National Institute for Health and Care Excellence

Draft for consultation

Joint replacement

Network meta-analysis and cost analysis of methods for tranexamic acid administration

NICE guideline Network meta-analysis report October 2019

Draft for Consultation

This evidence review was developed by the National Guideline Centre, hosted by the Royal College of Physicians

Disclaimer

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and, where appropriate, their careful or guardian.

Local commissioners and providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.

NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the <u>Welsh Government</u>, <u>Scottish Government</u>, and <u>Northern Ireland Executive</u>. All NICE guidance is subject to regular review and may be updated or withdrawn.

Copyright

© NICE 2019. All rights reserved. Subject to Notice of rights

ISBN

Contents

1	Netw	vork me	eta-analysis: administration methods of tranexamic acid	6
	1.1	Introdu	uction	6
2	Stud	ly selec	ction	7
	2.1	Outco	mes	7
	2.2	Popula	ation	7
	2.3	Comp	arators	7
	2.4	Time ł	norizon	8
3	Stati	stical r	nethods	9
	3.1	Synthe	esis methods	9
		3.1.1	Fixed and random effects	9
		3.1.2	Baseline model and data	9
		3.1.3	Number of simulations and checking convergence	10
	3.2	Metho	ds of assessing inconsistency	10
	3.3	Costs	and resource use	11
		3.3.1	Intervention costs	11
		3.3.2	Cost of transfusion	12
		3.3.3	Total cost calculation	13
		3.3.4	Methods of sensitivity analyses	13
4	Resu	ults		14
	4.1	Netwo	rk	14
	4.2	Data		15
	4.3	NMA F	Results	17
		4.3.1	Results of estimation	17
		4.3.2	Results of cost sensitivity analyses	21
		4.3.3	Inconsistency and goodness of fit	22
5	Risk	of bias	3	25
6	Evid	ence st	tatements	27
7	Disc	ussion		28
		7.1.1	Summary of clinical evidence	28
		7.1.2	Summary of cost evidence	28
		7.1.3	Goodness of fit summary	28
8	Con	clusion		29
Ap	pendi	ces		34
• •			WinBUGS Code	
	••	A.1 M	ain code	34
			A.1.1 Fixed effects	
			A.1.2 Random effects	36
		A.2 Ba	aseline code	38

A.2.1 Fixed effects	38
A.3 Inconsistency model	39
A.4 Node-splitting – to run in R2WinBUGS package in R	41
Appendix B: Intervention cost calculations	43
B.1 Intervention cost calculations	43

Network meta-analysis: administration methods of tranexamic acid

3 1.1 Introduction

4 A hierarchical Bayesian network meta-analysis (NMA) was performed for the tranexamic acid
5 (TXA) review question. This type of analysis allows for the synthesis of data on multiple
6 interventions, including both direct and indirect evidence for each comparison, without
7 breaking randomisation. NMA delivers a coherent set of estimates that may be ranked to
8 inform recommendations.^{9, 10}

9 The analysis also provided estimates of effect (with 95% credible intervals) for each
10 intervention compared to one another. These estimates provide a useful clinical summary of
11 the results and facilitate the formation of recommendations based on the evidence found in
12 the clinical review.

Network meta-analysis assumes that the included studies are similar in terms of factors that
might interact with the intervention effects (effect modifiers). So, the relative effect of
intervention B vs intervention A would be expected to be similar in all of the studies (if they
had included A and B interventions). This assumption is the same as that made in
conventional pairwise meta-analysis, but we also have to be particularly careful that the
studies making different comparisons do not differ in effect modifiers (the data are
consistent).

TXA is an anti-fibrinolytic agent that is used to reduce perioperative blood loss during primary
elective joint replacement surgery. As a synthetic lysine analogue, TXA binds to lysine
receptor sites on plasminogen in the blood. Plasminogen is the precursor to the enzyme
plasmin; this enzyme breaks down fibrin which helps to clot the blood. As such, TXA stops
the breakdown of fibrin in the blood, which is needed to form clots to prevent blood loss.
Transfusions are associated with costs and a risk of infection, and therefore should be
minimised from both a healthcare and patient perspective.

TXA can be administered via an oral tablet, intravenously, topically or in a combination of
these forms. Although use of the drug is established as effective in reducing the need for
transfusions, it is not evident which form of administration is the most clinically and cost
effective method.

2 1 Study selection

2 To estimate the relative risks, we performed an NMA that simultaneously used all the

- 3 relevant RCT evidence from the clinical evidence review. As with conventional meta-
- 4 analyses, this type of analysis does not break the randomisation of the evidence.
- 5 The committee agreed that blood loss is generally similar for both hip and knee
- 6 replacements. For shoulder replacements blood loss may be less, however, for this analysis
- 7 no shoulder replacement studies were includable. Therefore this analysis combines studies
- 8 that look at hip and knee replacements. Furthermore, in the clinical evidence review hip,
- 9 knee and shoulder populations were combined, as agreed by the committee.

10 The full details of the TXA evidence review can be found in Evidence Review G (cross-ref to 11 protocols, evidence tables, GRADE assessment and any other summaries/analysis)

12 2.1 Outcomes

13 Transfusion was chosen as the only outcome as:

- 14 it was designated a critical outcome
- 15 it was commonly reported in the trials
- 16 it has cost implications
- 17 pairwise meta-analyses showed some differences between comparators.

18 Other outcomes that were included in the initial clinical review were not considered for the

19 NMA as they either showed no clinically relevant difference, or were infrequently reported

20 across the studies.

21 2.2 Population

22 People indicated for primary elective joint replacement, it was assumed that all of these 23 surgeries have a moderate risk of blood loss (500ml-1000ml), as agreed by the committee.

24 2.3 Comparators

The interventions compared in the model were those found in the randomised controlled trials and included in the clinical evidence review already presented in Evidence Review G of the full guideline. If an intervention was evaluated in a study that met the inclusion criteria for the network (that is if it reported transfusion events and matched the inclusion criteria of the systematic review) then it was included in the network meta-analysis, otherwise it was excluded.

31 The comparators included in the NMA were:

- Intraarticular (IA) TXA, (monotherapy)
- Intravenous (IV) TXA, (monotherapy)
- Oral TXA, (monotherapy)
- IA and IV TXA, (combination therapy)
- IA and oral TXA, (combination therapy)

37 As agreed with the committee, placebo and no treatment were not included as comparators

38 as it is established practice that administration of some form of TXA is clinically and cost-

39 effective in comparison. Combination therapies were treated as distinct interventions and not

40 the sum of the effects of the individual components.

1 2.4 Time horizon

2 The time horizon was initial inpatient stay

3 1 Statistical methods

2 3.1 Synthesis methods

3 A hierarchical Bayesian NMA was performed using the software WinBUGS 1.4.3.48 10

4 A generalised linear model with a binomial likelihood and logit link was fitted with parameters

5 estimated by Markov chain Monte Carlo simulation. As it was a Bayesian analysis, for each

6 parameter the evidence distribution is weighted by a distribution of prior beliefs. Non-

7 informative Normal (0,10000) priors were assigned to the trial-specific baseline and

8 treatments effects (log odds ratios), while a Uniform(0,5) prior was assigned to the between-9 study standard deviation in the random effects models.¹⁰

10 This model accounts for the correlation between study level effects induced by multi-arm

11 trials. In order to be included in the analysis, a fundamental requirement is that each

12 treatment is connected directly or indirectly to every other intervention in the network

13 Studies with zero or 100% events in all arms were excluded from the analysis because these 14 studies provide no evidence on relative effects.¹⁰ Where a study had an arm with 0 events, a 15 correction factor was applied where 0.5 was added to the event rate for all arms in that study 16 and 1 was added to the sample size for all arms in that study.

17 We tested the goodness of fit of the model by calculating the residual deviance. If the

18 posterior mean residual deviance is close to the number of unconstrained data points (the 19 number of trial arms in the analysis) then the model is explaining the data well.

20 3.1.1 Fixed and random effects

When considering models for network meta-analysis (NMA), there are several aspects of the data that will impact the choice of parameters included in the model. To assess the validity of an NMA it is essential to assess the extent of heterogeneity and consistency. Heterogeneity concerns the differences in treatment effects between trials within each treatment contrast, while consistency concerns the differences between the direct and indirect evidence informing the treatment contrasts.⁸ Section 3.2 explains how inconsistency was assessed.

A fixed effects NMA model is the simplest model available to estimate the effects of interventions separately while simultaneously synthesizing all available evidence. This model assumes no heterogeneity between trials within each treatment contrast. In other words, all trials are estimating the same treatment effect, regardless of any differences in the conduct of the trials, populations, or treatments (i.e., administration or dose). If this assumption is unreasonable, then a random effects NMA model may be considered. This model accounts for any differences in treatment effects between trials that are beyond chance through measures such as the between-study standard deviation. When critiquing NMA models, it is good practice to assess and compare the fit of both fixed and random effects models, as differences may provide evidence of potential between-study heterogeneity¹⁰.

37 3.1.2 Baseline model and data

38 The baseline risk is defined as the risk of achieving the outcome of interest in the baseline 39 treatment (IA TXA) of the included trials.¹⁴ This allows us to convert the results of the NMA 40 from odds ratios to risk ratios. Twenty eight studies were identified that included IA as a 41 comparator. Out of these, two were European (Aguilera 2015⁴, a Spanish study and Digas 42 2015¹⁶, a Greek study). In the absence of UK based studies, these studies represented the 43 closest population to an NHS population and gave the best external validity. Out of these two 44 studies only Aguilera 2015⁴ was chosen to inform the baseline model as in the clinical review 45 it was the only of the two European studies rated as having a low risk of bias. As only one

- 1 study was included in the baseline model, the fixed effects baseline model was used.
- 2 Aguilera 2015⁴ reported 4 transfusion events (n=50) in its IA arm. Table 1 shows the details
- 3 of the baseline model.

4 Table 1: Posterior distribution of the baseline probability of transfusion for the random 5 and fixed effects baseline models

Model and node	Mean (95% confidence intervals)	Deviance information criterion (DIC)
Fixed effects		5.223
Probability (predictive distribution)	0.080 (0.023, 0.17)	- 3
Log odds (predictive distribution)	-2.561 (-3.762, -1.588)	-)
Sum of the residual deviance	1.045 (0.001, 5.249)	-)
		11

12 3.1.3 Number of simulations and checking convergence

13 For all analyses (both baseline and NMA), a series of 60,000 burn-in simulations were run to

14 allow convergence and then a further 60,000 simulations were run to produce the outputs.

15 Convergence was assessed by examining the history and bgr plots. Kernel density plots

16 were examined to ensure there was enough evidence to sufficiently estimate between study

17 standard deviation. Each analysis was run with 3 chains, each with a different set of initial

18 values, to ensure that the model had converged and was not influenced by the initial values.

19 3.2 Methods of assessing inconsistency

20 An important assumption made in NMA concerns the consistency, that is, the agreement of 21 the direct and indirect evidence informing the treatment contrasts.^{11, 15} There should be no

22 meaningful differences between these two sources of evidence.

To determine if there is evidence of inconsistency, the selected consistency model (fixed or random effects) was compared to an "inconsistency", or unrelated mean effects, model.^{11, 15} The latter is equivalent to having separate, unrelated, meta-analyses for every pairwise contrast, with a common variance parameter assumed in the case of random effects models. Note that the consistency assumption can only be assessed when there are closed loops of direct evidence on 3 or more treatments that are informed by at least 3 independent sources of evidence.¹² The posterior mean of the residual deviance, which measures the magnitude of the differences between the observed data and the model predictions of the data, was used to assess and compare the goodness of fit of each model.¹² Smaller values are preferred, and in a well-fitting model the posterior mean residual deviance should be close to the number of data points in the network (each study arm contributes 1 data point).

