## Interventional procedure overview of transcatheter aortic valve implantation for native aortic valve regurgitation

# Contents

| Indications and current treatment                  | 3  |
|----------------------------------------------------|----|
| What the procedure involves                        | 4  |
| Outcome measures                                   | 5  |
| Evidence summary                                   | 6  |
| Population and studies description                 | 6  |
| Procedure technique                                | 43 |
| Efficacy                                           | 43 |
| Safety                                             | 47 |
| Validity and generalisability                      | 67 |
| Existing assessments of this procedure             | 69 |
| Related NICE guidance                              | 69 |
| Interventional procedures                          | 69 |
| NICE guidelines                                    | 70 |
| Professional societies                             | 70 |
| Company engagement                                 | 70 |
| References                                         | 71 |
| Appendix A: Methods and literature search strategy | 13 |
| Appendix B: Other relevant studies                 | 13 |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| Abbreviation | Definition                                                             |
|--------------|------------------------------------------------------------------------|
| AF           | Atrial fibrillation                                                    |
| aOR          | Adjusted odds ratio                                                    |
| AR           | Aortic regurgitation                                                   |
| AKI          | Acute kidney injury                                                    |
| AMSTAR-2     | Assessing the Methodological Quality of Systematic Reviews 2           |
| AI           | Aortic insufficiency                                                   |
| ASE          | American Society of Echocardiography                                   |
| BE           | Balloon expandable                                                     |
| CI           | Confidence interval                                                    |
| CMR          | Cardiovascular magnetic resonance imaging                              |
| COPD         | Chronic obstructive pulmonary disease                                  |
| EGDs         | Early generation devices                                               |
| ES           | Effect size                                                            |
| GRADE        | Grading of recommendations assessment, development, and evaluation     |
| HR           | Hazard ratio                                                           |
| LOS          | Length of hospital stay                                                |
| LVEDd        | left ventricle end-diastole dimension                                  |
| LVESd        | left ventricle end-systole dimension                                   |
| LV           | Left ventricular                                                       |
| LVEF         | Left ventricular ejection fraction                                     |
| <sup>2</sup> | Inconsistency test                                                     |
| KCCQ         | Kansas City Cardiomyopathy Questionnaire                               |
| MACCE        | Major adverse composite cardiac events                                 |
| MI           | Myocardial infarction                                                  |
| MR           | Mitral regurgitation                                                   |
| MD           | Mean difference                                                        |
| NACE         | Net adverse clinical events                                            |
| NA           | Not available                                                          |
| NGDs         | New generation devices                                                 |
| NRD          | Nationwide readmissions database                                       |
| PPM          | Permanent pacemaker                                                    |
| PRISMA       | Preferred Reporting Items for Systematic Reviews and Meta-<br>Analyses |
| PVL          | Paravalvular leak                                                      |
| RR           | Risk ratio                                                             |

#### Table 1 Abbreviations

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| SAVR     | Surgical aortic valve replacement                        |
|----------|----------------------------------------------------------|
| SE       | Self-expandable                                          |
| SMD      | Standardised mean difference                             |
| STS-PROM | Society of Thoracic Surgeons Predicted Risk of Mortality |
| TAVI     | Transcatheter aortic valve implantation                  |
| TAVR     | Transcatheter aortic valve replacement                   |
| ТА       | Transapical                                              |
| TF       | Transfemoral                                             |
| THV      | Transcatheter heart valve                                |
| TIA      | Transient ischemic attack                                |
| TR       | Tricuspid regurgitation                                  |
| VARC     | Valve Academic Research Consortium                       |

## Indications and current treatment

Aortic regurgitation (AR) is the leakage of blood from the aorta into the left ventricle during diastole (when the heart relaxes and fills with blood from the atria). It develops when the aortic valve pathology prevents normal closure of the valve in diastole. AR is usually the result of leaflet degeneration or incompetence, aortic root dilatation with aortic annulus enlargement, or both. Patients may remain asymptomatic for years but eventually they present most often with shortness of breath. In severe cases this leads to heart failure.

For people with severe symptomatic AR who are well enough for surgery, surgical aortic valve replacement (SAVR) with a biological or mechanical prosthetic valve is standard treatment.

For some people, surgery is not an option. This can be because of medical comorbidities or technical considerations, such as a calcified aorta or scarring from previous cardiac surgery. For these people, the risks of SAVR outweigh the potential benefits, and so medical treatment is the standard treatment. But for some of these people, medical treatment is not effective.

# **Unmet need**

Surgical aortic valve replacement (SAVR) with an artificial (biological or mechanical) prosthesis is the current treatment for people with severe symptomatic AR who are well enough for surgery. When surgery is not an option optimal medical care is the usual treatment.

Transcatheter aortic valve implantation (TAVI) is a less invasive alternative treatment and could be considered for the sub-group of people for whom surgery is unsuitable or are considered too high risk.

## What the procedure involves

TAVI provides a less invasive alternative to open cardiac surgery for the treating AR, avoiding the need for cardiopulmonary bypass and median sternotomy.

TAVI is usually done under local anaesthesia with sedation. Or it may be done under general anaesthesia. Imaging guidance, including transoesophageal echocardiography (if general anaesthesia is used), fluoroscopy, or angiography, is used to help with prosthetic valve size selection, valve positioning and assessing the implanted valve post procedure. Before and during the procedure, prophylactic antibiotics and anticoagulation medication are administered.

A bioprosthetic aortic valve is implanted within the damaged native aortic valve. Access to the aortic valve can be percutaneous, with entry to the circulation through the femoral artery (endovascular approach). Alternatively, subclavian access may be used if the anatomy of the femoral arteries is not suitable. Deciding how to achieve catheter access to the aortic valve may depend on a number of factors related to the person having the procedure such femoral artery anatomy and the presence of aortic calcification.

The new prosthetic valve is manipulated into position and deployed over a guide wire passed through the native aortic valve.

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

Rapid ventricular pacing is used to temporarily reduce cardiac motion and blood flow through the native aortic valve during placement of the new prosthetic aortic valve. The new valve may be mounted on a metal stent that is self-expanding. Or it may be expanded by inflating a large balloon on which the stented valve has been crimped. Positioning the new valve obliterates the native aortic valve. The catheter is removed once the valve has been successfully placed.

Different devices are available for this procedure and contain material derived from animal sources.

### **Clinical assessment tools**

Clinical assessment of severity of AR:

- EuroSCORE II is a scoring system that measures risk of death for patients considering surgery. The score is calculated by taking into account factors related to the patient, the patient's heart condition and the proposed operation. It is expressed as a percentage and on a scale of 0 to 100% (higher scores indicating greater risk; a score higher than 20% indicates very high surgical risk).
- The STS-PROM score distinguishes high and low-risk surgical patients and predicts postoperative outcome after the procedure.
- NYHA heart failure classification is used to classify the severity of breathlessness; from class I, in which the patient has no limitation in daily physical activity, to class IV, in which the patient is breathless at rest.
- Haemodynamic assessment (usually by echocardiography): severe chronic AR is considered to be present if one or more of the following findings are present on echocardiography. These include
  - o central jet width 65% or more of LV outflow tract

- o vena contracta width more than 6 mm
- o holodiastolic flow reversal in the abdominal aorta
- o regurgitant fraction 50% or more
- o regurgitant volume of more than 60ml/beat and
- $\circ$  an effective regurgitant orifice area 0.30 cm<sup>2</sup> or more.

Studies using quantitative CMR has shown that significant LV remodelling or symptoms requiring aortic valve replacement may occur at lower thresholds of regurgitant volume (approximately 50 ml) and regurgitant fraction (approximately 40%). Hence, the severity assessment should include LV remodelling and symptoms with one of the above findings on echocardiography.

## **Outcome measures**

The main outcomes included device success, improvement in functional status, patient reported outcomes, mortality rates and procedural complications.

# **Evidence summary**

### Population and studies description

This interventional procedures overview is based on 45,629 people from 4 systematic review and meta-analyses, 1 prospective case series, 1 retrospective propensity score matched study and 2 retrospective analyses. Of these 45,629 people, 13,722 people had the procedure for AR. 27,851 patients had SAVR, and 4056 patients had TAVI for AS. This is a rapid review of the literature, and a flow chart of the complete selection process is shown in <u>figure 1</u>. This overview presents 8 studies as the key evidence in <u>table 2</u> and <u>table 3</u>, and lists 77 other relevant studies in <u>appendix B, table 5</u>.

Table 2 presents study details.

A systematic review and meta-analysis of 19 studies on TAVI for native AR was conducted according to PRISMA guidelines. Pooled estimates were calculated using a random-effects model. NGDs were compared with EGDs. Subgroup analysis and meta-regression were performed to study the effects of study level covariates on outcomes. There was significant heterogeneity across the available studies in terms of device used, access site, and outcomes reported. Some studies varied in patient characteristics and some have incomplete data reporting. Most of the studies had small sample sizes, reported their outcomes peri procedurally and lack data on long-term outcomes (Rawasi 2019).

In a meta-analysis of 11 studies on TAVI for AR, pooled estimates were calculated a using random-effects model. Subgroup meta-analysis of studies using EGDs and NGDs was also performed. Studies were heterogenous with different sample sizes, inclusion criteria, patient characteristics, types of valves, and TAVI approaches. Most of the studies were multicentre studies and there might be an overlap of patients and that might have overestimated the effects of the intervention. Meta-regression were performed to study the effects of 12 covariates on 30-day all-cause mortality (Takagi 2020).

A systematic review and meta-analysis of 31 studies on NGDs was based on small retrospective observational studies with heterogenous populations. The study was conducted according to PRISMA guidelines. Most pooled studies had a low risk of bias. Authors state that there might be an overlap of study cohorts in pooled multicentre studies conducted in the same country. The study did not report results separately for SE and BE prostheses because it was not possible to differentiate in the articles (Liu 2024).

A large multicentre prospective case series of 180 patients (the JenaValve ALIGN-AR pivotal trial) in the USA assessed TAVI in patients with severe symptomatic AR and at high risk of surgery. Findings were compared with a prespecified performance goal and analysis was on early outcomes (Vahl 2024).

The PANTHEON study was a retrospective international registry analysis that assessed both SE and BE NGDs in patients with severe pure native AR and considered high-risk or inoperable. TF approach was the most common approach used. Different types of valves were used and only 10% were JenaValve Trilogy THV, which is a dedicated device system for native AR. Echocardiographic outcomes were not reported so the rate of moderate to severe AR at follow-up are unknown (Polleti 2023).

One retrospective analysis with small sample and short follow-up period assessed TAVI with off-label NGDs in different risk groups. Patients were classified into different risk groups based on STS scores and not on EuroSCORE (Da-Wei 2024).

A systematic review and meta-analysis of 6 studies comparing TAVI with SAVR in patients with pure native AR followed the Cochrane Handbook for Systematic Reviews of Intervention, AMSTAR -2 guidelines and reported it according to the PRISMA guidelines. The Newcastle-Ottawa scale was used to assess the quality of included studies and all included studies posed a low risk of bias. The strength of evidence was assessed using the GRADE scale. Heterogeneity was assessed using inconsistent test. Meta-analysis was done using the random effect model and subgroup analysis was done depending on the approach of TAVI (TF and TA) and the country of origin. The efficacy of TAVI and SAVR in patients with different surgical risk was not analysed. (Elkasaby 2024).

A retrospective propensity score matched study comparing TAVI in AR with TAVI in AS used NRD codes for diagnosis of AR and these might be subject to misclassification and may not be accurate. Procedural and echocardiographic outcomes were not assessed in this study due to lack of data. Patients were either symptomatic or had a compelling indication for valvular replacement. They were of similar age in both groups and had similar comorbidities (the Elixhauser comorbidity index [to predict in-hospital mortality] was comparable) (Ullah 2024).





#### Table 2 Study details

| Study<br>no. | First<br>author,<br>date<br>country | Characteristics of<br>people in the<br>study (as<br>reported by the<br>study)                                                                                                                            | Study design                                                                                                                         | Inclusion criteria                                                                                                                                                                                                                                                                                                    | Intervention                                                                                                                                                                                                                                                                                                                                 | Follow up                                      |
|--------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 1            | Rawasia<br>WF 2019<br>USA           | 19 studies (n=998<br>patients with pure<br>native AR)<br>13 full studies and<br>6 abstracts.<br>Mean age: ranged<br>from 68 to 84<br>years, mean<br>logistic<br>EUROSCORE<br>ranged from 9.8 to<br>34.0. | Systematic<br>review and meta-<br>analysis<br><u>Databases</u><br><u>searched:</u><br>MEDLINE,<br>Scopus, and<br>Cochrane<br>CENTRAL | Studies in English with<br>at least 5 patients<br>undergoing TAVR for<br>pure native AR,<br>reporting at least one of<br>the endpoints were<br>included in the meta-<br>analysis.<br>Case reports and<br>editorials were<br>excluded. In case of<br>serial publications, only<br>the most recent one was<br>included. | TAVI<br>NGDs versus<br>EGDs<br>Valves used<br><u>new generation</u><br>(purpose-specific<br>valves: JenaValve,<br>ACCURATE TA;<br>non-purpose-<br>specific valves:<br>CoreValve, Sapien<br>XT, Direct Flow])<br>or (early<br>generation<br>[CoreValve and<br>Sapien XT)<br>Access route: TF<br>or TA access.<br>Valve size: not<br>reported. | Varied across<br>studies. 30 days to<br>1 year |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| Study<br>no. | First<br>author,<br>date<br>country | Characteristics of<br>people in the<br>study (as<br>reported by the<br>study)                | Study design                                                                                                                                              | Inclusion criteria                                                                | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Follow up                                      |
|--------------|-------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 2            | Takagi H<br>2020<br>Japan           | 11 studies (n=911<br>patients<br>undergoing TAVI<br>for AR)<br>Age: range 73 to<br>75 years. | Systematic<br>review and meta-<br>analysis of single<br>arm studies.<br><u>Databases</u><br><u>searched:</u><br>Medline and<br>EMBASE, up to<br>July 2018 | Studies with more than<br>20 patients undergoing<br>TAVI for AR were<br>included. | TAVI<br>NGDs versus<br>EGDs<br><u>Access route:</u> TF<br>or TA access.<br><u>NGDs</u> were used<br>in 7 studies<br>(SAPIEN 3,<br>JenaValve, J-<br>Valve, Accurate,<br>Direct Flow,<br>Engager, Evolut R,<br>Lotus, Portico).<br><u>EGDs</u> were used in<br>5 studies<br>(CoreValve,<br>SAPIEN, SAPIEN<br>XT).<br>2 studies (Yoon<br>2017, de Backer<br>2018) compared<br>NGD and EGDs.<br>1 compared off<br>label with on-label<br>devices (Frerker<br>2015). | Varied across<br>studies. 30 days to<br>1 year |

| Study<br>no. | First<br>author,<br>date<br>country | Characteristics of<br>people in the<br>study (as<br>reported by the<br>study)                          | Study design                                                                                                                                                      | Inclusion criteria                                                                                                                                                                                                                                                        | Intervention                                                                                                                                                         | Follow up                                      |
|--------------|-------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|              |                                     |                                                                                                        |                                                                                                                                                                   |                                                                                                                                                                                                                                                                           | 1 compared TAVI<br>for AR with TAVI<br>for AS or TAVI for<br>AS + concomitant-<br>grade of AR (Testa<br>2014).<br>5 studies (Silaschi                                |                                                |
|              |                                     |                                                                                                        |                                                                                                                                                                   |                                                                                                                                                                                                                                                                           | 2018, Liu 2018,<br>Seiffert 2014,<br>Toggweiler 2018,<br>Zhu 2016) used<br>only NGDs and<br>3 studies (Testa<br>2014, Roy 2013,<br>Frerker 2015) used<br>only EGDs.  |                                                |
| 3            | Liu 2024<br>China                   | 31 observational<br>studies (n=1,851<br>patients with<br>severe AR and not<br>suitable for<br>surgery) | Systematic<br>review and meta-<br>analysis<br><u>Databases</u><br><u>searched</u><br>MEDLINE,<br>Embase,<br>Cochrane Library,<br>and Scopus; until<br>April 2023. | RCTs and observational<br>studies including cohort<br>studies, case-controlled<br>studies, and case series<br>with at least 10 cases<br>were included.<br>Studies not reporting<br>the outcomes or from<br>which summary data<br>could not be extracted<br>were excluded. | TAVI with NGDs<br>Compared 'off-<br>label' devices and<br>'on-label devices.<br><u>On label devices</u><br>(20 studies,<br>n=1067):<br>J valve, 15 studies,<br>n=949 | Varied across<br>studies. 30 days to<br>1 year |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| Study<br>no. | First<br>author,<br>date<br>country                            | Characteristics of<br>people in the<br>study (as<br>reported by the<br>study)                      | Study design                                                                        | Inclusion criteria                                                                                                   | Intervention                                                                                                                                                                                                                                                                                                                                                    | Follow up                                                                                                      |
|--------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|              |                                                                |                                                                                                    |                                                                                     |                                                                                                                      | Jena valve, 5<br>studies, n=307<br><u>Off label devices</u><br>( <u>11 studies,</u><br><u>n=784):</u><br>Evolut, n=284<br>SAPIEN 3, n=61<br>Direct Flow, n=90<br>ACURATE, n=76<br>Lotus, n=34<br>Engager, n=26<br>Portico, n=9<br>Symetis, n=15<br><u>Valve size:</u> 27mm<br>valves mostly<br>used.<br><u>Access route</u> : 70%<br>TA access 30% TF<br>access |                                                                                                                |
| 4            | Poletti,<br>2023, 16<br>centres<br>across<br>Europe<br>and USA | N= 201 patients<br>with pure severe<br>native AR.<br>Median age: 79<br>years (IQR: 73-83<br>years) | Retrospective<br>analysis (of<br>procedures<br>between2014-<br>2022)<br>NCT05319171 | Patients who underwent<br>TAVI for pure severe<br>native valve AR and<br>considered inoperable<br>high risk surgical | <b>TAVI with NGDs</b><br><b>SE valves (n=132;</b><br>Evolut R 76,<br>Accurate Neo 25,<br>Jena valve 21,                                                                                                                                                                                                                                                         | 30 days and 1 year.<br>Median follow-up<br>duration was 377<br>days (IQR: 138-915<br>days) in 181<br>patients. |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| Study<br>no. | First<br>author,<br>date<br>country | Characteristics of<br>people in the<br>study (as<br>reported by the<br>study)                                                                                                                                          | Study design                                          | Inclusion criteria                                                                                                                                                                                               | Intervention                                                                                                                                                                                                                                                                                                       | Follow up                           |
|--------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|              |                                     | Gender: 55.2%<br>male (47.7% in the<br>SE group versus<br>69.6% in the BE<br>group).<br>Median STS risk<br>score of 5.1% (SE<br>5.2, BE 4.8, p=<br>0.005).<br>Rate of NYHA<br>functional class III<br>or IV was 76.2%. | PANTHEON<br>international<br>registry                 | candidates were<br>included.<br>Those with concomitant<br>moderate to severe AS,<br>treated with older THVs<br>no longer commercially<br>available and those<br>treated via transapical<br>access were excluded. | Navitor Portico 10)<br>and<br>BE valves (n=69;<br>Myval 40, Sapien<br>S3 29).<br><u>Access route:</u><br>TF approach:<br>n=192<br>Trans-subclavian<br>approach n=8.<br>SE valves were<br>oversized and 80%<br>patients needed<br>rapid pacing.<br>10% SE valves<br>were dedicated<br>valves (Jena valve<br>in 21). |                                     |
| 5            | Vahl TP<br>2024<br>USA              | ALIGN-AR IDE trial<br>(NCT 04415047)<br>n=180 patients with<br>pure AR.<br>Mean age: 75.5<br>years                                                                                                                     | Prospective case<br>series (at-20<br>centres in USA). | Inclusion criteria:<br>Symptomatic patients<br>with NYHA functional<br>class II or higher, aged<br>18 years or older with<br>moderate-to-severe or<br>severe native AR<br>(according to the ASE                  | TAVI with on-<br>label NGD<br>JenaValve<br><u>Access route:</u> TF<br>Device size: 23<br>mm (40 [23%]<br>patients), 25 mm                                                                                                                                                                                          | At 30 days, 6<br>months and 1 year. |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| Study<br>no. | First<br>author,<br>date<br>country | Characteristics of<br>people in the<br>study (as<br>reported by the                                                                                                                                                                                                                                                                                                                                                                 | Study design                              | Inclusion criteria                                                                                                                                                                                                                                                                                                                                                                                                                                       | Intervention                                                                                                                                                                                                                                                        | Follow up |
|--------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|              |                                     | Gender: 53%<br>(95/180) male<br>73% (131/180)<br>were white.<br><u>mean STS-PROM</u><br><u>score</u> 4.1% (SD<br>3.4).<br>89% (161/180)<br>patients were<br>deemed to be at<br>high risk on the<br>basis of<br>comorbidities;<br>34% (61/180)<br>patients were<br>assessed as frail.<br><u>AR severity:</u><br>moderate to severe<br>in 32% (57/180);<br>severe in 64%<br>(116/180) patients.<br>NYHA class III-IV<br>68% (122/180) |                                           | criteria), deemed at high<br>risk for mortality and<br>complications after<br>SAVR by the heart team<br>and independent<br>screening committee<br>assessments.<br>Exclusion criteria:<br>congenital unicuspid or<br>bicuspid valve<br>morphology, previous<br>prosthetic aortic valve<br>implant, straight<br>ascending aorta length<br>less than 55 mm, aortic<br>annulus angulation less<br>than 70°, and severely<br>reduced LVEF (less<br>than 25%). | (35 [20%]), and 27<br>mm (102 [58%]).<br>Mean oversizing<br>was 12.6% for the<br>27-mm valve,<br>15.4% for the 25-<br>mm valve, and<br>17.7% for the 23-<br>mm valve.<br>General<br>anaesthesia in 164<br>(91%) and<br>monitored<br>anaesthesia care<br>in 16 (9%). |           |
| 6            | Da-Wei,<br>2024,<br>China           | N= 75 patients with<br>pure severe AR.                                                                                                                                                                                                                                                                                                                                                                                              | Retrospective<br>analysis<br>compared the | Patients with pure<br>severe AR eligible for<br>TAVI and had no                                                                                                                                                                                                                                                                                                                                                                                          | TAVI with off-<br>label NGD                                                                                                                                                                                                                                         | 30 days.  |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| Study | First   | Characteristics of                                                                                                                                   | Study design                                                                                          | Inclusion criteria                   | Intervention                                                                                                                                    | Follow up |
|-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| no.   | autnor, | people in the                                                                                                                                        |                                                                                                       |                                      |                                                                                                                                                 |           |
|       |         | reported by the                                                                                                                                      |                                                                                                       |                                      |                                                                                                                                                 |           |
|       | country | study)                                                                                                                                               |                                                                                                       |                                      |                                                                                                                                                 |           |
|       |         | Categorized into 2<br>groups: low-risk<br>group: (STS score<br>< 4), n=38;<br>intermediate and<br>high-risk group:<br>(STS score $\geq$ 4),<br>n=37. | outcomes of TAVI<br>between low-risk<br>and<br>intermediate/high-<br>risk patients with<br>severe AR. | contraindications for the procedure. | (Venus-A and<br>VitaFlow valves) in<br>Iow-risk patients<br>(STS<4) and<br>intermediate and<br>high-risk patients<br>with severe AR<br>(STS>4). |           |
|       |         | Age: low risk group<br>73.1 years, high<br>risk group 76.4<br>years, p=0.028.                                                                        |                                                                                                       |                                      | Low risk, n=38<br>(Venus n=16,<br>VitaFlow n=22)                                                                                                |           |
|       |         | Gender: n=46 male<br>Patients in the<br>lower risk group                                                                                             |                                                                                                       |                                      | high risk, n=37<br>(Venus n=17,<br>VitaFlow n=20)                                                                                               |           |
|       |         | were younger, had<br>a lower BMI, lower                                                                                                              |                                                                                                       |                                      | <u>Access route</u> : TF<br>access                                                                                                              |           |
|       |         | prevalence of<br>hypertension,<br>COPD, and<br>previous<br>percutaneous<br>coronary<br>intervention<br>compared to high-<br>risk group (p all        |                                                                                                       |                                      | <u>Size of valve</u> : no<br>significant<br>difference between<br>low risk and high-<br>risk groups (0.73)                                      |           |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| Study<br>no. | First<br>author,<br>date<br>country | Characteristics of<br>people in the<br>study (as<br>reported by the<br>study)<br>no significant<br>difference between                                                                                                                                                                                                                                                | Study design                                                                                                                                                                                                                                             | Inclusion criteria                                                                                                                                                                                                                                                                                                                                                             | Intervention                                                                              | Follow up                                                  |
|--------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|
|              |                                     | the 2 groups for<br>prevalence of<br>hyperlipidaemia,<br>diabetes, and AF.                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                            |
| 7            | Elkasaby<br>MH 2024                 | n=6 retrospective<br>cohort studies<br>33,484 patients<br>with pure/isolated<br>AR.<br>(5,633 patients in<br>the TAVI group and<br>27,851 in SAVR<br>group).<br>3 studies in USA, 1<br>in China, and 2 in<br>Germany.<br>Age: TAVI group<br>ranged from 67 to<br>77 years, versus<br>60.0 to 75.6 years<br>in the SAVR group.<br>TAVI patients were<br>older and had | Systematic<br>review and meta-<br>analysis<br><u>Databases</u><br><u>searched:</u><br>PubMed,<br>Embase, Web of<br>Science (WOS),<br>Scopus, and the<br>Cochrane Library<br>Central Register<br>of Controlled<br>Trials<br>(CENTRAL) until<br>June 2023. | Included RCTs or cohort<br>studies including<br>patients with pure AR,<br>comparing TAVI with<br>SAVR, reporting in-<br>hospital mortality or<br>stroke.<br>Excluded single-arm<br>studies, studies with<br>more than one<br>publication, studies<br>including AS patients or<br>patients with mixed AR<br>and AS, case reports,<br>reviews, abstracts, and<br>animal studies. | TAVI versus<br>SAVR in pure AR<br>Various types of<br>valves were<br>included in studies. | Varied across<br>studies (from in-<br>hospital to 1 year). |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| Study<br>no. | First<br>author,<br>date<br>country | Characteristics of<br>people in the<br>study (as<br>reported by the<br>study)                                                                                                                                                                                                                                                                                                                                                                            | Study design                                                                                                             | Inclusion criteria                                                                                                                                                                                                                                                                                                                                                                 | Intervention                                                                                              | Follow up                             |
|--------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|
|              |                                     | higher comorbidity scores.                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |                                       |
| 8            | Ullah W<br>2024<br>USA              | Unmatched sample<br>n=185,703 (Al<br>3873, AS 181,830)<br>patients.<br>Matched sample of<br>7,929 patients (Al<br>3,873, AS 4,056).<br>Mean age:<br>TAVI for AI (mean<br>76.8 years),<br>TAVI for AS (76.9<br>years).<br>Female patients in<br>AI versus AS<br>groups was 38%<br>versus 37%.<br>The Elixhauser<br>comorbidity index<br>(to predict in-<br>hospital mortality)<br>for TAVI in AI<br>versus TAVI in AS<br>(2.63 versus 2.78,<br>p = 0.51). | Retrospective<br>study Propensity-<br>score matched<br>(PSM) analysis<br>NRD claims data<br>from (2015-19)<br>were used. | All US adult patients<br>(over 18 years) who<br>underwent TAVI for pure<br>AS or AI were included,<br>indicating that patients<br>were either symptomatic<br>or had a compelling<br>indication for valvular<br>replacement.<br>Patients who underwent<br>SAVR, had mixed AS<br>and AI, or had the<br>unspecified aortic<br>valvular disease were<br>excluded from the<br>analysis. | TAVI for Al<br>versus TAVI for<br>AS<br>Details of valves<br>used were not<br>available in the<br>article | In-hospital, 30 days<br>and 180 days. |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

