due to 

reduced staff time per scan offsetting its per-use cost. The model assumes a 

17% reduction in waiting time, which could increase the proportion meeting 

the 6-week referral target from 26% to 40% and deliver modest QALY gains 

(QALY difference of 0.0005). 

However, the EAG considered these findings are highly uncertain because of 

limited clinical evidence and assumptions about workflow impact. One-way 

sensitivity analyses show results are most sensitive to the proportion 

diagnosed in one-stop diagnostic clinics and the effect of waiting time 

reduction (Table 21 of EAR). Combined scenarios with lower clinic use and 

smaller time savings substantially reduce the benefit, but the technology 

remained cost saving in all scenarios. Overall, while the EAG concluded that 

EchoConfidence appears potentially cost-saving, it stated that results should 

be interpreted with caution given the uncertainty. 

7.2.2 US2.ai 

The base case results suggest Us2.ai may be more costly and more effective 

than standard care (cost difference of £0.92, QALY difference of 0.0005), with 

an ICER of £1,674 per QALY gained (see section 4 and table 4 in the 

addendum). This results in a 14.5% increase in those meeting the target 

referral time. Results from one-way sensitivity analyses suggest that the 

economic findings are sensitive to a number of inputs including the impact of 

waiting time reduction with Us2.ai, the proportion diagnosed in a one stop 

diagnostic clinic, the proportion of inpatients receiving TTE, and the staff 

delivering TTE. Overall, the EAG noted that while the results suggest that 

Us2.ai is potentially cost-effective, the findings should be interpreted with 

caution given the significant uncertainty surrounding the current waiting time 

and the impact of Us2.ai on TTE workflow. Full details of the cost 

effectiveness results for Us2.ai are in section 4 of the addendum.  
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8. Equality considerations 

The final scope and the scoping equality impact assessment describe equality 

considerations for this assessment. The external assessment group (EAG) did 

not identify additional equality issues. 

9. Key points, limitations and considerations 

9.1 Diagnostic accuracy and clinical evidence 

9.1.1 Key points 

• AI-assisted echocardiography technologies generally show good 

diagnostic accuracy for detecting heart failure and related parameters 

compared with human measurements, particularly for core measures 

like LVEF and classification of heart failure. 

• In studies that assessed diagnostic accuracy only, the AI technologies 

are assessed as standalone. 

• In studies that assessed implementation beyond diagnostic accuracy, 

AI technologies are positioned as adjunctive, and so lower risk as per 

the scope. 

• All 4 technologies have some evidence to support their use, with US2ai 

having the most extensive evidence base. 

• There was a general lack of evidence on the impact of AI used to assist 

echocardiography in terms of clinical or procedural outcomes. There 

was limited evidence on procedure time. 

• One interim study reported data from a UK community care setting, 

indicating there may be potential for EchoConfidence to be safely 

implemented in community care, but evidence to demonstrate its 

impact on procedure time and the type of operator is limited.  

https://www.nice.org.uk/guidance/gid-hte10067/documents/final-scope
https://www.nice.org.uk/guidance/gid-hte10067/documents/801
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9.1.2 Limitations 

• The study designs lacked robustness. Many studies were retrospective, 

single-centre, and sometimes single-operator, introducing bias and 

reducing generalisability. Only 1 RCT (on US2.ai) was identified. 

• There is a lack of UK-based and real-world data. Most studies were 

conducted outside the UK or in controlled settings, limiting 

generalisability to NHS practice. Complex cases and poor-quality 

images were often excluded, which does not reflect real-world 

conditions. 

• There was a lack of clinical outcomes. Few studies reported health-

related outcomes such as time to diagnosis, treatment initiation, or 

patient quality of life. Most evidence focused on measurement 

accuracy rather than clinical impact. 

9.1.3 Considerations for committee 

• Most studies were on aspects of diagnostic accuracy, with limited 

evidence on procedure time. Does the evidence show that the 

technologies have plausible potential to address the specified unmet 

need? 

• Four technologies were assessed. What does the identified evidence 

tell us about the relative diagnostic performance of these technologies 

and their suitability for use in the NHS? 

• What are the key potential benefits of AI echocardiography 

technologies? Are they clinical or system benefits?  

• Are there any clinical or system risks with using AI echocardiography to 

aid the operator that can be managed? 

• What are the key evidence gaps for these technologies? 
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• Are AI technologies for echocardiography likely to be used in primary or 

community care settings in the future? 

9.2 Health economic evidence 

9.2.1 Key points 

• The key driver of cost-effectiveness was the potential of AI to reduce 

procedure times, streamline appointments and increase throughput, 

reduce waiting list times for diagnosis, improve access to treatment, 

and thereby improve clinical outcomes. 

• Data on procedural time was key to the economic model but the 

robustness and generalisability of the studies informing these data 

were uncertain. 

• Although 1 study reported an increase in the number of examinations 

per day this was not based in the UK and so it is uncertain whether any 

time savings would translate into meaningful increases in throughput in 

NHS clinical practice.  

• Reduced staff time per scan appears to drive the cost effectiveness in 

the 1-year time horizon, with only a modest QALY gain in the short 

term 

• The coceptual model indicates that EchoConfidence and Us2.ai have 

the potential to be cost-saving or cost effective. However, the evidence 

is uncertain and results should be interpreted with caution. 

9.2.2 Limitations 

• The model had a time horizon of 1 year due to the lack of longer term 

evidence. The key benefits of the effect of the AI technologies on heart 

failure treatment may not be realised for several years. Longer-term 

benefits are a key evidence gap. 



Assessment report overview – HTE10067 Artificial Intelligence assisted echocardiography to support 
diagnosis of heart failure 
December 2025 

© NICE 2025. All rights reserved.  26 of 27 

• There was a lack of information to inform current NHS 

echocardiographic waiting times or to extrapolate how AI derived 

efficiencies might improve these. 

• The costs of the AI technologies are complex and the implications of 

their adoption at a local level is poorly understood. 

• Cardiac MRI, which is sometimes used downstream of TTE in the 

classification of heart failure, was not modelled as the EAG could not 

find data on its use or the impact or regional variability.  

9.2.3 Considerations for committee 

• Does the conceptual model represent the care pathway and capture all 

the relevant parameters. Is it fit for purpose? If not, why not and would 

this impact the evidence gaps evidence generation needs to address? 

• Have all the key potential economic benefits of the technologies been 

identified? 

• To what extent would relatively small procedure time savings be likely 

to translate into higher patient throughput in NHS clinical practice? 

• What evidence gaps need to be addressed to reduce uncertainties 

concerning the cost-effectiveness of the AI technologies? 
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Appendix A Abbreviations 

A Artificial intelligence 

EAG External assessment group 

EAR External assessment report 

GLS Global longitudinal strain 

HF Heart failure 

HFmEF Heart failure with mildly reduced ejection faction 

HFpEF Heart failure with preserved ejection faction 

HFrEF Heart failure with reduced ejection faction 

ICC Intraclass correlation coefficient 

LVEF Left ventricular ejection fraction 

MAD Mean absolute difference 

MD Mean difference 

NPV Negative predictive value 

NT-proBNP N-terminal pro b-type natriuretic peptide 

PPV Positive predictive value 

QALY Quality adjusted life year 

RCT Randomised controlled trial [delete if not needed] 

SD Standard deviation 

TTE Transthoracic echocardiography 
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that is not typically available from the published literature. 

To help you give your views, please use this questionnaire. You do not have to answer every question – they are prompts to 
guide you. The text boxes will expand as you type.  

Information on completing this submission 

• Please do not embed documents (such as a PDF) in a submission because this may lead to the information being 
mislaid or make the submission unreadable 

• We are committed to meeting the requirements of copyright legislation. If you intend to include journal articles in your 
submission you must have copyright clearance for these articles. We can accept journal articles in NICE Docs. 

• Your response should not be longer than 10 pages. 
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Information about your organisation 

Organisation 
name 

Cardiomyopathy UK 

 

Contact person’s 
name 

Xxxxxxxxx xxxxxxxx 

Role or job title Xxxxxxxx xx xxxxxxx xxx xxxxxxxx xxxxxxx 

Email xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Telephone xxxxxxxxxxx 

Brief description of the organisation, such as: 

- Who funds it? 

- How many members does it have? 

- What region your organisation represents  

Cardiomyopathy UK is the national charity for people affected by all forms of cardiomyopathy. The charity provides a range of support and  

information services, provides clinical education opportunities, raises awareness of the condition among the general public, supports 
research  

and advocates for improved access to quality treatment. 

The charity’s database contains 22,000 individuals and there are around 100 active volunteers who facilitate support groups, provide peers  

support, advocate for improvements in health services, undertake fundraising activities and take on a range of other roles.  

The charity’s trustees, the majority of whom have personal experience of the condition are ultimately responsible for the charity and are  

supported by a professional team of 19 staff.  
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The charity is funded by community fundraising, donations and legacies (78%) charitable trusts and foundations (8%) the pharmaceutical  

industry (14%) Total income from the year January - December 2024 was £1,054,678 

 

Cardiomyopathy is a leading cause of heart failure. 
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Declarations 

Do you have any conflicts of interest? Please let us know if you have a question on the NICE policy on declaring and 
managing interests. 

No 

How did you gather information about the experiences of patients and carers to include in your submission? 

Cardiomyopathy UK conducted a national survey of the cardiomyopathy community, called the MyInsight survey, in summer 2024. 

Cardiomyopathy UK commissioned the Picker Institute to provide expertise on the survey development and design. Picker is a leading 

international health and social care charity, which carries out research to understand individuals’ needs and their experiences of care. A total of 

1323 people responded to the survey. 

Intelligence is gathered on an ongoing basis about our community’s experiences by our helpline nurses and peer support team. 

Are you willing for this submission to be 
shared on our website? 

Yes x   No   

 

We may invite you to a scoping meeting 
and/or committee meeting where this 
technology is to be discussed. Would a 
member of your organisation be willing to 
join such a meeting (this may be in person or 
virtually)?                                