The posterior mean of the residual deviance, which measures the magnitude of the differences between the observed data and the model predictions of the data, was used to assess and compare the goodness of fit of each model. Smaller values are preferred, and in a well-fitting model the posterior mean residual deviance should be close to the number of data points in the network (each study contributes 1 data point per arm in the case of armlevel data, 1 point per relative effect in the case of contrast-level data)

40 In addition to assessing how well the models fit the data using the posterior mean of the

41 residual deviance, models were compared using the deviance information criterion (DIC).

- 42 This is equal to the sum of the posterior mean deviance and the effective number of
- 43 parameters, and thus penalizes model fit with model complexity.¹² Lower values are
- 44 preferred and differences of 3 points were considered meaningful.

- 1 Where the base-case model assumes random effects, if the inconsistency model has smaller
- 2 heterogeneity (measured by the posterior median between-study standard deviation)
- 3 compared to the consistency model, then this indicates potential inconsistency in the data.
- 4 To visually assess if specific data-points are contributing to inconsistency, we plot
- 5 contributions to the posterior mean residual deviance for each data-point for the
- 6 inconsistency model vs the consistency model. Points lying below the line of equality indicate
- 7 data-points contributing to inconsistency.
- 8 We performed further checks for evidence of inconsistency through node-splitting through
- 9 the R2WinBUGS package in R (41). ^{11, 13, 41, 43} This method permits the direct and indirect

10 evidence contributing to an estimate of a relative effect to be split and compared.^{13, 43}.

11 3.3 Costs and resource use

12 Costs were divided into the intervention costs (drug and disposables) and the cost of a 13 transfusion.

14 3.3.1 Intervention costs

15 The cost for each arm of the included studies was calculated by extracting the dosage of

16 TXA used, the saline volume used (if applicable) and disposables used (if applicable). Unit

17 costs for TXA solution, TXA tablets, saline and syringes were then obtained from eMIT⁷ or

18 NHS Supply Chain Catalogue 2018³³ (see Table 2) and multiplied by the relevant resource

19 use for each treatment in each included study. An unweighted average of the cost of each

20 treatment for each relevant study was then taken from all the relevant studies (see Appendix 21 B).

<u> </u>	Table 2. ON unit costs for TAA, same and a synnige						
	Resource	Unit cost	Source				
	Syringe	£0.35	NHS Supply Chain Catalogue 2018 ³³				
	TXA solution (500mg/ml)	£0.55	eMIT ¹⁹				
	TXA tablets (500mg)	£0.05	eMIT ¹⁹				
	Saline ampoule (20ml of 0.9%)	£0.11	eMIT ¹⁹				

22 Table 2: UK unit costs for TXA, saline and a syringe

23

24 As a range of volumes of saline were available on eMIT ¹⁹ with different costs, for

25 consistency the proportional cost of a 20ml 0.9% ampoule was applied. For example, if a

26 study stated it used 100ml of saline, the unit cost of a 20ml 0.9% saline ampoule was

27 multiplied by 5. As suggested by the committee, the only additional disposables required

28 were syringes for the IV and IA arms.

29 Where a study indicated that a dose of TXA not in a multiple of 500mg was given, the dose 30 was costed to the nearest 500mg or 500mg/ml. This was done as eMIT only provides oral

31 doses in 500mg tablets or 500mg/ml solution for IA or IV. For example, if a study stated

32 people given oral TXA received 550mg in total, this would be rounded down to 500mg.

33 Where an included study gave the dosage used as a certain amount per kilogram of the

34 patient, a weighted average of 76.8kg was used based upon male and female data from the

35 Office for National Statistics³⁴.

36 After consulting with the guideline committee, staff costs were not applied as TXA is

37 administered in parallel to other processes by staff that would be present even if TXA was

not being administered. Studies which included an oral TXA arm were checked that the dose
was given on the morning of surgery rather than any other time as this would have
represented an additional cost in terms of personnel. Other costs relating to surgery and
running the operating room were assumed to be the same between different comparators
and excluded on this basis. The average dosage used for each intervention was included
upon request by the committee (see Table 3). The median dose was calculated as the mean
dosage was skewed towards higher values. This figure checked if the studies represented a
similar dosage to those that are used by the NHS. Drug cost was calculated by taking away
the costs of a syringe and 100ml of saline (except for oral where this did not apply).

10 Table 3: Average intervention costs for each administration method and median dose 11 of TXA

•••••••			
Method	Average intervention costs (including syringe and saline)	Drug cost	Median dose (grams) of TXA
IA	£2.82	£1.93	2.00
IV	£2.25	£1.37	1.54
Oral	£0.27	£0.27	3.07
IA + IV	£5.34	£4.10	3.02
IA + oral	£2.31	£1.85	3.50

12

13 3.3.2 Cost of transfusion

14 The unit cost of a transfusion was calculated from Stokes 2018³⁹ and the NICE Blood

15 Transfusion guideline³¹. Stokes³⁹ included all laboratory and equipment costs associated with 16 processing a blood transfusion. The standard volume of a unit of red blood cells (RBCs) was

16 processing a blood transfusion. The standard volume of a up

17 assumed as 280ml with a range of 220-340ml.

18 The mean number of units transfused per transfusion event was calculated for each

19 intervention as there is a significant cost associated with each unit transfused. All studies

20 included in the clinical review were analysed to calculate this. Where available, the total units

21 or volume transfused; the volume of each unit; and total transfusion events were extracted

22 from each study for each arm. This data was then aggregated to find the mean total volume

23 transfused per transfusion event for each intervention.

However in practice, volume transfused per transfusion event was inconsistently reported in the included trials. For certain studies it was possible to calculate the average number of units transfused per transfusion event, but the volume in each unit was not specified. For other studies it was possible to calculate the total volume transfused per transfusion event; this was preferable as it was then possible to calculate this volume in terms of standard UK RBC units. For other studies it was not possible to calculate the total units or total volume transfused per transfusion event. Due to these inconsistencies, it was not deemed possible to conduct an NMA for volume transfused per transfusion event. Where it was possible to extract volume transfused per transfusion event, most studies reported 1.5-2 units. Therefore for the base case it was assumed that 2 units of blood are transfused for all interventions.

34

1 Table 4: Average cost of a blood transfusion by first and subsequent units of red

2 blood cells

Resource	Unit cost	Source
Administration of first unit of red blood cells (RBC)s	£57.19	Stokes 2018 ³⁹
Administration of subsequent unit of RBCs	£36.13	Stokes 2018 ³⁹
Unit of RBCs (first and subsequent)	£128.99	NHSBT 2018/19 ³²
Total cost of first RBC unit	£186.18	
Total cost of a subsequent RBC unit	£165.12	

3

4 3.3.3 Total cost calculation

5 The total cost for each administration method was given by the formula:

6 P(transfusion.event) x (C(first.unit) + C(subs.unit)) + C(intervention)

7 Where the probability of a transfusion event occurring [P(transfusion.event)] is the output of

8 the NMA. The cost of a transfusion event [C(first.unit) + C(subs.unit)] is the cost of

9 transfusing an initial unit and 1 subsequent unit. The cost of each intervention

10 [C(intervention)] was calculated as outlined in section 3.3.1.

11 This formula was applied for all 5 comparators with the least costly representing the best 12 value for money when factoring in the probability of a transfusion occurring.

13 3.3.4 Methods of sensitivity analyses

A series of one way deterministic sensitivity analyses were conducted to test the robustness
of the result given the assumptions made. Firstly, an analysis was conducted where the
intervention costs were doubled for all administration methods. Another analysis was done
where the intervention costs were doubled only for the combination therapies whilst
intervention costs for the monotherapies remained the same.

19 Lastly, the assumption of 2 units of RBCs being transfused per transfusion event was tested.

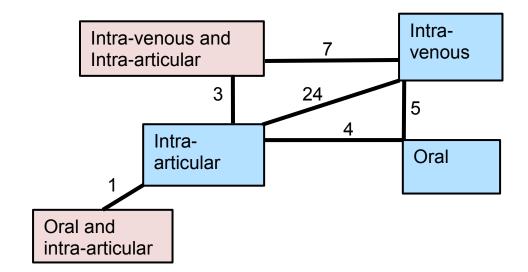
20 In order to test this, an analysis was conducted where only 1 unit was transfused per21 transfusion event.

22

23

4 Results

2 4.1 Network


3 Forty-two studies were identified that reported transfusion events as an outcome. After

- 4 excluding papers that reported zero events in each arm and papers reporting on
- 5 combinations that did not connect to any other intervention in the network, 36 studies
- 6 involving 5 treatments were included in the network for transfusion events. Four of these
- 7 studies were 3- arm trials such that there were 44 direct pairwise comparisons in total. The
- 8 3– arm trials were Song 2017³⁸ (IA vs IV vs IA+IV), Xie 2016⁴⁹ (IA vs IV vs IA+IV), Luo 2018^{27} (IA vs IV vs oral) and Yuan 2017⁵¹ (IA vs IV vs oral).

10 The network can be seen in Figure 1 and the trial data for each of the studies included in the 11 NMA are presented in Table 5: Study data for transfusion events NMA

12

- 13 Figure 1 TXA transfusion event NMA structure. Blue shapes indicate a
- monotherapy and red shapes indicate a combination therapy. Numbers show the 14 amount of studies comparing the relevant interventions

- 15
- 16
- 17
- 18
- 19
- 20

21

1 4.2 Data

Study	Intervention 1	Intervention 2	Intervention 3	Interventio	on 1	Intervent 2	tion	Interven 3	tion
				events	N	events	N	events	N
Lin 2015 ²⁵	IV + IA	IA	-	0.5 ^(a)	41	1.5	41	NA	NA
Song 2017 ³⁸	IV + IA	IA	IV	0.5 ^(a)	51	1.5	51	0.5	51
Xie 2016 ⁴⁹	IV + IA	IA	IV	0.5 ^(a)	71	4.5	71	3.5	71
Cankaya 2017 ⁵	Oral + IA	IA		0.5 ^(a)	51	3.5	51	NA	NA
Adravanti 2018 ²	IV + IA	IV	-	0.5 ^(a)	51	2.5	51	NA	NA
Huang 2014 ²¹	IV + IA	IV	-	3	92	4	92	NA	NA
Jain 2016 ²²	IV + IA	IV	-	1	59	4	60	NA	NA
Yi 2016 ⁵⁰	IV + IA	IV	-	1	50	8	50	NA	NA
Abdel 2018 ¹	IA	IV	-	5	320	2	320	NA	NA
Aggarwal 2016 ³	IA	IV	-	0.5 ^(a)	36	7.5	36	NA	NA
Aguilera 2015 ⁴	IA	IV	-	4.5 ^(a)	51	0.5	51	NA	NA
Chen 2016 ⁶	IA	IV	-	1	50	2	50	NA	NA
Digas 2015 ¹⁶	IA	IV	-	5	30	7	30	NA	NA
George 2018 ¹⁸	IA	IV	-	3.5 ^(a)	59	0.5	56	NA	NA
Luo 2018 ²⁷	IA	IV	Oral	7	60	5	60	4	60
Maniar 2012 ²⁸	IA	IV	-	3	40	16	160	NA	NA
May 2016 ^{29(b)}	IA	IV	-	0.5 ^(a)	63	1.5	70	NA	NA
Patel 2014 ³⁵	IA	IV	-	1.5 ^(a)	48	0.5	43	NA	NA
Pinsorns ak 2016 ³⁶	IA	IV	-	9	30	7	30	NA	NA