### Table 3 Study outcomes

| First author, date | Efficacy outcomes                                                                                                                                                                                             | Safety outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rawasi 2019        | NGDs versus EGDs                                                                                                                                                                                              | NGDs versus EGDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | <b>Device success</b> (14 studies,<br>n=524/659 events)<br>ES 0.862 (95% CI 0.788 to 0.922),<br>I <sup>2</sup> 81.01%, p<0.001.                                                                               | <b>Mortality</b><br><b>30-day</b> (19 studies, n=122/998)<br>ES 0.119 (95% CI 0.094 to 0.147), I <sup>2</sup> =27.99%, p=0.110                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | Device success was higher with<br>purpose-specific valves (96.3%,<br>95% CI 92.2 to 98.9%; $I^2=0\%$ )<br>compared with non-purpose<br>specific valves (84.4% (95% CI 75<br>to 91.9%); $I^2=46\%$ ) (p=0.02). | There was no statistically significant difference in the rate of 30-day mortality between those purpose-specific (8.2%; 95% Cl 4.3 to 13.1%; l <sup>2</sup> =0%) and non-purpose specific valves (13.0%; 95% Cl 8.2 to 18.6%; l <sup>2</sup> =25%); p=0.13). Also, there was no significant difference in 30-day mortality (p = 0.41) between the subgroup (n = 475) with primarily transapical access [10% (7.4%-12.8%); l <sup>2</sup> = 0%], and the subgroup (n = 173) with primarily femoral access [12.6% (7.3%-19.0%); l <sup>2</sup> = 0%. |
|                    | Device success did not differ<br>significantly (p = 0.32) between<br>the transfemoral [82.1% (68%–<br>92.8%); $l^2$ = 78%] and transapical<br>subgroups [90.3% (79.2%–<br>97.4%); $l^2$ = 87%].               | <b>1 year</b> (6 studies, n=155/618)<br>ES 0.247 (95% CI 0.213 to 0.281), I <sup>2</sup> =0%, p=0.481.<br><b>PPM implantation</b> (14 studies, n=92/63)<br>ES 0.131 (95% CI 0.093 to 0.175), I <sup>2</sup> =44.1%, p=0.034)<br>There was no statistically significant difference in the rate of PPM<br>implantation between purpose-specific (6.8% [3.2 to 11.7%; I <sup>2</sup> =0%] and non-<br>purpose-specific valves (19.8% [95% CI 6.7 to 37.5%; I <sup>2</sup> =76%); (p=0.06).                                                            |
|                    |                                                                                                                                                                                                               | Also, there was no statistically significant difference in the rate of PPM implantation between studies using transfemoral access (13% [95% CI 5.4 to                                                                                                                                                                                                                                                                                                                                                                                              |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| First author, date | Efficacy outcomes                       | Safety outcomes                                                                                                                                                                                                                                    |
|--------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                         | 23.3%; I <sup>2</sup> =58%), and those using transapical access (12%, 95% CI 8.9 to 15.6%]; I <sup>2</sup> =8%); (p=0.84).                                                                                                                         |
|                    |                                         | Major bleeding (11 studies, n=69/582)                                                                                                                                                                                                              |
|                    |                                         | ES 0.124 (95% CI 0.061 to 0.204), I <sup>2</sup> =82.13%, p<0.001                                                                                                                                                                                  |
|                    |                                         | Residual moderate to severe AR (18 studies, n=99/966)                                                                                                                                                                                              |
|                    |                                         | ES 0.092 (95% CI 0.055 to 0.137), I <sup>2</sup> =75%, p<0.001.                                                                                                                                                                                    |
|                    |                                         | moderate to severe AR was significantly lower ( $p = 0.002$ ) with the use of purpose-specific valves [3.1% (0.9% -6.4%); I 2 = 0%] compared with non-purpose-specific valves [14.4% (7.6%, 22.9%); I 2 = 54%].                                    |
|                    |                                         | There was no significant difference (P = 0.18) in the risk of residual moderate to severe AR between studies using transapical access [5.2% (2.0%, 9.6%); $l^2 = 57\%$ ], and studies using transfemoral access [12.9% (4.4%-25%); $l^2 = 75\%$ ]. |
|                    |                                         | Stroke (14 studies, n=20/648)                                                                                                                                                                                                                      |
|                    |                                         | ES 0.036% (95% CI 0.023 to 0.051), I <sup>2</sup> =0%, p=0.967                                                                                                                                                                                     |
|                    |                                         | Myocardial infarction at 30 days (11 studies): no cases                                                                                                                                                                                            |
| Takagi H 2020      | NGDs versus EGDs                        | NGDs versus EGDs                                                                                                                                                                                                                                   |
|                    | Device success                          |                                                                                                                                                                                                                                                    |
|                    | Overall, 80.4% (95% CI 72.2 to          | Conversion to open surgery                                                                                                                                                                                                                         |
|                    | 88.6%, I <sup>2</sup> =92.36%, p=0.000) | Overall, 3.0% (95% Cl 1.5 to 4.4)                                                                                                                                                                                                                  |
|                    | EGDs (5 studies) 67.2% (95% CI          | EGDs 2.8% (95% CI 0.4 to 5.1);                                                                                                                                                                                                                     |
|                    | p=0.000);                               | NGDs 3.1% (95% CI 1.3 to 4.9); p=0.840 between groups.                                                                                                                                                                                             |

| First author,<br>date | Efficacy outcomes                                                                                                | Safety outcomes                                                                                                                                                                                                                                                                       |
|-----------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | NGDs (7 studies) 90.2% (95% CI<br>84.0 to 96.3%, I <sup>2</sup> =81.63%,<br>p=0.000);<br>p<0.001 between groups. | Coronary obstruction<br>Overall, 0.7% (95% CI 0.1 to 1.4)<br>EGDs 0.4% (95% CI 0 to 1.3)<br>NGDs 1.2% (95% CI 0.2 to 2.2); p=0.243 between groups.                                                                                                                                    |
|                       |                                                                                                                  | Valve in valve deployment<br>Overall, 10.5% (95% CI 4.9 to 16.2, I <sup>2</sup> =86.21%, p=0.000)<br>EGDs (3 studies) 22.1% (95% CI 16.2 to 28.0, I <sup>2</sup> =0, p=0.665)<br>NGDs (5 studies) 4.7% (95% CI 0 to 9.7, I <sup>2</sup> =78.52%, p=0.001); p<0.001<br>between groups. |
|                       |                                                                                                                  | Annulus rupture<br>Overall, 1.5% (95% CI 0.3 to 2.6)<br>EGDs 1.7% (95% CI 0 to 4.0)<br>NGDs 1.4% (95% CI 0.1 to 2.7); p= 0.834 between groups.                                                                                                                                        |
|                       |                                                                                                                  | Reintervention         Overall, 3.9% (95% CI 2.5 to 5.3)         EGDs 4.3% (95% CI 1.7 to 6.9)         NGDs 4.0% (95% CI 2.1 to 5.9), p=0.868 between groups.         PPM implantation                                                                                                |
|                       |                                                                                                                  | Overall, 11.6% (95% CI 6.8 to 16.4, I <sup>2</sup> =81.68, p=0.000)                                                                                                                                                                                                                   |

| First author,<br>date | Efficacy outcomes | Safety outcomes                                                                                      |
|-----------------------|-------------------|------------------------------------------------------------------------------------------------------|
|                       |                   | EGDs (4 studies) 15.6% (95% Cl 9.4 to 21.8, l <sup>2</sup> =72.07%, p=0.013)                         |
|                       |                   | NGDs (6 studies) 8.3% (95% Cl 2.0 to 14.5, l <sup>2</sup> =75.78%, p=0.001), p=0.085 between groups. |
|                       |                   | Moderate or higher paravalvular AR                                                                   |
|                       |                   | Overall, 7.4% (95% CI 4.0 to 10.9, $I^2$ =78.02%, p=0.000)                                           |
|                       |                   | NGDs (7 studies) 3.4% (95% CI 1.8 to 5.0 $I^2$ =0, p=0.908).                                         |
|                       |                   | p<0.001 between groups.                                                                              |
|                       |                   | 30-day mortality                                                                                     |
|                       |                   | All cause                                                                                            |
|                       |                   | Overall, 9.5% (95% CI 6.4 to 12.6, I <sup>2</sup> =61.25%, p=0.003)                                  |
|                       |                   | EGDs (5 studies) 14.7% (95% CI 10.8 to 18.6, I <sup>2</sup> =0%, p=0.417)                            |
|                       |                   | NGDs (7 studies) 6.1% (95% CI 3.2 to 8.9, I <sup>2</sup> =40.31%, p=0.122); p<0.001 between groups.  |
|                       |                   | Cardiovascular related                                                                               |
|                       |                   | Overall, 6.6% (95% CI 4.4 to 8.8)                                                                    |
|                       |                   | EGDs 9.5% (95% CI 3.2 to 15.7)                                                                       |
|                       |                   | NGDs 5.8% (95% CI 3.7 to 7.9); p=0.193.                                                              |
|                       |                   | Mid-term all-cause mortality (between 6 to 12 months)                                                |
|                       |                   | Overall, 18.8% (95% CI 10.9 to 26.7, I <sup>2</sup> =84.85%, p=0.000)                                |
|                       |                   | EGDs (4 studies) 32.2% (95% CI 25.7 to 38.8, I <sup>2</sup> =0%, p=0.454)                            |

| First author, date | Efficacy outcomes | Safety outcomes                                                                                       |
|--------------------|-------------------|-------------------------------------------------------------------------------------------------------|
|                    |                   |                                                                                                       |
|                    |                   | NGDs (6 studies) 11.8% (95% CI 4.5 to 19.0, I <sup>2</sup> =77.79%, p=0.000); p<0.001 between groups. |
|                    |                   | Stroke                                                                                                |
|                    |                   | Overall, 2.7% (95% CI 1.7 to 3.8)                                                                     |
|                    |                   | EGDs 2.3% (95% CI 0.6 to 3.9)                                                                         |
|                    |                   | NGDs 2.9% (95% CI 1.5 to 4.4); p=0.541 between groups.                                                |
|                    |                   | Life threatening or major bleeding complications                                                      |
|                    |                   | Overall, 5.7% (95% CI 2.8 to 8.6, I <sup>2</sup> =0%, p=0.480)                                        |
|                    |                   | EGDs (5 studies) 12.4% (95% CI 4.9 to 19.9, I <sup>2</sup> =0%, p=0.950)                              |
|                    |                   | NGDs (6 studies) 3.5% (95% CI 0.4 to 6.7, I <sup>2</sup> =0%, p=0.458);                               |
|                    |                   | p=0.015 between groups.                                                                               |
|                    |                   | Acute kidney injury (stage 1 to 3):                                                                   |
|                    |                   | Overall, 10.5% (95% CI 2.6 to 18.3)                                                                   |
|                    |                   | EGDs 18.2% (95% CI 2.1 to 34.3)                                                                       |
|                    |                   | NGDs 9.1% (95% CI 0.9 to 17.33); p=0.309 between groups.                                              |
|                    |                   | Major vascular complications:                                                                         |
|                    |                   | Overall, 3.9 (95% CI 2.7 to 5.2)                                                                      |
|                    |                   | EGDs 6.2% (95% CI 3.5 to 8.8)                                                                         |
|                    |                   | NGDs 3.0% (95% CI 1.5 to 4.5); p=0.041 between groups.                                                |
|                    |                   | Stepwise random-effects meta-regression                                                               |

| First author,<br>date | Efficacy outcomes                                                                     | Safety outcomes                                                                                                      |
|-----------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                       |                                                                                       | Meta-regression showed that none of the covariates/factors assessed were associated with 30-day all-cause mortality. |
| Liu 2024              | Device success at 30 days (as                                                         | NGDs; on label versus off label                                                                                      |
|                       | per VARC-2 criteria)                                                                  | Mortality                                                                                                            |
|                       | NGDs: ES 0.945 (95% CI 0.913 to                                                       | <u>30 days</u>                                                                                                       |
|                       | 0.9/1), l <sup>2</sup> =/6.8%, p=0.000.                                               | NGDs: ES 0.042 (95% CI 0.027 to 0.059), I <sup>2</sup> =43.8, p=0.008                                                |
|                       | $\frac{\text{On label devices}}{\text{CL} 0.964 \text{ to } 0.989} \text{ L}^2 = 8.2$ | On label devices: ES 0.026 (95% Cl 0.013 to 0.043), l <sup>2</sup> =22.1, p=0.192                                    |
|                       | p=0.358.                                                                              | Off label devices: ES 0.051 (95% CI 0.016 to 0.102), I <sup>2</sup> =30.4, p=0.219                                   |
|                       | Off label devices (6 studies,                                                         | (p=0.006 between on and off label devices)                                                                           |
|                       | n=258): ES 0.899 (95% CI 0.848                                                        | Access route:                                                                                                        |
|                       | to 0.941), I <sup>2</sup> =10.3, p=0.350;                                             | TF: ES 0.040 (0.012 to 0.078), I <sup>2</sup> =28.9, p=0.208                                                         |
|                       | (p<0.001 between on and off label                                                     | TA: ES 0.029 (0.014 to 0.047), I <sup>2</sup> =30.7, p=0.117                                                         |
|                       | Access route:                                                                         | (p=0.052 between routes)                                                                                             |
|                       | Access route:                                                                         | <u>1 year</u>                                                                                                        |
|                       | $(95\% \text{ CI } 0.875 \text{ to } 0.964), 1^2=35.6, p=0.144.$                      | NGDs: ES 0.081 (95% CI 0.051 to 0.117), I <sup>2</sup> =67.3, P=0.001                                                |
|                       |                                                                                       | On label devices: ES 0.059 (95% CI 0.035 to 0.087), I <sup>2</sup> =23.3, p=0.251                                    |
|                       | TA (16 studies, n=873): ES 0.961                                                      | Off label devices: NA                                                                                                |
|                       | (95% CI 0.939 to 0.979), I <sup>2</sup> =50.4,                                        | Permanent pacemaker implantation                                                                                     |
|                       | p=0.003.                                                                              | NGDs: ES 0.088 (95% CI 0.061 to 0.119), I <sup>2</sup> =57, p=0.000                                                  |
|                       | (p=0.000 between routes).                                                             | On label devices: ES 0.069 (95% CI 0.046 to 0.095), I <sup>2</sup> =40, p=0.041                                      |
|                       |                                                                                       | Off label devices: ES 0.184 (95% CI 0.132 to 0.242), I <sup>2</sup> =0, p=0.928                                      |
|                       |                                                                                       | (p<0.001 between on and off label devices)                                                                           |
|                       |                                                                                       | Access route:                                                                                                        |

| First author, | Efficacy outcomes | Safety outcomes                                                                    |
|---------------|-------------------|------------------------------------------------------------------------------------|
| date          |                   |                                                                                    |
|               |                   | $TE_{1}E_{2} = 0.404 (0E_{1}^{0}) (010.449 to 0.244) 1^{2} = 0.5 = 0.044$          |
|               |                   | TF: ES 0.194 (95% CI 0.148 to 0.244), $\Gamma=0$ , $\rho=0.814$                    |
|               |                   | TA: ES $0.000 (0.043 to 0.078), 1^{2}=0, P=0.787$                                  |
|               |                   | (p=0.000 between routes)                                                           |
|               |                   |                                                                                    |
|               |                   | NGDs: ES 0.022 (95% CI 0.009 to 0.038), I <sup>2</sup> =0, p=0.981                 |
|               |                   | On label devices: ES 0.025 (95% CI 0.012 to 0.042), I <sup>2</sup> =0, p=0.957     |
|               |                   | Off label devices: NA                                                              |
|               |                   | Annulus rupture                                                                    |
|               |                   | NGDs: ES 0.002 (95% CI 0.000 to 0.017), I <sup>2</sup> =0, P=0.941                 |
|               |                   | ON label devices: NA                                                               |
|               |                   | Off label devices: NA                                                              |
|               |                   | Reintervention                                                                     |
|               |                   | NGDs: ES 0.023 (95% CI 0.007 to 0.045), I <sup>2</sup> =13.9, p=0.324              |
|               |                   | On label devices: NA                                                               |
|               |                   | Off label devices: ES 0.028 (95% CI 0.000 to 0.114), I <sup>2</sup> =54.6, p=0.111 |
|               |                   | Greater than mild PVL                                                              |
|               |                   | NGDs: ES 0.012 (95% CI 0.004 to 0.022), I <sup>2</sup> =0, p=0.713                 |
|               |                   | On label devices: ES 0.009 (95% CI 0.002 to 0.019), I <sup>2</sup> =0, p=0.942     |
|               |                   | Off label devices: ES 0.038 (95% CI 0.012 to 0.074), I <sup>2</sup> =0, p=0.611    |
|               |                   | (p=0.003 between on and off label devices)                                         |
|               |                   | Access route:                                                                      |
|               |                   | TF ES 0.034 (95% CI 0.012 to 0.063), I <sup>2</sup> = 0.0, P= 0.791                |
|               |                   | TA ES 0.008 (95% CI 0.001 to 0.018), I <sup>2</sup> = 0.0, P= 0.960                |
|               |                   | (p=0.002 between routes)                                                           |

| First author,<br>date | Efficacy outcomes                                                                                                                                                      | Safety outcomes                                                                 |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                       |                                                                                                                                                                        | Mild PVL                                                                        |
|                       |                                                                                                                                                                        | NGDs: ES 0.209 (95% CI 0.176 to 0.244), I <sup>2</sup> =12.8, p=0.304           |
|                       |                                                                                                                                                                        | On label devices: ES 0.203 (95% CI 0.165 to 0.243), I <sup>2</sup> =19, p=0.241 |
|                       |                                                                                                                                                                        | Off label: NA                                                                   |
|                       |                                                                                                                                                                        | Access route:                                                                   |
|                       |                                                                                                                                                                        | TF ES 0.184 (95% CI 0.115 to 0.263), I <sup>2</sup> = 29.5, P= 0.235            |
|                       |                                                                                                                                                                        | TA ES 0.216 (95% CI 0.117 to 0.259), I <sup>2</sup> = 13.1, P= 0.314            |
|                       |                                                                                                                                                                        | (p=0.314 between routes)                                                        |
|                       |                                                                                                                                                                        | None/trace PVL                                                                  |
|                       |                                                                                                                                                                        | NGDs: ES 0.774 (95% CI 0.708–0.835), I <sup>2</sup> =71.3, p=0                  |
|                       |                                                                                                                                                                        | On label devices: ES 0.780 (95% CI 0.705–0.847), l²=73.4, p=0                   |
|                       |                                                                                                                                                                        | Off label: NA                                                                   |
|                       |                                                                                                                                                                        | Access route:                                                                   |
|                       |                                                                                                                                                                        | TF ES 0.781 (95% CI 0.685–0.866), I <sup>2</sup> = 42.9, P= 0.154               |
|                       |                                                                                                                                                                        | TA ES 0.769 (95% CI 0.683–0.846), I <sup>2</sup> = 76.2, P= 0.000               |
|                       |                                                                                                                                                                        | (p=0.897 between routes)                                                        |
| Poletti, 2023         | <b>Technical success</b> (according to                                                                                                                                 | In-hospital events                                                              |
|                       | the VARC-3 chiena included                                                                                                                                             |                                                                                 |
| international         | delivery of the device, retrieval of<br>the delivery system, correct<br>positioning of the valve and<br>freedom from surgery or<br>intervention related to the device. | All-cause death                                                                 |
| registry              |                                                                                                                                                                        | Overall, 5% (10/201)                                                            |
|                       |                                                                                                                                                                        | SE group 5.3% (7/132) versus BE group 4.4% (3/69), p=0.767                      |
|                       |                                                                                                                                                                        | Cardiovascular Death:                                                           |
|                       | access or cardiac structural                                                                                                                                           | Overall: $4.0\%$ (8/201)                                                        |
|                       |                                                                                                                                                                        |                                                                                 |

| Efficacy outcomes                                                                                                                                                                                                                                                                               | Safety outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| complication at the time of exit<br>from the procedure room):<br>Overall: 83.6% (168/201)<br>SE: 80.3% (106/132) versus BE:<br>89.9% (62/69); p = 0.108.                                                                                                                                        | SE group 3.8% (5/132) versus BE group 4.4% (3/69), p = 0.847<br><b>Stroke/TIA:</b><br>Overall: 1.5% (3/201)<br>SE group 2.3% (3/132) versus BE group 0 (0), p = 0.553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Device Success at 1 month<br>(defined as technical success at<br>30 days along with satisfactory<br>valve performance (mean gradient<br>less than 20 mmHg, and less than<br>moderate regurgitation):<br>Overall: 76.1% (153/201)<br>SE: 75.8% (100/132) versus BE:<br>76.8% (53/69); p = 0.868. | <ul> <li>Transcatheter valve embolisation or migration (TVEM defined according to the VARC-3 definition and included valve migration, embolisation and ectopic valve deployment).</li> <li>The causes of TVEM were malpositioning [32%], oversizing [20%], valve failure to anchor [20%], manipulation [8%] and unknown causes [12%]</li> <li>Overall, 12.4% (25/201)</li> <li>SE group 13.6% (18/132) versus BE group 10.1% (7/69), p=0.476.</li> <li>Post-dilation was the single independent variable associated with TVEM on multivariate analysis.</li> <li>Residual moderate or greater AR (in-hospital echocardiography):</li> <li>Overall, 9.5% (19/201)</li> <li>SE group 9.2% (12/132) versus BE group 10.1% (7/69), p=0.835.</li> <li>New PPM implantation:</li> <li>Overall: 22.3% (36/201)</li> <li>SE group 22.6% (24/132) versus BE: 21.8% (12/69), p = 0.918</li> </ul> |
|                                                                                                                                                                                                                                                                                                 | Major vascular complications:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                 | Efficacy outcomes<br>complication at the time of exit<br>from the procedure room):<br>Overall: 83.6% (168/201)<br>SE: 80.3% (106/132) versus BE:<br>89.9% (62/69); p = 0.108.<br>Device Success at 1 month<br>(defined as technical success at<br>30 days along with satisfactory<br>valve performance (mean gradient<br>less than 20 mmHg, and less than<br>moderate regurgitation):<br>Overall: 76.1% (153/201)<br>SE: 75.8% (100/132) versus BE:<br>76.8% (53/69); p = 0.868.                                                                                                                                                                                                                                                                                                                                                                                                        |