Yes x No   

 

https://www.nice.org.uk/about/who-we-are/policies-and-procedures
https://www.nice.org.uk/about/who-we-are/policies-and-procedures
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Does the organisation have any direct or 
indirect links with, or funding from, the 
tobacco industry? 

Yes   No x 

 

Impact of the symptoms, condition or disease on patients and / or family and carers 

1. What is it like to live with the condition? What do carers experience when caring for someone with the condition? 

 

The MyInsight survey of the cardiomyopathy community in 2024 found the following: 

 

• 62% of all people with cardiomyopathy reported that their exercise had been negatively impacted in the last two years.  

• This is in comparison to 80% of people with amyloidosis cardiomyopathy stated that exercise had been negatively impacted by  

amyloidosis cardiomyopathy. 

• 34% of all people with cardiomyopathy reported that their mobility had been negatively impacted in the last wo years.  

• By contrast, 55% of people with amyloidosis cardiomyopathy stated that their mobility had been negatively impacted by amyloidosis  

cardiomyopathy. 

• 51% of all people with cardiomyopathy reported that their self-confidence had been negatively impacted in the last two years.  

• 50% of people with amyloidosis cardiomyopathy stated that their self-confidence had been negatively impacted by amyloidosis  

cardiomyopathy. 

• 49% of all people with cardiomyopathy reported that their mental health had been negatively impacted in the last two years. 

• 40% of people with amyloidosis cardiomyopathy stated that their mental health had been negatively impacted by amyloidosis  

cardiomyopathy. 

 

Survey respondents from our 2022 national survey indicated that the most impactful physical symptoms of the condition were breathlessness,  

exhaustion and the inability to carry out day to day tasks. Respondent told us; 
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“I would say that the grinding daily fatigue is the hardest of all the symptoms to cope with as it takes away much of the enjoyment 
of life” 

 

“I'm existing, not living, I’ve lost much of my mobility and have to rely on a walking stick, can't walk more than about 3 feet without 
having to stop due to the pain and breathlessness and sheer exhaustion, have had to have a wet room fitted as can't use a bath, 
can't lay down at all so have to sleep on my recliner sofa sitting bolt upright… I barely leave the house anymore except for 
appointments mainly. I want a life back” 

 

Our national survey also looked at the impact of cardiomyopathy on emotional wellbeing of someone with the condition. Comments included: 

 

“I find it hard sometimes to not do what I used to do and my close family find it hard too. I try to be philosophical and appreciate 
what I can do though. It’s difficult when out and about and I can’t walk as far as others or go upstairs easily - some disabilities are 
hidden” 

 

“I live alone and I get very scared about my condition and how to cope with it. Also I feel anxious a lot of the time as I never know 
what will happen next in my body” 

 

When we asked the loved ones of people with cardiomyopathy about their experience, they told us that they were also struggling emotionally 
with the impact of cardiomyopathy. 60% of respondents said that they found it hard to cope and 28% believed that counselling could help their  

emotional wellbeing. 
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Experiences and availability of current health technologies 

2. How do the existing health technologies play a role in managing the condition, and what are their advantages and 
disadvantages? What new technologies do you know of that you could tell NICE about? 

 

Echocardiography is crucial to the diagnosis of cardiomyopathy – the aetiology behind the heart failure. Moreover, its use is also important 

in the screening of all first-degree relatives of patients with cardiomyopathy. 

 Echocardiography is also essential to the prescribing and up-titration of the drug mavacamten, for people with hypertrophic obstructive 

cardiomyopathy. 

Given its centrality to the diagnosis of cardiomyopathy – and one of the few dedicated cardiomyopathy medications – the only main 

disadvantage to echo is the waiting times. Patients have often had cardiomyopathy symptoms for some time before it is recognised that 

they may have a heart condition (rather than asthma, anxiety etc). Delays on echos means that these patients have to wait still longer 

before a diagnosis can be confirmed. 

 

Similarly waiting for echos as part of ongoing care can cause distress to patients, as in the example below from our 2024 national patient 

survey: 

“Not seen cardiologist since leaving hospital. Had cardiac arrest out of hospital. CRTD fitted. Only had phone call and could not ask things 

as so rushed (I appreciate waiting lists crazy). Was not listened to when said still very breathless. Having to wait over a year for a repeat 

echocardiogram to check things. This is causing distress...” 
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Improved access to echocardiography would therefore help to allay (or confirm) patient concerns and worries. Our patient community 

would also like the reassurance of more regular access to echocardiography – and in some cases the lack of this is causing behaviour 

change, to alleviate risk. Many don’t have regular echos and worry about whether any changes to their condition would be picked up on. 

Moreover, patients have seen a deterioration in access to echo in recent years. Very concerningly, this is not necessarily clinically-led, as 

in the example below. 

 

“The care I had initially was excellent but since Covid the annual tests ECG/Holter/Blood/Echo tests that I'm supposed to have in advance 

of talking to my consultant have become impossible to get. The consultant orders them but the scheduling person decides that they are 

not necessary. So I've only had an echo and an ECG in the past two years despite arguing with the appointment booking people. My 

cardiologist said it's because they are under orders to reduce tests for financial reasons and the finance team have higher priority than 

him. 

 

“I would like more regular echocardiograms. I haven't had one for about 6-7 years. I know NHS is underfunded and overstretched after 

covid. I am also afraid of chest infections, hospitalisations and I don't like to go out. If I do, I wear a mask which I think is sensible.” 

 

“Getting an echocardiogram in advance of my annual appointment can be a challenge.” 

 

In general there is a strong feeling from our patient community that echo is in very short supply and that they either don’t get echos, or 

have to push for what ought to be happening systematically. 
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“I have to push through my GP the local cardiology department for my regular echocardiograms and follow up consultations, they do not 

respond to me and do not programme them automatically.” 

 

“Routine ICD checkups have always been good. But feel other tests and checkups are too infrequent. I've not had an echocardiogram in 

over 4 years.” 

 

“My cardiologist wants me to move to biennial echocardiograms despite being recommended annual, she relented to this year's 

echocardiogram in the end, but it felt like an afford.” 

 

About the health technology being assessed 

3. What are the potential benefits of the health technology/technologies being assessed compared with what currently 
exists?   

Improvement in patient access to echo would be a very positive outcome from this technology appraisal. We would hope that use of AI results  

in additional system capacity. 

 

Speeding up diagnosis doesn't just have positive impacts for that particular patient but for other potential patients too – the issue of delayed  

diagnosis of the proband has implications of later diagnosis in their family members, where it turns out to be an inherited cardiomyopathy. 

 

Any use of this technology in community hubs would potentially give patients an opportunity for care closer to home (not having to travel to  

the hospital centre for their echo) - which is important to many, especially those who are more unwell and less mobile. 
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4. What are the potential disadvantages of the health technology/technologies being assessed compared with what is 
currently available?  

It is essential that AI echoes must be safe both in terms of giving reliable results and in relation to privacy and patient data. Safety is  

particularly at issue if use of the technology widens access to HCPs who are not trained in its use. Misdiagnosis/false negatives must be  

avoided at all costs, given the repercussions and impacts this would have for patients. 

 

5. Do you foresee people having any specific concerns regarding the integration of artificial intelligence technologies 
into heart failure diagnostic pathways? 

We have heard from different sources about issues with patients having to have two echoes due to poor reporting and/or poor data integration  

between hospitals e.g. having an echo in a CDC or local hospital and this having to be repeated in the cardiology department. 

 

“My local hospital did not send Barts the results of 2022 and 2023 Echos. I had to request Barts for an Echo this year.” 

 

Having to repeat echoes is a significant waste of NHS resource, but also impacts patients whose time and energy is wasted in attending  

unnecessary echo appointments. This is dispiriting and frustrating for patients – and results in a poorer experience of care. The new  

technology will not be a panacea to resolving all echo problems – and indeed will be most impactful if these wider issues are resolved. 
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Equality issues  

6. Are there any groups of people who might benefit more or less from the technology than others?  

Where this technology is used is a key issue – and how the results of these scans are transferred to hospital centres, if done in local 
hospitals/CDCs. Ideally we want for people to have their care as close to home as possible – if the AI echo increases capacity for this, this 
would be a positive outcome. However, should AI echo only be rolled out in hospital centres attention needs to be given as to whether this 
could be disadvantageous to rural/coastal populations. 

 

Those with Hypertrophic Obstructive Cardiomyopathy stand to gain in particular, if improved echo capacity results from this 
technology,resulting in more people being able to access mavacamten. 

 

Cardiac amyloidosis is often under diagnosed, not least because it is difficult to diagnose (heterogeneity of symptoms at presentation 
according to the ESC). Improved echo access could make a significant difference in improving diagnosis of ATTR-CM heart failure. 
Diagnosing the aetiology behind the heart failure is crucial given the new drugs coming on line for ATTR-CM. 

7. Are there any groups of people that might need further consideration in using the technologies (for example, because 
they have higher levels of ill health, poorer outcomes, problems accessing or using treatments or procedures)?   

While heart failure in general may be more prevalent in older people, cardiomyopathy can affect people of any age – and indeed is a leading 
cause of heart failure in working age people. Modelling and safety considerations must consider younger people with cardiomyopathy. 
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8. Are there any potential equality or health inequality issues that should be taken into account when considering this 
condition and the technology? 

Enter text. 

Additional information 

9. Please include any additional information you believe would be helpful in assessing the value of the technologies. 

 Enter text. 

 

Key messages 

In up to 5 bullet points, please summarise the key messages of your submission. bullet points. 

• Echo capacity causes delays in diagnosis which is a significant cause of patient stress/distress. 

• Improving capacity would have a positive impact on patients – both in diagnosis and ongoing care and treatment. 

• Patient safety must be central to considerations – including that of younger people with heart failure caused by cardiomyopathy. 

• Improvements in data integration/reporting are needed to ensure the AI echo reaches its potential – and to improve patient experience 

(avoiding duplication/two visits). 

