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Purpose of the early value assessment report

The purpose of this external assessment report (EAR) by an external assessment
group (EAG) for early value assessment is to review the evidence currently available
for technologies within the decision problem and advise what further evidence should
be collected to help inform future decisions on whether the technologies should be
widely adopted in the NHS. NICE has commissioned this work and provided the
template for the report. The report forms part of the papers considered by the
Committee when it is making decisions about the early value assessment.
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Executive summary

Background
The topic of this Early Value Assessment (EVA) is artificial intelligence (Al)

assisted echocardiography to support the diagnosis and monitoring of heart
failure. There are 4 technologies in the scope of this EVA: EchoGo Heart
Failure (Ultromics Ltd), Us2.ai (EKO Pte Ltd), Ligence Heart (Ligence, UAB)
and EchoConfidence (MyCardium Al Ltd).

The decision problem is described in detail in the published scope and the

EAG approach to the assessment is described in the published protocol.

Clinical evidence

There were 17 studies identified as the clinical evidence base: 3 for EchoGo
Heart Failure, 9 for Us2.ai, 2 for Ligence Heart and 3 for EchoConfidence. For
EchoGo Heart Failure, all studies were retrospective case-control studies. For
Us2.ai, there were 9 studies. Four of these were prospective comparative
studies, 2 were retrospective comparative studies (Tromp et al. 2022a, Myhre
et al. 2024a), 2 were retrospective validation studies and one study was a
randomised controlled crossover trial. For Ligence Heart, there were 2
comparative studies, one of which was a prospective, the other was
retrospective. For EchoConfidence, there were 3 comparative studies, one of
which was prospective. Two of these studies were interim analyses of ongoing
studies. Human operators, or manual measurements, were the comparator in

all comparative and validation studies.

The EAG considers there to be some evidence of moderate quality to support
the use of EchoGo Heart Failure. There was evidence that the Al technology
had good performance in aiding detection of HFpEF, in comparison to two
validated multiparametric manual clinical scoring tools. Us2.ai had the largest
volume of evidence, relative to other technologies in scope, and was the only
technology to have an associated RCT (reported in a non-peer reviewed pre-
print) which demonstrated some time savings in TTE procedures following the
implementation of Al-assistance. However, this evidence was of limited
External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to
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generalisabiity to the NHS. One study based in the NHS demonstrated the
potential utility of Us2.ai in automating measurements alongside handheld
TTE acquisition. Evidence of Us2.ai’s diagnostic accuracy in comparison to
humans was largely observed to be good, as was the technology’s
performance in discrimination of cases of HF from controls without HF.
However, the outcome measures and comparisons reported across the
evidence base were heterogeneous, which makes it difficult to synthesize
consistent overall findings. Evidence for Ligence Heart was limited and of
moderate quality. Outcome measures reported for Ligence Heart were limited
to correlation and agreement with human measurements, with some evidence
on high yield of measurements from TTE images. Correlation was observed to
be strong with human comparators, but agreement was variable. Evidence for
EchoConfidence was very limited and of uncertain quality. No published
evidence was identified for this technology and all data included in the clinical
evidence review was provided by the company. However, this evidence was
from NHS settings and provided some limited evidence of potential system
benefits through decreasing TTE analysis time. Diagnostic test accuracy
results were mixed, with good specificity for both HFrEF and HFpEF, with a
moderate false negative rate for HFrEF. Correlation with human

measurements was observed to moderate.

Overall, the clinical evidence is mixed. There is potential for these Al
technologies to successfully assist with automation of measurements and
report creation following TTE acquisition, and diagnostic test accuracy
outcomes are generally reported to be good in comparison to measurements
and reports made by humans. However, there is some evidence to suggest
that agreement and correlation is low between Al and human measurements
for some parameters. There was considerable variation across the evidence
base with respect to the measurements which were compared and the
comparator (e.g. different HCPs in different settings and clinical pathways).
Few of the included studies were conducted in a UK/NHS setting, reducing
the generalisability of the results. Clinical evidence is discussed in detail in

Section 5.2, with quality assessment reported in Section 5.1.
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The EAG noted there was not enough evidence to determine whether the
EchoGo Heart Failure, Us2.ai and Ligence Heart technologies had been
adequately validated in UK populations (or populations similar to that of the
UK), to ensure their suitability for use in the target population. This may pose
clinical risk, which is discussed in Section 5.3.2. There is evidence that

EchoConfidence has been externally validated in a UK population.

There are significant evidence gaps which are outlined in Section 8.2. In
summary, these are: impact on procedure time, impact on clinical outcomes
(e.g. time to diagnosis and initiation of treatment), validity in UK cohorts and

adverse events.

Economic evidence

The EAG did not identify any relevant economic studies related to the
technologies in this assessment. An exploratory economic analysis was
performed using an early Markov model over a one-year time horizon, to
capture the impact of echocardiography waiting time with Al technology
compared to standard care. However, the model is limited by the lack of data
on current waiting time and uncertainty on evidence related to time saved with
Al in terms of settings, time parameters measured, and person performing
echocardiography in these studies. Therefore, the analysis undertaken should
be considered as exploratory, and results should be interpreted with caution.
As there is no evidence on time to diagnosis with Al-assistance, the EAG
estimated the impact on waiting time using evidence on time saved and a
number of assumptions. The analysis included two Al technologies:
EchoConfidence and Us2.ai, using the available clinical evidence on the
procedure time reduction. The model finds that EchoConfidence is potentially
less costly and more effective and the proportion of patients meeting the
target referral time of 6 weeks may increase by 15%. This is due to the
estimated reduction in waiting time of 17%, driven by shorter
echocardiography time, and thus resulting in small staff time savings.
However, the EAG considers the evidence on time saved is not robust and is
low quality due to a lack of detail on the raw data feeding into mean values,

and the way in which any time savings from Al-assisted analysis would impact
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TTE workflow on a practical level. While it appears EchoConfidence may be a
cost-saving strategy, the uncertainty around the model and evidence
outweighs the modest cost-saving. For Us2.ai, the results indicate that it may
be dominated by standard care, as it is estimated that the modest reduction in
echocardiography time would not lead to any change in waiting time. Results
are sensitive to the impact of waiting time reduction and the proportion of
patients diagnosed in a one stop diagnostic clinic. Currently there are
considerable areas of uncertainty including current waiting time, the proportion
of patients attending a one stop diagnostic clinic, clinical evidence on time
saved, and evidence on waiting time change. These uncertainties mean that

the validity of the economic findings is limited.

Evidence gaps are identified and outlined in Section 8.2. In summary, these
are: long-term impact on time to diagnosis, impact of downstream diagnostic
costs. In addition, there are evidence gaps related to baseline model inputs

including waiting time and utilities of HF.

Key points for decision makers

e There are significant gaps in the evidence base which mean the
benefits of introducing Al-assisted echocardiography into the heart

failure diagnosis and monitoring pathway are currently unclear.

e There is potential for Al-assisted echocardiography to facilitate faster

echocardiography analysis and reporting, but data on this are limited.

e Evidence should be generated on impact on procedure time and the
subsequent impact on health-related outcomes, such as time to

diagnosis and time to initiation of treatment.

e The Al technologies should be externally validated in cohorts
representative of UK populations, to evidence their suitability for use in
the NHS.

e Shifting echocardiography out of secondary care to primary or
community care settings to improve patient access may be aided by Al

technologies, but there is a paucity of evidence to support this.
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1. Decision problem
The topic of this Early Value Assessment (EVA) is artificial intelligence (Al)

assisted echocardiography to support the diagnosis and monitoring of heart
failure. The decision problem is described in detail in the published scope.

The EAG made no further changes or comments on the scope.

2. Technologies

There are 4 technologies in the scope of this EVA: EchoGo Heart Failure
(Ultromics Ltd), Us2.ai (EKO Pte Ltd), Ligence Heart (Ligence, UAB) and
EchoConfidence (MyCardium Al Ltd).

EchoGo Heart Failure (Ultromics Ltd) is an automated machine learning-
based decision support system intended to aid clinicians in detecting heart
failure with preserved ejection fraction (HFpEF). This technology automates
echocardiographic measurements including left ventricular volumes, ejection
fraction and global longitudinal strain. Us2.ai (EKO Pte Ltd) is an Al software
that can be used to automate measurements, analysis and reporting of
transthoracic echocardiography (TTE) images, to support decision making of
healthcare professionals for various cardiac conditions, including heart failure.
Ligence Heart (Ligence, UAB) is an Al software used to automate
echocardiographic measurements and the generation of echocardiographic
reports, to be reviewed and approved by human operators. EchoConfidence
(MyCardium Al Ltd) is an Al software that assists the user in reviewing
acquired images, automating measurements and automating report

generation.

Details on technology versions, use cases and regulatory status can be found
in Table 1. This summary is based on information provided by NICE,
information submitted by the companies, and publicly available information.
Please see the published scope for further details on the properties of these
technologies. The EAG comments column contains any clarifications sought

from the companies on versions and generalisability of evidence.
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Table 1: Description of technologies.

EchoGo Heart
Failure

v2.0
e Launched

Indications for use: diagnostic aid for
adult populations over 25 years of
age undergoing routine functional

expected June
2026 (version

LG ey Version history Use cases R EAG comments
(manufacturer) status
EchoGo Heart Failure The EAG noted in the literature the existence of
V1 0 |ntended use: to provide adjunctive Other ‘EChOGO’ deViceS. These inCIUded EChO GO
e Launched Nov | information on a patient’s Pro, Epho Qo Core and Echo GQ Cardiac
aid for HFpEF). Class lla (EU all separate technologies. This assessment only
MDR considers EchoGo Heart Failure (v1.0 and v2.0), in
EchoGo Heart Failure 2017/745) line with the scope and in agreement with NICE.

The company stated that v1.0 and v2.0 are separate

Indications for use: patients, both
healthy or with underlying cardiac
disease, requiring review or analysis

(Ultromics Ltd) Sept 2024 cardiovascular assessment using not specified) | from a regulatory perspective, but evidence can be
* Update to v1.0 | giagnostic echocardiography or those considered generalisable between them (supported
to include suspected of heart failure. DTAC not in by company test data showing a 0.1% increase in
EchoGo score place. inconclusive studies, and small increases in
and . sensitivity (~2%) and specificity (~4%) from v1.0 to
“explainability | Exclusions: NR v.2.0).
features”
_ Intended use: for detection and Class llb (EU The company stated that “evidence is generalisable
EchoConfidence diagnosis of heart failure via MDR between versions, but the test datasets (for_FDA,
v01.01.00 screening or clinical 2017/45) CE and precision) are re-run with eaph version
» Launched May | echocardiograms, for stratifying heart | awarded May | 'S/68S€ t0 ensure that performance is stable/
_ 2025 failure (HFrEF, HFmrEF vs HFPEF), | 2025 (for Improves-.
EchoConfidence and for monitoring disease v01.01.00)
(MyCardium Al progression and response to
Ltd) treatment.
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of their echocardiographic images
acquired for their cardiac anatomy,
structure and function.

Exclusions: patients with a known

Ligence Heart
(Ligence, UAB)

congenital cardiac abnormality, DTAC in place.

paediatric patients (age<18).

It has no special features to detect or

make allowances for myocardial

tumours.

Intended use: to detect, measure, None.

and calculate various specifications

of structure and function of the heart

and great vessels by analysing

echocardiographic images and Class lla (EU

Ligence Heart v3.42.0 | automatically providing MDR
e Launched Jan | €chocardiographic reports. gevLZétsci)’June

L . 2022 (for

Indications for use: patients who are v3.42.0).

N
o
N
(¢)]

not in a life-threatening state of
health, time is not critical for medical
decisions and no major therapeutic
interventions are required.

Exclusions: complex or critical
congenital heart disease, heart
tumours, prosthetic valves, post-
operative heart valves, cardiac
geometry changing cardiothoracic
surgeries, implantable intracardiac
devices, heart arrhythmias (atrial
flutter, atrial fibrillations), aorta
dissection.

DTAC notin
place.
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Us2.ai (EKO Pte
Ltd)

Us2.ai v1
e Launched
June 2022
Us2.ai v2
e Launched
June 2025
e Additional
measurements

Intended use: to process acquired
transthoracic cardiac ultrasound
images, to analyse and make
measurements on images in order to
provide automated estimation of
cardiac structural and functional
parameters.

Indications for use: in adult patients
as decision support for the detection
of specific cardiac conditions such as
heart failure, pulmonary
hypertension, cardiac amyloidosis,
hypertrophic cardiomyopathy and
valve disease (aortic stenosis, mitral
regurgitation).

Exclusions: NR

Class IIb EU
MDR 2017/45,
date awarded
unknown (for
both v1 and
v2)

DTAC in place.

The company stated that v1 and v2 have separate
MDR certification, but evidence for v1 may be
considered generalisable to v2.

There is a ‘cardiac amyloid model’ which is included
as a subset of the v2 software.

Abbreviations: Al: artificial intelligence; DICOM: digital imaging and communications in medicine; DTAC: digital technology assessment criteria; EU MDR: European Union

Medical Device Regulation; HF: heart failure; HFmEF: heart failure with mid-range ejection fraction; HFpEF: heart failure with preserved ejection fraction; HFrEF: heart failure

with reduced ejection fraction; LV: left ventricle; NR: not reported.
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3. Clinical context

This early value assessment (EVA) will focus on the use of artificial
intelligence (Al) assisted echocardiography to support the diagnosis and
monitoring of heart failure (HF). This section describes the clinical context of
this assessment, including the condition, the echocardiography procedure and

relevant clinical pathways.

3.1 Heart failure (HF)

Heart failure (HF) is a condition where the heart is unable to pump blood
around the body properly. This can be due to structural or functional
abnormalities. While not usually curable, some symptoms of HF can be
managed. Common symptoms of HF include breathlessness (dyspnoea),
chronic exhaustion, and swollen legs and ankles. HF can be chronic (due to
cardiovascular comorbidities such as hypertension) or acute (e.g., secondary
to acute coronary syndrome). It usually affects older populations but can also

occur in younger individuals.

HF is common, with over a million people being affected in the UK. Itis
becoming more prevalent as the population ages. There are approximately
200,000 new HF diagnoses every year in the UK, with over 800,000 people on
their GP’s HF register (British Heart Foundation, 2025). Of those diagnosed
with HF, an estimated 87% involved the use of echocardiography in the
diagnostic work up (National Heart Failure Audit Data (NHFA) 2025).

Heart failure is categorised according to the left ventricular ejection fraction
(LVEF) measurements, which may be acquired through echocardiography
The categories are: ‘heart failure with preserved ejection fraction’ (HFpEF,
LVEF of 250%), ‘heart failure with reduced ejection fraction’ (HFrEF, LVEF is
<40%), or the intermediate class of ‘heart failure with mildly reduced ejection
fraction’ (HFmrEF, LVEF between 41-49%).
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3.2 Echocardiography

Transthoracic echocardiography (TTE) is used to aid diagnosis of HF, in
combination with presence of clinical symptoms, elevated biomarker levels (N-
terminal pro-B-type natriuretic peptide (NT-proBNP)) and other cardiac
imaging modalities. TTE facilitates detection of abnormalities and defects in
the heart’s chambers and valves and provides measurements of blood flow
and the heart’s pumping ability. Where an echocardiogram detects abnormal
ejection heart fraction, abnormalities in the heart’s walls’ motions, or

hypertrophy, this can be indicative of HF.

Cardiac magnetic resonance imaging (CMRI) may also be used for some
complex cases or in the rare instances when TTE is inconclusive or
contraindicated, but it is not readily available in all centres. TTE is usually
performed in the NHS by a specialist cardiac physiologist or cardiologist,
although the settings and type of technology used may vary depending on the

referral pathway.

Potential place for Al-assisted echocardiography technologies in the
care pathway

Transthoracic echocardiography (TTE) is typically conducted in the secondary
care setting, in dedicated clinics or suites with static equipment. While not the
focus of this assessment, clinical experts highlighted the concept of “one-stop
clinics” for people with suspected heart failure, where multiple diagnostic
investigations (including TTE) are combined into a single visit, with the goal of
quicker time to diagnosis and initiation of treatment. Point-of-care
echocardiography (e.g. handheld TTE) may be used in urgent situations such
as presentation to the emergency department. The EAG has focused on
evidence from secondary care, in line with the scope, but has included
evidence from primary care and community settings in the UK where
available. A typical elective TTE appointment in the outpatient setting is
depicted in Figure 1, with an indication of where the Al technologies may be
used. The EAG have developed this figure based on discussions in the
scoping workshop, information from the published scope and responses from
External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to
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clinical experts (Appendix A). The Al technologies may assist with automation
of measurements, automation of report generation and classification of HF.

Al-assisted TTE image acquisition is not in scope for this assessment.

45-60 mins
TTE appointment
| Patient TTE Measurements Review
N image -> and -»> and
check-in S . 3
acquisition annotations reporting”*
20-40 mins 5-10 mins

(*) Review and reporting can take place outside of appointment.

Purple text indicates:
Potential place for Al-assisted echocardiography technologies.

Figure 1: Echocardiography procedure.
Abbreviations: TTE: transthoracic echocardiogram.

3.3 Clinical pathways

Initial clinical assessments for patients presenting with symptoms indicative of
suspected heart failure (HF) include blood tests for detection of biochemical
markers (NT-proBNP) followed by a transthoracic echocardiogram (TTE). A
summary of NICE guidelines relevant TTE and the suspected acute and

chronic HF clinical pathway is presented in Table 2.

The differentiation between acute and chronic HF is the onset of symptoms,
the referral route and recommended time for receiving TTE. However, the
TTE procedure itself does not differ between those suspected of acute and

those suspected of chronic HF.

Table 2: NICE guidance relevant to heart failure.

Guideline Relevant guidance
CG187 (NICE, Diagnosis and In people presenting with new suspected acute
2014) management of heart failure with raised natriuretic peptide levels,

(possible) acute heart | transthoracic Doppler 2D echocardiography to
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failure in individuals
aged 18 and over

establish the presence or absence of cardiac
abnormalities.

In people presenting with new suspected acute
heart failure, consider performing transthoracic
Doppler 2D echocardiography within 48 hours of
admission to guide early specialist management.

NG106 (NICE,
2018)

Diagnosis and
management of
chronic heart failure in
individuals aged 18
and over.

Because very high levels of NT-proBNP carry a
poor prognosis, refer people with suspected heart
failure and an NT-proBNP level more than 2,000
nanogram per litre (236 picomole per litre)
urgently, to have specialist assessment and
transthoracic echocardiography within 2 weeks.

Refer people with suspected heart failure and an
NT-proBNP level between 400 and 2,000
nanogram per litre (47 to 236 pmol per litre) to
have specialist assessment and transthoracic
echocardiography within 6 weeks.

Abbreviations: CG: Clinical Guidance; NG: National Guidance; NICE: National Institute of Health and

Care Excellence; NT-proBNP: N-terminal pro-B-type natriuretic peptide; 2D: two-dimensional.

3.4 Equality issues

Equality issues and considerations for this early value assessment are

described in the equalities impact assessment (EIA) alongside the scope. No

additional equality issues have been identified during the assessment.

4. Clinical evidence

4.1 Search strategies and study selection

The EAG conducted literature searches to identify evidence relevant to the

decision problem of this assessment. Inclusion and exclusion criteria for this

assessment is outlined in the published protocol. Details of the EAG searches

are provided in Appendix B.

The titles and abstracts of the identified studies were screened by one

reviewer and 20% of excluded records were checked by a second reviewer

against the pre-specified inclusion and exclusion criteria. Full texts of the

included records were obtained and screened by one reviewer and a random

20% of exclusions were checked by a second reviewer.

In line with the published protocol, studies with full-text publications were

prioritised for inclusion in this assessment. Conference proceedings were
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included if they reported data that could be used as inputs in the economic
model (Section 6.2). Other studies only reported in conference proceedings
are summarised in Appendix C. Results were not extracted from these
conference proceedings due to the lack of detail available to facilitate

assessment of study quality and the time constraints of this assessment.

Studies where outcomes were not considered relevant to the diagnosis or
monitoring of HF were excluded e.g. studies investigating Al-automation of

aortic measurements or Al-aided assessment of aortic stenosis.

Community care settings were not included by NICE in the scope of this
assessment. However, during the scoping phase, specialist committee
members (SCMs) and clinical experts highlighted the potential for these
technologies to facilitate the shifting of echocardiography from secondary care
to community settings. In the published protocol, the EAG stated that relevant
evidence from community care settings may be considered for inclusion, if
feasible in the given timescale. In agreement with NICE, the EAG decided to
include studies from a community setting that were based in the UK, where
results were expected to be generalisable to the population of interest in this
assessment. Evidence from community care settings outside of the UK was
excluded. Evidence from community care settings did not inform the economic

modelling, as this is outside of the scope.

4.2 Included and excluded studies

A PRISMA diagram depicting the study selection process is in Appendix B.

A total of 17 key studies were included in this assessment. 14 studies had full-
text publications available. Where multiple publications were identified for the
same study, only the most recent and comprehensive publication was used
for data extraction and is used as the primary study reference throughout this
report. Additional publications identified as related to the key studies are listed
in Appendix C. The remaining 3 studies were provided by the company (all for
EchoConfidence), of which 2 were interim analyses of ongoing studies. These
were provided by the company as part of their ‘request for evidence’ (RFE)

submissions submitted to NICE.
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Six studies focused on training, testing and validation of the Al technologies,
reporting outcomes on diagnostic test accuracy (e.g., sensitivity and
specificity) and performance in aiding detection of HF (e.g., classification,
discrimination of cases), with manual measurements as the comparator. Nine
studies drew comparisons between Al-assisted TTE with manual TTE
(including cart-based and handheld equipment). One study compared novice
operated Al-assisted handheld TTE with expert sonographer operated
standard cart-based TTE. The remaining study was a randomised controlled
trial (RCT) which investigated the impact of introducing Al-assisted technology
(Us2.ai) on examination time, image quality and staff experience. This study

also compared Al performance against human operators.

Studies comparing Al-assisted TTE with manual TTE included outcomes such
as interchangeability, correlation and agreement of Al measurements with
human measurements. Where the diagnostic accuracy or performance of Al
technologies was being evaluated or validated, this was usually in comparison
to diagnoses made by humans, which is in line with current clinical practice in
the NHS. However, the type of healthcare professional (HCP) conducting the
‘manual’ TTE acquisition, analysis and reporting in the comparator group
across the studies varied, and included cardiologists, sonographers, nurses,
analysts, and technologists. For EchoGo Heart Failure, the studies also
compared the performance of the Al model in detecting HFpEF with existing

manual multiparametric clinical scoring tools.

Table 3 summarises the 17 included studies. A rating of GREEN indicates an
element that meets the scope fully, meets the scope partially, and
RED does not meet the scope. The EAG noted there was inconsistency in the
description of HCPs involved in the studies, so descriptors of comparators

have been extracted verbatim from the publications for transparency.

Studies reported only in conference proceedings which met all aspects of the

scope are reported in Appendix C.
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7 ongoing studies have been identified as relevant to this assessment, 5 of
which were identified through the company submissions (reported in Section
8.1).
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Table 3: Description of studies selected by the EAG as the evidence base.

Study name, design and

Participants and setting

Intervention(s) and

Outcomes

location

comparator
EchoGo Heart Failure

Study: Akerman 2025a
Design: Retrospective case-
control study (external
validation)

Location: Beth Israel Deaconess
Medical Center, MA, USA

Publication status: Published

Participants:

- Cases with HFpEF: n=240

- Controls: n=256

Demographics:
Cases

e Mean age: 74.2 + 121
years
o F/M: 54.2% female
o Ethnicity:
- 68.3% White
- 18.3% Black
- 5.8% Asian
- 7.1% Other

Controls
e Mean age: 75.0 + 13.0
years
o F/M: 55.1% female
o Ethnicity:
- 78.1% White
6.6% Black
- 5.5% Asian
9.0% Other

Setting: Academic tertiary

medical centre (secondary care)

GREEN

Intervention: EchoGo Heart
Failure v2.0

Comparator: Manual
clinical scoring tools
(HF2PEF, HFA-PEFF)

1) Diagnostic performance of Al HFpEF model vs H2FPEF
¢ Discrimination (AUROC)

Calibration

Classification and re-classification

Sensitivity

Specificity

Re-classification

Clinical utility

2) Diagnostic performance of Al HFpEF model HFA-PEFF scores

3) Patient outcomes
o Mortality
o HF hospitalisation

GREEN
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Study: Akerman 2023a

Design: Retrospective case-
control study (training, validation
and external testing)

Location: UK and USA

Publication status: Published

External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to support diagnosis of heart failure: Early Value Assessment
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Participants:
Training and validation:

e Cases with HF: n=2,971

e Controls: n=3,785
Independent testing:

e Cases with HF: n=646

e Controls: n=638

Demographics:
Training
Controls:
¢ Mean age: 55.8+ 15.7 years
o F/M: 52.2% female
o Ethnicity:
- 90.0% White, non-
Hispanic
- 3.0% African American
- 1.7% Other

Cases:

e Meanage: 73.2+11.5
years

e F/M: 50.5% female

o Ethnicity:
- 89.1% White, non-

Hispanic

- 1.9% African American
- 1.7% Other

Validation
Controls:
e Mean age: 57.5+15.8
years
e F/M: 52.4% female
o Ethnicity:
- 3.2% African American
- 91.8% White, non-
Hispanic
- 0.8% Other

Intervention: EchoGo Heart
Failure v1.0

Comparator: Manual
clinical scoring tools
(HF2PEF, HFA-PEFF)

1) Discrimination (training and validation)
¢ AUROC

2) Sensitivity and specificity (independent testing)
o Sensitivity
o Specificity
o PPV
o NPV
3) Reclassification

4) Mortality

GREEN
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Study name, design and

Intervention(s) and
location

comparator

Participants and setting

Outcomes

Cases:
Mean age: 73.7 +11.5 years
F/M: 53.7% female
e 87.3% White, non-Hispanic
e 1.4% African American
e 1.8% Other

Independent testing
Controls:
e Mean age: 64.6+17.4 years
e F/M: 51.1% female
o Ethnicity
- 60.0% White, non-
Hispanic
- 19.9% African
American
- 20.1% Other
Cases:
¢ Mean age: 72.4+13.3 years
o F/M: 52.2% female
¢ Ethnicity:
- 61.8% White, non-
Hispanic
- 19.2% African
American
- 19.0% Other

Setting: 7 hospitals, 1
community outreach centre
(mixed secondary and primary
care)

GREEN
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Study name, design and

Participants and setting

Intervention(s) and

Outcomes

location
Study: Cassianni 2024

Design: Retrospective case-
control study (external
validation)

Location: NR

Publication status: Published

Participants (same as Akerman

comparator
Intervention: EchoGo Heart

2023a independent testing

cohort):
e Cases with HF: n=646

e Controls: n=638

Demographics:
Controls:

e Mean age: 64.6+17.4 years
e F/M: 51.1% female
- 60.0% White, non-
Hispanic
- 19.9% African
American
- 20.1% Other
Cases:
e Mean age: 72.4+13.3 years
e F/M: 52.2% female
- 61.8% White, non-
Hispanic
- 19.2% African
American
- 19.0% Other

Setting: 7 hospitals, 1
community outreach centre
(mixed secondary and primary
care)

Failure v2.0

Comparator: Manual
clinical scoring tools
(HF2PEF, HFA-PEFF)

1) HF hospitalisation and deaths according to predicted group
2) Association between Al output and risk for HF hospitalisation
3) Association between Al output and cardiac mortality

4) Application of Al model to nondiagnostic H2FPEF outputs

5) HF hospitalisation risk according to H2FPEF classification
(positive and negative)

6) HF hospitalisation risk according to H2FPEF category
(indeterminate)

GREEN

Us2.ai
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Intervention(s) and

nam ign an . . .
SUIEL AE0TE: _des 5 A Participants and setting Outcomes
location comparator
Study: Campbell 2025 Participants: 867 patients with Intervention: Us2.ai 1) Diagnostic test accuracy
_ . suspected HF e (true positive + true negative) / (true positive + true negative +
Design: Prospective Comparator: Expert false positive +false negative)
comparative study (diagnostic Demographics: accredited sonographers o Sensitivity
accuracy) . {|\3/13e)d|an age: 77 years (69- GREEN « Specificity
Location: Glasgow, UK e F/M: 51% female * NPV
o Ethnicity: s PPV
Publication status: Published - 98% White e AUROC

2) A) Interchangeability of LVEF measurements between Al-
automated TTE and human cart-based TTE
B) Interchangeability of HFpEF measurements between Al-
GREEN automated handheld/cart-based TTE and human reporting of
cart-based TTE
e |[EC

Setting: Outpatient sites
(secondary care)

3) Interchangeability of LVEF measurements between Al-
automated cart-based TTE and human reporting of cart-based
TTE

e |[EC

4) Agreement between Al and human analysis
e IEC
e Pearson correlation coefficient analysis

GREEN
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Study name, design and

Participants and setting

Intervention(s) and

Outcomes

location
Study: Hirata 2024

Design: Prospective
comparative study

Location: Japan

Publication status: Published

Study: Huang 2024a

Design: Prospective
comparative study

Location: National Heart Centre,
Singapore

Publication status: Published

Participants: 23 patients who
underwent echocardiography

Demographics:
e Mean age: 5717 years
e F/M: 70% female
o Ethnicity: NR

Setting: NR

Participants: 100 patients with
21 HF symptom

Demographics:
o Average (presumed mean)

age: 61.2+15.0 years
o F/M: 44% female
¢ Ethnicity: NR

Setting: Cardiac imaging
laboratory (secondary care)

GREEN

comparator
Intervention: Us2.ai

Comparator: Experienced,
certified echocardiography
technologist

GREEN

Intervention: Novice-
operated Us2.ai-assisted
handheld TTE

Comparator: Expert-
operated standard cart-
based TTE

1) Agreement between human and Al-automated measurements
e ICC

2) Time required for Al and manual measurements and reporting
e Mean time in seconds +SD

GREEN

1) Accuracy of Al-enhanced novice-performed POC
echocardiogram and Al-interpreted LVEF to detect a reduced
LVEF<50%

AUC

Sensitivity

Specificity

PPV

NPV

2) Yield and learning curve of novice performing POC cardiac
ultrasound
¢ Yield: exams with Al-measurable LVEF compared to cart-based
cardiologist reported LVEFs
e Learning curve: mean exam time, learning rate.

GREEN
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Study name, design and

Participants and setting

Intervention(s) and

Outcomes

location
Study: Lafitte 2025

Design: Prospective
comparative study

Location: Bordeaux University
Hospital, France

Publication status: Published

Participants: 894
echocardiographic examinations

Demographics:
e Mean age: 64.8 + 16.3

years
o F/M: 43% female
o Ethnicity: NR

Setting: Echocardiography
department (secondary care)

comparator
Intervention: Us2.ai

Comparator: Human
operators with three

different expertise levels:
nurses, residents and
experts.

GREEN

1) Agreement between automatic Al measurements and manual
measurements
e Pearson correlation coefficients
e |CC
e Bland-Altman analyses (LoA)

3) GREEN

Study: Myhre 2024a

Design: Retrospective
comparative study

Location: Cardiology echo lab of
the University Hospital of
Parma, Italy

Publication status: Published

Participants: 109 patients who
underwent 2D and 3D
transthoracic echocardiography

Demographics:
e Mean age: 56 + 15 years

e F/M: 71% female
o Ethnicity: NR

Setting: Tertiary care centre,
cardiology echocardiography
laboratory (secondary care)

Intervention: Us2.ai

Comparator: Experienced
human operators with
echocardiography
certification

1) Agreement, correlation and reliability between human
operators and Al for LVEDV, LVESV, LVEF, GLS measures
e Bias and level of agreement (LOA)
e Pearson’s correlation
e Average k

4) GREEN
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Study name, design and
location
Study: Myhre 2024b

Design: Retrospective
comparative study (external
validation in 3 cohorts)

Location: 1) Taiwan; 2) Sweden,
Finland, USA, Singapore; 3)
Qatar

Publication status: Published

Participants and setting

Participants:

1) Participants with and
without HF (n=4,228)

2) PROMIS-HFpEF study
data (n=183),

3) HMC-QU-MI study of
patients with suspected
AMI (n=162)

Demographics:
1)
e Mean age: 55 + 15 years
e F/M: 33% female
o Ethnicity:
- 100% Asian
2)
e Mean age: 74 + 9 years
o F/M: 44% female
o Ethnicity:
- 88% White
- 8% Asian
- 4% African American

3)NR
Setting: 1) community, 2)
secondary care, 3) secondary

care

GREEN

Intervention(s) and
comparator
Intervention: Us2ai

Comparator:
1) Sonographers or

cardiologists
2) Experienced

research

sonographers
3) NR

GREEN

Outcomes

1) Agreement between Al and manual measurements
2) Ability to identify HF
3) Yield

GREEN
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Study name, design and

Participants and setting

Intervention(s) and

Outcomes

location
Study: Sakamoto 2025

Design: Randomised controlled
trial (single-blinded crossover)

Location: Jutendo University
Hospital (Tokyo, Japan)

Publication status: Pre-print

Study: Tromp 2022a

Design: Retrospective case-
control study (external
validation)

Location: Brigham and Women's
Hospital Cardiac Imaging Core
Laboratory (Boston, MA, USA)

Publication status: Published

Participants: 585 participants
with known or unknown cardiac
diseases

Demographics:
Non-Al days

e Mean age: 64y * 16 years
o F/M: 54% female
o Ethnicity: NR

Al-days
e Mean age: 65y * 15 years
e F/M: 60% female
o Ethnicity: NR

Setting: echocardiography
laboratory (secondary care)

Participants:
n=600 (602 echocardiographic

studies)
- Control (without HF):
n=179
- Cases with HFrEF: n=421

Demographics:
e Mean age: 57 £16 years
e F/M: 69% female
¢ Ethnicity: NR

Setting: imaging laboratory
(secondary care)

GREEN

comparator
Intervention: Us2.ai

Comparator: Certified
sonographers (average
experience in
echocardiography 9.0 + 4.4
years); expert
echocardiologists reviewed
and finalised reports.

GREEN

Intervention: Us2.ai

Comparator: human expert
measurements

GREEN

1) Examination efficiency
e Examination time per patient
o Number of examinations per day

2) Sonographer fatigue
o Self-reported questionnaire

3) Number of analysed echocardiographer parameters
4) Image quality on days using Al vs days without Al

5) Al performance
¢ Rate of Al analysis
e Concordance between Al measurements and measurements
finalised by humans

1) Interchangeability
o |[EC

2) Agreement between automated and human measurements
ICC

MAD

wCV

RMSE

LoA

3) Yield

GREEN
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Study name, design and
location

Participants and setting

Intervention(s) and

Outcomes

Study: Tromp 2022b

Design: retrospective
comparative study (training,
internal testing and external
validation)

Location: China, Hong Kong,
India, Indonesia, Japan,
Malaysia, Philippines,
Singapore, South Korea,
Taiwan, and Thailand, Canada,
USA

Publication status: Published

Participants:
e ATTRaCT: n=1,076
participants
e HEART: n=621 participants
e Taiwan cohort: n=9,289
participants

Demographics:
ATTRaCT: NR

HEART cohort:
e Mean age: 66y +12 years
e F/M: 43% female
o Ethnicity:
- 91% Caucasian
- 2% Aboriginal
- 1% African American
- 5% Asian
- 1% other

Taiwan cohort
e Mean age: 66 £15 years
e F/M: 48% female
e Ethnicity:
- 100% Asian

Setting: NR

comparator
Intervention: Us2ai

Comparator: Expert
sonographers

GREEN

1) Difference between automated versus manual measurements

2) Ability to identify patients with LVEF<40%, e’ lateral wave
velocity <10cm/s, E/e’ ratio 213

GREEN

Ligence Heart
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Study name, design and
location
Study: Karuzas 2025

Design: Prospective
comparative study

Location: Hospital of Lithuanian
University of Health Sciences,
Lithuania

Publication status: Published

Participants and setting

Participants: 302 adult patients
in sinus rhythm at the time of
examination and experiencing
dyspnea

Demographics:
e Mean age: 60.07 + 16.14
years
e F/M: 58.3% female
o Ethnicity
- 100% Caucasian

Setting: University hospital clinic
(secondary care)

Intervention(s) and
comparator

Intervention: Ligence Heart
software version 3.32.0

Comparator: Single expert
cardiologist

GREEN

Outcomes
1) Yield

2) Difference between Al and manual values

3) Range of variation between automated and manual
measurements

4) Agreement between manual and Al measurements
5) Accuracy of grading

GREEN
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Study name, design and

Participants and setting

Intervention(s) and

Outcomes

location
Study: Motek-Dziadosz 2025 Participants: n=118 adult
patients with clinical indications
Design: Retrospective for CMR
comparative study
Demographics:
Location: St. John Paul Il e Median age: 54 years (37-
Hospital, Krakéw, Poland 67)
o F/IM: 32% female

Publication status: Published e Ethnicity: NR

Setting:
Department of Coronary Artery

Disease and Heart Failure
(secondary care)

comparator
Intervention: Ligence Heart
version 3.42.0

Comparator: 2 independent
human experts

EchoConfidence

1) Variability between multi-loop Al analysis and expert 1, and
expert 2
e Pearson’s R
e Concordance index
e Cohen K

2) Variability between single-loop Al analysis and expert 1, and
expert 2
e Pearson’s R
e Concordance index

3) Systematic bias of multi-loop Al analysis relative to expert 1
and expert 2
o LOA

4) Systematic bias of single-loop Al analysis relative to expert 1
and expert 2
e LOA

5) Mean absolute LVEF difference between modalities
¢ LVEF MAD between single-loop Al analysis vs expert 1
¢ LVEF MAD between single-loop Al analysis vs expert 2
e LVEF MAD between single-loop Al analysis vs multi-loop analysis

6) Patient outcomes
e Number of deaths during follow-up period

7) Survival analysis

GREEN
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Study name, design and

Intervention(s) and

Participants and setting

Outcomes

location

Study: Almeida 2025
(FEATHER, unpublished)

Design: Retrospective
comparative study

Location: UK

Publication status: Unpublished

comparator
Participants: 300 consecutive Intervention:
patients referred to for HF EchoConfidence v1.3

investigation, of which n=299
(99.7%) echocardiograms used Comparator: BSE-
accredited sonographers
Demographics:
e Mean age: 73.1 +12.2 GREEN
years
¢ F/M: 44% male
¢ Ethnicit
- 30.4% White
- 14.4% Asian
- 12% Black
- 43.1% Other

Setting: Community sites

GREEN

1) Sensitivity of Al to diagnose HFrEF, HFmrEF, HFpEF (human
1, then human 2 as reference)

2) Specificity of Al to diagnose HFrEF, HFmrEF, HFpEF human 1,
then human 2 as reference)

3) Diagnostic accuracy of Al to diagnose HFrEF, HFmrEF, HFpEF
(human 1, then human 2 as reference)

4) NPV, PPV, FP rate, FN rate, LR+, LR-
5) Time taken for analysis
6) Comparison of survival curves

7) Categorisation performance by human 1, human 2 and Al, and
discordance rate

GREEN
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Study name, design and

Participants and setting

Intervention(s) and

Outcomes

location
Study: RECARDIO-TOX

Design: Prospective
comparative study

Publication status: Unpublished

Participants: 60 patients with
cancer undergoing cardiotoxicity
surveillance echocardiography

Demographics
e Mean age: 52+12years
o F/M: 83% female

comparator

Intervention:
EchoConfidence

Comparator: Professionally
accredited expert readers
(median 7 years’ post
accredited clinical

1) Test re-test (paired studies) variability in LVEF and GLS,
between average of experts’ and Al's measurements
e MAD
e Correlation, r value

2) Secondary outcome — Evaluation of other precision metrics
e MDC

Design: Retrospective
comparative study

Location: NR

Publication status: Unpublished

therapy (interim analysis from a
total of n=191 patients)

Demographics: NR

Setting: NR

Comparator: expert human
reader

GREEN

o Ethnicity: experience)
- 53% White * WSCoV
- 22% Asian GREEN o LOA Bland-Altman method
- 18% Black o
- 7% Other 3) Inter-observer precision
Setting: Barts Heart Centre 4) Comparison of 3DE LVEF measurements to 2DE LVEF
(secondary care) measurements, both expert and Al
¢ MAD
e MDC
GREEN
Study: ACE-HEART Participants: 10 patients Intervention: 1) Variability of LVEF and GLS measurements
undergoing long-term anti-HER2 | EchoConfidence v1.2 e CoV

2) Correlation between Al and unblinded human reader
e Pearson’sr

GREEN

Abbreviations: Al: artificial intelligence; AMI: acute myocardial infarction; ATTRaCT: Asian Network for Translational Research and Cardiovascular Trials; AUROC/AUC: area
under the receiver operating characteristic curve; CoV: coefficient of variability; E/e’ ratio: early diastolic mitral inflow velocity to early diastolic mitral annulus velocity ratio; e’
lateral: early diastolic velocity of the mitral annulus; F/M: female/male; GLS: global longitudinal strain; HEART: (Alberta) Heart Failure Etiology and Analysis Research Team;
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HER2: human epidermal growth factor receptor 2; HF: heart failure; H2PEF: score for Heart Failure With Preserved Ejection Fraction; HFA-PEFF: heart Failure Association
Pre-test assessment, Echocardiography and natriuretic peptide, Functional testing, Final etiology; HFmrEF: heart failure with mildly reduced ejection fraction; HFpEF: heart
failure with preserved ejection fraction; HFrEF: heart failure with reduced ejection fraction; HMC-QU-MI: Hamad Medical Corporation Heart Hospital and Qatar University and
Tampere University Myocardial Infarction (dataset); ICC: intraclass correlation coefficient; IEC: individual equivalence coefficient; LoA: limits of agreement; LR+/LR-: positive
and negative likelihood ratio; LVEF: left ventricular ejection fraction; MAD: mean absolute deviation; MDC: minimal detectable change; NA: not applicable; NPV: negative
predictive value; NR: not reported; POC: point-of-care; PPV: positive predictive value; PROMIS-HFpEF: prevalence of microvascular dysfunction-HF and preserved ejection

fraction (study); RMSE: root mean square error; SD: standard deviation; TTE: transthoracic echocardiogram; wCV/WSCoV: within-subject coefficient of variation.
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5. Clinical evidence review

5.1 Quality appraisal of studies

This section outlines key risks of bias identified for each study, as well as
consistent limitations identified across the evidence base (Table 4). As
outlined in the protocol, the EAG did not use formal critical appraisal
checklists to assess the quality of evidence. This is in accordance with the

methods described in the NICE EVA interim statement. Therefore, this section

does not constitute a comprehensive summary of the quality of each study.