| First author,<br>date | Efficacy outcomes | Safety outcomes                                                                                             |
|-----------------------|-------------------|-------------------------------------------------------------------------------------------------------------|
|                       |                   | Overall: 7.5% (13/201)                                                                                      |
|                       |                   | SE group 8.1% (9/201) versus BE group 6.5% (4/69), p = 0.532.                                               |
|                       |                   | Major bleeding:                                                                                             |
|                       |                   | Overall: 10.6% (20/201)                                                                                     |
|                       |                   | SE: 12.6% (16/132) versus BE group 6.5% (4/69), p = 0.197                                                   |
|                       |                   | Conversion to surgery:                                                                                      |
|                       |                   | Overall: 2.0% (4/201)                                                                                       |
|                       |                   | SE group 1.5% (2/132) versus BE group 2.9% (2/69), p = 0.612                                                |
|                       |                   | AKI (network classification ≥ 2):                                                                           |
|                       |                   | Overall: 10.5% (18/201)                                                                                     |
|                       |                   | SE group 10.9% (12/201) versus BE group 9.8% (6/69), p = 0.827                                              |
|                       |                   | Second valve needed:                                                                                        |
|                       |                   | Overall: 10.5% (21/201) (THV implantation in 10, snaring in 5, repositioning in 2, procedure aborted in 4). |
|                       |                   | SE group 11.4% (15/132) versus BE group 8.7% (6/69), p = 0.557                                              |
|                       |                   | Postprocedural mean gradient (mm Hg):                                                                       |
|                       |                   | Overall: 6.7 (SD 3.9)                                                                                       |
|                       |                   | SE group 6.3 (SD 2.7) versus BE: 7.5 (SD 5.3), p = 0.049                                                    |

| First author,<br>date | Efficacy outcomes             | Safety outcomes                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                               | <b>Final transvalvular gradient:</b> BE group (7.5 SD 5.3 mm Hg) versus SE group (6.3 SD 2.7 mm Hg); p = 0.049.                                                                                                                                                                                                                                                                              |
|                       |                               | <b>Composite endpoint at 1 year</b> (composite of all-cause mortality and heart failure rehospitalisation), in 90% (181/201):                                                                                                                                                                                                                                                                |
|                       |                               | Overall incidence 17.1% (95% CI: 10.4%-23.4%),                                                                                                                                                                                                                                                                                                                                               |
|                       |                               | SE group 18.1% (95% CI: 9.1%-26.2%)                                                                                                                                                                                                                                                                                                                                                          |
|                       |                               | BE group15.1% (95% CI: 4.7%-24.4%) (log-rank p= 0.52).                                                                                                                                                                                                                                                                                                                                       |
|                       |                               |                                                                                                                                                                                                                                                                                                                                                                                              |
|                       |                               | Incidence of composite endpoint in patients with TVEM: 25.7% (95% CI: 5.6%-41.5%) versus those without TVEM: 15.8% (95% CI: 10.4%-23.4%); p = 0.05.                                                                                                                                                                                                                                          |
|                       |                               | There was no significant difference in the incidence of TVEM between the SE and BE device groups (14.6% for SE and 16.1% for BE, $p = 0.835$ ).                                                                                                                                                                                                                                              |
|                       |                               | After adjusting for propensity score, there was no significant difference<br>between the SE or BE valves in terms of technical failure (aOR: 0.48; 95%<br>CI: 0.18-1.18; P = 0.127), device failure (aOR:1.04; 95% CI: 0.49-2.13; p =<br>0.923), TVEM (aOR: 0.71; 95% CI: 0.25-1.81; P = 0.486), or the rate of<br>residual moderate or severe AR (aOR: 1.07; 95% CI: 0.36-2.98; P = 0.894). |
|                       |                               | Even after propensity matching, TVEM led to higher 1-year incidence of the composite endpoint (HR: 2.45; 95% CI: 1.00–6.18; p=0.05) and all-cause mortality (HR: 4.06; 95% CI: 1.50–11.0; p=0.006).                                                                                                                                                                                          |
| Vahl 2024             | NGD with on label (JenaValve) | NGD with on label (JenaValve)                                                                                                                                                                                                                                                                                                                                                                |
| NCT                   | Technical success             |                                                                                                                                                                                                                                                                                                                                                                                              |
| 04415047              | 95% (171/180).                |                                                                                                                                                                                                                                                                                                                                                                                              |

| First author,<br>date | Efficacy outcomes                                                                                                                                                                                                    | Safety outcomes                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Mean total procedure time was<br>71.8 min (SD 24.9).<br>All-cause mortality at 1-year                                                                                                                                | <b>The 30-day composite primary safety endpoint</b> * was achieved in 27% (48/180) [97.5% CI 19.2 to 34.0]) patients (p non-inferiority<0.0001), when compared with the pre-specified safety performance goal of 40.5%.                                                                                                                                                                                                               |
|                       | (primary efficacy point): achieved,<br>in 7.8% (14/180 [97.5% CI 3.3 to<br>12.3]) patients (p <0.0001) when<br>compared for non-inferiority with a<br>performance goal of 25%.                                       | *(a non-hierarchical composite consisting of all-cause mortality, any stroke,<br>life-threatening or major bleeding, AKI stage 2 to 3 or dialysis [7-day<br>endpoint], major vascular complications, surgery or intervention related to<br>the device [including coronary intervention], new permanent pacemaker<br>implantation, and moderate or severe total AR at 30-days after the<br>procedure according to VARC-2 definitions). |
|                       | In pre-specified group who<br>received successful valve<br>implantation: primary efficacy was<br>achieved in 16.2% (11/177;<br>[97.5% Cl 2.2 to 10.3)]; p <sub>non-</sub><br>inferiority<0.0001) patients at 1 year. | Total adverse events 27% (48/180)         Death 2% (4/180)         Any stroke 2% (4/180)         • Disabling stroke 1% (1/180)         • Non-disabling stroke 1% (1/180)                                                                                                                                                                                                                                                              |
|                       | Haemodynamic outcomes                                                                                                                                                                                                | Major or life-threatening bleeding 4% (8/180)                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | Data are mean (SD)                                                                                                                                                                                                   | Major vascular complication 4% (7/180)                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | Mean aortic gradient, mm Hg                                                                                                                                                                                          | AKI (stage 2 or 3) or dialysis (7 days) 1% (2/180)                                                                                                                                                                                                                                                                                                                                                                                    |
|                       | Baseline (n=180) 8.7 (6.6)                                                                                                                                                                                           | Surgery or intervention related to the device 3% (5/180)                                                                                                                                                                                                                                                                                                                                                                              |
|                       | 30 days (n=172) 3.9 (1.6)                                                                                                                                                                                            | SAVR for valve embolisation 1                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | 6 months (n=154) 4.3 (2.0)                                                                                                                                                                                           | Commercial THV for valve embolisation 1                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | 12 months (n=141) 4.3 (1.8).                                                                                                                                                                                         | <ul> <li>aortic endograft and commercial THV for catheter induced aortic<br/>dissection 1</li> </ul>                                                                                                                                                                                                                                                                                                                                  |
|                       | Effective orifice area, cm <sup>2</sup>                                                                                                                                                                              | <ul> <li>second Trilogy THV for valve embolisation in 2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                    |
|                       | 30 days (n=172) 2.9 (0.6)                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| First author,<br>date | Efficacy outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Safety outcomes                                                                                                                                                                                                                                     |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | 6 months (n=154) 2.7 (0.6)<br>12 months (n=141) 2.8 (0.6).<br>Effective orifice area index,<br>cm <sup>2</sup> /m <sup>2</sup><br>30 days (n=172) 1.7 (0.4)<br>6 months (n=154) 1.5 (0.4)<br>12 months (n=141) 1.6 (0.3).<br>LVEF, %<br>Baseline (n=180) 53.8 (11.4)<br>30 days (n=172) 49.7(12.6)<br>6 months (n=154) 51.9 (12.0)<br>12 months (n=141) 55.0 (11.6).<br>LV remodelling/ dimensions (by<br>echocardiography)<br>Mean LV mass declined from<br>323.7 g (SD 123.4) at baseline to<br>219.5 g (SD 101.4; p<0.0001) at 1<br>year<br>Mean LVESd decreased from 39.6<br>mm (SD 10.2) at baseline to 34.2<br>mm (SD 9.0; p<0.0001) at 1 year. | New PPM implantation in 24% (36/150) (30 people had a previous pacemaker) Paravalvular AR at 1 year Moderate or greater paravalvular AR 1 Mild or mild to moderate PAR reduced from 19% (n=31) at 30 days to 8% (n=11) none or trace in 92% (n=130) |

| First author,<br>date | Efficacy outcomes                                              | Safety outcomes |
|-----------------------|----------------------------------------------------------------|-----------------|
|                       | Functional status (NYHA classification)                        |                 |
|                       | <u>Baseline</u>                                                |                 |
|                       | Class II 32%                                                   |                 |
|                       | Class III 63%                                                  |                 |
|                       | Class IV 5%                                                    |                 |
|                       |                                                                |                 |
|                       | <u>At 30 days</u>                                              |                 |
|                       | Class I 51% (91/180)                                           |                 |
|                       | Class II 34% (62/180)                                          |                 |
|                       | Class III 9% (17/180).                                         |                 |
|                       |                                                                |                 |
|                       | <u>At 1 year</u>                                               |                 |
|                       | Class I 50% (90/180)                                           |                 |
|                       | Class II 27% (48/180)                                          |                 |
|                       | NYHA functional class improved by at least one category in 125 |                 |
|                       | (83%) patients.                                                |                 |
|                       |                                                                |                 |
|                       | Quality of life (assessed using<br>KCCQ scoring)               |                 |
|                       | From baseline to 1-year, the mean                              |                 |
|                       | KCCQ overall score increased by                                |                 |
|                       | 20.6 points (SD 24.3) from a mean                              |                 |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| First author,<br>date | Efficacy outcomes                                                                                                                                    | Safety outcomes                                                                                                                    |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                                                                                                                                      |                                                                                                                                    |
|                       | of 55.3 (27.1) to 77.6 (22.7;<br>p<0·0001;                                                                                                           |                                                                                                                                    |
|                       | Large improvement (20-point or more increase) 41% (63/152)                                                                                           |                                                                                                                                    |
|                       | Moderate improvement (increase<br>between 10 and <20 points 16%<br>(24/152)                                                                          |                                                                                                                                    |
|                       | Small improvement (increase<br>between 5 and <10 points) 7%<br>(11/152)                                                                              |                                                                                                                                    |
|                       | No change (change between –5<br>and less than 5 points) 18%<br>(27/152)                                                                              |                                                                                                                                    |
|                       | Worse (more than 5-point<br>decrease from baseline) 11%<br>(16/152)                                                                                  |                                                                                                                                    |
|                       | Dead 7% (11/152).                                                                                                                                    |                                                                                                                                    |
|                       | 6-minute walk test                                                                                                                                   |                                                                                                                                    |
|                       | An increase in 6-min walk test<br>distance was found and 48%<br>(62/180) patients had an<br>improvement of at least 15 m from<br>baseline to 1 year. |                                                                                                                                    |
| Da-Wei, 2024          | Echocardiography outcomes                                                                                                                            | All-cause mortality (postoperative and at 30 days):<br>Low risk group 0% (0/38) versus intermediate and high-risk group: 0% (0/37) |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| First author, date                                                | Efficacy outcomes                                                                                                                      | Safety outcomes                                                                                                                         |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   |                                                                                                                                        |                                                                                                                                         |
|                                                                   | LVEDd and LVESd significantly<br>decreased at 1 month from<br>baseline (LVEDd: 54.3 [SD 6.2]                                           | Cardiovascular mortality (postoperative and at 30 days):<br>Low risk group 0% (0/38) versus intermediate and high-risk group: 0% (0/37) |
|                                                                   | versus 50.4 [SD 6.4], p = 0.017;                                                                                                       | Bleeding Events (postoperative and at 30 days):                                                                                         |
|                                                                   | LVESd: 40.2 [8.4] versus 35.9 [SD 7.3], p = 0.037).                                                                                    | Low risk group 2.6% (1/38) versus intermediate and high-risk group: 0% (0/37), $p=0.32$                                                 |
|                                                                   | There was no significant                                                                                                               | Major vascular complications:                                                                                                           |
|                                                                   | versus 51.8 [SD 11.0] $p = 0.73$                                                                                                       | Postoperative                                                                                                                           |
|                                                                   | There was no significant<br>difference in LVEF, moderate-to-<br>severe MR, and moderate-to-                                            | Low risk group 2.6% (1/38) versus intermediate and high-risk group: 2.7% (1/37), $p = 0.98$                                             |
|                                                                   |                                                                                                                                        | 30 days                                                                                                                                 |
|                                                                   | severe TR.                                                                                                                             | Low risk group 0 versus intermediate and high-risk group 0                                                                              |
|                                                                   | Intermediate and high-risk group:<br>LVEDd decreased significantly at<br>1 month from baseline (57.6 [SD<br>6.2] versus 53.3 [SD 8.1], | Acute renal failure (postoperative and at 30 days):                                                                                     |
|                                                                   |                                                                                                                                        | Low risk group 0 versus intermediate and high-risk group 0                                                                              |
|                                                                   | The rate of moderate-to-severe                                                                                                         | Stroke (postoperative and at 30 days):                                                                                                  |
| MR was also significant (p=0.036)<br>but the difference in LVESd, | Low risk group 0 versus intermediate and high-risk group: 2.7% (1/37), p= 0.31                                                         |                                                                                                                                         |
|                                                                   | TR, was not significant.                                                                                                               | Myocardial infarction (postoperative and at 30 days)                                                                                    |
|                                                                   |                                                                                                                                        | Low risk group 0 versus intermediate and high-risk group 0                                                                              |
|                                                                   | NYHA functional class                                                                                                                  |                                                                                                                                         |
|                                                                   | Lonanges In NYHA functional class                                                                                                      | Degree of AR                                                                                                                            |
|                                                                   | high-risk groups significantly                                                                                                         |                                                                                                                                         |
|                                                                   | improved from baseline at both 1                                                                                                       |                                                                                                                                         |

| First author,<br>date | Efficacy outcomes                       | Safety outcomes                                                                                                                                                                              |
|-----------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | and 30 days after TAVI (both p <0.001). | Changes in AR degree in low risk and intermediate and high-risk groups significantly improved from baseline at both 1 and 30 days after TAVI (both p <0.001). none had severe AR after TAVI. |
|                       |                                         | New-onset AF:                                                                                                                                                                                |
|                       |                                         | Postoperative                                                                                                                                                                                |
|                       |                                         | Low risk group 13.2% (5/38) versus intermediate and high-risk group: 8.1% (3/37), $p= 0.48$ .                                                                                                |
|                       |                                         | 30 days                                                                                                                                                                                      |
|                       |                                         | Low risk group 0 versus intermediate and high-risk group 0                                                                                                                                   |
|                       |                                         | New left hundle brench block (LDDD):                                                                                                                                                         |
|                       |                                         | New left bundle branch block (LBBB):                                                                                                                                                         |
|                       |                                         |                                                                                                                                                                                              |
|                       |                                         | Low risk group 13.2% (5/38) versus intermediate and high-risk group: 21.6% (8/37), $p= 0.33$ .                                                                                               |
|                       |                                         | 30 days                                                                                                                                                                                      |
|                       |                                         | Low risk group 0 versus intermediate and high-risk group: 2.7% (1/37), p= 0.31.                                                                                                              |
|                       |                                         | New atrioventricular block (AVB):                                                                                                                                                            |
|                       |                                         | Postoperative                                                                                                                                                                                |
|                       |                                         | Low risk group 18.4% (7/38) versus intermediate and high-risk group: 18.9% (7/37), $p= 0.96$ .                                                                                               |
|                       |                                         | 30 days                                                                                                                                                                                      |
|                       |                                         | Low risk group 0 versus intermediate and high-risk group 0                                                                                                                                   |

| First author,<br>date | Efficacy outcomes | Safety outcomes                                                                             |
|-----------------------|-------------------|---------------------------------------------------------------------------------------------|
|                       |                   | New complete AVB (postoperative and at 30 days):                                            |
|                       |                   | Low risk group 0 versus intermediate and high-risk group 0                                  |
|                       |                   | New PPM implantation:                                                                       |
|                       |                   | Postoperative                                                                               |
|                       |                   | Low risk group 18.4% (7/38) versus intermediate and high-risk group: 13.5% (5/37), p= 0.56. |
|                       |                   | 30 days                                                                                     |
|                       |                   | Low risk group 2.6% (1/38) versus intermediate and high-risk group: 5.4% (2/37), p= 0.54.   |
|                       |                   | Endocarditis (postoperative and at 30 days):                                                |
|                       |                   | Low risk group 0 versus intermediate and high-risk group 0                                  |
|                       |                   | Readmission for heart failure (30 days)                                                     |
|                       |                   | Low risk group 2.6% (1/38) versus intermediate and high-risk group: 2.7% (1/37), p= 0.98.   |
|                       |                   | Valve in valve                                                                              |
|                       |                   | Low-risk group 13.2% (5/38) versus intermediate and high-risk group 10.8% (4/37)            |
| Elkasaby              | TAVI versus SAVR  | TAVI versus SAVR                                                                            |
| 2024                  |                   | In-hospital mortality (5 studies)                                                           |
| First author, date | Efficacy outcomes                                                                                                                | Safety outcomes                                                                                                                                                                                   |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Length of hospital stay (4 studies)                                                                                              | TAVI (174/5442) versus SAVR (1027/27643); (RR=0.89, 95% CI 0.56 to 1.42, p=0.63) (I <sup>2</sup> =86%, p<0.001).                                                                                  |
|                    | TAVI (n=4,718) versus SAVR<br>(n=17,115); (MD=-4.76 days;<br>95% CI: -5.27 to -4.25, p<0.001)<br>(I <sup>2</sup> =88%, p<0.001). | In-hospital mortality (4 studies, excluding Stachon 2020)                                                                                                                                         |
|                    |                                                                                                                                  | (RR=0.72; 95% CI: 0.59 to 0.89, p=0.003).                                                                                                                                                         |
|                    |                                                                                                                                  | Subgroup analysis according to access route:                                                                                                                                                      |
|                    |                                                                                                                                  | TA TAVI versus SAVR (RR=1.53; 95% CI 1.02 to 2.31, p=0.04) (I <sup>2</sup> =0%, p=0.47).                                                                                                          |
|                    |                                                                                                                                  | TF TAVI versus SAVR (RR=0.99; 95% CI 0.48 to 2.04, p=0.97) (I <sup>2</sup> =91%, p<0.001).                                                                                                        |
|                    |                                                                                                                                  | Undefined TAVI approach versus SAVR: (RR=0.60; 95% CI 0.41 to 0.87, p=0.008) (I <sup>2</sup> =9%, p=0.30).                                                                                        |
|                    |                                                                                                                                  | Subgroup analysis according to country                                                                                                                                                            |
|                    |                                                                                                                                  | TAVI was favoured over SAVR in studies conducted in China (RR=0.67; CI: 0.45 to 0.1, p=0.05). There were no differences between TAVI and SAVR in the USA (p=0.29) and Germany (p=0.88) subgroups. |
|                    |                                                                                                                                  | <b>30-day mortality</b> (1 study Mentias 2023)                                                                                                                                                    |
|                    |                                                                                                                                  | TAVI (25/1147) versus SAVR (267/9880); (RR=0.81, 95% CI 0.54 to 1.21, p=0.30).                                                                                                                    |
|                    |                                                                                                                                  | <b>1 year mortality</b> (1 study Mentias 2023)                                                                                                                                                    |
|                    |                                                                                                                                  | TAVI (79/1147) versus SAVR (563/9880); (RR=1.21, 95% CI 0.96 to 1.52, p=0.10).                                                                                                                    |
|                    |                                                                                                                                  | In-hospital stroke (4 studies)                                                                                                                                                                    |

| First author,<br>date | Efficacy outcomes | Safety outcomes                                                                                                        |
|-----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------|
|                       |                   | TAVI (80/4295) versus SAVR (735/17763); (RR=0.50; 95% CI 0.39 to 0.66, p<0.001) (I <sup>2</sup> =11%, p=0.34).         |
|                       |                   | <b>30-day stroke</b> (1 study Mentias 2023)                                                                            |
|                       |                   | TAVI (29/1147) versus SAVR (198/9880); (RR=1.26, 95% CI 0.86                                                           |
|                       |                   | to 1.85, p=0.24).                                                                                                      |
|                       |                   | Postoperative new onset AF (2 studies)                                                                                 |
|                       |                   | TAVI (436/2062) versus SAVR (3681/11270); (RR=0.26, 95% CI 0.02 to 3.80, p=0.33), (I <sup>2</sup> =100%, p<0.0001).    |
|                       |                   | Post-operative AKI (4 studies)                                                                                         |
|                       |                   | TAVI (630/3987) versus SAVR (2711/13140); (RR=0.56; 95% CI: 0.41 to 0.76, p=0.0002), (I <sup>2</sup> =91%, p<0.00001). |
|                       |                   | Postoperative major bleeding (5 studies)                                                                               |
|                       |                   | TAVI (276/5442) versus SAVR (5597/27643); (RR=0.23; 95% CI: 0.17 to 0.32, p<0.001) (I <sup>2</sup> =85%, p<0.001).     |
|                       |                   | Pacemaker implantation (3 studies)                                                                                     |
|                       |                   | TAVI (507/3882) versus SAVR (945/13090); (RR=1.68; 95% CI: 1.50 to 1.88, p<0.001) (I <sup>2</sup> =0% p=0.83).         |
|                       |                   | Delirium (2 studies)                                                                                                   |
|                       |                   | TAVI (100/1560) versus SAVR (1216/14553); (RR 0.68, 95% CI 0.25 to 1.88, p=0.46), (I <sup>2</sup> =96%, p<0.0001)      |
|                       |                   |                                                                                                                        |

| First author,<br>date | Efficacy outcomes              | Safety outcomes                                                                                               |
|-----------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------|
|                       |                                | Pneumonia (2 studies)                                                                                         |
|                       |                                | TAVI (74/2735) versus SAVR (161/3210); (RR 0.53, 95% CI 0.40 to 0.70, p<0.0001), (I <sup>2</sup> =0%, p=0.54) |
|                       |                                | Sepsis (2 studies)                                                                                            |
|                       |                                | TAVI (42/2735) versus SAVR (127/3210), (RR 0.15, 95% CI 0.01 to 2.23, p=0.17), (I <sup>2</sup> =74%, p=0.05). |
| Ullah W 2024          | The mean length of stay (days) | Pooled outcomes between TAVI for AI and TAVI for AS                                                           |
|                       | TAVI in AI=6.18 (SD 7.5)       | In-hospital outcomes                                                                                          |
|                       | TAVI in AS=5.18 (SD 6.3).      | NACE                                                                                                          |
|                       |                                | TAVI in AI (5.6%, n=217) versus TAVI in AS (2.9%, n=117);                                                     |
|                       |                                | (aOR 2.0, 95% CI 1.59 to 2.51)                                                                                |
|                       |                                | All-cause mortality                                                                                           |
|                       |                                | TAVI in AI (2.5%, n=98) versus TAVI in AS (0.7%, n=29);                                                       |
|                       |                                | (aOR 3.1, 95% CI 2.4 to 5.5)                                                                                  |
|                       |                                | Stroke                                                                                                        |
|                       |                                | TAVI in AI (0.8%, n=29) versus TAVI in AS (0.6%, n=24);                                                       |
|                       |                                | (aOR 1.3, 95% CI 0.7 to 2.2)                                                                                  |
|                       |                                | Major bleeding                                                                                                |
|                       |                                | TAVI in AI (2.8%, n=107) versus TAVI in AS (1.8%, n=74);                                                      |
|                       |                                | (aOR 1.53, 95% CI 1.1 to 2.1)                                                                                 |
|                       |                                | Cardiac tamponade                                                                                             |
|                       |                                | TAVI in AI (n=<11 events) versus TAVI in AS (0.4%, n=16);                                                     |
|                       |                                | (aOR 1.9, 95% CI 1.0 to 3.5)                                                                                  |
|                       |                                | Cardiogenic shock                                                                                             |

| First author, | Efficacy outcomes | Safety outcomes                                          |
|---------------|-------------------|----------------------------------------------------------|
| date          |                   |                                                          |
|               |                   | TAVL in AL ( $0.8\%$ , n=29) versus TAVL in AS (n=16):   |
|               |                   | (aOR 0.5, 95% CI 0.2 to 1.2)                             |
|               |                   | Valvular complications                                   |
|               |                   | (aOR 9.48, 95% CI 6.73 to 13.38)                         |
|               |                   | Adjusted analysis                                        |
|               |                   | 30 davs                                                  |
|               |                   | NACE                                                     |
|               |                   | TAVI in AI (5.9%, n=25) versus TAVI in AS (6.1%, n=26);  |
|               |                   | (aOR 0.9, 95% CI 0.5 to 1.7)                             |
|               |                   | Mortality                                                |
|               |                   | TAVI in AI (3.2%, n=14) versus TAVI in AS (3.3%, n=14);  |
|               |                   | (aOR 1.0, 95% CI 0.5 to 2.1)                             |
|               |                   | Major bleeding                                           |
|               |                   | TAVI in AI (n<11 events) versus TAVI in AS (3.1%, n=13); |
|               |                   | (aOR 0.8, 95% CI 0.3 to 1.7)                             |
|               |                   | PPM implantation                                         |
|               |                   | TAVI in AI (9.7%, n=42) versus TAVI in AS (13.8%, n=59); |
|               |                   | (aOR 0.7, 95% CI 0.4 to 1.0)                             |
|               |                   | 180 days                                                 |
|               |                   | NACE                                                     |
|               |                   | TAVL in Al (7.3% n=30) versus TAVL in AS (7.7% n=33):    |
|               |                   | (aOB 0.9, 95% CI 0.6 to 1.6)                             |
|               |                   | Mortality                                                |

| First author,<br>date | Efficacy outcomes | Safety outcomes                                                                                                                                        |
|-----------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                   | TAVI in AI (4.9%, n=20) versus TAVI in AS (3.7%, n=16);                                                                                                |
|                       |                   | (aOR 1.3, 95% CI 0.7 to 2.6)                                                                                                                           |
|                       |                   | Stroke                                                                                                                                                 |
|                       |                   | TAVI in AI (n=<11 events) versus TAVI in AS (n=<11 events);                                                                                            |
|                       |                   | (aOR 0.5, 95% CI 0.1 to 1.7)                                                                                                                           |
|                       |                   | Major bleeding                                                                                                                                         |
|                       |                   | TAVI in AI (n=<11 events) versus TAVI in AS (n=<11 events);                                                                                            |
|                       |                   | (aOR 0.6, 95% CI 0.2 to 1.7)                                                                                                                           |
|                       |                   | PPM implantation                                                                                                                                       |
|                       |                   | TAVI in AI (12.4%, n=51) versus TAVI in AS (10.5, n=45);                                                                                               |
|                       |                   | (aOR 1.2, 95% CI 0.8 to 1.8)                                                                                                                           |
|                       |                   | Impact of age and sex on outcomes of TAVI for AI compared to AS.                                                                                       |
|                       |                   | A sensitivity analysis based on age (<80 years and ≥80 years) and sex (male and female) mirrored the findings of the pooled analysis.                  |
|                       |                   | On unadjusted analysis, TAVI in AI was associated with significantly higher odds of NACE, mortality, major bleeding, and post-procedure complications. |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

## **Procedure technique**

There were variations in the devices used across studies. Existing old and new generation TAVI valves have been used on an off-label basis in some studies. Purpose specific on-label devices have been used in some studies. Both TA and TF access routes have been primarily used in studies. In limited cases (n=8) trans subclavian approach was used.