2 Table 5: Study data for transfusion events NMA

Study	Intervention	Intervention 2	Intervention 3	Interventio	on 1	Intervent 2	tion	Intervent 3	tion
Prakash 2017 ^{37(c)}	IA	IV	-	8	100	3	50	NA	NA
Stowers 2017 ⁴⁰	IA	IV	-	1.5 ^(a)	61	0.5	61	NA	NA
Ugurlu 2017 ⁴²	IA	IV	-	2	42	2	40	NA	NA
Wang 2017 ⁴⁶	IA	IV	-	0.5 ^(a)	51	1.5	51	NA	NA
Wei 2014 ⁴⁷	IA	IV	-	6	102	6	101	NA	NA
Yuan 2017 ⁵¹	IA	IV	-	17	140	15	140	15	140
Zhang 2016 ⁵²	IA	IV	-	0.5 ^(a)	25	1.5	24	NA	NA
Fillingha- m 2016 ¹⁷	Oral	IV	-	1	34	1	37	NA	NA
Jaszczyk 2015 ²³	Oral	IV	-	3	40	1	43	NA	NA
Zhao 2018 ⁵³	Oral	IV	-	1	40	2	40	NA	NA
Luo 2018a ²⁶	IA	Oral	-	2	58	1	59	NA	NA
Wang 2018a ⁴⁵	IA	Oral	-	4	75	3	75	NA	NA
Lauruen- gthana 2019 ²⁴	IA	IV	-						
2019 ²¹ Mehta 2019 ³⁰	IA	IV	-	15	76	14	76	NA	NA
Wang 2018b ⁴⁴	IA	IV	-	44 2	100 60	37	100 60	NA	NA NA
Zhou KD 2018 ⁵⁴	IA	IV	-	20	57	24	57	NA	NA
Gulabi 2019 ²⁰	IV	IA + IV	-	3	26	24	22	NA	NA

(a) Continuity correction applied for a 0 event arm. 1 has been added to the sample size
 and 0.5 to the events for all arms in these studies

3 (b) Four IV arms were included in this study that were added into a single arm for this
 4 analysis

5 (c) Two IA arms were included in this study that were added into a single arm for this 6 analysis

1 4.3 NMA Results

2 4.3.1 Results of estimation

- 3 No meaningful difference was found between the fixed and random effect posterior models
- 4 for the NMA. Therefore the fixed effect model results were used. Table 6 summarises
- the (fixed effects) results of the conventional meta-analyses in terms of risk ratios from studies directly comparing different interventions, and
- 7 the (fixed effects) results of the NMA in terms of risk ratios for every possible treatment8 comparison.
- 9

1 Table 7 presents the base case summary statistics for the network, including the probability

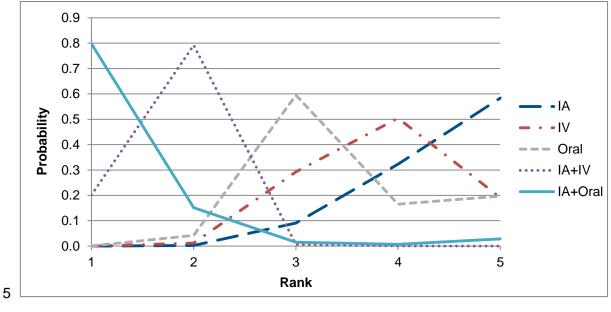
2 of a transfusion occurring, the overall NHS cost, ranking and probability of the intervention

3 being the best. The combination therapy ranking probabilities are skewed towards more

4 favourable ranks, as shown by Figure 2.

5 Table 6: Risk ratios for transfusion events; direct pairwise meta-analysis results and 6 NMA results

Comparator	Intervention	Direct (95% confidence interval)	Fixed effects NMA - median (95% credible interval)
IA	IV	Presented as risk difference in clinical review	0.925 (0.732, 1.161)
	Oral	0.781 (0.474, 1.282) ^(a)	0.840 (0.518, 1.319)
	IA + IV	Presented as Peto odds ratio in clinical review	0.294 (0.126, 0.611)
	IA + Oral	Presented as Peto odds ratio in clinical review	0.070 (0.000, 1.102)
IV	Oral	1.01 (0.59, 1.73)	0.909 (0.561, 1.432)
	IA + IV	0.27 (0.11, 0.67)	0.318 (0.140, 0.642)
	IA + Oral	n/a	0.076 (0.000, 1.208)
Oral	IA + IV	n/a	0.350 (0.137, 0.816)
	IA + Oral	n/a	0.083 (0.000, 1.377)
IA + IV	IA + Oral	n/a	0.239 (0.000, 4.311)


7 (a) The inverse risk ratio to the one presented in the evidence review is presented here
 8 for comparison

1 Table 7: Absolute outcomes and ranking of interventions - .

Transfusions							
	Probability of a transfusion event - median (95% Crls)	Intervention rank - median (95% CrIs) 1=least transfusions, 5=most	Probability that intervention is best (least transfusions)				
IA	0.072 (0.025, 0.187)	5 (3, 5)	0.00%				
IV	0.066 (0.023, 0.178)	4 (3, 5)	0.00%				
Oral	0.060 (0.019, 0.175)	3 (2, 5)	0.06%				
IA + IV	0.021 (0.005, 0.074)	2 (1, 2)	20.14%				
IA + Oral	0.005 (0.000, 0.098)	1 (1, 5)	79.80%				
NHS cost							
NHS cost	Cost of each intervention including transfusion costs – mean (95% Crls)	Intervention rank - median (95% CrIs) 1=least cost, 5=most cost	Probability that intervention is best (least cost)				
NHS cost	intervention including transfusion costs –	median (95% Crls)	intervention is best				
	intervention including transfusion costs – mean (95% Crls)	median (95% Crls) 1=least cost, 5=most cost	intervention is best (least cost)				
IA	intervention including transfusion costs – mean (95% Crls) £31.13 (11.76, 68.36)	median (95% Crls) 1=least cost, 5=most cost 5 (3, 5)	intervention is best (least cost) 0.00%				
IA IV	intervention including transfusion costs – mean (95% CrIs) £31.13 (11.76, 68.36) £28.63 (10.22, 64.65)	median (95% Crls) 1=least cost, 5=most cost 5 (3, 5) 4 (3, 5)	intervention is best (least cost) 0.00% 0.00%				

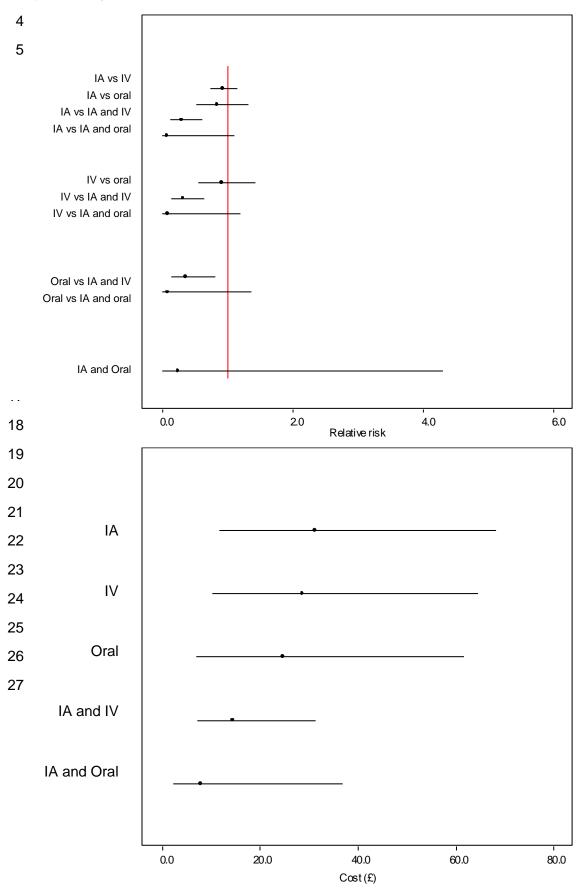

2

Figure 2: Rank-o-gram showing the probability of each intervention being ranked 1-5 for transfusion events (1 being the best and 5 the least good)

1 Figure 3: A) Base case median risk ratios (RR) for interventions. RR of 1 shown in red

2 for reference B) Base case mean NHS cost for interventions when factoring in the 3 probability of a transfusion event

1 4.3.2 Results of cost sensitivity analyses

2 Table 8 explores the different cost and transfusion assumptions made in the model. In each sensitivity analysis the probability of a transfusion3 occurring was kept constant.

4 Table 8: Sensitivity analyses

	NHS cost of each intervention including transfusion costs – mean (95% Crls)						
	Base case – 2 units are transfused per transfusion event with average direct costs	2 units are transfused per transfusion event and the intervention costs are doubled	2 units are transfused per transfusion event and the intervention costs for only the combination therapies are doubled	1 unit is transfused per transfusion event and intervention costs remain the same			
IA	£31.13 (11.76, 68.36)	£33.94 (14.57, 71.17)	£31.13 (11.76, 68.36)	£17.82 (7.56, 37.55)			
IV	£28.63 (10.22, 64.65)	£30.88 (12.47, 66.90)	£28.63 (10.22, 64.65)	£16.23 (6.47, 35.32)			
Oral	£24.70 (6.92, 61.65)	£24.97 (7.19, 61.92)	£24.70 (6.92, 61.65)	£13.22 (3.79, 32.8)			
IA + IV	£14.34 (7.23, 31.42)	£19.67 (12.56, 36.75)	£19.67 (12.56, 36.75)	£10.11 (6.34, 19.16)			
IA + Oral	£7.76 (2.31, 36.82)	£10.07 (4.62, 39.13)	£10.07 (4.62, 39.13)	£5.20 (2.31, 20.60)			

1 4.3.3 Inconsistency and goodness of fit

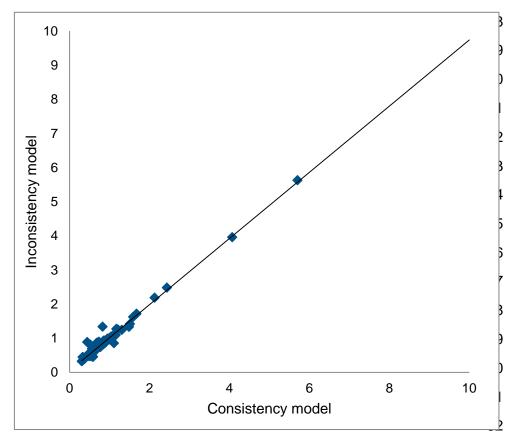
Inconsistency checks were performed using the fixed effect model, as there were no
meaningful differences between the fixed and random effects model in terms of the posterior
mean residual deviance and DIC (Table 9). Convergence was assessed as satisfactory at
120,000 iterations, and the consistency and inconsistency models were compared using
results based on samples from 60,000 iterations on three chains. WinBUGS code for the
inconsistency model is provided in 39.

8 There are no meaningful differences between the fit of the fixed effect consistency and

9 inconsistency models (Table 9). The deviance contributions plot (Figure 4) shows no data-

10 points where the inconsistency model better predicted data points (no points below the line of 11 equality).