 

Thank you for your time. Please return your completed submission to medtech@nice.org.uk 

https://www.nice.org.uk/about/who-we-are/policies-and-procedures/nice-equality-scheme
https://www.nice.org.uk/about/what-we-do/nice-and-health-inequalities
mailto:medtech@nice.org.uk
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If you haven’t already, please register as a stakeholder by completing the stakeholder registration form and returning it to 
medtech@nice.org.uk   

 
Did you know NICE meetings are held in public? You can register on the NICE website to attend a meeting up to 20 working days 
before it takes place. Registration will usually close 10 days before the meeting takes place. 

https://www.nice.org.uk/about/what-we-do/our-programmes/nice-guidance/medical-technologies-guidance/register-as-a-stakeholder
mailto:medtech@nice.org.uk
https://www.nice.org.uk/get-involved/meetings-in-public


 

Professional organisation submission 
Artificial intelligence assisted echocardiography to support diagnosis of heart failure (HTE10067)  1 of 10 

HealthTech Programme 

HTE10067: Artificial intelligence assisted echocardiography to support diagnosis of heart 
failure (provisional title) 

Professional organisation submission 

 
About the organisation 

Organisation name British Society of Echocardiography 

Thank you for agreeing to give us your organisation’s views on this technology or procedure and its possible use in the NHS. 

You can provide a unique perspective on the technology or procedure in the context of current clinical practice that is not 
typically available from the published literature. 

To help you give your views, please use this questionnaire. You do not have to answer every question – they are prompts to 
guide you. The text boxes will expand as you type.  

Information on completing this submission 

• Please do not embed documents (such as a PDF) in a submission because this may lead to the information being 
mislaid or make the submission unreadable 

• We are committed to meeting the requirements of copyright legislation. If you intend to include journal articles in your 
submission you must have copyright clearance for these articles. We can accept journal articles in NICE Docs. 

• Your response should not be longer than 10 pages. 
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Contact person’s name Xxxxxx xxxxxx 

Role or job title  xxx 

Are you (please highlight 
Yes or No): 

An employee or representative of a healthcare professional organisation that represents clinicians? Yes or No 

A specialist in the treatment of people with this condition? Yes or No 

A specialist in the clinical evidence base for this condition or technology? Yes or No 

Other (please specify): I represent the group of clinical experts in this field. The information in this submission 
has been compiled by clinical experts. 

Please provide a brief 
description of the 
organisation (including 
where funding comes from) 

The British Society of Echocardiography is a highly engaged member organisation which represents clinical 
echocardiography professionals working at all levels and in all areas of the field. Our aim is to provide our 
members with the necessary education and professional support to deliver the highest standard of care in 
echocardiography. 

We are funded through membership, accreditation and event fees. We receive some sponsorship from 
industry in support of events and our industry partners. This accounts for 9% of our income.  

 

Has the organisation 
received any funding from 
any company with a 
technology related to the 
evaluation in the last 
12 months?  

If so, please state the name 
of company, amount, and 
purpose of funding 

Mycardium – exhibition stand at annual conference £3,300 

 

Does the organisation have 
any direct or indirect links 
with, or funding from, the 
tobacco industry? 

No 
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Current care pathway and unmet need 

1. Please describe the 
current standard of care 
that is used in the NHS. 
Please note any clinical 
guidelines used in the NHS 
which are relevant to the 
care pathway. What setting 
would this technology be 
used in (primary care, 
general hospitals, 
specialist centres for 
example). 

• Chronic heart failure in adults: diagnosis and management (NG106)  

• Acute heart failure: diagnosis and management (CG187) 

Patients can present in a number of ways outside the above guidelines: 

1. No BNP but symptoms of heart failure / breathlessness. 

2. Normal BNP with symptoms of a potential cardiac disease.  

 

This technology would be used within transthoracic echocardiography (TTE) services (hospital/CDC’s) by trained 
echocardiographers. It would provide a useful diagnostic adjunct to both out- and in-patient TTE services. For 
the most part, this will be elective, outpatient TTE activity.  

 

All echocardiography equipment is portable and as such, TTE can be undertaken in outpatient departments but 
also at the bedside in acute and emergency wards and clinics. However, for the later, the portable nature of TTE 
significantly impacts productivity and reduces capacity as additional time is needed to locate the patient, set up 
equipment at the bedside, and return to the department for the transfer of images and report generation. It is 
ideal to have a service where inpatients can attend the TTE department as this supports increased inpatient TTE 
activity and improves ergonomics for echocardiographers.  

 

The BSE has published guidelines on the tirage of patients with suspected heart failure, a collaboration with 
other UK cardiac societies. This was published in 2024 and is currently being converted for dissemination as a 
GIRFT best practice guideline. 

 

https://www.bsecho.org/Public/News/Articles/2024/2024-07/202407-PUE004-PUE005-
PUE006.aspx?WebsiteKey=cbc9ffd7-4ee6-4741-9280-d435d6a887f4  

2. Does this procedure or 
technology have the 
potential to replace current 
standard care or would it 

The technology does not have the potential to replace current standard care and would be used as an addition to 
existing standard of care - The EU AI act (2024) states the decision-making process remains with healthcare and 
AI is only a supportive tool. 
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be used as an addition to 
existing standard care? 

Where would the 
technologies or procedure 
fit in the care pathway? 

We envisage that the technology may prove useful in identifying heart failure with preserved ejection fraction 
(HFpEF) and reduced ejection fraction. It is unlikely to be useful for the diagnosis of heart failure with reduced 
ejection fraction (HFrEF), the majority of heart failure patients as echocardiographers are skilled to enable the 
detection of this and the issue of prolonged delays is not due to this.  

 

There are a number of considerations for this use of this technology: 

1. Workflow 1: Where ONLY AI analysis is preformed and a diagnosis of concern is shown, a 
comprehensive TTE will still be required to rule out the possibility of other cardiac pathology being 
present.  

2. Workflow 2: Where ONLY AI analysis is preformed and this shows no concerning diagnosis, only HFpEF 
can potentially be excluded. This raises the possibility of a missed diagnosis due to other cardiac 
pathologies and as some of the AI systems only use a proportion of the comprehensive TTE dataset, a 
comprehensive TTE will still be required. This may lead to multiple TTE appointments. This would worsen 
the “probe to treatment” time and the TTE waiting list as a whole.  

 

The approaches outlined in workflow 1 and 2 above would mean:  

a. A potential expedition of care and treatment for patients who do have heart failure 

b. Duplication of TTE tests / appointments.  

c. Marginal or no impact on ‘probe to treatment time’. It should be noted that several of the AI tools 
require 20-30mins for AI analysis and report generation. By comparison a standard TTE takes 45 
mins. Where both are needed due to clinical findings, the time taken (‘probe to treatment time’), 
and thus the waiting list is worsened. 

 

2. Workflow 3: Where the AI analysis is performed side by side with a comprehensive TTE, we can see 
some potential benefits. Depending on their sophistication, some AI tools may have the ability to detect 
pre-clinical, pre-diagnostic imaging levels of disease (e.g. cardiac amyloidosis). The two combined will 
allow for the highest degree of clinical accuracy.  

 

The length of time the AI systems take to generate reports and how this affects current standard of care needs to 
be considered.  
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It is not currently safe to rely on AI generation of reports ALONE. Additional considerations surround the skills 
required for the echocardiographer to be able to integrate AI and traditional interpretation models. The degree of 
interrogation and discernability required to ensure the AI generated reports are accurate needs to be explored. 
Appropriate training and knowledge demonstration of this will need to be in place. 

 

Infrasturcture in embedding AI into clinical practice is essential. There needs to be appropriate governance in 
place and accountability for the AI generated report. It is important that whilst the AI technology may be able to 
detect ejection fraction, there are other conditions that may present with heart failure symptoms and elevated 
BNP but an alternative diagnosis is the cause which AI EF tools may miss. For example, heart valve disease; 
pulmonary hypertension; cardiac infiltrative disease. Having a governance structure in place to ensure that the 
healthcare professional undertaking the test is appropriately trained and has pathways for escalation and review 
of imaging. 

3. Is there an unmet need 
for patients with the 
condition or disease, or 
healthcare professionals 
managing the condition or 
disease? 

Yes, it would be beneficial for patients where they were unable to undergo a comprehensive TTE, in the first 
instance. This is not achievable in all areas of service delivery across England, or the UK more widely. However, 
integration of the AI tools ALONE will not provide a safe platform for treatment delivery in the absence of a 
comprehensive TTE. Therefore, the AI tools should only be performed in combination with a comprehensive TTE 
to aid earlier detection. 

 

Additionally, there is an unmet need for the prompt identification of phenotypes of HFpEF. One example of this is 
cardiac amyloidosis which is challenging to assess on TTE and patients typically have several echocardiograms 
across the disease prodrome with a ~2-year delay in diagnosis. AI technology that can support early diagnosis 
would be invaluable, improving patient care and facilitating early treatment.  

 

As highlighted above there is an unmet need related to the training of echocardiographers in the utility of AI tools 
and their usefulness as part of the diagnostic pathway. 

 

No perceived unmet need for HFrEF as these patients can be assessed using routine TTE without issues as 
highlighted above. Several of the AI tools under evaluation here are for NOT for HFrEF and thus the majority of 
patients presented with heart failure will not benefit from these AI tools.   
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Further education is required both in relation to the referral of patient and the triage of patient requests. Patients 
are often referred with insufficient information meaning there is a potential for patients to be triaged 
inappropriately, or the request to be rejected entirely. In contrast some patients are referred inappropriately when 
the patient does not met criteria for heart failure or related diagnostics. The need for training on triage and 
indications is paramount.   

The technology 

4. What are the potential 
benefits for patients and 
healthcare professionals 
from this technology 
(consider the potential 
clinical benefits, cost 
benefits, benefits to quality 
of life, and any wider 
benefits)? 