## Efficacy

## **Technical success**

## NGD with on-label

In a prospective study of 180 symptomatic patients with moderate to severe or severe AR who had TF TAVI with an on-label dedicated device (ALIGN AR trial), technical success (defined as absence of procedural mortality, successful access, delivery, and retrieval of transcatheter delivery system, deployment and correct positioning of a single THV, freedom from reintervention related to the device or access procedure) was achieved in 95% (171/180) patients (Vahl 2024).

## NGDs off-label (SE versus BE valves)

In an international PANTHEON registry analysis of 201 patients who had TAVI with NGDs (including only 10% dedicated valves) for pure severe native AR, the overall technical success rate according to the VARC-3 criteria (defined as freedom from mortality, successful delivery of the device, retrieval of the delivery system, correct positioning of the valve and freedom from surgery or intervention related to the device, access or cardiac structural complication at the time of exit from the procedure room) was 84%, with no statistically significant difference in technical success rates between those treated with SE and BE valves (80% versus 90%, p=0.108) (Poletti, 2023).

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation © NICE 2025. All rights reserved. Subject to <u>Notice of rights</u>.

## **Device success**

## NGDs: on-label versus off-label devices

A systematic review and meta-analysis of 31 studies on TAVI with NGDs for pure AR, compared on-label (two valve prosthesis systems) and off label devices. Pooled analysis reported that the total device success rate (defined by the VARC-3 criteria) at 30 days was 95% (95% CI 91.3 to 97.1%, I<sup>2</sup>=76.8%). Subgroup pooled analysis showed that the device success rate was higher for TAVI with on-label devices than TAVI with off-label devices (98% versus 90%; p<0.001). When TA and TF access routes were compared, the TA approach showed a significantly higher device success rate than the TF approach (96% versus 93%, p<0.001) (Liu 2024).

## NGDs off-label (SE versus BE valves)

In the PANTHEON international registry analysis of 201 patients who had TAVI with NGDs (including only 10% dedicated valves) for pure severe native AR, the overall device success rate at one month (defined as technical success at 30 days along with satisfactory valve performance [mean gradient less than 20 mmHg, and less than moderate regurgitation]) was 76%, with no statistically significant difference in device success rates between those treated with SE and BE valves (76% versus 77%, p = 0.868) (Poletti, 2023).

## NGDs versus EGDs

In a meta-analysis of 19 studies on TAVI for pure AR, pooled analysis of 14 studies reported that the rate of device success (as per VARC-2 criteria, defined as a composite of absence of procedural mortality, correct positioning of valve prosthesis, and intended performance of the prosthetic valve) was 86% (524/659, 95% CI 78.8 to 92.2%, I<sup>2</sup>= 81.01%, p<0.001). Subgroup analysis showed the use of NGDs was associated with higher device success compared with EGDs (p=0.009). Device success was higher with new generation purpose-specific IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

valves (96%, 95% CI 92.2 to 98.9%; I<sup>2</sup>=0%) compared with non-purpose specific valves (85% (95% CI 75 to 91.9%); I<sup>2</sup>=46%) (p=0.02) (Rawasi 2019).

A meta-analysis of 11 studies (including 911 patients with pure AR who had TAVI), reported device success of 81%. Subgroup pooled analysis reported significantly higher device success rates after TAVI using NGDs than TAVI using EGDs (90% versus 67%; p<0.001) (Takagi 2020).

## Left ventricular remodelling (echocardiography findings)

## NGD with on-label

In the prospective study of 180 symptomatic patients with moderate to severe or severe AR who had TF TAVI with an on-label dedicated device (ALIGN AR trial), mean LV mass declined from 323.7 g at baseline to 219.5 g (p<0.001) at 1 year and mean LVESd significantly decreased from 39.6 cm at baseline to 34.2 cm (p<0.0001) at 1 year (Vahl 2024).

# NGDs off-label (low risk [STS <4] versus intermediate and high-risk groups [STS>4])

A retrospective analysis of 75 patients who had TAVI with off-label devices for pure severe AR reported that patients in the low-risk group reported statistically significant decrease in mean LVEDd (p=0.017) and LVESd (p=0.037) from baseline at 1 month follow-up. Patients in the intermediate and high-risk group reported a statistically significant decrease in LVEDd (p=0.035) but not LVESd (p=0.23) (Da-Wei 2024).

## Functional status (NYHA classification)

## NGD with on-label

In the prospective study of 180 symptomatic patients with moderate to severe or severe AR who had TF TAVI with an on-label dedicated device (ALIGN AR trial), IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

68% (122/180) patients had NYHA functional class III–IV disease at baseline. At 30 days, NYHA functional class status was class I in 51% (91/180), class II in 34% (62/180) of patients, and class III in 9% (17/180) of patients. At 1 year, 50% (90/180) of patients were class I and 27% (48/180) were class II. NYHA functional class improved by at least one category in 83% (125/180) of patients (Vahl 2024).

# NGDs off-label (low risk [STS <4] versus intermediate and high-risk groups [STS>4])

The retrospective analysis of 75 patients who had TAVI with off-label devices for pure severe AR reported that compared to patients in low-risk group (n=38), those in the intermediate and high risk (n=37) had a statistically significant improvement in NYHA functional class from baseline at both 1- and 30-days after TAVI (both p<0.001) (Da-Wei 2024).

## Quality of life

## NGD with on-label

In the prospective study of 180 symptomatic patients with moderate to severe or severe AR who had TF TAVI with an on-label dedicated device (ALIGN AR trial), the mean KCCQ overall score increased by 20.6 points at 1 year (from baseline mean 55.3 to 77.6; p<0.0001). Of 152 respondents, the number of patients with a KCCQ overall score of at least 75 was 63% (88/152) and those who felt worse (5 point or more decrease from baseline) was 11% (16/152) (Vahl 2024).

## 6-minute walk test

## NGD with on-label

In the prospective study of 180 symptomatic patients with moderate to severe or severe AR who had TF TAVI with an on-label dedicated device (ALIGN AR trial),

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

an increase in 6-min walk test distance (from baseline 262.7 to 312.5 meters at 1 year) was reported and 48% (62/180) patients had an improvement of at least 15 meters at 1 year (p values were not reported) (Vahl 2024).

## Length of hospital stay (LOS)

## TAVI versus SAVR

In a systematic review and meta-analysis of 6 studies comparing TAVI with SAVR, pooled analysis of 4 studies showed that the LOS was shorter with TAVI compared to SAVR (MD=-4.76 days; 95% CI -5.27 to -4.25, p<0.001). Subgroup pooled analysis showed that TF TAVI was associated with shorter LOS compared to SAVR (MD=-4.33 days, 95% CI -4.42 to -4.23, p<0.001) but TA TAVI was not associated with shorter LOS compared to SAVR (MD=-1.98 days, 95% CI -4.33 to 0.93, p=0.21). The undefined TAVI approach subgroup was also associated with shorter LOS compared to SAVR (MD=-5.35 to -3.98, p<0.0001) (Elkasaby 2024).

## Safety

## Composite primary safety endpoint

## NGD with on-label

In the prospective study of 180 symptomatic patients with moderate to severe or severe AR who had TF TAVI with an on-label dedicated device (ALIGN AR trial), the 30-day composite primary safety endpoint (all-cause mortality, major bleeding, stroke, acute kidney injury, new pacemaker implantation or valve dysfunction requiring surgical or percutaneous intervention) was achieved in 27% (48/180, 97.5% CI 19.2 to 34.0) patients (p non-inferiority<0.0001), when compared with the pre-specified safety performance goal of 40.5% (Vahl 2024).

Composite endpoint (all-cause mortality and heart failure rehospitalisation at 1

year)

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

## NGDs off-label (SE versus BE valves)

The PANTHEON international registry analysis of 201 patients who had TAVI with NGDs (including only 10% dedicated valves) for pure severe native AR reported that the overall incidence of the composite endpoint (all-cause mortality and heart failure rehospitalisation) at 1 year (in 181 patients) was 17% (95% CI: 10.4 to 23.4%). There was no statistically significant difference in the incidence in patients treated with SE and BE valves (18% [95% CI 9.1 to 26.2%] versus 15% [95% CI 4.7 to 24.4%]; p = 0.52). Patients who had TVEM had a higher incidence of the composite endpoint compared to those in the non-TVEM group (25.7% [95% CI: 5.6% to 41.5%] versus 15.8% [95% CI: 8.5% to 22.5%]. log-rank p = 0.05). After adjusting for propensity scores, TVEM was associated with a higher one-year incidence of the composite endpoint (HR: 2.45; 95% CI: 1.00 to 6.18; p = 0.05) and increased all-cause mortality (HR: 4.06; 95% CI: 1.50 to 11.0; p = 0.006) (Poletti, 2023).

NACE (a composite of all-cause in-hospital mortality, stroke, and major bleeding)

## TAVI for AR versus TAVI for AS

In a retrospective propensity score matched analysis of NRD data (n=7,929) comparing patients who had TAVI for AI (n=3,873) with those who had TAVI for AS (n=4,056), in-hospital NACE was statistically significantly higher in the AI group compared with the AS group (TAVI in AI [5.6%, n=217] versus TAVI in AS [2.9%, n=117]; aOR 2.0, 95% CI 1.6 to 2.5). However, there was no statistically significant difference in NACE at 30 days (TAVI in AI [5.9%, n=25] versus TAVI in AS [6.1%, n=26]; aOR 0.9, 95% CI 0.5 to 1.7) and 180 days (TAVI in AI [7.3%, n=30] versus TAVI in AS [7.7%, n=33]; aOR 0.9, 95% CI 0.6 to 1.6), respectively (Ullah 2024).

## In-hospital mortality

## NGD off-label (SE versus BE valves)

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

The PANTHEON international registry analysis of 201 patients with pure severe native AR who had TAVI with NGDs (including only 10% dedicated valves) reported that the incidence of in-hospital all-cause mortality was 5.0% (10/201), with no statistically significant difference in rates between those treated with SE and BE valves (5.3% [7/132] versus 4.4% [3/69], p= 0.767) (Poletti, 2023).

## TAVI for AR versus TAVI for AS

In the retrospective propensity score matched analysis of NRD data (n=7,929) comparing patients who had TAVI for AI (n=3,873) with those who had TAVI for AS (n=4,056), in-hospital mortality was statistically significantly higher in the AI group compared with the AS group (TAVI in AI [2.5%, n=98] versus TAVI in AS [0.7%, n=29]; aOR 3.01, 95% CI 2.4 to 5.5) (Ullah 2024).

## TAVI versus SAVR

In the systematic review and meta-analysis of 6 studies comparing TAVI with SAVR, pooled analysis of 6 studies showed that in-hospital mortality rate was comparable between the two procedures (RR=0.89, 95% CI 0.56 to 1.42, p=0.63;  $I^2$ =86%). Pooled analysis after excluding 1 study (Stachon 2020, the source of heterogeneity) suggests that TAVI may be associated with a decreased mortality rate than SAVR (RR=0.72; 95% CI 0.59 to 0.89, p=0.003).

Subgroup analysis on the approach of TAVI (TA and TF) showed that TA TAVI was associated with an increased in-hospital mortality rate compared to SAVR (RR=1.53; 95% CI 1.02 to 2.31, p=0.04; I<sup>2</sup>=0%). TF TAVI was associated with a similar in-hospital mortality rate compared to SAVR (RR=0.99; 95% CI 0.48 to 2.04, p=0.97; I<sup>2</sup>=91%). Pooled results of undefined TAVI approaches showed a lower rate of in-hospital mortality compared to SAVR (RR=0.60; 95% CI 0.41 to 0.87, p=0.008; I<sup>2</sup>=9%). Subgroup analysis according to the country of origin showed that TAVI was favoured over SAVR in studies conducted in China

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation © NICE 2025. All rights reserved. Subject to <u>Notice of rights</u>.

(RR=0.67; CI 0.45 to 0.1, p=0.05). There were no differences between TAVI and SAVR in the USA (p=0.29) and German (p=0.88) subgroups (Elkasaby 2024).

#### Mortality at 30 days

#### NGD with on label

In the prospective study of 180 symptomatic patients with moderate to severe or severe AR who had TF TAVI with an on-label dedicated device (ALIGN AR trial) mortality at 30 days was 2% (4/180) (Vahl 2024).

## NGD off-label (low risk [STS <4] versus intermediate and high-risk groups [STS>4])

A retrospective analysis of 75 patients who had TAVI with off-label devices for pure severe AR reported that in both the low-risk and intermediate and high-risk groups, there were no recorded cases of all-cause mortality following the procedure and at 30 days follow-up (Da-Wei 2024).

## NGDs: on-label versus off label devices

The systematic review and meta-analysis of 31 studies on new generation TAVI devices for pure AR reported that the 30-day all-cause mortality was 4% (95% CI 2.7 to 5.9%, I<sup>2</sup>=43.8%). Subgroup analysis comparing on-label (two valve prosthesis systems) and off label devices showed a statistically significantly lower 30-day mortality rate for TAVI using on-label devices than off-label devices (3% versus 5%; p=0.006). When comparing TA and TF access routes, 30-day mortality was lower for the TA group than the TF group (3% versus 4%, p=0.052) (Liu 2024).

## NGDs versus EGDs

In the systematic review and meta-analysis of 19 studies, pooled analysis reported that the rate of 30-day mortality was 12% (122/998, 95% CI 9.4 to IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation © NICE 2025. All rights reserved. Subject to Notice of rights.

14.7%,  $l^2=28\%$ , p=0.110). Sub-group analysis showed the use of NGDs was associated with lower 30-day mortality compared to EGDs (p=0.02). There was no statistically significant difference in the rate of 30-day mortality between new generation purpose-specific (8.2%; 95% CI 4.3 to 13.1%;  $l^2=0\%$ ) and nonpurpose specific valves (13.0%; 95% CI 8.2 to 18.6%;  $l^2=25\%$ ); (p=0.13) (Rawasi 2019).

In the meta-analysis of 11 studies (n=911), pooled analysis reported a 30-day allcause mortality rate of 9.5% and a 30-day cardiovascular mortality rate of 6.6%. Sub-group analysis reported a statistically significantly lower incidence of 30-day all-cause mortality in the NGD group compared to EGD group (6% versus 15%; p<0.001). There were no statistically significant differences in the incidence of 30day cardiovascular mortality between the two groups (6% versus 10%; p=0.193) (Takagi 2020).

## TAVI for AR versus TAVI for AS

In the retrospective propensity score matched analysis of NRD data (n=7,929) comparing patients who had TAVI for AI (n=3,873) with those who had TAVI for AS (n=4,056), there was no statistically significant difference in mortality at 30 days (TAVI in AI [3.2%, n=14] versus TAVI in AS [3.3%, n=14]; aOR 1.0, 95% CI 0.5 to 2.1) and 180 days (TAVI in AI [4.9%, n=20] versus TAVI in AS [3.7%, n=16]; aOR 1.3, 95% CI 0.7 to 2.6) between the groups (Ullah 2024).

## TAVI versus SAVR

In the systematic review and meta-analysis of 6 studies comparing TAVI with SAVR, one included study (Mentias 2023) reported that the mortality rates were comparable between the two procedures at 30-day follow-up (RR=0.81; 95% CI 0.54 to 1.21, p=0.30) (Elkasaby 2024).

## Mortality at 1 year

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation © NICE 2025. All rights reserved. Subject to <u>Notice of rights</u>.

## NGD with on-label

In the prospective study of 180 symptomatic patients with moderate to severe or severe AR who had TF TAVI with an on-label dedicated device (ALIGN AR trial) all-cause mortality at 1-year (primary efficacy endpoint) was achieved, in 8% (14/180 [97.5% CI 3.3 to 12.3]) of patients (p<0.0001) when compared for non-inferiority with a performance goal of 25%. In the pre-specified group who received successful valve implantation (n=177), primary efficacy was achieved in 16% (11/177; [97.5% CI 2.2 to 10.3)]; p non-inferiority<br/>
(Vahl 2024).

## NGDs versus EGDs

The systematic review and meta-analysis of 31 studies on new generation TAVI devices for pure AR reported that the estimated 1-year mortality was 8% (95% CI: 5.1 to 11.7%, I<sup>2</sup>=67.3%). Subgroup analysis reported that the estimated 1-year mortality was 6% for TAVI using NGDs with on-label (Liu 2024).

In the meta-analysis of 11 studies (n=911), pooled analysis reported all-cause mortality of 19% at mid-term (4 months to 1 year). Sub-group analysis reported a significantly lower incidence of mid-term all-cause mortality in the NGD group compared to EGD group (12% versus 32%; p<0.001) (Takagi 2020).

In the systematic review and meta-analysis of 19 studies, 6 studies reported that the incidence of one-year mortality ranged from 20 to 31%, with a pooled incidence of 25% (155/618, 95% CI 21.3 to 28.1%; I<sup>2</sup>=0%, p=0.481) (Rawasi 2019).

## TAVI versus SAVR

In the systematic review and meta-analysis of 6 studies comparing TAVI with SAVR, only one included study (Mentias 2023) reported that the mortality rates

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation © NICE 2025. All rights reserved. Subject to <u>Notice of rights</u>.

were comparable between the two procedures at one-year follow-up (RR=1.21; 95% CI 0.98 to 1.52, p=0.1) (Elkasaby 2024).

## **PPM** implantation

## NGD with on-label

In the prospective study of 180 symptomatic patients with moderate to severe or severe AR who had TF TAVI with an on-label dedicated device (ALIGN AR trial), new PPM implantation was reported in 24% (36/150) of patients without a PPM before the procedure. A pre-existing PPM was present in 30 patients (Vahl 2024).

## NGD off-label (SE versus BE valves)

In the retrospective PANTHEON registry analysis of 201 patients with pure severe native AR who had TAVI with NGDs (including only 10% dedicated valves), new PPM implantation was reported in 22% (36/201) patients, with no statistically significant difference in rates between those treated with SE and BE valves (23% [24/132) versus 22% [12/69], p = 0.918) (Poletti, 2023).

# NGD off-label (low risk [STS <4] versus intermediate and high-risk groups [STS>4])

The retrospective analysis of 75 patients who had TAVI with off-label devices for pure severe AR reported no statistically significant difference in rates of PPM implantation in low-risk and intermediate and high-risk patient groups at 30-days after TAVI (2.6%, 1/38 versus 5.4% 2/37, p=0.54) (Da-Wei 2024).

## NGDs: on-label versus off-label devices

The systematic review and meta-analysis of 31 studies on new generation TAVI devices for pure AR reported that the PPM implantation rate at 30 days was 9% (95% CI 6.1 to 11.9%, I<sup>2</sup>=57.0%). Subgroup analysis reported that PPM implantation using on-label device was statistically significantly lower in the TAVI IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

group using on-label devices than in those using off-label devices (7% versus 19%; p<0.001). When comparing access routes, PPM implantation were lower for the TA group than the TF group (6% versus 20%, p<0.001) (Liu 2024).

## NGDs versus EGDs

In the systematic review and meta-analysis of 19 studies, pooled analysis of 14 studies reported the rate of post-procedural PPM implantation ranged from 0 to 44%, with a pooled estimate of 13% (95% CI 9.3 to17.5%; I<sup>2</sup>=44%, p=0.034). Subgroup analysis reported that there was no statistically significant difference in the rate of PPM implantation between the studies using NGDs [10.4% (95% CI 6.6 to 15.0%); I<sup>2</sup>=15%], and those using EGDs [17.7% (95% CI 10.6 to 26.1%);  $l^2=62\%$ ], (p=0.09). There was no statistically significant difference in the rate of PPM implantation between new generation purpose-specific (6.8% [3.2 to 11.7%; I<sup>2</sup>=0%] and non-purpose-specific valves (19.8% [95% CI 6.7 to 37.5%; I<sup>2</sup>=76%); (p=0.06). Also, there was no statistically significant difference in the rate of PPM implantation between studies using TF access (13% [95% CI 5.4 to 23.3%;  $I^{2}$ =58%), and those using TA access (12%, 95% CI 8.9 to 15.6%];  $I^{2}$ =8%); (p=0.84). Meta-regression revealed a statistically significant positive association between average age and rate of PPM implantation after the procedure (p<0.001). Rate of PPM implantation was not associated with mean annulus size (p=0.55), proportion of patients with moderate to severe MR (p=0.89), or logistic EUROSCORE (p=0.72) (Rawasi 2019).

In the meta-analysis of 11 studies (n=911), PPM implantation rate was 12% (95% CI 6.8 to 16.4). Sub-group analysis revealed that there were no statistically significant difference in the incidence of PPM implantation between the NGD and EGD groups (8% versus 16%; p=0.085) (Takagi 2020).

## TAVI for AR versus TAVI for AS

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation © NICE 2025. All rights reserved. Subject to Notice of rights.

In the retrospective propensity score matched analysis of NRD data (n=7,929) comparing patients who had TAVI for AI (n=3,873) with those who had TAVI for AS (n=4,056), there was no statistically significant difference in PPM implantation post procedure between the 2 groups (TAVI in AI [8.5%, n=328] versus TAVI in AS [7.5%, n=306]; aOR 1.1, 95% CI 1.0 to 1.3). The need for PPM was similar between the groups at 30 days (TAVI in AI [9.7%, n=42] versus TAVI in AS [13.8%, n=59]; aOR 0.7, 95% CI 0.4 to 1.0) and 180 days (TAVI in AI [12.4%, n=51] versus TAVI in AS [10.5%, n=45]; aOR 1.2, 95% CI 0.8 to 1.8). respectively (Ullah 2024).

## TAVI versus SAVR

In the systematic review and meta-analysis of 6 studies comparing TAVI versus SAVR, pooled analysis of 4 studies showed that TAVI was associated with a higher rate of PPM implantation than SAVR (RR=1.68; 95% CI 1.50 to 1.88, p<0.001) (Elkasaby 2024).

## Residual/post procedure AR

## NGD with on-label

In the prospective study of 180 symptomatic patients with moderate to severe or severe AR who had TF TAVI with an on-label dedicated device (ALIGN AR trial), moderate paravalvular AR was present in one patient at 30 days and it was mild at 1 year. Mild or mild-to-moderate paravalvular AR decreased from 19% (31/180) at 30 days to 8% (11/180) at 1 year. Paravalvular AR was none or trace in 92% (130/180) patients at 1 year (Vahl 2024).

## NGD off-label (SE versus BE valves)

In the retrospective PANTHEON registry analysis of 201 patients with pure severe native AR who had TAVI with NGDs (including only 10% dedicated valves), residual moderate or severe AR was reported in 10% (19/201) patients, IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation © NICE 2025. All rights reserved. Subject to <u>Notice of rights</u>.

with no statistically significant difference in rates between those treated with SE and BE values (9% [12/132) versus 10% [7/69], p = 0.835) (Poletti, 2023).

