National Institute for Health and Care Excellence

Kidney cancer: diagnosis and management

[K] Evidence review for risk prediction tools for localised and locally advanced renal cell carcinoma

NICE guideline [number]

Evidence review underpinning recommendations 1.8.1 to 1.8.9 and a research recommendations in the NICE guideline

September 2025

Draft for consultation

Disclaimer

The recommendations in this guideline represent the view of NICE, arrived at after

careful consideration of the evidence available. When exercising their judgement,

professionals are expected to take this guideline fully into account, alongside the

individual needs, preferences and values of their patients or service users. The

recommendations in this guideline are not mandatory and the guideline does not

override the responsibility of healthcare professionals to make decisions appropriate

to the circumstances of the individual patient, in consultation with the patient and/or

their carer or guardian.

Local commissioners and/or providers have a responsibility to enable the guideline to

be applied when individual health professionals and their patients or service users

wish to use it. They should do so in the context of local and national priorities for

funding and developing services, and in light of their duties to have due regard to the

need to eliminate unlawful discrimination, to advance equality of opportunity and to

reduce health inequalities. Nothing in this guideline should be interpreted in a way

that would be inconsistent with compliance with those duties.

NICE guidelines cover health and care in England. Decisions on how they apply in

other UK countries are made by ministers in the Welsh Government, Scottish

Government, and Northern Ireland Executive. All NICE guidance is subject to regular

review and may be updated or withdrawn.

Copyright

© NICE 2025. All rights reserved. Subject to Notice of rights.

ISBN: xxx

Kidney cancer: evidence review for risk prediction tools and factors DRAFT FOR CONSULTATION (September 2025)

2

Contents

1 Risk prediction models to predict survival and recurrence in adults with non-	
metastatic renal cell carcinoma	
1.1.1 Introduction	
1.1.2 Summary of the protocol	4
1.1.3 Methods and process	5
1.1.4 Prognostic evidence	6
1.1.5 Summary of studies included in the prognostic evidence	8
1.1.6 Summary of the prognostic evidence	29
1.1.7 Economic evidence	51
1.1.8 Summary of included economic evidence	51
1.1.9 Economic model	
1.1.12 The committee's discussion and interpretation of the evidence	52
1.1.13 Recommendations supported by this evidence review	57
1.1.14 References – included studies	58
Appendices	64
Appendix A – Review protocols	
Appendix B – Literature search strategies	
Appendix C – Prognostic evidence study selection	
Appendix E – Forest plots	
Clear cell subtype	
Papillary subtype	272
Chromophobe subtype	280
All subtypes	283
Appendix F – GRADE tables	300
Clear cell subtype	300
Papillary subtype	316
Chromophobe subtype	323
All subtypes	327
Appendix G – Economic evidence study selection	
Appendix I – Health economic model	
Appendix J – Excluded studiesAppendix K– Research recommendations – full details	
K1.1 Research recommendation	
K1.2 Research recommendation	
K1.3 Research recommendation	

1 Risk prediction models to predict

survival and recurrence in adults with non-

3 metastatic renal cell carcinoma

4 1.1 Review question

- 5 In adults with suspected or confirmed non-metastatic renal cell carcinoma, which validated
- 6 risk prediction models are most effective at predicting survival and recurrence?

1.1.1 Introduction

7

- 8 Multiple risk prediction tools have been developed to assess the prognosis of patients with
- 9 non-metastatic renal cell carcinoma (RCC). These tools vary in the clinical, surgical and
- 10 pathological factors used to predict prognosis and are important for counselling patients and
- guiding treatment decisions. Currently there is no national guideline in the UK that informs
- 12 clinicians of the most appropriate models to use, leading to variation in practice and patient
- care. This review aims to identify which models best predict survival and disease progression
- in people with non-metastatic RCC of various subtypes. This evidence around risk tools and
- 15 categories of risk will be used to inform recommendations around management and follow-
- up, which are covered by other sections of the guideline under development.

17 **1.1.2 Summary of the protocol**

18 Table 1: PICOS inclusion criteria

Population	Adults (18 years or over) with suspected or confirmed localised or locally advanced renal cell carcinoma
Predictive tools	Validated risk prediction tools from the lists below. Validated models and scores may be augmented and further validated by additional individual factors. Post-first line treatment risk prediction tools to predict survival or recurrence outcomes: GRANT Karakiewicz Kattan Leibovich 2003 Leibovich 2018 Sorbellini SSIGN UISS VENUSS Zisman
Outcomes	 Progression free survival Recurrence free survival Disease-free survival, including cancer-free survival

	Overall survival
	Cancer specific survival
Study type	 Prospective and retrospective cohort studies, (specifically validation studies of models or derivation studies that also include independent validation data)
	Systematic reviews of these studies
Subgroups	RCC subtypes, for example, clear cell RCC, papillary RCC.

1 For the full protocol see appendix A.

1.1.3 Methods and process

2

12

13

16

17 18

19

20

21

24

25

26

27

28

29 30

31

32

33

- This evidence review was developed using the methods and process described in
- 4 Developing NICE guidelines: the manual. Methods specific to this review question are
- described in the review protocol in appendix A and the methods document.
- 6 Declarations of interest were recorded according to <u>NICE's conflicts of interest policy</u>.
- 7 Methods and technical decisions specific to part one of this review looking at models to
- 8 predict non-metastatic RCC are summarised below:

Post-treatment risk prediction models have been selected with committee input as the most established validated models of relevance to clinical practice.