There were 17 studies identified as the clinical evidence base: 3 for EchoGo

Heart Failure, 9 for Us2.ai, 2 for Ligence Heart and 3 for EchoConfidence.
EchoGo Heart Failure

The 3 studies included for EchoGo Heart Failure were all retrospective case-
control studies focusing on the training and validation of the Al model. The
study by Akerman et al. (2023a) was split into two stages. In the first stage,
study authors developed EchoGo Heart Failure v1.0, by training the Al model
on a mixture of cases (n=2,971) and controls (n=3,785) from UK and USA-
based datasets to detect HFpEF using a single apical 4-chamber
transthoracic echocardiogram (TTE) video clip. In the second stage, the Al
model was validated in a USA-based multisite dataset, consisting of 646
cases and 638 controls. Its performance was also compared against existing
clinical scoring tools intended to aid detection of HFpEF. The EAG notes the
clinical scores used as a comparator were retrospectively calculated and were
not required for the original clinical diagnoses. While the control group was
randomly sampled, the cases group were significantly older, meaning

complete matching was not possible.

The study by Akerman et al. (2025a) compared the diagnostic performance of
the updated version of EchoGo Heart Failure (v2.0) against the same existing
clinical scoring tools (n=240 cases and n=256 controls from a single centre in
the USA). The same limitations described for the previous study with respect

to retrospective calculation of the clinical scores also apply to this study.
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Cases and controls were matched on age and sex. Study authors noted that
analysts calculating the clinical scores were not blinded to the case/control

status of that individual.

The study by Cassianni et al. (2024) reported on the validation of EchoGo
Heart Failure v2.0, using the same cases and controls test data used for
external validation by Akerman et al. (2023a). The study compared HF
classifications made by the Al technology to those made by existing clinical
scoring tools. This study also reported incident HF-related hospitalisation and

HF-related mortality post-echocardiography.
Us2.ai

In the prospective comparative study by Campbell et al. (2025), participants
(n=867) received 2 echocardiograms on the same day at the same clinic visit:
one with a handheld portable device and one using conventional cart-based
equipment. Both echocardiograms were then analysed using Us2.ai software.
Diagnostic accuracy and interchangeability of Al measurements on handheld
echocardiograms were compared with human analysis of cart-based
echocardiography. This study was based in the UK (Glasgow) and was co-
developed with people with lived experience of HF. The handheld scan was
performed prior to the cart-based scan for all participants, introducing potential
bias as the acquisition of the first scan may have influenced HCP performance
when acquiring the second scan. Assessment of the primary endpoint

(detection of LVEF <40%) was only possible in 51% participants.

The prospective comparative study by Hirata et al. (2024) was a single-centre
study based in Japan where a single operator conducted echocardiographic
examinations on 23 consecutive patients. Images were assessed by both a
human expert and Al. Measurement time and report creation time were
compared between Al and manual methods. The small sample size, single
centre and single operator design of this study limits generalisability of the

results to a wider population.

The prospective comparative study by Huang et al. (2024a) was a single-

centre study based in Singapore, in which participants (n=100) underwent
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echocardiography by Al-assisted novices and trained echocardiographers (the
images of which were reported by a cardiologist). Study authors compared
diagnostic accuracy of Al-assisted novice echocardiography to standard
echocardiography. 94% of participants had sinus rhythm, meaning the Al
software was not tested in more complex cases. The study authors could not
conclude if suboptimal image quality (present in 4% of images) was

attributable to the Al software or to the operator.

Tromp et al. (2022a) reported a retrospective comparative study based in a
single centre in the USA. In this study, 2 expert sonographers evaluated
images (n=602, which had already been evaluated once), giving rise to three
human measurements. Automated measurements were then compared to the
human measurements, with respect to agreement, correlation and yield. Only
high-quality images were analysed due to limitations in the Al software in
analysing low quality images, and the cohort did not include those with HFpEF
or atrial fibrillation. The EAG noted a breakdown of the ethnicity of participants

was not reported.

The study by Lafitte et al. (2025) was a single centre prospective comparative
study based in France. Al-assistance was implemented in 2 echocardiography
examination rooms. 894 echocardiographic examinations were conducted
during the study period, and both human measurements and Al
measurements were made. 31 paired measurements were identified, where
both Al and humans performed the same measurement, and were assessed
for concordance and correlation. The short data collection period (2 months)
means the results may not have captured the full range of clinical scenarios.
The study authors note that the study was conducted in a controlled setting,
without the pressures of ‘real world’ practice, meaning results may not be

generalisable to a wider range of settings.

Myhre et al. (2024a) reported on a retrospective single centre study in ltaly,
where analysis was conducted on 109 participants who underwent 2D and 3D
transthoracic echocardiography. LV end-diastolic and end-systolic volumes
(LVEDV, LVESV) and ejection fraction (LVEF) were measured by two human
operators the Us2.ai software, and the 3D Heart Model. Study participants
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largely had LV volumes and EF measurements within the normal range,

limiting generalisability to the diverse range of cases present in real practice.

In the retrospective validation study by Myhre et al. (2024b) Study authors
developed and trained a deep learning algorithm (Us2.ai) for left ventricular
(LV) strain measurements in an internal dataset. Then, global longitudinal
strain (GLS) was validated externally against human measurements in 3
cohorts, with data from Taiwan, Sweden, Finland, the USA, Singapore and
Qatar. The study authors noted that a lack of a ‘gold standard’ approach in
manually calculating strain measurements may limit generalisability of the

results.

In the retrospective validation study by Tromp et al. (2022b), study authors
developed an Al-assisted (Us2.ai) workflow for making measurements and
classifications of echocardiographic images. A training dataset of 1145
images was used, followed by an internal test set of 406 images. Validation
was then conducted against manual measurements from 3 datasets from
Canada, Taiwan and the USA. Only images of ‘sufficient’ quality were able to
be analysed and annotated by the Al software, as the model was trained on

expert annotations by trained human operators.

The study by Sakamoto et al. (2025) was a single centre prospective
crossover randomised controlled trial (RCT) based in Japan, reported in a
non-peer reviewed pre-print publication. Echocardiograms (n=585) were
conducted with Al in one arm (across 19 days) and without Al in the other arm
(across 19 days) to evaluate the impact on efficiency of examinations. The
study had a relatively short duration of 2.5 months, meaning the full range of
potential clinical scenarios may not have been captured, and operators being
aware of using Al in the intervention arm may have introduced performance

bias (although this would have been unavoidable).
Ligence Heart

Motek-Dziadosz et al. (2025) conducted a retrospective comparative study,
investigating the performance of Ligence Heart in measuring LVEF in a single

centre in Poland (n=118). The EAG notes the main comparator in this study
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was cardiac magnetic resonance (CMR). However, the study also drew
comparisons between Al-assisted echocardiography and manual
echocardiography. Only outcomes relating to Al-assisted echocardiography
versus manual measurements were extracted and reported by the EAG in this
assessment. In this study, participants were only included if they had clinical
indications for CMR, which limits generalisability to wider populations

suspected of HF.

Karuzas et al. (2025) reported a retrospective comparative study setin a
single centre in Lithuania (n=302), comparing the performance of Ligence
Heart against human operators in assessing left ventricular diastolic function.
The study authors noted an under-representation of patients with more severe

degrees of diastolic dysfunction.
EchoConfidence

All studies for EchoConfidence were supplied by the company (n=3). No
published peer-reviewed evidence was identified by the EAG relating to this

technology. Two studies were interim analyses of ongoing trials.

The FEATHER study (Almeida et al.: unpublished data 2025) was a
retrospective comparative study where the diagnostic performance of
EchoConfidence was compared to human operators, using data from the UK
(n=300). Participants were consecutively included in the study, representing
an ‘all-comers’ population. There is a lack of information around the reported

Al analysis time, making it difficult to interpret results.

RECARDIO-TOX was a prospective single centre study based in the UK
(n=60), where EchoConfidence was evaluated against human operators, in
the context of monitoring those with potential post-cancer therapy
cardiotoxicity (which can lead to HF). The study authors noted that the
controlled setting of this study is unlikely to be representative of real-world

settings.

ACE-HEART was a retrospective multi-centre comparative study in which

EchoConfidence was compared against human operators, with respect to
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performance in monitoring post-cancer therapy cardiac dysfunction. This
report lacked detail on the study design, participants, setting and results to

facilitate adequate quality assessment.

The EAG notes that both the RECARDIO-TOX and ACE-HEART studies are
set in niche populations (post cancer surveillance) and so findings may not be

generalisable to the wider population in the scope of this assessment.

Table 4: Key limitations of the evidence base.

Key limitations EAG comments

Retrospective study 11 studies were retrospective, which means they are subject
designs to inherent bias such as the reliance on completeness of
medical records, potential for selection bias and variation in
practice where echocardiograms were acquired across
multiple sites.

Lack of UK-based data 13 studies were set outside of the UK or used non-UK
participant data. This limits the generalisability of the
findings due to potential differences in clinical practice and
population demographics.

Controlled settings not 7 studies noted the exclusion of ‘complex’ cases in the study
reflective of real-world cohorts, either actively through case selection or passively
populations and practice | through short study periods. This may introduce spectrum
bias and limit the generalisability of findings to real-world
settings. Additionally, some prospective studies were
conducted in ‘controlled’ environments which meant the
conditions were not reflective of real workflow e.g. time
pressure.

Exclusion of poor-quality | 5 studies stated that poor-quality images were either
images excluded prospectively as it was known the Al software
cannot analyse them adequately, or poor-quality images
were excluded from retrospective analyses as the Al
software was unable to read and take measurements. This
may impact upon the suitability of Al tools in real practice,
where image quality may vary.

Single centre (and 9 studies were based in a single centre or used data from a
occasionally single single site. Furthermore, one study had one operator
operator) studies conducting echocardiograms. This does not allow for inter-

centre or inter-operator variability and could limit
generalisability of findings.

Lack of clarity on 11 studies did not specify the generation or version of
technology versions used | technology being investigated. The EAG sought clarification
on versions where possible and has included this
information in the report.

Lack of downstream There was a paucity of health-related outcomes reported in
health-related outcomes relation to the implementation of any of the Al technologies
recorded in scope. This means it is difficult to determine any clinical

benefit to patients through introducing these technologies
into the care pathway. There is some evidence to suggest
the Al technologies could support shifting echocardiography
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to community/mobile care settings to improve access and
decrease time to diagnosis, but this evidence is limited.

Abbreviations: Al: artificial intelligence; EAG: external assessment group; HF: heart failure; UK: United
Kingdom.

5.2 Results from the evidence base

The evidence base consisted of 17 key studies across the 4 technologies in
scope:

e EchoGo: n=3 studies

e Us2.ai: n=9 studies

e Ligence Heart: n=2 studies

e EchoConfidence: n=3 studies

Table 5 summarises the outcomes which are reported across the studies, split

by technology.
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Table 5: Summary of outcomes reported, split by technology.

EchoGo Heart Failure

Us2.ai

Ligence Heart

EchoConfidence

Outcome
grouping

Outcome

Akerman
2025a

Cassianni
2024

Akerman
2023a

Campbell

2025 Hirata 2024

Huang
2024a

Lafitte 2025

Myhre
2024a

Myhre
2024b

Sakamoto
2025

Tromp
2022a

Tromp
2022b

Molek-
Dziadosz
2025

Karuzas
2025

2025

(FEATHER)

Almeida

RECARDIO
-TOX

Diagnostic test
accuracy

Diagnostic

Detection and
classification of
HF

Interchangeability|

Validation

Correlation

Agreement

Clinical

Clinical endpoints
following Al
analysis

Procedural

Yield

Impact on
procedure time

Abbreviations: Al: artificial intelligence; HF: heart failure.
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Table 6 summarises the key outcomes reported across the evidence base

and how results should be interpreted.

Table 6: Included outcome measures and descriptions.

Measure Definitions and Interpretation

Individual
equivalence
coefficient (IEC)

Compares the disagreement between deep learning and human
readers relative to the disagreement among human readers.

Interpretation:

A mean |IEC of -0.25 means the variability between Al and human
measurements was 25% lower than the variability among
humans.

A mean |IEC of 0.25 means that the variability between Al and
human measurements were 25% higher than the variability
among humans.

Intraclass correlation
coefficient (ICC)

Used to determine if measurements or ratings are consistent with
each other.

Interpretation:

<0.5: poor reliability
0.5-0.75: moderate reliability
0.75-0.9: good reliability
>0.9: excellent reliability

K value (Cohen’s
kappa coefficient)

Used to measure inter-rater reliability.

Interpretation:

A value of +1 indicates perfect agreement,

A value of 0 indicates agreement by chance,

Values <0 indicate agreement is worse than chance.

Limit of agreement
(LoA)

Results are reported as lower LoA, upper LoA.

Interpretation:
A narrow range (between upper and lower LoA) indicates better
agreement.

A wide range suggests the two methods may not be
interchangeable.

Mean absolute
deviation (MAD)

The mean (average) of the absolute values of the deviations
(errors) between actual and forecast data.

Interpretation:
The larger the MAD, the greater variability there is in the data

Negative predictive

(true negative)/(true negative+false negative)

value (NPV) Probability that following a negative test result, the individual
will truly not have the condition.
Pearson’sr Indicates the linear correlation between two sets of data.

Interpretation:
The closer the value is to -1 or +1, the stronger the relationship.

Positive predictive
value (PPV)

(true positive)/(true positive+false positive)

Probability that following a positive test result, the individual
will truly have the condition.
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Receiver operating
characteristic (ROC)
curve, area under the
curve (AUC)/ or
discrimination

Measures how well an Al model can differentiate patients with the
condition from those without the outcome.

Interpretation:

A higher AUC indicates better performance (where 1 is a perfect
fit)

A random model would have an AUC of 0.5.

Root mean standard

Measure of how spread out the residuals (difference between

(true positive rate)

error (RMSE) actual and predicted value) are from the regression line (line of
best fit which shows the relationship between two variables in a
dataset).
Interpretation:
The lower the RMSE, the better the agreement among the
different measurements.

Sensitivity (true positives)/(true positives+true negatives)

Interpretation: a sensitivity rate of 90% means 90% of individuals
who have the condition will test positive.

Specificity
(true negative rate)

(true negative)/(true negative+false positive)

Interpretation: a specificity rate of 90% means 90% of individuals
who do not have the condition will test negative.

Within subject
coefficient of
variation

(wCV or WSCoV)

Within-patient variability of individual measurements relative to
the within-patient mean.
Interpretation:

Low wCV indicates high reproducibility, meaning measurements
on the same person are similar.

High wCV suggests greater day-to-day or test-retest variability
within that individual.

Yield (%)

Proportion of echocardiogram exams/studies where Al could
successfully measure the relevant variable, such as the
proportion of exams with an Al-measurable LVEF or GLS.

Interpretation:
If an Al technology could successfully produce a read on LVEF or
GLS measurement for 96 of 100 studies, the yield was 96%.

Abbreviations: Al: artificial intelligence; AUC: area under the curve; GLS: global longitudinal strain;

ICC: intraclass correlation coefficient; IEC; individual equivalence coefficient; LoA: level of agreement;

LVEF: left ventricular ejection fraction; MAD: mean absolute deviation; NPV: negative predictive value;

PPV: positive predictive value; RMSE: root mean standard error; ROC: Receiver Operating

Characteristic; wCV/WSCoV: within subject coefficient of variation.

5.2.1

Diagnostic test accuracy

Diagnostic test accuracy was assessed using sensitivity, specificity, negative

predictive value (NPV) and positive predictive value (PPV), (Table 6). These

outcomes are reported across 5 studies, for 3 of the technologies:

- EchoGo Heart Failure: n=2 studies

- Us2.ai: n=2 studies

- EchoConfidence: n=1 study
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Evidence for EchoGo Heart Failure

Akerman et al. (2025a) compared EchoGo Heart Failure V2 to two existing

multiparametric clinical scoring tools (H2FPEF and HFA-PEFF), reporting

sensitivity, specificity, NPV and PPV in detection of HFpEF in a case-control

study. Cases were retrospectively identified as those recorded as having

grade llI-1ll diastolic dysfunction. Results show that, when considering all

available data, EchoGo Heart Failure v2.0 had improved sensitivity and

specificity in comparison to the H2FPEF and HFA-PEFF scores, but there was
no difference in NPV or PPV in comparison to H2FPEF and lower NPV and
PPV in comparison to HFA-PEFF. Akerman et al. (2023a) reported the same

diagnostic test accuracy outcomes for the validation of EchoGo Heart Failure

v1.0 in detecting HFpEF cases. Sensitivity and specificity were observed to

exceed average reported data in the literature (sensitivity of 74% and

specificity of 65%), used by study authors as a priori benchmark, with

corresponding NPV and PPV values (Table 7).

Table 7: Diagnostic test accuracy results for EchoGo Heart Failure.

Model/score

‘ Specificity

EchoGo Heart

Sensitivity
77.4% (95% CI

50.2% (95% ClI

81.6% (95% Cl

67.3% (95% Cl

58.3-68.0%)

26.9-31.0%)

94.7-100.0%)

Failure v2.0 74.6-79.6%) 48.6-52.1%) 73.6%—87.6%) | 59.6%—71.7%)

H2FPEF 53.9% (95% Cl | 12.8% (95% Cl | 90.3% (95% C| | 73.6% (95% ClI
50.2-58.2%) 11.8-13.9%) 75.0-100.0%) | 64.9-79.3%)

HFA-PEFF 63.2% (95% Cl | 29.0% (95% Cl | 98.5% (95% CI | 86.3% (95% ClI

79.3-91.1%)

EchoGo Heart
Failure v1.0

(87.8%:; 95% ClI:
84.5%-90.9%)

(81.9%; 95% Cl:
78.2%-85.6%)

86.5% (95% ClI:

83.0%-90.0%)

83.6% (95% ClI:
80.2%-87.0%)

Abbreviations: CI: confidence interval; H2FPEF: Heavy, Hypertensive, Atrial Fibrillation, Pulmonary

Hypertension, Elderly, Filling Pressure); HFA-PEFF: Heart Failure Association Pre-test assessment,

Echocardiographic and Natriuretic Peptide Score, Functional Testing in Case of Uncertainty, and Final

Etiology; NPV: negative predictive value; PPV: positive predictive value.

Evidence for Us2.ai

Huang et al. (2024a) and Campbell et al. (2025) report on the diagnostic

accuracy of the Us2.ai technology in conjunction with handheld TTE (Table 8).

In the study by Huang et al. (2024a) comparisons were drawn between Al-
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assisted novice-performed handheld TTE and standard sonographer-
performed cart-based TTE as the reference standard. In the study by
Campbell et al. (2025), comparisons were drawn between Al-assisted
sonographer-performed handheld TTE and manual sonographer-performed
cart-based TTE as the reference standard. The results are mixed, with higher
specificity and NPV values, and lower sensitivity and PPV values observed for

the Al technology, particularly in the study by Campbell et al. (2025).

Table 8: Diagnostic test accuracy results for Us2.ai-assisted handheld TTE.

Sensitivity Specificity
Huang et al. 85% 91% 94% 79%
2024a
Campbelletal. | 61% 95% 97% 50%
2025

Abbreviations: NPV: negative predictive value; PPV: positive predictive value.

Evidence for EchoConfidence

The FEATHER study interim analysis reported on diagnostic test accuracy of
EchoConfidence for detection of HFrEF and HFpEF with human
measurements as the reference standard. Results were mixed, with a
moderately high FN rate reported for HFrEF (Table 9).

Table 9: Diagnostic test accuracy outcomes (FEATHER).

Condition FP Rate FN Rate \ NPV \ PPV Specificity

HFrEF 2.83% 41.2% 90.8% 83.3% 91.1% (95%
Cl 88.6-
93.5%)

HFpEF 7.23% 15.3% 95.8% 75.8% 95.2% (95%
Cl 93.2-
97.2%)

Abbreviations: CI: confidence interval; FP: false positive; FN: false negative; HFpEF: heart failure with
preserved ejection fraction; HFrEF: heart failure with reduced ejection fraction; NPV: negative predictive

value; PPV: positive predictive value.

External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to
support diagnosis of heart failure: Early Value Assessment
Date: December 2025 52 of 192



Using human measurements as the reference standard, specificity of
EchoConfidence in detecting HF of any subtype was 83.1% (95% CI 78.8-
87.4%). Specificity to detect HFmrEF was 90.0% (95% CI 87.2-92.8%).

5.2.2 Detection and classification of HF

This section refers to outcomes measuring a technology’s ability to detect
echocardiographic findings which are indicative of HF, including differentiation
between types of HF (e.g. HFrEF and HFpEF). This can be evaluated using
the area under the curve (AUC) of the receiver operating characteristic (ROC)
curve, (Table 6). This outcome is reported across 6 studies, across 2
technologies:

e EchoGo Heart Failure: n=2 studies

e Us2.ai: n=4 studies

Evidence for EchoGo Heart Failure

Akerman et al. (2025a) compared the ability to detect HFpEF of EchoGo
Heart Failure v2.0 with that of an existing clinical scoring tool (H2FPEF).
There was no significant difference between the two, with a mean difference
in AUROC of 0.01 (95% CI -0.043-0.064, p=0.710); EchoGo Heart Failure
v2.0 AUROC of 0.798 (95.0% CI: 0.756-0.799 vs H2FPEF AUROC of 0.788
(95.0% CI: 0.745-0.789).

Akerman et al. (2023a) assessed EchoGo Heart Failure v1.0’s ability to aid
detection of HFpEF in a cohort of 2,971 patients with diagnosed HF (training
set) and 646 patients with diagnosed HF (validation set). The AUROC was
0.97 (95% CI: 0.96-0.97) in the training set and 0.95 (95% CI: 0.93-0.96) in
the validation set. This indicates good performance in aiding detection of
HFpEF.

Evidence for Us2.ai

Myhre et al. (2024b) assessed Us2.ai’s ability to discriminate between

patients with HF from those without, as well as between HFrEF and non-HF
patients, and between HFpEF and non-HF patients, using automated
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measurement of GLS. Validation was performed in two cohorts, where the
AUC related to the ability to identify region wall-motion abnormalities.
In the first cohort the following AUC values were reported:
e AUC=0.89 (95%CI 0.87-0.89, identifying HF from non-HF)
e AUC=0.98 (95%CI 0.97-0.98, identifying HFrEF from non-HF)
e AUC=0.82 (95%CI 0.80-0.82, identifying HFpEF from non-HF)
In the second cohort the average AUC was 0.80 (Cls not reported).

Tromp et al. (2022b) assessed Us2.ai’s ability to automate 3 common

echocardiographic measures which may be indicative of HFpEF: e’ lateral
wave velocity <10cm/s, LVEF <40% and E/e’ ratio 213, using the AUC of
ROC. Internal validation was conducted using one dataset (ATTRaCT) and
external validation was conducted in 3 cohorts (HEART, Taiwan cohort,

EchoNet Dynamic).

The results suggest good performance in both internal and external datasets,

with high AUC values reported across all cohorts (Table 10).

Table 10: AUC values from study by Tromp et al. (2022b).

Cohort LVEF <40% e’ lateral wave E/e’ ratio
velocity <10cm/s

ATTRaCT AUC 0.96 (95% CI AUC 0.95 (0.88-0.99) AUC 0.96 (0.92-0.99)
0.92-0.99)

HEART AUC 0.91 (95% CI AUC 0.88 (0.84-0.92) AUC 0.91 (0.88-0.94)
0.88-0.94)

EchoNet AUC 0.92 (0.91-0.94) NR NR

Dynamic

Taiwan AUC 0.90 (0.89-0.90) AUC 0.94 (0.93-0.95) AUC 0.91 (0.89-0.93)

Abbreviations: AUC: area under curve; Cl: confidence interval.

Huang et al. (2024a) reported the AUC for novice-operated handheld TTE
assisted by Us2.ai in detecting LVEF <50% as 0.880 (95% CI 0.802-0.958).
Campbell et al. (2025) reported the AUROC for handheld TTE assisted by
Us2.ai in detecting LVEF <40% as 0.96 (95% CI1 0.94-0.98). These results
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suggest that the Us2.ai technology has good performance detecting left

ventricular dysfunction that is indicative of HF.

5.2.3 Interchangeability between human and Al
measurements

Interchangeability between human and Al measurements refers to the extent
to which the Al model’s measurements match measurements made by human
healthcare professionals (HCPs) It is measured using the individual
equivalence coefficient (IEC, see Table 6). This outcome is reported across 2

studies, both of which relate to the Us2.ai technology.

Evidence for Us2.ai

Campbell et al. (2025) report the IEC between Us2.ai-automated analysis and
human analysis. The IEC between handheld transthoracic echocardiogram
(TTE) Us2.ai analysis with two human sonographers’ analysis of cart-based
TTE was -0.40 (95% CI -0.60 to -0.16). IEC between cart-based TTE Us2.ai-
automated analysis with two human sonographers’ analysis of cart-based was
-0.39 (95% CI -0.60 to -0.12). IEC between Us2.ai-automated analysis of
handheld TTE with two human sonographers’ analysis of handheld TTE was -
0.34 (95% CI1-0.53 to -0.11). The negative IEC values reported suggest less
variability between Al-automated analysis and human analysis relative to the
variability between two measurements made by humans. Tromp et al. (2022a)
reported mean IEC between Al-assisted TTE and manual TTE across several
parameters, from -0.04 (left ventricular posterior wall diameter) to -0.81 (left
ventricular diastolic volume). All are below 0, indicating low levels of variability
between Al-automated analysis and human analysis, relative to variability

between human measurements.

5.24 Correlation between human and Al measurements

Correlation between human and Al measurements is a measure of how
closely the two measurements align. It differs from agreement, reported in the
subsequent section, as it is a simple measure of the linear relationship
between two measurements, and has no bearing on whether they are

consistent with each other.
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This outcome is reported across 4 studies:
e Us2.ai: n=1 study
e Ligence Heart: n=1 study

e EchoConfidence: n=2 studies

Evidence for Us2.ai

Tromp et al. (2022b) retrospectively assessed the correlation between
automated and manual measurements for 3 clinically relevant parameters in
aiding HF diagnosis, using Pearson’s r correlation coefficient: left ventricular
ejection fraction (LVEF), early diastolic velocity of the mitral annulus (e’
lateral), and E/e’ ratio which is used to estimate the left ventricular (LV) filling
pressure. Each clinical parameter was assessed for correlation using an
internal dataset (ATTRaCT) and then assessed using 3 external datasets from
Canada (HEART), the USA (EchoNet Dynamic) and Taiwan. Overall, the
results suggest moderate correlation between automated and manual

measurements across all 4 datasets (Table 11).

Table 11: Correlation results from Tromp et al. (2022b).

Cohort ‘ LVEF e’lateral E/e’ ratio
ATTRaCT r=0.89 (MAE: 5.5%) r=0.92 (MAE 0.7cm/s) r=0.90 (MAE 1.7)
HEART r=0.75 (MAE 8.6%) r=0.79 (MAE 1.2cm/s) | r=0.75 (MAE 2.2)
EchoNet r=0.76 (MAE 6.5%) NR NR
Dynamic
Taiwan r=0.75 (MAE 10.2%) r=0.87 (MAE 1.6cm/s) r=0.79 (MAE 1.8)
cohort

Abbreviations: LVEF: left ventricular ejection fraction; MAE: mean absolute error.

Evidence for Ligence Heart

Karuzas et al. (2025) reported mixed results with respect to correlation

between Al and manual measurements. Strong correlation was observed in

some parameters (left atrium volume index: r=0.92, E velocity: r=0.93, E/A
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ratio r=0.94). Correlation for other parameters ranged from 0.55 (for maximum

tricuspid regurgitant velocity) to 0.89 (for E/Le’ ratio (mitral velocity).

Motek-Dziadosz et al. (2025) compared single-loop Al analysis and multi-loop

Al analysis with human expert measurements. Multi-loop Al analysis was
observed to have strong correlation with the two human experts (r = 0.88 and
r=0.9, respectively). Single-loop Al analysis also demonstrated strong

agreement with both human experts (r = 0.89 and r = 0.92, respectively).

Evidence for EchoConfidence
The results presented here are interim results for the RECARDIO-TOX and
ACE-HEART studies. In the RECARDIO-TOX study, the authors report
moderate correlation coefficients between Al and human measurements for
LVEF and GLS:

o LVEF: r=0.74

o GLS:r=0.72
In the ACE-HEART study, EchoConfidence (v.1.1) measurements were
assessed for correlation with a blinded human expert, and with the
participants’ original clinical reports, for both LVEF and GLS. Moderate
correlation was observed across all comparisons, with a lower correlation

observed between blinded expert and Al measurements for GLS (Table 12).

Table 12: Correlation results between EchoConfidence and human

measurements.
Comparison LVEF (Pearson’sr) GLS (Pearson’sr)
Blinded expert versus Al 0.739 (0.630-0.819) r=0.584 (0.429-0.706)
Blinded expert versus 0.773 (0.676-0.844) r=0.615 (0.440-0.745)

clinical report

Al versus clinical report: 0.779 (0.687-0.846) r=0.689 (0.544-0.794)
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Abbreviations: Al: artificial intelligence; GLS: global longitudinal strain; LVEF: left ventricular ejection

fraction.

5.2.5 Agreement between human and Al measurements

Agreement refers to the concordance between measurements produced by
humans (HCPs) versus those produced by Al. It can be measured using the
intraclass correlation coefficient (ICC), the level of agreement (LoA), the mean
absolute difference (MAD) (Table 6) and the mean difference (MD). This
outcome is reported across 9 studies, for 2 of the technologies:

e Us2.ai: n=7 studies

e Ligence Heart: n=2 studies

Evidence for Us2.ai

In post-hoc analyses, Campbell et al. (2025) reported the agreement between
human and Al measurements using the MD between Al-automated and
human measurements of LVEF. For Al-automated LVEF vs human core
laboratory analyses for handheld scans, MD was 5.2% (95% Cl 4.2 - 6.2;
p<0.0001). For Al-automated LVEF and human core laboratory analyses for
cart scans, MD was 4.2% (95% CI1 3.4 - 5.0); (p<0.0001). Both MD values
were smaller than the difference between human clinical assessment and
human core laboratory measurements of cart-scans (6.5%, 95% CI 5.7, 7.3;
p<0.0001).

Hirata et al. (2024) used the ICC to assess the agreement between Al and
human measurements. The ICC values ranged from 0.48 (95% CI 0.09-0.75)
for deceleration time (DecT) to 1.00 (95% CI 0.99-1.00) for aortic valve

maximum velocity (AoV Vwuax). This indicates variability in levels of agreement

across the tested parameters.

Lafitte et al. (2025) report the ICC values for Al measurements versus human
measurements, which ranged from 0.35 (95% CI 0.26-0.43) for DecT, to 0.97
(95% CI 0.95-0.98) for mitral valve E wave velocity (MV-E). This indicates a

wide range of agreement between Al and human measurements. The authors
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also report a global MD of -4% (SD 15%) between Al and human

measurements.

Myhre et al. (2024a) assessed the ICC between Al-automated measurements

and the mean of human operator measurements. The ICC between Al-
automated and mean operator measurements for left ventricular end-diastolic
volumes (LVEDV) (0.941 (95% CI 0.913-0.959)) was higher than that
between two human operators (0.847 (95% CI 0.777-0.896)), and similar to
that of two measurements by the same reader (0.944 (95% CI 0.918-0.962)).
For left ventricular end-systolic volumes (LVESV) measurements, ICC was
highest for that of two measurements by the same reader (0.947 (95% ClI
0.922-0.964)), and lowest for Al-automated versus mean operator
measurements (0.600 (95% CI1 0.415-0.726)). For LVEF, the ICC between Al-
automated and mean operator measurements (0.818 (95% CI1 0.734—-0.875))
was similar to the ICC between two operators (0.812 (95% CI 0.725-0.871).
This suggests that the Al model showed high agreement with human
measurements, except for LVESV measurements where agreement was
slightly lower. Myhre et al. (2024b) reported the agreement between
automated and manual measurements of GLS using RMSE (2.6), suggesting

good agreement between both methods.

Tromp et al. (2022a) reported that the ICC between automated and human
measurements was higher than amongst human experts, although this was an
exploratory analysis. Both within subject coefficient variance (wCV) and
RMSE were, however, higher for automated versus human measurements.
The LoA ranged from 0.05 + 0.39 for tricuspid regurgitation maximum velocity
(TR Vmax) to 11.12 + 88.10 for DecT, demonstrating mixed results with

respect to agreement calculated for different parameters.

Sakamoto et al. (2025) report that the ICC between Al and sonographers
were all >0.8 across 301 measured parameters (all p-values <0.001) which
suggests good concordance between initial measurements made by Al and

final report values.
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Evidence for Ligence Heart

Motek-Dziadosz et al. (2025) reported moderate concordance of multi-loop Al
analysis with human experts for categorization of LVEF into subgroups,
Cohen k values 0.74 and 0.76 for two human experts respectively. Karuzas et
al. (2025) reported mixed results with respect to lower and upper LoA across
various echocardiographic parameters, indicating some variation in level of
agreement with manual measurements. Lower and upper LoA values were
noticeably wide for DecT (-62.28 to 73.27).

5.2.6 Clinical outcomes

Clinical outcomes are reported in 4 studies, 3 of which relate to the EchoGo
Heart Failure technology. The remaining study relates to EchoConfidence.
These studies investigated clinical endpoints being met by those assessed
with Al, to determine the usefulness of the Al technologies in the HF clinical

pathway. Outcomes included HF-related hospitalisations and mortality.

Evidence for EchoGo Heart Failure

Akerman et al. (2025a) reported on the prognostic association between Al-
assisted analysis and a composite endpoint of HF hospitalisations or death. In
the study cohort, at a median follow-up of 25.0 (IQR: 15.0-35.0) months, there
were 45 HF hospitalisations (10.3%) and 61 deaths (14.2%). The authors
stated that a diagnostic positive result indicated by EchoGo Heart Failure was
associated with a two-fold risk of the composite endpoint. However, a similar
increase in risk was also observed for ‘positive’ results from the manual

clinical scoring tool comparators. Cassianni et al. (2024) also reported on the

risk of HF hospitalisation and death in the study cohort of 1284 patients
followed for a median of 3.4 (IQR: 1.7-6.5) years (n=252 and n=540,
respectively). Again, the increased risk in the adverse clinical endpoints were
associated ‘positive’ outputs from EchoGo Heart Failure and both clinical
scoring tool comparators. Akerman et al. (2023a) observed that during follow-
up (median: 2.3 years), 444 (34.6%) patients died. Mortality was observed to
be higher in patients classified as HFpEF by Al [HR: 1.9 (95% CI: 1.5-2.4) in

comparison to those classified without having HFpEF by Al.
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The results reported from these studies suggest EchoGo Heart Failure may
be useful in aiding detection of HF, but its benefit over other methods (such as
existing manual clinical scoring tools) is unclear, with respect to clinical

outcomes such as HF-related hospitalisation and HF-related death.

Evidence for EchoConfidence

Interim results from the FEATHER study report freedom from death or HF
hospitalization, and compared differences in survival curves for those with HF
diagnoses (HF, HFrEF, HFmrEF or HFpEF) to those without HF diagnoses,

as classified by the Al model and 2 human comparators (Table 13).

Table 13: Differences in survival curves between HF cases and non-cases
(FEATHER).

Comparison Human 1 Human 2 ‘ EchoConfidence
HF and no HF p=0.225 p<0.05 p=0.078

HFrEF and no HF p<0.05 p<0.01 p<0.001

HFmrEF or HFrEF | p<0.05 p<0.01 p<0.01

and no HF

HFpEF and no HF | p=0.737 p=0.143 p=0.846

Abbreviations: HF: heart failure; HFpEF: heart failure with preserved ejection fraction; HFmrEF: heart

failure with mildly reduced ejection fraction; HFrEF: heart failure with reduced ejection fraction.

There is limited information reported beyond p values, so it is not possible to

interpret and draw conclusions from this data.

5.2.7 Yield of measurements

The yield of Al models, with respect to generating or automating
measurements, is reported across 4 studies, of which 3 studies are for Us2.ai
(Huang et al. 2024a, Myhre et al. 2024b, Tromp et al. 2022a) and one study
for Ligence Heart (Karuzas et al. 2025).

Evidence for Us2.ai
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In the study by Huang et al. (2024a), yield was defined as the proportion of
images acquired by novices using Us2.ai-assisted handheld TTE where an
LVEF measurement was successfully generated, using the number of
standard cart-based TTEs with cardiologist-reported LVEFs as the

denominator. Yield was reported to be 96%.

Myhre et al. (2024b) defined yield as the proportion of GLS measurements
generated by Us2.ai-assisted TTE, in comparison to the original manual
methods of measurement in 3 retrospective datasets. Yield was 89% in the
Taiwan cohort, 96% in the PROMIS-HFpEF cohort, and 98% in the HMC-QU-
MI cohort.

In the study by Tromp et al. (2022a), average yield proportion using Us2.ai
was 0.88 (range 0.69-0.97) across 23 echocardiographic parameters, in

comparison to the average measurements yielded by 3 humans.

Evidence for Ligence Heart

Karuzas et al. (2025) reported that Ligence Heart achieved a perfect yield
(1.0) for all Doppler parameters relevant to diastolic function. Yield of left atrial

area measurements ranged from 0.82—-0.95.

5.2.8 Impact on procedure time

Impact on reporting, scanning or analysis time is reported across 3 studies, 2

for Us2.ai and 1 study for EchoConfidence.

Evidence for Us2.ai

In the study by Hirata et al. (2024), it was reported that using Us2.ai-
asisstance achieved time savings in making echocardiographic
measurements (mean manual measurement time of 325 + 94 seconds versus
mean Al measurement time of 159 + 66 seconds, p<0.01). Report creation
time was also reportedly shorter when using Al (mean manual report creation
time of 429 + 128s versus mean Al report creation time of 71+£39s, p<0.01).
The mean time for measurement and report creation per case reduced by
524s (70%) with Al assistance. This was a small single-centre, single-operator

study with just 23 participants, based in Japan.
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In the study by Sakamoto et al. (2025), examination time per patient was
reported to be shorter with Al assistance (Us2.ai) (13.0 £ 3.5 minutes versus
14.3 £ 4.2 minutes without Al, p<0.001). Number of examinations per day was
also reported to be greater with Al assistance (16.7 £ 2.5) versus without Al
(14.1 £ 2.5, p=0.003). This study is reported in a pre-print publication, and so
it must be noted that these findings have not been subject to peer review.
Only the mean values were reported so it was not possible for the EAG to
assess the data in detail. Reports of significant differences should be

interpreted with caution.

Evidence for EchoConfidence
In the FEATHER study (Almeida et al.: unpublished data 2025), it was

reported that EchoConfidence reduced mean time for analysis of

echocardiographic parameters (3.2 + 0.4 seconds) versus 2 humans (553 +
44 seconds and 587 + 64 seconds). Only the mean values were reported so it

was not possible for the EAG to assess the data in detail.

5.2.9 Impact on echocardiography setting and operators

Clinical experts highlighted the potential for the Al technologies to support a
shift of echocardiography out of secondary care, into primary or community
settings. As outlined in Section 4.1, studies from a community setting were
only included by the EAG if conducted in the UK (as community settings were
not formally included in the published scope). The EAG has summarised any
evidence of Al-assisted echocardiography in community care, or evidence
relating to a change in setting or operator as a result of implementation of Al-

assisted echocardiography.