## NGD off-label (low risk [STS <4] versus intermediate and high-risk groups [STS>4])

The retrospective analysis of 75 patients who had TAVI off-label devices for pure severe AR reported that AR degree in low risk and intermediate and high-risk groups significantly improved from baseline at both 1 and 30 days after TAVI (both p <0.001). None of the patients had severe AR after TAVI. Trivial AR was observed in 3 cases on the first day post-procedure. By 30 days 7 patients showed mild residual AR (Da-Wei 2024).

## NGDs on label versus off label

The systematic review and meta-analysis of 31 studies on new generation TAVI devices for pure AR reported that the rate of greater than mild PVL at 30 days was 1.2% (95% CI: 0.4 to 2.2%, I<sup>2</sup>=0.0%). Subgroup analysis reported that the rate of greater than mild PVL was statistically significantly higher in the TAVI group using on-label devices than those using off-label devices (0.9% versus 3.8%; p = 0.003). When comparing access routes, procedures with TA route had slightly higher PVL than TF route (22% versus 19%, p = 0.314) but greater-than-mild PVL rates were higher in the TF group than TA group (0.8% versus 4%, (Liu 2024).

## NGDs versus EGDs

In the systematic review and meta-analysis of 19 studies, pooled analysis of 18 studies reported that the occurrence of residual moderate to severe AR ranged from 0 to 29%, with a pooled estimate of 9% (95% CI 5.5 to 13.7%;  $I^2 = 75\%$ ). Subgroup analysis reported that the residual moderate to severe AR after the procedure was statistically significantly lower in studies with NGDs (3% [95% CI 1.8 to 4.8%;  $I^2 = 0\%$ ) when compared with EGDs (20% [95% CI 11.5 to IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

28.6%;  $I^2 = 73\%$ ); (p<0.001). Also, it was statistically significantly lower in those who had new generation purpose-specific valves (3% (95% CI 0.9 to 6.4%;  $I^2 =$ 0%) compared with those who had non-purpose-specific valves (15% [95% CI 7.6 to 22.9%;  $I^2 = 54\%$ ) (p=0.002). There was no statistically significant difference in the outcome between studies using TA access (5%, 95% CI 2.0 to 9.6%;  $I^2 =$ 57%), and studies using TF access (13%, 95% CI 4.4 to 25%;  $I^2 = 75\%$ ); (p=0.18). Meta-regression revealed that moderate to severe AR was not associated with average age (p=0.53), mean annulus size (p=0.28), proportion of patients with moderate to severe MR (p=0.76), or logistic EUROSCORE (p=0.97) (Rawasi 2019).

In the meta-analysis of 11 studies (including 911 patients who had TAVI for AR), moderate or higher paravalvular AR rate was 8%. Subgroup pooled analysis revealed a significantly lower incidence of moderate or higher paravalvular AR in the NGD group than in the EGD group (4% versus 17%; p < 0.001) (Takagi 2020).

## Major bleeding

## NGD off label (SE versus BE valves)

In the retrospective PANTHEON registry analysis of 201 patients with pure severe native AR who had TAVI with NGDs (including only 10% dedicated valves), the incidence of major bleeding was reported in 11% (20/201) patients, with no statistically significant difference in rates between those treated with SE and BE valves (13% [16/132) versus 7% [4/69], p = 0.197) (Poletti, 2023).

# NGD off-label (low risk [STS <4] versus intermediate and high-risk groups [STS>4])

The retrospective analysis of 75 patients who had TAVI off-label devices for pure severe AR reported no statistically significant difference in rates of bleeding complications in low-risk and intermediate and high-risk patient groups IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

postoperatively and at 30-days after TAVI (2.6%, 1/38 versus 0, p=0.32) (Da-Wei 2024).

## NGDs versus EGDs

In the systematic review and meta-analysis of 19 studies, pooled analysis of 11 studies (n=69/582) reported the incidence of major bleeding after the procedure ranged from 0 to 15%, with a pooled estimate of 13% [95% CI 6.1 to 20.4%, l<sup>2</sup> = 82\%, p<0.001) (Rawasi 2019).

In the meta-analysis of 11 studies (including 911 patients), life-threatening or major bleeding complications rate was 6% (95% CI 2.8 to 8.6%). Subgroup analysis reported a statistically significantly lower incidence of major bleeding complications in the NGD group than in the EGD group (4% versus 13%; p = 0.015) (Takagi 2020).

## TAVI for AR versus TAVI for AS

In the retrospective propensity score matched analysis of NRD data (n=7929) comparing patients who had TAVI for AI (n=3873) with those undergoing TAVI for AS (n=4056), major bleeding after the procedure was statistically significantly higher in patients who had TAVI for AI compared with those who had TAVI for AS (TAVI in AI [2.8%, n=107] versus TAVI in AS [1.8%, n=74]; aOR 1.5, 95% CI 1.1 to 2.1). However, there was no statistically significant difference between the groups at 30 days (TAVI in AI n=<11] versus TAVI in AS [n=13]; aOR 0.8, 95% CI 0.3 to 1.7) and 180 days (TAVI in AI [n<11] versus TAVI in AS [n<11]; aOR 0.6, 95% CI 0.2 to 1.7) respectively (Ullah 2024).

## TAVI versus SAVR

In the systematic review and meta-analysis of 6 studies comparing TAVI with SAVR, pooled analysis of 5 studies showed that TAVI was associated with a statistically significantly lower risk of major bleeding than SAVR (RR 0.23, 95% IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation © NICE 2025. All rights reserved. Subject to Notice of rights.

CI 0.17 to 0.32, p<0.001). Subgroup analysis according to TAVI approach (TF or TA) reported that TA TAVI, TF TAVI and undefined TAVI approaches were favoured over SAVR, (RR=0.41; 95% CI 0.28 to 0.59, p<0.001), ( $I^2$ =0%); (RR=0.19; 95% CI 0.11 to 0.34, p<0.001), ( $I^2$ =87%) and (RR=0.26; 95% CI 0.20 to 0.34, p<0.001) ( $I^2$ =55%, p=0.14) (Elkasaby 2024).

## Cardiovascular outcomes (including stroke and MI)

## NGD with on label

In the prospective study of 180 symptomatic patients with moderate to severe or severe AR who had TF TAVI with an on-label dedicated device (ALIGN AR trial), two (1%) disabling and two (1%) non-disabling strokes were reported at 30 days (Vahl 2024).

## NGD off label (SE versus BE valves)

In the retrospective PANTHEON registry analysis of 201 patients with pure severe native AR who had TAVI with NGDs (including only 10% dedicated valves), cardiovascular death was reported in 4% (8/201) patients, with no statistically significant difference in rates between those treated with SE and BE valves (3.8% [5/132) versus 4.4% [3/69], p = 0.847). The overall rate of stroke and TIAs was 1.5% (3/201), with no statistically significant difference in rates between those treated with SE and BE valves (2.3% [3/132) versus 0 [0/69], p = 0.553) (Poletti, 2023).

# NGD off-label (low risk [STS <4] versus intermediate and high-risk groups [STS>4])

The retrospective analysis of 75 patients who had TAVI off-label devices for pure severe AR reported no significant difference in rates of strokes in patients in lowrisk and intermediate and high-risk groups postoperatively and at 30-days after

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation © NICE 2025. All rights reserved. Subject to <u>Notice of rights</u>. TAVI (0 versus 2.7%, 1/37 versus 5.4% 2/37, p=0.31). There were no cases of MI reported in both groups (Da-Wei 2024).

## NGDs versus EGDs

In the systematic review and meta-analysis of 19 studies, 11 studies reported no cases of MI at 30 days. 13 studies reported that the incidence of stroke ranged from 0 to 6%, with a pooled estimate of 3.6% [20/648, 95% CI 2.3 to 5.1%;  $I^2 = 0\%$ , p=0.967) (Rawasi 2019).

In the meta-analysis of 11 studies (including 911 patients), the rate of stroke was 2.7%. There were no statistically significant differences in the incidence of stroke between the NGD and EGD subgroups (2.9% versus 2.3%; p = 0.541) (Takagi 2020).

## TAVI for AR versus TAVI for AS

In the retrospective propensity score matched analysis of NRD data (n=7929) comparing patients who had TAVI for AI (n=3873) with those undergoing TAVI for AS (n=4056), the incidence of stroke after the procedure was similar between the groups at 30 days (TAVI in AI [0.8%, n=29] versus TAVI in AS [0.6%, n=24]; aOR 1.3, 95% CI 0.7 to 2.2) and at 180 days (TAVI in AI [n<11] versus TAVI in AS [n<11]; aOR 0.5, 95% CI 0.1 to 1.7) respectively (Ullah 2024).

## TAVI versus SAVR

In the systematic review and meta-analysis of 6 studies comparing TAVI with SAVR, pooled analysis of 4 studies showed that in-hospital stroke was lower in TAVI group than SAVR group (RR=0.50; 95% CI 0.39 to 0.66, p<0.001), ( $I^2$ =11%, p=0.34). Subgroup analysis on the approach of TAVI (TA and TF) found that TA TAVI was not protective against stroke compared to SAVR (RR=0.64; 95% CI 0.31 to 1.35, p=0.24) ( $I^2$ =1%, p=0.31), while TF TAVI approach was protective compared to SAVR (RR=0.39; 95% CI 0.26 to 0.59, p<0.001), ( $I^2$ =0%,

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

p=0.85). Also, the undefined TAVI approach was associated with a lower rate of in-hospital stroke (RR=0.60; CI 0.41 to 0.87, p=0.008) (I<sup>2</sup>=9%, p=0.30). Subgroup analysis according to the country of origin reported that there was no statistically significant difference between TAVI and SAVR in the USA (RR=0.84; CI 0.40 to 1.74, p=0.63), while TAVI was protective in Germany (RR=0.42; CI 0.30 to 0.60, p<0.001) (I<sup>2</sup>=0%) and China (RR=0.54; 95% CI 0.36 to 0.80, p=0.002). One included study (Mentias 2023) reported that 30-day stroke was similar in TAVI and SAVR groups (RR=1.26; 95% CI 0.86 to 1.85, p=0.24). (Elkasaby 2024).

In the systematic review and meta-analysis of 6 studies comparing TAVI with SAVR, MI was reported only in one included study (Alharbi 2020), which showed no difference between TAVI and SAVR groups (RR=0.79; 95% CI 0.59 to 1.05], p=0.11) (Elkasaby 2024)

In the systematic review and meta-analysis of 6 studies comparing TAVI with SAVR, MACCE was reported only in one included study (Rali 2022), which favoured TAVI over SAVR (RR=0.48; 95% CI 0.25 to 0.90, p=0.02).

## Conversion to open surgery

## NGD off label (SE versus BE valves)

In the retrospective PANTHEON registry analysis of 201 patients with pure severe native AR who had TAVI with NGDs (including only 10% dedicated valves), cardiovascular death was reported in 2% (4/201) patients, with no statistically significant difference in rates between those treated with SE and BE valves (1.5% [2/132) versus 2.9% [2/69], p = 0.612) (Poletti 2023).

## NGDs on label versus off label

The systematic review and meta-analysis of 31 studies on new generation TAVI devices for pure AR reported that the rate of conversion to SAVR at 30 days was

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation © NICE 2025. All rights reserved. Subject to Notice of rights.

2.2% (95% CI 0.9 to 3.8%, I<sup>2</sup>=0.0%); and in the on-label group it was 2.5% (95% CI 1.2 to 4.2%, I<sup>2</sup>=0.0%) (Liu 2024).

#### NGDs versus EGDs

In the meta-analysis of 11 studies (including 911 patients), a conversion to open surgery rate was 3.0%. There were no statistically significant differences in the incidence of conversion to open surgery between the NGD and the EGD subgroups (3.1% versus 2.8%; p=0.840) (Takagi 2020).

## Major vascular complications

## NGD with on label

In the prospective study of 180 symptomatic patients with moderate to severe or severe AR who had TF TAVI with an on-label dedicated device (ALIGN AR trial), four valve embolisations occurred. In two patients, the embolised valves were placed in the descending aorta and a second THV was implanted, one was treated with a commercial THV and another with SAVR (Vahl 2024).

## NGD off label (SE versus BE valves)

In the retrospective PANTHEON registry analysis of 201 patients with pure severe native AR who had TAVI with NGDs (including only 10% dedicated valves), major vascular complications were reported in 7.5% (13/201) patients, with no statistically significant difference in rates between those treated with SE and BE valves (8.1% [9/132) versus 6.5% [4/69], p = 0.532). In the same study, TVEM (defined according to the VARC-3 and included valve migration and embolisation as well as ectopic valve deployment) was reported in 12.4% (25/201) patients, with no statistically significant difference in rates between those treated with SE and BE valves (13.6% [18/132) versus 10.1% [7/69], p = 0.476) (Poletti, 2023).

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation © NICE 2025. All rights reserved. Subject to <u>Notice of rights</u>.

#### NGDs versus EGDs

In the meta-analysis of 11 studies (including 911 patients), major vascular complications rate was 3.9%. Subgroup pooled analysis revealed a significantly lower incidence of major vascular complications in the NGD subgroup than in the EGD subgroup (3.0% versus 6.2%; p=0.041) (Takagi 2020).

## TAVI for AR versus TAVI for AS

In the retrospective propensity score matched analysis of NRD data (n=7929) comparing patients who had TAVI for AI (n=3873) with those undergoing TAVI for AS (N=4056), valvular complications (paravalvular leak, embolisation and thrombosis) were statistically significantly higher in patients who had TAVI for AI compared with those who had TAVI for AS (aOR 9.48, 95% CI 6.73 to 13.38) (Ullah 2024).

## **Re-intervention**

## NGD off-label (SE versus BE valve)

In the retrospective PANTHEON registry analysis of 201 patients with pure severe native AR who had TAVI with NGDs (only 10% dedicated valves), reintervention (second valve) was needed in 10.5% (21/201) patients, with no statistically significant difference in rates between those treated with SE and BE valves (11.4% [15/132) versus 8.7% [6/69], p = 0.557). All these were done for management of TVEM, in 10 cases a second valve was implanted, snaring of the embolised valve was done in 5, repositioning of the valve was done in 2, 4 needed surgical conversion (Poletti, 2023).

## NGD on label versus off label

The systematic review and meta-analysis of 31 studies on new generation TAVI devices for pure AR reported that the rate of reintervention (repeat procedure for

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

second prosthetic heart valve at 30 days) was 2.3% (95% CI: 0.7 to 4.5%,  $I^2=13.9\%$ ) and in the on-label devices group the estimated rate was 2.8% (95% CI 0.0 to 11.4%,  $I^2=54.6\%$ ) (Liu 2024).

#### NGDs versus EGDs

The meta-analysis of 11 studies (including 911 patients) reported reintervention rate of 3.9%. There were no statistically significant differences in the incidence of reintervention rates between the NGD and EGD subgroups (4.0% versus 4.3%; p=0.868) (Takagi 2020). Valve in valve deployment rate was around 10.5%. Subgroup pooled analysis revealed a statistically significantly lower incidence of valve in valve deployment (4.7% versus 22.1%; p<0.001) in the NGD subgroup than in the EGD subgroup (Takagi 2020).

## Annulus rupture

## NGD on label versus off label

The systematic review and meta-analysis of 31 studies on new generation TAVI devices for pure AR reported that the rate of annulus rupture in procedure was 0.2% (95% CI 0.0 to 1.7%, I<sup>2</sup>=0.0%) (Liu 2024).

## NGDs versus EGDs

The meta-analysis of 11 studies (including 911 patients), reported annulus rupture rate of 1.5%. There were no statistically significant differences in the incidence of annulus rupture (1.4% versus 1.7%; p = 0.834), between the NGD and EGD subgroups (Takagi 2020).

## Acute kidney injury

## NGD off-label (SE versus BE valves)

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

In the retrospective PANTHEON registry analysis of 201 patients with pure severe native AR who had TAVI with NGDs (only 10% dedicated valves), AKI was reported in 10.5% (18/201) patients, with no statistically significant difference in rates between those treated with SE and BE valves (10.9% [12/132) versus 9.8% [6/69], p = 0.827) (Poletti, 2023).

## NGDs versus EGDs

The meta-analysis of 11 studies (including 911 patients), reported AKI (stage 1 to 3) rate of 10.5%. There were no statistically significant differences in the incidence of any AKI (9.1% versus 18.2%; p = 0.309) between the NGD and EGD subgroups (Takagi 2020).

## TAVI versus SAVR

In the meta-analysis of 6 studies comparing TAVI with SAVR, pooled analysis of 4 studies showed that in-hospital AKI was lower in TAVI than SAVR (RR=0.56; 95% CI: [0.41, 0.76], p <0.001). Subgroup pooled analysis according to the approach of TAVI showed that the result favoured TF TAVI over SAVR (RR=0.36; 95% CI: [0.29, 0.45], p<0.001), and the undefined approach over SAVR (RR=0.66; 95% CI: [0.56, 0.78], p<0.001) (Elkasaby 2024).

## **Coronary obstruction**

## NGDs versus EGDs

The meta-analysis of 11 studies (including 911 patients), reported coronary obstruction rate of 0.7%. There were no significant differences in the incidence of coronary obstruction (1.2% versus 0.4%; p = 0.243), between the NGD and EGD subgroups (Takagi 2020).

## Cardiac tamponade

## TAVI for AR versus TAVI for AS

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

In the retrospective propensity score matched analysis of NRD data (n=7929) comparing patients who had TAVI for AI (n=3873) with those undergoing TAVI for AS (N=4056), cardiac tamponade was significantly higher in patients undergoing TAVI for AI compared with those undergoing TAVI for AS (TAVI in AI [0.8%, n=29] versus TAVI in AS [0.4%, n=16]; (aOR 1.91, 95% CI 1.0 to 3.5) (Ullah 2024).

## Other adverse events

## TAVI versus SAVR

In the meta-analysis of 6 studies comparing TAVI with SAVR, pooled analysis showed that the overall effect estimates for delirium and sepsis did not favour either of the two procedures (RR=0.68; 95% CI 0.25, 1.88, p =0.46); and (RR=0.15; 95% CI 0.01, 2.23, p =0.17) but TAVI was associated with an decreased risk of pneumonia (RR=0.53; 95% CI 0.40, 0.70, p < 0.001) (Elkasaby 2024).

## Anecdotal and theoretical adverse events

Expert advice was sought from consultants who have been nominated or ratified by their professional society or royal college. They were asked if they knew of any other adverse events for this procedure that they had heard about (anecdotal), which were not reported in the literature. They were also asked if they thought there were other adverse events that might possibly occur, even if they had never happened (theoretical).

They listed the following anecdotal or theoretical adverse events:

• Left ventricular migration/embolisation leading to severe aortic incompetence.

Seven professional expert questionnaires and British Cardiovascular Society support statement were submitted for this procedure. Find full details of what the

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation © NICE 2025. All rights reserved. Subject to Notice of rights. professional experts said about the procedure in the <u>specialist advice</u> <u>questionnaires for this procedure</u>.

## Validity and generalisability

- There are no RCTs assessing the outcomes of TAVI in pure native AR.
- Studies included in the systematic reviews were mainly small observational or registry studies reporting short term outcomes in patients with surgical risks.
- There is no data on long-term outcomes.
- There was significant heterogeneity across the available studies in terms of devices used, access site, and outcomes reported.
- There is very limited data on haemodynamic outcomes and valve durability.
- New generation dedicated TAVI devices for AR are now available and performance in patients with severe AR and high surgical risk has been analysed in one prospective study (Vahl 2024).

## Any ongoing trials

NCT04864145: Transcatheter self-expandable valve implantation for the treatment of severe native aortic regurgitation a prospective, multicentre, randomised study; RCT (SEASON-AR), n=210 patients with severe native AR and high surgical risk, intervention: transfemoral TAVI (with VitaFlow<sup>™</sup> system) plus medical therapy versus medical therapy alone; follow-up at 1, 6, and 12 months and annually until 5 years; location: China; completion date May 20; status recruiting.

<u>NCT05536310</u>: Trilogy heart valve system for management of patients with aortic valve disease: patient registry and post-market clinical follow-up study (TAVIS Registry). n=600 patients with aortic valve disease (symptomatic severe AR or symptomatic, severe AS, who are at high risk for SAVR), intervention: TAVI with JenaValve; primary outcome: all-cause mortality at 30 days; location Germany, follow-up 5 years, completion date October 2027; status not yet recruiting.

<u>NCT06381271</u>: Transcatheter aortic valve replacement for pure severe aortic valve regurgitation (TRUST TAVR registry); prospective cohort study, n=500 patients with native AR undergoing TAVI, follow-up 10 years, location: China, completion date October 2034; status: recruiting.

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

<u>NCT06379386</u>: Long-term prognosis and valve durability of TAVR (TRACE TAVR registry); prospective single centre observational study; n=1000 patients with aortic valve disease (AR, AS); intervention: TAVI; primary outcome: all-cause mortality, valve related long-term efficacy; follow-up 5 years; location: China, completion date December 2030; status: recruiting.

<u>NCT05737264</u>: Safety and effectiveness of transcatheter treatment of severe native aortic regurgitation with self-expandable valve implantation: a multicentre, observational, prospective cohort study (SENSE-AR). N=76, primary outcome: all-cause mortality; follow-up 12 months; location: China, completion date December 2023; status recruiting.

<u>NCT06034028</u>: J-Valve TF Early Feasibility Study; prospective, single arm, multicentre, interventional study, n=25 patients with symptomatic severe native AR treated with J-Valve, primary outcome: freedom from death or disabling stroke at 30 days, clinical efficacy 5 years after the procedure; location: USA, Canada, completion date June 2029; status active.

<u>NCT05580952</u>: Efficacy and safety of the J-Valve transcatheter aortic valve replacement system in patients with aortic regurgitation disease. Prospective multicentre study; n=120 patients with symptomatic severe native AR treated with J-Valve, primary outcome: all-cause mortality at 12 months; location: China, completion date May 2024; status unknown.

<u>NCT02732704</u>: THE ALIGN-AR TRIAL: Safety and effectiveness/performance of the transfemoral JenaValve pericardial TAVR system in the treatment of patients with symptomatic severe aortic regurgitation (AR). n=100, primary outcome: all-cause mortality at 30 days; location: USA, completion date September 2027; status active.

<u>NCT04671758</u>: Transcatheter aortic valve implantation with Sapien 3 transcatheter heart valve for pure aortic regurgitation. Cohort study, n=50, primary outcome: feasibility and 30-day safety; location: France, completion date March 2022; status unknown.

<u>NCT05424653</u>: To evaluate safety and effectiveness of transcatheter aortic valve system in patients with severe aortic insufficiency. Observational study, n=10, primary outcomes: device success rate, procedure success rate, rate of no residual AR, incidence of MACCE, rate of all-cause mortality at 30 days; Location: China; completion date: August 2023; status unknown.

<u>Neo2 registry:</u> European multicentre registry on the use of ACURATE neo2 in native AR (ongoing study).

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

## Existing assessments of this procedure

The European Society of Cardiology guidelines (ESC/EACTS 2022) state that "TAVI may be considered in experienced centers for selected patients with AR and ineligible for SAVR" (Vahanian 2022).

The American College of Cardiology/American Heart/Association clinical practice guideline (ACC/AHA 2020), recommends that *"in patients with isolated severe AR who have indications for SAVR and are candidates for surgery, TAVI should not be performed".* 

"TAVI for isolated chronic AR is challenging because of dilation of the aortic annulus and aortic root and, in many patients, lack of sufficient leaflet calcification. Risks of TAVI for treatment of AR include transcatheter valve migration and significant paravalvular leak. TAVI is rarely feasible, and then only in carefully selected patients with severe AR and HF who have a prohibitive surgical risk and in whom valvular calcification and annular size are appropriate for a transcatheter approach" (Oto 2021).

# **Related NICE guidance**

## Interventional procedures

<u>Valve-in-valve TAVI for aortic bioprosthetic valve dysfunction</u> (2019) NICE interventional procedures guidance 653. (Recommendation: standard arrangement).

<u>Transcatheter aortic valve implantation for aortic stenosis</u> (2017) NICE interventional procedures guidance 586. (Recommendation: standard arrangement).

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

## **NICE** guidelines

<u>Heart valve disease presenting in adults: investigation and management</u> (2021) NICE guideline NG208 (Recommendations).

## Aortic valve disease

For NHS England and NHS Improvement's position on transcatheter aortic valve implantation for people at low or intermediate surgical risk, see the implementation strategy for transcatheter aortic valve implantation.

## 1.5.3

Offer surgery, if suitable (by median sternotomy or minimally invasive surgery), as first-line intervention for adults with severe aortic stenosis, aortic regurgitation or mixed aortic valve disease and an indication for surgery who are at low or intermediate <u>surgical risk</u>. TAVI is not cost effective for people at low or intermediate surgical risk at the current list price.

# **Professional societies**

- Society of Cardiothoracic Surgery of Great Britain and Ireland
- British Cardiovascular Intervention Society
- British Society of Echocardiography.

# **Company engagement**

NICE asked companies who manufacture a device potentially relevant to this procedure for information on it. NICE received 2 completed submissions. These were considered by the interventional procedures technical team and any relevant points have been taken into consideration when preparing this overview.