- 2. Studies that include people with metastases were excluded, regardless of the proportion compared with non-metastatic population.
- 3. Of studies reporting outcomes for pathological TNM, we have prioritised data for the TNM 2016 version only as this is the most recent version and used in practice.
 - 4. Studies that report a c-statistics without a 95% confidence interval or without data to calculate the 95% confidence interval have been excluded as it is not possible to meta-analyse these studies.
 - 5. Where studies report both a c-statistic and AUC (area under the curve) for the same survival outcome, the c-statistic has been extracted as the preferred choice as this preserves the time to event element of the outcome.
- 22 6. Studies that only report an AUC for the risk prediction tools for survival outcomes have been excluded.
 - 7. As per the protocol we have only extracted model validation results. We have therefore extracted HR data from univariate analyses only as multivariate analyses would have adjusted for more variables than the model of interest.
 - 8. For risk of bias using the PROBAST tool we used the ratings from the included systematic review Usher-Smith et al. (2022) for the relevant included studies. The authors did not complete domain 4.6 so we also did not complete this domain for consistency. In addition, we did not complete domains 4.5, 4.8 and 4.9 which are for derivation studies only.
 - 9. For the imprecision domain in GRADE for HR data, we used the line of no effect and a sample size of <500 as the two thresholds for downgrading.

1 10. Where data could not be pooled due to I²>80%, we carried out GRADE as detailed in the methods chapter to produce a summary GRADE rating but reported the median [IQR] values in the summary GRADE tables.

1.1.3.1 Search methods

4

26

- 5 The searches for the effectiveness evidence were run on 16/07/2024 and re-run on
- 6 31/03/2025. The following databases were searched: Cochrane CENTRAL (Wiley),
- 7 Cochrane CDSR (Wiley), Embase (Ovid), Epistemonikos (Epistemonikos), International
- 8 Health Technology Assessment Database (INAHTA), Medline ALL (Ovid). Limits were
- 9 applied to remove animal studies, conference abstracts, editorials, letters, news items and
- commentaries, as well as papers not published in the English language. Filters were used to
- limit to systematic review and prognostic studies.
- 12 Additional searches were carried out on 16/07/2024 and updated on 01/04/2025. The
- following databases were searched: Embase (Ovid), Epistemonikos (Epistemonikos),
- 14 Medline ALL (Ovid) and Web of Science (Clarivate).
- 15 The searches for the cost effectiveness evidence were run on 18/07/2024 and re-run on
- 16 07/05/2025. The following databases were searched: Econlit (Ovid), Embase (Ovid), NHS
- 17 EED (CRD York), HTA (CRD York), International Health Technology Assessment Database
- 18 (INAHTA), Medline ALL (Ovid). Limits were applied to remove animal studies, conference
- abstracts, editorials, letters, news items and commentaries, as well as papers not published
- in the English language. Filters were used to limit to cost-effectiveness studies.
- 21 A NICE senior information specialist (SIS) conducted the searches. The MEDLINE strategy
- 22 was quality assured by another NICE SIS. All translated search strategies were peer
- 23 reviewed to ensure their accuracy. The QA procedures were adapted from the 2015 PRESS
- 24 Guideline Statement. Full search strategies for each database are provided in appendix B.

25 1.1.4 Prognostic evidence

1.1.4.1 Included studies

- 27 A systematic search carried out to identify potentially relevant studies found 12,041
- references (see appendix B for the literature search strategy). This was a joint search that
- was done for reviews K and L (non-metastatic and metastatic populations).
- These 12,930 references were screened at title and abstract level against the review
- 31 protocol, with 12,525 excluded at this level. 10% of references were screened separately by
- two reviewers with 100% agreement.
- 33 The full texts of 405 articles were ordered for closer inspection. 68 of these studies (1
- 34 systematic review and 67 cohort study) were relevant for the non-metastatic population and
- met the criteria specified in the review protocol (appendix A). For a summary of the 68 non-
- metastatic population included studies see <u>Table 4.</u>
- For studies where the population was people with clear cell RCC, no evidence was identified
- for the following models: GRANT, Karakiewicz, VENUSS, and Zisman. In studies where
- people had papillary RCC, no evidence was identified for the following models: Karakiewicz,
- 40 Kattan, Sorbellini, SSIGN, and Zisman. For studies where people had chromophobe RCC,
- 41 no evidence was identified for the following models: Karakiewicz, Kattan, Sorbellini, SSIGN,
- 42 TNM 2016, UISS, VENUSS, and Zisman. Where studies reported on all RCC subtypes and

- data could not be extracted separately by subtype, no evidence was identified for the
- following models: Leibovich 2018, TNM 2016, and VENUSS.
- 3 The clinical evidence study selection is presented as a PRISMA diagram in appendix C.
- 4 See section 1.1.14 References included studies for the full references of the non-
- 5 metastatic population included studies.

6 1.1.4.2 Excluded studies

- 7 Details of studies excluded at full text, along with reasons for exclusion are given in appendix
- 8 <u>J</u>.

9

- 1.1.5 Summary of studies included in the prognostic evidence
- 2 Risk prediction tool characteristics
- Table 2 Summary of risk prediction tools for localised or locally advanced renal cell carcinoma
- 4 Table adapted from <u>Usher-Smith et al. 2022</u>

Risk model	Development population	Original outcome	Prediction timepoint	Risk factors included	Interpretation
GRANT	RCC	OS, RFS	5 years	 Fuhrman grade Age Pathological nodal status Pathological tumour size 	Number of unfavourable risk factors is summed (0-4) Favourable risk group: score 0-1 Unfavourable risk group: score ≥2
<u>Karakiewicz</u>	RCC	CSS	1,2,5 and 10 years	 T stage N stage M stage Tumour size Fuhrman grade Symptom classification 	Nomogram giving continuous quantification of risk
<u>Kattan</u>	RCC	RFS	5 years	 Pathological tumour stage Tumour size Histology Symptoms 	Nomogram giving continuous quantification of risk
Leibovich 2003	ccRCC	RFS	5 years	 Pathological T stage Regional lymph node status Tumour size Nuclear grade Histological tumour necrosis 	Score range 0-11 Low risk: score 0-2 Intermediate risk: score 3-5