Of the 17 key studies identified by the EAG, 1 included data from a UK
community care setting (Almeida et al.: unpublished data 2025,
EchoConfidence). However, this was an interim analysis. The company states
further data will be reported in December 2025 (see Section 8.1). Results from
this study relating to the technology’s performance have been discussed in
previous sections. The interim results reported indicate there may be potential

for EchoConfidence to be safely implemented in community care, but
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evidence to demonstrate its impact on procedure time and the type of

operator is limited.

Two studies reported data which may be considered relevant to the use of
echocardiography in community settings, but the studies themselves were in
secondary care settings. The use of Al-assisted (Us2.ai) handheld
echocardiography, as opposed to cart-based standard echocardiography, is
reported in the study by Campbell et al. (2025). Huang et al. (2024a)
compared the diagnostic accuracy of Al-assisted (Us2.ai) echocardiography
performed by ‘novice’ operators, compared to standard expert-led
echocardiography. Results from these studies have been discussed in
previous sections. Evidence from studies demonstrate there is potential for
the Al technologies to be successfully integrated with handheld TTE. The
feasibility of using Al to assist to automate measurements on handheld
systems and automating measurements to assist novice operators may
demonstrate potential for these technologies to be used in community

settings.

No studies reported in conference proceedings identified by the EAG were set
in community settings in the UK (Appendix C). Ongoing trials that were
identified as relevant to supporting the shifting of TTE to community settings

are discussed in Section 8.1.
5.3 Adverse events and clinical risk

5.3.1 Adverse events

A search of the MAUDE database and MHRA (field safety notices/device
safely information) did not identify any adverse events or safety concerns
relating to any of the included technologies. Adverse events were not reported
in any of the studies included in the clinical evidence review. This may reflect

the largely retrospective nature of the evidence base.

External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to
support diagnosis of heart failure: Early Value Assessment
Date: December 2025 64 of 192



5.3.2 Clinical risk

Artificial intelligence (Al) models such as those used by the technologies in
the scope of this assessment typically undergo the following stages of

development:

1) Training: teaching the model how to perform its intended function by

using a training population

2) Internal validation: testing if the model works as intended on the same

type of population it was trained on

3) External validation: testing if the model works as intended on a different

type of population to that it was trained on

During the scoping phase of this assessment, SCMs and clinical experts
highlighted that if Al models have not been validated on a UK population, or a
cohort similar to that of the UK population, this may limit its suitability for use
in UK settings (i.e. the ‘target’ population in this assessment) and pose a
clinical risk. Therefore, the demographics (age, sex, ethnicity, key
comorbidities) of external validation cohorts (either from published studies or
from information submitted by companies to NICE) have been extracted by
the EAG and presented alongside the demographics of HF admissions in the
UK (National Heart Failure Audit, 2025) (Table 14). While there is an

argument to suggest models may be suitable for use in the target population if

the internal validation “test” population during a train-test split was similar to
that target population, the likelihood of that occurring is very low. Therefore,
the EAG have focused on comparison between the external validation
populations to the target population in question. The EAG notes that
EchoConfidence was validated on a UK population as part of its CE marking
process. Inconsistency between the format of demographic data reported
between studies/datasets and the reference data used from the UK NHFA
audit makes it difficult to draw conclusions about the suitability of the
remaining Al technologies for use in the UK population. The EAG believes

there is a lack of evidence to determine whether EchoGo Heart Failure,
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US2.ai or Ligence Heart have been adequately externally validated in a UK

population, or a population with demographics close to that of UK population.
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Table 14: Comparison between demographics of external validation cohorts and UK HF cohort.

Technology (source) Age Sex Ethnicity Demographics
EchoGo Heart Failure v1.0 Controls Controls Controls Controls
(Akerman 2023a) Mean age: 64.6+17.4 | 51.1% female e 19.9% African American e  35.8% hypertension
years Cases e 60.0% White, non-Hispanic o 12.5% AF
Cases 52.2% female e 20.1% Other e  7.9% CAD
!\//Iee;S age: 72.4+13.3 Cases e 11.6% DM
e 19.2% African American
e  61.8% White, non-Hispanic Cases
e 19.0% Other e  78.8% hypertension
e 35.0% AF
e 33.6% CAD
e 39.6% DM
EchoGo Heart Failure v2.0 Controls Controls Controls Controls
(Akerman 2025a) Mean age: 75.0 = 55.1% female e 78.1% White e 87.1% hypertension
13.0 years Cases «  6.6% African American o 45.0% AF
Cases 54.2% female «  5.5% Asian o 41.7% diabetes
';";?”y:gg 742+ ¢ 9.0% other e 34.2% CAD

Cases
e 68.3% White
e 18.3% African American
e 15.8% Asian
e 7.1% other

e 17.5% COPD

e 69.5% hypertension
e 18.85AF

e 21.5% diabetes

e 19.5% CAD

e 5.9% COPD
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Us2.ai
Tromp (2022b)

HEART Cohort

Mean age: 66 + 12
years

Taiwan Cohort

Mean age: 66 + 15
years

HEART Cohort
43% female
Taiwan Cohort
48% female

HEART Cohort
e 2% Aboriginal
e 1% African American
e 91% Caucasian
e 5% Asian
e 1% Other
Taiwan Cohort
e 100% Asian

HEART Cohort
e 32% diabetes
e 34% CAD
e 31%AF

e 14% COPD

Taiwan Cohort
e 30% diabetes

e 30% CAD
e 16% AF
e 8%COPD

Ligence Heart

No validation data
identified.

No validation data
identified.

No validation data identified.

No validation data identified.

EchoConfidence Age split: 50% female e 47% White NR
(provided by company in e 5% 18-40 e 13% Black
RFE) years e 12% Hispanic/Asian
o 42% 41-60 . 28% Other
years
e 53% 61-90
years
NICOR NHFA HF Mean age: 77.5 44% female All data/excluding missing data: HFErEF

admissions data

years

o 52%/86% White/White
British

o 4%/6% Asian/Asian British

o 2%/3% Black

e 3%/5% Other/Mixed

e 39% Unknown

e  Hypertension: 55.16%

o AF39.13%

e |HD 38.48%

e Diabetes 35.73%

o Valve disease 27.65%

e COPD 15.05%

e Asthma 10.44%
Non-HFrEF
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e  Hypertension: 69.94%
o AF51.57%

e |HD 31.94%

e Diabetes 37.41%

e Valve disease 35.82%
e COPD 19.24%

e Asthma 11.55%

Abbreviations: AF: atrial fibrillation; CAD: coronary artery disease; COPD: chronic obstructive pulmonary disorder; DM: diabetes mellitus; HF: heart failure; HFrEF: Heart
Failure with Reduced Ejection Fraction; NHFA: National Heart Failure Audit; NICOR: NR: not reported; RFE: request for evidence.
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Additional clinical risks identified by clinical experts, SCMs and professional

organisations are:

e Potential over-reliance on Al measurements and automation resulting

in inaccurate results

e Some Al technologies use just one image to assess ejection fraction,
which could result in other pathology being missed (that would have

otherwise been detected on additional images)

e Where Al is being used to detect one cardiac diagnosis (e.g. HFpEF),
this raises the possibility of a missed diagnosis due to other cardiac

pathologies

54 Clinical evidence summary and interpretation

In this section, key findings from the evidence are summarised narratively for
each technology. It was not appropriate to undertake meta-analysis of
outcomes reported across the evidence base for any of the technologies in
this EVA due to the clinical and methodological heterogeneity observed

between studies. Evidence gaps are discussed in Section 8.

EchoGo Heart Failure

The EAG considers there to be limited evidence of moderate quality to
support the use of EchoGo Heart Failure in the diagnosis and monitoring of
heart failure (HF). The 3 studies identified for this technology were concerned
with comparing the performance of EchoGo Heart Failure (v1.0 and v2.0) in
aiding detection of HFpEF using a single TTE video clip. There was evidence
that the Al technology had good performance in comparison to two validated
multiparametric manual clinical scoring tools, with respect to sensitivity and
specificity. However, there was no observed difference in NPV or PPV in
comparison to H2FPEF and lower NPV and PPV in comparison to HFA-PEFF.
Additionally, there was no significant difference in AUROC between EchoGo
Heart Failure v2.0 and existing clinical scoring tools with respect to classifying
HFpEF. The impact of implementing EchoGo Heart Failure on clinical
outcomes and health-related quality of life downstream of receiving Al-
External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to

support diagnosis of heart failure: Early Value Assessment
Date: December 2025 70 of 192



assisted TTE as part of the HF diagnosis or monitoring pathway is unclear.
There is limited evidence to suggest that those receiving a ‘positive’ output
from Al-assisted TTE are at an increased risk of developing adverse events
linked with HF, such as hospitalisation or death. However, an increase in risk
was also observed following ‘positive’ results from the manual clinical scoring
tools. Overall, there is a lack of evidence demonstrating clinical benefit to
patients following TTE assisted by EchoGo Heart Failure. There is also a lack
of evidence to suggest system benefits such as increased echocardiography

capacity or shifting care from secondary to community care settings.

Us2.ai

The EAG considers there to be good evidence of moderate quality for Us2.ai.
This technology had the largest volume of evidence, relative to other
technologies in scope, and was the only technology to have an associated
RCT (reported in a non-peer reviewed pre-print) and published evidence
relating to potential system benefits such as time saved during TTE

appointments.

Evidence of Us2.ai’s diagnostic accuracy and performance in comparison to
humans was largely observed to be good. However, the outcome measures
and comparisons reported across the evidence base were heterogeneous,
which makes it difficult to synthesize consistent overall findings. There was
evidence from a UK setting to suggest that Al-assisted handheld TTE had
high specificity and NPV values in comparison to cart-based standard TTE,
but specificity and PPV values were observed to be lower. The technology’s
ability to discriminate cases of HF from controls without HF was observed to
be good, with high AUC values observed for both HFrEF and HFpEF. Good
AUC values were also observed with respect to Us2.ai’s ability to detect
echocardiographic parameter measurements indicative of HF. Good levels of
agreement between Al-automated LVEF measurements and human-
generated LVEF measurements were also observed, but other parameters

showed lower levels of agreement.
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There was some evidence of potential increases in appointment efficiency and
throughput by shortening the TTE procedure time (through Al-automation of
measurements and report creation), but this was of limited generalisabiilty to
the NHS and of low quality. It should also be noted that findings have not

been subjected to peer-review.

There was very limited evidence to suggest that Us2.ai may be effective in
assisting handheld TTE analysis performed by novices (in comparison to
standard expert-performed TTE) and performed by trained sonographers (in
comparison to standard TTE without Al assistance. Again, this was of limited

generalisability to the NHS.

Ligence Heart

Evidence for Ligence Heart was limited and of moderate quality, with 2 studies
identified as relevant to the decision problem. Mixed results were reported
with respect to correlation between Al and manual measurements, but
agreement was reported to be high for some measurements such as E
velocity and E/A ratio. Agreement varied for other measurements. There was
a general lack of evidence of downstream impacts on health-related outcomes
and quality of life as a result of introducing Ligence Heart to the clinical

pathway.

EchoConfidence

Evidence for EchoConfidence was very limited and of uncertain quality. No
published evidence was identified for this technology and all data included as
part of the clinical evidence review was provided by the company (3 studies).
Two studies were reports of interim analyses of ongoing studies. The
evidence included had limited relevance to the general acute or chronic HF
diagnostic or monitoring pathway, with 2 of the 3 studies focusing on cancer
therapy-induced cardiotoxicity (which may lead to HF). One study was based
in the UK and did report time savings following introduction of
EchoConfidence into the TTE procedure, in comparison to manual TTE.

However, there was a lack of detail to assess the significance of these results.
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The EAG consulted with clinical experts, many of whom suggested that the
main benefits to be expected from introducing Al-assisted echocardiography
technologies would be a reduction in examination times and report generation,
leading to increased capacity for examinations and the subsequent alleviation
of long waiting lists (Appendix A). However, in the current evidence base,
there was little evidence to demonstrate these potential improvements in the
heart failure patient pathway. Where studies did report on the impact on
examination time or report creation (n=3), all had notable risks of potential
bias as described in Section 5.1 and 5.2.8 (Sakamoto et al. 2025, Hirata et al.
2024, Almeida et al.: unpublished data 2025 (FEATHER)). Additionally, one
clinical expert commented that Al-assisted echocardiography could facilitate
acquisition of echocardiograms in community or ‘mobile’ settings or by
‘trained’ novice operators. There is a small amount of indirect evidence to

support this, discussed in Section 5.2.9.

Across all the technologies, there is potential that with further evidence
generation, the unmet need described in the decision problem may be
addressed. However, there are currently considerable gaps to be addressed

which are discussed in Section 8.2.

6. Economic evidence

6.1 Existing economic evidence

The search strategy outlined in Section 4.1 was sufficiently broad to identify
any relevant economic studies. Any additional studies provided by the
companies were considered if they were relevant to the scope. The EAG did

not identify any relevant economic studies.

Relevant economic models

The EAG conducted a search on the NICE clinical guidelines to identify any
economic modelling on HF. A total of three economic models from two NICE
guidelines were identified: (i) Chronic heart failure in adults: diagnosis and

management (NG106) 2018 and 2025 and (ii) Acute heart failure: diagnosis
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and management (CG187). The EAG found that the NICE NG106 2018 model

and CG187 model were relevant to the scope.

The 2018 NICE guidance NG106 economic analysis was performed to identify

the natriuretic peptide testing (NT-proBNP) cut-off where it would be the most
cost-effective for referral from primary care for echocardiography and
specialist clinical assessment. The model population was patients presenting
with HF symptoms in primary care and tested for their NT-proBNP levels. The
model consisted of a decision tree attached to Markov models. In the decision
tree, patients were separated into 5 groups based on the diagnostic accuracy
outcomes and NT-proBNP test results: (i) true positive, NT-proBNP
>400pg/ml, (ii) true positive, NT-proBNP <400pg/ml, (iii) false negative, NT-
proBNP <400pg/ml, (iv) false positive (NT-proBNP >400pg/ml and NT-proBNP
level <400pg/ml, and (v) true negative. A Markov model for each patient group
was attached at the end of the decision tree, to estimate the costs and
outcomes over a lifetime time horizon. The waiting time for echocardiography
and clinical assessment following the NT-proBNP testing was modelled in the
Markov model. A 2-week cycle length was used to allow for the estimation of
costs and outcomes during the wait. While there were variations in health
states included in each Markov model, they shared some common health
states: “waiting for echocardiography and specialist clinical assessment” and
“HF (treated)”. Additionally, hospitalisation during the waiting period was
considered and patients were assumed to be diagnosed and treated during
their hospital stay. For true negative cases, the Markov model incorporated a
health state to simulate the wait for further testing, and the true conditions
considered were chronic obstructive pulmonary disease, myocardial ischemia

and obesity.

In NICE guidance CG187, the economic analysis considered patients

presenting to emergency department (ED) with acute dyspnoea and
suspected acute heart failure, over 4 years’ time horizon. A decision tree
combined with 11 Markov models was constructed to simulate 11 patient
subgroups by condition (HF with or without left ventricular systolic dysfunction
or no HF), diagnostic accuracy outcomes and subsequent treatment. A model
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cycle length of 3 months was used, and the health states included were

L 11 ” o« ” o«

“suspected acute HF”, “chronic HF”, “readmission”, “usual health” and “dead”.

These NICE models were used to inform the EAG early economic model. In
addition, a conceptual economic model provided by a company was
considered in the early model development. As these Al technologies would
be used as an adjunct to standard TTE and a specialist clinical assessment is
required for HF diagnosis, it is unlikely that there would be any differences in
diagnostic outcomes between technologies. It was therefore not necessary to

consider false negative and false positive outcomes in this assessment.

6.2 Early economic model

An economic model was developed by the EAG, by making adaptations using
the NICE models for this assessment. The model was used to assess the
potential cost-effectiveness of Al-assisted echocardiography in HF diagnosis
or monitoring, compared to standard care using standard TTE. A one-year
time horizon was chosen as it would be sufficiently long to capture the impact
of waiting time resulting from the reduced echocardiography time using Al
technologies. While earlier diagnosis would improve downstream outcomes,
this was not modelled in the EAG model given the significant uncertainties on
the current waiting time. The perspective of NHS and Personal Social
Services was undertaken. Costs were expressed in 2023/2024 prices and
where applicable, costs were inflated using NHS Cost Inflation Index
(NHSCII). The primary outcome in the economic analysis was quality-adjusted
life years (QALYs), measured using utility values for each intervention. No

discounting was applied.

6.2.1 Model structure

A Markov model with 2-week cycle length was developed in Microsoft Excel.
This enabled the EAG to explore the impact of reduced waiting time driven by
Al technologies by accounting for costs and outcomes of events (such as
hospitalisation) during the wait. Following the assumption in NICE NG106,
both sensitivity and specificity of standard TTE and specialist clinical
assessment were 100%, suggesting that the model should consider only true
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positive and true negative outcomes. Patients with undiagnosed HF or
diagnosed HF waiting for monitoring (true positive) are assumed to progress
to treatment with a reduced waiting time with Al technology. Patients without
HF (true negative), may require subsequent investigations, however the EAG
have assumed that a change in waiting time would not have a significant
effect due to the complexity of pathways and the paucity of available
evidence. Therefore, only true positive cases were considered in the EAG

model.

Based on inputs from clinical experts on the clinical pathway, the EAG early

model is illustrated in Figure 2, where 4 health states were included:

(i) Symptomatic on waiting list, where patients are waiting for
echocardiography and clinical assessment or one stop diagnostic

clinic,
(ii) acute episode,
(iii)  treated HF and

(iv)  dead.
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Figure 2: Schematic representation of the EAG early economic model.

During the scoping workshop, the EAG noted that some patients would
require further magnetic resonance imaging (MRI) investigation after an
echocardiogram. However, the proportion of patients needing additional tests
and the associated waiting time based on clinical experts’ feedback were
highly variable. The EAG believe the availability of MRI facility in each site
may contribute to this high variability. Additionally, the relevant evidence is
lacking to indicate any differences in patients needing additional MRI between

technologies in scope, and thus this was not considered in the EAG model.

As only true positive cases were accounted for in the model, all patients who
entered the model would have diagnosed or undiagnosed HF. They would

enter through “symptomatic on waiting list” or “acute episode” health states.

“Symptomatic on waiting list” state: Patients with HF symptoms on the
waiting list for echocardiography and specialist clinical assessment or one
stop diagnostic clinic may develop acute symptoms and require

hospitalisation. These patients would move to the “acute episode” state.

“Acute episode” state: These patients would be hospitalised as they
developed acute onset of symptoms. Some of these patients may not have a
diagnosis prior to discharge and are subsequently placed on the waiting list.
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These patients would transition to “Symptomatic on waiting list”. In addition,
some patients on the waiting list may develop acute symptoms and become

hospitalised.

“Treated HF” state: Patients would transition to the “treated HF” state when
a diagnosis was confirmed, either during a hospital admission or at a clinic

appointment. In this state, patients would receive treatment.

“Dead” state: This is an absorbing state, where patients from other health

states may move to this state and remain in this state.

Costs and utilities were attached to each health state, to derive the total costs
and QALYs over 1 year for each intervention. Compared to standard care,
incremental costs and QALYs were calculated, alongside the estimated

percentage of patients that met the target referral time (6 weeks).

6.2.2 Model assumptions

e Standard TTE plus specialist clinical assessment is 100% accurate, as
described in Section 6.2.3 (NICE NG106 2018).

e The accuracy is assumed to be unaltered when using Al-assisted

echocardiography, followed by a specialist clinical assessment.

e Patients remain in the “treated HF” state following diagnosis until they
die or until the end of the 1-year time horizon. It is assumed that the
treatment is sufficient to manage their condition and prevent any acute
episodes resulting in hospital admission. In reality, some patients would
require inpatient admission if they experience symptoms worsening.
For model simplicity, transition from “treated HF” to “acute episode” is

not explicitly captured due to the short time horizon.

e The model assumes a proportion of patients would attend a one stop
diagnostic clinic, where they receive echocardiography and specialist
clinical review in one appointment. The cost of a one stop diagnostic

clinic is assumed to be the same as the combined costs of an
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echocardiography appointment and a separate outpatient specialist

clinic visit.

e For model simplicity, all patients who developed acute symptoms would
enter through an ED and subsequently be hospitalised. In reality,
patients could be admitted through a number of different routes

including GP, community HF teams or other clinics.
6.2.3 Clinical parameters

Patient characteristics: The UK National Institute for Cardiovascular
Outcomes Research (NICOR) reports nationwide data on adults admitted to
hospitals in England and Wales with a primary diagnosis of HF. In the most
recent National Heart Failure Audit Data (NHFA) 2025 annual report (data up
to 2023/24) approximately 49% of patients admitted had HFrEF, the average

age at first presentation was 77.5 years, and 56.1% of patients were male.

Proportion of acute episodes: An observational study using the Clinical
Practice Research Datalink (CPRD) between 2010 and 2013, found 79.2%
had HF symptoms first recorded during a hospital admission (Bottle et al.,
2017). This was used to represent those first entering the model through

“acute episode” state.

Proportion of inpatients that were discharged without a HF diagnosis:
The model assumes that a proportion of inpatients are discharged without a
HF diagnosis. This proportion was obtained from clinical experts’ feedback
and the_2018 National Confidential Enquiry into Patient Outcome and Death
(NCEPOD) report. The NCEPOD report found that 44.2% patients received

echocardiography during their hospital stay. The estimated proportion ranged

between 10% to 55.8%, thus giving an average of 32.9%. However, the NICE
guideline recommends that all inpatients should be diagnosed before
discharged, and thus a sensitivity analysis was conducted to explore this

variation.

Sensitivity and specificity of echocardiography plus specialist clinical
assessment for diagnosis of HF: These values were extracted from NG106
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and were based upon a committee assumption. To be consistent with this
guidance, the same assumption - that standard TTE plus specialist clinical

assessment is 100% accurate - has been applied.

Mortality for HF: Standardised mortality ratio (SMR) was calculated from a

published 1-year survival rate (Taylor et al., 2019). This retrospective,

population-based cohort study used Clinical Practice Research Datalink
(CPRD) data from 2000-2017, including over 55,000 patients with newly
diagnosed heart failure. An observed 1-year survival of 75.9% corresponded
to a 24.1% mortality rate. Using the expected sex weighted 1-year mortality at
the average diagnosis age (77.5 years) from Office for National Statistics
(ONS) 2021-23 life tables, the SMR was calculated as observed / expected
mortality, giving an SMR of 7.37. This was applied to patients with treated HF

in the model.

In the most recent data summary, NICOR presented in-hospital mortality for
acute HF admissions was 10.4%, and was applied to patients who were

admitted due to acute symptoms in the model.

Hospitalisation: This rate is used to model the movement from
“symptomatic” state to “acute episode” state. Heart-failure—related

hospitalisation rates were extracted from the PULSE study (Linden, Gollop &

Famer, 2023). The study included 383,896 adults in England diagnosed with
heart failure between 2015 and 2019. Using Hospital Episode Statistics (HES)
data, admissions with HF listed as the primary diagnosis were counted as HF-
related hospitalisations. Rates were expressed as events per 1,000 person-
years, crude rates for all HF patients, and age and sex adjusted rates for
specific subtypes (HFrEF and HFpEF) were used to calculate the weighted

two-week hospitalisation probabilities used in this model.

Length of Stay (LOS): The NICOR NHFA presents median LOS in the most
recent annual summary reports, however, older reports (e.g., 2020, 2021 and
2023) graphically presented mean LOS for patients who had been admitted to
hospital. In each report, mean LOS was less than 14 days, therefore, the
model assumed that the inpatient stay for a patient with acute HF would last
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for one cycle, meaning they would transition to another health state after one

cycle (2 weeks).

Baseline time to diagnosis and proportion of diagnosed: The dataset
from NHS England Diagnostics Waiting Times and Activity was explored to
deduce the total time waited for standard TTE, with the distribution to allow
modelling at 2-week intervals. However, the dataset reported the number of
people waiting at different time points, but not the overall length of their wait.
The EAG contacted the NHS England Diagnostics Waiting Times and Activity
team to explore if there was any relevant data available. It was noted that the
total time waited by patients for echocardiography was not routinely collected.
Potentially, the Hospital Episode Statistics (HES) data may capture this
information under outpatient appointments and day case, but
echocardiography is not coded routinely on the outpatient dataset. Given the
short timeframe of this assessment, it was not possible for the EAG to explore
this further.

Baseline time to diagnosis was calculated from clinical experts’ estimates of
waiting time and the NHS diagnostic waiting time & activity data (NHS
England, July 2025). Wait list activity data indicated that 10.6% of patients

referred wait 13 weeks or more to receive echocardiography, therefore

approximately 89.4% of patients wait under 13 weeks in the model.

According to estimates from clinical experts, in settings without a one-stop
diagnostic clinic, the average waiting time for an echocardiogram from point of
referral ranges from 6 to 12 weeks. Assuming that waiting times follow a
normal distribution, that no patients receive an echocardiogram before 6
weeks, and that 10.6% of patients wait more than 13 weeks, a normal
distribution curve was modelled to estimate the proportion of patients who

received an echocardiogram in two-week intervals.

Clinical experts estimated that the average interval between echocardiogram
and subsequent clinical assessment is 1 to 4 weeks. It was therefore

assumed that 50% of patients receive clinical assessment in the first 2 weeks
post-echocardiography and 50% receive clinical assessment in week 3 and 4
External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to

support diagnosis of heart failure: Early Value Assessment
Date: December 2025 81 of 192


https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostics-waiting-times-and-activity/monthly-diagnostics-waiting-times-and-activity/monthly-diagnostics-data-2025-26/
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostics-waiting-times-and-activity/monthly-diagnostics-waiting-times-and-activity/monthly-diagnostics-data-2025-26/

post-echocardiography. Finally, a combined wait time was then derived by
aggregating these wait times, yielding the proportion of the HF population

diagnosed at two-week intervals. Details of the calculation are outlined in
Appendix D.

Based on estimates from clinical experts, one stop diagnostic clinics have a
wait time from referral to diagnosis of between 2-10 weeks. In the model, a
mean waiting time of 6 weeks was assumed, with patient waiting times
represented by a normal distribution. This distribution was applied to estimate
the proportion of the HF population diagnosed at two-week intervals. The

calculation is described in Appendix D.

It has been reported that 51.9% of patients with HF are diagnosed in a one
stop diagnosis clinic (Kwok et al., 2025). The weighted proportion of patients
diagnosed in each two-week interval has been calculated based on the
proportion of patients diagnosed in settings with or without a one stop

diagnostic clinic (Table 16).

Effect of reduced echocardiography time with Al technologies on the
waiting times: Two technologies presented evidence on procedural time
saved using Al-assisted echocardiography — EchoConfidence and Us2.ai.
EchoConfidence provided evidence comparing the time taken for human or Al
analysis of an echocardiogram from an interim analysis (Almeida et al.:
unpublished data 2025 (FEATHER)). Us2.ai provided two relevant studies
evidencing time reduction for Al-assisted echocardiography: the first was a
pre-print randomised crossover trial used in the base case analysis, the
second a pilot study used to inform the sensitivity analysis. A number of
limitations with these studies should be considered. First, the setting and type
of operators in each study. Both Us2.ai studies were conducted in Japan,
therefore both setting and operators are unlikely to be comparable to the
NHS. While the FEATHER study was based in community settings in the UK,
the results were derived from an interim analysis with very limited information
(Almeida et al.: unpublished data 2025). This limits its comparability with the
NHS secondary care practice. Second, as these Al technologies impact
different stages of the procedure, the time measurements reported in these
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studies are unclear. For Us2.ai, Sakomoto et al. (2025) reported an
examination time per patient of 14.3 mins without Al, whereas the combined
measurement and report creation time was 12.5 mins without Al in Hirata et
al. (2024). The EAG could not ascertain whether the examination time
measured in Sakomoto et al. (2025) was for a full echocardiography
procedure, as the time reported was much lower than the average procedure
time in the NHS (45 mins), obtained from clinical experts. Similarly, in the
FEATHER study (Almeida et al.: unpublished data 2025) an analysis was
conducted on the time taken for EchoConfidence to automate steps which
make up part of an echocardiographic assessment. Due to the lack of detail in
the FEATHER study, it is not clear how these steps fit into the overall TTE
procedure, and how the time savings reported would impact TTE workflow on
a practical level. It was not possible to determine if the procedure was
comparable to the NHS. While the EAG consider that the evidence is not
robust and of low quality, these study results are used in the EAG model to
explore the plausible cost effectiveness of these Al technologies, therefore the
EAG advise that the economic analysis should be considered as exploratory.

Details of these studies and their limitations are summarised in Table 15.
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Table 15: Studies reporting time saved with Al and their limitations.

Setting

Sample size

Comparator
(operator

type)

Parameter
measured

EAG comments

al. (2024)

process and
report creation

EchoConfidence: | UK 300 Sonographer | Analysis time It is unclear how the analysis time measured fits into the

FEATHER community (27 steps in overall TTE procedure, and if the operator used is

unpublished settings each TTE comparable to NHS practice in secondary care. This data

study, Almeida procedure) is unpublished and has not been subject to peer review.

et al.

(unpublished,

2025)

Us2.ai: Japan 585 Sonographer | Examination The EAG considers the setting is unlikely to be

Sakomoto et al. time comparable to NHS practice. In addition, it is unclear if the

(2025) staff qualifications and experience are similar to the NHS
staff delivering echocardiography, and what the
examination entails. This is non-peer reviewed data.

Us2.ai: Hirataet | Japan 23 Not reported | Measurement The EAG considers the setting is unlikely to be

comparable to NHS practice. The EAG also notes the
small sample size and single centre design, which limits
the generalisabilty of the findings.

Abbreviations: EAG: external assessment group; TTE: transthoracic echocardiography
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As there is no direct evidence on time to diagnosis with Al, the EAG estimated
the change in waiting time using the evidence on reduced time with Al-
assisted echocardiography. The patient load in standard care was calculated
based on the number of procedures per full day and the average wait for
echocardiography, by assuming 5 working days per week. This yielded a
patient load of 575. A shorter procedure time was used to calculate a new
number of procedures per day. The average wait time using Al-assisted
echocardiography was then calculated by dividing the patient load of 575 by
the new number of procedures per full day. Subsequently, the percentage
reduction in average wait time was applied to generate a new distribution of
echocardiography wait time. The model also assumed the same reduction for
the one stop diagnostic clinic wait time. The reduction in average wait time
with EchoConfidence was estimated to be 17%, and 0% for Us2.ai (base
case). Assuming the wait for specialist clinical assessment would remain
unchanged, the proportion of the HF population diagnosed for each

technology was populated. The calculation is described in Appendix E.
Table 16: Main clinical parameters.

Variable Source EAG commentary on
availability, quality,

reliability and relevance
of the source/s

Patient characteristics

Average age of 77.5 years NICOR, 2025

heart failure

patients at first

presentation

Diagnosis parameters

Sensitivity of 1.00 NICE NG 106 | Committee assumption
standard TTE plus (2018)

clinical

assessment

Specificity of 1.00 NICE NG 106 | Committee assumption
standard TTE plus (2018)

clinical

assessment

Proportion of 79.2% Bottle et al.,

acute episodes 2017
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Proportion of HF subtypes

days

HFrEF 0.49 NICOR, 2025

non-HFrEF 0.51 NICOR, 2025 Patients with clinical

(includes HFpEF symptoms and signs of HF

and HFmrEF) who have preserved heart
pump function (HFpEF) or
intermediate levels
(HFmrEF) were collectively
designated as 'non-HFrEF'

Mortality

1-year survival 75.9% Taylor et al., The assumed mortality rate

rates after a 2019 of 24.1% was used based

diagnosis of HF on the observed survival
rate of 75.9%

SMR - 1-year 7.37 EAG Based on published 1-year

following calculation mortality rate following

diagnosis diagnosis (Taylor et al.,
2019)

In-hospital 10.4% NICOR, 2025

mortality

2-week hospitalisation probabilities

Hospitalisation 0.16% EAG Annual rate (Linden et al,

probability for calculation 2023) was converted to a

HFpEF two-week probability

Hospitalisation 0.39% EAG Annual rate (Linden et al,

probability for calculation 2023) was converted to a

HFrEF two-week probability

Weighted 0.27% EAG Weighted using the

hospitalisation calculation proportion of HFpEF and

probability HFrEF

LOS Less than 14 NICOR

Baseline time to diagnosis, proportion

of diagnosed

stop diagnostic
clinic

Waiting time from | 6-12 weeks Clinical
referral to experts
echocardiography

Waiting time from | 1-4 weeks Clinical
echocardiography experts
to specialist

clinical

assessment

Waiting time from | 2-10 weeks Clinical
referral to one experts
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Proportion of 10.6% NHS Assumed that these

patients who have Diagnostic patients would be wating at

been waiting for > Waiting Times | week 14 and receive an

13 weeks and Activity, echocardiography at week
July 2025 16.

Proportion of one | 51.9% Kwok et al.,

stop diagnostic 2025

clinic

Weighted cumulative proportion of patients diagnosed

, all settings

<4 weeks 3.4%
<6 weeks 26.0%
<8 weeks 48.5%
<10 weeks 52.9%
<12 weeks 58.3%
<14 weeks 71.7%
<16 weeks 87.8%
<18 weeks 97.5%
<20 weeks 100.0%

EAG
calculation

Based on the proportion of
patients diagnosed in
settings with and without a
one-stop diagnostic clinic
calculated from clinical
experts’ estimates and NHS
diagnostic waiting time &
activity data (2025)
Weighted using the
proportion of one stop

diagnostic clinic (Kwok et
al., 2025)

Impact on time to d

iagnosis with Al assisted echocardiography

Standard 45 mins (0.75 hr) | Clinical
echocardiography experts
appointment
Number of 10 EAG Based on a 7.5 hour
standard calculation working day and the time
echocardiography taken for an appointment
performed (per
day)
Patient load 575 EAG Based on mean 11.5 used
calculation to derive the normal
distribution of patients
receiving echocardiography
and assuming 5 days per
week (11.5 weeks x 5
working days per week x 10
procedures per day = 575)
Average wait time | 11.5 weeks EAG
calculation
Echocardiography | 36 mins (0.59 hr) | EAG Based on time reduction of
appointment: calculation, 9.45 mins (Human 9.5mins
EchoConfidence Almeida et al.: | average vs Al 0.05mins)
unpublished
data 2025

External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to
support diagnosis of heart failure: Early Value Assessment

Date: December 2025

87 of 192




Us2.ai

Sensitivity
analysis: 17%

Number of 12 EAG
echocardiography calculation
performed (per
day):
EchoConfidence
Average wait 9.58 weeks EAG Based on the patient load
time: calculation and new number of
EchoConfidence procedures per day (575
patients / (12 procedures
per day x 5 working days
per week)
Reduction in 17% EAG Calculated using the Al wait
average wait time: calculation time and current wait time
EchoConfidence
Echocardiography | Base case: 44 EAG Based on time reduction of
appointment: mins (0.73 hr) calculation, 1.3 mins in base case
Us2.ai Sensitivity Sakomoto et (human 14.3mins vs Al
analysis: 36 mins al., 2025, 13.0mins), and 8.7 mins in
(0.60 hr) Hirata et al., sensitivity analysis (human
2025 12.6mins vs Al 3.8mins)
Number of Base case: 10 EAG
echocardiography Sensitivity calculation
performed (per analysis: 12
day):
Us2.ai
Average wait Base case: 11.5 EAG Based on the patient load
time: Us2.ai weeks calculation and new number of
Sensitivity procedures per day
analysis: 9.58
weeks
Reduction in Base case: 0% EAG Calculated using the Al wait
average wait time: calculation time and current wait time

Abbreviations: TTE: transthoracic echocardiography; EAG: external assessment group; HFrEF: heart

failure with reduced ejection fraction; HFpEF: heart failure with preserved ejection fraction; HFmrEF:

heart failure with mildly reduced ejection fraction; LOS: length of stay; NICOR: National Institute for

Cardiovascular Outcomes Research; SMR: standardised mortality ratio.

6.2.4

Resource use and cost parameters

Technology costs: The costs and other resource use requirements for each

technology are described in Table 17.

For implementation, costs included were the set-up fee and hardware

(server). As hardware requirements for integrating the technology vary
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depending on the IT system at each site, the additional hardware costs for
each technology were included in the EAG base case but removed for

sensitivity analysis. The implementation (set up and hardware) and training
costs were split over a 3-year period. The cost per scan for implementation

and training were derived from an assumed number of scans per year.

The annual scans per site were estimated using the median monthly scans
per site from the NHS England Diagnostic Waiting Times and Activity July
2025 dataset, to represent typical usage. Given the time limitation, only the
July 2025 dataset was used in the calculation. This was then used to derive
the costs per scan, where the license fee, system implementation, training,
information technology (IT) support and staff time were included. The actual
costs will vary according to the actual number of scans, and this should be

considered for implementation locally.

Per-scan costs were varied by volume in the sensitivity analysis. The annual
scans per site for Guy’s and St Thomas’ NHS Trust (21,000 scans per year)

was used to represent high volume usage (Freitas et al., 2023). For low

volume usage, the first quartile of monthly scans per site from the NHS
England Diagnostic Waiting Times and Activity July 2025 dataset was used to

derive the annual scans per site (5,000 scans per year).

These Al technologies are delivered by the same staff delivering standard
echocardiography and thus costed at a band 7 cardiac physiologist. Staff time
for Al-assisted echocardiography is derived by subtracting the time reduction
reported in clinical papers from the standard echocardiography time of 45

minutes. The calculation is described in Section 6.2.3.

The cost of reversing a decision is estimated using any up-front costs to
purchase the equipment and setting up the service, training costs and any

costs associated with the pricing model that could not be recouped.
EchoConfidence
The software is priced at £4 per use, excluding VAT. Set up fees apply,

however if the site requires additional hardware, this may be provided by the
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vendor at a cost. The hardware cost is currently unknown, and thus not
included in the EAG model. Staff training consists of 2 days on site and
additional remote training as required. This is costed as an additional package
and included in the EAG model. Any IT support for hardware (if provided by
the company) and software is provided at an additional fee. During the
integration process, a minimal IT staff time is required, but the information
provided was not sufficient to be included in the EAG calculation. The
company noted that there is additional training available to minimise the need
for ongoing support. The cost of reversing the decision would primarily be the

set-up fee, any additional hardware and staff training.
EchoGo Heart Failure

This is offered as a package of £25 to £50 per use, excluding VAT. This
includes software use, IT support, any cloud support, integration and staff
training. The company provided an indicative cost breakdown, but did not
provide additional information on the type of contract that would be used and
therefore the EAG cannot comment on the costs of reversing the decision.
The company also noted that the technology would require minimal training

and no additional equipment.
Ligence Heart

Two software pricing models are available: (i) unlimited license model offered
for 1 or 3 years, including support, with pricing based on the number of
workstations, and (ii) tier-based model (pay per case) based on the number of
scans and users. The company charges only for software use, however a
server can be provided at an additional cost depending on the contract. A
one-hour training per person is provided at no additional cost. The service
provided by the company includes server delivery (if server purchased),
software installation and ongoing support. The company also noted that any

installation costs are included in the pricing models.

The company costs were provided in Euro’s, and this was converted at the
rate of €1 to £0.87 (obtained from xe.com, 15 October 2025). In the EAG cost

calculation, the tier-based pricing model was applied using the estimated
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annual scan volumes from the NHS England Diagnostic Waiting Times and

Activity dataset.

The cost of reversing the decision would be the server fee and any unused

scans from the committed pricing model.
Us2.ai

The software pricing model is based on the scan volumes. The installation can
be done as cloud implementation or on-site installation, at an additional cost.
There is rental server available from the company for piloting the software or
transitioning to full adoption. The price of the server varies with the
specification. The rental server costs are currently unknown. In the EAG
calculation, an on-site installation of a basic server is applied. Routine
support, clinical and IT support are provided at no additional fee. However, it
is unclear if this includes staff training, therefore training costs are not

included in the EAG calculation.

The cost of reversing the decision would be the server fee and any unused

scans from the committed pricing model.
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Table 17: Technology cost parameters.

EchoConfidence

EchoGo Heart Failure

Ligence Heart

implementation

department for integration, site
visits, creation of the instance of
the software and user access
controls.

of the software and integration
to the hospital IT system.

License Available as cost per use. Cost per use with software use, | Two pricing models are Pricing is based on volume per
IT support, integration fee and available: unlimited (by number | year. Consolidating sites or
training included. of users) and tier-based (by multiple years usage could be

number of scans) negotiated.

System Included consultancy with IT Included in the per-use costs. Includes complete installation Available as “on premises” and

cloud integration.

Supporting
hardware and other
infrastructure if
provided by the

Not included, cost currently
unknown if provided by vendor.
The requirement depends on the
complexity of integration required

No additional hardware is
required.

Server to be provided by
vendor at an additional cost,
subjected to the contract. This
will depend on the integration.