12 Table 9 Model fit statistics for transfusion events


Model ^(a)	Posterior total residual deviance ^(b)	DIC ^(c)
Consistency model - FE	71.13	323.724
Consistency model - RE	70.22	325.238
Inconsistency model - FE	72.39	326.793

13 a) Continuity correction applied to studies containing zero cells

b) Posterior mean residual deviance compared to 76 total data points

15 c) Deviance information criteria (DIC) – lower values preferred

Figure 4: Deviance contributions for the fixed effect consistency and inconsistency models for transfusion events

1 Fixed effect node-split models were run for 150,000 iterations after a burn-in of 50,000

2 iterations. Convergence was satisfactory across all models. There is no evidence of

3 inconsistency, as there are no meaningful differences between the fit of the fixed effect NMA

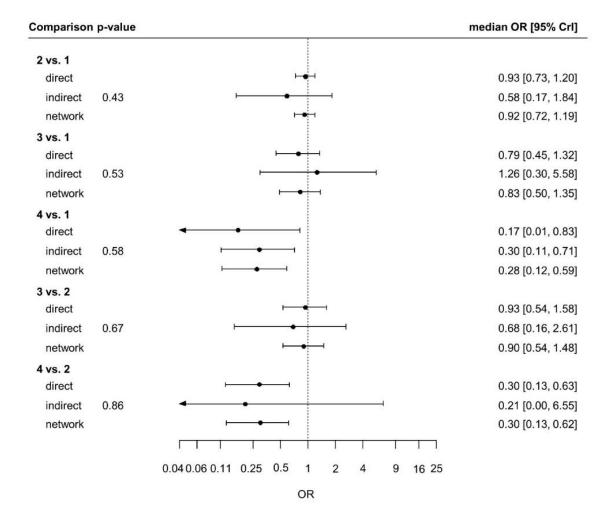
4 model (which assumes consistency) and the node-split models (Table 10). In addition, there

5 is no evidence of inconsistency between the direct and indirect estimates (Figure 5).

Node split model ^a	Posterior total residual deviance ^b	DIC	p-value ^c
IV vs. IA	71.55	324.96	0.43
Oral vs. IA	71.72	325.16	0.53
Oral vs. IV	71.99	325.38	0.58
IA and IV vs. IA	71.93	325.40	0.67
IA and IV vs. IV	72.33	325.59	0.86
NMA (no nodes split)	71.13	323.724	

6 Table 10 Node split model fit statistics for transfusion events

7 a) Continuity correction applied to studies containing zero 8


b) Posterior mean residual deviance compared to 76 total data points

c) p-values < 0.05 are indicative of evidence of inconsistency between the direct and 9 indirect estimates 10

1 Figure 5: Direct, indirect, and network estimates of relative treatment effects based on

2 node-splitting results. Treatments codes: 1 – IA, 2 – IV, 3 – Oral, 4 – IA and IV, 5 – IA

3 and Oral.

5 1 Risk of bias

- 2 There are several methods available for assessing the risk of bias in an NMA. For this
- 3 analysis, the risk of bias conducted for the outcomes included in the pairwise meta-analysis
 4 provides an overall assessment.
- 5 As seen in **Error! Reference source not found.**, the majority of the relevant evidence for
- 6 he NMAs had a high risk of bias. For studies where there was high or very high risk of bias,
- 7 this was due to concerns about selection bias. Full risk of bias details can be found in
- 8 Evidence Review G of the guideline

9 Table 11: Included studies risk of bias (RoB) for transfusion events

Study	Transfusion events RoB
Abdel 2018 ¹	Low
Adravanti 2018 ²	High
Aggarwal 2016 ³	High
Aguilera 2015 ⁴	Low
Cankaya 2017⁵	High
Chen 2016b ⁶	High
Digas 2015 ¹⁶	High
Fillingham 2016 ¹⁷	High
George 2018 ¹⁸	Low
Huang 2014 ²¹	High
Jain 2016 ²²	High
Jaszczyk 2015 ²³	Very high
Lin 2015 ²⁵	High
Luo 2018 ²⁷	High
Luo 2018a ²⁷	High
Maniar 2012 ²⁸	Very high
May 2016 ²⁹	Low
Patel 2014 ³⁵	Very high
Pinsornsak 2016 ³⁶	High
Prakash 2017 ³⁷	Very high
Song 2017 ³⁸	Low
Stowers 2017 ⁴⁰	Low
Ugurlu 2017 ⁴²	High

Study	Transfusion events RoB
Wang 2017 ⁴⁶	High
Wang 2018 ⁴⁵	Low
Wei 2014 ⁴⁷	Low
Xie 2016 ⁴⁹	High
Yi 2016 ⁵⁰	High
Yuan 2017 ⁵¹	High
Zhang 2016 ⁵²	High
Zhao 2018 ⁵³	High
Lauruengthana 2019 ²⁴	Very high
Mehta 2019 ³⁰	High
Wang 2018 ⁴⁴	Low
Zhou KD 201854	High
Gulabi 2019 ²⁰	Low

1

6 1 Evidence statements

- 2 Transfusion events
- Thirty-six studies were included in the network; IA with oral TXA was ranked as the best intervention in reducing the risk of a transfusion event, although there was considerable uncertainty about its estimated effectiveness (95% credible interval for rank ranged from best to worst). IA with oral ranked second best, and this result was more certain (95% credible interval for rank ranged from 1st to 2nd best). IA was ranked as the least effective intervention in reducing the risk of a transfusion event. No inconsistency was identified in the network.

10 NHS costs

- 11 Thirty-six studies were included in the network; IA with oral TXA was ranked as the • most cost effective intervention when factoring in the probability of a transfusion 12 occurring. Although, there was considerable uncertainty about its estimated cost 13 effectiveness (95% credible interval for rank ranged from most cost effective to least 14 15 cost effective). IA with oral ranked second best, and this result was more certain (95% credible interval for rank ranged from most cost effective to 3rd most cost 16 effective). IA was ranked as the least cost effective intervention. No inconsistency 17 was identified in the network. 18
- 19

7 1 Discussion

- 2 An NMA was conducted for transfusion events when using different methods of
- 3 administrating TXA. Five different ways of administering TXA (monotherapies and
- 4 combination therapies) were included in the network. These results were used in committee
- 5 decision-making when making recommendations.

6 7.1.1 Summary of clinical evidence

7 Thirty-six studies were included. IA in combination with oral was ranked as the most clinically
8 effective way of administering TXA in reducing blood transfusion events. IA in combination
9 with IV was the second most clinically effective intervention, followed by oral and then IV. IA
10 alone was the least clinically effective intervention. There was a large degree of uncertainty
11 in the ranking of the monotherapies. Although IA is ranked as the least effective, all of the
12 monotherapies had similar rank credible intervals (from rank 3 to rank 5 for IA and IV and
13 rank 2 to rank 5 for oral), so it could not conclusively be said that one is better or worse than
14 the other.
15 The rank credible intervals were more conclusive for IA in combination with IV, which did not

span above the point estimate of rank 2. Although IA in combination with oral was clearly
ranked as the best intervention, it comes with the caveat that it was linked to the network by
a single study. The uncertainty is reflected by the upper credible interval being rank 5.
Furthermore this study was judged to have a high risk of bias in the clinical review (see
Cankaya 2017⁵). The IA in combination with oral arm of this trial had 0 events so a correction
factor was applied. However it is also noteworthy that the other combination therapy, IA in
combination with IV, was better connected to the network and was also ranked better than
the monotherapies with a high degree of certainty.

24 7.1.2 Summary of cost evidence

When factoring in the probability of transfusion events, IA in combination with oral was the most cost effective way of administering TXA. IA in combination with IV was the second most cost effective, followed by oral and then by IV. IA was the least cost effective method of administration when factoring in transfusions. Similarly to the clinical evidence, all of the monotherapies showed wide credible intervals. Given this, it is difficult to draw conclusions if one of the monotherapies is more cost effective than any other. The finding that combination therapies are the most cost effective administration method when factoring in transfusion events remained a robust finding in all sensitivity analyses. The results of the sensitivity analyses found that overall costs were most sensitive to the cost of a blood transfusion.

IA in combination with oral was the most cost effective intervention; however the rank
credible intervals spanned from most cost effective to least cost effective. Furthermore, as
stated previously this intervention was linked to the network by a single study which was
judged as having a high risk of bias. Further studies including IA in combination with oral as
an intervention and transfusions as an outcome are needed to explore the validity of this
result.

40 7.1.3 Goodness of fit summary

41 The network appeared to fit the data well, as demonstrated by the DIC and residual deviance42 statistics, with no inconsistencies identified.

8 1 Conclusion

2 The results indicated that topical (intra-articular) in combination with oral had the lowest 3 probability of a transfusion event and was also the cheapest. However, the committee were 4 keen to note that the intervention was linked to the network by a single study that had a high 5 risk of bias in the clinical review. Furthermore, use of oral tranexamic acid is off license and 6 generally not part of current practice, use of topical (intra-articular) tranexamic acid is off 7 license but is part of current practice. As both methods of administration are off label, the 8 committee agreed they did not want to make a recommendation for topical (intra-articular) in 9 combination with oral. Although, as previously noted, topical (intra-articular) tranexamic acid 10 is off label; its use in combination with IV tranexamic acid is not uncommon in current 11 practice. Given the clinical and economic evidence in favour of this combination, the 12 committee decided to make an offer for topical (intra-articular) in combination with IV. 13 14 There was discussion about the higher median dosage used in the topical (intra-articular) 15 and intravenous method that was recommended. Although there was suggestion that this 16 could have been a contributing factor to the results, the committee still felt the evidence was 17 strong enough to offer topical (intra-articular) in combination with IV. The median dosage was 18 considered over the mean as the mean was skewed towards higher values. The committee 19 discussed the total dosage they use in current practice, which varied between 2-3g when 20 combining IV and topical (intra-articular). The median dosage of topical (intra-articular) in 21 combination with IV study arms included in the network roughly equated to the upper end of 22 dosage discussed by the committee. Therefore the committee agreed dosage should not

23 exceed 3g in total.

24

The NMA and cost comparison analysis is directly applicable to hip and knee replacements as the clinical data concerned only these populations. Although no evidence was available for tranexamic acid use for shoulder replacements, the committee agreed that the analysis could support a recommendation for the shoulder population. This was done on the basis that although blood loss may be slightly less for shoulder replacements, there is still benefit in reducing bleeding. The recommendation will be cost saving for shoulder replacements although the savings will be relatively less than for hip and knee replacements. This is because avoided transfusions drive cost savings and shoulder replacements generally require less transfusions than knee/hip replacements.