Risk model	Development population	Original outcome	Prediction timepoint	Risk factors included	Interpretation
					High risk: ≥6
<u>Leibovich</u> 2018	RCC (ccRCC, pRCC and chrRCC)	PFS, CSS	5, 10 and 15 years	1. Grade 2. Necrosis 3. Sarcomatoid differentiation 4. Tumour size 5. Perinephric or renal sinus fat invasion 6. Tumour thrombus 7. Extension beyond kidney 8. Nodal involvement	Scoring ccRCC PFS: 0 to ≥15 ccRCC CSS: 0 to ≥18 No risk groups pRCC and chRCC PFS and CSS: Risk group 1 Risk group 2
				pRCC 1. Fat invasion 2. Thrombus chRCC 1. Fat invasion 2. Sarcomatoid differentiation 3. Nodal involvement	Risk group 3
Sorbellini	ccRCC	RFS	5 years	 2002 TNM stage Tumour size (cm) Fuhrman grade Necrosis Vascular invasion 	Nomogram giving continuous quantification of risk

Risk model	Development population	Original outcome	Prediction timepoint	Risk factors included	Interpretation
				Clinical presentation: a) incidental asymptomatic; b) locally symptomatic; c) systemically symptomatic	
SSIGN	ccRCC	CSS	5 years	 T stage N stage M stage Tumour size Nuclear grade Histological tumour necrosis 	Score range 0-15 Increasing score associated with decreasing CSS
UISS	RCC	OS	5 years	 1. 1997 TNM stage 2. Fuhrman grade 3. ECOG PS 	Five survival stratification groups (higher group number associated with worse survival) Group II: TNM stage 1, Fuhrman Grade 1-2; PS 0 Group II: Any other TNM stage 1; TNM stage 2; TNM stage 3, any Fuhrman Grade, PS 0; TNM stage 3, Fuhrman Grade 1, PS ≥1 Group III: TNM stage 3, Fuhrman Grade 2-4, PS ≥1; TNM stage 4, Fuhrman Grade 1-2, PS 0 Group IV: TNM stage 3, Fuhrman Grade 3-4, PS 0; TN stage 4, Fuhrman Grade 1-2, PS 0 Group V: TNM stage 4, Fuhrman Grade 4, PS ≥1

Risk model	Development population	Original outcome	Prediction timepoint	Risk factors included	Interpretation
					Nomogram giving continuous quantification of risk
VENUSS	PRCC	Disease recurrence	5 years	 Venous tumour thrombus Nuclear grade 	Score range 0-11 points
				 Tumour size T stage 	Low risk: 0-2 points
				5. N stage	Intermediate risk: 3 – 5 points
					High risk: ≥ 6 points
Zisman	RCC (including	CCS	5 years	 1. 1997 T classification 2. Fuhrman grade 	Low risk: pT1N0M0, Fuhrman Grade 1-2, PS 0
	ccRCC, pRCC and chRCC)			3. ECOG PS	Intermediate risk: Any other N0M0
	,				High risk: T3N0M0, Fuhrman Grade >1, PS ≥1; Any pT4N0M0

Abbreviations: ccRCC = clear cell renal cell cancer, chRCC = chromophobe renal cell cancer, CSS = cancer-specific survival, ECOG PS = Eastern

² Cooperative Oncology Group performance status, GRANT = Grade, Age, Nodes and Tumour, OS = overall survival, PFS = progression free

survival, PRCC = papillary renal cell carcinoma, RCC = renal cell carcinoma, RFS = recurrence-free survival, SSIGN = Stage, Size, Grade and

⁴ Necrosis, UICC = International Union Against Cancer, UISS = UCLA Integrated Staging System

Systematic review characteristics

Table 3 Systematic review (for full details of included primary studies, see Usher-Smith 2022)

Author (year)	Primary studies from Usher-Smith 2022, included in the NICE review	Population covered by systematic review	Risk model(s)	Outcomes predicted	Outcome measure	Risk of bias/Applicability of the systematic review
Usher- Smith (2022)	 An (2015) Beisland (2015) Buti (2019) Capogrosso (2018) Chen (2017) Cindolo (2005) Fu (2015) Haddad (2017) Han (2003) Hupertan (2006) Hutterer (2014) Jensen (2009) Klatte (2009) Lee (2018) Liu (2009) Liu (2016) Morgan (2018) Na (2016) 	 Inclusion criteria: Peer-reviewed studies reported a quantitative measure of the performance of one or more risk models patients after surgical resection for localised renal cell carcinoma external validation studies studies reporting performance of an existing model alongside the performance of that model plus additional prognostic markers. Exclusion criteria: Metastatic population 	Karakiewicz Kattan Leibovich 2003 Sorbellini TNM UISS Zisman	Recurrence- free/disease-free survival Overall survival Cancer-specific survival	Model discrimination (C-stats)	Low Partially applicable

Author (year)	Primary studies from Usher-Smith 2022, included in the NICE review	Population covered by systematic review	Risk model(s)	Outcomes predicted	Outcome measure	Risk of bias/Applicability of the systematic review
	 Pichler (2011) Rini (2015) Seles (2017) Sorbellini (2005) Suzuki (2011) Tan (2010) Tan (2011) Tsujino (2017b) Tsujino (2019) Utsumi (2011) Vasudev (2019) Viers (2014) Wang (2016b) Xia (2016) Xiong (2017) Zhang (2017) Zhu (2019) 					

See <u>Appendix D – Prognostic evidence</u> for full evidence tables

Primary study characteristics

2 Table 4 Summary of primary studies included in the prognostic evidence

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
An (2015) N=191 Retrospective cohort Follow-up time: 67 months	China	People who underwent radical nephrectomy, or nephronsparing surgery. Clear cell renal cell carcinoma	Leibovich 2003	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High
Baykal (2025) N=197 Retrospective cohort Follow-up time: 49 months	Turkey	People who underwent radical nephrectomy due to renal tumour People with histopathological renal cell carcinoma	UISS	Overall survival	Hazard ratio	High
Beisland (2015) N=386 Retrospective cohort Follow-up time: 51.6 months	Norway	People who underwent radical or partial nephrectomy. Clear cell renal cell carcinoma	Leibovich 2003	Recurrence- free/disease- free survival	Model discrimination (C-stats) Hazard ratio	High
Buti (2019) N=73217 Follow-up time: 5 years	United States	People who underwent radical or partial nephrectomy. Clear cell and papillary renal cell carcinoma	GRANT	Overall survival	Model discrimination (C-stats)	High