Server and cloud are provided
at an additional cost. Rental
server is offered by vendor for
pilot. Costs are not provided by

maintenance

offered at an additional cost.
Trainings are provided by the
company to ensure that any
support requests are minimal.

company and if adaptations required. the vendor.
Training 2 days on site and then remote as | No significant training is 1 hour per person. Clinical support is available. No
required. required. Included in the per- information on training and the
use costs. associated costs.
IT support and/or Hardware and software supportis | Included in the per-use costs. Support is available. Support is available.

Per patient costs exc

luding VAT, no discounting applied

(annual scans: 10,000 per site)

License/software
per scan

£4

70% of per-scan costs = £26.25
per scan

£2.61

£8.00
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System set up per
scan

£4,500 spread over 3 years =
£0.15 per scan

20% of per-scan costs = £7.50
per scan

Server £2,611 spread over 3
years = £0.09 per scan

Basic server £6,000 spread
over 3 years = £0.20 per scan

Training costs per £750 per day for 2 days over 3 10% of per-scan costs = £3.75 | 0 No information provided by
scan years = £0.05 per scan per scan vendor
IT support costs 10% of the per scan cost for Included in the license per scan | 0 0

per scan

hardware, 5% for software

Assuming 10% scans needed IT
supports per year, 15% of per scan
costs for each support (£0.6 per
support) and spread across the
annual scans = £0.06 per scan

Staff time per scan

35.6 mins (Almeida et al.:
unpublished data 2025)

No data available

No data available

43.7 mins (Sakomoto et al.,
2025)

Staff time costs per | £39.11 NA NA £48.07
scan using band 7

cardiac

physiologist

Total costs per £4.26 £37.50 (average derived from £2.70 £8.20
scan, not including the range provided by vendor,

HCP costs £25-50)

Total costs per £4.46 No additional information £2.79 £8.40
scan (low volume, provided

5,000 per site per

year)

Total costs per £4.16 No additional information £2.22 £6.50

scan (high volume,
21,000 per site per
year)

provided

EAG assumes a 20% reduction
in license cost per scan for high
volume usage

External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to support diagnosis of heart failure: Early Value Assessment
93 of 192

Date: December 2025




Total costs per £4.26 No additional information £2.61 £8.00
scan, excluding provided
hardware

Abbreviations: VAT: value added tax.
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Standard TTE costs: Al technologies are used as an adjunct to standard
TTE, therefore the cost of standard echocardiography was not included in
either arm of the model. Staff time is included for both arms, as this is the key
element that may change with the introduction of Al technologies. Staff time
required to deliver each technology was costed using a band 7 cardiac

physiologist.

Heart failure hospitalisation and emergency department (ED) costs:
These costs were taken from the 2025 economic modelling in NICE guidance
NG 106.

Follow-up costs post-HF diagnosis: In the model, all patients would be
reviewed in an outpatient cardiology specialist clinic for a formal diagnosis,
and therefore it was not necessary to include the costs of this first
appointment. Follow up costs were valued using the resource requirement for
heart failure obtained from the NICE guidance NG106. These estimates were
validated through consultation with clinical experts, ensuring that the resource
use assumptions reflected current UK clinical practice. The costs of specialist
nurse visits were costed using a band 6 nurse, following the approach taken in
NICE guidance NG106.

Heart failure treatment costs: Weighted drug treatment costs were
calculated based on the proportion of patients receiving each treatment
(NICOR, 2025), and converted from a 3-monthly cost, as in NG106, to a 2-
weekly cost. NICOR data indicated that 91% of patients with HFrEF were

prescribed beta blockers (BB), 68% were prescribed mineralocorticoid

receptor antagonists (MRAs), and 85% were prescribed either angiotensin-
converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARBs) or
angiotensin receptor-neprilysin inhibitors (ARNIs). The weighted cost does not
include ARNIs which are recommended as a replacement for ACEi’s in the

case that the patient remains symptomatic (NG106, 2025).

Table 18: Key cost parameters.

Parameter Value Source Comment
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HF £2,885.47 NHS cost Heart failure or shock
hospitalisations collection (EBO3A-E with CC score 0-
23/24 14+) — weighted average of
non-elective long and short
stay
ED attendance £652.87 NHS cost Heart failure or shock
for HF collection (EBO3A-E with CC score 0-
23/24 14+) - weighted average of
heart failure day case.

Follow-up costs for HF

Specialist visit £164.25 NHS cost Weighted average of

(cardiology) - collection consultant led, and non-

Follow up 23/24 consultant led non-admitted

appointment face-to-face attendance,
follow up appointment
(WFO01A)

GP appointment | £45.00 PSSRU 2024 | Including qualification costs

(10 minutes) and direct care staff costs

Band 6 Nurse £31.00 PSSRU 2024 | Including qualification costs.

appointment (30 Calculated based on £62.00

minutes) per working hour

Number of HCP HFrEF; NICE NG106 | Resource use for patients

appointments in | HFpEF: (2018) with HFrEF and HFpEF was

year 1: obtained from NG106 and

- GP 2;1 validated by clinical experts

- Outpatient | 2; 1

cardiology
visits
- Specialist | 10; 1

HF nurse

visits
Two-week £2.42 EAG Three-monthly weighted
weighted calculation costs obtained from NG106,
average drug proportion receiving each
therapy cost (BB, treatment obtained from
MRA, and NICOR, 2024
ACEIi/ARB)

Abbreviations: ED; emergency department; GP; general practitioner; PSSRU; Personal Social
Services Research Unit; HFrEF: heart failure with reduced ejection fraction; HFpEF: heart failure with
preserved ejection fraction; BB; beta blocker; MRA; mineralocorticoid receptor antagonist; ACEi;

angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blockers.

6.2.5 Health state utilities

Patients were assigned to different utility values for each health state in the
model. Utility values were obtained from TA773 and NG106. The utility value
of 0.58 (untreated and treated HF patients) was obtained from NG106 (2018).

This value was derived from EQ-5D data in the REFER study (Taylor et al.,
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2017, unpublished data), which NICE used as the basis for its model cohort in
NG106. The REFER population consisted of predominantly older patients
(mean age 77, 50.6% male) with mostly HFpEF (86.5%). In contrast, the
NG106 (2025) economic analysis reported a higher utility of 0.78 for treated
HFrEF patients. However, because this estimate applies only to that
subgroup, the original utility value of 0.58 was retained for treated HF in the

EAG model, and assumed a 10% disutility for untreated HF.

The HF-related hospitalisation utility decrement, extracted from TA773 and
also reported in NG106, represents the temporary reduction in health-related
quality of life experienced by a patient during and immediately after a hospital

admission for HF.

Table 19: Utility values.

Variable Value Source ' Comment

Treated HF 0.58 NICE NG106 Unpublished data from
(2018) the REFER trial (Taylor

etal., 2017)

Untreated HF 0.058 EAG assumption

disutility

HF-related 0.019 NICE TA773;

hospitalisation NG106 (2025)

disutility

Abbreviations: EAG: external assessment group; HF: heart failure.

6.2.6 Key assumptions

e The wait time for standard TTE and one stop diagnostic clinic was

assumed to follow a normal distribution.

e To model the effect of reduced echocardiography time with Al
technologies on waiting time, it was assumed that the reduced
procedure time would proportionately increase the number of patients
per day, and that the calculated reduction in average wait time would

shift the entire wait time distribution forward by the same magnitude.

e The number of patients referred to echocardiography was assumed to

be constant. In reality, when waiting time becomes shorter, a number of
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factors may lead to an increase of referrals, such as a change in the

referral pattern.

e |t was assumed that the waiting time for a specialist clinical
assessment following echocardiography would remain unchanged.
However, if the specialist clinic is already running at full capacity and
there is no additional capacity available, this would limit the number of
patients receiving an earlier diagnosis despite having an earlier

echocardiography.

6.2.7 Model validation

For model validation, the economic model was reviewed by a second health
economist independently. The validation process included checks on the
calculations used to derive model inputs, the movement between health states
and the computations generating total costs, QALY's and other outcomes. All
model inputs were verified against their primary data sources, and the inputs

were varied to check if the results were consistent with a priori expectations.

6.2.8 Presentation of results

Given the significant uncertainty with various model inputs and the number of
assumptions required, the cost effectiveness analysis undertaken by the EAG
should be considered as exploratory. In the base case analysis, only Al
technologies with evidence related to their impact on procedure time were
included: EchoConfidence and Us2.ai. These Al technologies were compared
to standard care using standard TTE, and an ICER was calculated for each

comparison.

One-way sensitivity analyses have been carried out as it is more appropriate
to identify the key drivers and to explore the impact of a wide range of
plausible inputs where there is either variation across sites, or in practice. A
probabilistic sensitivity analysis to quantify the level of confidence with the
ICER would provide little value on determining key drivers of the economic

model to guide further evidence generation, and thus this was not undertaken.
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A range of one-way and scenario sensitivity analyses were performed

including:

Table 20: One-way sensitivity analyses and the value used

One-way sensitivity analyses ‘ Low value High value
Waiting time reduction of EchoConfidence 8% 25%
driven by the reduced echocardiography
time: ¥50% from base case
Reduced echocardiography time with Us2.ai | NA 8.7mins
using alternative paper (Hirata et al., 2024)
Longer echocardiography waiting times NA 36 weeks
Proportion of acute episode: -20% from 63% NA
base case
Technology costs, excluding hardware EchoConfidence: | NA

£4.26

Us2.ai: £8.00
Technology costs: high volume, low volume | EchoConfidence: | EchoConfidence:

£4.16 £4.46

Us2.ai: £6.50 Us2.ai: £8.40
All patients receive an echocardiogram 0% NA
during hospital stay
Band 8a cardiac physiologist in NA EchoConfidence:
echocardiography delivery £43.85

Us2.ai: £563.90

Proportion diagnosed in one stop 20% 40%

diagnostic clinic

Abbreviations: NA: not applicable.

Scenario analyses were chosen based on the uncertainty in the model and

the key drivers indicated by the one-way sensitivity analyses results:

1. Analysis comparing EchoConfidence and standard care:

e combining longer waiting times of 36 weeks and a lower proportion

diagnosed in a one stop diagnostic clinic (20%)

e combining a lower waiting time reduction with EchoConfidence (8%)

and a lower proportion diagnosed in a one stop diagnostic clinic (20%)

2. Analysis comparing Us2.ai and standard care:

e combining time reduction reported by Hirata et al., 2024 and a lower

proportion diagnosed in a one stop diagnostic clinic (20%)
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6.3 Results from the economic modelling

Base case and sensitivity analyses results are reported in Table 21 and Table

22. Both incremental costs and incremental QALYs were calculated as the

differences between the Al technology and standard care.
EchoConfidence

From the base case results, it appears that EchoConfidence is potentially
more effective and less costly than standard care, and therefore a cost-saving
strategy. The proportion that met the target referral time of 6 weeks post-
referral may increase by 15% with EchoConfidence from 26% to 40%.
However, there is a lot of uncertainty surrounding the model and the very
limited clinical evidence used in this analysis, this limits the validity of the

results.

The cost-saving results are primarily attributable to the reduction in staff time
per scan cost of £10, which is able to offset EchoConfidence’s cost per use.
As the base case assumes a 17% reduction in waiting time driven by the
shorter procedure time with EchoConfidence, some patients would receive

earlier diagnosis and treatment, resulting in modest QALY's gained.

Results from the one-way sensitivity analyses suggest that the economic
findings are sensitive to the proportion diagnosed in a one stop diagnostic
clinic and the impact of waiting time reduction with EchoConfidence. When the
proportion of patients diagnosed in a one stop diagnostic clinic is reduced to
20%, only 16% of patients would meet the target referral time with
EchoConfidence, yielding an increase of 6% compared to standard care.
Similarly, when the EchoConfidence impact of waiting time reduction is
lowered to 8%, the increase of those meeting the target referral time reduces
from 15% in the base case to 7%. Additionally, in the scenario combining a
lower proportion diagnosed in a one stop diagnostic clinic (20%) and a lower
reduction in waiting time (8%), this results in a small increase of 3% in those
meeting the target referral time (EchoConfidence 13%, standard care 10%).
The model appears to be relatively insensitive to the longer waiting time of 36

weeks based on the one-way sensitivity analyses results. This is likely due to
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the high proportion diagnosed in a one stop diagnostic clinic used in the base
case. However, in a combined scenario (20% diagnosed in a one stop
diagnostic clinic, 36-week waiting time), the increase in those that met the

target referral time reduces from 15% in the base case to 6%.

While the results appear to suggest that EchoConfidence is potentially a cost-
saving strategy, the considerable uncertainty surrounding the current waiting
time and how the shorter procedure time with EchoConfidence would impact
the echocardiography workflow. In turn, the change in waiting time would
outweigh the modest cost savings with EchoConfidence. Therefore, the

results should be interpreted with caution.
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Table 21: Base case and sensitivity analyses results: EchoConfidence (EC) vs standard care

Total Total Total Total Incremental Incremental ICER Proportion Proportion Difference
costs, QALYs, QALYs, costs (£) QALYs meeting the meeting the between EC
Std Care EC Std Care target target and standard

referral referral time, care
Std Care

Base case £3,230 £3,233 0.4742 0.4736 -£3.14 0.0005 Cost saving 40.5% 26.0% 14.5%
% waiting time reduction: 8% £3,229 £3,233 0.4739 0.4736 -£4.59 0.0003 Cost saving 33.3% 26.0% 7.3%
% waiting time reduction: 25% £3,231 £3,233 0.4744 0.4736 -£1.94 0.0008 Cost saving 45.2% 26.0% 19.2%
Echocardiography waiting £3,230 £3,233 0.4741 0.4736 -£3.20 0.0005 Cost saving 40.5% 26.0% 14.5%
time: 6 to 36 weeks

% diagnosed in hospital: -20% £2,681 £2,684 0.4835 0.4828 -£2.45 0.0007 Cost saving 40.5% 26.0% 14.5%
from base case (63%)

Technology costs, no £3,230 £3,233 0.4742 0.4736 -£3.14 0.0005 Cost saving 40.5% 26.0% 14.5%
hardware costs

Technology costs, low volume £3,230 £3,233 0.4742 0.4736 -£2.94 0.0005 Cost saving 40.5% 26.0% 14.5%
Technology costs, high £3,230 £3,233 0.4742 0.4736 -£3.24 0.0005 Cost saving 40.5 26.0% 14.5%
volume

All inpatients receive echo £3,242 £3,246 0.4763 0.4760 -£4.81 0.0003 Cost saving 40.5% 26.0% 14.5%
Band 8a cardiac physiologist £3,230 £3,234 0.4742 0.4736 -£4.33 0.0005 Cost saving 40.5% 26.0% 14.5%
% one stop diagnostic clinic: £3,224 £3,226 0.4729 0.4722 -£2.36 0.0007 Cost saving 15.7% 10.0% 5.7%
20%

% one stop diagnostic clinic: £3,231 £3,234 0.4744 0.4738 -£3.20 0.0005 Cost saving 46.8% 30.0% 16.8%
60%

Combining 36-week waiting £3,220 £3,222 0.4721 0.4713 -£1.97 0.0008 Cost saving 15.8% 10.0% 5.7%
time and 20% one stop

diagnostic clinic

Combining 8% waiting time £3,222 £3,226 0.4725 0.4722 -£4.22 0.0003 Cost saving 12.8% 10.0% 2.8%
reduction and 20% one stop

diagnostic clinic

Abbreviations: EC: EchoConfidence; ICER: Incremental cost-effectiveness ratio; QALY: Quality adjusted life year.
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Us2.ai

Base case results show that Us2.ai may be more costly than standard care,
but with no change in QALYSs, suggesting that standard care dominates. This
is because of the small procedure time reduction with Us2.ai (mean difference
1.30 mins), reported by Sakomoto et al. (2025). Similarly, the clinical evidence
on the time saved is unlikely to be generalisable to the NHS setting, as well as
the uncertainty with other key model inputs. These have implications on the

validity of the economic results.

Given no change in the waiting time with Us2.ai is modelled, overall results
from one-way sensitivity analyses remain consistent with the base case
results. However, when a shorter procedure time (36 mins) using the findings
from a pilot study by Hirata et al. (2024), it shows that Us2.ai is more costly
and more effective (cost difference £1.40, QALY difference 0.0005), giving an
ICER of £2,547 per QALY, below the NICE willingness to pay (WTP)
threshold of £20,000 per QALY. This results in a 15% increase in those
meeting the target referral time. In a combined scenario (20% diagnosed in a
one stop diagnostic clinic, 36 mins echocardiography), the ICER increases to
£3,090 per QALY and the increase in those meeting the target referral time
reduces to 6%. This suggests that the results are sensitive to the proportion

diagnosed in a one stop diagnostic clinic.
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Table 22: Base case and sensitivity analyses: Us2.ai vs standard care

Total Total Total Incremental Incremental ICER Proportion Proportion Difference
costs, QALYs, QALYs, costs (£) QALYs meeting the meeting the between
Std Care Us2.ai Std Care target target Us2.ai and

referral referral time, standard
time, Std Care care
Us2.ai

Base case £3,240 £3,233 0.4736 0.4736 £6.49 0.0000 Dominated 26.0% 26.0% 0.0
Echocardiography time £3,235 £3,233 0.4742 0.4736 £1.40 0.0005 2,547 40.5% 26.0% 14.5%
reduction, Hirata et al., 2024

Echocardiography waiting £3,239 £3,233 0.4736 0.4736 £6.49 0.0000 Dominated 26.0% 26.0% 0.0
time: 6 to 36 weeks

% diagnosed in hospital: -20% £2,690 £2,684 0.4828 0.4828 £6.50 0.0000 Dominated 26.0% 26.0% 0.0
from base case (63%)

Technology costs, no £3,240 £3,233 0.4736 0.4736 £6.30 0.0000 Dominated 26.0% 26.0% 0.0
hardware costs

Technology costs, low volume £3,240 £3,233 0.4736 0.4736 £6.68 0.0000 Dominated 26.0% 26.0% 0.0
Technology costs, high £3,238 £3,233 0.4736 0.4736 £4.85 0.0000 Dominated 26.0% 26.0% 0.0
volume

All inpatients receive echo £3,253 £3,246 0.4760 0.4760 £6.72 0.0000 Dominated 26.0% 26.0% 0.0
Band 8a cardiac physiologist £3,240 £3,234 0.4736 0.4736 £6.32 0.0000 Dominated 26.0 26.0% 0.0
% one stop diagnostic clinic: £3,232 £3,226 0.4722 0.4722 £6.46 0.0000 Dominated 10.0% 10.0% 0.0
20%

% one stop diagnostic clinic: £3,241 £3,234 0.4738 0.4738 £6.49 0.0000 Dominated 30.0% 30.0% 0.0
60%

Combining time reduction £3,228 £3,226 0.4729 0.4722 £2.16 0.0007 3,090 15.7% 10.0% 5.7%
reported by Hirata et al., 2024

and 20% one stop diagnostic

clinic

Abbreviations: ICER: Incremental cost-effectiveness ratio; QALY: Quality adjusted life year.
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6.4 Summary and interpretation of the economic
evidence

An exploratory cost-effectiveness analysis using an early economic model
was conducted. Based on the limited clinical evidence, the cost-effectiveness
results suggest that EchoConfidence has the potential to be a cost-saving
intervention for NHS use. With similar limitations in evidence, Us2.ai may be
dominated by standard care, indicating it may be more costly and less
effective than standard care. However, the evidence used to model the impact
on waiting time with Al technologies is very limited and it is unclear if the
settings, operators and measurement taken are comparable to that of NHS
practice. Additionally, there is significant variation and uncertainty around the
current waiting time, which makes it challenging to model the current practice
reliably. As indicated by the sensitivity analyses results, one of the key drivers
is the proportion of patients diagnosed in a one stop diagnostic clinic. These
clinics are likely to have a shorter waiting time, but the proportion of patients
on this pathway is unclear. This proportion can be very different at different
sites, and result in different impacts. Additionally, the current wait time is likely
to be underestimated, leading to an overestimation of Al technology impact in
the model. Given these uncertainties, the results should be interpreted with

caution.

Waiting time is inherently dynamic and influenced by a number of factors
including staff shortage, increase demand for services and funding
constraints. Given this complexity, the use of a dynamic model such as
discrete event simulation could be a more appropriate approach in capturing
the patient flow and system capacity. However, this approach is more data-
intensive and the current evidence is not adequate to support this modelling

approach. During this modelling exercise, the EAG identified key data gaps:
e waiting time distribution for echocardiography,

e proportion of inpatients entering the outpatient echocardiography
waiting list
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e proportion of further investigations
e proportion of patients diagnosed in a one stop diagnostic clinic

In order to create an exploratory model, the EAG were required to use
multiple assumptions. Some of this uncertainty that could be addressed by

additional data collection.

While the clinical evidence shows a reduction in echocardiography time with
EchoConfidence, it is unclear whether its introduction would change the
workflow in practice. The EAG have noted different views on the potential
changes driven by Al technology on the echocardiography workflow. Given
the lack of any supporting data, an assumption was made to model the impact
of waiting time with Al in the EAG model based on reduced measurement and
reporting time. Waiting time is a key model driver, and the only input
parameter that changes between the comparator and intervention. It is crucial

to assess this impact in future studies.

The introduction of Al may lead to reduced waiting times, resulting in earlier
diagnosis and treatment. This helps to slow down disease progression and
potentially prevent subsequent acute episodes requiring hospitalisation. A
one-year time horizon was applied in the EAG model, therefore long-term
impacts were not captured. Results showed that there was a modest QALY
gained with EchoConfidence due to earlier diagnosis and fewer
hospitalisations. However, the model is limited by a lack of utility data that
differentiates between untreated and treated HF, limiting the estimation of
QALY differences between these two patient groups. The EAG had to assume
an arbitrary 10% disutility for untreated HF.

While the costs per use for some Al technologies are small, these costs can
become substantial when used at high volume. There are initial
implementation costs such as set-up fee and hardware costs, but the costs
are not large when spread across a few years. These costs vary depending
on the complexity of integrating the Al technology into NHS IT systems.
Therefore, the cost of reversing a decision may vary depending on local

implementation and usage.
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7. Integration into the NHS

Key considerations identified by the EAG related to integration of Al-assisted
echocardiography into the NHS are summarised in this section. This is
informed by evidence from studies identified that were set in the UK,
responses to questions posed by the EAG to SCMs and clinical experts
(Appendix A) and submissions received by NICE from the companies and

professional organisations during this assessment.
Clinical pathway

These Al technologies are designed to work in conjunction with existing NHS
processes, including compatibility with current software and image processing
methods. Changes to the clinical pathway may be required to introduce the
technologies into the NHS, but this is dependent on when and how they are
implemented. These changes are mainly related to procedure time and
resources and are discussed below. Two SCMs commented on the ability of
Al technologies to potentially make echocardiography more accessible for
patients, by facilitating a shift from TTEs being performed in secondary care to
primary or community care. There was limited evidence identified to support
this. Additionally, there was a consensus that, should the technologies be
clinically effective, this would shorten time to diagnosis and initiation of
treatment. There was a lack of health-related outcomes reported in the

evidence base.
Impact on procedure time and resources

The views from SCMs and clinical experts on the anticipated impact on
procedure time and requirement of resources were mixed. The general
consensus from SCMs was that Al-assisted echocardiography technologies
may increase efficiency of procedures, shortening TTE appointment times and
increasing overall capacity. However, one clinical expert commented that they
would expect that introduction of these Al-assisted technologies would reduce
TTE throughput due to additional time being needed for Al analysis and
additional time needed in a typical clinic day to allow for human quality

assurance checks of Al-generated reports. There was some evidence of
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limited quality to support the concept of a reduction in procedure time

following implementation of Al-assisted TTE.

Time required for audit and measurement of outputs was also cited by clinical
experts as a potential increase in resources required following implementation

of these technologies.
IT integration and ongoing technical support

SCMs and clinical experts consistently raised IT integration and infrastructure
in the NHS as a key consideration for implementation of these Al
technologies. One clinical expert commented on IT infrastructure in the NHS
potentially not being advanced enough to support the Al technologies. One

SCM stated that IT integration may be an issue that can be overcome.
Data governance and privacy

Information received from a professional organisation indicated that data
governance and privacy should be considered if the Al technologies are to be
implemented in the NHS. It was stated that transparency over data sharing,

storage and ownership should be clear to patients and NHS organisations.
Staff training

SCMs and clinical experts stated that additional practical training for
healthcare professionals who conduct TTE would be required to successfully
implement the Al technologies. This is supported by information submitted by
the companies for this assessment. It is expected that training may need to
include Al literacy and an understanding of the technologies’ limitations, risk of

errors/bias and how outputs should be monitored.
8. Evidence gap analysis

8.1 Ongoing studies

The EAG identified 7 ongoing studies which were relevant to the decision
problem (Table 23). The TARTAN-HF and SYMPHONY-HF studies are both

RCTs investigating a targeted screening strategy to detect undiagnosed heart
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failure in high-risk patients, where Us2.ai-assisted echocardiography is part of
the interventional arm. The TARTAN-HF study is specific to a population with
diabetes. The Al software is not the focus of these studies, but the EAG has
included them to demonstrate the potential utility of Us2.ai in wider clinical
contexts. Additionally, these two ongoing studies involve the use of Al-
assisted handheld TTE, which may provide evidence to support the use of

Us2.ai in community or primary care settings. The company provided 3 AIC

studies for Us2.ai, [N

Ligence provided 2 ongoing studies (1 AIC). | EGTcKcKcKNGNGNGNGNEEEEEE

, and the other is

evaluating Ligence Heart for assessing left ventricular systolic and diastolic

parameters.

The key study (Almeida et al.: unpublished data 2025 (FEATHER)) for
EchoConfidence included in the clinical evidence review is an interim analysis,
and further data is expected to be reported in December 2025 (n=1200). The
company describe this as a “double-blind evaluation of Al for heart failure
diagnosis and stratification on unselected consecutive patients referred for

evaluation to community cardiology services”.

These studies may add further evidence of the accuracy and validity of the Al
technologies, in comparison to human measurements. However, none of the
studies appear to address the key evidence gaps identified by the EAG, which
are outlined in Section 8.2. Additionally, none of the conference proceedings

identified appear to report outcomes that would address the key evidence

gaps (Appendix C).
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Table 23: Summary of relevant ongoing studies.

Study details, status Population Device, Comparator Outcomes relevant to scope

Us2.ai (n=5 studies)

Study name: Population: patients with Device: Us2.ai Primary outcome(s):
TARTAN-HF — Targeted Assessment In High diabetes at high risk of HF 1. Diagnosis of HFmrEF within six months
Risk patient With dlAbetes to identify Intervention: 2. Diagnosis of HFpEF within six months
Undiagnosed Heart Failure Estimated enrolment: n=1,000 | NT-proBNP and other 3. Diagnosis of asymptomatic LV dysfunction
biomarker testing, as well as (LVEF=<40%) within six months

Study number: NCT05705869 Inclusion criteria: KCCQ-12, ED-5D

e 240 years of age questionnaires, followed by Secondary outcome(s):
Study design: prospective, multicentre, e Provide informed consent | Al-assisted 1. Time to first HF hospitalisation at 1, 2, 5 years
unblinded, RCT e An established diagnosis echocardiography. 2. A_II-cause_ mortality at 1, 2, 5 years

_ of diabetes (type 1 or type . _ 3. Time to flrst occurrence of any component_s of

Location: NHS Greater Glasgow and Clyde, 2) Comparator: Routine care the following clinical composite 1) heart failure
NHS Lanarkshire, UK » . hospitalisation 2) all-cause mortality

* Atleast one additional risk 4. Accuracy of handheld TTE with Al-automated
Status: Recruiting factor for heart failure reporting compared to full cart-based TTE and

(coronary artery disease, manual reporting for the measurement of

Estimated study completion date: 12.2032 persistent or permanent LVEF

AF, previous ischemic or 5

. . bolic stroke, peripheral
Aim: to assess a targeted screening strategy embolic S

to detect undiagnosed heart failure in high-risk arterllal ?lsea;e, C.KD’
patients with diabetes geg;gr) oop diuretic use,

. ICER over a 5-year time-horizon

Exclusion criteria:

e Inability to give informed
consent

e Previous documented
diagnosis of HF

e Currently receiving
scheduled RRT

External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to support diagnosis of heart failure: Early Value Assessment
Date: December 2025 110 of 192


https://clinicaltrials.gov/study/NCT05705869?cond=Targeted%20Assessment%20in%20High-Risk%20paTients%20With%20dIAbetes%20to%20ideNtify%20Undiagnosed%20Heart%20Failure%20(TARTAN-HF)&rank=1&tab=table

Study name:
Screening for earlY Heart Failure Diagnosis

and Management in Primary Care or at HOme
Using Natriuretic Peptides and
echocardiographY "SYMPHONY-HF"
(SYMPHONY-HF)

Study number: NCT05919342

Location: Scotland, Denmark, Canda, USA,
Sweden

Study design: prospective, multicentre,
unblinded RCT

Status: Recruiting

Estimated study completion date:
21.12.2032

Aim: to assess a targeted screening strategy
to detect undiagnosed HF in high-risk patients

e Anyone not suitable to
participate in the trial, in
investigators’ opinion

Population: Patients at high

risk of HF

Estimated enrolment: n=3,904

Inclusion criteria:

e > 40 years of age

e Can provide informed
consent

e Has 2 or more of the
following risk factors
for heart failure:
Coronary artery
disease, established
diagnoses of
diabetes, persistent
or permanent AF,
previous ischemic or
embolic stroke,
peripheral arterial
disease, CKD,
regular loop diuretic
use, COPD

Exclusion criteria:
e Inability to give
informed consent

e  Previous documented

diagnosis of HF

e Current RTT

e Anyone not suitable
to participate in the
trial, in investigators’
opinion

Device: Us2.ai

Intervention:

NT-proBNP blood sample
measurement. Then patients
with elevated Roche NT-
proBNP will undergo a
clinical exam, ECG and Al-
assisted echocardiography.

Comparator:
Routine care

Primary outcome(s):
1 — diagnosis of HF within 6 months

Secondary outcome(s):

1 — Diagnosis of HFrEF within 6 months

2 — People diagnosed with HFrEF receiving
GDMT within 6 months

Other outcome(s)
1 — Diagnosis of HFmrEF or HFpEF within 6

months

2 — People with HFmrEF or HFpEF receiving
SGLT2i therapy within 6 months

3 — Diagnosis of asymptomatic LVEF (<40%)
within 6 months

4 — Time to first HF hospitalisation at 1,2 and 5
years

5- All-cause mortality at 1,2 and 5 years

6 — ICER over a 5-year time horizon

7 — number of patients in the NT-proBNP / echo
group with echo features of potential amyloid as
assessed by the Us2.ai algorithm report
conclusion of ‘amyloid to be considered’
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Ligence Heart (n=2 studies)

gl ]

]

]

]
Study name: Population: 100 cases with Device: Ligence Heart Primary outcome(s):
Automated Left Ventricular Analysis in reported LV biplane EF. 1. Agreement between automated and human
Real-World 2D Transthoracic Intervention: automated measurements (RMSE, Pearson correlation
Echocardiography Estimated enrolment: NR echocardiography analysis coefficient (r) and bias
Study number: NR Comparator: NR

Inclusion criteria: NR
Location: NR
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Exclusion criteria: NR
Study design: NR

Status: NR
- publication expected 2025 Q4

Estimated study completion date: NR

Aim: to evaluate an investigational automated

2D TTE software (Ligence Heart) for

assessing LV systolic and

diastolic parameters in routine clinical cases.
Abbreviations: AF: atrial fibrillation; Al: artificial intelligence; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; ECG:
electrocardiogram; EF: ejection fraction; EQ-5D: EuroQol 5 dimension 5 level questionnaire; GDMT: guideline-direct medical therapy; GLS: global longitudinal
strain; HF: heart failure; HFmrEF: heart failure with mildly reduced ejection fraction; HFpEF: heart failure with preserved ejection fraction; HFrEF: heart failure
with reduced ejection fraction; ICC: intraclass correlation coefficient; ICER: incremental cost-effectiveness ratio; KCCQ-12: Kansas City Cardiomyopathy
Questionnaire; LV: left ventricle; LVEF: left ventricular ejection fraction; NHS: national Health Service; NR: not reported; NT-proBNP: N-terminal pro-B-type
natriuretic peptide; Q4: fourth quarter; RCT: randomised controlled trial; RMSE: root mean square error; RRT: renal replacement therapy; SGLT2i: sodium-
glucose transport 2 inhibitors; TTE: transthoracic echocardiogram.
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8.2 Evidence gap analysis

Table 24 summarises the evidence gaps relating to groups of outcomes in the
scope of this assessment for each technology. GREEN indicates there is good
evidence available, indicates there is partial evidence available, RED

indicates there is no evidence available.

Table 24: Evidence gap analysis

Outcomes EchoGo Ligence EchoConfidence
Heart Failure Heart
Diagnostic test RED
accuracy
Diagnostic GREEN GREEN RED RED

performance (HF
detection/classification)

Validation against GREEN
manual measurements

Clinical and patient- RED RED RED RED
reported outcomes

Procedural outcomes RED RED
(including changes to
procedure time)

Costs and resource use RED RED RED RED

Changes to staff or RED RED RED RED
setting for delivering
echocardiography

Costs of Al license GREEN GREEN GREEN
Implementation RED GREEN
Training and support GREEN GREEN
Cost of downstream RED RED RED RED

diagnostic test

Adverse events RED RED RED RED

Abbreviations: HF: heart failure.

Economic modelling inputs
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Across all the technologies, there are gaps relating to the economic modelling

including:

e Downstream treatment costs

e Ultilities associated with untreated HF

e Utilities associated with treated HF

8.3 Key areas for evidence generation

Across the evidence base, the main outcomes reported are measures of

diagnostic accuracy and clinical validation. Key gaps identified by the EAG as

priorities for evidence generation are summarised in Table 25.

Table 25: Areas for evidence generation.

Evidence gap

Recommended outcomes to be collected

Impact on procedure
time

Time required for automation of echocardiographic
measurements

Time taken for automation of echocardiography report
Overall procedure time

Impact on clinical
outcomes

Time to receive HF diagnosis
Time to initiation of treatment for HF
Patient-reported health-related quality of life

Validity in cohorts
representative of UK
population

Diagnostic test accuracy

Interchangeability, agreement and correlation with human
measurements

Diagnostic performance (in detecting and classifying HF)

Acceptability of Al
tool

Ease of use
Confidence in accuracy of automation

Feasibility of implementation in different settings (primary
and secondary care) with staff of varying skill levels

Adverse events

Inaccurate measurements, leading to incorrect diagnoses
Rate of Al failure to analyse images

Abbreviations: HF: heart failure; UK

: United Kingdom
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Where evidence is generated for the technologies, sufficient detail should be

collected and reported in relation to:
e The demographics of included participants
e The type of setting (primary/community or secondary care)

e The staff involved in echocardiogram acquisition, analysis and

reporting and their level of expertise
e The specific generation or version of technology being investigated

Where possible, studies should be prospective in design, to minimise the
impact of selection bias and potential confounding. However, retrospective
designs where previously acquired TTE images are analysed by Al could be
beneficial in eliminating any potential clinical risk to patients. Ideally, operators
participating in retrospective studies such as these should be blinded to the
original diagnostic results (including measurement values) associated with the

TTE images.
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Appendix A: Summary of responses from SCMs and

clinical experts

Echocardiography procedure

Q1: What stages make up an echocardiography appointment? E.g. image acquisition,
taking measurements, annotations/reporting etc.

SCM Consultant Confirming patient identity, confirming indication for
responses cardiologist echo, explaining to patient regarding procedure,
positioning patient, optimising device settings, image
acquisition, taking measurements, reporting, if clinician
performing echo- explaining result to patient
Consultant The patient comes into the room, give verbal consent
cardiologist for the procedure, undresses and puts on a hospital
gown, lies on the examination couch in the left lateral
position, the sonographer attaches a 3 lead ECG to
the patient and places an echo probe in multiple
places on their chest wall to acquire the images
needed for a full echocardiogram. Measurements may
be made on the machine in real-time or in post-
processing once the patient has left the consultation.
Once the patient has dressed and left the room, the
sonographer transfers the images from the echo
machine to a computer where they then review the
images, add necessary measurements and complete a

report.
Consultant Referral for an echo. Triaging the request. Scheduling
cardiologist the request. Information to patient. Reminder for

patient. Scanning the patients. Measurements during
scanning then post procedure more complex
measurements (3D etc). Reporting. Filing the report on
electronic record and sending to referrer / GP

GPwSI in cardiology | Patient check-in, image acquisition, measurements,
annotations, summary reporting

CE Cardiac clinical Checking the referral and relevant clinical details.
responses | scientist and cardiac | Gaining patient blood pressure, height and weight.
physiologist Patient identification, explanation and preparation. Set

up of machine with patient details. Image acquisition,
measurements, reporting, uploading / posting reports.
Where patients are unwell / significant pathology is
identified, a review maybe necessary, this would
include doing a blood pressure, 12 lead
electrocardiogram, being reviewed by a Medic (which
often requires long waits as it is typically the on-call
Medic who could be anywhere in the hospital dealing
with multiple patients at any one time — on averaged
waiting times can around 1-2 hrs). This review will then
need documenting which is typically done on the
echocardiogram report.

Q2: Are these tasks all conducted ‘live’ during an appointment, or would some be
conducted post-appointment?
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physiologist

SCM Consultant Reporting usually performed (particularly by
responses cardiologist physiologists after appointment)
Consultant Some measurements and the writing of the report are
cardiologist performed after the appointment is complete and the
patient has left.
Consultant Normally all acquisition measuring reporting and filing
cardiologist done within the 45 minute slot
GPwsSI in cardiology | Mostly live; some review and clinical reporting done
after.
CE Cardiac clinical The majority are conducted ‘live’. Some
responses | scientist and cardiac | echocardiographers prefer to do measurements post

scanning but within the allotted 45-60mins
appointment time. We do not suffer the same reporting
delays that X-ray, CT, CMR have.

Q3: Roughly how long do these tasks/stages take? Please give approximate times, using

physiologist

minutes.
SCM Consultant Confirming identity, indications, explaining procedure,
responses cardiologist positioning patient, optimising device settings) — 10
minutes. Image acquisition 25 minutes, taking
measurements, 10 minutes, report 5 minutes
Consultant Depending on the complexity of the echocardiogram,
cardiologist the appointment takes 45mins to 1 hour. Scanning the
patient takes between 20-40 minutes.
Consultant Scanning reporting and filing results around 45
cardiologist minutes. Triaging and scheduling maybe 15 mins
GPwSI in cardiology | Total 30—45 min: acquisition 20—-30 min, reporting 5—
10 min.
CE Cardiac clinical 45-60 minutes.
responses | scientist and cardiac

Q4:

A. Which healthcare professionals (and associated banding) are involved in

echocardiography appointments?

B. Are the same healthcare professionals involved in post appointment analysis and

SCM
responses

reporting?
Consultant A. Receptionist, physiologist, cardiology registrar,
cardiologist consultant
B. physiologist, cardiology registrar (if performing
echo), consultant (if performing echo)
Consultant Both doctors and sonographers are involved in the
cardiologist appointments, both in scanning and post appointment
analysis and reporting.
Consultant Scheduling band 3 or 4
cardiologist Scanning and reporting physiologist (band 6 7 or 8)

GPwSI in cardiology

Cardiac physiologist (Band 6-7), senior physiologist
(Band 7—8a)

Usually same physiologist; senior/cardiologist may
over-read.
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CE
responses

Cardiac clinical
scientist and cardiac
physiologist)

A. echocardiographers - band 7/ band 8a. Assistant
technical officers — band 2 or 3.

B. Only accredited echocardiographers — band 7/band
8a.

Q5: What is the average number of appointments in a single clinic/session? Please specify

how long a clinic or session is.

physiologist

SCM Consultant 4-5 appointments
responses cardiologist
Consultant This is very variable between hospitals. A clinic
cardiologist session is usually half a day, so 4 hours, and the
sonographer would be expected to perform between 5-
6 scans in this time.
Consultant Each simple echo is normally 45 minutes. Some more
cardiologist complex ones (eg ACHD) may be an hour. So 10-14 a
day depending on length of the day
GPwSI in cardiology | 6-8 studies in a 4-hour session; 12—16 per full day
CE Cardiac clinical Morning clinic: 8am — 12pm. 6 patients. This is for
responses | scientist and cardiac | outpatients and inpatients.

Afternoon clinic: 12.30pm-4pm. 4 patients.

The intervention: Al-assisted echocardiography

Q6: How would the Al technologies in scope alter the workflow of an echocardiography

appointment?

SCM
responses

Consultant
cardiologist

- Al can aid image acquisition by trained healthcare
professionals (GP, specialist nurses, cardiologist) in
the community to acquire point of care images and
the report without 15 minutes so prognostic life
saving HF therapies can be started promptly

- Al can also reduce the time required for image
acquisition and reporting by physiologists

- Al echocardiography can also help speed up image
acquisition for patients requiring repeat focussed
echo’s (post GDMT optimisation to decide about
device therapy, cardio oncology patients receiving
chemo)

Consultant
cardiologist

Automated measurements and reporting using Al may
shorten the appointment time.