Patient benefits: 

Improved and earlier diagnosis of HFpEF and its underlying aetiology. Earlier access to treatment which can 
improve patient quality of life, morbidity, and mortality. For systemic disease such as cardiac amyloidosis this will 
result in fewer diagnostic tests with a reduction in unnecessary repeated TTE’s. 

Healthcare professional benefits: 

This technology will help with diagnosis as a result of AI-suggested possible pathologies. Even those that would 
not routinely be picked up on a comprehensive TTE due to stage/prodrome .i.e. early amyloid can be difficult to 
identify. AI tools may reduce repeated TTE’s and improve waiting list times. Consideration of what skills 
echocardiographers will to use AI technologies safely is paramount given the known limitations in terms of bias 
within the datasets and when / when not to use the AI technologies. This may lead to disparities in care.  

Wider healthcare community:  

The technology may support heart failure patients receiving more timely care, potentially at the earlier stages of 
heart failure leading to less hospital admissions and shorter length of stays. This would have a significant cost 
saving implication and an improvement in global longevity. 

5. Are there any groups of 
patients who would 
particularly benefit from 
this procedure/technology? 

  

Patients with HFpEF. The AI technologies have the potential to improve the detection of amyloidosis with is 
challenging to assess and often patients have prolonged diagnosis times.  

Some of the technologies listed are not available for use in patients with atrial fibrillation which can be present in 
up to 50% of patients with heart failure. What impact will this have on patients with atrial fibrillation and how will 
this impact the TTE workflow. 
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Are there any groups in 
which the technology 
would be less effective or 
would be less likely to 
benefit?  

Consideration in needed on how the AI technologies cope with limited acoustic TTE views. Historically AI tools are 
trained on “good” TTE images. Yet this is not common in clinical practice. Thus, there is a potential that vast 
amounts of funding will be spend on AI systems to support clinical TTE workflow that will return limited benefit.  

Consideration needs to be given to the training sets from which the AI technologies derived data, as some of 
these may be based on patient demographics which may not be representative of the UK population (i.e US 
datasets).  

Echocardiographers will need data literature skills to understand when AI generated results are appropriate and 
safe to use to prevent misdiagnosis and suboptimal patient care.  

Echocardiographers will need time to review AI generated results alongside the TTE to ensure safe patient care.  

6. How would healthcare 
resource use differ 
between the technology 
and current standard care? 

With the implementation of AI tools, IT resource would need to be upgraded to ensure that the AI tools can be 

accessed quickly and easily available on all workstations. Reporting templates may need to be compatible with 

existing traditional electronic health records. There would need to be a significant financial contribution. Additional 

digital storage space would be required. It will be time inefficient to log into multiple cloud based systems to use 

different AI tools. Where possible, AI vendors should be encouraged to use a local departmental system (Edge AI) 

or install software on the echo carts themselves.  

7. Describe any system 
changes that would be 
needed if the NHS were to 
adopt the technology. Are 
there any potential barriers 
to the adoption of the 
technology or any changes 
that may be needed to 
enable implementation of 
the technology in the NHS? 

All of the technologies use DICOM format for analysis however there are variations in DICOM format which may 
mean some echocardiography storage systems will not be able to integrate the technology. This will cause 
disparities in care across the UK.   

Cost is a significant barrier: NHS Trusts may not be able to afford the technology or due to Trust IT systems may 
not be able to integrate the technology.  

Would patients be happy sharing their medical information / imaging with third party providers and who would be 
responsible for the governance around this, the hospital or the AI tool vendor?  
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8. Are there any side 
effects or adverse effects 
associated with the 
technology? 

Technology bias: Where the AI systems are not developed on representative UK heart failure populations. In 
addition, there may be misdiagnoses as a result of rare disease types with limited representation within AI 
datasets. 

Over-reliance on technology: Emerging evidence indicates that exposure to AI systems may negatively 
influence the behaviours of healthcare professionals, potentially contributing to a decline in care standards 
(DOI: 10.63163/jpehss.v3i2.277) 

Privacy and data security: Patients will need to be informed that AI will be used and that their data maybe 
transferred to AI companies for analysis. How, when and where this is done for this pathway will need to be 
considered as it could mean that only a small number of patients will consent to using it.  

Lack of transparency: Some of the technologies use unsupervised learning which means that the patient / 
healthcare professional has no idea on how the AI system has derived the answer. This can degrade trust and 
cause uncertainty in how to diagnosis and treat patients. Consideration of how this can impact trust is needed.  

Ethical and legal: The EU AI act (2024) clearly states the decision-making process lies with the healthcare 
professional. Yet it remains unclear where the accountability lies if a mistake is made. This needs clarification as 
some argue whether healthcare professionals can truly be held responsible for technologies that are not 
explainable.  

9. Do you foresee patients 
having any specific 
concerns regarding the 
integration of artificial 
intelligence technologies 
into heart failure diagnostic 
pathways? 

The BSE has undertaken patient and public engagement on this area. Their concerns are as follows: 

• AI should not replace healthcare staff 

• Will all patients at all hospitals have access to the technology 

• Who takes responsibility for the results 

• Are staff trained how to use it 

• How will data remain confidential 

• What is the environmental impact of the technology.  
 
The BSE AI position statement will be submitted for peer review publication in October 2025. 

 

 

https://doi.org/10.63163/jpehss.v3i2.277
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Equality considerations 

10. Are there any equality 
issues that should be 
considered for this 
assessment? 

• All echocardiographers will need upskilling to be able to use the technology. If not, it will not be used in the 
manner intended. There is concern that in certain locations, access to this technology may not be as 
readily available due to insufficient financial support. 

• AI systems will need to ensure equity for all patient demographics to ensure it is safe.  

11. Could the 
technologies reduce or 
increase health 
inequalities? How? 

The technologies have the potential to reduce health inequalities but only if: 
1. The technology can be rolled out equitable across all healthcare settings. 
2. Echocardiographers are trained in data literacy skills. 
3. How the AI technologies will integrate into the TTE workflow without an increased need of duplicate scans / 

appointments.  
4. The technology is inclusive of the heart failure population that is seen in the UK. 
5. Issues around accountability can be ironed out at a national level.  

 
If the above issues cannot be resolved, we envisage that health inequalities will be increased. This will occur 
through: 

1. Duplication of TTE appointments which will increase the TTE waiting time 
2. Wrong or no firm diagnosis being given by the AI tool  

3. No access to AI tools shown to support the diagnosis and aetiology of HFpEF 

Key messages 

In up to 5 bullet points, 
please summarise the key 
messages of your 
submission 

• AI tools to support and not replace a comprehensive TTE, otherwise potential to worsen current TTE waiting 
times. 

• Ethical and legal issues need resolving prior to AI tool being implemented 

• Echocardiographers need data literacy skills to ensure patient safety 

• Equitable access of AI technologies across all healthcare settings 

• AI tools need to be representative of UK patient demographics and results generation needs to be 
transparent.  

https://www.nice.org.uk/about/who-we-are/policies-and-procedures/nice-equality-scheme
https://www.nice.org.uk/about/who-we-are/policies-and-procedures/nice-equality-scheme
https://www.nice.org.uk/about/what-we-do/nice-and-health-inequalities
https://www.nice.org.uk/about/what-we-do/nice-and-health-inequalities
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Thank you for completing the submission. 

Please log in to your NICE Docs account to upload your completed submission. 

Your privacy 

The information that you provide on this form will be used to contact you about the topic above. 

Please highlight YES if you would like to receive information about other NICE topics - YES or NO  

For more information about how we process your personal data please see our privacy notice. 

 

https://www.nice.org.uk/privacy-notice
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1. Introduction 

The External Assessment Group (EAG) has prepared this addendum in response to 

comments received from stakeholders on the external assessment report (EAR). 

Where possible, minor changes have been made in the main report, with more 

comprehensive changes included in this addendum.  

Key issues addressed in this addendum: 

Query from stakeholder  EAG Response 

One company raised concerns that 

some evidence for their technology 

has been omitted from the EAR.  

Evidence from 2 additional studies has 

been reviewed and summarised in this 

addendum. 

One company raised concerns that 

the technology costs used in 

economic modelling were not the 

most up to date. 

The EAG has updated the technology 

costs used in the economic modelling. 

One company provided clarification 

on appropriate procedure time inputs 

to be used in the base case economic 

analysis. 

The EAG has updated the inputs 

representing procedure time in the base 

case analysis. 

2. Results from additional clinical evidence 

An additional 2 studies have been included in this addendum. Both are for the Us2.ai 

technology. The study by Oo et al. (2024) is a retrospective analysis of NHS 

Electronic Health Record (EHR) data which investigated the utility of AI-assisted 

echocardiography in combination with biomarker analysis from routinely stored 

plasma samples in identifying and classifying heart failure (HF). The study by Huang 

et al. (2024b) is a prospective comparative study on the acceptability of the 

introduction of AI-assistance to transthoracic echocardiography (TTE). Participants 

underwent both TTE by a skilled sonographer and then AI-assisted TTE by a novice 

operator. A survey was then provided to participants to gain an understanding of 
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their acceptance of “task shifting” in healthcare through implementation of AI. The 

EAG notes this is a separate analysis of the same cohort reported on in a key study 

included in the main EAR (Huang et al. 2024a).  

Study characteristics and results are summarised in Table 1. In line with the EAG 

protocol, only results for outcomes relevant to the scope have been extracted. The 

quality of these studies has not been formally assessed, in line with the methods 

described in the EAG protocol and applied in the main EAR. Key findings and 

limitations have been summarised narratively.
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Table 1: Summary of additional clinical studies. 

Study details Participants Relevant outcomes and results 

Reference: Oo et al. 2024 
 
Design: Retrospective 
observational study 
 
Intervention: Us2.ai 
 
Comparator: manual 
validation/review of clinical 
records 
 
Setting (location): N/A - EHR 
study (Scotland, UK) 
  

Participants (n=578): 

• HFrEF (n=156) 

• HFpEF (n=236) 

• Controls (n=186) 
Demographics: 
HFrEF cases 

• Mean age: 74 ± 10 years 

• F/M: 37% female 

• Ethnicity: NR 
HFpEF cases 

• Mean age: 77.5 ± 13 years 

• F/M: 61% female 

• Ethnicity: NR 
Matched controls: 

• Mean age: 59.5 ± 18 years 

• F/M: 61% female 

• Ethnicity: NR 

1) Coverage of echocardiographic parameters  

Across all parameters, coverage by Us2.ai-assisted analysis ranged from 46% to 93%. 