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
Capogrosso (2018) N=1630 Retrospective cohort Follow-up time: 60 months	United States	People who underwent radical or partial nephrectomy. Renal cell carcinoma	UISS	Recurrence- free/disease- free survival	Hazard ratio	High
Chen (2017) Retrospective cohort N=176 Follow-up time: 42.3 months	China	People who underwent radical or partial nephrectomy. Renal cell carcinoma	Leibovich 2003 SSIGN	Overall survival	Model discrimination (C-stats)	High
Cindolo (2005) Retrospective cohort N=2404 Follow-up time: 5 years	Italy, France, Austria	People who underwent radical or partial nephrectomy. Renal cell carcinoma	Kattan UISS	Cancer-specific survival Recurrence-free/disease-free survival Overall survival	Model discrimination (C-stats)	High
Correa (2019) Retrospective cohort N=1647	United States	People who underwent radical or partial nephrectomy. Renal cell carcinoma	Kattan Karakiewicz Leibovich 2003	Cancer-specific survival	Model discrimination (C-stats)	Unclear

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
Follow-up time: 2.5 to 12 years (depending on model)			SSIGN UISS	Recurrence- free/disease- free survival Overall survival		
Cortellini (2020) Retrospective cohort N=134 Follow-up time: 96 months	Italy	People who underwent radical or partial nephrectomy. Renal cell carcinoma	UISS	Recurrence- free/disease- free survival	Hazard ratio Model discrimination (C-stats)	Unclear
Erdem (2022) Retrospective cohort N=980 Follow-up time: 48 months	7 tertiary institutions in Europe	People who underwent radical or partial nephrectomy. Papillary renal cell carcinoma	VENUSS	Recurrence- free/disease- free survival	Hazard ratio Model discrimination (C-stats)	Low
Flippot (2017) Retrospective cohort N=167 Follow-up time: 41 months	France	People who underwent radical or partial nephrectomy. Clear cell renal cell carcinoma	Leibovich 2003	Recurrence- free/disease- free survival	Hazard ratio	High
Fu (2015) Retrospective cohort	China	People who underwent radical or partial nephrectomy.	SSIGN UISS	Cancer-specific survival	Model discrimination (C-stats)	Unclear

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
N=180 Follow-up time:110 months		Clear cell renal cell carcinoma				
Fu (2016) Retrospective cohort N=472 Follow-up time: 73 months	China	People who underwent radical or partial nephrectomy. Clear cell renal cell carcinoma	Leibovich 2003	Recurrence- free/disease- free survival	Model discrimination (C-stats)	Unclear
Haddad (2017) Retrospective cohort N=367 Follow-up time: 63.5 months	United States	People who underwent radical or partial nephrectomy. Clear cell renal cell carcinoma	SSIGN	Recurrence- free/disease- free survival	Model discrimination (C-stats) Hazard ratio	High
Han (2003) Retrospective cohort N=177 NN N=399 MDA N=484 UCLA Follow-up time: 63 months NN 32 months MDA 33 months UCLA	The Netherlands and United States	People who underwent radical or partial nephrectomy with localised disease who had no evidence of nodal involvement or metastatic spread.	Zisman	Cancer-specific survival	Model discrimination (C-stats)	High
He (2020) Retrospective cohort	China	People with ccRCC	TNM 2016	Overall survival	Hazard ratio	Low

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
N=614 Follow-up time: Not reported						
Hu (2020) Retrospective cohort N=648 Follow-up time: 84 months	China	People with non-metastatic RCC who have had nephrectomy	SSIGN UISS	Overall survival Cancer-specific survival	Model discrimination (C-stats)	High
Huang (2017) Retrospective cohort N=268 Follow-up time: 38 months	China	People with non-metastatic ccRCC.	Leibovich 2003	Progression-free survival	Model discrimination (C-stats)	High
Hupertan (2006) N=565 Follow-up time: 60 months	France	People who had undergone surgery (open radical nephrectomy, partial nephrectomy, or <i>in situ</i> tumour resection after a subcostal or flank incision).	Kattan	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High
Hutterer (2014) N=678 Follow-up time: 44 months	Austria	People with non-metastatic RCC who underwent curative radical or partial nephrectomy.	Leibovich 2003	Cancer-specific survival	Model discrimination (C-stats)	High

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
Hutterer (2019) N=382 Follow-up time: 7.8 years	Austria	People with clinically localised (N0M0) RCC who had undergone surgery.	SSIGN	Cancer-specific survival	Model discrimination (C-stats)	High
Ishiyama (2024) N=235 Follow-up time: 19.8 months	Japan	People with non-metastatic RCC who had undergone curative surgery, pT3 or higher staging, or pN1-2 lymph node involvement.	GRANT UISS	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High
Jensen (2009) N=121 Follow-up time: 124 months	Denmark	People with radical nephrectomy. People were excluded if they had non-clear cell histology or distant metastases or significant lymphadenopathy at diagnosis.	Leibovich 2003	Recurrence- free/disease- free survival	Model discrimination (C-stats) Event data	High
Kang (2020) N=442 Follow-up time: 58.7 months	China	People with ccRCC who had received complete resection of the tumour.	SSIGN	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High
Klatte (2009) N=170 Follow-up time: 7.1 years	United States	People who underwent radical or partial nephrectomy for sporadic, clinically localised (N0M0) ccRCC.	UISS	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High
Klatte (2019) N=556	United States	People with completely resected non-metastatic RCC, high risk for recurrence.	Leibovich 2018 UISS	Local recurrence	Model discrimination (C-stats)	Low