Consultant
cardiologist

Most of the technologies would automate some of the
measurements and reporting, potentially shortening
the time needed to do an echo. There is also the
possibility of point of care or community echo,
potentially with abbreviated protocols and alternative
workforce

GPwsSI in cardiology

Al gives view recognition, auto-measurements, draft
reports — faster, more consistent workflow.
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CE
responses

Cardiac clinical

scientist and cardiac

physiologist

It would be used within the reporting phase of the
echocardiogram workflow. Consideration would be
needed as to how this is implemented some of the Al
technologies take up to 20-30 mins for analysis.
Currently this would mean that the appointment time of
45-60mins would need extending. Alternatively, clinics
would be shortening to account for checking the Al
generated report at a later point in the day. Either way
this would reduce the echocardiography through put.

Q7: Are there different generations of the Al technologies? If yes, would you consider
evidence to be generalisable across different generations?

SCM Consultant - Yes 1st generation devices only report EF
responses cardiologist - 2nd generation devices have Doppler and 3rd
generation devices have GLS, amyloidosis reporting
Consultant There are different types of Al software and evidence
cardiologist is not generalisable between them. For example,
automated measurements can be checked by the
sonographer and altered if incorrect, whereas other
algorithms may not be so explainable and therefore
need more robust evidence to be put in practice. Each
generation requires its own validation, risk
assessment, and governance frameworks.
Consultant | think each generation needs to be judged on its
cardiologist individual evidence
GPwSI in cardiology | Yes, newer generations are more capable; evidence
partly generalisable.
CE Cardiac clinical Unsure.
responses | scientist and cardiac

physiologist

Q8: How do these Al technologies differ from existing software that work to automate
measurements in echocardiography?

SCM
responses

Consultant
cardiologist

Al technologies require less number of images to be
acquired to still generate a full report, can also guide
the image acquirer in real time regarding probe
position to aid image acquisition. Certain Al echo
providers are also validated for HFpEF and
amyloidosis

Consultant
cardiologist

Traditional software performed narrow specific tasks
such as boundary detection of doppler measurements.
Al algorithms, particularly those using deep learning,
can perform broader tasks such as automated view
classification, segmentation of cardiac structures,
measurement prediction. The crucial difference is that
Al models need validation on external datasets to
ensure good performance.

Consultant
cardiologist

Existing software is really very limited and is more of
an aid to measure for example volumes, but still needs
clinical input to adjust as necessary

GPwsSI in cardiology

New Al automates full workflow, not just single
measurements.
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CE Cardiac clinical Ultrometics and US2.ai use details within the image to
responses | scientist and cardiac | diagnosis heart failure with preserved ejection
physiologist particularly for the diagnosis of cardiac amyloidosis.
How of the condition is detected is unknown due to the
Al algorithm that is used.

For the other Al technologies, it is my understanding
that they automate the measurements that
echocardiographers would normally do. These would
still need checking to ensure accuracy and prevent
misdiagnosis. Additionally, it is known that in poor
image quality, Al analysis takes longer and is less
reliable.

Implementation

Q9: Would there be extra training or resources required to successfully implement these
technologies into the care pathway?

SCM Consultant Yes training of physiologists to use Al echo, training of
responses cardiologist non-physiologists for image acquisition, IT integration
via Cloud or PACS for transfer or storage of images

Consultant Doctors and sonographers would need training in
cardiologist understanding how Al generates results, including it's
assumptions and limitations, and be able to recognise
errors and bias. They would need an understanding of
how models are trained, validated and updated as well
as how they should be monitored and audited.

Consultant Yes
cardiologist
GPwSI in cardiology | Brief training, SOP updates, IT integration, governance
checks
CE Cardiac clinical Additional training will be required for all
responses | scientist and cardiac | echocardiographers to ensure they are aware of the

physiologist basics of Al and data literacy. This will improve
confidence in using Al which will support its clinical
adoption.

There also needs to be training to ensure
echocardiographers maintain critical analysis skills to
prevent over reliance on Al. This will reduce inaccurate
results being provided.

Consideration to IT infrastructure will be needed to
ensure the technology can be used equitably across
the UK. It also needs to be timely and seamless, as we
know NHS IT systems are notoriously slow and
fragmented. If this continues, there is a high risk that
the Al technology will be brought, implemented but not

used.
Q10: Do you foresee any issues with implementing these technologies into the care
pathway?
SCM Consultant IT integration but this is achievable
responses cardiologist
Consultant Increased resources would need to be deployed to
cardiologist ensure staff are adequately trained and that there are
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robust systems in place to audit and monitor the Al
technologies.

Consultant Reassurance for clinical staff that it is robust
cardiologist technology

GPwSI in cardiology | interoperability, over-reliance, accountability, cost,
data security.

CE Cardiac clinical The technologies being considered here will ultimately
responses | scientist and cardiac | not improve the detection of patients with heart failure
physiologist with reduced ejection fraction as none are designed to

assess this. There is It will also not reduce the
echocardiography appointment time. In some
instances, the use of Al will increase the
echocardiography pathway time. For instance, one of
the companies requires 20-30mins for results.
Therefore, at some point during that working day, time
will be needed to review the results and action the
outcome which will reduce patient activity.

Additionally, for some of the technologies, only one
image is required for the assessment of heart failure
with preserved ejection fraction. However, if only one
image is acquired there is a high risk that heart failure
with reduced ejection fraction or other significant
pathology will be missed. If the echocardiography
workflow is reduced to 10mins to acquire one image. It
will ultimately lead to a patient requiring multiple
echocardiograms (a focused one and a complete one).
This will lead to increased waiting times for all
echocardiography services. It is also unclear whether
patients would be happy for multiple trips for the same
test.

IT infrastructure and funding to implement Al
technologies maybe an issue. A national approach and
commitment to funding to upgrade IT and implement
Al across all healthcare settings will be important.
Otherwise, it could lead to worsening of healthcare in
poorer regions.

Outcomes

Q11: Which outcomes would you expect these technologies to improve or impact?
Please consider both patient and system impacts.

SCM Consultant The patient impact will be the biggest as if Al image
respoNses cardiologist acquisition and reporting can be performed in
community/ GP surgeries/ A&E (7 days a week 24
hours), Critical Care settings (7 days, 24 hours) so
prognostic therapies are not delayed , this will prevent
patient adverse outcomes such as rehospitalisation,
death or poor quality of life
System impact — quicker reporting will allow greater
number of patients to be accommodated into echo
lists, physiologists to have more time for complex
echo’s (stress echo, 3D echo, TOEs), reduced waiting
lists, health economic benefits by preventing
hospitalisations and mortality, and leading to improved
quality of life
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Consultant There is a chance that if the Al performs well, the
cardiologist diagnostic accuracy of echo would be improved. The
time taken for a scan and report may be reduced,
saving money for trusts and reducing pressure on

staff.
Consultant More efficient patient flows. More patients scanned
cardiologist and in more suitable situations (primary care, A and E,

CDHs, one stop clinics, surveillance scans)

GPwsSI in cardiology | Faster diagnosis, fewer repeats, improved throughput
and consistency.

CE Cardiac clinical The Al technologies which focus on heart failure with
responses | scientist and cardiac | preserved ejection and the detection of amyloidosis
physiologist will be valuable. These patients are often difficult to

diagnose and on averaged have multiple
echocardiograms and wait 2 years for a diagnosis.
Anything to improve this will improve access to
echocardiography services and provide patients with a
diagnosis and access to treatment quicker.

The issues surrounding the detection of heart failure
with reduced ejection fraction are more challenging
and | don'’t feel that the current Al technologies will
help as the challenges more involve accessing the
echocardiography service and delays in medics/heart
failure nurses picking up the report, actioning an
appointment and the patient then being seen in the
heart failure clinic.

There are now “one stop” clinics for patients with a
BNP >2000 which reduces this wait however the
funding to support this means often only one
echocardiographer is able to support this service.
There is also a need for more heart failure nurses to
improve access to heart failure clinics.

Patient Pathway (chronic heart failure)

Q12: Could you describe the patient pathway from echocardiography referral to getting a
diagnosis of chronic heart failure?

SCM Consultant Assessing patient’'s symptoms and signs for heart
responses cardiologist failure in primary care by a clinician. Performing
NTproBNP, baseline blood tests and ECG. Based on
the above referring for echocardiogram to HF
specialist clinic. Patient assessment by HF specialist
Performance of echocardiogram with report.
Interpretation of echo report and patient assessment
by HF specialist to confirm or refute diagnosis of heart

failure
Consultant Once the patient has had their echocardiogram, the
cardiologist report is made available to the referring doctor who

then contacts the patient with the next management
steps. Depending on the results this may be referral to
a cardiologist in outpatient clinic or even hospital
admission if there is acute decompensation.
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Consultant
cardiologist

Clinical suspicion, then measurement of NTproBNP
(blood test). If raised NTproBNP referral to one stop
clinic for echo and clinical review within 2 or 6 weeks
depending on how high the bnp is. Though very few
areas meet these timelines.

GPwSI in cardiology

Referral —» NT-proBNP — echocardiogram —
specialist review — diagnosis — treatment start.

CE
responses

Cardiac clinical
scientist and cardiac
physiologist

Echocardiogram referral — triage to within 4 or 6 weeks
depending on BNP — If no relevant details referral
rejected until details provided — echocardiogram —
report — report posted out to referral team and
uploaded onto patient electronic notes (these systems
typically do not alert the referring team that the echo
report is available to review and often relies on paper
copy being received in the post) — if new finding of
heart failure with reduced ejection fraction, email to
heart failure team to inform them (done at time of
echocardiogram) .

Currently we are not allowed to provide results to
patients so the patient would remain unaware.

Q13: Are you aware of any sources that report waiting times for echocardiography? If no,
please use your own knowledge to provide a “ballpark number” or a range for the following

A. The wait time for an echocardiogram from initial referral.

B. The wait time for a formal diagnosis following echocardiography.

C. If a one-stop diagnostic clinic for heart failure is available in your organisation, how
long do patients wait for an appointment in this clinic, from referral?

waiting times:

SCM
responses

Consultant
cardiologist

The wait time from initial referral in community for
suspected heart failure varies in different parts of the
country from few months to up to 8-9 months

My organisation 2-6 weeks

Wait time after echocardiography can be a a further 1
month after diagnostic clinic appointment

One-stop diagnostic clinic available selectively in my
organisation (my clinic where | perform echo and a few
other slots)

Consultant
cardiologist

a.This is variable across trusts and | am currently
moving between several trusts. My primary workplace
aims to complete the echo within 8 weeks of the
referral. The wait time for formal diagnosis is entirely
dependent on the referring doctor and their individual
practices.

b.From my own perspective, | check my own results
every 1-2 days when working, so the maximum wait
time would be 2 weeks if | happened to be at the
beginning of a period of annual leave. If there was an
abnormal report which needed immediate action all
trusts | have worked at have a pathway which allows
the sonographer to escalate the report to an on-call
doctor.

c.| am unaware of such a pathway.
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Consultant Waiting time for a routine echo in my region varies
cardiologist from 6 to around 35 weeks.

For one stop clinics average wait is around 8 — 10
weeks

GPwSI in cardiology | 13a) Echo wait 6—12 wks.

b) Diagnosis 1—4 wks.

¢) One-stop clinic 4 wks.

CE Cardiac clinical NHS England diagnostic waiting times and activity
responses | scientist and cardiac | report
physiologist Approximate waiting times from my experience:

a. 10-12 weeks

b. Diagnosis is available immediately (or within a
week if a review of the echo is need at an
MDT). The time to diagnosis will depend on
the referring team pick up with results. This
can be up to 6 -12 months after the
echocardiogram and depends on the backlog
of the referring team.

c. Inour one stop clinic, patients with a BNP
>2000 are typically waiting 6-10weeks.
Patients with a BNP 400-2000 are waiting >10
weeks.

Q14: A. Can you estimate the proportion of patients requiring cardiac MRI investigation for

heart failure diagnosis?
B. How long do patients wait for a cardiac MRI from initial referral?

SCM Consultant 80%
responses cardiologist 3 -8 months (average 5-6 months)

My organisation 2-3 months

Consultant Unknown

cardiologist

Consultant Probably 30-40% will get an MRI at the point of

cardiologist diagnosis, but ongoing monitoring is normally done by
echo. In my trust waits are less than echo (around 6
weeks)

GPwSI in cardiology | a) MRI needed ~10-15%.

b) MRI wait 10—12 wks.

CE Cardiac clinical | A estimated at less than <1%. If echocardiography is
responses | scientist gnd c_ard|ac limited, a contrast left ventricular opacification test
physiologist using echocardiography would be the next test.

B. Estimated at 6 months.

Q15: Can you estimate the proportion of patients who would have acute onset of
symptoms while waiting for an echocardiography appointment?

SCM Consultant 30-35% (AED attendance, hospitalisation and
responses cardiologist mortality), 50-60% have acute worsening of symptoms
leading to worsening quality of life, time off work etc.
Consultant Unknown, but if there is more than an 8 week wait for
cardiologist an echo, then | estimate that 5% patients with heart

failure might experience an acute decompensation
prior to echo.
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Consultant Difficult to know, but given the fact most heart failure
cardiologist patients are diagnosed as an inpatient probably quite
high (hard to know in that group how many had had an
echo ordered)

GPwSI in cardiology | About 5-15% deteriorate while waiting

CE Cardiac clinical <1%. In my experience patients either are
responses | scientist and cardiac | symptomatic or remain asymptomatic whilst waiting for
physiologist an echocardiogram. There are very few instances

where | need to get patients reviewed / admitted at the
point of the echocardiography due to acute onset of
symptoms whilst waiting for an appointment.

Q16: Could you comment on whether the description of appointments applicable to each
patient group, outlined in the 2018 NICE Guideline for Chronic Heart Failure (NG106), is
representative of current practice?

See Figure 1 at the foot of this table.

SCM Consultant -
responses cardiologist

Consultant This seems correct except for the nurse appointments.

cardiologist This number in the first years seems higher than what
| have experienced in practice although this is likely
variable from trust to trust.

Consultant It is a reasonable guide but there are more treatments

cardiologist for hfpef now so they probably need more

appointments. For HFREF we now push for more rapid
uptitration so may not need 10 HF nurse appts. Lot of
variability depending on pt and their comorbidities
GPwSI in cardiology | NICE NG106 still broadly accurate; timing targets often

missed.
CE Cardiac clinical I would say neither is representative of current
responses | scientist and cardiac | practice
physiologist HF-REF: patients would be seen by heart failure

nurse; this may include 1-3 appointments to titrate
medications. Once stable patient would be discharge
back to GP with no further follow-up. There may be
instances where younger patients are reviewed in
cardiology clinics, but this is not reflective of all
patients.

| am not aware of patients having that many
appointments.

HR-PEF: These patients typically have an
echocardiogram and are then referred back to the GP
for management with diuretics and co-morbidities
management. They wouldn’t have the appointments
are listed in the guidance.

Patient Pathway (acute heart failure)

Q17: Please read the below description (in italics) and comment on whether you think this
is an accurate representation of the acute heart failure pathway. If not, please elaborate:

“All patients with acute onset of symptoms would be hospitalised. During their inpatient
stay, they receive echocardiography and MRI (if needed), then receive a diagnosis and
start treatment.”
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physiologist

SCM Consultant Depending on the expertise of centres (such as ours
responses cardiologist about 60% of acute heart failure can be managed in
an ambulatory setting or virtual ward (at home)
Consultant This is an accurate representation of the acute heart
cardiologist failure pathway.
Consultant | think this depends on the setting. If the patients get
cardiologist admitted under a cardiology team this is probably
correct. If managed in A and E / acute medical unit or
care of the elderly beds then the treatment is perhaps
more variable
GPwsSI in cardiology | Mostly accurate, but MRI rarely acute; some managed
ambulatory.
CE Cardiac clinical | think that is accurate of the majority of patients.
responses | scientist and cardiac | Although whether patients are hospitalised is down to

the patient, so you could have patients that are treated
at home and attend urgent outpatient appointments.

Q18: A. Would some of these hospitalised patients be discharged without having received
an echocardiogram during their hospital stay, and be put onto the waiting list for an

outpatient echocardiography?
B. If yes, roughly what proportion?

physiologist

SCM Consultant About 60% patients are discharged from A&E or
responses cardiologist hospital without having an echocardiogram AHF full
report.pdf
Consultant At my current trust this does not occur. However |
cardiologist have heard of this happening in other trusts although |
am unsure of the proportion of patients this affects.
Consultant Yes , but again very variable depending on the
cardiologist hospital / ward / team
Overall across the country maybe 30% but that is a
guess
GPwSI in cardiology | a) Yes.
b) Around 10-20%.
CE Cardiac clinical Yes, this could happen if it was deemed that the
responses | scientist and cardiac | patient was well to go home but would be very rare.

Proportion wise would be <1%.

Q19: What is the entry point to the care pathway for acute heart failure patients? e.qg.

emergency department, urgent referral from GP, other.

physiologist

SCM Consultant Entry points A&E, GP, community HF teams, from
responses cardiologist other clinics
Consultant Emergency department, GP, other specialties,
cardiologist ambulatory care units
Consultant The entry point is nearly always A and E. If they see
cardiologist the GP first they are still normally directed to A and E
GPwsSI in cardiology | Usually via ED or urgent GP referral.
CE Cardiac clinical Urgent referral from GP, IP requests.
responses | scientist and cardiac
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Q20: Do you have any other comments or information that you think would be helpful for

our assessment?
SCM Consultant As also discussed previously the NICE EVA Topic is
responses cardiologist regarding Al assisted echocardiography to aid the

diagnosis of HF. The above questions largely focus on
the performance of echocardiography without enough
emphasis regarding the diagnostic pathway of HF
which is performed by HF specialists and the main
issues which are due to delays in diagnosis of HF due
to the lack of availability of echocardiography promptly
in primary care and community settings in order for
prompt initiation of life-saving HF treatments. There
are also similar delays in echocardiography in the
hospital setting particularly if the patient presents on
Friday g with acute HF and echocardiogram and
prognostic therapies can be delayed for 4-5 days. The
failings due to delays in hospital setting have been
highlighted in the NCEPOD report AHF full report.pdf
Consultant -

cardiologist

Consultant -
cardiologist

GPwsSI in cardiology | No

CE Cardiac clinical N/A
responses | scientist and cardiac
physiologist

Abbreviations: A&E: accident and emergency; ACHD: adult congenital heart disease; AED: accident
and emergency department; Al: artificial intelligence; CE: clinical expert; CMR: cardiac magnetic
resonance; CT: computerised tomography; ECG: electrocardiogram; ED: emergency department; EF:
ejection fraction; GDMT: guideline-directed medical therapy; GLS: global longitudinal strain; GP: general
practitioner; GPwSI: general practitioner with special interest; HF: heart failure; HFpEF (HR-PEF): heart
failure with preserved ejection fraction; HFrEF (HF-REF): heart failure with reduced ejection fraction;
MDT: multidisciplinary team; MRI: magnetic resonance imaging; N/A: not applicable; NT-proBNP: N-
terminal pro-B-type natriuretic peptide; SCM: specialist committee member; TOE: trans-oesophageal

echocardiogram.

External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to
support diagnosis of heart failure: Early Value Assessment
Date: December 2025 140 of 192


https://www.ncepod.org.uk/AHF%20full%20report.pdf

Appendix B: Search strategies and PRISMA diagram

The EAG performed a search for clinical evidence as directed by the scope.
The following bibliographic databases were searched on 22nd and 23rd
September 2025 from inception using a combination of free-text terms and
controlled vocabulary: MEDLINE via Ovid, Embase via Ovid, Cochrane
Library (CDSR and CENTRAL), and International HTA database (INAHTA).
Two clinical trial registries were searched for ongoing and unpublished trials:
ClinicalTrials.gov and the International Clinical Trials Registry Platform
(ICTRP), and the pre-print server medRXxiv was searched for pre-prints. The
EAG also searched the companies’ websites for literature. The Medicines and
Healthcare products Regulatory Agency’s (MHRA) alerts, recalls and safety
information and the FDA MAUDE database were searched for adverse

events.

885 records were identified through the EAG database searches. 107 records
were identified via searching company websites. Following de-duplication, 776
records were then sifted at title and abstract stage, where 356 records were
excluded. 420 records were sifted at full-text stage. Records supplied by the
companies were deduplicated against the results of the EAG database and
company website searches, resulting in 32 additional records. 17 key studies
were included (reported across 27 publications), 7 ongoing trials were
included and 21 additional studies reported only in conference proceedings

were included in an appendix (Appendix C) (Figure 3).

All records excluded at the full text screening stage are listed in Appendix F

with reasons for exclusion.
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Identification of studies via databases and company websites

Identification of studies via other methods

=
o ; : .
= Records identified from: Recordls r.emoved before Records identified from:
i Databases (n = 885) o | Screening: Company requests for
£ . _ w Duplicate records removed evidence (n = 32)
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A 4 h 4
Records screened Records excluded Records screened Records excluded
—
(n=776) T 7| (n=356) (n=32) (n=0)
A4 l
Reports sought for retrieval »| Reports not retrieved Reports sought for retrieval .| Reports not retrieved
> (n =420) | (n=0) (n=32) | (n=0)
=
@
2
), v v
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Figure 3: PRISMA Study Selection Flow Diagram.
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Database and company website searches.

Search date Database / company website Searcher Number of
hits
22/09/25 Medline ALL (Ovid) MK 161
22/09/25 Embase (Ovid) MK 614
23/09/25 Cochrane Library CDSR MK/SW 0
Cochrane Library CENTRAL 35
23/09/25 International HTA database (INAHTA) MK 1
23/09/25 ClinicalTrials.gov MK 32
23/09/25 International Clinical Trials Registry MK 11
Platform (ICTRP)
23/09/25 medRxiv MK 31
Total from databases before deduplication 885
27/08/25 Ultromics (The Proof) AR 45
28/08/25 Us2.ai (Publications) AR 45
28/08/25 EchoConfidence (Publication List) AR 8
28/08/25 Ligence (Research highlights) AR 9
Total from websites before deduplication 107
Total from databases and websites before deduplication 992
Total from databases and websites after deduplication 776
Adverse event searches.
Device Query Hits
MHRA 23/10/25 (no filters)
EchoConfidence (MyCardium) EchoConfidence 0
MyCardium 0
EchoGo Heart Failure (Ultromics) EchoGo 0
Ultromics 0
Ligence (Ligence UAB) Ligence 0
Us2.v2 (Us2.ai) Us2.v2 25 (0 relevant)
Us2.ai 4 (0 relevant)

FDA MAUDE 23/10/25 (simple search, all years)

EchoConfidence (MyCardium) EchoConfidence 0
MyCardium 0
EchoGo Heart Failure (Ultromics) EchoGo 0
Ultromics 0
Ligence (Ligence UAB) Ligence 0
Us2.v2 (Us2.ai) Us2.v2 0
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Us2.ai 0

Search strategies

Ovid MEDLINE(R) ALL <1946 to September 19, 2025>

# Query Hits
1 EchoGo*.mp. 10
2 Ultromics*.mp. 5
3 ligence*.mp. 6
4 "Us2.ai*".mp. 9
5 "Us2.v2*".mp. 0
6 "eko.ai*".mp. 0
7 "A*STAR Biomedical Research Council".mp. 3
8 ("A*STAR" and "Exploit Technologies").mp. 1
9 EchoConfidence*.mp. 0
10 MyCardium*.mp. 12
11 or/1-10 40
12 exp Heart Failure/ 161668
13 ((heart or cardiac) adj2 (failure or insufficiency or 258642
decompensation)).tw.
14 (HFrEF or HFmrEF or HFpEF).tw. 10384
15 or/12-14 297576
161 | ((echocardi* or "echo cardi*" or "transthoracic cardi*" or ((heart or 905
cardi*) adj2 (ultraso* or sonogra*))) adj10 (Al or "artificial
intelligence*" or "deep learning" or "machine learning" or "neural
network*" or CNN or DNN or "augmented intelligence" or
"automated recognition")).tw.
17 15 and 16 132
18 11 or 17 170
19 limit 18 to english language 165
20 exp animals/ not humans.sh. 5376628
21 19 not 20 161
Embase <1974 to 2025 September 18>
# Query Hits
1 EchoGo*.mp. 29
2 Ultromics*.mp. 21
3 ligence*.mp. 25
4 "Us2.ai*".mp. 29
5 "Us2.v2*".mp. 1
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6 "eko.ai*".mp. 7

7 "A*STAR Biomedical Research Council".mp. 5

8 ("A*STAR" and "Exploit Technologies").mp. 1

9 EchoConfidence*.mp. 0

10 MyCardium*.mp. 32

11 or/1-10 126

12 exp heart failure/ 766637

13 ((heart or cardiac) adj2 (failure or insufficiency or 442290
decompensation)).tw.

14 (HFrEF or HFmrEF or HFpEF).tw. 24027

15 or/12-14 836026

16 ((echocardi* or "echo cardi*" or "transthoracic cardi*" or ((heart or 1664
cardi*) adj2 (ultraso* or sonogra*))) adj10 (Al or "artificial
intelligence*" or "deep learning" or "machine learning" or "neural
network*" or CNN or DNN or "augmented intelligence" or "automated
recognition")).tw.

17 15 and 16 520

18 11 0or 17 630

19 limit 18 to english language 614

Cochrane Library (23/09/2025)

ID Search Hits

#1 (EchoGo*) 5

#2 (Ultromics™) 4

#3 (ligence*) 2

#4 ("Us2.ai") 4

#5 ("Us2.v2") 0

#6 ("eko.ai") 0

#7 ("A*STAR Biomedical Research Council") 0

#8 ("A*STAR" and "Exploit Technologies") 0

#9 (EchoConfidence®) 0

#10 | (MyCardium*) 1

#11 | #1 OR#2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 | 12

#12 | MeSH descriptor: [Heart Failure] explode all trees 15009

#13 | ((heart or cardiac) NEAR/1 (failure or insufficiency or 40910
decompensation)):ti,ab,kw

#14 | (HFrEF or HFmrEF or HFpEF):ti,ab,kw 2803

#15 | #12 OR #13 OR #14 40981

#16 | ((echocardi* or (echo NEXT cardi*) or (transthoracic NEXT cardi*) or | 67

((heart or cardi*) NEAR/1 (ultraso* or sonogra*))) NEAR/9 (Al or
(artificial NEXT intelligence™) or "deep learning" or "machine

External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to
support diagnosis of heart failure: Early Value Assessment
Date: December 2025

145 of 192




learning” or (neural NEXT network*) or CNN or DNN or "augmented
intelligence" or "automated recognition")):ti,ab,kw
#17 | #15 AND #16 27
#18 | #11 OR #17 35
CDSR 0
CENTRAL 35
INAHTA (23/09/2025)
Line | Query Hits
18 #17 OR #11 1
17 #16 AND #15 0
16 (echocardi* OR "echo cardi*" OR "transthoracic cardi*" OR ((heart 0
OR cardi*) AND (ultraso* OR sonogra*))) AND (Al OR "artificial
intelligence*" OR "deep learning" OR "machine learning" OR "neural
network* OR CNN OR DNN OR "augmented intelligence" OR
"automated recognition")
15 #14 OR #13 OR #12 492
14 (HFrEF OR HFmrEF OR HFpEF) 1
13 ((heart OR cardiac) AND (failure OR insufficiency OR 444
decompensation))
12 "Heart Failure"[mhe] 272
11 #10 OR #9 OR #8 OR #7 OR #6 OR #5 OR #4 OR #3 OR #2 OR #1 1
10 (MyCardium®*) 0
9 (EchoConfidence*) 0
8 ("A*STAR" and "Exploit Technologies") 0
7 ("A*STAR Biomedical Research Council") 0
6 ("eko.ai*") 0
5 ("Us2.v2*") 0
4 ("Us2.ai*") 0
3 (ligence™) 0
2 (Ultromics™) 0
1 (EchoGo*) 1
Clinicaltrials.gov (23/09/2025)
Query Hits Total hits
EchoGo (Intervention/treatment) 3 3
Ultromics (Intervention/treatment) 2 3
Ligence (Intervention/treatment) 0 3
Us2.ai (Intervention/treatment) 2 5
Us2.v2 (Intervention/treatment) 0 5
eko.ai (Intervention/treatment) 0 5
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EchoConfidence (Intervention/treatment)

MyCardium (Intervention/treatment)

Heart Failure (Condition/disease)
Artificial Intelligence (Other terms)
Echocardiography (Intervention/treatment)

22

26

Heart Failure (Condition/disease)
Deep learning (Other terms)
Echocardiography (Intervention/treatment)

26

Heart Failure (Condition/disease)
Machine Learning (Other terms)
Echocardiography (Intervention/treatment)

32

Heart Failure (Condition/disease)
Neural Network (Other terms)
Echocardiography (Intervention/treatment)

32

Heart Failure (Condition/disease)
augmented intelligence (Other terms)
Echocardiography (Intervention/treatment)

32

Heart Failure (Condition/disease)
automated recognition (Other terms)
Echocardiography (Intervention/treatment)

32

ICTRP (23/09/2025)

Query

Hits

EchoGo OR Ultromics OR ligence OR Us2.ai OR Us2.v2 OR eko.ai OR

EchoConfidence OR MyCardium

heart failure (in the Condition) AND Al or "artificial intelligence" or "deep

learning" or "machine learning" or "neural network" or CNN or DNN or

"augmented intelligence" or "automated recognition" (in the Intervention)

Total deduplicated

11 (no
duplicates)

MedRxiv (23/09/2025)

Query (in Full Text or Abstract or Title, words: all)

Hits

Total hits

EchoGo

2

Ultromics

19

Ligence

21

Us2.ai

31

Us2.v2

31

eko.ai

31

EchoConfidence

31

MyCardium

31
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Appendix C: Associated publications and conference

proceedings

The table below lists publications identified as relevant by the EAG which are
associated with key included studies. Where multiple publications were
identified for the same study, only the most recent and comprehensive
publication was used for data extraction and is used as the primary study

reference throughout this report.

# Reference Associated key study

1 Akerman et al. 2024 Akerman et al. 2023a

2 Akerman et al. 2023d Akerman et al. 2023a

3 Akerman et al. 2023b Akerman et al. 2023a

4 Campbell et al. 2023 Campbell et al. 2025

5 Cassianni et al. 2023 Cassianni et al. 2024

6 Dowsing et al. 2025 Associated with study provided AIC for
EchoConfidence (no usable data)

7 Huang et al. 2023 Huang et al. 2024a

8 Sakamoto et al. 2024 Sakamoto et al. 2025

9 Tromp et al. 2022¢c Tromp et al. 2022a

10 Upton et al. 2024 Akerman et al. 2023a
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The table below summarises conference proceedings identified as relevant to the decision problem by the EAG. Results were not
extracted from conference proceedings due to the lack of detail available to facilitate assessment of study quality and the time
constraints of this assessment. The EAG reviewed the conference abstracts for relevance to the evidence gaps identified (Section
8).

Author, year Study Design Population Intervention Comparator Primary outcome Setting (country)
measure(s)
EchoGo Heart Failure
Akerman 2023c Retrospective Patients with ICD-10 | EchoGo Heart = Clinical H2FPEF score | Sensitivity, specificity Beth Israel

case-control

codes for HF
(150.X), LVEF=50%,
and grade Il or 11l
diastolic dysfunction

Failure

Deaconess Medical
Center, Harvard
Medical School, USA

Akerman 2025b Clinical Patients undergoing = EchoGo Heart | H2FPEF and HFA- Discrimination, NR
validation clinically indicated Failure PEFF scores calibration,
echocardiograms classification, and
clinical utility
Akerman 2025c Clinical Patients with cardiac = EchoGo Models separately and Output and NR
validation amyloidosis and Amyloidosis combined differentiation
HFpEF and Echo Go

Heart Failure
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Author, year Study Design Population Intervention Comparator Primary outcome Setting (country)
measure(s)
Hamid 2024 Clinical Patients with New EchoGo Heart | PCWP at rest and Association with NR
validation York Heart Failure v2.0 exercise, 6BMWT and hemodynamic,
Association Class KCcCQ. functional, and patient-
11, Il or ambulatory reported outcomes
IV heart failure with
LVEF 40% and
elevated PCWP
during supine
ergometry (2'25
mmHg)
Karnik 2024 Clinical HFpEF EchoGo Heart | Routine Ability to detect HFpEF = NR
validation Failure echocardiographic from echocardiogram
analysis using tools alone without any
such as HF2PEF score = additional clinical
information
Karnik 2025 Clinical Patients with EchoGo HF 6MWT distance and HFpEF probabilities NR
validation preclinical HF and KCCAQ scores and associated risk
abnormal cardiac factors
mechanics
Subramanian Clinical Subclinical HFpEF EchoGo Previously validated HFpEF phenotype and = UT Southwestern
2024 validation (version not H2FpEF score the presence of Medical Center,
named) subclinical HFpEF, Texas, USA
VO2peak, exercise
Stress E/e’, left
ventricular strain, and
left atrial strain
Yaros 2024 Clinical HFpEF EchoGo Clinical history, normal Diagnostic and NR
validation (version not ejection fraction prognostic
named) (>45%), and evidence performance —

of elevated filling
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Author, year Study Design Population Intervention Comparator Primary outcome Setting (country)
measure(s)
pressure by resting sensitivity, accuracy
(PCWP > 15 mm Hg) or | and specificity
exercise invasive
hemodynamics (PCWP
> 25 mm Hg) or
echocardiogram (E/e’
>14)
Us2.ai
Dohse 2024 Clinical Patients with aortic Us2.ai Board certified Manual measurements = University of lllinois,
validation root dilation cardiologist of LVOT, SoV, SJ Chicago (USA)
loannou 2023 Clinical Transthyretin Us2.ai Manual analysis Parameters and NR
validation amyloidosis prognosis prediction
cardiomyopathy
patients
Karnik 2024 Clinical Patients who Us2.ai Board-certified Precision, accuracy, Northwestern
validation underwent routine, cardiologists and agreement Memorial Hospital,
clinical between the Chicago, IL (USA)
echocardiograms automated and manual
measurements
Myhre 2023 Model Patients undergoing = Us2.ai Manual strain analysis Interpretation of Taiwan and USA

development
and validation

echocardiographic
strain imaging

and measurements

echocardiographic
strain imaging
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Author, year Study Design Population Intervention Comparator Primary outcome Setting (country)
measure(s)
Palmer 2024 Clinical Patients undergoing | US.2.ai Human reader LVEDV, LVESV, and
validation contrast LVEF
echocardiography to
assess LV volumes
Shrivastav 2024 Clinical Patients undergoing = US.2.ai Gold standard Diastolic function NR
validation measurement of left measurements made
ventricular by board-certified
diastology cardiologists
Teramoto 2022 Clinical PROMIS-HFpEF Us.ai Conventional Association of Multinational (not
validation study cohort (not echocardiographic automated and manual | specified)
specified) measurements parameters with N-
terminal pro-B-type
natriuretic peptide
Tsourdinis 2024a = Clinical Patients undergoing = Us2.ai Board-certified Feasibility of Us2.ai for | NR
validation transthoracic cardiologists assessment of aortic
echocardiography valve parameters was
(from 26 TTE re-demonstrated
studies selected)
Tsourdinis 2024b = Clinical Patients with left Us2.ai Board-certified Correlation between Al NR
validation ventricular ejection cardiologists and human reads of
fraction (from 25 LVEF assessment
studies selected)
Venneri 2024 Prospective Patients with Us2.ai N/A Association between National Amyloidosis

longitudinal
cohort

transthyretin cardiac
amyloidosis

changes in
echocardiographic
parameters and
mortality

Centre (UK)
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Author, year Study Design Population Intervention Comparator Primary outcome Setting (country)
measure(s)
Walser 2025 Retrospective Patients with cardiac = Us2.ai Expert cardiologist Automated NR
longitudinal transthyretin measurements
cohort amyloidosis, who agreement and
underwent serial precision
echocardiograms
Yaku 2024 Clinical Patients with HF Us2.ai Core labs Association between USA
validation and LVEF 240% test characteristics of
core lab vs. deep
learning-based
measurements
Ligence Heart
Sveric 2025 Clinical Patients with A fully Experienced Pearson’s correlation NR
validation symptomatic aortic | automated cardiologist coefficient, regression
valve stenosis, with | artificial measurements analysis, and mean
mitral valve intelligence absolute error to
regurgitation, or with | system for left assess agreement
tricuspid valve ventricular between Al and
regurgitation mass human measurements
measurement
in Echo (not
named)
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Appendix D: Baseline time to diagnosis and

proportion of patients diagnosed in standard care

Inputs from clinical experts and NHS Diagnostic waiting time and activity data
were used to model a normal distribution curve (Figure 1) based on 10.6% of
patients waiting more than 13 weeks for an echocardiogram, and the
assumptions that no patients received an echocardiogram prior to 6 weeks
and that patients who waited more than 13 weeks received an
echocardiogram by week 16. A mean waiting time and standard deviation that
met these assumptions was established through trial and error. From the
normal distribution curve, the proportion of patients receiving an

echocardiogram in two-week intervals was extracted (Table 1, Section A.2).

Figure 1. Normal Distribution Curve of Baseline Waiting Time to
Echocardiogram (in settings without a one-stop diagnostic clinic)

Normal Distribution of Waiting Times (without one-stop diagnostic clinic)
Mean = 11.5 weeks, SD = 2 weeks

0.201

Probability Density
o o

o

o

o
L

0.001

0 2 4 6 8 10 12 14 16 18 20 22 24
Weeks from Referral
Once the time waited for echocardiography was established, the additional

wait time between the echocardiography and clinical assessment (Section

A.3) was aggregated to give the proportion of patients in each two-week
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waiting time interval in settings without a one-stop diagnostic clinic (Section
A4).

For settings with a one-stop diagnostic clinic, there was no data available on
waiting list activity, therefore estimates from clinical experts was used. From
the estimates provided, which ranged from 2 to 10 weeks from referral to
diagnosis (because the echocardiography and clinical assessment occurred
on the same day), the mean wait time was calculated to be 6 weeks. Using
this information a normal distribution curve was modelled (Figure 2) to provide
the proportions of patients diagnosed in each two-week interval in settings

with a one-stop diagnostic clinic (Section B.2).

Finally, weighting based on the proportion of patients who attend a one-stop
diagnostic clinic was applied to the proportion of HF patients diagnosed in
two-week intervals (Section C.2). The cumulative proportion diagnosed was

used in the model.

Figure 2. Normal Distribution Curve of Baseline Waiting Time to Diagnosis (in
settings with a one-stop diagnostic clinic)

Normal Distribution of Waiting Times (one-stop diagnostic clinic)
Mean = 6 weeks, SD = 1.33 weeks

0.34
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Probability Density
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External assessment report: HTE10067 Artificial Intelligence assisted Echocardiography to
support diagnosis of heart failure: Early Value Assessment
Date: December 2025 156 of 192



Table 1. Proportion of HF patients diagnosed in standard care

Section
A1

A2

A3

A4

B.1

B.2

Settings without one stop

diagnostic clinic

Waiting time from referral to echo

Waiting time from echo to clinical

assessment

Total wait from referral to clinical

assessment

% patient have been waiting for 13+

weeks in those waiting for
echocardiography
Time from referral to

echocardiography (week)

0
2

4
6

8

10
12
14
16

Time from echocardiography to
clinical assessment (week)

0
2
4

Total time from referral to clinical

assessment (week)
0
2
4
6
8
10
12
14
16
18
20

Settings with one stop diagnostic

clinic

Waiting time from referral to clinical

assessment

Time from referral to clinical

assessment (week)
0

=00 O AN

0

Value

6-12 weeks
1-4 weeks
7-16 weeks

10.6

% received an
echocardiogram
0%

0%

0.01%

0.29%

3.71%

18.65%

37.21%

29.57%

10.56%

% seen a clinician

0%

50%

50%

% diagnosed

0%
0%
0%
0%
0%
2%
11%
28%
33%
20%
5%
Value

2-10 weeks
% diagnosed

0%
0%
7%
43%
43%
7%

Source

Clinical expert, excluding
outliers 36 weeks
Clinical expert

Calculation

NHS diagnostic waiting
time & activity, Jul 2025

cumulative %

0%

0%

0%

0%

4%

23%

60%

89%

100%
cumulative %

0%

50%

100%
cumulative %

0%
0%
0%
0%
0%
2%
13%
41%
75%
95%
100%
Source

Clinical expert
cumulative %

0%
0%
70/0
50%
93%
100%
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C.1 All settings, weighted Value Source

% one stop diagnostic clinic 51.90 Kwok, 2025
C.2 Weighted total time from referral % diagnosed cumulative %

to clinical assessment (week)

0 0% 0.0%

2 0% 0%

4 3%. 3%

6 23% 26%

8 23% 49%

10 4% 53%

12 5% 58%

14 13% 72%

16 16% 88%

18 10% 98%

20 3% 100%

Note. Due to rounding, figures may not add up to totals.
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Appendix E: Effect of reduced echocardiography time

with Al technologies on the waiting times

Based on the time reduction derived from clinical studies, new
echocardiography durations, time saved (in %) and therefore new number of
procedures performed per day were calculated. The percentage reduction in
average wait time was applied to generate a new distribution of
echocardiography wait time. The model also assumed the same reduction for
the one stop diagnostic clinic wait time. The reduction in average wait time
with EchoConfidence was estimated to be 17%, and 0% for Us2.ai (base
case). Using EchoConfidence as an example, the new distribution is

illustrated as follows:

Table 2. Proportion of HF patients diagnosed (EchoConfidence)

Settings without one stop Value Source

diagnostic clinic

Average waiting time 11.50 weeks Mean used to generate
distribution in base case

Number of procedures per day 10 Clinical experts

Time per procedure 0.75 hr Clinical experts

Patient load 575 Calculation

New time per procedure 0.59 hr Calculation, Almeida et al.:
unpublished data 2025

New number of procedures per day 12 Calculation

New average waiting time 9.58 weeks Calculation

% time reduction 17% Calculation

Time from referral to
echocardiography (week)

% received an
echocardiogram

cumulative %

0 0% 0%

2 0% 0%

4 0% 0%

6 4% 4%

8 18% 22%
10 37% 59%
12 30% 89%
14 10% 99%
16 1% 100%

Time from echocardiography to
clinical assessment (week)

% seen a clinician

cumulative %

0 0% 0%
2 50% 50%
4 50% 100%

Total time from referral to clinical
assessment (week)

% diagnosed

cumulative %

0 0% 0%
2 0% 0%
4 0% 0%
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6

8

10

12

14

16

18

20

Settings with one stop diagnostic
clinic

Time from referral to clinical
assessment (week)

0

2

4

6

8

10

All settings, weighted

% one stop diagnostic clinic

Weighted total time from referral
to clinical assessment (week)
0

2

4
6

8

10
12
14
16
18
20

Note. Due to rounding, figures may not add up to totals.