# References

- Rawasia WF, Khan MS, Usman MS et al. (2019) Safety and efficacy of transcatheter aortic valve replacement for native aortic valve regurgitation: A systematic review and meta-analysis. Catheter Cardiovasc Interv. 93 (2): 345-353.
- Takagi H, Hari Y, Kawai N, Ando T; ALICE (All-Literature Investigation of Cardiovascular Evidence) Group. (2020) Meta-Analysis and Meta-Regression of Transcatheter Aortic Valve Implantation for Pure Native Aortic Regurgitation. Heart Lung Circ. 29 (5): 729-741.
- 3. Liu R, Fu Z, Jiang Z et al. (2024) Transcatheter aortic valve replacement for aortic regurgitation: a systematic review and meta-analysis. ESC Heart Fail. doi: 10.1002/ehf2.14832. Epub ahead of print. PMID: 38749505.
- 4. Poletti E, De Backer O, Scotti A et al. (2023) Transcatheter aortic valve replacement for pure native aortic valve regurgitation: The PANTHEON International Project. JACC: Cardiovascular Interventions. 16 (16), 1974-1985.
- 5. Vahl TP, Thourani VH, Makkar RR et al. (2024) Transcatheter aortic valve implantation in patients with high-risk symptomatic native aortic regurgitation (ALIGN-AR): a prospective, multicentre, single-arm study. Lancet. 403 (10435):1451-1459.
- 6. Da-Wei L, Zi-Long W, Yan-Xing F et al. (2024) Short-Term Outcomes of Transcatheter Aortic Valve Replacement in Low-Risk Patients With Pure Severe Aortic Regurgitation. Am J Cardiol. 222:58-64.
- 7. Elkasaby, MH, Khalefa, BB, Yassin, MNA *et al.* (2024) Transcatheter aortic valve implantation versus surgical aortic valve replacement for pure aortic regurgitation: a systematic review and meta-analysis of 33,484 patients. *BMC Cardiovasc Disord* 24, 65.
- 8. Ullah W, Suleiman AM, Osman H et al. (2024) Trends and Outcomes of Transcatheter Aortic Valve Implantation in Aortic Insufficiency: A Nationwide Readmission Database Analysis. Curr Probl Cardiol. 49 (1 Pt A):102012.
- 9. Vahanian A, Beyersdorf F, Praz F, et al. (2022) 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J; 43: 561–632.
- 10. Otto CM, Nishimura RA, Bonow RO, et al. (2021) 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation; 143: e72–227.

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

# Appendix A: Methods and literature search strategy

- NICE has identified studies and reviews relevant to transcatheter aortic valve implantation for native aortic valve regurgitation from the medical literature.
- Search strategy design and peer review
- This search report is informed by the <u>Preferred Reporting Items for</u> <u>Systematic reviews and Meta-Analyses literature search extension</u> (<u>PRISMA-S</u>).
- A NICE information specialist ran the literature searches on 09/08/2024 and updated them on [date]. See the <u>search strategy history</u> for the full search strategy for each database. Relevant published studies identified during consultation or resolution that are published after this date may also be considered for inclusion.
- The principal search strategy was developed in MEDLINE ALL (Ovid interface). It was adapted for use in each of the databases listed in table 4a, taking into account the database's size, search functionality and subject coverage. The MEDLINE ALL strategy was quality assured by a NICE senior information specialist. All translated search strategies were peer reviewed to ensure their accuracy. The quality assurance and peer review procedures were adapted from the <u>Peer Review of Electronic Search Strategies (PRESS) 2015 evidence-based checklist</u>.

## Review management

 The search results were managed in EPPI-Reviewer version 5 (EPPI-R5). Duplicates were removed in EPPI-R5 using a 2-step process. First, automated deduplication was done using a high-value algorithm. Second, manual deduplication was used to assess low-probability matches. All

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation © NICE 2025. All rights reserved. Subject to <u>Notice of rights</u>.
decisions about inclusion, exclusion and deduplication were recorded and stored.

### • Limits and restrictions

- The CENTRAL database search removed trial registry records and conference material. The Embase search excluded conference material.
- English language limits were applied to the search when possible in the database due to the volume of results.
- The limit to remove animal studies in the searches is standard NICE practice, which has been adapted from <u>Dickersin K, Scherer R, Lefebvre C</u> (1994) Systematic Reviews: Identifying relevant studies for systematic reviews. BMJ 309(6964): 1286.

### • Main search

### • Table 4a Main search results

| Database                                                          | Date<br>searched | Database<br>platform             | Database<br>segment or<br>version | Number of<br>results<br>downloaded |
|-------------------------------------------------------------------|------------------|----------------------------------|-----------------------------------|------------------------------------|
| Cochrane Central<br>Register of<br>Controlled Trials<br>(CENTRAL) | 09/08/2024       | Wiley                            | Issue 7 of 12,<br>July 2024       | 121                                |
| Cochrane Database<br>of Systematic<br>Reviews (CDSR)              | 09/08/2024       | Wiley                            | Issue 8 of 12,<br>August 2024     | 3 Reviews<br>1 Protocol            |
| Embase                                                            | 09/08/2024       | Ovid                             | 1974 to 2024<br>August 08         | 3345                               |
| INAHTA<br>International HTA<br>Database                           | 09/08/2024       | https://databas<br>e.inahta.org/ | -                                 | 16                                 |
| MEDLINE ALL                                                       | 09/08/2024       | Ovid                             | 1946 to 2024<br>August 08         | 2253                               |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

### Search strategy history

### **MEDLINE ALL search strategy**

1 Transcatheter Aortic Valve Replacement/ 12187

2 ((Transcatheter or Transapical or transventricular) adj4 (Aortic or "heart valve") adj4 (Replacement\* or transplant\* or implant\* or prosthes\*)).tw. 16125

3 (PAVR or TAVI or TAVR).ti,ab. 12434

4 or/1-3 19632

5 Aortic Valve Insufficiency/ 16282

6 (Aortic adj4 (Insufficienc\* or Regurgitation or incompetence or degeneration)).tw. 17007

7 (AR or NPAR).ti,ab. 66009

8 or/5-7 88364

9 4 and 8 2276

10 animals/ not humans/ 5212304

11 9 not 10 2252

- 12 J-Valve.tw. 56
- 13 CoreValve.tw. 1236
- 14 "ACURATE neo".tw. 173
- 15 "Sapien 3".tw. 852
- 16 Lotus.tw. 4675
- 17 or/12-16 6779
- 18 8 and 17 565
- 19 11 or 18 2312

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

20 limit 19 to english language 2252

### Embase search strategy

1 transcatheter aortic valve implantation/ 35141

2 ((Transcatheter or Transapical or transventricular) adj4 (Aortic or "heart valve") adj4 (Replacement\* or transplant\* or implant\* or prosthes\*)).tw. 27802

3 (PAVR or TAVI or TAVR).ti,ab. 25722

4 or/1-3 39674

5 aortic regurgitation/ 13817

6 (Aortic adj4 (Insufficienc\* or Regurgitation or incompetence or degeneration)).tw. 25302

7 (AR or NPAR).ti,ab. 89890

8 5 or 6 or 7 118058

9 4 and 8 5634

10 Nonhuman/ not Human/ 5506959

11 9 not 10 5578

12 J-Valve.tw,dv,dm. 128

13 CoreValve.tw,dv,dm. 5830

14 "ACURATE neo".tw,dv,dm. 543

15 "Sapien 3".tw,dv,dm. 3474

16 Lotus.tw,dv,dm. 5750

17 or/12-16 13725

18 8 and 17 2118

19 11 or 18 5688

20 limit 19 to english language 5583

21 (conference abstract\* or conference review or conference paper or conference proceeding).db,pt,su. 5997612

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

22 20 not 21 3344

# Cochrane Library (CDSR and CENTRAL) search strategy

Search Hits

#1 MeSH descriptor: [Transcatheter Aortic Valve Replacement] this term only 495

#2 ((Transcatheter or Transapical or transventricular) NEAR/4 (Aortic or "heart valve") NEAR/4 (Replacement\* or transplant\* or implant\* or prosthes\*)) 1331

#3 PAVR or TAVI or TAVR 1237

#4 #1 or #2 or #3 1471

#5 MeSH descriptor: [Aortic Valve Insufficiency] this term only 197

#6 Aortic NEAR/4 (Insufficienc\* or Regurgitation or incompetence or degeneration) 616

#7 (AR or NPAR) 20782

#8 {OR #5-#7} 21321

#9 #4 AND #8 188

#10 J-Valve 4

#11 CoreValve 173

#12 "ACURATE neo" 19

#13 "Sapien 3" 117

#14 Lotus 225

#15 {OR #10-#14} 480

#16 #8 AND #15 86

#17 #9 or #16 199

#18 "conference":pt or (clinicaltrials or trialsearch):so 770307

#19 #17 NOT #18 in Cochrane Reviews, Cochrane Protocols 4

#20 #17 NOT #18 in Trials 121

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

#### **INAHTA HTA Database search strategy**

Line Query Hits

1 (Transcatheter Aortic Valve Replacement)[mh] 34

2 ((Transcatheter or Transapical or transventricular) AND (Aortic or "heart valve") AND (Replacement\* or transplant\* or implant\* or prosthes\*))62

3 PAVR or TAVI or TAVR 58

4 #3 OR #2 OR #1 74

5 (Aortic Valve Insufficiency)[mh] 5

6 (Aortic AND (Insufficienc\* or Regurgitation or incompetence or degeneration)) 14

- 7 (AR or NPAR) 0
- 8 #7 OR #6 OR #5 19
- 9 #8 AND #4 12
- 10 J-Valve 186
- 11 CoreValve 5
- 12 "ACURATE neo" 0
- 13 "Sapien 3" 0
- 14 Lotus 0
- 15 #14 OR #13 OR #12 OR #11 OR #10 186
- 16 #15 AND #8 16

### **Inclusion criteria**

The following inclusion criteria were applied to the abstracts identified by the literature search.

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

Publication type: clinical studies were included with emphasis on identifying good quality studies. Abstracts were excluded if they did not report clinical outcomes. Reviews, editorials, and laboratory or animal studies, were also excluded and so were conference abstracts, because of the difficulty of appraising study methodology, unless they reported specific adverse events not available in the published literature.

People with aortic regurgitation or aortic incompetence.

Intervention or test: Transcatheter aortic valve implantation.

Outcome: articles were retrieved if the abstract contained information relevant to the safety, efficacy, or both.

If selection criteria could not be determined from the abstracts the full paper was retrieved.

Potentially relevant studies not included in the main evidence summary are listed in Appendix B: Other relevant studies.

Find out more about how NICE selects the evidence for the committee.

# Appendix B: Other relevant studies

Other potentially relevant studies that were not included in the main evidence summary (<u>tables 2 and 3</u>) are listed in table 5 below. Studies with fewer than 10 patients were excluded.

| Study                                                                                                      | Number of people<br>and follow up | Direction of<br>conclusions                                                                                                | Reason study<br>was not<br>included in<br>main evidence<br>summary |
|------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Al Ahmad J, Danson E.<br>(2024) Transcatheter<br>Aortic Valve<br>Implantation for Severe<br>Chronic Aortic | Review                            | This review article<br>describes the<br>current evidence<br>for the off-label use<br>of TAVI in pure AR<br>and the various | Review                                                             |

 Table 5 additional studies identified

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| Regurgitation. J Clin<br>Med. 13(10):2997.                                                                                                                                                                                          |                                                                                                                                                                                                       | clinical syndromes<br>associated with AR<br>where there may<br>be specific<br>challenges in the<br>application of TAVI.                                                                                                                                                                                                                               |                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Alharbi AA, Khan MZ,<br>Osman M et al. (2020)<br>Transcatheter Aortic<br>Valve Replacement vs<br>Surgical Replacement<br>in Patients With Pure<br>Aortic Insufficiency.<br>Mayo Clin Proc.95<br>(12):2655-2664.                     | Propensity matched<br>retrospective cohort<br>study (NIS<br>database)<br>Patients with pure<br>AI.<br>TAVI, n=915 versus<br>SAVR, n=1390<br>TAVI used as an off-<br>label procedure in<br>some cases. | There was no<br>evidence of a<br>significant<br>statistical<br>difference in in-<br>hospital mortality<br>between patients<br>with pure AI treated<br>by either SAVR or<br>TAVR, both in<br>unmatched and<br>propensity-<br>matched cohorts.<br>TAVR could be<br>considered for<br>patients with pure<br>AI who are not<br>candidates for<br>surgery. | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Adam M, Tamm AR,<br>Wienemann H et al.<br>(2023) Transcatheter<br>Aortic Valve<br>Replacement for<br>Isolated Aortic<br>Regurgitation Using a<br>New Self-Expanding<br>TAVR System. JACC<br>Cardiovasc Interv.<br>16(16):1965-1973. | Case series<br>(German registry)<br>N= 58 patients for<br>isolated severe and<br>symptomatic AR<br>underwent TAVR<br>with the JenaValve<br>Trilogy system (new<br>generation).<br>Follow-up 30 days.  | Treatment of<br>patients with<br>severe<br>symptomatic AR<br>using the<br>transfemoral JV<br>system is safe and<br>effective. This<br>system may offer a<br>new treatment<br>option for patients<br>with AR not<br>suitable for<br>surgery.                                                                                                           | Larger studies<br>with longer<br>follow-up<br>included in the<br>summary of<br>evidence. |
| Anwaruddin S, Desai<br>ND, Szeto WY et al.<br>(2019) Self-Expanding<br>Valve System for<br>Treatment of Native<br>Aortic Regurgitation by<br>Transcatheter Aortic<br>Valve Implantation<br>(from the STS/ACC                        | Retrospective case<br>series<br>N=230 patients in<br>the TVT Registry<br>underwent<br>transfemoral TAVI<br>for primary severe<br>native AR with early<br>generation self-                             | Despite higher 30-<br>day all-cause<br>mortality, self-<br>expanding TAVI<br>may be an option<br>in selected patients<br>with AR who have<br>no surgical options.                                                                                                                                                                                     | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |

| TVT Registry). Am J<br>Cardiol.124(5):781-<br>788.                                                                                                                                                                                                                | expanding valves (n<br>= 81, CoreValve; n<br>= 149, Evolut R).<br>Follow-up 30 days.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Baumbach A, Patel<br>KP, Kennon S et al.<br>(2023) A heart valve<br>dedicated for aortic<br>regurgitation: Review<br>of technology and early<br>clinical experience with<br>the transfemoral<br>Trilogy system.<br>Catheter Cardiovasc<br>Interv.102 (4):766-771. | Review and case<br>series of 12 patients<br>with severe AR had<br>TAVI with<br>JenaValve Trilogy.                        | Expert review on<br>the technical<br>aspects of the<br>Trilogy system,<br>provides a guide<br>for implantation,<br>discuss the<br>available evidence<br>for the technology<br>and provide<br>illustrative case<br>examples.                                                                                                                                                                                                                      | Large studies<br>with longer<br>follow-up were<br>included in the<br>summary of<br>evidence. |
| Belkin MN, Imamura T,<br>Fujino T et al. (2020)<br>Transcatheter Aortic<br>Valve Replacement in<br>Left Ventricular Assist<br>Device Patients with<br>Aortic Regurgitation<br>STRUCTURAL<br>HEART, 4, 2, 107–112                                                  | Retrospective<br>analysis<br>N=7 LVAD patients<br>underwent nine<br>TAVR procedures.<br>Median follow-up of<br>9 months. | Two patients died<br>of paravalvular<br>complications<br>following device<br>deployment.<br>Procedural<br>success was<br>achieved in 67% of<br>attempts, with<br>significant<br>improvement in RF<br>from 44.8% pre-<br>procedurally to<br>28.1% at six-month<br>follow-up.<br>Qualitatively<br>moderate<br>paravalvular leak<br>was noted. There<br>was significant<br>improvement in<br>right ventricular<br>function at 6-month<br>follow-up. | More<br>comprehensive<br>studies included<br>in the summary<br>of evidence.                  |
| Bob-Manuel T, Kadire<br>S, Heckle MR et al.<br>(2018) Outcomes<br>following transcatheter<br>aortic valve<br>replacement in patients<br>with native aortic valve<br>regurgitation. Ann                                                                            | Systematic review<br>30 studies<br>describing 182<br>patients were<br>identified.                                        | TAVR is<br>associated with<br>favourable<br>pacemaker<br>implantation and 1-<br>year mortality rates<br>with a high 30-day<br>mortality among                                                                                                                                                                                                                                                                                                    | More recent<br>comprehensive<br>studies included<br>in summary of<br>evidence.               |

| Transl Med. 6(1):8, 1-<br>9.                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                               | selected patients with NAVR.                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Costanzo P,<br>Bamborough P,<br>Peterson M (2022)<br>Transcatheter Aortic<br>Valve Implantation for<br>Severe Pure Aortic<br>Regurgitation With<br>Dedicated Devices.<br>Interv Cardiol. 17:e11.                                                                                                                                                                                      | Review                                                                                                                                                                                                                                                                                                        | TAVI for patients<br>with pure severe<br>AR and at surgical<br>risk is occasionally<br>performed with two<br>dedicated<br>transcatheter<br>valves (J-Valve<br>and JenaValve).<br>Both devices have<br>been used<br>successfully via the<br>transapical<br>approach. The<br>transfemoral<br>experience is<br>limited.                                                                                                           | Review                                                                                   |
| Chen S, Zheng F, Li M,<br>Hou S et al. (2022) A<br>study on correlation<br>between preprocedural<br>CT indexes and<br>procedural success<br>rate of transfemoral<br>transcatheter aortic<br>valve replacement with<br>different self-<br>expanding valves<br>(VitaFlow or VenusA-<br>Valve) in patients with<br>pure native aortic<br>regurgitation. Ann<br>Transl Med.<br>10(11):643 | Retrospective<br>comparative study<br>N=77 symptomatic<br>patients with severe<br>pure native AR<br>(STS score 7.7),<br>who had TF TAVI<br>using a VenusA-<br>Valve (n=47) or a<br>VitaFlow valve<br>(n=30).<br>2 kinds of self-<br>expanding valves<br>with different<br>shaped frameworks<br>were compared. | Patients with<br>severe pure native<br>AR with a smaller<br>aortic annulus<br>(AA), left<br>ventricular outflow<br>tract (LVOT),<br>sinotubular junction<br>(STJ), and leaflet<br>thickening might<br>have a higher<br>success rate in TF<br>TAVI using a self-<br>expanding valve.<br>The self-expanding<br>valve with a non-A-<br>shaped framework<br>might be a better<br>choice for<br>improved<br>procedural<br>outcomes. | Larger studies<br>included in the<br>summary of<br>evidence.                             |
| De Backer O, Pilgrim<br>T, Simonato M,<br>Mackensen GB et al.<br>(2018) Usefulness of<br>transcatheter aortic<br>valve implantation for<br>treatment of pure                                                                                                                                                                                                                          | Retrospective case<br>series N=254<br>patients with pure<br>NAVR had<br>transapical,<br>transfemoral TAVI<br>(devices: Evolut,                                                                                                                                                                                | TAVI is a feasible<br>treatment in high-<br>risk patients with<br>NAVR but is<br>associated with a<br>considerable risk of<br>valve                                                                                                                                                                                                                                                                                            | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| native aortic valve<br>regurgitation. Am J<br>Cardiol, 122:1028-<br>1035.                                                                                                                                                                                                                                 | ACURATE, Portico,<br>SAPIEN 3, Lotus,<br>Direct Flow,<br>JenaValve,<br>Engager)<br>N=109 old<br>generation devices<br>145 new generation<br>devices.                                                                                                                                                                                                                             | malpositioning and residual AR.                                                                                                                                                                                                                                                                                                          |                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| De Backer O, Pilgrim<br>T, Sondergaard L et al.<br>(2017) TCT-448<br>Transcatheter aortic<br>valve replacement for<br>isolated severe native<br>aortic valve<br>regurgitation—Results<br>from the TAVR-NAVR<br>registry. J Am Coll<br>Cardiol 70: B184.                                                   | Retrospective case<br>series<br>N= 187 patients had<br>transapical,<br>transfemoral TAVI<br>for severe native<br>AR.<br>69 had early<br>generation devices<br>(65 CoreValve, 4<br>Sapien/XT) and 118<br>had new generation<br>devices (33<br>JenaValve, 23<br>Evolut R, 18 Direct<br>Flow, 15 Symetis,<br>10 Lotus, 9<br>Engager, 7 Sapien<br>3, 3 Portico).<br>Follow-up 1 year | TAVR for pure<br>native aortic valve<br>regurgitation is<br>challenging and<br>associated with<br>high rates of post-<br>procedural aortic<br>regurgitation and a<br>need for a second<br>device in addition<br>to high mortality.<br>New generation<br>devices had better<br>clinical outcomes<br>than early<br>generation<br>implants. | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Delhomme C, M.<br>Urena-Alcazar, O.<br>Zouaghi et al. (2024)<br>Transcatheter aortic<br>valve implantation<br>using the SAPIEN 3<br>valve to treat aortic<br>regurgitation: The<br>French multicentre<br>S3AR study. <u>Archives</u><br>of <u>Cardiovascular</u><br><u>Diseases</u> . 117, 1, 93-<br>105. | Retrospective and<br>prospective<br>multicentre<br>observational study.<br>N=37 patients with<br>symptomatic,<br>severe, pure AR on<br>native, non-calcified<br>valves,<br>contraindicated to,<br>or at high-risk for<br>surgical valve<br>replacement.<br>TAVI using the<br>balloon-expandable<br>SAPIEN 3 THV.                                                                 | TAVI using<br>SAPIEN 3 THV<br>seems technically<br>feasible in carefully<br>selected, high-risk<br>patients with pure<br>AR on native and<br>non-calcified<br>valves, who are<br>contraindicated for<br>surgery. It remains<br>an off-label and<br>compassionate use<br>with no mention in<br>current<br>international<br>guidelines.    | Larger studies<br>included in the<br>summary of<br>evidence.                             |

| Deng Md, Wei X,<br>Zhang XI <i>et al.</i> (2019)<br>Changes in left<br>ventricular function in<br>patients with aortic<br>regurgitation 12<br>months after<br>transapical<br>transcatheter aortic<br>valve implantation. <i>Int</i><br><i>J Cardiovasc</i><br><i>Imaging</i> <b>35</b> , 99–105. | Case series<br>n=30 patients with<br>AR had transapical<br>TAVI<br>Follow-up 12<br>months. | Our results indicate<br>that LV function<br>was improved in<br>terms of<br>myocardial<br>deformation but<br>worsened in terms<br>of apical rotation<br>12 months after<br>TAVI in patients<br>with AR.                                 | Larger studies<br>included in the<br>summary of<br>evidence.                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| El-Gamel A. (2021)<br>Transcatheter Aortic<br>Valve Replacement in<br>Pure Native Aortic<br>Valve Regurgitation:<br>Challenging Pathology<br>Awaiting Specialized<br>Devices. Aorta<br>(Stamford). 9(2):56-59.                                                                                   | Review                                                                                     | Currently, off-label<br>indication for TAVR<br>in pure native AR<br>could be a feasible<br>and reasonable<br>option, as a<br>compassionate<br>treatment is limited<br>to inoperable<br>patients and<br>agreed on by the<br>heart team. | Review                                                                         |
| Franzone A, Piccolo R,<br>Siontis GCM et al.<br>(2016) Transcatheter<br>Aortic Valve<br>Replacement for the<br>Treatment of Pure<br>Native Aortic Valve<br>Regurgitation: A<br>Systematic Review.<br>JACC Cardiovasc<br>Interv.28; 9(22):2308-<br>2317.                                          | Systematic review<br>N=13 studies<br>including 237<br>patients                             | Among selected<br>patients with native<br>pure AR deemed at<br>high risk for SAVR,<br>TAVR is technically<br>feasible and<br>associated with an<br>acceptable risk of<br>early mortality.                                              | More recent<br>comprehensive<br>studies included<br>in summary of<br>evidence. |
| Gera P, Wasserstein<br>DH, Frishman WH et al<br>(2024) Transcatheter<br>Aortic Valve<br>Implantation for Aortic<br>Regurgitation: A<br>Comprehensive<br>Review. Cardiol Rev.                                                                                                                     | Review                                                                                     | This article<br>synthesizes current<br>knowledge on AR<br>management,<br>emphasizing<br>advancements in<br>transcatheter aortic<br>valve implantation<br>(TAVI).                                                                       | Review                                                                         |
| Garcia S, Ye J, Webb<br>J, Reardon M, Kleiman<br>N et al. (2023)                                                                                                                                                                                                                                 | Case series<br>N=27 patients at<br>high surgical risk,                                     | The J-Valve<br>provides a safe<br>and effective                                                                                                                                                                                        | More recent<br>comprehensive<br>studies included                               |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| Transcatheter<br>Treatment of Native<br>Aortic Valve<br>Regurgitation: The<br>North American<br>Experience With a<br>Novel Device. JACC<br>Cardiovasc Interv.<br>16(16):1953-1960.                                                                                                | with native valve AR<br>had TAVI with the J-<br>Valve.<br>Follow-up 30 days.                     | alternative to<br>surgery in patients<br>with pure AR and<br>elevated or<br>prohibitive surgical<br>risk.                                                                                                                                                                         | in summary of<br>evidence.                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Haddad A, Arwani R,<br>Altayar O, Sawas T,<br>Murad MH, de<br>Marchena E.<br>Transcatheter aortic<br>valve replacement in<br>patients with pure<br>native aortic valve<br>regurgitation: A<br>systematic review and<br>meta-analysis. Clin<br>Cardiol. 2019<br>Jan;42(1):159-166. | Systematic review<br>and meta-analysis.<br>N=638 patients<br>across 12 studies<br>were included. | AVR appears to be<br>a feasible<br>treatment choice<br>for NAVR patients<br>at high risk for<br>surgical valve<br>replacement.<br>Second generation<br>valves show<br>promising results in<br>terms of short-term<br>outcomes.                                                    | More recent<br>comprehensive<br>studies included<br>in summary of<br>evidence. |
| Hinkov H, Lee CB,<br>Pitts L et al. (2024)<br>Transcatheter<br>management of pure<br>native aortic valve<br>regurgitation in<br>patients with left<br>ventricular assist<br>device. Eur J<br>Cardiothorac Surg.<br>65(3), ezae028                                                 | Retrospective<br>analysis of TAVI for<br>AR in patients with<br>LVAD.<br>N=27                    | TAVI yields<br>promising<br>procedural<br>outcomes and<br>early survival rates<br>in LVAD patients<br>with AR. Tailored<br>TAVI devices and<br>pre-stenting<br>techniques<br>enhance<br>procedural<br>success.<br>Continued<br>research into these<br>strategies is<br>essential. |                                                                                |
| Huded CP, Allen KB,<br>Chhatriwalla AK.<br>(2021) Counterpoint:<br>challenges and<br>limitations of<br>transcatheter aortic<br>valve implantation for<br>aortic regurgitation.                                                                                                    | Review                                                                                           | Reviews the<br>challenges,<br>evidence and<br>future directions of<br>TAVI for isolated<br>AR. There are no<br>RCTs or mid-term<br>data. Observational<br>studies have                                                                                                            | Review                                                                         |