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
Follow-up time: 53 months			VENUSS TNM not specified			
Kroeger (2022) N=240 Follow-up time: 43.4 months	United States	People with non-metastatic people localised ccRCC.	UISS	Recurrence- free/disease- free survival	Hazard ratio	High
Lee (2018) N=1,642 Follow-up time:39 months	United States	People who underwent partial or radical nephrectomy for clinically localised ccRCC.	Sorbellini	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High
Lee (2019) N=942 Follow-up time: 76 months clear cell, 69.5 months papillary	Singapore	Binephric people with sporadic, unilateral RCC treated with radical or partial nephrectomy.	Leibovich 2018	Progression-free survival Cancer-specific survival	Model discrimination (C-stats)	Moderate
Li (2024) N=364 Follow-up time: 49.6 months	China	People with histological subtype of ccRCC and classed as clinical stage I-III.	SSIGN UISS TNM 2016	Recurrence- free/disease- free survival	Model discrimination (C-stats) Hazard ratio	High
Liu (2016) N=263	China	People with non-metastatic ccRCC who underwent radical or partial nephrectomy.	SSIGN	Overall survival	Model discrimination (C-stats)	High

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
Follow-up time: 120 months				Recurrence- free/disease- free survival		
Liu (2009) N=653 Follow-up time: 65 months	China	People who underwent radical or partial nephrectomy due to RCC.	Karakiewicz Kattan Sorbellini SSIGN UISS	Overall survival Cancer-specific survival Recurrence- free/disease- free survival	Model discrimination (C-stats)	High
Lucca (2015) N=430 Follow-up time: 40 months	Austria	People treated with radical or partial nephrectomy for clinically localised unilateral RCC.	SSIGN	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High
Morgan (2018) N=565 Follow-up time: 90.8 months	United States	People who underwent radical nephrectomy with localised pT1-T3 clear cell, papillary, or chromophobe RCC.	Karakiewicz	Cancer-specific survival	Model discrimination (C-stats)	High
Na (2016) N=162 Follow-up time: not reported	China	People who had radical nephrectomy with confirmed ccRCC who did not receive radiotherapy or chemotherapy before surgery and had no metastasis (M0).	SSIGN UISS TNM 2010	Overall survival	Model discrimination (C-stats)	High

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
Nie (2023) N=799 Follow-up time: 53 months	China	People with pathologically confirmed localised ccRCC who had received surgery.	SSIGN UISS	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High
Oza (2022) N=1,669 Follow-up time: 7.3 months	147 centres in seven countries: United Kingdom, Australia, France, Belgium, the Netherlands, Spain, and Denmark	People with clear cell histology and intermediate (3-5) or high (≥6) Leibovich scores.	Leibovich 2003	Recurrence- free/disease- free survival	Model discrimination (C-stats) Hazard ratio	Moderate
Piccinelli (2023a) N=4,184 Follow-up time: 4.9 years	United States	People who had radical or partial nephrectomy and papillary RCC.	GRANT VENUSS	Cancer-specific survival	Hazard ratio	Low
Piccinelli (2023b) N=2,761 Follow-up time: 5 years	United States	People with non-metastatic chromophobe kidney cancer who had received radical or partial nephrectomy for unilateral RCC.	GRANT Leibovich 2018	Cancer-specific survival	Hazard ratio	Moderate
Pichler (2011) N=1,754 Median follow-up time: 82 months	Austria	People with RCC who underwent partial or radical nephrectomy.	Leibovich 2003	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
Rini (2015) N=626 Median follow-up time: 5.5 years	France	People with ccRCC stage 1, 2 or 3 treated with nephrectomy alone.	Leibovich 2003	Recurrence- free/disease- free survival	Model discrimination (C-stats) Hazard ratio	High
Schmeusser (2024) N=2,295 Median follow-up time: 52 months	United States	People who had radical or partial nephrectomy with chromophobe, papillary and ccRCC who were non-metastatic at the time of surgery.	Leibovich 2018	Progression-free survival Cancer-specific survival	Hazard ratio	Low
Seles (2017) N=676 Follow-up time: 6.1 years	Austria	People with localised RCC who underwent open or laparoscopic curative nephron sparing surgery or radical nephrectomy.	Leibovich 2003	Recurrence- free/disease- free survival Cancer-specific survival	Model discrimination (C-stats) Hazard ratio	High
Shao (2020) N=652 Follow-up time: 6.1 years	Austria	People with localised RCC who underwent open or laparoscopic curative nephron sparing surgery or radical nephrectomy	Leibovich 2003 SSIGN UISS	Cancer specific survival Disease free survival Overall survival	Model discrimination (C-stats)	High
Sorbellini (2005) N=200 Follow-up time: 33 months	United States	People who had undergone single radical or partial nephrectomy for unilateral locally confined disease.	Sorbellini	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
Suzuki (2011) N=211 Follow-up time: 81 months	Japan	People with ccRCC N0M0 tumour.	Kattan	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High
Tan (2010) N=355 Follow-up time: 56 months	Singapore	People with non-metastatic unilateral ccRCC who underwent nephrectomy.	Leibovich 2003 UISS	Overall survival Cancer-specific survival Recurrence- free/disease- free survival	Model discrimination (C-stats) Hazard ratio	Moderate
Tan (2011) N=390 Follow-up time: 5 years	Singapore	People who underwent nephrectomy for sporadic non-metastatic unilateral RCC.	Karakiewicz Kattan Leibovich 2003 Sorbellini	Recurrence- free/disease- free survival Overall survival Cancer-specific survival	Model discrimination (C-stats)	Moderate
Tsujino (2017a) N=268 Follow-up time: 60 months	Japan	People with RCC without metastasis who underwent nephrectomy.	SSIGN UISS	Recurrence- free/disease- free survival Overall survival	Hazard ratio	High
Tsujino (2017b) N=219 Follow-up time: 57 months	Japan	People who underwent nephrectomy with curative (for localised RCC) or non-curative (for cytoreduction to metastatic	SSIGN UISS	Overall survival Cancer-specific survival	Model discrimination (C-stats) Hazard ratio	High