0%
2%
11%
28%
34%
20%
5%
1%
Value

% diagnosed

0%

1%

22%

55%

21%

1%

Value

51.90

% diagnosed

0%
0%
1%
29%
12%
6%
13%
16%
10%
3%
0%

0%

2%
13%
41%
74%
94%
99%
100%
Source

cumulative %

0%

1%

23%

78%

99%

100%

Source

Kwok 2025
cumulative %

0%
0%
12%
41%
52%
58%
71%
88%
97%
100%
100%
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Appendix F: Studies excluded at full text

# Reference Exclusion
reason
1. Abraham, N., Sanagala, T., Stoilova, M., & Karagodin, |. (2025). Artificial Intelligence in Echocardiography—Revolution or Replacement? Journal of the American Society of Wrong
Echocardiography, 38(8), 733. https://doi.org/https://doi.org/10.1016/j.echo.2025.04.012 publication
type
2. Abramikas, Z., Jasiukeviciute, |., Balciunaite, G., Glaveckaite, S., Palionis, D., & Valeviciene, N. (2025). Artificial Intelligence Performance in Cardiac Magnetic Resonance Strain Wrong
Analysis for Aortic Stenosis: Validation with Echocardiography and Healthy Controls. Medicina (Kaunas, Lithuania), 61(6). intervention
https://doi.org/https://dx.doi.org/10.3390/medicina61060950
3. Abramikas, Z., Kazukauskiene, ., Sablauskas, K., Cesnaite, G., Vrublevska, G., Pugaciauskaite, K., Balciunaite, G., & Glaveckaite, S. (2025). Agreement between automated Wrong
echocardiography and expert cardiologist for aortic valve hemodynamic parameters in severe aortic stenosis patients. European Heart Journal - Cardiovascular Imaging, 26, intervention
jeae333.033. https://doi.org/10.1093/ehjci/jeae333.033
4. Adedinsewo, D. A., Morales-Lara, A. C., Afolabi, B. B., Kushimo, O. A., Mbakwem, A. C., Ibiyemi, K. F., Ogunmodede, J. A., Raji, H. O., Ringim, S. H., Habib, A. A., Hamza, S. M., Wrong
Ogah, O. S., Obajimi, G., Saanu, O. O., Jagun, O. E., Inofomoh, F. O., Adeolu, T., Karaye, K. M., Gaya, S. A., . . . Carter, R. E. (2024). Artificial intelligence guided screening for intervention
cardiomyopathies in an obstetric population: a pragmatic randomized clinical trial. Nature Medicine, 30(10), 2897 EP - 2906. https://doi.org/https://dx.doi.org/10.1038/s41591-
024-03243-9
5. Adedinsewo, D., Carter, R. E., Attia, Z., Johnson, P., Kashou, A. H., Dugan, J. L., Albus, M., Sheele, J. M., Bellolio, F., Friedman, P. A., Lopez-Jimenez, F., & Noseworthy, P. A. (2020). Wrong
Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea. Circulation. intervention
Arrhythmia and electrophysiology, 13(8), e008437. https://doi.org/https://dx.doi.org/10.1161/CIRCEP.120.008437 (Comment in: Circ Arrhythm Electrophysiol. 2020
Aug;13(8):€009111. doi: 10.1161/CIRCEP.120.009111
6. Adhyapak, S. M., & Menon, P. G. (2024). Detecting Incipient Heart Failure in Asymptomatic Patients with Normal Ejection Fraction and comparisons with patients with heart failure | OOS Al
and preserved ejection fraction using TimeSformer for classifying Echocardiography videos. medRxiv. https://doi.org/https://dx.doi.org/10.1101/2024.10.22.24315954 technology
7. Adhyapak, S., & Menon, P. (2024). Classification of Echocardiography Videos Using TimeSformer for Detecting Incipient Heart Failure in Asymptomatic Patients with Normal OO0S Al
Ejection Fraction and Patients with Heart Failure. Circulation, 150. https://doi.org/https://dx.doi.org/10.1161/circ.150.suppl_1.4120990 (American Heart Association's 2024 technology
Scientific Sessions and the American Heart Association's 2024 Resuscitation Science Symposium. Chicago, IL United States.)
8. Agency for Care Effectiveness. (2025). EchoGo Heart Failure to aid in the diagnosis of heart failure with preserved ejection fraction. https://www.ace-hta.gov.sg/healthcare- Wrong
professionals/ace-horizon-scanning/echogo-heart-failure-to-aid-in-the-diagnosis-of-heart-failure-with-preserved-ejection-fraction publication
type
9. Aghezzaf, S., Coisne, A., Hamzi, K., Toupin, S., Bouleti, C., Fauvel, C., Brette, J. B., Montaigne, D., Rossanaly Vasram, R., Trimaille, A., Lemesle, G., Schurtz, G., Dillinger, J. G., Wrong
Henry, P., & Pezel, T. (2023). Machine learning score focused only on echocardiographic data to predict in-hospital outcomes in ICCU patients. A study from the ADDICT ICCU intervention
cohort. European Heart Journal, 44. https://doi.org/https://dx.doi.org/10.1093/eurheartj/ehad655.015 (European Society of Cardiology Congress, ESC 2023. Amsterdam
Netherlands.)
10. Aghezzaf, S., Coisne, A., Hamzi, K., Toupin, S., Bouleti, C., Fauvel, C., Brette, J. B., Montaigne, D., Vasram, R. R., Trimaille, A., Lemesle, G., Schurtz, G., Dillinger, J. G., Henry, P, & Wrong
Pezel, T. (2024). Machine learning score using only echocardiographic data for prediction of in-hospital outcomes in ICCU patients. Archives of Cardiovascular Diseases, 117(1), intervention
S66. https://doi.org/https://dx.doi.org/10.1016/j.acvd.2023.10.117 (JESFC 2024. Paris France.)
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11. | Ahluwalia, M., Almadani, A., Agu, E., & Kpodonu, J. (2023). HYPERTROPHIC CARDIOMYOPATHY DETECTION IN DIVERSE POPULATIONS USING DEEP LEARNING. Journal of the OOS Al
American College of Cardiology, 81(8), 417. https://doi.org/https://dx.doi.org/10.1016/S0735-1097%2823%2900861-6 (ACC.23. New Orleans United States.) technology

12. Akerman, A. (2025). Echocardiography and Artificial Intelligence in the Cardiac Amyloidosis Referral Pathway. Wrong

intervention

13. Akerman, A., Bernard, L., Deschamps, T., Foster, B., Hawkes, W., Mirhadi, E., Piotrowska, H., Sarwar, R., Tetlow, L., Woodward, G., & Becher, H. (2022). Automated contouring of Wrong
non-contrast echocardiograms result in similar estimates of left ventricular function to manually contoured contrast-enhanced images in chemotherapy patients. European population
Heart Journal - Cardiovascular Imaging, 23, jeab289.013. https://doi.org/10.1093/ehjci/jeab289.013

14. Akerman, A., Bernard, L., Deschamps, T., Foster, B., Hawkes, W., Mirhadi, E., Piotrowska, H., Sarwar, R., Tetlow, L., Woodward, G., & Becher, H. (2022). FULLY AUTOMATED Wrong
CONTOURING OF CONTRAST ENHANCED ECHOCARDIOGRAMS IN CANCER THERAPY-RELATED CARDIAC DYSFUNCTION IS FEASIBLE AND PRECISE. Journal of the American intervention
College of Cardiology, 79(9), 1942. https://doi.org/https://dx.doi.org/10.1016/S0735-1097%2822%2902933-3 (ACC 22. Washington, DC United States.)

15. | Al-Alusi, M., Kopparapu, K., Singh, P., Achille, P. D., Lau, E. S. W., Reeder, C., Khurshid, S., Ellinor, P., Ho, J., Picard, M. H., Batra, P., & Lubitz, S. (2023). RV SIZE MEASURED BY DEEP | Wrong
LEARNING PREDICTS ATRIAL FIBRILLATION, HEART FAILURE AND MORTALITY. Journal of the American College of Cardiology, 81(8), 2275. intervention
https://doi.org/https://dx.doi.org/10.1016/S0735-1097%2823%2902719-5 (ACC.23. New Orleans United States.)

16. Alenezi, F. (2025). Al-Automated Detection of Hypertrophic Cardiomyopathy by Echocardiography: Training and External Validation. ASE2025, Wrong

population

17. Ali, M. R., Lam, C. S. P,, Stromberg, A., Hand, S. P. P,, Booth, S., Zaccardi, F., McCann, G. P.,, Khunti, K., & Lawson, C. A. (2025). Heart failure symptoms predict hospitalization and Wrong
mortality at diagnosis, 6 and 12 month follow-ups. medRxiv, 2024.2006.2012.24308679. https://doi.org/10.1101/2024.06.12.24308679 intervention

18. Alishetti, S., Pan, W., Beecy, A. N., Liu, Z., Gong, A., Huang, Z., Clerkin, K. J., Goldsmith, R. L., Majure, D. T., Kelsey, C., vanMaanan, D., Ruhl, J., Tesfuzigta, N., Lancet, E., Wrong
Kumaraiah, D., Sayer, G., Estrin, D., Weinberger, K., Kuleshov, V., . . . Uriel, N. (2025). Predicting Cardiopulmonary Exercise Testing Performance in Patients Undergoing intervention
Transthoracic Echocardiography - An Al Based, Multimodal Model. medRxiv. https://doi.org/https://dx.doi.org/10.1101/2025.07.05.25330921

19. Alotaibi, A., Contreras, R., Thakker, N., Mahapatro, A., Adla Jala, S. R., Mohanty, E., Devulapally, P., Mirchandani, M., Marsool Marsool, M. D., Jain, S. M., Joukar, F., Alizadehasl, A., Wrong
Hosseini Jebelli, S. F., Amini-Salehi, E., & Ameen, D. (2025). Bibliometric analysis of artificial intelligence applications in cardiovascular imaging: trends, impact, and emerging study
research areas. Annals of medicine and surgery (2012), 87(4), 1947-1968. https://doi.org/https://dx.doi.org/10.1097/MS9.0000000000003080 design

20. Al-Zahir, M., Punjabi, K., Artico, J., Shiwani, H., Davies, R., Moon, J., Kellman, P., Xue, H., & Pierce, I. (2024). Deployed Inline Al for Ventricular Analysis - a Review and Classification Wrong
of Errors During the First 1500 Clinical Cases. Journal of Cardiovascular Magnetic Resonance, 26, 100145. https://doi.org/https://dx.doi.org/10.1016/j.jocmr.2024.100145 (CMR intervention
2024 Global CMR Conference. QEIl Centre, London United Kingdom.)

21. Alzahrani, T., Choi, B., Krepp, J., & Lewis, J. F. (2019). Predicting clinical outcomes of inpatients with heart failure based on echocardiogram reports using natural language Wrong
processing and deep learning models. Circulation, 140. https://doi.org/https://dx.doi.org/10.1161/circ.140.suppl_1.15630 (American Heart Association Scientific Sessions, AHA intervention
2019. Philadelphia, PA United States.)

22. Andersson, P., Lindow, T., Lindqvist, P., & Venkateshvaran, A. (2025). Utilizing echocardiographic findings and machine learning to predict elevated left ventricular filling pressures Wrong
in patients with preserved ejection fraction. European Heart Journal Cardiovascular Imaging, 26, i705 EP - i706. https://doi.org/https://dx.doi.org/10.1093/ehjci/jeae333.455 (24th intervention
annual congress of the European Association of Cardiovascular Imaging. Berlin Germany.)

23. Andjelkovic, K., Kalimanovska Ostric, D., & Andjelkovic, I. (2014). Prediction of heart failure in adults with congenital heart disease. European Journal of Heart Failure, 16, 87. Wrong
https://doi.org/https://dx.doi.org/10.1002/ejhf.93_4 (Heart Failure Congress 2014 and the 1st World Congress on Acute Heart Failure. Athens Greece.) intervention

24. Anonymous. (2024). Identifying Undiagnosed HFpEF Among Patients With Type 2 Diabetes Using Ultromics Al HFpEF Algorithm A1 - clinicaltrials.gov. Duplicated
https://clinicaltrials.gov/study/NCT06593314 ongoing

trial record
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Using a Deep Learning Algorithm. Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine, 42(10), 2349-2356.
https://doi.org/https://dx.doi.org/10.1002/jum.16262

25. Arends, B., Vessies, M., Van Amsterdam, W., Teske, A., Van Der Harst, P., Van Osch, D., & Van Es, R. (2024). Preventing unnecessary echocardiograms in de novo patients referred Wrong
to the cardiology outpatient clinic using electrocardiogram-based deep learning. European Heart Journal, 45. https://doi.org/https://dx.doi.org/10.1093/eurheartj/ehae666.3486 intervention
(European Society of Cardiology Congress, ESC 2024. London United Kingdom.)

26. Arnaout, R. (2021). Can Machine Learning Help Simplify the Measurement of Diastolic Function in Echocardiography? JACC: Cardiovascular Imaging, 14(11), 2105 EP - 2106. Wrong
https://doi.org/https://dx.doi.org/10.1016/j.jcmg.2021.06.007 publication

type

27. Arnold, J. H., Desai, K. V., Slostad, B., Bhayani, S., Ouwerkerk, W., Hummel, Y. M., Lam, C. S. P, Ezekowitz, J. A., Frost, M., Jiang, Z., Equilbec, C., Twing, A., Pellikka, P. A., Frazin, L. Wrong
J., Kansal, M. M., & Krishna, H. (2024). ARTIFICIAL INTELLIGENCE-ASSISTED CLASSIFICATION OF AORTIC STENOSIS SEVERITY. Journal of the American College of Cardiology, outcome
83(13), 2450. https://doi.org/https://dx.doi.org/10.1016/S0735-1097%2824%2904440-1 (American College of Cardiology 73rd Annual Scientific Session & Expo. Atlanta United
States.)

28. Arnold, J. H., Smith, D., Bhayani, S., Frost, M., Tiu, D., Hsu, S., Sweeney, J., Sandhu, S., Alluri, V., Pellikka, P. A., Darbar, D., Bavishi, A., Kansal, M., & Krishna, H. (2025). Uncharted Wrong
Waters: Examining Prevalence and Prognosis of Low-Gradient Aortic Stenosis in Women and Minority Populations ASE2025, https://us2.ai/aortic-stenosis-severity-classification- | outcome
with-an-ai-solution/

29. Arora, R. S., Quach, N., Fong, R., Kong, S., Kasinpila, P., Castro, M., Guha, A., Suarez, E. E., Jovinge, S., Lee, S., Boeve, T., Langlotz, C. P., Amsallem, M., Haddad, F., Shudo, Y., Woo, | Wrong
Y. ). Y., Teuteberg, J., & Hiesinger, W. (2020). Multi-center Validation of a Novel Echocardiography Artificial Intelligence System to Predict Post-operative Right Ventricular Failure in intervention
LVAD Patients. Circulation, 142. https://doi.org/https://dx.doi.org/10.1161/circ.142.suppl_3.15341 (American Heart Association Scientific Sessions, AHA 2020. Virtual.)

30. Artico, J., Laymouna, R., Fox, P., Shiwani, H., Kurdi, H., Abioudin, A., Pierce, I., Davies, R., Xue, H., Kellman, P., Westwood, M., Manisty, C., Treibel, T., & Moon, J. (2023). CMR Wrong
SERVICE IMPROVEMENT VIA DEPLOYED SERVICELEVEL RAPID CMR PROTOCOLS WITH INTEGRATED Al. Heart, 109, A5 EP - A6. intervention
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Early-use assessment

HTE10067 Artificial Intelligence assisted
echocardiography to support diagnosis of
heart failure

Assessment report overview

This overview summarises key information from the assessment and sets out

points for discussion in the committee meeting. It should be read together with

the final scope, external assessment report and the addendum. A list of

abbreviations used in this overview is in appendix A.

1. The technologies

This assessment included 4 technologies (EchoConfidence, EchoGo Heart

Failure, Ligence Heart and Us2.ai) that use artificial intelligence (Al) software

to aid the interpretation and quantification of echocardiography images,

reduce operator dependency and variability, and enhance measurement

accuracy and diagnostic consistency (see table 1). All the technologies

included in this assessment are designed to aid the operator (adjunctive), not

replace them (automative). See section 5 of the final scope and table 1 in the

external assessment report (EAR) for further details about the included

technologies.

Table 1 Interventio

ns

transthoracic Echocardiogram,
and assists the user in
reviewing the images, making
measurements and writing a
report.

Technology Regulatory Intended use Target
(company) status population

and DTAC
EchoConfidence | Class lIb Software as a Medical Device | Adults with or
(MyCardium) DTAC in place that displays images from a without underlying

cardiac disease,
requiring review
or analysis of their
echocardiographic
images.
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For detection and diagnosis of
heart failure via screening or
clinical echocardiograms, for
stratifying heart failure (HFrEF,
HFmrEF vs HFpEF), and for
monitoring disease
progression and response to
treatment.

ultrasound images, to analyse
and make measurements on
images in order to provide
automated estimation of
several cardiac structural and
functional parameters. To
accelerate and standardise the
detection of most forms of
heart failure, independent of
ejection fraction.

Detect, measure, and
calculate various
specifications of structure and
function of the heart and great

EchoGo Heart Class lla Detecting heart failure with Adults over 25
Failure (expected preserved ejection fraction years of age
(Ultromics) June 2026) (HFpEF). having routine
DTAC not in Diagnostic aid for patients functional
place undergoing routine functional | cardiovascular
cardiovascular assessment assessment using
using echocardiography. To diagnostic
provide adjunctive information | €chocardiography
on a patient’s cardiovascular | OF People
condition for detecting heart suspected of
failure with preserved ejection | heart failure
fraction (HFpEF).
Ligence Heart Class lla Analysis of echocardiography | Adults, 18 years
(Ligence UAB) DTAC notin images acquired from patients | and over who are
place in accordance with the latest not in a life-
guidelines for threatening state
echocardiography of health, time is
examination. Used to detect, not critical for
measure, and calculate medical decisions
various specifications of and no major
structure and function of the therapeutic
heart and great vessels by interventions are
analysing echocardiographic required.
mages and automatically
providing echocardiographic
reports.
US2.ai (EKO Class llb To process acquired Adults as decision
Pte Ltd) DTAC in place transthoracic cardiac support for the

detection of
specific cardiac
conditions such
as heart failure,
pulmonary
hypertension,
cardiac
amyloidosis,
hypertrophic
cardiomyopathy
and valve disease
(aortic stenosis,
mitral
regurgitation).
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vessels by analysing
echocardiographic images.

2. The condition

Heart failure occurs when the heart cannot pump blood effectively due to
structural or functional abnormalities. It is not usually curable, but symptoms
such as breathlessness, fatigue, and ankle swelling can be managed (NHS,
2025). Heart failure may develop gradually (chronic, often linked to
hypertension or diabetes) or suddenly (acute, for example after myocardial
infarction, arrhythmia, infection, or uncontrolled hypertension). Acute heart

failure requires urgent care and often presents in emergency departments.

Heart failure significantly impacts quality of life and can lead to disability and
early death. Around 80% of heart failure diagnoses in England occur in
hospital, despite 40% of patients having symptoms that could have prompted

earlier assessment (British Heart Foundation, 2025).

Heart failure is classified by left ventricular ejection fraction (LVEF) measured
with echocardiography. Preserved ejection fraction (HFpEF) is defined as an
LVEF of 50% or more, reduced ejection fraction (HFrEF) is defined as LVEF
of 40% or less, whilst mildly reduced heart failure (HFmrEF) is an intermediate
category with an LVEF of 41 to 49%

Heart failure is common, affecting over 1 million people in the UK, with
200,000 new diagnoses annually and 800,000 on GP registers (British Heart
Foundation, 2025). Echocardiography is used in 87% of diagnoses (NHFA
2025).

3. Current practice

In the NHS, the diagnosis and management of heart failure follows 2 NICE

guidelines:

e Chronic heart failure in adults: diagnosis and management (NG106)
e Acute heart failure: diagnosis and management (CG187)
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Initial clinical assessments for patients presenting with symptoms indicative of
suspected heart failure include blood tests for detection of biochemical
markers followed by a transthoracic echocardiogram (TTE). For both acute
and chronic onset of heart failure, NICE guidelines (NG106 and CG187)

recommend testing to measure levels of N-terminal pro-B-type natriuretic

peptide (NT-proBNP). When the thresholds are exceeded, confirmatory

diagnosis with echocardiography is required.

TTE is the primary diagnostic tool used for heart failure. It is usually performed
in secondary care in the NHS by a specialist cardiac physiologist. TTE
facilitates detection of abnormalities and defects in the heart’s chambers and
valves and provides measurements of blood flow and the heart’s pumping
ability. Where an echocardiogram detects abnormal ejection heart fraction,
abnormalities in the heart’s walls’ motions, or hypertrophy, this can be
indicative of heart failure. Diagnosis with echocardiography determines
whether heart failure is left or right sided, or biventricular. The TTE process

typically takes between 45 and 60 minutes (see Figure 1).

45-60 mins
TTE appointment
| Patient TTE Measurements Review
. -> image -»> and - and
check-in o . -
acquisition annotations reporting
20-40 mins 5-10 mins

(*) Review and reporting can take place outside of appointment.

Purple text indicates:
Potential place for Al-assisted echocardiography technologies.

Figure 1: Echocardiography procedure (taken from EAR)

Cardiac magnetic resonance imaging (MRI) may also be used for some
complex cases, to determine the nature of heart failure (HFrEF, HFmEF or

HFmEF), for instances when echocardiography is inconclusive or the
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procedure is contraindicated, or to determine the underlying cause. However,

the availability and access to cardiac MRI may vary by locality.

4. Unmet need

There are long waiting lists for echocardiography caused by several factors,
including the time the procedures take, the setting of the procedures (requiring
referral), and an insufficient skilled workforce. This may lead to suboptimal
outcomes for people with heart failure and increased use of healthcare

resources.

There is a significant backlog for echocardiography in England, with waiting
lists rising to 235,476 people in June 2025 (NHS England, 2025). NICE quality

standards require 90% of referrals to be investigated with echocardiography,

but only half of hospitals meet this target (National Heart Failure Audit, 2025).
Although suspected heart failure cases should be seen within 6 weeks, only
about two thirds meet this standard (NHS England, 2024).

Staff shortages and COVID-19-related backlogs have worsened access
(British Society of Echocardiography, 2021). Delays can lead to poorer
outcomes as reported in the REVOLUTION HF study (2025), which linked late

diagnosis to higher mortality, morbidity, and resource use. It may also delay

access to effective treatments such as SGLT2 inhibitors (Lewinski, 2023).

Workforce pressures remain severe, with warnings of “unprecedented
challenges” in recruitment and retention (British Society of Echocardiography,
2021).

Al technologies could help by automating measurements, interpretation, and
report generation after TTE, potentially reducing procedure time and easing

waiting lists.
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5. Innovative aspects

Using automation to aid cardiac physiologists in measurement, interpretation,
and report generation after TTE could potentially release time during
appointments. It could improve throughput and workflow, reduce examination
times and waiting lists, standardise diagnosis and characterisation of heart
failure, track people with heart failure over time, and through this ultimately

improve care and promote efficient use of NHS resources.

Further details, including descriptions of the interventions, comparator, care

pathway and outcomes, are in the final scope.

6. Clinical effectiveness

The external assessment group (EAG) did a literature search to identify
relevant published clinical evidence. The search and selection methods are in

section 4.1 and appendix B of the external assessment report (EAR).
6.1  Overview of key studies

The EAG identified 19 key studies across the 4 technologies. This included 11
studies for Us2.ai (2 provided by the company following comments on the
EAR. See section 2 in the addendum), 3 studies for EchoGo Heart Failure, 3
studies for EchoConfidence and 2 studies for Ligence Heart. Full text
publications were available for 14 of the studies, 3 were provided by the
company for EchoConfidence and 2 of these were interim analyses of ongoing

studies.

The EAG appraised the studies for quality, risk of bias, and generalisability to
the NHS. Overall, the studies on the technologies had several limitations.
Most studies were retrospective, introducing risks such as selection bias and
incomplete records. Fourteen studies used non-UK data, potentially limiting
generalisability to NHS practice. Seven studies excluded complex cases or
were conducted in controlled environments, which may not reflect real-world
workflows. Additionally, poor-quality images were often excluded, raising

concerns about applicability in routine care. The EAG noted that 10 studies
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were set in single-centres, and some relied on a single operator, possibly not
reflecting the variability that would be expected in real world settings. Thirteen
of the studies did not specify technology versions, although the EAG sought
clarification where possible. Importantly, there was a lack of evidence reported
on downstream health outcomes, making it difficult to directly assess patient

benefit.

A summary of the studies identified is reported in Table 3 of the EAR and a
description of study limitations by technology is reported in Section 5.1 (Table
4) of the EAR. The outcomes reported by each study are summarised in Table
5 of the EAR. A description on the definitions of diagnostic and agreement
measurements is reported in Table 6 of the EAR. The addendum includes full
details of the 2 additional Us2.ai studies, provided following stakeholder

comments on the EAR.
6.2 Results of key studies
6.2.1 Diagnostic accuracy

Diagnostic test accuracy was assessed using sensitivity, specificity, negative
predictive value (NPV) and positive predictive value (PPV). These outcomes
are reported across 5 studies, for 3 of the technologies (EchoConfidence,
EchoGo Heart Failure and Us2.ai).

For EchoConfidence, with human interpretation of the measurements as the
reference standard, the FEATHER interim analysis found EchoConfidence
had high specificity for detecting heart failure subtypes but a notable
false-negative rate for HFrEF (41%). Specificity was 91% for HFrEF and 95%
for HFpEF, with predictive values generally high (see table 9 in the EAR).
Overall specificity for any heart failure subtype was 83%. EchoGo Heart
Failure was compared with existing literature benchmarks (EchoGo Heart
Failure V1.0) or multiparametric clinical scoring tools (EchoGo Heart Failure
V2.0) in 2 diagnostic case control studies (Akerman et al. 2025a and 2023a).
V1.0 had a reported sensitivity of 88% and specificity of 82%, whereas V2 had

higher sensitivity and specificity than the tools, but predictive values were
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similar or lower (see table 7 in the EAR). Two studies assessed Us2.ai with
handheld TTE (Huang et al. 2024a and Campbell et al. 2025). Al-assisted
scans reported higher specificity and NPV, but lower sensitivity and PPV

compared with manual cart-based TTE.
The EAG reported no diagnostic accuracy data was available for Ligence.
6.2.2 Detection and classification of heart failure

Six studies (4 for Us2.ai and 2 for EchoGo Heart Failure) reported the area
under the curve for the receiver operator characteristics curve (AUC) for
detecting echocardiographic findings indicative of heart failure. AUC
measures overall diagnostic accuracy by summarising sensitivity and

specificity across all probability thresholds.

EchoGo Heart Failure was assessed in 2 studies (Akerman et al. 2025a and
2023a). One study on EchoGo Heart Failure V1 reported an AUC of 0.97 in
the training set compared with 0.95 in a validation set, indicating good
accuracy. One study reported EchoGo Heart Failure v2.0 performed similarly
to multiparametric clinical scoring tools (AUROC 0.798 compared with 0.788

respectively).

Four studies evaluated Us2.ai for detecting heart failure and automation of
related echocardiographic measures (Myhre et al. 2024b, Tromp et al. 2022b,
Huang et al. 2024a and Campbell et al. 2025). Myhre et al. (2024b) reported
strong discrimination between people with heart failure from those without
(AUC=0.89), as well as between HFrEF and non-HF (AUC=0.98), and
between HFpEF and non-HF (AUC=0.82), using global longitudinal strain
(GLS). Tromp et al. (2022b) reported high AUCs (0.88 to 0.96) for key
parameters across internal and external cohorts. Huang et al. (2024a) and
Campbell et al. (2025) reported AUCs of 0.88 and 0.96 for handheld TTE
detecting reduced LVEF. Overall, the EAG considered Us2.ai demonstrated
consistently good diagnostic accuracy for identifying left ventricular

dysfunction and other heart failure indicators.

No data on these metrics were reported for EchoConfidence or Ligence.
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6.2.3 Other clinical effectiveness metrics reported in the key studies

The key studies also reported evidence for a number of other clinical
effectiveness measures. These included: interchangeability between human
and Al measurements; correlation between human and Al measurements;
agreement between human and Al measurements; yield of measurement. Full
details of this evidence is in sections 5.2.3 to 5.2.7 of the EAR. The 2 studies
included in section 2 of the addendum reported evidence on coverage of
echocardiographic parameters and concordance with clinical records (Oo et
al. 2024) and acceptability of Al in TTE and relationship between variables

and behavioural intention (Huang et al. 2024b).
6.2.4 Clinical Outcomes

Four studies investigated how clinical endpoints were met when
echocardiography was assessed with Al, to determine the usefulness of the Al
technologies in the heart failure clinical pathway. Outcomes included heart
failure-related hospitalisations and mortality. The EAG stated that data

comparing clinical outcomes was limited.

Three studies using EchoGo Heart Failure (Akerman et al. 2025a, Akerman et
al. 2023a and Cassianni et al. 2024), found that a positive diagnosis of HFpEF
was associated with higher risk of heart failure hospitalisation and death,
similar to manual clinical scoring tools. Akerman et al. (2023a) reported that
Al-classified HFpEF was linked to increased mortality (hazard ratio [HR] 1.9)
when compared with those classified as not having HFpEF by Al. Overall, the
EAG concluded EchoGo Heart Failure may help detect heart failure, but its

advantage over existing methods for predicting outcomes remains unclear.

For EchoConfidence, interim data from the FEATHER study compared
survival curves for heart failure diagnoses classified by Al and 2 human
comparators. Significant differences were observed for HFrEF and HFmrEF
compared with no heart failure across all methods, but not for HFpEF for
human or Al diagnosis. However, limited detail beyond p values means

conclusions cannot be drawn.
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No clinical outcome data was identified for Ligence or Us2ai. Further details

on clinical outcomes is in section 5.2.6 of the EAR.
6.2.5 Impact on procedure time

The impact of Al technologies on reporting, scanning or analysis time was

reported in 3 studies for 2 technologies (EchoConfidence and Us2.ai).

One interim study reporting on EchoConfidence found Al reduced the mean
time for analysis of echocardiographic parameters to a mean of 3.2 seconds
(SD 0.4) compared with a mean of 553 seconds (SD 44) and 587 seconds
(SD 64) for 2 human readers.

For US2ai, the study by Hirata et al. (2024) reported that the use of Al
assistance reduced time for echocardiographic measurements from 325
seconds (SD 94) to 159 seconds (SD 66) (p<0.01). Report creation time also
decreased from 429 seconds (SD 128) to 71 seconds (SD 39) (p<0.01).
Overall, measurement and report creation time per case was reduced by 524
seconds (70%). This was a small, single-centre study with one operator and

23 participants in Japan.

The study by Sakamoto et al. (2025) found examination time per patient was
shorter with Al, at 13.0 minutes (SD 3.5) compared with 14.3 minutes, (SD
4.2) (p<0.001) without Al. The number of examinations per day was higher
with Al (16.7, SD 2.5) than without Al (14.1, SD 2.5) (p=0.003). This study is
reported in a pre-print and has not been peer reviewed. The EAG commented
that as only mean values were reported, the data could not be assessed in

detail, and reports of significant differences should be interpreted with caution.
6.2.6 Adverse events

The EAG did a search of the MAUDE database and MHRA safety notices and
did not identify any adverse events or safety concerns for the included
technologies. No adverse events were reported in any of the clinical studies

reviewed.
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6.2.7 Clinical risk

Development of Al models for echocardiography typically involves training,
internal validation and external validation. A lack of external validation on UK
or similar populations may limit suitability of the technologies and pose clinical
risks, or impact equality considerations. The EAG noted that EchoConfidence
was validated in a UK population as part of its CE marking process. It also
indicated that demographic inconsistencies make conclusions about the other
technologies difficult. A comparison between demographics of external
validation cohorts and UK heart failure cohorts is reported in Table 14 of the
EAR.

6.2.8 Meta-analysis

The EAG considered it was not appropriate to undertake meta-analyses of
outcomes reported across the evidence base for any of the technologies due

to the clinical and methodological heterogeneity observed between studies.
6.2.9 Ongoing studies

The EAG identified 7 ongoing studies, listed in Table 23 of the EAR. For
Us2.ai, the ongoing evidence generation included 2 RCTs (TARTAN-HF and
SYMPHONY-HF) investigating the use of Al-assisted echocardiography as
part of screening strategies, plus 3 company-led validation or pattern-
recognition studies. Ligence is being evaluated by 2 studies, with || Gz
I - 1 assessing systolic and
diastolic parameters. The key study for EchoConfidence is the FEATHER
study (Almeida et al. unpublished data 2025 (n=1200), with interim data
included in the EAR and further data expected in December 2025. The
company state this is a double-blind evaluation of Al for heart failure diagnosis
and stratification on unselected consecutive patients referred for evaluation to

community cardiology services.

Overall, the EAG considered these studies may strengthen the evidence base

on accuracy and validity of the Al technologies but will not address key gaps
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such as impact of Al on clinical outcomes or system benefits. Further details

of ongoing studies are in section 8.1 and table 23 of the EAR.

6.3 Potential use of Al technologies to support echocardiography in

community settings

Echocardiography is currently done almost exclusively in secondary care, in
bespoke cardiology units for elective referrals, or emergency or bedside
settings using a point-of-care device. Examinations are usually done by a
qualified cardiac physiologist. Clinical experts highlighted the potential for the
Al technologies to support a shift of echocardiography out of secondary care,
into primary or community settings. As this was not part of the decision
problem in the final scope, the EAG only included studies from a community
care setting if they were based in the UK. Only the interim report from the
FEATHER study (Almeida et al. unpublished data 2025) included data from a
UK community care setting (see section 6.2.9). The EAG stated that the
interim results indicate there may be potential for EchoConfidence to be safely
implemented in community care, but evidence to demonstrate its impact on
procedure time and the type of operator is limited. Further details of studies
and ongoing trials that the EAG considered may be relevant to the use of
echocardiography in community settings are included in sections 5.2.9 and
8.1 of the EAR.

7. Health economic evidence

The external assessment group (EAG) did a review of the literature to identify
suitable health economic models. A total of 3 economic models from 2 NICE
guidelines were identified, these were (i) Chronic heart failure in adults:
diagnosis and management (NG106) 2018 and 2025 and (ii) Acute heart
failure: diagnosis and management (CG187). The EAG found that the NICE
NG106 2018 model and CG187 model were relevant to the scope. These
NICE models were used to inform the EAG conceptual economic model.

Further details of these models are presented in section 6.1 of the external

assessment report (EAR).
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7.1 Health economic model

The EAG adapted the existing NICE models to assess the potential cost-
effectiveness of Al-assisted transthoracic echocardiography (TTE) for heart
failure diagnosis compared with standard TTE. The Markov model used a 1-
year time horizon to capture the impact of reduced waiting times from shorter
TTE durations. Downstream benefits of earlier diagnosis were not modelled
because of the uncertainty around current waiting times. The standard NICE
reference case was adopted, with QALY's based on utility values as the
benefits outcome. As the time horizon was 1-year, no discounting was

applied.

The model had a 2-week cycle and maintained the assumptions made in
NICE NG106, that the sensitivity and specificity for standard TTE and
specialist assessment were set at 100%, so only true positive and true
negative outcomes were considered. The EAG stated that because the Al
technologies would be used as an adjunct to standard TTE and a specialist
clinical assessment is required for heart failure diagnosis, it is unlikely that
there would be any differences in diagnostic outcomes between technologies.
So it was not necessary to consider false negative and false positive
outcomes in this assessment. True positive patients were assumed to start
treatment sooner with Al due to shorter waiting times. True negatives were
assumed to be unaffected and so were excluded in the model. The model
included 4 health states: (i) symptomatic on waiting list, (ii) acute episode, (iii)
treated heart failure, and (iv) dead. These are shown in Figure 2. Further

details on the model structure are presented in section 6.2.1 of the EAR.
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Figure 2: Schematic representation of the EAG early economic model (from
EAR)
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711 Key model assumptions

e Standard TTE plus specialist clinical assessment is 100% accurate, as
described in Section 6.2.3 (NICE NG106 2018).

e Accuracy is assumed to be unaltered when using Al-assisted
echocardiography, followed by a specialist clinical assessment.

o Patients remain in the “treated heart failure” state following diagnosis until
they die or until the end of the 1-year time horizon. It is assumed that the
treatment is sufficient to manage their condition and prevent any acute
episodes resulting in hospital admission.

e Model assumes a proportion of patients would attend a one stop diagnostic
clinic, where they receive echocardiography and specialist clinical review in
one appointment. The cost of a one stop diagnostic clinic is assumed to be
the same as the combined costs of an echocardiography appointment and
a separate outpatient specialist clinic visit.

e For model simplicity, all patients who developed acute symptoms would
enter through an ED and subsequently be hospitalised.

e The wait time for standard TTE and one stop diagnostic clinic was
assumed to follow a normal distribution.
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¢ It was assumed that the reduced procedure time would proportionately
increase the number of patients per day, and that the calculated reduction
in average wait time would shift the entire wait time distribution forward by
the same magnitude.

e Number of patients referred to echocardiography was assumed to be
constant.

e Waiting time for a specialist clinical assessment following
echocardiography would remain unchanged. However, if the specialist
clinic is already running at full capacity and there is no additional capacity
available, this would limit the number of patients receiving an earlier

diagnosis despite having an earlier echocardiography.
7.1.2 Description of population, health states, and transitions

As only true positive cases were accounted for in the model, all patients who
entered the model would have diagnosed or undiagnosed heart failure. They
entered the model through “symptomatic on waiting list” or “acute episode”

health states.
Symptomatic, on waiting list

Patients with symptoms of heart failure in primary care who are on the waiting
list for echocardiography and specialist clinical assessment or one stop
diagnostic, start on the “Symptomatic on waiting list” state. The National Heart
Failure Audit (NHFA, 2025) from the National Institute for Cardiovascular
Outcomes Research (NICOR) reports that 49% of patients admitted with heart

failure had HFrEF. The average age at first presentation was 77.5 years, and

56.1% were male.

Based on data from Bottle et al., 2017 EAG assumed 21% entered the model

on the waiting list with the remaining 79% entering the model in the acute

episode state.

People on the waiting list can transition to 3 states. They could be diagnosed
with heart failure in secondary care using TTE with or without Al. This was the

only part of the model affected by the Al technologies, through the reduction in
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waiting times, discussed in Section 7.1.2. People could also have an acute
episode. Hospitalisation rates used in the model were based on real world

data from the PULSE study (Linden et al., 2023). Rates were expressed per

1,000 person-years and adjusted for age and sex by heart failure subtypes
(HFrEF and HFpEF) to calculate weighted 2-week hospitalisation probabilities
in the model. People could also die whilst on the waiting list, with mortality
rates being based on a published 1-year survival rate of 75.9% (Taylor et al.,

2019), giving a 24.1% annual mortality rate whilst awaiting diagnosis.
Acute episode, hospitalisation

The “Acute episode, hospitalisation” state represents people who are
hospitalised as they develop acute onset of symptoms of heart failure; these
patients are therefore analogous to patients with acute heart failure, covered
by NICE CG187, and most patients in the model start in this state. Length of
hospital stay was based on the NICOR NHFA reports. As this was found to be
consistently under 14 days, the model assumed an inpatient stay lasts one
cycle (2 weeks) before transition to another health state. An in-hospital
mortality rate of 10.4% was applied to patients admitted with acute symptoms,
derived from NICOR data.