| Heart. 107(24):1942-<br>1945.                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                     | shown that<br>outcomes of TAVI<br>for AR are worse<br>than outcomes of<br>TAVI for AS. Two<br>emerging valves<br>have shown<br>promise for AR and<br>data are limited.                                                                                                                                          |                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Isogai T, Saad AM,<br>Ahuja KR et al. (2021)<br>Short-term outcomes<br>of transcatheter aortic<br>valve replacement for<br>pure native aortic<br>regurgitation in the<br>United States.<br>Catheter Cardiovasc<br>Interv. 97(3):477-485 | Retrospective<br>database analysis<br>TAVR for pure AR<br>and TAVR for AS.<br>pure AR (n = 1,222,<br>1.50%), pure AS (n<br>= 72,690, 89.1%),<br>and AS + AR (n =<br>7,630, 9.36%).<br>the severity of valve<br>disease, and<br>calcification of aortic<br>valve leaflets and<br>annulus), and<br>details of TAVR<br>procedures not<br>reported.<br>In-hospital and 30-<br>day outcomes<br>reported. | TAVR for pure AR<br>was significantly<br>associated with a<br>higher risk of acute<br>kidney injury,<br>cardiac tamponade<br>and prolonged<br>hospital stay<br>compared with<br>TAVR for pure AS,<br>whereas it was not<br>significantly<br>associated with in-<br>hospital mortality<br>and other<br>outcomes. | More recent<br>comprehensive<br>studies included<br>in summary of<br>evidence. |
| Koliastasis L,<br>Doundoulakis I,<br>Kokkinidis DG, et al.<br>(2022) TAVI with the<br>ACURATE neo<br>transcatheter heart<br>valve in special<br>populations: A<br>systematic review.<br>Hellenic J Cardiol.<br>66:67-71.                | Systematic Review<br>TAVI with<br>ACURATE neo in<br>special populations<br>(in bicuspid aortic<br>valve, in patients<br>with small aortic<br>annulus, pure aortic<br>regurgitation and<br>valve-in-valve<br>procedures)                                                                                                                                                                             | ACURATE neo<br>valve may be a<br>feasible and safe<br>option for patients<br>with bicuspid<br>anatomy, small<br>aortic annulus,<br>previously<br>implanted<br>bioprosthetic aortic<br>valve and pure<br>aortic<br>regurgitation.                                                                                | More recent<br>comprehensive<br>studies included<br>in summary of<br>evidence. |
| Koch R, Inci E, Grubb<br>K et al. (2023) A<br>comparison of thirty-<br>day clinical and<br>echocardiographic                                                                                                                            | Comparative cohort<br>study (retrospective)<br>125 high risk<br>patients with native<br>Al                                                                                                                                                                                                                                                                                                          | Patients who<br>received TAVR had<br>a significantly<br>higher STS<br>predictive risk of                                                                                                                                                                                                                        | Similar<br>comparative<br>study included<br>in the summary<br>of evidence.     |

| outcomes of patients<br>undergoing<br>transcatheter vs.<br>surgical aortic valve<br>replacement for native<br>aortic insufficiency.<br>Cardiovasc Revasc<br>Med; 46:85–9.                                                                                                | 91 receiving SAVR<br>and 34 receiving<br>TAVR (CoreValve,<br>Evolut R, and Evolut<br>Pro)- femoral and<br>caval route<br>Follow-up 30 days.                    | mortality (STS-<br>PROM) score than<br>those in the SAVR<br>group (3.96%<br>versus 1.25%).<br>However, the in-<br>hospital mortality<br>and 30-day<br>outcomes<br>(including mortality,<br>stroke, myocardial<br>infarction, residual<br>AR, or repeat valve<br>intervention) did<br>not differ between<br>groups. The results<br>indicated a<br>significantly higher<br>rate of complete<br>heart block<br>requiring PPI in the<br>TAVR group<br>(20.9% versus<br>2.2%). |                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Kong M, Hong Z, Liu X<br>et al. (2022) 30-day<br>outcomes after surgical<br>or transapical aortic<br>valve replacement in<br>symptomatic aortic<br>regurgitation. J<br>Cardiovasc Dev Dis;<br>9:9, 224, 1-10.                                                            | Comparative study<br>(retrospective)<br>N=69 transapical<br>TAVI with J valve<br>versus n=42 SAVR<br>in patients with<br>symptomatic AR.<br>Follow-up 30 days. | The TA-TAVR<br>approach is safe<br>and reliable, with<br>similar clinical<br>efficacy to SAVR,<br>and has<br>advantages in<br>bleeding rate and<br>speed of recovery.                                                                                                                                                                                                                                                                                                     | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Kirtchuk D, Williams T,<br>Cockburn J et al.<br>(2020) Transcatheter<br>Aortic Valve<br>Implantation in<br>Patients With<br>Symptomatic Severe<br>Aortic Regurgitation<br>Using the Self-<br>Expanding Acurate<br>neo Valve. Cardiovasc<br>Revasc Med.<br>21(11S):14-17. | Case series<br>N=4 patients with<br>isolated AR treated<br>using the Acurate<br>Neo valve.                                                                     | Three of the<br>patients had<br>significant<br>symptomatic<br>improvement, one<br>had limited<br>symptomatic<br>improvement<br>despite resolution<br>of her AR on<br>aortogram post<br>TAVI.                                                                                                                                                                                                                                                                              | Large studies<br>included in the<br>summary of<br>evidence.                              |
| Jiang J, Liu X, He Y et<br>al. (2018)                                                                                                                                                                                                                                    | Systematic Review                                                                                                                                              | Aortic regurgitation remains a                                                                                                                                                                                                                                                                                                                                                                                                                                            | More recent<br>comprehensive                                                             |

| Transcatheter Aortic<br>Valve Replacement for<br>Pure Native Aortic<br>Valve Regurgitation: A<br>Systematic Review.<br>Cardiology.<br>141(3):132-140.                                                                            | N= 10 studies on<br>TAVR in 266<br>patients with pure<br>NAVR were<br>included.                                                                                                                                                                                       | challenging<br>pathology for<br>TAVR. TAVR is a<br>feasible and<br>reasonable option<br>for carefully<br>selected patients<br>with pure aortic<br>regurgitation.                                                                                                                                                                                                                                  | studies included<br>in summary of<br>evidence.                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Liu R, Fu Z and Yao J<br>et al. (2023)<br>Transcatheter Aortic<br>Valve Replacement for<br>Aortic Regurgitation –<br>A Review. <i>CVIA</i> . 8(1).                                                                               | Review                                                                                                                                                                                                                                                                | This review<br>examines current<br>evidence and<br>clinical practice,<br>and presents<br>technological<br>advancements in<br>devices for AR.                                                                                                                                                                                                                                                      | Review                                                                                   |
| Liu H, Yang Y, Wang<br>W et al (2018).<br>Transapical<br>transcatheter aortic<br>valve replacement for<br>aortic regurgitation with<br>a second-generation<br>heart valve. J Thorac<br>Cardiovasc Surg.<br>156:106-116.          | Case series<br>(prospective)<br>ChiCTR-OPC-<br>15006354<br>N=43 patients with<br>high-risk severe<br>pure native AR had<br>transapical TAVI<br>with the J-Valve.                                                                                                      | This multicentre<br>study shows that<br>the J-Valve<br>transcatheter heart<br>valve system is a<br>reasonable option<br>for patients with<br>predominant AR.                                                                                                                                                                                                                                      | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Liu L, Zhang J, Peng Y<br>et al. (2020) Learning<br>curve for transcatheter<br>aortic valve<br>replacement for native<br>aortic regurgitation:<br>Safety and technical<br>performance study.<br>Clin Cardiol. 43(5):475-<br>482. | Retrospective case<br>series (reviewed a<br>prospective<br>database)<br>N=134 patients with<br>pure native AR who<br>had TAVI with the J-<br>valve. Patients were<br>divided as early<br>(group 1: first 52<br>cases) and skilled<br>(group 2: the next<br>82 cases). | For a surgeon<br>without previous<br>TAVR experience,<br>52 cases of<br>performance is the<br>minimal<br>requirement to gain<br>the proficiency of<br>TAVR for native<br>AR. The skilled<br>surgeons have<br>been observed with<br>reduced procedural<br>time, fluoroscopy<br>times, radiation<br>exposure dose,<br>and contrast<br>volume usage.<br>However, the<br>overall prognosis<br>was not | More<br>comprehensive<br>studies included<br>in the summary<br>of evidence.              |

|                                                                                                                                                                                                                 |                                                                                                                                             | significantly<br>different between<br>the two groups.                                                                                                                                                                                              |                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Liu H, Liu S, Lu Y, et<br>al. (2020) Transapical<br>transcatheter aortic<br>valve implantation for<br>predominant aortic<br>regurgitation with a<br>self-expandable valve.<br>J Thorac Dis. 12<br>(3):538-549.  | Case series<br>N=47 patients with<br>predominant AR<br>had transapical<br>TAVI with J-Valve.<br>Follow-up 4 years.                          | This study revealed<br>that, transapical<br>TAVI with J-Valve<br>for treating AR has<br>encouraging mid-<br>term outcomes,<br>and the<br>advantages at one<br>year demonstrated<br>in previous study<br>can be maintained<br>through 4 years.      | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Liu L, Chen S, Shi J et<br>al. (2020)<br>Transcatheter Aortic<br>Valve Replacement in<br>Aortic Regurgitation.<br>Ann Thorac Surg. 110<br>(6):1959-1965.                                                        | Case series<br>N=134 patients with<br>severe AR and high<br>surgical risk had<br>transapical TAVI<br>with the JValve<br>Follow-up 6 months. | Transcatheter<br>aortic valve<br>replacement with<br>the J-Valve proved<br>to have acceptable<br>early and midterm<br>clinical outcomes<br>for patients with<br>aortic regurgitation.                                                              | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Liu L, Peng Y, Shi J, et<br>al. (2022) Initial<br>experience with<br>repositionable J-Valve<br>for severe aortic<br>regurgitation: A single-<br>center experience. J<br>Cardiovasc Surg<br>(Torino); 63:521-528 | Case series<br>N= 290 (161<br>patients had severe<br>AR and 129 patients<br>had severe AS) had<br>transapical TAVI<br>with JValve.          | Prognosis of<br>patients with AR is<br>comparable to that<br>of patients with AS<br>after TAVI with J-<br>valve. Pace- maker<br>rate in the AR<br>group was higher,<br>but structural valve<br>deterioration was<br>more common in<br>AS patients. | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Liu L, Yao X, Peng Y,<br>et al. (2022) One-year<br>outcome after<br>transcatheter aortic<br>valve replacement for<br>aortic regurgitation: A<br>single-center study. J<br>Card Surg; 37:882-892                 | Case series<br>N=134 high-risk<br>patients with pure,<br>symptomatic severe<br>AR had TA TAVI<br>Follow-up 1 year.                          | In high-risk patients<br>undergoing<br>transapical-TAVR<br>for AR, the use of<br>the J-Valve is safe<br>and effective TAVR<br>should be<br>considered as a<br>reasonable option<br>for high-risk<br>patients with pure<br>AR.                      | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |

| Li F, Wang X, Wang Y<br>et al. (2020) Structural<br>Valve Deterioration<br>after Transcatheter<br>Aortic Valve<br>Implantation Using J-<br>Valve: A Long-Term<br>Follow-Up. Ann Thorac<br>Cardiovasc Surg.<br>26(3):158-165.  | Prospective case<br>series<br>N=4 patients with<br>AS and 4 patients<br>with pure AR who<br>had TAVI using<br>Jvalve.<br>4-year follow-up.                                         | The limited number<br>of cases provides a<br>preliminary<br>indication of the<br>long-term efficacy<br>of TAVI using J-<br>Valve in patients<br>with PAR. None of<br>the hemodynamic<br>SVD occurred in<br>patients with PAR.<br>In patients with PAR.<br>In patients with AS,<br>although the higher<br>rate of SVD was<br>observed, the<br>overall<br>transcatheter heart<br>valve (THV)<br>hemodynamic<br>remained stable<br>over time after<br>prosthetic valve<br>implantation and<br>the long-term<br>durability of J-<br>Valve was<br>convincing. | More<br>comprehensive<br>studies included<br>in the summary<br>of evidence. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Lu Y, Yang Y, Liu H et<br>al. (2022) Short-Term<br>Outcomes After<br>Transcatheter Aortic<br>Valve Replacement in<br>Predominant Aortic<br>Regurgitation with Left<br>Ventricular<br>Dysfunction. Int Heart<br>J.63(1):30-35. | Case series<br>N= 27 symptomatic<br>patients with AR<br>and ejection fraction<br>< 50% underwent<br>TAVI using the J-<br>Valve™ system.<br>Follow-up median<br>369 days.           | TAVI using the J-<br>Valve™ system is<br>a reasonable<br>alternative for<br>patients with AR<br>and left ventricular<br>dysfunction<br>regarding<br>promising short-<br>term outcomes.                                                                                                                                                                                                                                                                                                                                                                   | More<br>comprehensive<br>studies included<br>in the evidence<br>summary.    |
| Luo X, Wang X, Li X et<br>al. (2017) Transapical<br>transcatheter aortic<br>valve implantation<br>using the J-Valve<br>system: A 1-year<br>follow-up study. J<br>Thorac Cardiovasc<br>Surg.154 (1):46-55.                     | Case series<br>N= 21 patients with<br>AS (n=17) or AR<br>(n=4) at high risk for<br>open surgery<br>received transapical<br>TAVI using the J-<br>Valve system.<br>Follow-up 1 year. | Study showed<br>excellent<br>performance<br>regarding<br>echocardiographic<br>parameters,<br>improvement in<br>NYHA class after a<br>12-month follow-<br>up.                                                                                                                                                                                                                                                                                                                                                                                             | More<br>comprehensive<br>studies included<br>in the evidence<br>summary.    |

| Mentias A, Saad M,<br>Menon V et al. (2023)<br>Transcatheter vs<br>Surgical Aortic Valve<br>Replacement in Pure<br>Native Aortic<br>Regurgitation. Ann<br>Thorac Surg.<br>115(4):870-876 | Propensity matched<br>retrospective cohort<br>study<br>N= 11,027 patients<br>with pure AR<br>underwent elective<br>AVR (TAVR, n =<br>1147; SAVR, n =<br>9880).<br>Median follow-up of<br>31 months | In Medicare<br>patients with pure<br>native AR, TAVR<br>with the current<br>commercially<br>available<br>transcatheter<br>valves has<br>comparable short-<br>term outcomes.<br>Although long-term<br>outcomes were<br>inferior to SAVR,<br>the possibility of<br>residual<br>confounding,<br>biasing long-term<br>outcomes, given<br>older and frailer<br>TAVR patients,<br>cannot be<br>excluded | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Narayan P. Native<br>aortic valve<br>regurgitation: TAVR's<br>place in the<br>PANTHEON. Indian J<br>Thorac Cardiovasc<br>Surg. 2023<br>Nov;39(6):643-645.                                | Appraisal of the<br>PANTHEON study.<br>TAVI in patients with<br>severe pure native<br>aortic valve<br>regurgitation.                                                                               | The major<br>complications<br>included valve<br>embolization or<br>migration in 12.4%,<br>moderate to severe<br>AR in 9.5% cases<br>and need for PPM<br>in 22.3% cases.<br>Self-expanding and<br>balloon-<br>expandable<br>devices<br>demonstrated<br>similar outcomes.<br>Those<br>experiencing valve<br>embolization or<br>migration had<br>higher 1-year<br>adverse event<br>rates.            | More<br>comprehensive<br>study included<br>in the summary<br>of evidence.                |
| Noble S, Mauler-<br>Wittwer S. (2024)<br>TAVR as an<br>Alternative to SAVR for                                                                                                           | Review                                                                                                                                                                                             | The first-generation<br>transcatheter<br>valves were<br>associated with a                                                                                                                                                                                                                                                                                                                         | Review                                                                                   |

| Pure Native Aortic                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          | higher mortality                                                                                                                                                                                                                                                                    |                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Regurgitation. Can J<br>Cardiol. 40 (2): 316-<br>325.                                                                                                                                                                                            |                                                                                                                                                                                                                                                                          | rate and lower<br>procedural<br>success. Early<br>studies with the<br>dedicated devices<br>showed safety and<br>promising results<br>and will serve a<br>growing number of<br>patients with native<br>AR at risk for<br>surgery.                                                    |                                                                                         |
| Orzalkiewicz M, Foroni<br>M, Chietera F,<br>Bendandi F et al.<br>(2024) Off-Label Use<br>of Balloon-Expandable<br>Transcatheter Valves<br>to Treat Pure Aortic<br>Regurgitation. Am J<br>Cardiol. 222:20-22.                                     | Case series<br>N=13 tricuspid<br>aortic valve patients<br>who underwent<br>transfemoral TAVIs<br>for pure AR with<br>Sapien ballon<br>expandable valve.                                                                                                                  | TAVI in pure AR<br>with oversized<br>Sapien BEV<br>showed good<br>procedural and<br>short-term<br>outcomes when<br>≥20% oversizing<br>was predictably<br>achievable.                                                                                                                | Large studies<br>included in the<br>summary of<br>evidence.                             |
| Oettinger V, Hilgendorf<br>I, Wolf D et al. (2023)<br>Treatment of pure<br>aortic regurgitation<br>using surgical or<br>transcatheter aortic<br>valve replacement<br>between 2018 and<br>2020 in Germany.<br>Front Cardiovasc<br>Med.10:1091983. | Retrospective<br>cohort study<br>database analysis<br>N=4,861<br>procedures-4,025<br>SAVR and 836<br>TAVR-for AR<br>TA TAVI, N=50<br>TF TAVI, N=329<br>balloon expandable<br>valves<br>TF TAVI, n=457,<br>self-expanding<br>valves.<br>In hospital<br>outcomes reported. | TAVR is a viable<br>alternative to<br>SAVR in the<br>treatment of pure<br>aortic regurgitation<br>for selected<br>patients, showing<br>overall low in-<br>hospital mortality<br>and complication<br>rates, especially<br>with regard to self-<br>expanding<br>transfemoral<br>TAVR. | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence |
| Pesarini G, Lunardi M,<br>Piccoli A et al. (2018)<br>Effectiveness and<br>Safety of<br>Transcatheter Aortic<br>Valve Implantation in<br>Patients With Pure<br>Aortic Regurgitation                                                               | Case series<br>N= 13 inoperable<br>patients with non-<br>calcific, pure AR,<br>and advanced heart<br>failure treated with<br>transfemoral TAVI-                                                                                                                          | Implanting self-<br>expandable<br>transcatheter<br>valves in patients<br>pure AR in this<br>small study was<br>safe and effective,<br>and represented                                                                                                                               | Larger studies<br>included in the<br>summary of<br>evidence.                            |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| and Advanced Heart<br>Failure. Am J Cardiol.<br>121(5):642-648.                                                                                                                                                                                                           | self-expandable<br>CoreValves.<br>Follow-up 30 days.                                                                                                                                                                                           | an important option<br>for inoperable<br>patients with non-<br>calcific severe AR.                                                                                                                                                                                                                                                                                       |                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Phan K, Haswell JM,<br>Xu J et al. (2017)<br>Percutaneous<br>Transcatheter<br>Interventions for Aortic<br>Insufficiency in<br>Continuous-Flow Left<br>Ventricular Assist<br>Device Patients: A<br>Systematic Review<br>and Meta-Analysis.<br>ASAIO J. 63 (2):117-<br>122. | Systematic review<br>and meta-analysis<br>N= 5 published<br>studies and 3<br>unpublished studies.<br>(n=29 patients)<br>TAVI for AR in<br>LVAD patients.                                                                                       | In the TAVR<br>cohort, two patients<br>experienced device<br>migration and<br>another had<br>significant<br>postimplant<br>perivalvular<br>leakage. Our<br>results indicate that<br>percutaneous<br>interventions for AI<br>in CF-LVAD<br>patients with<br>TAVR, and closure<br>devices<br>demonstrate<br>similar efficacy in<br>significantly<br>reducing severe<br>AI. | More<br>comprehensive<br>studies included<br>in the summary<br>of evidence.              |
| Poletti E, Adam M,<br>Wienemann H et al.<br>(2024) Performance of<br>Purpose-Built vs Off-<br>Label Transcatheter<br>Devices for Aortic<br>Regurgitation: The<br>PURPOSE Study.<br>JACC Cardiovasc<br>Interv. 17(13):1597-<br>1606.                                       | Retrospective<br>multicentre registry<br>N=256 inoperable<br>patients with severe<br>AR of the native<br>valve had TAVI with<br>off-label devices in<br>168 cases (66%),<br>and J valve was<br>used in 88 cases<br>(34%).<br>Follow-up 1 year. | The J valve has a<br>better acute<br>performance than<br>other THVs when<br>used off-label for<br>inoperable patients<br>with severe AR. A<br>longer follow-up is<br>needed to detect a<br>possible impact on<br>prognosis.                                                                                                                                              | Similar<br>comparative<br>study already<br>included in the<br>summary of<br>evidence     |
| Purita PAM, Tahoces<br>LS, Fraccaro C et al.<br>(2020) Transcatheter<br>treatment of native<br>aortic valve<br>regurgitation: Results<br>from an international<br>registry using the<br>transfemoral<br>ACURATE <i>neo</i> valve.                                         | Case series<br>N= 24 patients with<br>severe NAVR had<br>TAVI with self-<br>expandable<br>ACURATE neo<br>valve.<br>Follow-up 30 days.                                                                                                          | This multicentre<br>study suggests<br>good feasibility and<br>early safety of<br>transfemoral TAVI<br>with the self-<br>expandable<br>ACURATE neo<br>device in patients<br>with severe NAVR<br>refused for surgery.                                                                                                                                                      | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |

| Int J Cardiol Heart<br>Vasc. 27:100480.                                                                                                                                                                                                                    |                                                                                                                                                                                                              | Rates of moderate<br>PVL, new<br>pacemaker<br>implantation and<br>need for a second<br>valve were higher<br>than those<br>reported for TAVI<br>in AS.                                                                                                                                           |                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Rali AS, Taduru SS,<br>Tran LE et al. (2022)<br>Transcatheter Aortic<br>Valve Replacement<br>and Surgical Aortic<br>Valve Replacement<br>Outcomes in Left<br>Ventricular Assist<br>Device Patients with<br>Aortic Insufficiency.<br>Card Fail Rev. 8: e30. | Retrospective<br>cohort study (NIS<br>database)<br>N=155 patients with<br>pre-existing<br>continuous-flow<br>LVAD undergoing<br>TAVR (105) or<br>SAVR (50) for<br>Al/pure AR.                                | In this nationally<br>representative<br>cohort of LVAD<br>patients with post-<br>implant AI, it was<br>observed that<br>TAVR was<br>associated with a<br>lower risk of<br>adverse short-term<br>outcomes<br>compared with<br>SAVR.                                                              | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Roy DA, Schaefer U,<br>Guetta V, et al.<br>Transcatheter aortic<br>valve implantation for<br>pure severe native<br>aortic valve<br>regurgitation. J Am<br>Coll Cardiol.<br>2013;61(15):1577-<br>1584.                                                      | Case series<br>(registry-<br>retrospective and<br>prospective)<br>N=43 patients with<br>pure severe NAVR<br>underwent TAVI<br>with the CoreValve<br>(early generation<br>device).<br>Follow-up 12<br>months. | This registry<br>analysis<br>demonstrates the<br>feasibility and<br>potential procedure<br>difficulties when<br>using TAVI for<br>severe NAVR.<br>Acceptable results<br>may be achieved in<br>carefully selected<br>patients who are<br>deemed too high<br>risk for<br>conventional<br>surgery. | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Sanchez-Luna JP,<br>Martín P, Dager AE et<br>al. (2023) Clinical<br>outcomes of TAVI with<br>the Myval balloon-<br>expandable valve for<br>non-calcified aortic<br>regurgitation.<br>EuroIntervention.<br>19(7):580-588.                                   | Retrospective<br>cohort study<br>N=113 patients with<br>non-calcified AR<br>(STS 2.7±1.7%)<br>had TAVI with Myval<br>valve.<br>Follow-up 1 year.                                                             | Myval is a feasible<br>and safe option for<br>selected non-<br>operable patients<br>with NCAR and<br>demonstrated good<br>midterm outcomes<br>and lack of impact<br>of oversizing on<br>device durability.                                                                                      | Larger studies<br>included in the<br>evidence<br>summary.                                |