34

1 References

- Abdel MP, Chalmers BP, Taunton MJ, Pagnano MW, Trousdale RT, Sierra RJ et al.
 Intravenous versus topical tranexamic acid in total knee arthroplasty: Both effective in a randomized clinical trial of 640 patients. Journal of Bone and Joint Surgery
 (American Volume). 2018; 100(12):1023-1029
- 6 2. Adravanti P, Di Salvo E, Calafiore G, Vasta S, Ampollini A, Rosa MA. A prospective,
 7 randomized, comparative study of intravenous alone and combined intravenous and
 8 intraarticular administration of tranexamic acid in primary total knee replacement.
 9 Arthroplasty Today. 2018; 4(1):85-8
- Aggarwal AK, Singh N, Sudesh P. Topical vs intravenous tranexamic acid in reducing
 blood loss after bilateral total knee arthroplasty: A prospective study. Journal of
 Arthroplasty. 2016; 31(7):1442-8
- Aguilera X, Martinez-Zapata MJ, Hinarejos P, Jordan M, Leal J, Gonzalez JC et al.
 Topical and intravenous tranexamic acid reduce blood loss compared to routine
 hemostasis in total knee arthroplasty: A multicenter, randomized, controlled trial.
 Archives of Orthopaedic and Trauma Surgery. 2015; 135(7):1017-25
- 17 5. Cankaya D, Dasar U, Satilmis AB, Basaran SH, Akkaya M, Bozkurt M. The combined
 use of oral and topical tranexamic acid is a safe, efficient and low-cost method in
 reducing blood loss and transfusion rates in total knee arthroplasty. Journal of
 Orthopaedic Surgery. 2017; 25(1)
- Chen JY, Chin PL, Moo IH, Pang HN, Tay DK, Chia SL et al. Intravenous versus
 intra-articular tranexamic acid in total knee arthroplasty: A double-blinded randomised
 controlled noninferiority trial. Knee. 2016; 23(1):152-6
- Commercial Medicines Unit (CMU), Department of Health. Electronic market
 information tool (EMIT). 2011. Available from: http://cmu.dh.gov.uk/electronic-market information-tool-emit/ Last accessed: 4 April 2017
- Dias S, Sutton AJ, Welton NJ, Ades AE. NICE DSU technical support document 3: Heterogeneity: subgroups, meta-regression, bias and bias-adjustment. Decision
 Support Unit, ScHARR, 2011. Available from: http://nicedsu.org.uk/wpcontent/uploads/2016/03/TSD3-Heterogeneity.final-report.08.05.12.pdf
- Dias S, Welton NJ, Sutton AJ, Ades AE. NICE DSU technical support document 1: Introduction to evidence synthesis for decision making. Sheffield. Decision Support Unit, ScHARR, 2011. Available from: http://nicedsu.org.uk/wp-
- 34 content/uploads/2016/03/TSD1-Introduction.final_.08.05.12.pdf
- Dias S, Welton NJ, Sutton AJ, Ades AE. NICE DSU technical support document 2: A
 generalised linear modelling framework for pairwise and network meta-analysis of
 randomised controlled trials. Sheffield. Decision Support Unit, ScHARR, 2011.
 Available from: http://nicedsu.org.uk/wp-content/uploads/2017/05/TSD2-Generalmeta-analysis-corrected-2Sep2016v2.pdf
- 40 11. Dias S, Welton NJ, Sutton AJ, DM C, L G, Ades AE. NICE DSU technical support
 41 document 4: Inconsistency in networks of evidence based on randomised controlled
 42 trials. Decision Support Unit S, 2011. Available from: http://nicedsu.org.uk/wp43 content/uploads/2016/03/TSD4-Inconsistency.final_.15April2014.pdf
- 44 12. Dias S, Sutton AJ, Ades AE, Welton NJ. Evidence synthesis for decision making 2: A
 generalized linear modeling framework for pairwise and network meta-analysis of
 randomized controlled trials. Medical Decision Making. 2013; 33(5):607-617

- Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Statistics in Medicine. 2010; 29(7-8):932-44
- 3 14. Dias S, Welton NJ, Sutton AJ, Ades AE. Evidence synthesis for decision making 5:
 the baseline natural history model. Medical Decision Making. 2013; 33(5):657-670
- 5 15. Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades AE. Evidence synthesis for
 decision making 4: Inconsistency in networks of evidence based on randomized
 controlled trials. Medical Decision Making. 2013; 33(5):641-656
- 8 16. Digas G, Koutsogiannis I, Meletiadis G, Antonopoulou E, Karamoulas V, Bikos C.
 9 Intra-articular injection of tranexamic acid reduce blood loss in cemented total knee
 10 arthroplasty. European Journal of Orthopaedic Surgery & Traumatology. 2015;
 11 25(7):1181-8
- 12 17. Fillingham YA, Kayupov E, Plummer DR, Moric M, Gerlinger TL, Della Valle CJ. The
 13 James A. Rand young investigator's award: A randomized controlled trial of oral and
 14 intravenous tranexamic acid in total knee arthroplasty: The same efficacy at lower
 15 cost? Journal of Arthroplasty. 2016; 31(9 Suppl):26-30
- 16 18. George J, Eachempati KK, Subramanyam KN, Gurava Reddy AV. The comparative efficacy and safety of topical and intravenous tranexamic acid for reducing perioperative blood loss in total knee arthroplasty- A randomized controlled non-inferiority trial. Knee. 2018; 25(1):185-191
- Government Digital Service. Drugs and pharmaceutical electronic market information
 tool (eMIT) 2018. Available from: https://www.gov.uk/government/publications/drugs and-pharmaceutical-electronic-market-information-emit Last accessed: 05/07/2019
- 23 20. Gulabi D, Yuce Y, Erkal KH, Saglam N, Camur S. The combined administration of
 24 systemic and topical tranexamic acid for total hip arthroplasty: Is it better than
 25 systemic? Acta Orthopaedica et Traumatologica Turcica. 2019; Epublication
- Huang Z, Ma J, Shen B, Pei F. Combination of intravenous and topical application of
 tranexamic acid in primary total knee arthroplasty: A prospective randomized
 controlled trial. Journal of Arthroplasty. 2014; 29(12):2342-6
- 29 22. Jain NP, Nisthane PP, Shah NA. Combined administration of systemic and topical
 30 tranexamic acid for total knee arthroplasty: Can it be a better regimen and yet safe? A
 31 randomized controlled trial. Journal of Arthroplasty. 2016; 31(2):542-7
- Jaszczyk M, Kozerawski D, Kolodziej L, Kazimierczak A, Sarnecki P, Sieczka L.
 Effect of single preoperative dose of tranexamic acid on blood loss and transfusion in hip arthroplasty. Ortopedia Traumatologia Rehabilitacja. 2015; 17(3):265-73
- Laoruengthana A, Rattanaprichavej P, Rasamimongkol S, Galassi M, Weerakul S,
 Pongpirul K. Intra-articular tranexamic acid mitigates blood loss and morphine use
 after total knee arthroplasty. A randomized controlled trial. Journal of Arthroplasty.
 2019; 34(5):877-881
- Lin SY, Chen CH, Fu YC, Huang PJ, Chang JK, Huang HT. The efficacy of combined
 use of intraarticular and intravenous tranexamic acid on reducing blood loss and
 transfusion rate in total knee arthroplasty. Journal of Arthroplasty. 2015; 30(5):776-80
- 42 26. Luo ZY, Wang D, Meng WK, Wang HY, Pan H, Pei FX et al. Oral tranexamic acid is
 43 equivalent to topical tranexamic acid without drainage in primary total hip
 44 arthroplasty: A double-blind randomized clinical trial. Thrombosis Research. 2018;
 45 167:1-5

1 27. Luo ZY, Wang HY, Wang D, Zhou K, Pei FX, Zhou ZK. Oral vs intravenous vs topical 2 tranexamic acid in primary hip arthroplasty: A prospective, randomized, double-blind, controlled study. Journal of Arthroplasty. 2018; 33(3):786-793 3 Maniar RN, Kumar G, Singhi T, Nayak RM, Maniar PR. Most effective regimen of 4 28. 5 tranexamic acid in knee arthroplasty: A prospective randomized controlled study in 240 patients. Clinical Orthopaedics and Related Research. 2012; 470:2605-12 6 7 29. May JH, Rieser GR, Williams CG, Markert RJ, Bauman RD, Lawless MW. The 8 assessment of blood loss during total knee arthroplasty when comparing intravenous 9 vs intracapsular administration of tranexamic acid. Journal of Arthroplasty. 2016; 10 31(11):2452-2457 11 30. Mehta N, Goel N, Goyal A, Joshi D, Chaudhary D. A prospective comparative study 12 between intravenous and intraarticular tranexamic acid administration in decreasing 13 the perioperative blood loss in total knee arthroplasty. Journal of Arthroscopy and 14 Joint Surgery. 2019; 6(1):70-73 15 31. National Institute for Health and Care Excellence. Transfusion: Blood transfusion. 16 London, 2015, Available from: 17 https://www.nice.org.uk/guidance/NG24/documents/transfusion-full-guideline2 18 32. NHS Blood and Transplant. NHS Blood and Transplant. 2019. Available from: https://www.nhsbt.nhs.uk/ Last accessed: 05/07/2019 19 20 33. NHS Supply Chain Catalogue. NHS Supply Chain, 2018. Available from: 21 http://www.supplychain.nhs.uk/ 22 34. Office for National Statistics. People, population and community. 2019. Available 23 from: https://www.ons.gov.uk/peoplepopulationandcommunity Last accessed: 24 05/07/2019 25 35. Patel JN, Spanyer JM, Smith LS, Huang J, Yakkanti MR, Malkani AL. Comparison of 26 intravenous versus topical tranexamic acid in total knee arthroplasty: A prospective 27 randomized study. Journal of Arthroplasty. 2014; 29(8):1528-31 28 36. Pinsornsak P, Rojanavijitkul S, Chumchuen S. Peri-articular tranexamic acid injection 29 in total knee arthroplasty: A randomized controlled trial. BMC Musculoskeletal 30 Disorders. 2016; 17:313 31 37. Prakash J, Seon JK, Park YJ, Jin C, Song EK. A randomized control trial to evaluate 32 the effectiveness of intravenous, intra-articular and topical wash regimes of 33 tranexamic acid in primary total knee arthroplasty. Journal of Orthopaedic Surgery. 34 2017; 25(1):2309499017693529 35 38. Song EK, Seon JK, Prakash J, Seol YJ, Park YJ, Jin C. Combined administration of iv 36 and topical tranexamic acid is not superior to either individually in primary navigated 37 TKA. Journal of Arthroplasty. 2017; 32(1):37-42 38 39. Stokes EA, Wordsworth S, Staves J, Mundy N, Skelly J, Radford K et al. Accurate 39 costs of blood transfusion: A microcosting of administering blood products in the 40 United Kingdom National Health Service. Transfusion. 2018; 58(4):846-853 41 40. Stowers MDJ, Aoina J, Vane A, Poutawera V, Hill AG, Munro JT. Tranexamic acid in 42 knee surgery study-a multicentered, randomized, controlled trial. Journal of 43 Arthroplasty. 2017; 32(11):3379-3384 44 41. Sturtz S, Ligges U, Gelman A. R2WinBUGS: A package for running WinBUGS from 45 R. Journal of Statistical Software. 2005; 19(3):1-16