The EAG assumed that people admitted for acute episodes of heart failure
and who survived could transition to the waiting list, as they are discharged
without a heart failure diagnosis. This was based on clinical expert input and a
report by National Confidential Enquiry into Patient Outcome and Death
(NCEPQD, 2018). Estimates ranged from 10% to 55.8%, giving an average of
32.9%. Because NICE guidance recommends all inpatients should be
diagnosed before discharge, a sensitivity analysis was done to explore this
variation. The remaining people were assumed to transition to the “treated

heart failure” state.
Treated Heart Failure

Once diagnosed, either from the waiting list or directly from hospital, the EAG

assumed people remain in the “treated heart failure” state until they die or until
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the end of the 1-year time horizon. It is assumed that the treatment is
sufficient to manage their condition and prevent any acute episodes resulting
in hospital admission. The EAG stated that, in reality, some patients would
require inpatient admission if they experienced severe symptoms. However,
for model simplicity, this transition is not explicitly captured due to the short

time horizon.

A standardised mortality ratio of 7.37 was applied to patients with treated
heart failure in the model according to age and sex from the office for national

statistics life tables.
71.3 Waiting list times (time to diagnosis)

Symptomatic people on the waiting list transition to being diagnosed and
treated accordingly, with the time this takes being related to simulated waiting
list times. People could access TTE from this state through standard referrals,
where the TTE is performed first followed by a further wait for clinical
assessment. The EAG also assumed a proportion of people would attend a
one stop diagnostic clinic, where they receive echocardiography and specialist

clinical review in one appointment.
Baseline time to diagnosis and proportion diagnosed

Total wait time for echocardiography is not routinely collected so the EAG
based waiting time estimates on NHS diagnostic activity data (July 2025) and
clinical expert input. National data show that around 10.6% of patients wait 13
weeks or more for echocardiography, while most (approximately 89.4%) wait
less than 13 weeks. Experts advised that, in settings without a one-stop
diagnostic clinic, the typical waiting time from referral to echocardiogram is
between 6 and 12 weeks. To model this, a normal distribution was assumed,
where no patients received echocardiography before 6 weeks, and 10.6%
waited beyond 13 weeks. This distribution was used to estimate the proportion

of patients diagnosed at 2-week intervals.

Clinical experts also estimated that the interval between echocardiography

and subsequent clinical assessment is usually 1 to 4 weeks. The EAG
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assumed that half of patients are assessed within the first 2 weeks after
echocardiography and the remainder in weeks 3 and 4. These intervals were
combined to calculate overall waiting times and the proportion of patients
diagnosed at 2-week intervals. Clinical experts estimated one stop diagnostic
clinics have a wait time from referral to diagnosis of between 2 to 10 weeks. In
the model, a mean waiting time of 6 weeks was assumed, with patient waiting
times represented by a normal distribution. This distribution was applied to
estimate the proportion of the heart failure population diagnosed at 2-week

intervals.
Effect of Al technologies on wait times

Two technologies (EchoConfidence and Us2.ai) reported evidence on time
savings with Al-assisted echocardiography, these are reported in section
6.2.5. The EAG considered these studies have important limitations. Both
Us2.ai studies were conducted in Japan, so the setting and operators may not
reflect NHS practice. The FEATHER study was UK-based but reported interim
results with very limited detail. It included consecutive patients referred to
community outpatient cardiology clinics and so has limited generalisability to
standard NHS practice. Time measurements were also unclear because the
studies reported the technology’s impact at different stages of the procedure.
For example, Sakamoto et al. (2025) reported an examination time of 14.3
minutes without Al, while Hirata et al. (2024) reported combined measurement
and report creation time of 12.5 minutes without Al. The EAG were uncertain
whether these times represent a full echocardiography procedure, as they are
much shorter than the NHS average of 45 minutes (clinical expert estimate,
see Figure 1). Similarly, FEATHER reported time savings for specific
automated steps, but it is unclear how these fit into the overall TTE workflow
or whether they would translate into practical efficiency gains. The EAG
considers this evidence low quality and not robust, so the analysis should be
regarded as exploratory. Details of these studies and their limitations are
summarised in Table 15 of the EAR.

The EAG estimated changes in waiting time using evidence on reduced

procedure time with Al-assisted echocardiography. First, the current number
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of patients that received an echocardiogram within the average wait time
under standard care was calculated. This was estimated using the current
number of procedures completed in a full day and the average waiting time for
echocardiography, assuming a 5-day working week. This gave an estimated

total of 575 patients under standard care.

A shorter procedure time with Al was then applied to calculate the new
number of procedures per day. The average wait time with Al-assisted
echocardiography was estimated by dividing the same number of patients
calculated for standard care (575) by this new daily capacity. The percentage
reduction in average wait time was then applied to generate a revised
distribution of echocardiography waiting times. The same reduction was

assumed for one-stop diagnostic clinic waiting times.

In the base case, the estimated reduction in average wait time was 17% for
both EchoConfidence and Us2.ai (see section 6.2.3 in the EAR and section 4
in the addendum). The model assumed that waiting time for specialist clinical
assessment remained unchanged. These estimates were used to calculate
the proportion of the heart failure population diagnosed for each technology.

Full details of the calculation are provided in Appendix E of the EAR.
71.4 Costs
Standard of care and state costs

Costs in the model were based on published sources and expert input. Staff
time was included for both arms, costed using a band 7 cardiac physiologist.
Hospitalisation and emergency department costs were taken from NICE
guidance NG106 (2025 economic modelling). Follow-up costs after heart
failure diagnosis were based on NG106 resource requirements and validated
by clinical experts; specialist nurse visits were costed using a band 6 nurse.
Drug treatment costs were weighted by prescribing patterns reported in
NICOR (2025) and aligned with NG106 recommendations. These costs are
listed in Table 18 of the EAR. The EAG excluded standard TTE costs because

Al technologies are used as an adjunct to standard echocardiography. A
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breakdown of technology costs included in the model are reported in Table 17
of the EAR.

EchoConfidence

The EchoConfidence software is priced at £4 per use, with additional set-up
and training costs. Hardware may be supplied by the vendor at extra cost, but
these costs were not included in the EAG model because they are currently
unknown. Staff training includes 2 days on site plus remote sessions and is
costed as an additional package. Information technology (IT) support for
integration and ongoing maintenance may incur extra fees, but limited
information was available to include these in the model. Reversing

implementation would mainly involve set-up, hardware, and training costs.
EchoGo Heart Failure

The EchoGo Heart Failure technology is offered as a package priced at £25 to
£50 per use (excluding VAT), covering software, IT and cloud support,
integration, and staff training. The company did not provide contract details,
so reversal costs cannot be assessed. Minimal training is required, and no

additional equipment is needed.
Ligence Heart

Ligence have 2 pricing models available: an unlimited licence (1 or 3 years)
based on workstations, or a tiered pay-per-use model. For its cost calculation
the EAG used the tier-based pricing model, using the estimated annual scan
volumes from the NHS England Diagnostic Waiting Times and Activity
dataset. This resulted in a cost per scan of £2.61. Costs cover software,
installation, and support. A server may be provided at extra cost, and one-
hour training per person is included at no additional cost. Reversal costs

would include any server fees and unused scans.
US2ai

The company offers a tier-based (pay per scan) package based on the

number of scans. Using the estimated annual scan volumes from the NHS
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England Diagnostic Waiting Times and Activity dataset resulted in a cost per
scan of £7.50. Installation can be cloud-based or on-site, with optional rental
servers for piloting or transition; server costs vary. In its cost calculation, the
EAG included an on-site installation of a basic server. The costs include
software use, clinical and IT support, training, installation and routine support
updates. Reversal costs would include any server fees and unused scans

(see section 3 of the addendum).
71.5 Health state utilities

Patients were assigned utility values for each health state in the model, based
on NICE TA773 and NG106. The utility of 0.58 for both untreated and treated
heart failure was derived from EQ-5D data in the REFER study (Taylor et al.,
2017, unpublished). The EAG noted the REFER population mainly included
older patients (mean age 77, 50.6% male) with HFpEF (86.5%). The EAG

retained a utility value of 0.58 for treated heart failure and applied a 10%

disutility for untreated heart failure (EAG assumption). A temporary (1 cycle)
utility decrement for heart failure-related hospitalisation of 0.019 was also
included, based on TA773 and NG106, to reflect reduced quality of life during
and immediately after admission.

7.1.6 Presentation of results

The EAG stated that the cost-effectiveness analysis should be considered
exploratory due to significant uncertainty in input variables and multiple
assumptions. The base case included only Al technologies with evidence of
impact on procedure time (EchoConfidence and Us2.ai), compared with
standard TTE. Probabilistic sensitivity analysis was not performed because
the EAG stated it would add little value for guiding evidence generation. One-
way deterministic sensitivity analyses were undertaken to identify key drivers
and explore plausible ranges. The values used are listed in Table 20 of the
EAR.
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7.2 Model results
7.21 EchoConfidence

The base case results suggest EchoConfidence may be cost-saving
compared with standard care (cost difference of -£3.14), mainly due to
reduced staff time per scan offsetting its per-use cost. The model assumes a
17% reduction in waiting time, which could increase the proportion meeting
the 6-week referral target from 26% to 40% and deliver modest QALY gains
(QALY difference of 0.0005).

However, the EAG considered these findings are highly uncertain because of
limited clinical evidence and assumptions about workflow impact. One-way
sensitivity analyses show results are most sensitive to the proportion
diagnosed in one-stop diagnostic clinics and the effect of waiting time
reduction (Table 21 of EAR). Combined scenarios with lower clinic use and
smaller time savings substantially reduce the benefit, but the technology
remained cost saving in all scenarios. Overall, while the EAG concluded that
EchoConfidence appears potentially cost-saving, it stated that results should

be interpreted with caution given the uncertainty.
7.2.2 US2.ai

The base case results suggest Us2.ai may be more costly and more effective
than standard care (cost difference of £0.92, QALY difference of 0.0005), with
an ICER of £1,674 per QALY gained (see section 4 and table 4 in the
addendum). This results in a 14.5% increase in those meeting the target
referral time. Results from one-way sensitivity analyses suggest that the
economic findings are sensitive to a number of inputs including the impact of
waiting time reduction with Us2.ai, the proportion diagnosed in a one stop
diagnostic clinic, the proportion of inpatients receiving TTE, and the staff
delivering TTE. Overall, the EAG noted that while the results suggest that
Us2.ai is potentially cost-effective, the findings should be interpreted with
caution given the significant uncertainty surrounding the current waiting time
and the impact of Us2.ai on TTE workflow. Full details of the cost

effectiveness results for Us2.ai are in section 4 of the addendum.
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8. Equality considerations

The final scope and the scoping equality impact assessment describe equality

considerations for this assessment. The external assessment group (EAG) did

not identify additional equality issues.
9. Key points, limitations and considerations

9.1 Diagnostic accuracy and clinical evidence

9.1.1 Key points

e Al-assisted echocardiography technologies generally show good
diagnostic accuracy for detecting heart failure and related parameters
compared with human measurements, particularly for core measures

like LVEF and classification of heart failure.

¢ In studies that assessed diagnostic accuracy only, the Al technologies

are assessed as standalone.

¢ In studies that assessed implementation beyond diagnostic accuracy,
Al technologies are positioned as adjunctive, and so lower risk as per

the scope.

e All 4 technologies have some evidence to support their use, with US2ai

having the most extensive evidence base.

e There was a general lack of evidence on the impact of Al used to assist
echocardiography in terms of clinical or procedural outcomes. There

was limited evidence on procedure time.

e One interim study reported data from a UK community care setting,
indicating there may be potential for EchoConfidence to be safely
implemented in community care, but evidence to demonstrate its

impact on procedure time and the type of operator is limited.
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9.1.2

9.1.3

Limitations

The study designs lacked robustness. Many studies were retrospective,
single-centre, and sometimes single-operator, introducing bias and

reducing generalisability. Only 1 RCT (on US2.ai) was identified.

There is a lack of UK-based and real-world data. Most studies were
conducted outside the UK or in controlled settings, limiting
generalisability to NHS practice. Complex cases and poor-quality
images were often excluded, which does not reflect real-world

conditions.

There was a lack of clinical outcomes. Few studies reported health-
related outcomes such as time to diagnosis, treatment initiation, or
patient quality of life. Most evidence focused on measurement

accuracy rather than clinical impact.
Considerations for committee

Most studies were on aspects of diagnostic accuracy, with limited
evidence on procedure time. Does the evidence show that the
technologies have plausible potential to address the specified unmet

need?

Four technologies were assessed. What does the identified evidence
tell us about the relative diagnostic performance of these technologies
and their suitability for use in the NHS?

What are the key potential benefits of Al echocardiography

technologies? Are they clinical or system benefits?

Are there any clinical or system risks with using Al echocardiography to

aid the operator that can be managed?

What are the key evidence gaps for these technologies?
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9.2
9.2.1

9.2.2

Are Al technologies for echocardiography likely to be used in primary or

community care settings in the future?

Health economic evidence

Key points

The key driver of cost-effectiveness was the potential of Al to reduce
procedure times, streamline appointments and increase throughput,
reduce waiting list times for diagnosis, improve access to treatment,

and thereby improve clinical outcomes.

Data on procedural time was key to the economic model but the
robustness and generalisability of the studies informing these data

were uncertain.

Although 1 study reported an increase in the number of examinations
per day this was not based in the UK and so it is uncertain whether any
time savings would translate into meaningful increases in throughput in

NHS clinical practice.

Reduced staff time per scan appears to drive the cost effectiveness in
the 1-year time horizon, with only a modest QALY gain in the short

term

The coceptual model indicates that EchoConfidence and Us2.ai have
the potential to be cost-saving or cost effective. However, the evidence

is uncertain and results should be interpreted with caution.
Limitations

The model had a time horizon of 1 year due to the lack of longer term
evidence. The key benefits of the effect of the Al technologies on heart
failure treatment may not be realised for several years. Longer-term

benefits are a key evidence gap.
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e There was a lack of information to inform current NHS
echocardiographic waiting times or to extrapolate how Al derived

efficiencies might improve these.

e The costs of the Al technologies are complex and the implications of

their adoption at a local level is poorly understood.

e Cardiac MRI, which is sometimes used downstream of TTE in the
classification of heart failure, was not modelled as the EAG could not

find data on its use or the impact or regional variability.
9.2.3 Considerations for committee

e Does the conceptual model represent the care pathway and capture all
the relevant parameters. Is it fit for purpose? If not, why not and would

this impact the evidence gaps evidence generation needs to address?

e Have all the key potential economic benefits of the technologies been

identified?

e To what extent would relatively small procedure time savings be likely

to translate into higher patient throughput in NHS clinical practice?

e What evidence gaps need to be addressed to reduce uncertainties

concerning the cost-effectiveness of the Al technologies?
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Appendix A Abbreviations

A Atrtificial intelligence

EAG External assessment group

EAR External assessment report

GLS Global longitudinal strain

HF Heart failure

HFmEF Heart failure with mildly reduced ejection faction
HFpEF Heart failure with preserved ejection faction
HFrEF Heart failure with reduced ejection faction

ICC Intraclass correlation coefficient

LVEF Left ventricular ejection fraction

MAD Mean absolute difference

MD Mean difference

NPV Negative predictive value

NT-proBNP N-terminal pro b-type natriuretic peptide

PPV Positive predictive value

QALY Quality adjusted life year

RCT Randomised controlled trial [delete if not needed]
SD Standard deviation

TTE Transthoracic echocardiography
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HealthTech Programme
HTE10067: Artificial intelligence assisted echocardiography to support diagnosis of heart

failure (provisional title)

Patient organisation submission

Thank you for agreeing to give us your organisation’s views on this technology and its possible use in the NHS.

You can provide a unique perspective on patient experience of using the technology in the context of current clinical practice
that is not typically available from the published literature.

To help you give your views, please use this questionnaire. You do not have to answer every question — they are prompts to
guide you. The text boxes will expand as you type.

Information on completing this submission

¢ Please do not embed documents (such as a PDF) in a submission because this may lead to the information being
mislaid or make the submission unreadable

e We are committed to meeting the requirements of copyright legislation. If you intend to include journal articles in your
submission you must have copyright clearance for these articles. We can accept journal articles in NICE Docs.

e Your response should not be longer than 10 pages.
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Information about your organisation

Organisation
name

Cardiomyopathy UK

Contact person’s
name

Role or job title

Email

Telephone

Brief description of the organisation, such as:
-  Who funds it?

- How many members does it have?

- What region your organisation represents

Cardiomyopathy UK is the national charity for people affected by all forms of cardiomyopathy. The charity provides a range of support and
information services, provides clinical education opportunities, raises awareness of the condition among the general public, supports

research

and advocates for improved access to quality treatment.
The charity’s database contains 22,000 individuals and there are around 100 active volunteers who facilitate support groups, provide peers
support, advocate for improvements in health services, undertake fundraising activities and take on a range of other roles.

The charity’s trustees, the majority of whom have personal experience of the condition are ultimately responsible for the charity and are
supported by a professional team of 19 staff.
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The charity is funded by community fundraising, donations and legacies (78%) charitable trusts and foundations (8%) the pharmaceutical
industry (14%) Total income from the year January - December 2024 was £1,054,678

Cardiomyopathy is a leading cause of heart failure.
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Declarations

Do you have any conflicts of interest? Please let us know if you have a question on the NICE policy on declaring and
managing interests.

No

How did you gather information about the experiences of patients and carers to include in your submission?
Cardiomyopathy UK conducted a national survey of the cardiomyopathy community, called the Mylnsight survey, in summer 2024.
Cardiomyopathy UK commissioned the Picker Institute to provide expertise on the survey development and design. Picker is a leading
international health and social care charity, which carries out research to understand individuals’ needs and their experiences of care. A total of

1323 people responded to the survey.

Intelligence is gathered on an ongoing basis about our community’s experiences by our helpline nurses and peer support team.

Are you willing for this submission to be Yes x[ ] No []
shared on our website?

We may invite you to a scoping meeting Yes x No []
and/or committee meeting where this
technology is to be discussed. Would a
member of your organisation be willing to
join such a meeting (this may be in person or
virtually)?
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Does the organisation have any direct or Yes [] No x
indirect links with, or funding from, the
tobacco industry?

Impact of the symptoms, condition or disease on patients and / or family and carers

1. What is it like to live with the condition? What do carers experience when caring for someone with the condition?

The Mylnsight survey of the cardiomyopathy community in 2024 found the following:

* 62% of all people with cardiomyopathy reported that their exercise had been negatively impacted in the last two years.

* This is in comparison to 80% of people with amyloidosis cardiomyopathy stated that exercise had been negatively impacted by
amyloidosis cardiomyopathy.

* 34% of all people with cardiomyopathy reported that their mobility had been negatively impacted in the last wo years.

* By contrast, 55% of people with amyloidosis cardiomyopathy stated that their mobility had been negatively impacted by amyloidosis
cardiomyopathy.

* 51% of all people with cardiomyopathy reported that their self-confidence had been negatively impacted in the last two years.

* 50% of people with amyloidosis cardiomyopathy stated that their self-confidence had been negatively impacted by amyloidosis
cardiomyopathy.

* 49% of all people with cardiomyopathy reported that their mental health had been negatively impacted in the last two years.

* 40% of people with amyloidosis cardiomyopathy stated that their mental health had been negatively impacted by amyloidosis
cardiomyopathy.

Survey respondents from our 2022 national survey indicated that the most impactful physical symptoms of the condition were breathlessness,
exhaustion and the inability to carry out day to day tasks. Respondent told us;
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“l would say that the grinding daily fatigue is the hardest of all the symptoms to cope with as it takes away much of the enjoyment
of life”

“I'm existing, not living, I've lost much of my mobility and have to rely on a walking stick, can't walk more than about 3 feet without
having to stop due to the pain and breathlessness and sheer exhaustion, have had to have a wet room fitted as can't use a bath,
can't lay down at all so have to sleep on my recliner sofa sitting bolt upright... | barely leave the house anymore except for
appointments mainly. | want a life back”

Our national survey also looked at the impact of cardiomyopathy on emotional wellbeing of someone with the condition. Comments included:

“l find it hard sometimes to not do what I used to do and my close family find it hard too. I try to be philosophical and appreciate
what I can do though. It’s difficult when out and about and | can’t walk as far as others or go upstairs easily - some disabilities are
hidden”

“l live alone and I get very scared about my condition and how to cope with it. Also | feel anxious a Ilot of the time as | never know
what will happen next in my body”

When we asked the loved ones of people with cardiomyopathy about their experience, they told us that they were also struggling emotionally
with the impact of cardiomyopathy. 60% of respondents said that they found it hard to cope and 28% believed that counselling could help their

emotional wellbeing.
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Experiences and availability of current health technologies

2. How do the existing health technologies play a role in managing the condition, and what are their advantages and
disadvantages? What new technologies do you know of that you could tell NICE about?

Echocardiography is crucial to the diagnosis of cardiomyopathy — the aetiology behind the heart failure. Moreover, its use is also important

in the screening of all first-degree relatives of patients with cardiomyopathy.

Echocardiography is also essential to the prescribing and up-titration of the drug mavacamten, for people with hypertrophic obstructive

cardiomyopathy.

Given its centrality to the diagnosis of cardiomyopathy — and one of the few dedicated cardiomyopathy medications — the only main
disadvantage to echo is the waiting times. Patients have often had cardiomyopathy symptoms for some time before it is recognised that
they may have a heart condition (rather than asthma, anxiety etc). Delays on echos means that these patients have to wait still longer

before a diagnosis can be confirmed.

Similarly waiting for echos as part of ongoing care can cause distress to patients, as in the example below from our 2024 national patient

survey:

“Not seen cardiologist since leaving hospital. Had cardiac arrest out of hospital. CRTD fitted. Only had phone call and could not ask things
as so rushed (I appreciate waiting lists crazy). Was not listened to when said still very breathless. Having to wait over a year for a repeat

echocardiogram to check things. This is causing distress...”
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Improved access to echocardiography would therefore help to allay (or confirm) patient concerns and worries. Our patient community
would also like the reassurance of more regular access to echocardiography — and in some cases the lack of this is causing behaviour
change, to alleviate risk. Many don’t have regular echos and worry about whether any changes to their condition would be picked up on.
Moreover, patients have seen a deterioration in access to echo in recent years. Very concerningly, this is not necessarily clinically-led, as

in the example below.

“The care | had initially was excellent but since Covid the annual tests ECG/Holter/Blood/Echo tests that I'm supposed to have in advance
of talking to my consultant have become impossible to get. The consultant orders them but the scheduling person decides that they are
not necessary. So I've only had an echo and an ECG in the past two years despite arguing with the appointment booking people. My
cardiologist said it's because they are under orders to reduce tests for financial reasons and the finance team have higher priority than

him.

“l would like more regular echocardiograms. | haven't had one for about 6-7 years. | know NHS is underfunded and overstretched after

covid. | am also afraid of chest infections, hospitalisations and | don't like to go out. If | do, | wear a mask which | think is sensible.”

“Getting an echocardiogram in advance of my annual appointment can be a challenge.”

In general there is a strong feeling from our patient community that echo is in very short supply and that they either don’t get echos, or

have to push for what ought to be happening systematically.

Patient organisation submission
HTE10067: Artificial intelligence assisted echocardiography to support diagnosis of heart failure Page 8 of 13



“I have to push through my GP the local cardiology department for my regular echocardiograms and follow up consultations, they do not

respond to me and do not programme them automatically.”

“‘Routine ICD checkups have always been good. But feel other tests and checkups are too infrequent. I've not had an echocardiogram in

over 4 years.”

“My cardiologist wants me to move to biennial echocardiograms despite being recommended annual, she relented to this year's

echocardiogram in the end, but it felt like an afford.”

About the health technology being assessed

3. What are the potential benefits of the health technology/technologies being assessed compared with what currently
exists?

Improvement in patient access to echo would be a very positive outcome from this technology appraisal. We would hope that use of Al results
in additional system capacity.

Speeding up diagnosis doesn't just have positive impacts for that particular patient but for other potential patients too — the issue of delayed
diagnosis of the proband has implications of later diagnosis in their family members, where it turns out to be an inherited cardiomyopathy.

Any use of this technology in community hubs would potentially give patients an opportunity for care closer to home (not having to travel to
the hospital centre for their echo) - which is important to many, especially those who are more unwell and less mobile.
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4. What are the potential disadvantages of the health technology/technologies being assessed compared with what is
currently available?

It is essential that Al echoes must be safe both in terms of giving reliable results and in relation to privacy and patient data. Safety is

particularly at issue if use of the technology widens access to HCPs who are not trained in its use. Misdiagnosis/false negatives must be

avoided at all costs, given the repercussions and impacts this would have for patients.

5. Do you foresee people having any specific concerns regarding the integration of artificial intelligence technologies
into heart failure diagnostic pathways?

We have heard from different sources about issues with patients having to have two echoes due to poor reporting and/or poor data integration
between hospitals e.g. having an echo in a CDC or local hospital and this having to be repeated in the cardiology department.

“My local hospital did not send Barts the results of 2022 and 2023 Echos. | had to request Barts for an Echo this year.”
Having to repeat echoes is a significant waste of NHS resource, but also impacts patients whose time and energy is wasted in attending

unnecessary echo appointments. This is dispiriting and frustrating for patients — and results in a poorer experience of care. The new
technology will not be a panacea to resolving all echo problems — and indeed will be most impactful if these wider issues are resolved.
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Equality issues

6. Are there any groups of people who might benefit more or less from the technology than others?

Where this technology is used is a key issue — and how the results of these scans are transferred to hospital centres, if done in local
hospitals/CDCs. Ideally we want for people to have their care as close to home as possible — if the Al echo increases capacity for this, this
would be a positive outcome. However, should Al echo only be rolled out in hospital centres attention needs to be given as to whether this
could be disadvantageous to rural/coastal populations.

Those with Hypertrophic Obstructive Cardiomyopathy stand to gain in particular, if improved echo capacity results from this
technology,resulting in more people being able to access mavacamten.

Cardiac amyloidosis is often under diagnosed, not least because it is difficult to diagnose (heterogeneity of symptoms at presentation
according to the ESC). Improved echo access could make a significant difference in improving diagnosis of ATTR-CM heart failure.
Diagnosing the aetiology behind the heart failure is crucial given the new drugs coming on line for ATTR-CM.

7. Are there any groups of people that might need further consideration in using the technologies (for example, because
they have higher levels of ill health, poorer outcomes, problems accessing or using treatments or procedures)?

While heart failure in general may be more prevalent in older people, cardiomyopathy can affect people of any age — and indeed is a leading
cause of heart failure in working age people. Modelling and safety considerations must consider younger people with cardiomyopathy.

Patient organisation submission
HTE10067: Artificial intelligence assisted echocardiography to support diagnosis of heart failure Page 11 of 13



8. Are there any potential equality or health inequality issues that should be taken into account when considering this
condition and the technology?

Enter text.

Additional information

9. Please include any additional information you believe would be helpful in assessing the value of the technologies.
Enter text.

Key messages

In up to 5 bullet points, please summarise the key messages of your submission. bullet points.

Echo capacity causes delays in diagnosis which is a significant cause of patient stress/distress.
Improving capacity would have a positive impact on patients — both in diagnosis and ongoing care and treatment.
Patient safety must be central to considerations — including that of younger people with heart failure caused by cardiomyopathy.

Improvements in data integration/reporting are needed to ensure the Al echo reaches its potential — and to improve patient experience
(avoiding duplication/two visits).

Thank you for your time. Please return your completed submission to medtech@nice.org.uk
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If you haven’t already, please register as a stakeholder by completing the stakeholder registration form and returning it to
medtech@nice.org.uk

Did you know NICE meetings are held in public? You can register on the NICE website to attend a meeting up to 20 working days
before it takes place. Registration will usually close 10 days before the meeting takes place.
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HealthTech Programme

HTE10067: Artificial intelligence assisted echocardiography to support diagnosis of heart

failure (provisional title)

Professional organisation submission

Thank you for agreeing to give us your organisation’s views on this technology or procedure and its possible use in the NHS.

You can provide a unique perspective on the technology or procedure in the context of current clinical practice that is not
typically available from the published literature.

To help you give your views, please use this questionnaire. You do not have to answer every question — they are prompts to
guide you. The text boxes will expand as you type.

Information on completing this submission

e Please do not embed documents (such as a PDF) in a submission because this may lead to the information being
mislaid or make the submission unreadable

e We are committed to meeting the requirements of copyright legislation. If you intend to include journal articles in your
submission you must have copyright clearance for these articles. We can accept journal articles in NICE Docs.

e Your response should not be longer than 10 pages.

About the organisation

Organisation name

British Society of Echocardiography
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Contact person’s name

Role or job title

Are you (please highlight
Yes or No):

An employee or representative of a healthcare professional organisation that represents clinicians? Yes or No
A specialist in the treatment of people with this condition? Yes or No
A specialist in the clinical evidence base for this condition or technology? Yes or No

Other (please specify): | represent the group of clinical experts in this field. The information in this submission
has been compiled by clinical experts.

Please provide a brief
description of the
organisation (including
where funding comes from)

The British Society of Echocardiography is a highly engaged member organisation which represents clinical
echocardiography professionals working at all levels and in all areas of the field. Our aim is to provide our
members with the necessary education and professional support to deliver the highest standard of care in
echocardiography.

We are funded through membership, accreditation and event fees. We receive some sponsorship from
industry in support of events and our industry partners. This accounts for 9% of our income.

Has the organisation
received any funding from
any company with a
technology related to the
evaluation in the last

12 months?

If so, please state the name
of company, amount, and
purpose of funding

Mycardium — exhibition stand at annual conference £3,300

Does the organisation have
any direct or indirect links
with, or funding from, the
tobacco industry?

No
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Current care pathway and unmet need

1. Please describe the
current standard of care
that is used in the NHS.
Please note any clinical
guidelines used in the NHS
which are relevant to the
care pathway. What setting
would this technology be
used in (primary care,
general hospitals,
specialist centres for
example).

* Chronic heart failure in adults: diagnosis and management (NG106)

* Acute heart failure: diagnosis and management (CG187)

Patients can present in a number of ways outside the above guidelines:
1. No BNP but symptoms of heart failure / breathlessness.
2. Normal BNP with symptoms of a potential cardiac disease.

This technology would be used within transthoracic echocardiography (TTE) services (hospital/CDC’s) by trained
echocardiographers. It would provide a useful diagnostic adjunct to both out- and in-patient TTE services. For
the most part, this will be elective, outpatient TTE activity.

All echocardiography equipment is portable and as such, TTE can be undertaken in outpatient departments but
also at the bedside in acute and emergency wards and clinics. However, for the later, the portable nature of TTE
significantly impacts productivity and reduces capacity as additional time is needed to locate the patient, set up
equipment at the bedside, and return to the department for the transfer of images and report generation. It is
ideal to have a service where inpatients can attend the TTE department as this supports increased inpatient TTE
activity and improves ergonomics for echocardiographers.

The BSE has published guidelines on the tirage of patients with suspected heart failure, a collaboration with
other UK cardiac societies. This was published in 2024 and is currently being converted for dissemination as a
GIRFT best practice guideline.

https://www.bsecho.org/Public/News/Articles/2024/2024-07/202407-PUE004-PUEQQ5-
PUEOQ06.aspx?WebsiteKey=cbc9ffd7-4ee6-4741-9280-d435d6a887f4

2. Does this procedure or
technology have the
potential to replace current
standard care or would it

The technology does not have the potential to replace current standard care and would be used as an addition to
existing standard of care - The EU Al act (2024) states the decision-making process remains with healthcare and
Al is only a supportive tool.
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be used as an addition to We envisage that the technology may prove useful in identifying heart failure with preserved ejection fraction
existing standard care? (HFpEF) and reduced ejection fraction. It is unlikely to be useful for the diagnosis of heart failure with reduced
Where would the ejection fraction (HFrEF), the majority of heart failure patients as echocardiographers are skilled to enable the

technologies or procedure
fit in the care pathway?

2.

detection of this and the issue of prolonged delays is not due to this.

There are a number of considerations for this use of this technology:
1.

Workflow 1: Where ONLY Al analysis is preformed and a diagnosis of concern is shown, a
comprehensive TTE will still be required to rule out the possibility of other cardiac pathology being
present.

Workflow 2: Where ONLY Al analysis is preformed and this shows no concerning diagnosis, only HFpEF
can potentially be excluded. This raises the possibility of a missed diagnosis due to other cardiac
pathologies and as some of the Al systems only use a proportion of the comprehensive TTE dataset, a
comprehensive TTE will still be required. This may lead to multiple TTE appointments. This would worsen
the “probe to treatment” time and the TTE waiting list as a whole.

The approaches outlined in workflow 1 and 2 above would mean:
a. A potential expedition of care and treatment for patients who do have heart failure
Duplication of TTE tests / appointments.

Marginal or no impact on ‘probe to treatment time’. It should be noted that several of the Al tools
require 20-30mins for Al analysis and report generation. By comparison a standard TTE takes 45
mins. Where both are needed due to clinical findings, the time taken (‘probe to treatment time’),
and thus the waiting list is worsened.

Workflow 3: Where the Al analysis is performed side by side with a comprehensive TTE, we can see
some potential benefits. Depending on their sophistication, some Al tools may have the ability to detect
pre-clinical, pre-diagnostic imaging levels of disease (e.g. cardiac amyloidosis). The two combined will
allow for the highest degree of clinical accuracy.

The length of time the Al systems take to generate reports and how this affects current standard of care needs to
be considered.
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It is not currently safe to rely on Al generation of reports ALONE. Additional considerations surround the skills
required for the echocardiographer to be able to integrate Al and traditional interpretation models. The degree of
interrogation and discernability required to ensure the Al generated reports are accurate needs to be explored.
Appropriate training and knowledge demonstration of this will need to be in place.

Infrasturcture in embedding Al into clinical practice is essential. There needs to be appropriate governance in
place and accountability for the Al generated report. It is important that whilst the Al technology may be able to
detect ejection fraction, there are other conditions that may present with heart failure symptoms and elevated
BNP but an alternative diagnosis is the cause which Al EF tools may miss. For example, heart valve disease;
pulmonary hypertension; cardiac infiltrative disease. Having a governance structure in place to ensure that the
healthcare professional undertaking the test is appropriately trained and has pathways for escalation and review
of imaging.

3. Is there an unmet need
for patients with the
condition or disease, or
healthcare professionals
managing the condition or
disease?

Yes, it would be beneficial for patients where they were unable to undergo a comprehensive TTE, in the first
instance. This is not achievable in all areas of service delivery across England, or the UK more widely. However,
integration of the Al tools ALONE will not provide a safe platform for treatment delivery in the absence of a
comprehensive TTE. Therefore, the Al tools should only be performed in combination with a comprehensive TTE
to aid earlier detection.

Additionally, there is an unmet need for the prompt identification of phenotypes of HFpEF. One example of this is
cardiac amyloidosis which is challenging to assess on TTE and patients typically have several echocardiograms
across the disease prodrome with a ~2-year delay in diagnosis. Al technology that can support early diagnosis
would be invaluable, improving patient care and facilitating early treatment.

As highlighted above there is an unmet need related to the training of echocardiographers in the utility of Al tools
and their usefulness as part of the diagnostic pathway.

No perceived unmet need for HFrEF as these patients can be assessed using routine TTE without issues as
highlighted above. Several of the Al tools under evaluation here are for NOT for HFrEF and thus the majority of
patients presented with heart failure will not benefit from these Al tools.
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Further education is required both in relation to the referral of patient and the triage of patient requests. Patients
are often referred with insufficient information meaning there is a potential for patients to be triaged
inappropriately, or the request to be rejected entirely. In contrast some patients are referred inappropriately when
the patient does not met criteria for heart failure or related diagnostics. The need for training on triage and
indications is paramount.

The technology

4. What are the potential
benefits for patients and
healthcare professionals
from this technology
(consider the potential
clinical benefits, cost
benefits, benefits to quality
of life, and any wider
benefits)?

Patient benefits:

Improved and earlier diagnosis of HFpEF and its underlying aetiology. Earlier access to treatment which can
improve patient quality of life, morbidity, and mortality. For systemic disease such as cardiac amyloidosis this will
result in fewer diagnostic tests with a reduction in unnecessary repeated TTE’s.

Healthcare professional benefits:

This technology will help with diagnosis as a result of Al-suggested possible pathologies. Even those that would
not routinely be picked up on a comprehensive TTE due to stage/prodrome .i.e. early amyloid can be difficult to
identify. Al tools may reduce repeated TTE’s and improve waiting list times. Consideration of what skills
echocardiographers will to use Al technologies safely is paramount given the known limitations in terms of bias
within the datasets and when / when not to use the Al technologies. This may lead to disparities in care.

Wider healthcare community:
The technology may support heart failure patients receiving more timely care, potentially at the earlier stages of

heart failure leading to less hospital admissions and shorter length of stays. This would have a significant cost
saving implication and an improvement in global longevity.

5. Are there any groups of
patients who would
particularly benefit from
this procedure/technology?

Patients with HFpEF. The Al technologies have the potential to improve the detection of amyloidosis with is
challenging to assess and often patients have prolonged diagnosis times.

Some of the technologies listed are not available for use in patients with atrial fibrillation which can be present in
up to 50% of patients with heart failure. What impact will this have on patients with atrial fibrillation and how will
this impact the TTE workflow.
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Are there any groups in
which the technology
would be less effective or
would be less likely to
benefit?

Consideration in needed on how the Al technologies cope with limited acoustic TTE views. Historically Al tools are
trained on “good” TTE images. Yet this is not common in clinical practice. Thus, there is a potential that vast
amounts of funding will be spend on Al systems to support clinical TTE workflow that will return limited benefit.

Consideration needs to be given to the training sets from which the Al technologies derived data, as some of
these may be based on patient demographics which may not be representative of the UK population (i.e US
datasets).

Echocardiographers will need data literature skills to understand when Al generated results are appropriate and
safe to use to prevent misdiagnosis and suboptimal patient care.

Echocardiographers will need time to review Al generated results alongside the TTE to ensure safe patient care.

6. How would healthcare
resource use differ
between the technology
and current standard care?

With the implementation of Al tools, IT resource would need to be upgraded to ensure that the Al tools can be
accessed quickly and easily available on all workstations. Reporting templates may need to be compatible with
existing traditional electronic health records. There would need to be a significant financial contribution. Additional
digital storage space would be required. It will be time inefficient to log into multiple cloud based systems to use
different Al tools. Where possible, Al vendors should be encouraged to use a local departmental system (Edge Al)

or install software on the echo carts themselves.

7. Describe any system
changes that would be
needed if the NHS were to
adopt the technology. Are
there any potential barriers
to the adoption of the
technology or any changes
that may be needed to
enable implementation of
the technology in the NHS?

All of the technologies use DICOM format for analysis however there are variations in DICOM format which may
mean some echocardiography storage systems will not be able to integrate the technology. This will cause
disparities in care across the UK.

Cost is a significant barrier: NHS Trusts may not be able to afford the technology or due to Trust IT systems may
not be able to integrate the technology.

Would patients be happy sharing their medical information / imaging with third party providers and who would be
responsible for the governance around this, the hospital or the Al tool vendor?
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8. Are there any side
effects or adverse effects
associated with the
technology?

Technology bias: Where the Al systems are not developed on representative UK heart failure populations. In
addition, there may be misdiagnoses as a result of rare disease types with limited representation within Al
datasets.

Over-reliance on technology: Emerging evidence indicates that exposure to Al systems may negatively
influence the behaviours of healthcare professionals, potentially contributing to a decline in care standards
(DOI: 10.63163/jpehss.v3i2.277)

Privacy and data security: Patients will need to be informed that Al will be used and that their data maybe
transferred to Al companies for analysis. How, when and where this is done for this pathway will need to be
considered as it could mean that only a small number of patients will consent to using it.

Lack of transparency: Some of the technologies use unsupervised learning which means that the patient /
healthcare professional has no idea on how the Al system has derived the answer. This can degrade trust and
cause uncertainty in how to diagnosis and treat patients. Consideration of how this can impact trust is needed.

Ethical and legal: The EU Al act (2024) clearly states the decision-making process lies with the healthcare
professional. Yet it remains unclear where the accountability lies if a mistake is made. This needs clarification as
some argue whether healthcare professionals can truly be held responsible for technologies that are not
explainable.

9. Do you foresee patients
having any specific
concerns regarding the
integration of artificial
intelligence technologies
into heart failure diagnostic
pathways?

The BSE has undertaken patient and public engagement on this area. Their concerns are as follows:
Al should not replace healthcare staff

Will all patients at all hospitals have access to the technology

Who takes responsibility for the results

Are staff trained how to use it

How will data remain confidential

What is the environmental impact of the technology.