| Santos-Martínez S,<br>Amat-Santos IJ. (2021)<br>New Challenging<br>Scenarios in<br>Transcatheter Aortic<br>Valve Implantation:<br>Valve-in-valve,<br>Bicuspid and Native<br>Aortic Regurgitation.<br>Eur Cardiol. 2021 Aug<br>26;16: e29.                                                                                                     | Review                                                                                                                                                                                                      | This review aims to<br>discuss the current<br>evidence available<br>supporting the use<br>of TAVI for VIV,<br>bicuspid and<br>Native AR.<br>Evidence for TAVI<br>in pure AR is still<br>anecdotal because<br>of suboptimal<br>outcomes.                                                                                                                                                     | Review                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Sawaya FJ, Deutsch<br>MA, Seiffert M et al.<br>(2017) Safety and<br>efficacy of<br>transcatheter aortic<br>valve replacement in<br>the treatment of pure<br>aortic regurgitation in<br>native valves and<br>failing surgical<br>bioprostheses: Results<br>from an international<br>registry study. JACC<br>Cardiovasc Interv,<br>10:1048-1056 | Case series<br>(retrospective and<br>prospective)<br>N=78 patients with<br>pure NAVR, 68<br>patients in the failing<br>SHV group.<br>(Evolut R,<br>JenaValve, Direct<br>Flow, Lotus,<br>SAPIEN 3).          | AVR for pure<br>NAVR remains a<br>challenging<br>condition, with old-<br>generation THVs<br>being associated<br>with THV<br>embolization and<br>migration and<br>significant<br>paravalvular<br>regurgitation.<br>Newer generation<br>THVs show more<br>promising<br>outcomes. For<br>those patients with<br>severe AR due to<br>failing SHVs, TAVR<br>is a valuable<br>therapeutic option. | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Schofer J, Nietlispach<br>F, Bijuklic K et al.<br>(2015) Implantation of<br>a Fully Repositionable<br>and Retrievable<br>Transcatheter Valve<br>for Noncalcified Pure<br>Aortic Regurgitation.<br>JACC Cardiovasc<br>Interv. 8 (14):1842-9.                                                                                                   | Case series<br>(retrospective)<br>N=11 patients with<br>severe non-calcific<br>pure AR with<br>transfemoral<br>implantation of a<br>TAVI with<br>DirectFlow valve<br>(new generation).<br>30-day follow-up. | This study reports<br>the feasibility of<br>treating severe<br>non-calcific AR<br>with the Direct<br>Flow prosthesis via<br>the transfemoral<br>route.                                                                                                                                                                                                                                      | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Schlingloff F, Schäfer<br>U, Frerker C et al.                                                                                                                                                                                                                                                                                                 | Case series                                                                                                                                                                                                 | Intraprocedural<br>success and                                                                                                                                                                                                                                                                                                                                                              | Study already<br>included in                                                             |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| (2014) Transacthatar                                                                                                                                                                                                                                                      | N=10 transpring                                                                                                                                   | h a a ma a du va a mai a                                                                                                                                                                                                                                           | overtementie                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| aortic valve<br>implantation of a<br>second-generation<br>valve for pure aortic<br>regurgitation:<br>procedural outcome,<br>haemodynamic data<br>and follow-up. Interact<br>Cardiovasc Thorac<br>Surg.19 (3):388-93.                                                      | TAVI implantations<br>with JenaValve for<br>pure AR.<br>Follow-up 12<br>months.                                                                   | data were good.<br>The mortality rate<br>highlighted the<br>importance of<br>careful patient<br>selection. This<br>device proved to<br>be suitable for<br>treatment of AR in<br>surgical high-risk<br>patients.                                                    | systematic<br>review added to<br>summary of<br>evidence.                                 |
| Seiffert M, Bader R,<br>Kappert U et al. (2014)<br>Initial German<br>experience with<br>transapical<br>implantation of a<br>second-generation<br>transcatheter heart<br>valve for the treatment<br>of aortic regurgitation.<br>JACC Cardiovasc<br>Interv. 7 (10):1168-74. | Case series<br>(retrospective)<br>N=31 patients had<br>transapical TAVI<br>with JenaValve for<br>severe pure native<br>AR.<br>Follow-up 6 months. | This study revealed<br>this is a reasonable<br>option in this<br>subset of patients.<br>However, a<br>significant early<br>noncardiac<br>mortality related to<br>the high-risk<br>population<br>emphasizes the<br>need for careful<br>patient selection.           | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Shi J, Wei L, Chen Y et<br>al. (2021)<br>Transcatheter aortic<br>valve implantation with<br>J-Valve: 2-year<br>outcomes from a<br>multicenter study. Ann<br>Thorac Surg;<br>111:1530-1536.                                                                                | Case series<br>N=107 patients with<br>AR (n=44) or AS<br>(n=63) had<br>transapical TAVI<br>with Jvalve<br>Follow-up 2 years.                      | This study<br>demonstrated good<br>midterm outcomes<br>of TAVI with the J-<br>Valve system in the<br>treatment of<br>patients with either<br>AS or AI. It<br>suggests that the<br>J-Valve system is a<br>promising<br>alternative therapy<br>in high-risk patients | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Silaschi M, Conradi L,<br>Wendler O et al.<br>(2018) The JUPITER<br>registry: One-year<br>outcomes of<br>transapical aortic valve<br>implantation using a<br>second generation<br>transcatheter heart<br>valve for aortic                                                 | Case series<br>(JUPITER) Registry<br>N= 30 patients with<br>pure native AR<br>Follow-up 1 year.                                                   | Rate of THV<br>embolization,<br>residual AR and<br>permanent<br>pacemaker<br>implantation was<br>low. One-year<br>results using the<br>JenaValve for AR                                                                                                            | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |

| regurgitation. Catheter<br>Cardiovasc Interv.<br>91(7):1345-1351.                                                                                                                                                       |                                                                                                                                                         | encourage its use for this indication.                                                                                                                                                                                                                     |                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Siddique, S., Vora, A.,<br>& Gada, H. (2020).<br>Transcatheter<br>Approaches to Aortic<br>Insufficiency. <i>Structural</i><br><i>Heart</i> , <i>5</i> (1), 55–64.                                                       | Review                                                                                                                                                  | Long-term follow-<br>up of patients with<br>severe AR has<br>demonstrated<br>excess morbidity<br>and mortality,<br>necessitating<br>consideration of<br>early surgical or<br>transcatheter<br>treatment in high-<br>risk patients.                         | Review                                                                                  |
| Spina R, Anthony C,<br>Muller DW et al. (2015)<br>Transcatheter Aortic<br>Valve Replacement for<br>Native Aortic Valve<br>Regurgitation. Interv<br>Cardiol. 10(1):49-54.                                                | Review                                                                                                                                                  | Reviews the<br>clinical context,<br>technical<br>characteristics and<br>outcomes<br>associated with<br>transcatheter<br>treatment of native<br>AR.                                                                                                         | Review                                                                                  |
| Soong EL, Ong YJ, Ho<br>JSY et al. (2021)<br>Transcatheter aortic<br>valve replacement for<br>aortic regurgitation in<br>Asians: TAVR for<br>aortic regurgitation in<br>Asians. Asia<br>Intervention. 7(2):103-<br>111. | Systematic review<br>N=5 studies (n=274<br>patients with pure<br>native AR<br>undergoing TAVI)<br>and 8 case reports<br>were included.                  | TAVR has<br>demonstrated<br>acceptable safety<br>and efficacy in<br>Asian patients with<br>pure AR displaying<br>low mortality rates<br>and few adverse<br>outcomes.                                                                                       | More recent<br>comprehensive<br>studies included<br>in summary of<br>evidence.          |
| Stachon P, Kaier K,<br>Heidt T et al. (2020)<br>Nationwide outcomes<br>of aortic valve<br>replacement for pure<br>aortic regurgitation in<br>Germany 2008–2015.<br>Catheter Cardiovasc<br>Interv. 95:810–6.             | Comparative cohort<br>study (retrospective)<br>SAVR versus TAVI<br>in patients with pure<br>AR.<br>SAVR, n=10,528<br>TF TAVI, n=476<br>TA TAVI, n= 248. | TAVR is off label<br>used in AR in<br>clinical practice.<br>TAVR seems to be<br>a safe option for<br>AR with regard to<br>in-hospital<br>outcomes.<br>However, further<br>research<br>evaluating long-<br>term outcomes is<br>required to<br>establish the | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence |

|                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         | feasibility of TAVR in pure AR.                                                                                                                                                                                                                                   |                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Testa L, Latib A, Rossi<br>ML, et al. CoreValve<br>implantation for severe<br>aortic regurgitation: a<br>multicentre registry.<br>EuroIntervention.<br>2014; 10(6):739-745.                                                                | Case series<br>(prospective)<br>N=26 inoperable<br>patients undergoing<br>CoreValve TAVR for<br>severe pure native<br>AR compared to<br>patients treated for<br>severe native AS,<br>n=1531.<br>Follow-up 12<br>months. | TAVR for AR is<br>associated with a<br>significantly higher<br>mortality compared<br>to TAVR for AS.<br>Considering the<br>ominous prognosis<br>of these patients<br>when treated<br>medically, TAVR<br>may be a<br>reasonable choice<br>in selected<br>patients. | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Toggweiler S, Cerillo<br>AG, Kim WK et al.<br>(2018) Transfemoral<br>Implantation of the<br>Acurate neo for the<br>Treatment of Aortic<br>Regurgitation. J<br>Invasive Cardiol. 30<br>(9): 329-333.                                        | Case series<br>n= 20 patients with<br>pure native AR<br>undergoing<br>transfemoral TAVR<br>with the Acurate neo<br>prosthesis.<br>Follow up 30 days.                                                                    | Transfemoral<br>TAVR using the<br>Acurate neo<br>transcatheter heart<br>valve was<br>successful in<br>treating aortic<br>regurgitation,<br>significantly<br>reduced left<br>ventricular<br>dimensions, and<br>improved clinical<br>symptoms.                      | Large studies<br>included in the<br>summary of<br>evidence.                              |
| Tung M, Wang X, Li F<br>et al. (2018) A versatile<br>transapical device for<br>aortic valvular disease:<br>One-year outcomes of<br>a multicenter study on<br>the J-Valve system. J<br>Cardiol. 72(5):377-384.                              | Case series<br>N=107 high-risk<br>patients with severe<br>AS (n = 64) or AR (n<br>= 43) had TA TAVI<br>with J valve.<br>Follow-up 1 year.                                                                               | Study provides<br>further evidence on<br>the safety and<br>efficacy of the J-<br>Valve in high-risk<br>patients with AS or<br>AR for surgery.                                                                                                                     | Similar study<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Wang Y, Yu S, Qian D,<br>et al. (2022) Anatomic<br>predictor of severe<br>prosthesis malposition<br>following transcatheter<br>aortic valve<br>replacement with self-<br>expandable Venus-A<br>Valve among pure<br>aortic regurgitation: A | Retrospective<br>multicentre cohort<br>study.<br>N=62 patients with<br>native AR who<br>underwent TAVI<br>with Venus-A Valve.<br>Outcomes were<br>compared between                                                      | Larger and higher<br>sinotubular junction<br>(STJ), as well as<br>greater STJ to<br>valve crown<br>diameter ratio, may<br>help identify<br>patients at high risk<br>for severe<br>prosthesis                                                                      | Larger studies<br>included in the<br>summary of<br>evidence.                             |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation

| multicenter<br>retrospective study.<br>Front Cardiovasc Med.<br>9:1002071.                                                                                                                                                                                              | non-/mild<br>malposition (n=42)<br>and severe<br>malposition groups<br>(n=19).                                                                                                                             | malposition among<br>patients with native<br>AR undergoing<br>TAVI.                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Wernly B, Eder S,<br>Navarese EP et al.<br>(2019) Transcatheter<br>aortic valve<br>replacement for pure<br>aortic valve<br>regurgitation: "on-<br>label" versus "off-label"<br>use of TAVR devices.<br>Clin Res Cardiol.108<br>(8):921-930.                             | Review<br>N=12 studies<br>(640 patients)<br>208 (33%) patients<br>with pure AR were<br>treated with "on-<br>label" devices:<br>JenaValve and J<br>valve).                                                  | observational data<br>TAVR for pure AR<br>shows that it is<br>feasible and safe in<br>patients deemed<br>inoperable. First-<br>generation TAVR<br>devices are<br>associated with<br>inferior outcome<br>and should be<br>avoided. The use<br>of "on-label"<br>devices is<br>associated with a<br>significantly higher<br>procedural success<br>rate and might be<br>favourable<br>compared to other<br>second-generation<br>devices. | More<br>comprehensive<br>studies included<br>in the summary<br>of evidence.              |
| Vahl T, Makkar R,<br>Kodali S, Baldus S,<br>Treede H, Daniels D,<br>et al. 30-day outcomes<br>of transfemoral<br>transcatheter aortic<br>valve replacement for<br>aortic regurgitation with<br>a novel self-expanding<br>prosthesis. J Am Coll<br>Cardiol 2021;77: 919. | ALIGN-AR trial<br>(NCT 04415047)<br>Prospective study<br>N=71 patients with<br>primary<br>symptomatic AR at<br>high surgical risk<br>had transfemoral<br>TAVI with the<br>JenaValve.<br>Follow-up 30 days. | This study has<br>reported technical<br>feasibility and<br>promising short-<br>term clinical and<br>hemodynamic<br>outcomes.                                                                                                                                                                                                                                                                                                         | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Xue Y, Zhou Q, Li S et<br>al. (2021) Transapical<br>Transcatheter Valve<br>Replacement Using J-<br>Valve for Aortic Valve<br>Diseases. Ann Thorac<br>Surg. 112(4):1243-<br>1249.                                                                                        | Case series<br>N=23 patients had<br>TAVI using the J-<br>Valve system.<br>10 had AS, 11 had<br>AR, 2 had VIV.                                                                                              | TAVI with the J-<br>Valve system is<br>effective, even<br>when it is traumatic<br>and requires the<br>transapical route.                                                                                                                                                                                                                                                                                                             | Larger studies<br>included in the<br>summary of<br>evidence.                             |

| Yang L, Chen S,<br>Zhang X et al. (2024)<br>Comparisons of<br>noncoronary sinus<br>pivot implantation<br>(NCPI) and<br>conventional method<br>for transcatheter aortic<br>valve replacement with<br>self-expanding valve in<br>pure aortic<br>regurgitation (PAR).<br>Catheter Cardiovasc<br>Interv.103(7):1093-<br>1100. | Retrospective case<br>series (NTCVR<br>registry analysis).<br>N=55 patients with<br>pure AR had TF<br>TAVI with self-<br>expanding valves<br>(VitaFlow and<br>Venus A valve).<br>Sub-groups:<br>Group A had<br>noncoronary sinus<br>pivot implantation<br>(NCPI method,<br>n=16).<br>Group B had<br>conventional<br>method (n=39)               | TAVR with a self-<br>expanding valve<br>using the NCPI<br>method had a<br>higher procedure<br>success rate and<br>dramatically low<br>complications than<br>that using the<br>conventional<br>method (valve was<br>implanted below<br>both the<br>noncoronary sinus<br>and left coronary<br>sinus) in patients<br>with pure AR.                                                                                                            | Larger studies<br>included in the<br>summary of<br>evidence.                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Yin WH, Lee YT, Tsao<br>TP et al. (2022)<br>Outcomes of<br>transcatheter aortic<br>valve replacement for<br>pure native aortic<br>regurgitation with the<br>use of<br>newer- <i>vs.</i> early-<br>generation devices.<br>Ann Transl Med.10<br>(1):24                                                                      | Comparative study<br>(retrospective<br>analysis)<br>N=25<br>TAVI was done with<br>early- (N=15,<br>CoreValve, Lotus<br>and Sapien XT) and<br>newer-generation<br>(N=10, Evolut R in 7<br>and J valve in 3)<br>valves in patients<br>with pure native AR<br>at an intermediate-<br>to-high risk for<br>SAVR.<br>Median follow-up of<br>14 months | Early-generation<br>TAVR devices are<br>associated with<br>less satisfactory<br>outcomes in the<br>treatment of<br>patients with pure<br>native AR and<br>should be avoided.<br>TAVR using newer<br>generation THVs<br>has yielded better<br>procedural<br>outcomes and can<br>be a great asset to<br>treat certain<br>patients. Dedicated<br>TAVR devices for<br>pure native AR are<br>preferred to other<br>newer generation<br>devices. | Larger studies<br>included in the<br>summary of<br>evidence.                   |
| Yousef A, MacDonald<br>Z, Simard T et al.<br>(2018) Transcatheter<br>Aortic Valve<br>Implantation (TAVI) for<br>Native Aortic Valve                                                                                                                                                                                       | Systematic review<br>175 patients were<br>included from 31<br>studies.                                                                                                                                                                                                                                                                          | TAVI demonstrates<br>acceptable safety<br>and efficacy in<br>high-risk patients<br>with severe NAVR.<br>Second-generation                                                                                                                                                                                                                                                                                                                  | More recent<br>comprehensive<br>studies included<br>in summary of<br>evidence. |

| Regurgitation - A<br>Systematic Review.<br>Circ J. 82(3):895-902.                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                    | valves may afford a<br>similar safety<br>profile with<br>improved device<br>success. Dedicated<br>studies are needed<br>to definitively<br>establish the<br>efficacy of TAVI in<br>this population.                                                                                                                                                      |                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Yoon SH, Schmidt T,<br>Bleiziffer S et al<br>(2017). Transcatheter<br>aortic valve<br>replacement in pure<br>native aortic valve<br>regurgitation. J Am<br>Coll Cardiol; 70:2752-<br>2763.                                                   | Registry analysis<br>(retrospective and<br>prospective).<br>N=331 patients with<br>pure NAVR<br>underwent TAVI<br>(transfemoral,<br>transapical). The<br>early- and new-<br>generation devices<br>were used in 119<br>patients (36.0%)<br>and 212 patients<br>(64.0%).<br>(SAPIEN 3, Evolut<br>R, JenaValve, Direct<br>Flow, JValve,<br>Engager, Portico,<br>ACURATE, Lotus).<br>Follow-up 1 year. | Compared with the<br>early-generation<br>devices, TAVR<br>using the new-<br>generation devices<br>was associated<br>with improved<br>procedural<br>outcomes in<br>treating patients<br>with pure native<br>AR. In patients with<br>pure native AR,<br>significant post-<br>procedural AR was<br>independently<br>associated with<br>increased mortality. | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Zheng HJ, Cheng YB,<br>Yan CJ, et al. (2023)<br>Transfemoral<br>transcatheter aortic<br>valve replacement for<br>pure native aortic<br>regurgitation: one-year<br>outcomes of a single<br>center study. BMC<br>Cardiovasc Disord.<br>23:330. | Retrospective study<br>N=45 patients with<br>pure native AR had<br>transfemoral Venus<br>A-valve<br>implantation.<br>Follow- up 1 year.                                                                                                                                                                                                                                                            | Study reported a<br>97.8% success<br>rate with 1 patient<br>requiring<br>conversion to<br>SAVR. They<br>observed a<br>significant increase<br>in LVEF from 42%<br>at baseline to 62%<br>at 1-year. In-<br>hospital mortality<br>rate and 1-year<br>mortality rate were<br>2.3% and 4.7%,<br>respectively. They<br>concluded that<br>further study is     | Larger study<br>included in the<br>summary of<br>evidence.                               |

|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                    | needed to assess<br>the long-term<br>durability of the<br>Venus A-valve                                                                                                                                  |                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Zhu D, Chen Y, Guo Y,<br>et al. (2015)<br>Transapical<br>transcatheter aortic<br>valve implantation<br>using a new second-<br>generation TAVI<br>system - J-Valve for<br>high-risk patients with<br>aortic valve diseases:<br>Initial results with 90-<br>day follow-up. Int J<br>Cardiol.199:155-162 | Case series<br>N= 20 patients with<br>isolated aortic valve<br>disease (11 with<br>pure/dominant AR<br>and 9 with AS) at<br>high risk for SAVR<br>had TAVI with J<br>valve.<br>Follow-up 3 months. | Trans-apical TAVI<br>using the J-Valve™<br>prosthesis is<br>potentially an<br>effective treatment<br>option for patients<br>with AS or<br>pure/dominant AR<br>at high risk for<br>open-heart<br>surgery. | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Zhu D, Wei L, Cheung<br>A et al. (2016)<br>Treatment of pure<br>aortic regurgitation<br>using a second-<br>generation<br>transcatheter aortic<br>valve implantation<br>system. J Am Coll<br>Cardiol; 67:2803–5.                                                                                       | Case series<br>N=33 patients with<br>pure native AR and<br>high surgical risk<br>had TA TAVI with J<br>valve.                                                                                      | Our results<br>demonstrated that<br>this new valve<br>could become a<br>potentially feasible<br>treatment option in<br>patients with AR<br>who are at high risk<br>for SAVR.                             | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Zhu L, Guo Y, Wang W<br>et al. (2018)<br>Transapical<br>transcatheter aortic<br>valve replacement with<br>a novel transcatheter<br>aortic valve<br>replacement system in<br>high-risk patients with<br>severe aortic valve<br>diseases. J Thorac<br>Cardiovasc Surg.<br>155(2):588-597.               | Case series<br>N= 107 high-risk<br>patients (had TAVI<br>with the J-Valve (63<br>patients with AS and<br>44 patients with<br>pure native AR).<br>Follow-up 6 months.                               | TAVI by the J-<br>Valve is an<br>adequate clinical<br>option to treat high-<br>risk patients with<br>severe aortic<br>stenosis or aortic<br>regurgitation.                                               | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Zhu D, Chen Y, Zhang<br>J et al. (2015)<br>Transapical<br>implantation of a new<br>second-generation<br>transcatheter heart<br>valve in patients with<br>pure aortic                                                                                                                                  | Case series<br>N=7 high-risk<br>patients with pure<br>native AR treated<br>with a TAVI using<br>the J-Valve™<br>system.                                                                            | Patients were<br>successfully<br>treated with the<br>TAVI procedure.                                                                                                                                     | Larger studies<br>were included<br>in the summary<br>of evidence.                        |

| regurgitation: a<br>preliminary report.<br>Interact CardioVasc<br>Thorac Surg; 20:860–2                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Zhou C, Xia Z, Song Y,<br>Lian Z. (2023)<br>Transcatheter versus<br>surgical aortic valve<br>replacement in patients<br>with aortic<br>regurgitation: a<br>propensity-matched<br>analysis. Heliyon. 9(6):<br>e16734.                                                                                                                                                                       | Propensity score<br>matched<br>retrospective cohort<br>study<br>N=3640 patients<br>with AR<br>TAVI 1820 versus<br>SAVR 1820<br>Follow-up 6 months                                                                  | TAVR and SAVR<br>had similar risks of<br>hospital death and<br>lower rates of 30-<br>day and 6-month<br>all-cause and<br>cardiovascular<br>readmission. But<br>TAVR had a higher<br>risk of permanent<br>pacemaker<br>implantation than<br>SAVR in patients<br>with AR,<br>suggesting that<br>TAVR can be<br>performed safely in<br>patients with pure<br>AR. | Study already<br>included in<br>systematic<br>review added to<br>summary of<br>evidence. |
| Zhang, X., Liang, C.,<br>Zha, L. et al. (2024)<br>Predictors for new-<br>onset conduction block<br>in patients with pure<br>native aortic<br>regurgitation after<br>transcatheter aortic<br>valve replacement with<br>a new-generation self-<br>expanding valve<br>(VitaFlow Liberty <sup>™</sup> ): a<br>retrospective cohort<br>study. <i>BMC</i><br><i>Cardiovasc Disord</i> 24,<br>77. | Retrospective<br>cohort study<br>N=68 patients with<br>pure native AR who<br>had TAVI using<br>new-generation self-<br>expanding valves<br>(VitaFlow Liberty™).<br>20 patients had<br>PPM implanted after<br>TAVI. | Multivariate logistic<br>regression analysis<br>revealed an<br>association<br>between the need<br>for postoperative<br>PPI and<br>preoperative<br>complete right<br>bundle branch<br>block (cRBBB) or<br>first-degree<br>atrioventricular<br>block (AVB), as<br>well as a non-<br>tubular left<br>ventricular outflow<br>tract (LVOT).                        | More<br>comprehensive<br>studies included<br>in the summary<br>of evidence.              |

IP overview: Transcatheter aortic valve implantation for native aortic valve regurgitation