1 2 3 4	42.	Ugurlu M, Aksekili MA, Caglar C, Yuksel K, Sahin E, Akyol M. Effect of topical and intravenously applied tranexamic acid compared to control group on bleeding in primary unilateral total knee arthroplasty. Journal of Knee Surgery. 2017; 30(2):152-157
5 6 7	43.	van Valkenhoef G, Dias S, Ades AE, Welton NJ. Automated generation of node- splitting models for assessment of inconsistency in network meta-analysis. Res Synth Methods. 2016; 7(1):80-93
8 9 10	44.	Wang D, Wang HY, Cao C, Li LL, Meng WK, Pei FX et al. Tranexamic acid in primary total knee arthroplasty without tourniquet: A randomized, controlled trial of oral versus intravenous versus topical administration. Scientific Reports. 2018; 8(1):13579
11 12 13 14	45.	Wang D, Zhu H, Meng WK, Wang HY, Luo ZY, Pei FX et al. Comparison of oral versus intra-articular tranexamic acid in enhanced-recovery primary total knee arthroplasty without tourniquet application: A randomized controlled trial. BMC Musculoskeletal Disorders. 2018; 19(1):85
15 16 17	46.	Wang J, Wang Q, Zhang X, Wang Q. Intra-articular application is more effective than intravenous application of tranexamic acid in total knee arthroplasty: A prospective randomized controlled trial. Journal of Arthroplasty. 2017; 32(11):3385-3389
18 19 20	47.	Wei W, Wei B. Comparison of topical and intravenous tranexamic acid on blood loss and transfusion rates in total hip arthroplasty. Journal of Arthroplasty. 2014; 29(11):2113-6
21 22 23	48.	WinBUGS [Computer programme] version 1.4.3. Cambridge. MRC Biostatistics Unit University of Cambridge, 2019. Available from: http://www.mrc- bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
24 25 26	49.	Xie J, Ma J, Yue C, Kang P, Pei F. Combined use of intravenous and topical tranexamic acid following cementless total hip arthroplasty: A randomised clinical trial. Hip International. 2016; 26(1):36-42
27 28 29 30	50.	Yi Z, Bin S, Jing Y, Zongke Z, Pengde K, Fuxing P. Tranexamic acid administration in primary total hip arthroplasty: A randomized controlled trial of intravenous combined with topical versus single-dose intravenous administration. Journal of Bone and Joint Surgery (American Volume). 2016; 98(12):983-91
31 32 33	51.	Yuan X, Li B, Wang Q, Zhang X. Comparison of 3 routes of administration of tranexamic acid on primary unilateral total knee arthroplasty: A prospective, randomized, controlled study. Journal of Arthroplasty. 2017; 32(9):2738-2743
34 35 36	52.	Zhang Y, Zhang L, Ma X, Jia Y, Wang H, Zhu Y et al. What is the optimal approach for tranexamic acid application in patients with unilateral total hip arthroplasty? Orthopade. 2016; 45(7):616-21
37 38 39 40	53.	Zhao H, Xiang M, Xia Y, Shi X, Pei FX, Kang P. Efficacy of oral tranexamic acid on blood loss in primary total hip arthroplasty using a direct anterior approach: A prospective randomized controlled trial. International Orthopaedics. 2018; 42(11):2535-2542
41 42 43	54.	Zhou KD, Wang HY, Wang Y, Liu ZH, He C, Feng JM. Is topical or intravenous tranexamic acid preferred in total hip arthroplasty? A randomized, controlled, noninferiority clinical trial. PloS One. 2018; 13(10):e0204551
44		

1 Appendices

2 Appendix A: WinBUGS Code

A.13 Main code

A.1.14 Fixed effects

```
6
  # Binomial likelihood, logit link
 7 # Fixed effects model
 8 model{
                                    # *** PROGRAM STARTS
 9 for(i in 1:ns){
                                    # LOOP THROUGH STUDIES
       mu[i] ~ dnorm(0,.0001)
10
                                    # vague priors for all trial baselines
11
       for (k in 1:na[i]) {
                                    # LOOP THROUGH ARMS
12
           r[i,k] ~ dbin(p[i,k],n[i,k])
                                            # binomial likelihood
13 # model for linear predictor
14
           logit(p[i,k]) <- mu[i] + d[t[i,k]] - d[t[i,1]]</pre>
15 # expected value of the numerators
16
          rhat[i,k] <- p[i,k] * n[i,k]</pre>
17 #Deviance contribution
18
       dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))</pre>
19
                + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-
20 rhat[i,k])))
21
        }
22 # summed residual deviance contribution for this trial
23
    resdev[i] <- sum(dev[i,1:na[i]])</pre>
24
       }
25 totresdev <- sum(resdev[])</pre>
                                  # Total Residual Deviance
26 d[1]<-0 # treatment effect is zero for reference treatment
27 # vague priors for treatment effects
28 for (k in 2:nt) { d[k] ~ dnorm(0,.0001) }
29 # Provide estimates of treatment effects T[k] on the natural (probability)
30 scale
31 # Given a Mean Effect, meanA, for 'standard' treatment A,
32 # with precision (1/variance) precA
33 A ~ dnorm(meanA, precA)
34 for (k in 1:nt) { logit(T[k]) <- A + d[k] }
35
36 rr[1]<- 1
37 for (k in 2:nt) {
38 rr[k]<- T[k]/T[1] }
                                                          # calculate relative
39 risk
40
41
42 # Ranking and prob{treatment k is best}
43
   for (k in 1:nt) {
44
                  rk[k] < -rank(rr[],k)
45 best[k] <- equals(rank(rr[], k), 1) }</pre>
46
         # calculates probability that treat k is h-th best
47
                      for (h in 1:nt) { prob[k,h] <- equals(rk[k],h) }</pre>
48
                      }
49
50
                                               # cost comparison code
51 for (i in 1:5) { Cost[i]<-(T[i]*cost trans+cost[i]) }
52
53
54
               # incremental cost code
55 for (c in 1:(nt-1))
56
             { for (k in (c+1):nt)
```

```
1
                           incCost[c,k] <- Cost[k] - Cost[c]}}</pre>
                        {
 2
 3
   # Ranking and prob - treatment k is least cost
 4
    for (k in 1:nt) {
 5
                     rkcost[k] <-rank(Cost[], k)</pre>
 6
   bestcost[k] <-equals(rank(Cost[],k),1) }</pre>
 7
 \mathbf{8} # pairwise ORs and RRs
 9 for (c in 1:(nt-1))
10
                {
                  for (k in (c+1):nt)
11
                           lor[c,k] <- d[k] - d[c]
                        {
12
                           log(or[c,k]) <- lor[c,k]</pre>
13
                           lrr[c,k] <- log(rr[k]) - log(rr[c])
14
                           log(rrisk[c,k]) <- lrr[c,k]</pre>
15
16
                        }
17
                }
18 }
19
20 }
                                                                   #
                                                                     *** PROGRAM ENDS
21
22
23
    Data
24 # ns= number of studies; nt=number of treatments
25 list(ns=36, nt=5, meanA=-2.561, precA=3.262,
26 cost=c(2.82,2.25,0.27,5.34,2.31), cost trans=351.3)
27
28 r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] t[,1] t[,2] t[,3] na[]
29 0.5
          41
                 1.5
                               NA
                                      NA
                        41
                                              4
                                                            NA
                                                                   2
                                                     1
30 0.5
           51
                 1.5
                         51
                                0.5
                                       51
                                              4
                                                     1
                                                            2
                                                                   3
31 0.5
                 4.5
                                3.5
                                       71
                                              4
                                                            2
                                                                   3
          71
                        71
                                                     1
32 0.5
                 3.5
                                              5
                                                                   2
          51
                        51
                                NA
                                      NA
                                                     1
                                                            NA
33 0.5
                 2.5
                                                                   2
          51
                                              4
                                                     2
                         51
                                NA
                                      NA
                                                            NA
34 3
                                                     2
                                                                   2
          92
                 4
                         92
                                              4
                                NA
                                      NA
                                                            NA
35 1
          59
                                                     2
                                                                   2
                 4
                         60
                                              4
                                NA
                                      NA
                                                            NA
36 1
                 8
                                                     2
                                                                   2
          50
                         50
                                              4
                                                            NA
                                NA
                                      NA
37 5
                                                     2
                                                                   2
          320
                 2
                         320
                                NA
                                      NA
                                              1
                                                            NA
38 0.5
                                                     2
                                                                   2
          36
                 7.5
                         36
                                NA
                                      NA
                                              1
                                                            NA
39 4.5
                 0.5
                                              1
                                                     2
                                                                   2
          51
                        51
                                NA
                                      NA
                                                            NA
40 1
          50
                 2
                                              1
                                                     2
                                                                   2
                         50
                                NA
                                      NA
                                                            NA
41 5
                 7
                                                     2
                                                                   2
           30
                         30
                                NA
                                      NA
                                              1
                                                            NA
42 3.5
                 0.5
                                                     2
                                                                   2
           59
                         56
                                NA
                                      NA
                                              1
                                                            NA
43 7
                 5
                                                     2
                                                                   3
           60
                         60
                                4
                                       60
                                              1
                                                            3
44 3
                                                     2
                                                                   2
           40
                 16
                        160
                                NA
                                      NA
                                              1
                                                            NA
45 0.5
                                                     2
                                                                   2
           63
                 1.5
                        70
                                NA
                                      NA
                                              1
                                                            NA
                                                     2
                                                                   2
46 1.5
          48
                 0.5
                         43
                                NA
                                      NA
                                              1
                                                            NA
                                                     2
                                                                   2
47 9
          30
                 7
                         30
                                NA
                                              1
                                                            NA
                                      NA
48 8
          100
                 3
                                                     2
                                                                   2
                         50
                                NA
                                      NA
                                              1
                                                            NA
49 1.5
                 0.5
                                                     2
                                                                   2
           61
                         61
                                NA
                                      NA
                                              1
                                                            NA
50 2
                 2
                                                     2
                                                                   2
           42
                         40
                                NA
                                      NA
                                              1
                                                            NA
51 0.5
                 1.5
                                                     2
                                                                   2
           51
                         51
                                NA
                                      NA
                                              1
                                                            NA
52 6
                                                     2
                                                                   2
          102
                 6
                        101
                                NA
                                      NA
                                              1
                                                            NA
53 17
                                                     2
                                                                   3
          140
                 15
                        140
                                15
                                       140
                                              1
                                                            3
54 0.5
                                                     2
           25
                 1.5
                        24
                                NA
                                      NA
                                              1
                                                                   2
                                                            NA
55 1
                                                     2
           34
                 1
                         37
                               NA
                                              3
                                                            NA
                                                                   2
                                      NΑ
56 3
           40
                         43
                               NA
                                              3
                                                     2
                                                                   2
                 1
                                      NΑ
                                                            NA
57 1
           40
                 2
                         40
                               NA
                                              3
                                                     2
                                                                   2
                                      NΑ
                                                            NA
          58
                        59
58 2
                                                     3
                                                                   2
                 1
                                NA
                                      NA
                                              1
                                                            NA
59 4
           75
                        75
                                                     3
                                                                   2
                 3
                                NA
                                              1
                                                            NA
                                      NA
60 15
           76
                                                     2
                                                                   2
                 14
                        76
                                NA
                                              1
                                                            NA
                                      NA
61 44
                                                     2
                                                                   2
          100
                 37
                        100
                                NA
                                              1
                                                            NA
                                      NA
62 2
                                                     2
                                                                   2
           60
                  4
                         60
                                NA
                                              1
                                                            NA
                                      NA
63 20
                                                     2
           57
                 24
                         57
                                NA
                                              1
                                                            NA
                                                                   2
                                      NA
```

Joint replacement: DRAFT FOR CONSULTATION WinBUGS CodeConclusion

1 3 26 2 22 NA NA 2 4 NA 2 2 3 END 4 5 Initial Values 6 8 0, 9 0)) 10 -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, 13 -3, -3, -3, -3, -3, -3, -3, -3, -3)) 14 **17** 3, 3, 1, -3, -3, -1)) 18