Of parameters required for diagnosis of HFpEF as per ESC guidelines, coverage was as follows for EHR 

(manual) data versus Us2.ai-assisted analysis data: 

• LV mass: 51.04% versus 92.56% 

• Relative wall thickness: 77.85% versus 92.56% 

• LA volume: 0.00% versus 58.65% 

• E/e’ ratio at rest: 0.00% versus 45.50% 

• TR velocity at rest: 74.57% versus 67.99% 

• PASP: 3.11% versus 54.00% 

2) Concordance with clinical records (manual validation used as reference standard) (n=150) 

Diagnostic accuracy of Us2.ai-assisted analysis for HFrEF and HFpEF respectively, was: 

• PPV: 86% and 80%; Sensitivity: 100% and 100%; Specificity: 94% and 90% (Kappa value: 0.891 

and 0.842) 

100% “concordance rate” was noted in the control group. 

Reference: Huang et al. 2024b 
 
Design: Prospective comparative 
study 
 
Intervention: Novice-operated 
Us2.ai-assisted handheld TTE  
 
Comparator: Expert-operated 
standard cart-based TTE 
 
Setting (location): National Heart 
Centre (Singapore) 

Participants: 
n=100 patients with ≥1 HF 
symptom 
 
Demographics: 

• Mean age: 61 ± 15 years 

• F/M: 44% female 

• Ethnicity:  
- 75% Chinese 
- 8% Malay 
- 13% Indian 
- 4% Other 

1) Survey results on acceptance of novice-operated Us2.ai-assisted handheld TTE 

Where 1 represents ‘strongly disagree’ and 5 represents ‘strongly agree’, scores ranged from 3.59 ± 0.88 

(for perceiving the process as fun) to 4.14 ± 0.58 (for trusting healthcare staff). 

 

2) Relationship between variables and behavioural intention (acceptance of novice-operated 

Us2.ai-assisted handheld TTE) 

• All hypothesized variables (performance expectancy, effort expectancy, social influence, facilitating 

conditions and hedonic motivation) showed significant relationship to behavioural intention.  

• Facilitating conditions, hedonic motivation and performance expectancy showed the strongest 

relationship to behavioural intention. 

• Patient factors such as age (p=0.181), education level (p=0.218) and gender (p=0.776) did not 

significantly affect behavioural intention. 

Abbreviations: E/e′: ratio between early mitral inflow velocity and mitral annular early diastolic velocity; EHR: Electronic Health Record; ESC: European Society of Cardiology; 

HF: heart failure; HFpEF: heart failure with preserved ejection fraction; HFrEF: heart failure with reduced ejection fraction; LV: left ventricular; LA: left atrial; N/A: not applicable; 

NR: not reported; PASP: pulmonary arterial systolic pressure; PPV: positive predictive value; TR: tricuspid regurgitation; TTE: transthoracic echocardiography; UK: United 

Kingdom. 
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The study by Oo et al. (2024) suggests that Us2.ai-assisted analysis provides 

good coverage of echocardiographic parameters that may be used to 

diagnose HF. The EAG considers results from the study by Oo et al. (2024) to 

be generalisable to the NHS as it used EHR data from Scotland. A key 

limitation is the retrospective nature of the study, which may introduce 

selection bias due to the unavailability of data for some individuals. This 

means the sample included may not be representative of the full range of 

clinical scenarios present in real-world practice. The method of selecting the 

sample (n=150) used to investigate concordance between AI-assisted 

analysis and manual analysis was not reported. Additionally, manual 

diagnoses recorded in EHR records were not independently verified. 

Therefore, the comparative diagnostic accuracy results reported are of 

uncertain quality.  

The study by Huang et al. (2024b) provides some evidence of acceptability of 

the use of AI in echocardiography to service users. However, this study is 

specifically looking at the acceptability of novice-operated AI-assisted 

echocardiography versus standard cart-based echocardiography, so provides 

limited insight into the acceptability of AI technology alone. This study is 

considered to be of limited generalisability to the NHS due to its location in 

Singapore, where demographics do not reflect that of the UK population. 

Study authors also noted the high uptake of digital technologies in the general 

population of Singapore, and that digital literacy was not controlled for in the 

study, which introduces a potential confounding factor to results. The EAG 

acknowledge that this study demonstrates the use of Us2.ai in assisting 

novice operators to perform TTE, which may support the potential use case 

for Us2.ai technology to aid TTE being performed in primary or community 

care settings. 
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3. Updated technology costs 

The costs for Us2.ai have been updated to the most current NHS pricing 

model and additional information provided by the company. The company 

offers a tier-based (pay per scan) package based on the number of scans. 

The costs include software use, clinical and IT support, trainings, installation 

and routine support updates.  

In the EAG economic analyses, evidence of time savings from Sakomoto et 

al. (2025) was used in the base case, whereas the findings in Hirata et al. 

(2024) were used in the sensitivity analysis. The company has clarified that 

the time measured in Sakomoto et al. (2025) was on image acquisition only. 

The EAG consider the time savings on measurement and reporting creation in 

Hirata et al. (2024) is more appropriate to be used in the base case, in line 

with Us2.ai intended use in the company RFI. The staff time cost for Us2.ai 

has been updated using data from Hirata et al. (2024). 

Table 2 describes the updated costs and resource use for Us2.ai. 

Table 2: Updated costs and resource use for Us2.ai 

 Us2.ai Changes 
made? 

License Pricing is based on volume per year. Consolidating sites 
or multiple years usage could be negotiated. 

No 

System implementation Available as “on premises” and cloud integration.  No 

Supporting hardware 
and other infrastructure 
if provided by the 
company 

Server and cloud are provided at an additional cost. 
Rental server is offered by vendor for pilot. Costs are not 
provided by the vendor. 

No 

Training Clinical support and both initial and refresher trainings are 
available at no additional cost.  

Yes 

IT support and/or 
maintenance 

Support is available at no additional cost, including routine 
software updates. 

Yes 

Per patient costs excluding VAT, no discounting applied (annual scans: 10,000 per site) 

License/software per 
scan 

£7.50 Yes 
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System set up per scan Basic server £6,000 spread over 3 years = £0.20 per scan 

 

No 

Training costs per scan 0 Yes 

IT support costs per 
scan 

0 

 

No 

Staff time per scan 36.3 mins (Hirata et al., 2024) Yes 

Staff time costs per 
scan using band 7 
cardiac physiologist 

£39.89 Yes 

Total costs per scan, 
not including HCP costs 

£7.70 Yes 

Total costs per scan 
(low volume, 5,000 per 
site per year) 

£7.90 Yes 

Total costs per scan 
(high volume, 21,000 
per site per year) 

£6.80 

 

Yes 

Total costs per scan, 
excluding hardware 

£7.50 Yes 

Abbreviations: VAT: value added tax 

4. Results of updated economic model 

The economic base case analysis for Us2.ai has been updated using the 

costs in Table 2. Based on the reported time savings of 8.7 mins in Hirata et 

al. (2024), this results in a 17% reduction in waiting time. However, the 

generalisability and robustness of the time savings evidence is limited, given 

the non-NHS settings in terms of workflow and operator type, and the low 

study quality (small sample size and single centre design).  

A series of one-way sensitivity analyses are undertaken (Table 3).  

Table 3: One-way sensitivity analyses and the value used for Us2.ai 

One-way sensitivity analyses Low value High value 

Waiting time reduction of Us2.ai driven by 
the reduced echocardiography time: ±50% 
from base case 

8% 25% 

Longer echocardiography waiting times  NA 36 weeks 
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Proportion of acute episode: -20% from 
base case 

63% NA 

Technology costs, excluding hardware Us2.ai: £7.50 NA 

Technology costs: high volume, low volume  Us2.ai: £6.80 Us2.ai: £7.90 

All patients receive an echocardiogram 
during hospital stay 

0% NA 

Band 8a cardiac physiologist in 
echocardiography delivery 

NA Us2.ai: £44.73 

Proportion diagnosed in one stop 
diagnostic clinic 

20% 40% 

Following the changes in time input for Us2.ai in base case, the scenario 

analyses are updated as follows: 

• combining longer waiting times of 36 weeks and a lower proportion 

diagnosed in a one stop diagnostic clinic (20%) 

• combining a lower waiting time reduction with Us2.ai (8%) and a lower 

proportion diagnosed in a one stop diagnostic clinic (20%) 

Base case results show that Us2.ai may be more costly and more effective 

than standard care (cost difference £0.92, QALY difference 0.0005), giving an 

ICER of £1,674 per QALY, below the NICE willingness to pay (WTP) 

threshold of £20,000 per QALY (Table 4). This yields a potential increase of 

15% in those meeting the target referral time, from 26% to 41%. The cost 

savings from shorter Us2.ai procedure time are not sufficient to fully offset the 

earlier treatment costs incurred when more patients receive an earlier 

diagnosis. This earlier treatment results in an increase in QALY gained. 

Results from one-way sensitivity analyses suggest that the economic findings 

are sensitive to a number of inputs including the impact of waiting time 

reduction with Us2.ai, the proportion diagnosed in a one stop diagnostic clinic, 

the proportion of inpatients receiving TTE, and the staff delivering TTE.  

When the impact of waiting time reduction for Us2.ai is lowered to 8%, a cost-

saving finding results. Us2.ai incurs lowers costs and generates higher QALYs 

than standard care, however the QALY gain is less than seen in the base 

case. This is because more patients remain in the “symptomatic” state for 
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longer than in the base case. They therefore experience lower utility for a 

longer period but without additional costs. Additionally, the increase in those 

meeting the target referral time reduces from 15% in the base case to 7%.  