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
		RCC) intent due to diagnosis of RCC.				
Tsujino (2019) N=699 Follow-up time: 73 months	Japan	People with RCC who underwent nephrectomy.	UISS	Recurrence- free/disease- free survival	Model discrimination (C-stats) Hazard ratio	High
Um (2020) N=120 Follow-up time: Not reported	Scotland	People with clear cell RCC TNM9 pathological stage pT1-3 disease who had extirpative surgery [presumed to mean either radical or partial nephrectomy]	Leibovich 2003	Recurrence	Sensitivity/ specificity	High
Utsumi (2011) N=217 Follow-up time: Not reported	Japan	People who underwent partial or radical nephrectomy for non-metastatic RCC.	Kattan	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High
Vasudev (2019) N=575 Follow-up time: 4.4 years contemporary cohort 10.7 years historical cohort	UK	People with newly diagnosed suspected RCC who had received no prior treatment.	Leibovich 2003	Recurrence- free/disease- free survival	Model discrimination (C-stats) Hazard ratio	High

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
Viers (2014) N=827 Follow-up time: 9.3 years	United States	People treated with radical nephrectomy for sporadic, unilateral, non-cystic, M0 RCC.	SSIGN	Cancer-specific survival	Model discrimination (C-stats)	High
Wang (2021a) N=310 Follow-up time: 5 years	China	People with ccRCC who underwent nephron sparing surgery or radical nephrectomy.	SSIGN TNM not specified	Progression-free survival Overall survival	Model discrimination (C-stats) Hazard ratio	High
Wang (2021b) N=300 Follow-up time: Not specified	China	People with pathologically diagnosed ccRCC.	SSIGN TNM not specified	Progression-free survival Overall survival	Model discrimination (C-stats)	High
Wang (2016) N=268 Follow-up time: 89 months	China	People with non-metastatic ccRCC who underwent surgical treatment.	Leibovich 2003 UISS	Overall survival Recurrence- free/disease- free survival	Model discrimination (C-stats)	High
Wen (2023) N=612 Follow-up time: 73.71 months	China	People with localised ccRCC who underwent radical or partial nephrectomy.	SSIGN	Recurrence- free/disease- free survival	Model discrimination (C-stats)	Low
Xia (2016) N=290 Follow-up time: 99.03 months	China	People with pathologically proven ccRCC who received partial or radical nephrectomy.	Leibovich 2003 UISS	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
Xiao (2021) N=146 Follow-up time: 19 months	China	People diagnosed with renal neoplasms and tumour thrombus receiving nephrectomy and thrombectomy. People with preoperative suspicious distant metastasis were excluded.	SSIGN	Overall survival Progression-free survival	Hazard ratio	High
Xiong (2017) N=286 Follow-up time:90.87 months	China	People with pathologically proved ccRCC, having received nephrectomy.	SSIGN	Recurrence- free/disease- free survival	Model discrimination (C-stats)	High
Xv (2024) N=707	China	People who underwent partial/radical nephrectomies and had histologically diagnosed ccRCC.	Leibovich 2003 UISS	Recurrence- free/disease- free survival	Model discrimination (C-stats)	Low
Yang (2022) N=866 Follow-up time: 50 months	China	People with a pathologically confirmed ccRCC after surgery.	SSIGN UISS	Recurrence- free/disease- free survival	Hazard ratio	Low
Zhang (2017) N=585 Follow-up time: 68 months training set, 67 months validation set	China	People with histopathological confirmed ccRCC who have undergone radical or partial nephrectomy with no previous anticancer therapy or history of malignancies.	SSIGN UISS	Recurrence- free/disease- free survival Overall survival	Model discrimination (C-stats)	Moderate

Study details	Setting/Location	Population	Risk model(s)	Outcomes predicted	Outcome measure	Overall risk of bias [applies to all outcomes unless specified]
Zhu (2021) N=640 Follow-up time: Not reported	China	People who were pathologically diagnosed with ccRCC.	SSIGN	Progression-free survival Overall survival	Model discrimination (C-stats) Hazard ratio	High
Zhu (2019) N=942 Follow-up time: 72 months	China	People with ccRCC who had undergone radical or partial nephrectomy. People with distant metastases were excluded.	Leibovich 2018	Recurrence- free/disease- free survival	Model discrimination (C-stats)	Low
Zhu (2024) N=2218 Follow-up time: 62 months	China	People with pathologically confirmed RCC who had received nephrectomy. People who had received anti-tumour therapy before surgery or had stage 4 disease were excluded.	SSIGN	Cancer-specific survival	Model discrimination (C-stats)	High

¹ Abbreviations: ccRCC - clear cell renal cell carcinoma.

² See <u>appendix D</u> for full evidence tables.

5

6

7

10

11

12

13 14

1.1.6 Summary of the prognostic evidence

For risk prediction models and tools, discrimination was assessed using concordance (c-statistics). C statistics range from 0.5 (no discriminative ability) to 1 (perfect discriminative ability to discriminate between patients with different outcomes). The interpretation of discriminative ability based on c-statistics is shown in <u>Table 5</u>.

Table 5 Interpretation of risk prediction model discriminative ability

C-statistic	Interpretation of discriminative ability
c-statistic <0.6	Very poor
0.6 ≤ c-statistic <0.7	Poor
0.7 ≤ c-statistic <0.8	Fair
0.8 ≤ c-statistic <0.9	Good
0.9 ≤ c-statistic < 1.0	Excellent

- For studies reporting the ability of a risk prediction tool to stratify by risk as hazard ratios or risk ratio, the line of no effect was used as a clinical decision-threshold for all clinical outcomes. For these outcomes evidence statements are divided into 2 groups as follows:
 - We state that the evidence showed increased risk of an outcome/event with a particular risk group stratified by the risk prediction tool where the 95% CI does not cross the line of no effect.
 - It is not possible from the evidence to differentiate between risk groups if the 95% CI crosses the line of no effect.