A.1.29 Random effects

20 21 # Binomial likelihood, logit link 22 # Random effects model for multi-arm trials 23 model{ # *** PROGRAM STARTS # LOOP THROUGH STUDIES **24** for(i in 1:ns) { 25 w[i,1] <- 0 # adjustment for multi-arm trials is zero for control **26** arm 27 delta[i,1] <- 0 # treatment effect is zero for control arm 28 mu[i] ~ dnorm(0,.0001) # vague priors for all trial baselines 29 for (k in 1:na[i]) { # LOOP THROUGH ARMS r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 30 31 logit(p[i,k]) <- mu[i] + delta[i,k] # model for linear predictor</pre> 32 rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators</pre> **33** #Deviance contribution 34 dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))</pre> 35 + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-**36** rhat[i,k]))) } 37 # summed residual deviance contribution for this trial 38 resdev[i] <- sum(dev[i,1:na[i]])</pre> 39 for (k in 2:na[i]) { # LOOP THROUGH ARMS 40 # trial-specific LOR distributions 41 delta[i,k] ~ dnorm(md[i,k],taud[i,k]) 42 # mean of LOR distributions (with multi-arm trial correction) 43 md[i,k] <- d[t[i,k]] - d[t[i,1]] + sw[i,k]</pre> 44 # precision of LOR distributions (with multi-arm trial correction) 45 taud[i,k] <- tau *2*(k-1)/k 46 # adjustment for multi-arm RCTs 47 w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])</pre> 48 # cumulative adjustment for multi-arm trials 49 sw[i,k] <- sum(w[i,1:k-1])/(k-1)</pre> 50 } 51 } 52 totresdev <- sum(resdev[]) # Total Residual Deviance **53** d[1]<-0 # treatment effect is zero for reference treatment 54 # vague priors for treatment effects 55 for (k in 2:nt) { d[k] ~ dnorm(0,.0001) } **56** sd ~ dunif(0,5) # vague prior for between-trial SD # between-trial precision = (1/between-trial variance) **57** tau <- pow(sd,-2) 58 # Provide estimates of treatment effects T[k] on the natural (probability) 59 scale 60 # Given a Mean Effect, meanA, for 'standard' treatment A,

Joint replacement: DRAFT FOR CONSULTATION WinBUGS CodeConclusion

```
1 # with precision (1/variance) precA
 2 A ~ dnorm(meanA,precA)
 3 for (k in 1:nt) { logit(T[k]) <- A + d[k] }
 4
 5 rr[1]<- 1
 6 for (k in 2:nt) {
 7 rr[k]<- T[k]/T[1]
                                                            # calculate relative
                      }
8 risk
9
10
11 # Ranking and prob{treatment k is best}
12
   for (k in 1:nt) {
13
                   rk[k] < -rank(rr[],k)
14 best[k] <- equals (rank(rr[],k),1)}
15
16
17
                                   # calculate cost comparison
18 for (i in 1:5) {
                    Cost[i]<-(T[i]*cost trans+cost[i]) }
19
20 for (c in 1:(nt-1))
21
              { for (k in (c+1):nt)
22
                     { incCost[c,k] <- Cost[k] - Cost[c]}}</pre>
23
24 # Ranking and prob - treatment k is least cost
25
   for (k in 1:nt) {
26
                   rkcost[k] <-rank(Cost[],k)</pre>
27 bestcost[k]<-equals(rank(Cost[],k),1)}</pre>
28
29
30 # pairwise ORs and RRs
31 for (c in 1:(nt-1))
32
              { for (k in (c+1):nt)
33
                        lor[c,k] <- d[k] - d[c]
                     {
34
                        log(or[c,k]) <- lor[c,k]</pre>
35
                        lrr[c,k] <- log(rr[k]) - log(rr[c])
36
                        log(rrisk[c,k]) <- lrr[c,k]</pre>
37
38
                     }
39
               }
40 }
41
42 }
43
44
45 # *** PROGRAM ENDS
46
47 Data
48 # ns= number of studies; nt=number of treatments
49 list(ns=36, nt=5, meanA=-2.561, precA=3.262,
50 cost=c(2.82,2.25,0.27,5.34,2.31), cost trans=351.3)
51
52 r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] t[,1] t[,2] t[,3] na[]
53 0.5
                1.5
                      41
                            NA
                                   NA
                                          4
                                                1
                                                      NA
                                                             2
         41
54 0.5
         51
                1.5
                      51
                            0.5
                                   51
                                          4
                                                1
                                                      2
                                                             3
55 0.5
         71
                4.5
                      71
                            3.5
                                   71
                                          4
                                                1
                                                      2
                                                             3
56 0.5
         51
                3.5
                      51
                                          5
                                                             2
                            NA
                                   NA
                                                1
                                                      NA
57 0.5
         51
                2.5
                      51
                                          4
                                                2
                                                             2
                            NA
                                   NA
                                                      NA
58 3
         92
                                                2
                                                             2
                4
                      92
                            NA
                                   NA
                                          4
                                                      NA
59 1
         59
                                                2
                                                             2
                4
                      60
                            NA
                                          4
                                                      NA
                                   NA
60 1
                                                2
                                                             2
         50
                8
                      50
                            NA
                                   NA
                                          4
                                                      NA
61 5
                                                2
                                                             2
         320
                2
                      320
                            NA
                                   NA
                                         1
                                                      NA
62 0.5
                7.5
                                                2
         36
                      36
                            NA
                                   NA
                                         1
                                                      NA
                                                             2
63 4.5
                                                2
                0.5
                      51
                            NA
                                         1
                                                      NA
                                                             2
         51
                                   NA
```

1	1	50	2	50	NA	NA	1	2	NA	2
2	5	30	7	30	NA	NA	1	2	NA	2
3	3.5	59	0.5	56	NA	NA	1	2	NA	2
4	7	60	5	60	4	60	1	2	3	3
5	3	40	16	160	NA	NA	1	2	NA	2
6	0.5	63	1.5	70	NA	NA	1	2	NA	2
7	1.5	48	0.5	43	NA	NA	1	2	NA	2
8	9	30	7	30	NA	NA	1	2	NA	2
9	8	100	3	50	NA	NA	1	2	NA	2
	1.5	61	0.5	61	NA	NA	1	2	NA	2
11	2	42	2	40	NA	NA	1	2	NA	2
	0.5	51	1.5	51	NA	NA	1	2	NA	2
13	6	102	6	101	NA	NA	1	2	NA	2
	17	140	15	140	15	140	1	2	3	3
	0.5	25	1.5	24	NA	NA	1	2	NA	2
	1	34	1	37	NA	NA	3	2	NA	2
17		40	1	43	NA	NA	3	2	NA	2
18	1	40	2	40	NA	NA	3	2	NA	2
19 20		58 75	1 3	59 75	NA	NA	1 1	3	NA	2
	4 15	75 76	3 14	75 76	NA	NA	1	3 2	NA NA	2 2
	44	100	14 37	100	NA NA	NA NA	1	2	NA NA	2
	44 2	100 60	4	60	NA NA	NA NA	1	2	NA NA	2
	20	57	24	57	NA NA	NA NA	1	2	NA NA	2
25		26	2	22	NA	NA	2	4	NA	2
26	5	20	2	22	11/11	11/1	2	-	1111	2
27										
	END									
29										
30	Init	ial Va	lues							
31	#chai	n 1								
32), 0, 0, 0, 0, 0, 0,
33			0, 0,	0, 0,	Ο,	0, 0,	0, 0,	Ο,	0, 0,	0, 0, 0, 0, 0, 0,
	0, 0,									
	#chai									
										3, -3, -3, -3, -3, -
						-3, -			s, -3,	-3, -3, -3, -3, -3,
	-3, - #chai:		-3, -	з , –	5, -5,	-3, -	5,-5,	-3))		
40			A 2 0	3 - 2)	sd=2		(-3.3	-1	-3 2	-3, -4, -3, -3, 0,
										0, 3, 1, -3, -3, -
			, -3,			- /	, 0	,	, <i>s</i> ,	-, -, -, -, -, -,
		,								

A.23 Baseline code

```
A.2.44 Fixed effects
```

```
45
46 # Binomial likelihood, logit link
47 # Baseline fixed effect model
48 model{
                                       # *** PROGRAM STARTS
49 for (i in 1:ns) {
                                       # LOOP THROUGH STUDIES
50
       r[i] ~ dbin(p[i],n[i])
                                             # Likelihood
51
       logit(p[i]) <- m</pre>
                                                          # Log-odds of response
52
53
                \ensuremath{\texttt{\#}} expected value of the numerators
54
       rhat[i] <- p[i] * n[i]</pre>
55
                #Deviance contribution
56
       dev[i] <- 2 * (r[i] * (log(r[i])-log(rhat[i]))</pre>
57
                 + (n[i]-r[i]) * (log(n[i]-r[i]) - log(n[i]-rhat[i])))
58
     }
59 totresdev <- sum(dev[])
                                                   # total residual deviance
```

```
1 m ~ dnorm(0,.0001)
                              # vague prior for mean
2 \log (R) < -m
                                 # posterior probability of response
3 }
4
5
  Data
6
7 list(ns=1) # ns=number of studies
8
9 r[] n[]
10 4 50
11
12 END
13
14 Inits
15 list(m=0)
16
17 list(m= -1)
18
19 list (m = 1)
```

A.30 Inconsistency model

```
21
22 # Binomial likelihood, logit link
23 # Fixed effects INCONSISTENCY model
24 model{
                                  # *** PROGRAM STARTS
25 for(i in 1:ns){
                                  # LOOP THROUGH STUDIES
26
     mu[i] ~ dnorm(0,.0001)
                                 # vague priors for all trial baselines
      for (k in 1:na[i]) { # LOOP THROUGH ARMS
27
28
         r[i,k] ~ dbin(p[i,k],n[i,k])
                                         # binomial likelihood
29 # model for linear predictor
30
          logit(p[i,k]) <- mu[i] + d[t[i,1],t[i,k]]</pre>
31 # expected value of the numerators
32
          rhat[i,k] <- p[i,k] * n[i,k]</pre>
33 #Deviance contribution
34
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))</pre>
35
           + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-
36 rhat[i,k])))
37 }
38 # summed residual deviance contribution for this trial
39
      resdev[i] <- sum(dev[i,1:na[i]])</pre>
40
       }
41 totresdev <- sum(resdev[]) # Total Residual Deviance
42
43 # vague priors for treatment effects
44 for (c in 1:(nt-1)) {
45
               d[c,c]<-0
46
          for (k in (c+1):nt) {
47
              d[c,k] ~ dnorm(0,.0001)
                                                    # priors for all mean trt
48 effects
49
              or[c,k] <- exp(d[c,k])</pre>
                                                         # all pairwise ORs
50
                                       d[k,c] < -d[c,k]
51
          }
52
               }
53 d[nt, nt]<-0
54 }
                                                         # *** PROGRAM ENDS
55
56
57 Data
58 # nt=no. treatments, ns=no. studies
59 list(nt=5, ns=36)
60
```