In the sensitivity analysis where all inpatients receive TTE during their hospital 

stay, none of those in the “acute episode” state move back to the 

“symptomatic, waiting list” state. This means there are fewer patients who can 

benefit from the earlier diagnosis with AI-assisted TTE. This results in lower 

incremental costs and incremental QALYs compared to base case, and is 

cost-saving compared to standard care. 

When the proportion of patients diagnosed in a one stop diagnostic clinic is 

reduced to 20%, only 16% of patients would meet the target referral time with 

Us2.ai, yielding an increase of 6% compared to standard care. Additionally, in 

the scenario combining a lower proportion diagnosed in a one stop diagnostic 

clinic (20%) and a lower reduction in waiting time (8%), this results in a small 

increase of 3% in those meeting the target referral.  

Similar to EchoConfidence findings, Us2.ai results appear to be relatively 

insensitive to the longer waiting time of 36 weeks, primarily due to the high 

proportion of patients diagnosed in a one stop diagnostic clinic. In the 

scenario where 20% of patients are diagnosed in a one stop diagnostic clinic 

and the waiting time is extended to 36 weeks, the increase in those that met 

the target referral time reduces from 15% in the base case to 6%.  

The overall result appears to suggest that Us2.ai is potentially a cost-effective 

strategy, yielding an ICER below the NICE WTP threshold. These findings 

should be interpreted with caution given the significant uncertainty 

surrounding the current waiting time and the impact of Us2.ai on TTE 

workflow. 
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Table 4: Base case and sensitivity analyses: Us2.ai vs standard care 

 
  

Total 
costs,  
Us2.ai 

Total 
costs, 

Std Care 

Total 
QALYs, 
Us2.ai 

Total 
QALYs, 
Std Care 

Incremental 
costs (£) 

Incremental 
QALYs 

ICER Proportion 
meeting the 

target 
referral 
time, 

Us2.ai 

Proportion 
meeting the 

target 
referral time, 

Std Care 

Difference 
between 

Us2.ai and 
std care 

Base case £3,234 £3,233 0.4742 0.4736 £0.92 0.0005 1,674 40.5% 26.0% 14.5% 

% waiting time reduction: 8% £3,233 £3,233 0.4739 0.4736 -£0.54 0.0003 Cost saving 33.3% 26.0% 7.3% 

% waiting time reduction: 25% £3,235 £3,233 0.4744 0.4736 £2.12 0.0008 2,684 45.2% 26.0% 19.2% 

Echocardiography waiting time: 6 
to 36 weeks 

£3,234 £3,233 0.4741 0.4736 £0.86 0.0005 1,597 40.5% 26.0% 14.5% 

% diagnosed in hospital: -20% 
from base case (63%) 

£2,685 £2,684 0.4835 0.4828 £1.61 0.0007 2,338 40.5% 26.0% 14.5% 

Technology costs, no hardware 
costs 

£3,234 £3,233 0.4742 0.4736 £0.73 0.0005 1,324 40.5% 26.0% 14.5% 

Technology costs, low volume £3,234 £3,233 0.4742 0.4736 £1.11 0.0005 2,023 40.5% 26.0% 14.5% 

Technology costs, high volume £3,233 £3,233 0.4742 0.4736 £0.05 0.0005 93 40.5% 26.0% 14.5% 

All inpatients receive TTE £3,246 £3,246 0.4763 0.4760 -£0.61 0.0003 Cost saving 40.5% 26.0% 14.5% 

Band 8a cardiac physiologist £3,234 £3,234 0.4742 0.4736 -£0.18 0.0005 Cost saving 40.5% 26.0% 14.5% 

% one stop diagnostic clinic: 20% £3,228 £3,226 0.4729 0.4722 £1.68 0.0007 2,404 15.7% 10.0% 5.7% 

% one stop diagnostic clinic: 60% £3,235 £3,234 0.4744 0.4738 £0.86 0.0005 1,596 46.8% 30.0% 16.8% 

Combining 36-week waiting time 
and 20% one stop diagnostic 
clinic 

£3,224 £3,222 0.4721 0.4713 £2.06 0.0008 2,669 15.8% 10.0% 5.7% 

Combining 8% waiting time 
reduction and 20% one stop 
diagnostic clinic 

£3,226 £3,226 0.4725 0.4722 -£0.19 0.0003 Cost saving 12.8% 10.0% 2.8% 

Abbreviations: ICER: Incremental cost-effectiveness ratio; QALY: Quality adjusted life year. 
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5. Impact on conclusions of main report 

The EAG does not consider the 2 additional clinical studies to have any 

significant impact on the conclusions of the main report, particularly as neither 

report data which inform the economic modelling. However, the EAG 

recognises the value in the addition of evidence from a UK NHS setting (Oo et 

al. 2024) and evidence of patient acceptability of AI-assisted 

echocardiography (Huang et al. 2024b), both of which were noted to be 

lacking in the main EAR. 

The results of the updated economic model suggest that Us2.ai may be a 

cost-effective strategy. However, the evidence on time savings is of low 

quality and it is unlikely to be generalisable to the NHS setting. Further, 

uncertainties on waiting time change and other model inputs are considerable, 

and thus this limits the validity of the economic findings.   
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Comment 
no. 

Stakeholder Page no. Section no. Comment EAG Response 

1 MyCardium General  We had been asked whether we would be happy for the 
academic in confidence evidence trials to be made 
public, and we had agreed in writing to Simon Webster 
on 20th November that we would be happy for this to be 
done. 

Thank you for this clarification, we have 
removed the AIC highlighting that was in place 
for these trials throughout the EAR. 

2 MyCardium 14 Table 1 EchoConfidence has a DTAC in place Thank you for informing us of this. This has 
been amended in Table 1. 

3 MyCardium 67 5.3 Given the ‘high bar’ (better than human) set by the 
EchoConfidence team for their regulatory validation with 
regards to the measurements offered to clinicians, the 
comment at Section 5.3 ‘Potential over-reliance on AI 
measurements and automation resulting in inaccurate 
results’ as an additional clinical risk seems an 
oversimplification as ‘over reliance’ on the AI generated 
specified measurements would appear to reduce the risk 
of inaccurate results.  
 

This reflects input received from clinical 
experts, SCMs and professional organisations. 
No changes made. 

4 MyCardium 63 5.3 ‘The EAG believes there is a lack of evidence to 
determine whether any of the technologies have been 
adequately externally validated in a UK population, or a 
population with demographics close to that of UK 
population’. For EchoConfidence, both the CE validation 
dataset and the heart failure diagnostic dataset for the 

Thank you for this comment. The report has 
been amended in Section 5.3 and the 
executive summary as necessary to reflect 
this. 
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Comment 
no. 

Stakeholder Page no. Section no. Comment EAG Response 

FEATHER study were performed in NHS populations, 
with demographics reflecting the UK population 
(including for ethnicity, age, sex). The CE validation 
study was performed in a hospital setting, and the 
FEATHER study in community clinics.  
 

5 Us2.ai 

~pp. 12–20, 
60–75 

Sections 1, 
4–5 (overall 
description 
of 
technologie
s and 
clinical 
evidence) 

Scope and positioning of Us2.ai – comprehensive 
echo platform, not just an HF “flag”  Us2.ai is a CE-
marked, FDA-cleared, vendor-neutral platform that 
automates the entire adult TTE study: view recognition, 
guideline-aligned measurements (LV/RV size and 
function, diastolic function, valves, strain, pulmonary 
hypertension, cardiomyopathies) and structured, 
editable report text.[1,6,19] The current EAR narrative 
largely frames Us2.ai as a disease-specific HF detection 
/ triage tool, with most discussion centred on LVEF and 
HF pathways alone. This under-represents: (i) the 
comprehensive BSE-level dataset generated per 
study;[6] (ii) the end-to-end workflow impact 
(measurement + reporting time);[1,19] and (iii) the fact 
that HF is one key use case within a much broader, CE-
marked scope. We respectfully request that the final 
report explicitly describes Us2.ai as a full 
echocardiography measurement, analysis and reporting 
platform already in clinical use, with HF diagnosis and 
management as an important subset of the overall 
functionality. 

Thank you for this comment. The EAR has 
been updated. The technology is described as 
relevant to the scope of this assessment. AI-
assisted TTE image acquisition is not in 
scope. 

6 Us2.ai 
 ~pp. 80–87 Section 

6.2.3; Table 
17; text on 
technology 
costs and 
staff time 

Economic model – 1.3-minute time saving and 
“dominated” result  In the Us2.ai base case, the model 
uses a 1.30-minute “procedure time” reduction and 
assumes no change in waiting times, leading to a 
“dominated” conclusion.[13,18] We would be grateful if 
NICE could confirm that this 1.3-minute estimate is 

Thank you for the clarification on the time 
measured in Sakomoto et al. Given that only 
scan component (i.e. image acquisition) was 
measured in Sakomoto et al, the EAG agree 
that findings on measurement and reporting by 
Hirata et al would be more appropriate to be 
used as the base case. This is in line with the 
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(pp. 84–85, 
88–90) 

derived solely from an examination-time difference (scan 
component only), and does not include measurement 
and report-creation time. This appears to be based on a 
Sakamoto-style “AI day vs non-AI day” comparison for 
one part of the workflow.[7,13] By contrast, Hirata et al. 
report ~70% reduction in combined measurement + 
reporting time (~524 seconds ≈ 8.7 minutes per 
comprehensive exam) when fully automated software is 
used in routine practice, with the greatest gains in high-
complexity HF-type studies.[1] State-of-the-art reviews 
summarise similar reductions in acquisition, 
measurement and post-processing time across AI echo 
platforms, including Us2.ai.[19] We therefore request 
that: (i) the EAR explicitly states that 1.3 minutes 
represents only part of the workflow; and (ii) additional 
scenario analyses are presented using full workflow-time 
evidence (e.g. Hirata 2024) for examination + 
measurement + reporting, with corresponding effects on 
list capacity and waiting times modelled where 
appropriate.[1,7,19] 

intended use of Us2.ai in the company RFI, 
where the technology is used to process 
acquired images, to analyse and provide 
measurements. 
 