Clear cell subtype

Table 6: Summary of findings for Kattan model in clear cell RCC (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c- statistic)	Certainty	Interpretation of discriminative ability
1 [Suzuki 2011]	Disease-free survival	211	0.73 (0.72, 0.73)	Very low	Fair

Reasons for downgrading can be found in the full GRADE tables in appendix F.

Table 7: Summary of findings for Leibovich 2003 in clear cell RCC (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Certainty	Interpretation of discriminative ability
1 [Huang 2017]	Progression-free survival	268	0.76 (0.68, 0.83)	Very low	Fair
2 [Tan 2010, Hutterer 2014]	Cancer-specific survival	1033	0.79 (0.11, 0.99)	Very low	Fair
5 [An 2015, Chen 2017, Tan 2010, Wang 2016b, Zhang 2017]	Overall survival	1575	0.74 (0.64, 0.81)	Very low	Fair
15 [An 2015, Beisland 2015, Correa 2019, Fu 2016, Jensen 2009, Oza 2022, Pichler 2011, Rini 2015, Tan 2010, Wang 2016b, Xia 2016, Xv 2024 (testing), Xv 2024 (internal), Xv 2024 (external), Zhang 2017]	Recurrence-free survival/disease-free survival	5571	C-statistics not pooled due to high heterogeneity Median (IQR) 0.68 (0.64, 0.765)	Very low	Median: Poor

Reasons for downgrading can be found in the full GRADE tables in appendix F.

5

1 Table 8: Summary of findings for Leibovich 2003 in clear cell RCC (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate(c- statistic)	Certainty	Interpretation
High risk vs low risk					
4 [Beisland 2015, Flippot 2017, Rini 2015, Tan 2010]	Disease-free survival	1270	HR 8.92 (4.45, 17.90)	Low	Risk of recurrence or death significantly higher in the high-risk group
1 [Jensen 2009]	Recurrence	69	RR 3.12 (1.51, 6.46)	Very low	Risk of recurrence significantly higher in the high-risk group
1 [Tan 2010]	Cancer-specific survival	189	HR 10.84 (4.00, 29.39)	Very low	Risk of cancer-specific mortality significantly higher in the high-risk group
1 [Tan 2010]	Overall survival	189	HR 5.17 (2.59, 10.32)	Very low	Risk of mortality significantly higher in the high-risk group
Intermediate risk vs low risk					
4 [Beisland 2015, Flippot 2017, Rini 2015, Tan 2010]	Disease-free survival	1414	HR 2.82 (1.96, 4.06)	Moderate	Risk of recurrence or death significantly higher in the intermediate-risk group
1 [Jensen 2009]	Recurrence	78	RR 2.00 (0.93, 4.28)	Very low	Could not differentiate
1 [Tan 2010]	Cancer-specific survival	303	HR 3.41 (1.30, 8.96)	Very low	Risk of cancer-specific mortality significantly higher in the intermediate-risk group
1 [Tan 2010]	Overall survival	303	HR 2.05 (1.09, 3.86)	Very low	Risk of mortality significantly higher in the intermediate-risk group
High risk vs intermediate risk					
2 [Flippot 2017, Oza 2022]	Disease-free survival	1612	HR 3.23 (2.13, 4.89)	Moderate	Risk of recurrence or death significantly higher in the high-risk group
1 [Jensen 2009]	Recurrence	95	RR 1.56 (1.10, 2.21)	Very low	Risk of recurrence significantly higher in the high-risk group

Reasons for downgrading can be found in the full GRADE tables in appendix F.

Table 9: Summary of findings for Leibovich 2018 in clear cell RCC (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Certainty	Interpretation of discriminative ability
1 [Lee 2019]	Progression-free survival	829	0.81 (0.77, 0.85)	Very low	Good
1 [Lee 2019]	Cancer-specific survival	829	0.83 (0.79, 0.87)	Very low	Good

4 Reasons for downgrading can be found in the full GRADE tables in appendix F.

6 Table 10: Summary of findings for Sorbellini in clear cell RCC (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Certainty	Interpretation of discriminative ability
2 [Lee 2018, Sorbellini 2005]	Recurrence-free survival	1842	0.81 (0.76, 0.86)	Very low	Good

Reasons for downgrading can be found in the full GRADE tables in appendix F.

9 Table 11: Summary of findings for SSIGN in clear cell RCC (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Certainty	Interpretation of discriminative ability
8 [Wang 2021 (training), Wang 2021 (validation), Wang 2021b (training), Wang 2021b (validation), Zhu 2021 (cohort 1), Zhu 2021 (cohort 2), Zhu 2021 (training), Zhu 2021 (validation)]	Progression-free survival	1250	0.68 (0.64, 0.71)	Very low	Poor

Reasons for downgrading can be found in the full GRADE tables in appendix F.

3

Table 12: Summary of findings for SSIGN in clear cell RCC (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Certainty	Interpretation
High risk vs low risk					
2 [Haddad 2017, Yang 2022]	Disease-free survival	1233	HRs not pooled due to high heterogeneity	Moderate	Risk of recurrence or death significantly higher in the high-risk
			Median (IQR) 8.34 (5.74, 10.95)		group
2 [Wang 2021b training, Wang 2021b validation]	Overall survival	300	HR 8.28 (4.33, 15.82)	Very low	Risk of mortality significantly higher in the high-risk group
2 [Wang 2021b training, Wang 2021b validation]	Progression-free survival	300	HR 16.83 (8.94, 31.69)	Very low	Risk of progression significantly higher in the high-risk group
Intermediate risk vs low risk					
1 [Yang 2022]	Recurrence-free survival	231	HR 4.71 (3.18, 6.97)	Low	Risk of recurrence significantly higher in the intermediate-risk group

Reasons for downgrading can be found in the full GRADE tables in appendix F.