The BSE Al position statement will be submitted for peer review publication in October 2025.
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Equality considerations

10. Are there any equality
issues that should be
considered for this
assessment?

All echocardiographers will need upskilling to be able to use the technology. If not, it will not be used in the
manner intended. There is concern that in certain locations, access to this technology may not be as
readily available due to insufficient financial support.

Al systems will need to ensure equity for all patient demographics to ensure it is safe.

11. Could the
technologies reduce or
increase health

inequalities? How?

The technologies have the potential to reduce health inequalities but only if:

1. The technology can be rolled out equitable across all healthcare settings.

2. Echocardiographers are trained in data literacy skills.

3. How the Al technologies will integrate into the TTE workflow without an increased need of duplicate scans /

appointments.

4. The technology is inclusive of the heart failure population that is seen in the UK.

5. Issues around accountability can be ironed out at a national level.
If the above issues cannot be resolved, we envisage that health inequalities will be increased. This will occur
through:

1. Duplication of TTE appointments which will increase the TTE waiting time

2.

Wrong or no firm diagnosis being given by the Al tool

3. No access to Al tools shown to support the diagnosis and aetiology of HFpEF

Key messages

In up to 5 bullet points,
please summarise the key
messages of your
submission

e Al tools to support and not replace a comprehensive TTE, otherwise potential to worsen current TTE waiting
times.

e Ethical and legal issues need resolving prior to Al tool being implemented
o Echocardiographers need data literacy skills to ensure patient safety

o Equitable access of Al technologies across all healthcare settings

e Al tools need to be representative of UK patient demographics and results generation needs to be
transparent.
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Thank you for completing the submission.

Please log in to your NICE Docs account to upload your completed submission.

Your privacy

The information that you provide on this form will be used to contact you about the topic above.
Please highlight YES if you would like to receive information about other NICE topics - YES or NO

For more information about how we process your personal data please see our privacy notice.
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1. Introduction

The External Assessment Group (EAG) has prepared this addendum in response to
comments received from stakeholders on the external assessment report (EAR).
Where possible, minor changes have been made in the main report, with more

comprehensive changes included in this addendum.

Key issues addressed in this addendum:

Query from stakeholder EAG Response

One company raised concerns that Evidence from 2 additional studies has
some evidence for their technology been reviewed and summarised in this
has been omitted from the EAR. addendum.

One company raised concerns that The EAG has updated the technology

the technology costs used in costs used in the economic modelling.

economic modelling were not the

most up to date.

One company provided clarification The EAG has updated the inputs
on appropriate procedure time inputs | representing procedure time in the base
to be used in the base case economic | case analysis.

analysis.

2. Results from additional clinical evidence

An additional 2 studies have been included in this addendum. Both are for the Us2.ai
technology. The study by Oo et al. (2024) is a retrospective analysis of NHS
Electronic Health Record (EHR) data which investigated the utility of Al-assisted
echocardiography in combination with biomarker analysis from routinely stored
plasma samples in identifying and classifying heart failure (HF). The study by Huang
et al. (2024b) is a prospective comparative study on the acceptability of the
introduction of Al-assistance to transthoracic echocardiography (TTE). Participants
underwent both TTE by a skilled sonographer and then Al-assisted TTE by a novice
operator. A survey was then provided to participants to gain an understanding of
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their acceptance of “task shifting” in healthcare through implementation of Al. The
EAG notes this is a separate analysis of the same cohort reported on in a key study
included in the main EAR (Huang et al. 2024a).

Study characteristics and results are summarised in Table 1. In line with the EAG
protocol, only results for outcomes relevant to the scope have been extracted. The
quality of these studies has not been formally assessed, in line with the methods
described in the EAG protocol and applied in the main EAR. Key findings and

limitations have been summarised narratively.
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Table 1: Summary of additional clinical studies.

Participants Relevant outcomes and results

Study details
Reference: Oo et al. 2024

Design: Retrospective
observational study

Intervention: Us2.ai

Comparator: manual
validation/review of clinical

records

Setting (location): N/A - EHR
study (Scotland, UK)

Reference: Huang et al. 2024b

Design: Prospective comparative
study

Intervention: Novice-operated
Us2.ai-assisted handheld TTE

Comparator: Expert-operated
standard cart-based TTE

Setting (location): National Heart
Centre (Singapore)

Participants (n=578):
o HFrEF (n=156)
o HFpEF (n=236)
e Controls (n=186)

Demographics:
HFrEF cases

e Mean age: 74 + 10 years
e F/M: 37% female
o Ethnicity: NR
HFpEF cases
e Mean age: 77.5 + 13 years
e F/M: 61% female
¢ Ethnicity: NR
Matched controls:
e Mean age: 59.5 + 18 years
e F/M: 61% female
e Ethnicity: NR
Participants:
n=100 patients with =21 HF
symptom

Demographics:
e Mean age: 61 + 15 years
e F/M: 44% female
¢ Ethnicity:
- 75% Chinese
- 8% Malay
- 13% Indian
- 4% Other

1) Coverage of echocardiographic parameters
Across all parameters, coverage by Us2.ai-assisted analysis ranged from 46% to 93%.
Of parameters required for diagnosis of HFpEF as per ESC guidelines, coverage was as follows for EHR
(manual) data versus Us2.ai-assisted analysis data:
LV mass: 51.04% versus 92.56%
Relative wall thickness: 77.85% versus 92.56%
LA volume: 0.00% versus 58.65%
E/e’ ratio at rest: 0.00% versus 45.50%
TR velocity at rest: 74.57% versus 67.99%
PASP: 3.11% versus 54.00%
2) Concordance with clinical records (manual validation used as reference standard) (n=150)
Diagnostic accuracy of Us2.ai-assisted analysis for HFrEF and HFpEF respectively, was:
e PPV: 86% and 80%; Sensitivity: 100% and 100%; Specificity: 94% and 90% (Kappa value: 0.891
and 0.842)
100% “concordance rate” was noted in the control group.

1) Survey results on acceptance of novice-operated Us2.ai-assisted handheld TTE
Where 1 represents ‘strongly disagree’ and 5 represents ‘strongly agree’, scores ranged from 3.59 + 0.88
(for perceiving the process as fun) to 4.14 + 0.58 (for trusting healthcare staff).

2) Relationship between variables and behavioural intention (acceptance of novice-operated
Us2.ai-assisted handheld TTE)

e All hypothesized variables (performance expectancy, effort expectancy, social influence, facilitating
conditions and hedonic motivation) showed significant relationship to behavioural intention.

e Facilitating conditions, hedonic motivation and performance expectancy showed the strongest
relationship to behavioural intention.

e Patient factors such as age (p=0.181), education level (p=0.218) and gender (p=0.776) did not
significantly affect behavioural intention.

Abbreviations: E/e": ratio between early mitral inflow velocity and mitral annular early diastolic velocity; EHR: Electronic Health Record; ESC: European Society of Cardiology;

HF: heart failure; HFpEF: heart failure with preserved ejection fraction; HFrEF: heart failure with reduced ejection fraction; LV: left ventricular; LA: left atrial; N/A: not applicable;

NR: not reported; PASP: pulmonary arterial systolic pressure; PPV: positive predictive value; TR: tricuspid regurgitation; TTE: transthoracic echocardiography; UK: United

Kingdom.
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The study by Oo et al. (2024) suggests that Us2.ai-assisted analysis provides
good coverage of echocardiographic parameters that may be used to
diagnose HF. The EAG considers results from the study by Oo et al. (2024) to
be generalisable to the NHS as it used EHR data from Scotland. A key
limitation is the retrospective nature of the study, which may introduce
selection bias due to the unavailability of data for some individuals. This
means the sample included may not be representative of the full range of
clinical scenarios present in real-world practice. The method of selecting the
sample (n=150) used to investigate concordance between Al-assisted
analysis and manual analysis was not reported. Additionally, manual
diagnoses recorded in EHR records were not independently verified.
Therefore, the comparative diagnostic accuracy results reported are of

uncertain quality.

The study by Huang et al. (2024b) provides some evidence of acceptability of
the use of Al in echocardiography to service users. However, this study is
specifically looking at the acceptability of novice-operated Al-assisted
echocardiography versus standard cart-based echocardiography, so provides
limited insight into the acceptability of Al technology alone. This study is
considered to be of limited generalisability to the NHS due to its location in
Singapore, where demographics do not reflect that of the UK population.
Study authors also noted the high uptake of digital technologies in the general
population of Singapore, and that digital literacy was not controlled for in the
study, which introduces a potential confounding factor to results. The EAG
acknowledge that this study demonstrates the use of Us2.ai in assisting
novice operators to perform TTE, which may support the potential use case
for Us2.ai technology to aid TTE being performed in primary or community

care settings.
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3. Updated technology costs

The costs for Us2.ai have been updated to the most current NHS pricing

model and additional information provided by the company. The company

offers a tier-based (pay per scan) package based on the number of scans.

The costs include software use, clinical and IT support, trainings, installation

and routine support updates.

In the EAG economic analyses, evidence of time savings from Sakomoto et

al. (2025) was used in the base case, whereas the findings in Hirata et al.

(2024) were used in the sensitivity analysis. The company has clarified that

the time measured in Sakomoto et al. (2025) was on image acquisition only.

The EAG consider the time savings on measurement and reporting creation in

Hirata et al. (2024) is more appropriate to be used in the base case, in line

with Us2.ai intended use in the company RFI. The staff time cost for Us2.ai

has been updated using data from Hirata et al. (2024).

Table 2 describes the updated costs and resource use for Us2.ai.

Table 2: Updated costs and resource use for Us2.ai

maintenance

software updates.

Us2.ai Changes
made?
License Pricing is based on volume per year. Consolidating sites No
or multiple years usage could be negotiated.
System implementation | Available as “on premises” and cloud integration. No
Supporting hardware Server and cloud are provided at an additional cost. No
and other infrastructure | Rental server is offered by vendor for pilot. Costs are not
if provided by the provided by the vendor.
company
Training Clinical support and both initial and refresher trainings are | Yes
available at no additional cost.
IT support and/or Support is available at no additional cost, including routine | Yes

Per patient costs excluding VAT, no discounting applied (annual scans: 10,000 per site)

License/software per £7.50 Yes
scan
External assessment report addendum: HTE10067 Atrtificial Intelligence assisted
Echocardiography to support diagnosis of heart failure: Early Value Assessment
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System set up per scan | Basic server £6,000 spread over 3 years = £0.20 per scan | No

Training costs per scan | 0 Yes
IT support costs per 0 No
scan

Staff time per scan 36.3 mins (Hirata et al., 2024) Yes
Staff time costs per £39.89 Yes

scan using band 7
cardiac physiologist

Total costs per scan, £7.70 Yes
not including HCP costs

Total costs per scan £7.90 Yes
(low volume, 5,000 per
site per year)

Total costs per scan £6.80 Yes
(high volume, 21,000
per site per year)

Total costs per scan, £7.50 Yes
excluding hardware

Abbreviations: VAT: value added tax

4. Results of updated economic model

The economic base case analysis for Us2.ai has been updated using the
costs in Table 2. Based on the reported time savings of 8.7 mins in Hirata et
al. (2024), this results in a 17% reduction in waiting time. However, the
generalisability and robustness of the time savings evidence is limited, given
the non-NHS settings in terms of workflow and operator type, and the low

study quality (small sample size and single centre design).
A series of one-way sensitivity analyses are undertaken (Table 3).

Table 3: One-way sensitivity analyses and the value used for Us2.ai

One-way sensitivity analyses ‘ Low value High value

Waiting time reduction of Us2.ai driven by 8% 25%
the reduced echocardiography time: £50%
from base case

Longer echocardiography waiting times NA 36 weeks

External assessment report addendum: HTE10067 Atrtificial Intelligence assisted
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Proportion of acute episode: -20% from 63% NA

base case

Technology costs, excluding hardware Us2.ai: £7.50 NA
Technology costs: high volume, low volume | Us2.ai: £6.80 Us2.ai: £7.90
All patients receive an echocardiogram 0% NA

during hospital stay

Band 8a cardiac physiologist in NA Us2.ai: £44.73
echocardiography delivery

Proportion diagnosed in one stop 20% 40%
diagnostic clinic

Following the changes in time input for Us2.ai in base case, the scenario

analyses are updated as follows:

e combining longer waiting times of 36 weeks and a lower proportion

diagnosed in a one stop diagnostic clinic (20%)

e combining a lower waiting time reduction with Us2.ai (8%) and a lower

proportion diagnosed in a one stop diagnostic clinic (20%)

Base case results show that Us2.ai may be more costly and more effective
than standard care (cost difference £0.92, QALY difference 0.0005), giving an
ICER of £1,674 per QALY, below the NICE willingness to pay (WTP)
threshold of £20,000 per QALY (Table 4). This yields a potential increase of
15% in those meeting the target referral time, from 26% to 41%. The cost
savings from shorter Us2.ai procedure time are not sufficient to fully offset the
earlier treatment costs incurred when more patients receive an earlier

diagnosis. This earlier treatment results in an increase in QALY gained.

Results from one-way sensitivity analyses suggest that the economic findings
are sensitive to a number of inputs including the impact of waiting time
reduction with Us2.ai, the proportion diagnosed in a one stop diagnostic clinic,

the proportion of inpatients receiving TTE, and the staff delivering TTE.

When the impact of waiting time reduction for Us2.ai is lowered to 8%, a cost-
saving finding results. Us2.ai incurs lowers costs and generates higher QALYs
than standard care, however the QALY gain is less than seen in the base

case. This is because more patients remain in the “symptomatic” state for
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longer than in the base case. They therefore experience lower utility for a
longer period but without additional costs. Additionally, the increase in those

meeting the target referral time reduces from 15% in the base case to 7%.

In the sensitivity analysis where all inpatients receive TTE during their hospital
stay, none of those in the “acute episode” state move back to the
“symptomatic, waiting list” state. This means there are fewer patients who can
benefit from the earlier diagnosis with Al-assisted TTE. This results in lower
incremental costs and incremental QALYs compared to base case, and is

cost-saving compared to standard care.

When the proportion of patients diagnosed in a one stop diagnostic clinic is
reduced to 20%, only 16% of patients would meet the target referral time with
Us2.ai, yielding an increase of 6% compared to standard care. Additionally, in
the scenario combining a lower proportion diagnosed in a one stop diagnostic
clinic (20%) and a lower reduction in waiting time (8%), this results in a small

increase of 3% in those meeting the target referral.

Similar to EchoConfidence findings, Us2.ai results appear to be relatively
insensitive to the longer waiting time of 36 weeks, primarily due to the high
proportion of patients diagnosed in a one stop diagnostic clinic. In the
scenario where 20% of patients are diagnosed in a one stop diagnostic clinic
and the waiting time is extended to 36 weeks, the increase in those that met

the target referral time reduces from 15% in the base case to 6%.

The overall result appears to suggest that Us2.ai is potentially a cost-effective
strategy, yielding an ICER below the NICE WTP threshold. These findings
should be interpreted with caution given the significant uncertainty
surrounding the current waiting time and the impact of Us2.ai on TTE

workflow.
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Table 4: Base case and sensitivity analyses: Us2.ai vs standard care

Total Total Total Incremental Incremental Proportion Proportion Difference
costs, QALYs, QALYs, costs (£) QALYs meeting the meeting the between
Std Care Us2.ai Std Care target target Us2.ai and

referral referral time, std care
time, Std Care
Us2.ai

Base case £3,234 £3,233 0.4742 0.4736 1,674

% waiting time reduction: 8% £3,233 £3,233 0.4739 0.4736 -£0.54 0.0003 Cost saving 33.3% 26.0% 7.3%
% waiting time reduction: 25% £3,235 £3,233 0.4744 0.4736 £2.12 0.0008 2,684 45.2% 26.0% 19.2%
Echocardiography waiting time: 6 £3,234 £3,233 0.4741 0.4736 £0.86 0.0005 1,597 40.5% 26.0% 14.5%
to 36 weeks

% diagnosed in hospital: -20% £2,685 £2,684 0.4835 0.4828 £1.61 0.0007 2,338 40.5% 26.0% 14.5%
from base case (63%)

Technology costs, no hardware £3,234 £3,233 0.4742 0.4736 £0.73 0.0005 1,324 40.5% 26.0% 14.5%
costs

Technology costs, low volume £3,234 £3,233 0.4742 0.4736 £1.11 0.0005 2,023 40.5% 26.0% 14.5%
Technology costs, high volume £3,233 £3,233 0.4742 0.4736 £0.05 0.0005 93 40.5% 26.0% 14.5%
All inpatients receive TTE £3,246 £3,246 0.4763 0.4760 -£0.61 0.0003 Cost saving 40.5% 26.0% 14.5%
Band 8a cardiac physiologist £3,234 £3,234 0.4742 0.4736 -£0.18 0.0005 Cost saving 40.5% 26.0% 14.5%
% one stop diagnostic clinic: 20% £3,228 £3,226 0.4729 0.4722 £1.68 0.0007 2,404 15.7% 10.0% 5.7%
% one stop diagnostic clinic: 60% £3,235 £3,234 0.4744 0.4738 £0.86 0.0005 1,596 46.8% 30.0% 16.8%
Combining 36-week waiting time £3,224 £3,222 0.4721 0.4713 £2.06 0.0008 2,669 15.8% 10.0% 5.7%
and 20% one stop diagnostic

clinic

Combining 8% waiting time £3,226 £3,226 0.4725 0.4722 -£0.19 0.0003 Cost saving 12.8% 10.0% 2.8%
reduction and 20% one stop

diagnostic clinic

Abbreviations: ICER: Incremental cost-effectiveness ratio; QALY: Quality adjusted life year.
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5. Impact on conclusions of main report

The EAG does not consider the 2 additional clinical studies to have any
significant impact on the conclusions of the main report, particularly as neither
report data which inform the economic modelling. However, the EAG
recognises the value in the addition of evidence from a UK NHS setting (Oo et
al. 2024) and evidence of patient acceptability of Al-assisted
echocardiography (Huang et al. 2024b), both of which were noted to be
lacking in the main EAR.

The results of the updated economic model suggest that Us2.ai may be a
cost-effective strategy. However, the evidence on time savings is of low
quality and it is unlikely to be generalisable to the NHS setting. Further,
uncertainties on waiting time change and other model inputs are considerable,

and thus this limits the validity of the economic findings.
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Comment | Stakeholder | Page no. Section no. | Comment EAG Response

no.

1 MyCardium General We had been asked whether we would be happy for the | Thank you for this clarification, we have
academic in confidence evidence trials to be made removed the AIC highlighting that was in place
public, and we had agreed in writing to Simon Webster for these trials throughout the EAR.
on 20t November that we would be happy for this to be
done.

2 MyCardium 14 Table 1 EchoConfidence has a DTAC in place Thank you for informing us of this. This has

been amended in Table 1.

3 MyCardium 67 53 Given the ‘high bar’ (better than human) set by the This reflects input received from clinical
EchoConfidence team for their regulatory validation with | experts, SCMs and professional organisations.
regards to the measurements offered to clinicians, the No changes made.
comment at Section 5.3 ‘Potential over-reliance on Al
measurements and automation resulting in inaccurate
results’ as an additional clinical risk seems an
oversimplification as ‘over reliance’ on the Al generated
specified measurements would appear to reduce the risk
of inaccurate results.

4 MyCardium 63 53 ‘The EAG believes there is a lack of evidence to Thank you for this comment. The report has
determine whether any of the technologies have been been amended in Section 5.3 and the
adequately externally validated in a UK population, ora | executive summary as necessary to reflect
population with demographics close to that of UK this.
population’. For EchoConfidence, both the CE validation
dataset and the heart failure diagnostic dataset for the

10f13



NIC

National Institute for
Health and Care Excellence

Comment | Stakeholder | Page no. Section no. | Comment EAG Response
no.
FEATHER study were performed in NHS populations,
with demographics reflecting the UK population
(including for ethnicity, age, sex). The CE validation
study was performed in a hospital setting, and the
FEATHER study in community clinics.
5 Us2.ai Thank you for this comment. The EAR has
~pp. 12-20, | Sections 1, | Scope and positioning of Us2.ai — comprehensive been updated. The technology is described as
60-75 4-5 (overall | echo platform, not just an HF “flag” Us2.aiis a CE- relevant to the scope of this assessment. Al-
description | marked, FDA-cleared, vendor-neutral platform that assisted TTE image acquisition is not in
of automates the entire adult TTE study: view recognition, scope.
technologie | guideline-aligned measurements (LV/RV size and
s and function, diastolic function, valves, strain, pulmonary
clinical hypertension, cardiomyopathies) and structured,
evidence) editable report text.[1,6,19] The current EAR narrative
largely frames Us2.ai as a disease-specific HF detection
/ triage tool, with most discussion centred on LVEF and
HF pathways alone. This under-represents: (i) the
comprehensive BSE-level dataset generated per
study;[6] (ii) the end-to-end workflow impact
(measurement + reporting time);[1,19] and (iii) the fact
that HF is one key use case within a much broader, CE-
marked scope. We respectfully request that the final
report explicitly describes Us2.ai as a full
echocardiography measurement, analysis and reporting
platform already in clinical use, with HF diagnosis and
management as an important subset of the overall
functionality.
6 Us2.ai Thank you for the clarification on the time
~pp. 80-87 | Section Economic model - 1.3-minute time saving and measured in Sakomoto et al. Given that only
6.2.3; Table | “dominated” result In the Us2.ai base case, the model | scan component (i.e. image acquisition) was
17; text on uses a 1.30-minute “procedure time” reduction and measured in Sakomoto et al, the EAG agree
technology | assumes no change in waiting times, leading to a that findings on measurement and reporting by
costs and “dominated” conclusion.[13,18] We would be grateful if Hirata et al would be more appropriate to be
staff time NICE could confirm that this 1.3-minute estimate is used as the base case. This is in line with the
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Comment
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(pp- 84-85,
88-90)

derived solely from an examination-time difference (scan
component only), and does not include measurement
and report-creation time. This appears to be based on a
Sakamoto-style “Al day vs non-Al day” comparison for
one part of the workflow.[7,13] By contrast, Hirata et al.
report ~70% reduction in combined measurement +
reporting time (~524 seconds = 8.7 minutes per
comprehensive exam) when fully automated software is
used in routine practice, with the greatest gains in high-
complexity HF-type studies.[1] State-of-the-art reviews
summarise similar reductions in acquisition,
measurement and post-processing time across Al echo
platforms, including Us2.ai.[19] We therefore request
that: (i) the EAR explicitly states that 1.3 minutes
represents only part of the workflow; and (ii) additional
scenario analyses are presented using full workflow-time
evidence (e.g. Hirata 2024 ) for examination +
measurement + reporting, with corresponding effects on
list capacity and waiting times modelled where
appropriate.[1,7,19]

intended use of Us2.ai in the company RFI,
where the technology is used to process
acquired images, to analyse and provide
measurements.

The EAG has produced an addendum to the
report to present the economic results for
Us2.ai using the time savings in Hirata et al.
(2024).

Us2.ai

pp. 84-86,
101

Section
6.2.3-6.2.4;
Table 21—
22 (Us2.ai
vs standard
care base
case and
sensitivity
analyses)

Waiting times, one-stop clinics and consistency with
EchoConfidence assumptions For EchoConfidence,
the model assumes a ~17% reduction in waiting time
based on procedure-time savings, leading to cost
savings and a higher proportion meeting the 6-week HF
referral standard.[13] For Us2.ai, the base case
assumes no waiting-time change, despite workflow
evidence showing substantial reductions in
measurement and reporting time and sensitivity
analyses already demonstrating improved waiting-time
performance when Hirata-style time savings are
applied.[1,17] In Table 22, when Hirata et al. time
reductions are used, Us2.ai becomes more effective and
only slightly more costly (£1.40 incremental cost; ICER

See EAG response to comment 6.
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misinterpretation, we ask that the EAR explicitly reflects
our current NHS list pricing and support model:

* 1,000-10,000 exams per year: £7.50 per exam

* 10,001-20,000 exams per year: £6.70 per exam

» 20,001-50,000 exams per year: £5.90 per exam
Additional discounts for multi year commitment.
Crucially, for NHS customers this per-scan subscription
fully includes all clinical and technical support, all initial
and refresher training, implementation/configuration
support and routine software updates. There are no
additional Us2.ai support contracts, per-ticket
support fees or separate training/maintenance
charges beyond the per-exam subscription. We
therefore request that Table 17 and the accompanying
narrative are updated so that: (i) Us2.ai is shown as a
tiered per-exam subscription with training, support and
upgrades included; and (ii) no extra Us2.ai-specific
support/training cost lines are added on top of the per-
scan subscription in the economic model. This will

Comment | Stakeholder | Page no. Section no. | Comment EAG Response
no.
~£2,547 per QALY) with a 14.5% absolute increase in
patients meeting the target referral time.[17] For
consistency across technologies, we respectfully request
that: (i) parallel waiting-time scenarios are presented for
Us2.ai using published full-workflow savings (Hirata
2024 and state-of-the-art data);[1,19] and (ii) the report
clearly explains how differences in waiting-time
assumptions between EchoConfidence and Us2.ai drive
divergent cost-effectiveness conclusions.
8 Us2.ai Thank you for the new pricing structure. The
pp. 84—90 Section Pricing model and cost inputs for Us2.ai (Table 17) — | EAG economic analyses have been updated
6.2.3-6.2.4; | clarification requested The current text and Table 17 with the new pricing. To align with the new
Table 17 summarise Us2.ai as having volume-based pricing with base case, the costs of Us2.ai have been
(Technolog | additional installation/server costs and “routine support, updated, including staff time. The EAG has
y cost clinical and IT support... at no additional fee”, but note produced an addendum to summarise the
parameters | that training costs are unclear.[4,6] To avoid updated costs and resource use for Us2.ai.

Thank you for the additional information on
training and IT support. The new information
has been added in the addendum. As no
additional training and support costs are not
included for Us2.ai in the EAG economic
analyses, no changes made on the calculation
related to these costs.
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ensure commissioners see cost-effectiveness results
aligned with the actual commercial offer they would
encounter in the NHS.
9 Us2.ai See EAG response to comment 8 on staff
pp- 88—-91 Section Staff time per scan and training / IT support entries time, training and IT support.
6.2.3-6.2.4; | for Us2.ai (Tables 17 and 20) Table 17 and related
Table 17 & | sensitivity analyses appear to use Us2.ai staff-time The EAG explored the impact of Us2.ai
Table 20 figures that are very close to baseline (non-Al) practice, | combined time savings of 10 mins, which were
(resource with only a 1.3-minute reduction applied, and explicitly derived from a 1.3-mins reduction in image
use, staff list “training” and “IT support” as separate recurrent acquisition, and an 8.7-mins reduction in
time, resource components for Us2.ai.[6,13,18] This does not | measurement and reporting. This did not
sensitivity reflect the workflow with Us2.ai fully implemented, where | result in any further reduction in waiting time
analyses) the main time savings arise from automated impact, as the additional 1.3 mins was not
measurements and report generation, not just the scan sufficient to allow one extra procedure to be
acquisition step.[1,19] Hirata et al. report ~70% added in a full clinic day. Further, this
reduction in combined measurement + reporting time assessment aims to evaluate the plausible
(~8.7 minutes per comprehensive exam).[1] The JMA cost-effectiveness of each technology in
state-of-the-art review summarises multi-vendor data scope, and thus the overall Al-
showing 30—77% reductions in acquisition, echocardiography time reduction findings in
measurement and post-processing time with Al-enabled | the JMA review are not appropriate for use.
echo platforms.[19] We therefore ask that: (i) “staff time No changes made.
per scan” for Us2.ai in Table 17 / Table 20 is reviewed
so that it represents the post-implementation Us2.ai
workflow (e.g. using Hirata-style reductions), not
baseline + 1.3 minutes; and (ii) manufacturer-provided
training and ongoing clinical/technical support are not
treated as separate recurring per-scan staff-time costs
for Us2.ai, as these services are fully included within the
subscription. Any one-off implementation effort should
be handled consistently across all technologies.
10 Us2.ai Community settings are out of scope for this
~pp. 40—45, | Sections 4— | HF screening, novice/community use and UK assessment. However, to address stakeholder
60-75 5 (HF relevance The EAR notes that evidence for community | appetite for exploring this potential use case,
pathways, and handheld HF echo is limited and of uncertain the EAG made a pragmatic decision in
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system relevance, but does not fully reflect the published data agreement with NICE to include studies from
impact, on Al-supported novice and community use with community settings based in the UK (see
community/ | Us2.ai.[2,3] * PANES-HF (Huang et al., Sci Rep 2024) | section 4.1). Therefore, the study by Firima et
handheld — prospective handheld echo performed by a novice al. (2024) has been excluded as it is not UK-
echo) operator with Al analysis in symptomatic patients with based (see Appendix F, study number 113).
suspected HF, showing high diagnostic accuracy for
LVEF <50% (AUC ~0.88, good sensitivity/specificity) The PANES-HF study by Huang et al. (2024)
with exam times ~13 minutes and high proportions of has been included in the EAR. The diagnostic
interpretable studies.[2] * Lesotho survey (Firima et accuracy results quoted here are reported in
al., Hypertens Res 2024) — nurses and nurse-assistants | Section 5.2.2. The exam time duration quoted
with no prior echo experience performed focused here is in relation to the learning curve of
handheld exams after a 2-day course; ~83% of novice operators, and there are no data
uploaded image files were evaluable by Al and >80% of | reported on procedure time with Al versus
those were confirmed by cardiologists, with ~88% without Al. Therefore, no changes have been
evaluable + confirmed overall.[3] These studies directly | made to the EAR.
address concerns about operator skill-mix and support
the feasibility of HF screening and community echo
using Al-assisted workflows. We request more explicit
acknowledgement of PANES-HF and the Lesotho data
in sections discussing system benefits, community use
and workforce extension, as they are aligned with NHS
priorities on access and care closer to home.[2,3]
11 Us2.ai Thank you for highlighting this publication.
~pp. 45-55 | Sections 4— | Al-driven HF detection from integrated data — This was incorrectly excluded by the EAG as
5 (HF Scottish EHR/echo work Oo et al. (ESC Heart Fail ‘wrong intervention’.
epidemiolo | 2024) used linked EHR data, echocardiography
ay, (DICOM) and biomarkers in the Tayside/Fife population | The EAG has produced an addendum to the
diagnostic (~20% of Scotland) to develop deep-learning models report to summarise the relevant results from
pathways, that automatically detect and classify HF subtypes this study.
UK (HFrEF, HFmrEF, HFpEF).[4] The echo component
relevance) | relied on Al-interpreted images, illustrating how Al-
assisted echo can be embedded in national-scale HF
registries and surveillance systems. We propose that
this study is explicitly cited in the sections on UK
relevance and integration with HF data systems, as it
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the Community) — NHS programme led by NHS
Greater Glasgow & Clyde and NHS Golden Jubilee with
academic and industry partners.[8—16] Public reports
indicate that, during the NHS Louisa Jordan pilot, waiting
lists for HF diagnostics (including echo) were reduced
from >12 months to ~6 weeks via a “one-stop” clinic
model (ECG, echo, natriuretic peptides, other tests in a
single visit).[8—11,15,16] OPERA is repeatedly cited in
HF policy and innovation reports as an exemplar of
digital and Al-enabled HF pathways reducing waiting
times and improving resource use.[8-11] -
SYMPHONY-HF (NCT05919342) — large, multinational,
prospective randomised trial coordinated by NHS
Greater Glasgow & Clyde, evaluating a screening
strategy combining NT-proBNP with point-of-care, Al-
enabled echo in primary care and home settings versus
standard care.[18] We request that OPERA is treated
as a central case study for HF pathway redesign and
that SYMPHONY-HF is explicitly referenced as ongoing
NHS-linked evidence generation in community and
primary-care settings.[8-11,17,18] We would welcome
guidance on which OPERA/SYMPHONY endpoints (e.g.
time to diagnosis, 6-week target attainment, one-stop
clinic utilisation, HF admissions, cost per detected case)

Comment | Stakeholder | Page no. Section no. | Comment EAG Response
no.
shows that Al echo is already being used in Scottish HF
classification and supports the concept of registry-based
case finding and follow-up.[4]
12 Us2.ai Both studies cited here are already included in
~pp. 55-65 | Sections 4— | OPERA and SYMPHONY-HF — NHS-linked HF the EAR. Relevant published evidence has
5,8 (HF pathway redesign and trials The current EAR gives already been included for the OPERA study
pathways, limited weight to OPERA and does not fully describe (key study: Campbell et al., 2025). The EAG
community | SYMPHONY-HF. We suggest both are made more has added to section 8 to highlight the use of
echo, prominent as NHS-linked exemplars of HF pathway point-of-care Al-assisted handheld TTE in the
ongoing redesign using Al-assisted echo. + OPERA (Optimised | SYMPHONY-HF ftrial to highlight its relevance
research) Pathway for Early Identification of Heart Failure in to use in community and primary care settings

in the UK. No further changes have been
made to the EAR.
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no.
NICE would find most useful for future model
updates.[8-11,17,18]
13 Us2.ai Thank you for highlighting this publication
~pp. 55-65 | Sections 4— | Patient acceptance, trust and task-shifting (UTAUT2) | which was incorrectly excluded as having
5 The UTAUT2 study by Huang et al. (BMC Health Serv ‘wrong outcomes’. The EAG has produced an
(acceptabili | Res 2024) assessed patients’ attitudes to Al-supported addendum to summarise this study.
ty, equity, healthcare task-shifting, including Al-guided
implementa | echocardiography.[5] It found significant positive
tion associations between performance expectancy, effort
considerati | expectancy, facilitating conditions, social influence and
ons) hedonic motivation and patients’ intention to accept Al-
enabled task-shifting, with no evidence that age, gender
or education had a negative moderating effect.[5] These
findings suggest that, when Al-enabled echo pathways
are implemented with appropriate communication and
infrastructure, patients are broadly willing to accept Al-
augmented diagnostics and task-shifting to non-
physician staff — a key enabler for scaling HF
diagnostics while maintaining quality. We suggest this
evidence is explicitly referenced in the sections on
acceptability and equity, and we would welcome
guidance on what additional UK-specific patient-
experience data (e.g. PROMs/PREMSs or surveys in
Us2.ai-enabled HF clinics, OPERA, SYMPHONY-HF)
NICE would find most informative.[5,8—11,18]
14 Us2.ai The EAG has referred to the size of the
~pp. 95— Section Evidence maturity, uncertainties (Table 24) and evidence base and presence of an RCT,
102, 110- 6.2.5; Table | comparative positioning The EAR notes that Us2.ai which is unique to Us2.ai (see Executive
120 22 (Us2.ai has more clinical studies than other technologies, but Summary, Section 5.4).
base case the conclusion sections and Table 24 do not fully reflect
and the breadth and maturity of the evidence base. In the The colour coding for ‘diagnostic performance’
sensitivity public domain, Us2.ai uniquely has: a randomised and ‘validation against human measurements’
analyses); clinical workflow study (“Al day vs non-Al day” has been upgraded to green to reflect the
Section §; throughput);[7] a dedicated workflow/time study showing
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Table 24 ~70% reduction in combined measurement + reporting volume of evidence available, relative to other
(key time;[1] prospective novice/handheld HF screening data | technologies. No other changes made.
uncertaintie | (PANES-HF);[2] nurse-led community implementation in
s & Lesotho;[3] UK-linked HF subtype classification with Al-
implementa | interpreted echo + EHR data (Oo et al.);[4] large studies
tion) in other diseases (valve disease, PH, amyloidosis) and
high-volume labs;[2,4,19] and formal patient-acceptance
data using UTAUT2.[5] We would welcome: (i) an
explicit statement in the conclusions that Us2.ai currently
has the largest and most diverse evidence base among
the assessed technologies; and (ii) adjustments to Table
24 so that diagnostic and clinical validation for Us2.ai
are rated to reflect this (e.g. “evidence largely sufficient;
further data desirable” rather than implying major gaps),
with implementation/support also marked green given
the mature deployment history and included
training/support model.[1-5,7-11,19]
15 Us2.ai No response required from EAG.
General Sections 6— | Methodological clarifications and future research
(cross- 8 priorities To align future submissions with NICE
cutting) (modelling | expectations, we would welcome clarification on:
structure, Comparators and baseline workflows: Which specific
comparator | echo workflows are assumed in the reference case
S, (consultant-reported vs physiologist-reported vs mixed;
scenarios, existing semi-automated tools), and whether NICE
future would like separate scenarios for BSE-accredited
research) hospital labs, community HF clinics and GP-led POCUS
services. * Time and cost modelling: Whether NICE
supports scenario analyses using published full-workflow
time-savings (Hirata 2024; state-of-the-art review)
instead of a single 1.3-minute estimate; and preferred
approaches to modelling downstream effects such as
increased slots per list, reduced backlogs and feasibility
of one-stop HF clinics (as in OPERA).[1,7-11,19] -
Outcome measures beyond EF: The level of detail
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Section no.

Comment

EAG Response

NICE would like on measurement-level accuracy and
reproducibility across the full TTE dataset (e.g. per-
parameter bias/LOA, composite metrics, disease-
specific performance), given HF guidelines rely on
multiple parameters.[1-4,6,19] * Generalisability and
case studies: Whether NICE wishes to see explicit
modelling for named NHS configurations (e.g. OPERA-
style clinics, district general hospitals, community HF
pathways) and would value joint work with NHS sites to
provide granular service-level data (capacity, backlog
trajectories, DNA rates).[8-11,17,18] * Future NHS
pilots and core datasets: For NHS pilots using Us2.ai
(OPERA expansions, SYMPHONY-HF, TARTAN-HF
and others), what minimum core dataset (clinical
outcomes, resource use, time metrics, costs) and which
sub-populations (older adults, deprived/rural groups,
multimorbidity) NICE sees as highest priority for
reducing decision uncertainty.[8—11,17,18] We would be
pleased to work with NICE and NHS partners to design
pilots and evaluations that directly address these
priorities.

16

Us2.ai

pp. 88-92,
101

Section
6.2.3-6.2.5;
Tables 17,
20, 22

Summary comment — aligning EAR conclusions with
the totality of evidence and real-world offer Overall,
we greatly welcome NICE’s work on Al-assisted echo for
HF and appreciate the opportunity to contribute. Our key
requests are that the final EAR: (i) recognises Us2.ai as
a comprehensive, guideline-aligned TTE platform rather
than a narrow HF flagging tool;[1,6,19] (ii) presents
scenario analyses using full workflow-time data (Hirata
2024; state-of-the-art review) and consistent waiting-
time assumptions across technologies;[1,7,19] (iii) gives
appropriate weight to novice/community HF evidence
(PANES-HF, Lesotho), UK-linked HF classification work
(Oo et al.) and NHS pathway programmes (OPERA,

No response from EAG. Comments have been
individually addressed previously.
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no.
SYMPHONY-HF);[2—4,8-11,17,18] (iv) reflects the
strong patient-acceptance data (UTAUT2) when
discussing equity and acceptability;[5] (v) accurately
represents Us2.ai’s pricing model as a tiered per-exam
subscription with training, implementation and support
fully included; and (vi) clearly describes the relative
evidence maturity of Us2.ai versus other
technologies.[1-5,7-11,17-19] We believe these
adjustments will give decision-makers a more accurate
view of the clinical, operational and economic value that
Us2.ai can offer within NHS HF pathways.
17 NHS No comments No response.
England
18 Ultromics No comments No response.
19 Maria Paton | 18 Suggest switching point-of-care sentence and one-stop | Thank you for this comment, this has been
(professional sentence so that one-stop sentence relates to full TTE amended in the EAR.
expert) rather than point-of-care ultrasound.

20 19 3.2 TTE is recommended by the British Society of Thank you for this comment, this has been
Echocardiography to be 45minutes for a minimum amended in the EAR.
dataset to 60minutes for a complex TTE. Notice the flow
diagram states 30-60minutes

21 90 Table 17 Could you please specify if costs are based on Thank you for the comment. Staff time in
bottom/mid/top of banding for staff? Table 17 has been costed based on Personal

Social Services Research Unit (PSSRU),
which is a standard cost reference in health
economics. It provides average hourly staff
cost by band, and thus it is not possible to
specify the detail as suggested. No changes
made.

22 throughout Would it be possible to discuss the technologies in the Thank you for your comment. In section 5.2.2,
same order in every section. | may have missed it, but the order of discussing the technologies has
felt there wasn’t a specified reason for changing and feel | now been swapped to mirror the order in
this might provide more consistency when reading. section 5.2.1. With regard to the other
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Comment | Stakeholder | Page no. Section no. | Comment EAG Response

sections, the outcomes reported across the
evidence base were not consistently reported
for each technology, so it is not possible to
provide any more consistency in the order of
reporting. Therefore, no other changes have
been made to other sections of the EAR.
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Section B Economic model - Comments

Stakeholder | Comment | Description of problem Description of proposed Result of amended model or EAG response
amendment expected impact on the result
(if applicable)
1
2
3
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