The EAG has produced an addendum to the 
report to present the economic results for 
Us2.ai using the time savings in Hirata et al. 
(2024). 

7 Us2.ai 

pp. 84–86, 
101 

Section 
6.2.3–6.2.4; 
Table 21–
22 (Us2.ai 
vs standard 
care base 
case and 
sensitivity 
analyses) 

Waiting times, one-stop clinics and consistency with 
EchoConfidence assumptions  For EchoConfidence, 
the model assumes a ~17% reduction in waiting time 
based on procedure-time savings, leading to cost 
savings and a higher proportion meeting the 6-week HF 
referral standard.[13] For Us2.ai, the base case 
assumes no waiting-time change, despite workflow 
evidence showing substantial reductions in 
measurement and reporting time and sensitivity 
analyses already demonstrating improved waiting-time 
performance when Hirata-style time savings are 
applied.[1,17] In Table 22, when Hirata et al. time 
reductions are used, Us2.ai becomes more effective and 
only slightly more costly (£1.40 incremental cost; ICER 

See EAG response to comment 6. 
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~£2,547 per QALY) with a 14.5% absolute increase in 
patients meeting the target referral time.[17] For 
consistency across technologies, we respectfully request 
that: (i) parallel waiting-time scenarios are presented for 
Us2.ai using published full-workflow savings (Hirata 
2024 and state-of-the-art data);[1,19] and (ii) the report 
clearly explains how differences in waiting-time 
assumptions between EchoConfidence and Us2.ai drive 
divergent cost-effectiveness conclusions. 

8 Us2.ai 
 pp. 84–90 Section 

6.2.3–6.2.4; 
Table 17 
(Technolog
y cost 
parameters
) 

Pricing model and cost inputs for Us2.ai (Table 17) – 
clarification requested  The current text and Table 17 
summarise Us2.ai as having volume-based pricing with 
additional installation/server costs and “routine support, 
clinical and IT support… at no additional fee”, but note 
that training costs are unclear.[4,6] To avoid 
misinterpretation, we ask that the EAR explicitly reflects 
our current NHS list pricing and support model: 
 • 1,000–10,000 exams per year: £7.50 per exam   
• 10,001–20,000 exams per year: £6.70 per exam   
• 20,001–50,000 exams per year: £5.90 per exam   
Additional discounts for multi year commitment. 
 Crucially, for NHS customers this per-scan subscription 
fully includes all clinical and technical support, all initial 
and refresher training, implementation/configuration 
support and routine software updates. There are no 
additional Us2.ai support contracts, per-ticket 
support fees or separate training/maintenance 
charges beyond the per-exam subscription. We 
therefore request that Table 17 and the accompanying 
narrative are updated so that: (i) Us2.ai is shown as a 
tiered per-exam subscription with training, support and 
upgrades included; and (ii) no extra Us2.ai-specific 
support/training cost lines are added on top of the per-
scan subscription in the economic model. This will 

Thank you for the new pricing structure. The 
EAG economic analyses have been updated 
with the new pricing. To align with the new 
base case, the costs of Us2.ai have been 
updated, including staff time. The EAG has 
produced an addendum to summarise the 
updated costs and resource use for Us2.ai.  
 
Thank you for the additional information on 
training and IT support. The new information 
has been added in the addendum. As no 
additional training and support costs are not 
included for Us2.ai in the EAG economic 
analyses, no changes made on the calculation 
related to these costs. 
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ensure commissioners see cost-effectiveness results 
aligned with the actual commercial offer they would 
encounter in the NHS. 

9 Us2.ai 

pp. 88–91 Section 
6.2.3–6.2.4; 
Table 17 & 
Table 20 
(resource 
use, staff 
time, 
sensitivity 
analyses) 

Staff time per scan and training / IT support entries 
for Us2.ai (Tables 17 and 20)  Table 17 and related 
sensitivity analyses appear to use Us2.ai staff-time 
figures that are very close to baseline (non-AI) practice, 
with only a 1.3-minute reduction applied, and explicitly 
list “training” and “IT support” as separate recurrent 
resource components for Us2.ai.[6,13,18] This does not 
reflect the workflow with Us2.ai fully implemented, where 
the main time savings arise from automated 
measurements and report generation, not just the scan 
acquisition step.[1,19] Hirata et al. report ~70% 
reduction in combined measurement + reporting time 
(~8.7 minutes per comprehensive exam).[1] The JMA 
state-of-the-art review summarises multi-vendor data 
showing 30–77% reductions in acquisition, 
measurement and post-processing time with AI-enabled 
echo platforms.[19] We therefore ask that: (i) “staff time 
per scan” for Us2.ai in Table 17 / Table 20 is reviewed 
so that it represents the post-implementation Us2.ai 
workflow (e.g. using Hirata-style reductions), not 
baseline + 1.3 minutes; and (ii) manufacturer-provided 
training and ongoing clinical/technical support are not 
treated as separate recurring per-scan staff-time costs 
for Us2.ai, as these services are fully included within the 
subscription. Any one-off implementation effort should 
be handled consistently across all technologies. 

See EAG response to comment 8 on staff 
time, training and IT support. 
 
The EAG explored the impact of Us2.ai 
combined time savings of 10 mins, which were 
derived from a 1.3-mins reduction in image 
acquisition, and an 8.7-mins reduction in 
measurement and reporting. This did not 
result in any further reduction in waiting time 
impact, as the additional 1.3 mins was not 
sufficient to allow one extra procedure to be 
added in a full clinic day. Further, this 
assessment aims to evaluate the plausible 
cost-effectiveness of each technology in 
scope, and thus the overall AI-
echocardiography time reduction findings in 
the JMA review are not appropriate for use. 
No changes made. 

10 Us2.ai 
 ~pp. 40–45, 

60–75 
Sections 4–
5 (HF 
pathways, 

HF screening, novice/community use and UK 
relevance  The EAR notes that evidence for community 
and handheld HF echo is limited and of uncertain 

Community settings are out of scope for this 
assessment. However, to address stakeholder 
appetite for exploring this potential use case, 
the EAG made a pragmatic decision in 
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system 
impact, 
community/
handheld 
echo) 

relevance, but does not fully reflect the published data 
on AI-supported novice and community use with 
Us2.ai.[2,3]  • PANES-HF (Huang et al., Sci Rep 2024) 
– prospective handheld echo performed by a novice 
operator with AI analysis in symptomatic patients with 
suspected HF, showing high diagnostic accuracy for 
LVEF <50% (AUC ~0.88, good sensitivity/specificity) 
with exam times ~13 minutes and high proportions of 
interpretable studies.[2]  • Lesotho survey (Firima et 
al., Hypertens Res 2024) – nurses and nurse-assistants 
with no prior echo experience performed focused 
handheld exams after a 2-day course; ~83% of 
uploaded image files were evaluable by AI and >80% of 
those were confirmed by cardiologists, with ~88% 
evaluable + confirmed overall.[3]  These studies directly 
address concerns about operator skill-mix and support 
the feasibility of HF screening and community echo 
using AI-assisted workflows. We request more explicit 
acknowledgement of PANES-HF and the Lesotho data 
in sections discussing system benefits, community use 
and workforce extension, as they are aligned with NHS 
priorities on access and care closer to home.[2,3] 

agreement with NICE to include studies from 
community settings based in the UK (see 
section 4.1). Therefore, the study by Firima et 
al. (2024) has been excluded as it is not UK-
based (see Appendix F, study number 113).  
 
The PANES-HF study by Huang et al. (2024) 
has been included in the EAR. The diagnostic 
accuracy results quoted here are reported in 
Section 5.2.2. The exam time duration quoted 
here is in relation to the learning curve of 
novice operators, and there are no data 
reported on procedure time with AI versus 
without AI. Therefore, no changes have been 
made to the EAR.   
 

11 Us2.ai 

~pp. 45–55 Sections 4–
5 (HF 
epidemiolo
gy, 
diagnostic 
pathways, 
UK 
relevance) 

AI-driven HF detection from integrated data – 
Scottish EHR/echo work  Oo et al. (ESC Heart Fail 
2024) used linked EHR data, echocardiography 
(DICOM) and biomarkers in the Tayside/Fife population 
(~20% of Scotland) to develop deep-learning models 
that automatically detect and classify HF subtypes 
(HFrEF, HFmrEF, HFpEF).[4] The echo component 
relied on AI-interpreted images, illustrating how AI-
assisted echo can be embedded in national-scale HF 
registries and surveillance systems. We propose that 
this study is explicitly cited in the sections on UK 
relevance and integration with HF data systems, as it 

Thank you for highlighting this publication. 
This was incorrectly excluded by the EAG as 
‘wrong intervention’. 
 