<pre>38 39 40 END 41 42 INITS 43 44 list(mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$] n[,1] 41 51 71 51 92 59 50 320 36 51 50 30 59 60 40 63 48 30 100 61 42 51 102 140 25 34 40 40 58 75 76 100 60 57 26	r[,2] 1.5 1.5 4.5 3.5 2.5 4 4 8 2 7.5 0.5 2 7 0.5 2 7 0.5 5 16 1.5 0.5 7 3 0.5 2 1.5 6 15 1.5 1 2 1 3 14 37 4 24 2	n[,2] 41 51 71 51 92 60 50 320 36 51 50 30 56 60 160 70 43 30 50 61 40 51 101 140 24 37 43 40 59 75 76 100 60 57 22	r [, 3] NA 0.5 3.5 NA NA NA NA NA NA NA NA NA NA NA NA NA	n [, 3] NA 51 71 NA NA NA NA NA NA NA NA NA NA NA NA NA	t[,1] 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t[,2] 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	t [, 3] NA 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	na[] 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	39 40 END 41 42 INIT 43 44 list 45 0, 0 46 d = 47 NA, N	(mu=c(0 , 0, 0, structu	0, ire(.Da	0, 0, ta = c	0, 0, (NA,0,	0, 0,0,0,	0, 0, NA, 1	0, 0, NA,0,0	0, 0) ,0, NI	,

A.41 Node-splitting – to run in R2WinBUGS package in R

```
2
 3 model{
 4 # MTC Fixed effects model
 5 for(i in 1:ns) {
 6
         delta[i,bi[i]] <- 0</pre>
 7
         mu[i] ~ dnorm(0,.0001)
                                                                        # vague
 8 priors for trial baselines
9
         for (k in 1:na[i]) {
10
                #Likelihood
11
                                                           # binomial likelihood
                r[i,k] ~ dbin(p[i,t[i,k]],n[i,k])
12
                #model
13
                logit(p[i,t[i,k]])<-mu[i] + delta[i,t[i,k]]</pre>
14
                index[i,k] <- split[i] * (equals(t[i,k], pair[1]) +</pre>
15 equals(t[i,k], pair[2])
16
                # Deviance for observed events
17
                rhat[i,k] <- p[i,t[i,k]] * n[i,k] # expected value of the</pre>
18 numerators
19
                # Deviance contribution
20
                dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))</pre>
21
                      + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-
22 rhat[i,k])))
23
         }
24
         # summed residual deviance contribution for each trial
25
         resdev[i] <- sum(dev[i,1:na[i]])</pre>
26
         for (k in 2:na[i]) {
27
                # trial-specific LOR distributions, split into direct and
28 indirect (through MTC)
29
                delta[i,si[i,k]] <- (d[si[i,k]] - d[bi[i]])*(1-</pre>
30 index[i,m[i,k]]) + direct*index[i,m[i,k]]
31
        }
32
     }
33
34 d[1]<-0
35 direct ~ dnorm(0,1.0E-6)
                                                # vague prior for direct
36 comparison parameter
37 for (k \text{ in } 2:nt) \{d[k] \sim dnorm(0,.0001) \} # vague priors for basic
38 parameters
```

Joint replacement: DRAFT FOR CONSULTATION WinBUGS CodeConclusion

Appendix B: Intervention cost calculations

B.1³ Intervention cost calculations

4 Table 12. Reported dose and disposable use in each included study and NHS cost

Study	Intervention	Resources	NHS Cost
Adravanti 2018 ²	Intravenous +	3 doses of 1g IV + 3g IA	£ 7.30
Gulabi 2019 ²⁰	intraarticular	2g IV in 100ml saline + 3g in 100 ml	£ 7.27
Huang 2014 ²¹		1.5g in 50ml saline IA + 1.5g IV	£ 4.27
Jain 2016 ²²		3 IV doses: 15 mg/kg, then 2 IV doses:10 mg/kg + 2g in 30ml saline IA	£ 8.56
Lin 2015 ²⁵		1g IV + 1g IA	£ 2.90
Song 2017 ³⁸		10mg/kg pre + post-operative IV and 1.5g in 50ml saline IA	£ 4.27
Xie 2016 ⁴⁹		1g IV + 2g IA in 150 ml saline	£ 4.80
Yi 2016 ⁵⁰		15mg/kg IV + 800mg and 80mI saline IA	£ 3.33
		Average cost	£ 5.34
Cankaya 2017 ⁵	Oral + Intra-articular	2g (max) oral + 1.5g IA	£ 2.31
		•	
		Average cost	£ 2.31
Abdel 2018 ¹	Intraarticular		
	Intraarticular	3g in 45ml saline	£ 3.89
Aggarwal 2016 ³	Intraarticular	3g in 45ml saline 15 mg/kg in 100 mL saline	£ 3.89 £ 1.98
	Intraarticular	3g in 45ml saline 15 mg/kg in 100 mL saline 1g in 10mL saline	£ 3.89
Aggarwal 2016 ³ Aguilera 2015 ⁴	Intraarticular	3g in 45ml saline 15 mg/kg in 100 mL saline	£ 3.89 £ 1.98 £ 1.50
Aggarwal 2016 ³ Aguilera 2015 ⁴ Cankaya 2017 ⁵	Intraarticular	3g in 45ml saline 15 mg/kg in 100 mL saline 1g in 10mL saline 1g in 20ml saline	£ 3.89 £ 1.98 £ 1.50 £ 1.56
Aggarwal 2016 ³ Aguilera 2015 ⁴ Cankaya 2017 ⁵ Chen 2016 ⁶	Intraarticular	3g in 45ml saline 15 mg/kg in 100 mL saline 1g in 10mL saline 1g in 20ml saline 1.5g in 100ml saline	£ 3.89 £ 1.98 £ 1.50 £ 1.56 £ 2.53
Aggarwal 2016 ³ Aguilera 2015 ⁴ Cankaya 2017 ⁵ Chen 2016 ⁶ Digas 2015 ¹⁶	Intraarticular	3g in 45ml saline 15 mg/kg in 100 mL saline 1g in 10mL saline 1g in 20ml saline 1.5g in 100ml saline 2g	 £ 3.89 £ 1.98 £ 1.50 £ 1.56 £ 2.53 £ 2.55
Aggarwal 2016 ³ Aguilera 2015 ⁴ Cankaya 2017 ⁵ Chen 2016 ⁶ Digas 2015 ¹⁶ George 2018 ¹⁸	Intraarticular	3g in 45ml saline 15 mg/kg in 100 mL saline 1g in 10mL saline 1g in 20ml saline 1.5g in 100ml saline 2g 1.5g in 100ml saline	 £ 3.89 £ 1.98 £ 1.50 £ 1.56 £ 2.53 £ 2.55 £ 2.53
Aggarwal 2016 ³ Aguilera 2015 ⁴ Cankaya 2017 ⁵ Chen 2016 ⁶ Digas 2015 ¹⁶ George 2018 ¹⁸ Laoruengthana 2019 ²⁴	Intraarticular	3g in 45ml saline 15 mg/kg in 100 mL saline 1g in 10mL saline 1g in 20ml saline 1.5g in 100ml saline 2g 1.5g in 100ml saline 15mg/kg	 £ 3.89 £ 1.98 £ 1.50 £ 1.56 £ 2.53 £ 2.55 £ 2.53 £ 1.45

Joint replacement: DRAFT FOR CONSULTATION Intervention cost calculationsConclusion

Study	Intervention	Resources	NHS Cost
May 2016 ²⁹		2g in 50ml saline	£ 2.82
Mehta 2019 ³⁰		2.5g in 25ml saline	£ 3.10
Patel 2014 ³⁵		2g in 100 ml of saline	£ 1.52
Pinsornsak 2016 ³⁶		750mg in 15 mL saline	£ 1.53
Prakash 201737		3g in 50ml saline	£ 3.92
Song 2017 ³⁸		1.5g in 50 ml saline	£ 2.27
Stowers 2017 ⁴⁰		1.5g in 20mL saline	£ 2.11
Ugurlu 2017 ⁴²		3g in 100ml saline	£ 4.18
Wang 2017 ⁴⁶		1g in 50 mL saline	£ 1.72
Wang 2018 ⁴⁵		3g in 100 mL of saline	£ 4.18
Wei 2014 ⁴⁷		3g mixed with 100ml saline.	£ 4.18
Xie 2016 ⁴⁹		3g in 150ml saline	£ 4.45
Yuan 2017 ⁵¹		3g in 60 mL solution	£ 3.97
Zhang 2016 ⁵²		1g in 100ml saline	£ 1.98
Zhou 2018 ⁵⁴		3g in 60ml saline	£ 3.97
Average			£ 2.82
Abdel 2018 ¹	Intravenous	1g	£ 1.45
Adravanti 2018 ²		3 doses of 1g	£ 3.65
Aggarwal 2016 ³		15 mg/kg	£ 1.45
Aguilera 2015 ⁴		2 doses of 1g.	£ 2.55
Chen 2016 ⁶		1.5g in 100ml saline	£ 2.53
Digas 2015 ¹⁶		15ml/kg	£ 1.45
Fillingham 2016 ¹⁷		1g in 10 mL saline	£ 1.50
George 2018 ¹⁸		2 doses of 10mg/kg	£ 2.00
Gulabi 2019 ²⁰		2 dose 1g in 100 ml saline	£ 3.08
Huang 2014 ²¹		3g	£ 3.65
Jain 2016 ²²		3 IV doses: 15 mg/kg, then 2 IV doses:10 mg/kg	£ 3.10
Jaszczyk 2015 ²³		1g in 10mL saline	£ 1.50
Laoruengthana 2019 ²⁴		10mg/kg	£ 1.45
Luo 2018 ²⁷		20 mg/kg in 100ml saline	£ 2.53
Maniar 2012 1 ²⁸		10mg/kg	£ 1.45

Joint replacement: DRAFT FOR CONSULTATION Intervention cost calculationsConclusion

Study	Intervention	Resources	NHS Cost
Maniar 2012 2 ²⁸		2 doses of 10 mg/kg	£ 2.00
Maniar 2012 3 ²⁸		3 doses of 10mg/kg	£ 3.10
May 2016 ²⁹		2 doses of 1g in 100ml saline	£ 3.08
Mehta 2019 ³⁰		1g	£ 1.45
Patel 2014 ³⁵		10mg/kg	£ 1.45
Pinsornsak 2016 ³⁶		750mg in 15ml saline.	£ 1.53
Prakash 201737		3 doses of 10mg/kg	£ 3.10
Song 2017 ³⁸		3 doses of 10 mg/kg	£ 3.10
Stowers 2017 ⁴⁰		1.5g	£ 2.00
Ugurlu 2017 ⁴²		20mg/kg	£ 2.00
Wang 2017 ⁴⁶		1g IV in 50 mL	£ 1.72
Wang 2018 ⁴⁵		20mg/kg in 100ml	£ 2.53
Wei 2014 ⁴⁷		3g infusion	£ 3.65
Xie 2016 ⁴⁹		1.5g single dose	£ 2.00
Yi 2016 ⁵⁰		15mg/kg dose	£ 1.45
Yuan 2017 ⁵¹		2 doses 20 mg/kg	£ 3.65
Zhang 2016 ⁵²		1g diluted in 250ml saline	£ 2.78
Zhao 2018 ⁵³		15 mg/kg	£ 1.45
Zhou 2018 ⁵⁴		2 doses 10mg/kg in 100 ml saline	£ 3.07
Average			£ 2.25
Fillingham 2016 ¹⁷	Oral	3 tablets of 650 mg	£ 0.20
Jaszczyk 2015 ²³		3 tablets of 650 mg	£ 0.20
Luo 2018 ²⁷		2g	£ 0.20
Wang 2018 ⁴⁴		4g (2 pre, 2 post)	£ 0.40
Yuan 2017 ⁵¹		2 doses of 20mg/kg	£ 0.30
Zhao 2018 ⁵³		2 doses 20mg/kg	£ 0.30
Average			£ 0.27

1 Where a study included the same comparator with the same dosage multiple times, it was

2 only included once in cost calculations.