The EAG has produced an addendum to the 
report to summarise the relevant results from 
this study.  
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shows that AI echo is already being used in Scottish HF 
classification and supports the concept of registry-based 
case finding and follow-up.[4] 

12 Us2.ai 
 ~pp. 55–65 Sections 4–

5, 8 (HF 
pathways, 
community 
echo, 
ongoing 
research) 

OPERA and SYMPHONY-HF – NHS-linked HF 
pathway redesign and trials  The current EAR gives 
limited weight to OPERA and does not fully describe 
SYMPHONY-HF. We suggest both are made more 
prominent as NHS-linked exemplars of HF pathway 
redesign using AI-assisted echo.  • OPERA (Optimised 
Pathway for Early Identification of Heart Failure in 
the Community) – NHS programme led by NHS 
Greater Glasgow & Clyde and NHS Golden Jubilee with 
academic and industry partners.[8–16] Public reports 
indicate that, during the NHS Louisa Jordan pilot, waiting 
lists for HF diagnostics (including echo) were reduced 
from >12 months to ~6 weeks via a “one-stop” clinic 
model (ECG, echo, natriuretic peptides, other tests in a 
single visit).[8–11,15,16] OPERA is repeatedly cited in 
HF policy and innovation reports as an exemplar of 
digital and AI-enabled HF pathways reducing waiting 
times and improving resource use.[8–11]  • 
SYMPHONY-HF (NCT05919342) – large, multinational, 
prospective randomised trial coordinated by NHS 
Greater Glasgow & Clyde, evaluating a screening 
strategy combining NT-proBNP with point-of-care, AI-
enabled echo in primary care and home settings versus 
standard care.[18]  We request that OPERA is treated 
as a central case study for HF pathway redesign and 
that SYMPHONY-HF is explicitly referenced as ongoing 
NHS-linked evidence generation in community and 
primary-care settings.[8–11,17,18] We would welcome 
guidance on which OPERA/SYMPHONY endpoints (e.g. 
time to diagnosis, 6-week target attainment, one-stop 
clinic utilisation, HF admissions, cost per detected case) 

Both studies cited here are already included in 
the EAR. Relevant published evidence has 
already been included for the OPERA study 
(key study: Campbell et al., 2025). The EAG 
has added to section 8 to highlight the use of 
point-of-care AI-assisted handheld TTE in the 
SYMPHONY-HF trial to highlight its relevance 
to use in community and primary care settings 
in the UK. No further changes have been 
made to the EAR. 
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NICE would find most useful for future model 
updates.[8–11,17,18] 

13 Us2.ai 

~pp. 55–65 Sections 4–
5 
(acceptabili
ty, equity, 
implementa
tion 
considerati
ons) 

Patient acceptance, trust and task-shifting (UTAUT2)  
The UTAUT2 study by Huang et al. (BMC Health Serv 
Res 2024) assessed patients’ attitudes to AI-supported 
healthcare task-shifting, including AI-guided 
echocardiography.[5] It found significant positive 
associations between performance expectancy, effort 
expectancy, facilitating conditions, social influence and 
hedonic motivation and patients’ intention to accept AI-
enabled task-shifting, with no evidence that age, gender 
or education had a negative moderating effect.[5] These 
findings suggest that, when AI-enabled echo pathways 
are implemented with appropriate communication and 
infrastructure, patients are broadly willing to accept AI-
augmented diagnostics and task-shifting to non-
physician staff – a key enabler for scaling HF 
diagnostics while maintaining quality. We suggest this 
evidence is explicitly referenced in the sections on 
acceptability and equity, and we would welcome 
guidance on what additional UK-specific patient-
experience data (e.g. PROMs/PREMs or surveys in 
Us2.ai-enabled HF clinics, OPERA, SYMPHONY-HF) 
NICE would find most informative.[5,8–11,18] 

Thank you for highlighting this publication 
which was incorrectly excluded as having 
‘wrong outcomes’. The EAG has produced an 
addendum to summarise this study.  

14 Us2.ai 
 ~pp. 95–

102, 110–
120   

Section 
6.2.5; Table 
22 (Us2.ai 
base case 
and 
sensitivity 
analyses); 
Section 8; 

Evidence maturity, uncertainties (Table 24) and 
comparative positioning  The EAR notes that Us2.ai 
has more clinical studies than other technologies, but 
the conclusion sections and Table 24 do not fully reflect 
the breadth and maturity of the evidence base. In the 
public domain, Us2.ai uniquely has: a randomised 
clinical workflow study (“AI day vs non-AI day” 
throughput);[7] a dedicated workflow/time study showing 

The EAG has referred to the size of the 
evidence base and presence of an RCT, 
which is unique to Us2.ai (see Executive 
Summary, Section 5.4).  
 
The colour coding for ‘diagnostic performance’ 
and ‘validation against human measurements’ 
has been upgraded to green to reflect the 
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Table 24 
(key 
uncertaintie
s & 
implementa
tion) 

~70% reduction in combined measurement + reporting 
time;[1] prospective novice/handheld HF screening data 
(PANES-HF);[2] nurse-led community implementation in 
Lesotho;[3] UK-linked HF subtype classification with AI-
interpreted echo + EHR data (Oo et al.);[4] large studies 
in other diseases (valve disease, PH, amyloidosis) and 
high-volume labs;[2,4,19] and formal patient-acceptance 
data using UTAUT2.[5] We would welcome: (i) an 
explicit statement in the conclusions that Us2.ai currently 
has the largest and most diverse evidence base among 
the assessed technologies; and (ii) adjustments to Table 
24 so that diagnostic and clinical validation for Us2.ai 
are rated to reflect this (e.g. “evidence largely sufficient; 
further data desirable” rather than implying major gaps), 
with implementation/support also marked green given 
the mature deployment history and included 
training/support model.[1–5,7–11,19] 

volume of evidence available, relative to other 
technologies. No other changes made. 

15 Us2.ai 

General 
(cross-
cutting) 

Sections 6–
8 
(modelling 
structure, 
comparator
s, 
scenarios, 
future 
research) 

Methodological clarifications and future research 
priorities  To align future submissions with NICE 
expectations, we would welcome clarification on:  • 
Comparators and baseline workflows: Which specific 
echo workflows are assumed in the reference case 
(consultant-reported vs physiologist-reported vs mixed; 
existing semi-automated tools), and whether NICE 
would like separate scenarios for BSE-accredited 
hospital labs, community HF clinics and GP-led POCUS 
services.  • Time and cost modelling: Whether NICE 
supports scenario analyses using published full-workflow 
time-savings (Hirata 2024; state-of-the-art review) 
instead of a single 1.3-minute estimate; and preferred 
approaches to modelling downstream effects such as 
increased slots per list, reduced backlogs and feasibility 
of one-stop HF clinics (as in OPERA).[1,7–11,19]  • 
Outcome measures beyond EF: The level of detail 

No response required from EAG. 
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NICE would like on measurement-level accuracy and 
reproducibility across the full TTE dataset (e.g. per-
parameter bias/LOA, composite metrics, disease-
specific performance), given HF guidelines rely on 
multiple parameters.[1–4,6,19]  • Generalisability and 
case studies: Whether NICE wishes to see explicit 
modelling for named NHS configurations (e.g. OPERA-
style clinics, district general hospitals, community HF 
pathways) and would value joint work with NHS sites to 
provide granular service-level data (capacity, backlog 
trajectories, DNA rates).[8–11,17,18]  • Future NHS 
pilots and core datasets: For NHS pilots using Us2.ai 
(OPERA expansions, SYMPHONY-HF, TARTAN-HF 
and others), what minimum core dataset (clinical 
outcomes, resource use, time metrics, costs) and which 
sub-populations (older adults, deprived/rural groups, 
multimorbidity) NICE sees as highest priority for 
reducing decision uncertainty.[8–11,17,18]  We would be 
pleased to work with NICE and NHS partners to design 
pilots and evaluations that directly address these 
priorities. 

16 Us2.ai 
 pp. 88–92, 

101 
Section 
6.2.3–6.2.5; 
Tables 17, 
20, 22 

Summary comment – aligning EAR conclusions with 
the totality of evidence and real-world offer  Overall, 
we greatly welcome NICE’s work on AI-assisted echo for 
HF and appreciate the opportunity to contribute. Our key 
requests are that the final EAR: (i) recognises Us2.ai as 
a comprehensive, guideline-aligned TTE platform rather 
than a narrow HF flagging tool;[1,6,19] (ii) presents 
scenario analyses using full workflow-time data (Hirata 
2024; state-of-the-art review) and consistent waiting-
time assumptions across technologies;[1,7,19] (iii) gives 
appropriate weight to novice/community HF evidence 
(PANES-HF, Lesotho), UK-linked HF classification work 
(Oo et al.) and NHS pathway programmes (OPERA, 

No response from EAG. Comments have been 
individually addressed previously. 
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SYMPHONY-HF);[2–4,8–11,17,18] (iv) reflects the 
strong patient-acceptance data (UTAUT2) when 
discussing equity and acceptability;[5] (v) accurately 
represents Us2.ai’s pricing model as a tiered per-exam 
subscription with training, implementation and support 
fully included; and (vi) clearly describes the relative 
evidence maturity of Us2.ai versus other 
technologies.[1–5,7–11,17–19] We believe these 
adjustments will give decision-makers a more accurate 
view of the clinical, operational and economic value that 
Us2.ai can offer within NHS HF pathways. 

17 NHS 
England 

  No comments No response. 

18 Ultromics   No comments No response. 

19 Maria Paton 
(professional 
expert) 

18   Suggest switching point-of-care sentence and one-stop 
sentence so that one-stop sentence relates to full TTE 
rather than point-of-care ultrasound. 

Thank you for this comment, this has been 
amended in the EAR. 

20  19 3.2 TTE is recommended by the British Society of 
Echocardiography to be 45minutes for a minimum 
dataset to 60minutes for a complex TTE. Notice the flow 
diagram states 30-60minutes  

Thank you for this comment, this has been 
amended in the EAR.  

21  90 Table 17 Could you please specify if costs are based on 
bottom/mid/top of banding for staff? 

Thank you for the comment. Staff time in 
Table 17 has been costed based on Personal 
Social Services Research Unit (PSSRU), 
which is a standard cost reference in health 
economics. It provides average hourly staff 
cost by band, and thus it is not possible to 
specify the detail as suggested. No changes 
made. 

22  throughout   Would it be possible to discuss the technologies in the 
same order in every section. I may have missed it, but 
felt there wasn’t a specified reason for changing and feel 
this might provide more consistency when reading. 

Thank you for your comment. In section 5.2.2, 
the order of discussing the technologies has 
now been swapped to mirror the order in 
section 5.2.1. With regard to the other 
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sections, the outcomes reported across the 
evidence base were not consistently reported 
for each technology, so it is not possible to 
provide any more consistency in the order of 
reporting. Therefore, no other changes have 
been made to other sections of the EAR. 
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Section B  Economic model - Comments  
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amendment  
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(if applicable) 
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