Table 13: Summary of findings for TNM 2016 in clear cell RCC (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (C-statistic)	Certainty	Interpretation of discriminative ability
4 [Wang 2021 (training), Wang 2021 (validation), Wang 2021b (training), Wang 2021b (validation)]	Progression-free survival	610	0.64 (0.63, 0.66)	Low	Poor
4 [Wang 2021 (training), Wang 2021 (validation), Wang 2021b (training), Wang 2021b (validation)]	Overall survival	610	0.68 (0.65, 0.71)	Very low	Poor

Reasons for downgrading can be found in the full GRADE tables in appendix F.

reasons for downgrading can be found in the full OTVADE tables in appendix 1.

Table 14: Summary of findings for TNM model stages 3 vs 1-2, clear cell RCC subtypes (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Certainty	Interpretation
Stages 3 vs 1-2					
1 [Li 2024]	Disease-free survival	344	HR 2.55 (1.34, 4.86)	Very low	Risk of recurrence or death significantly higher for stage 3 disease
1 [He 2020]	Overall survival	Not reported	HR 3.72 (2.41, 5.75)	Low	Risk of mortality significantly higher for stage 3 disease

Table 15: Summary of findings for UISS in clear cell RCC (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c- statistic)	Certainty	Interpretation of discriminative ability
12 [Klatte 2009, Li 2024 (training), Li 2024 (validation), Nie 2023 (training), Nie 2023 (test), Tan 2010, Wang 2016b, Xia 2016, Xv 2024 (testing), Xv 2024 (internal), Xv 2024 (external), Zhang 2017]	Disease-free survival	3538	C-statistics not pooled due to high heterogeneity Median (IQR) 0.70 (0.65, 0.75)	Very low	Median: Fair
4 [Na 2016, Tan 2010, Wang 2016b, Zhang 2017]	Overall survival	1370	0.69 (0.60, 0.77)	Very low	Poor
2 [Fu 2015, Tan 2010]	Cancer-specific survival	535	0.66 (0.59, 0.72)	Very low	Poor

Reasons for downgrading can be found in the full GRADE tables in appendix F.

8

5

Table 16: Summary of findings for UISS in clear cell RCC (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Certainty	Interpretation
High risk vs low risk					
1 [Tan 2010]	Cancer-specific survival	154	HR 6.54 (2.10, 20.35)	Very low	Risk of cancer-specific mortality significantly higher in the high-risk group
3 [Kroeger 2022, Tan 2010b, Yang 2022]	Disease-free survival	677	HR 5.57 (3.69, 8.41)	Moderate	Risk of recurrence or death significantly higher in the high-risk group
1 [Tan 2010]	Overall survival	154	HR 4.28 (1.92, 9.55)	Very low	Risk of mortality significantly higher in the high-risk group
Intermediate risk vs low risk					
1 [Tan 2010]	Cancer-specific survival	308	HR 3.94 (1.39, 11.18)	Very low	Risk of cancer-specific mortality in the high-risk group
2 [Tan 2010, Yang 2022]	Disease-free survival	1103	HR 2.75 (1.93, 3.92)	High	Risk of recurrence or death significantly higher in the intermediate-risk group
1 [Tan 2010]	Overall survival	308	HR 2.63 (1.28, 5.39)	Very low	Risk of mortality significantly higher in the intermediate-risk group
1 [Kroeger 2022]	Disease-free survival	135	HR 1.96 (0.87, 4.40)	Very low	Could not differentiate

Reasons for downgrading can be found in the full GRADE tables in appendix F.

1 Papillary subtype

Table 17: Summary of findings for GRANT in papillary RCC (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Certainty	Interpretation
1 [Piccinelli 2023a]	Cancer-specific survival	4184	Poor risk vs favourable risk HR 3.60 (2.89, 4.48)	Moderate	Risk of cancer-specific mortality higher in the poor risk group

Reasons for downgrading can be found in the full GRADE tables in appendix F.

5 Table 18: Summary of findings for Leibovich 2003 in papillary RCC (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (C-statistic)	Certainty	Interpretation of discriminative ability
1 [Oza 2022]	Recurrence-free survival/disease free survival	128	0.63 (0.56, 0.69)	Very low	Poor

Table 19: Summary of findings for Leibovich 2003 in papillary RCC (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Certainty	Interpretation
1 [Oza 2022]	Recurrence-free survival/disease free survival	128	High risk vs intermediate risk HR 2.61 (1.44, 4.72)	Very low	Risk of recurrence or death higher in the high-risk group

Reasons for downgrading can be found in the full GRADE tables in appendix F.

10

6

Table 20: Summary of findings for Leibovich 2018 in papillary RCC (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Certainty	Interpretation of discriminative ability
1 [Lee 2019]	Progression-free survival	113	0.72 (0.57, 0.83)	Very low	Fair
1 [Lee 2019]	Cancer-specific survival	113	0.74 (0.59, 0.85)	Very low	Fair
1 [Klatte 2019]	Recurrence-free survival/disease free survival	556	0.58 (0.52, 0.64)	Low	Very poor

Reasons for downgrading can be found in the full GRADE tables in appendix F.

4 Table 21: Summary of findings for Leibovich 2018 in papillary RCC (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Quality	Interpretation
High risk vs low risk					
1 [Schmeusser 2023]	Cancer-specific survival	190	HR 9.16 (3.38, 24.82)	Low	Risk of cancer-specific mortality significantly higher in the high-risk group
1 [Schmeusser 2023, Black ethnicity]	Cancer-specific survival	88	HR 27.72 (4.96, 155.03)	Low	Risk of cancer-specific mortality significantly higher in the high-risk group
1 [Schmeusser 2023]	Progression-free survival	190	HR 11.22 (5.05, 24.96)	Low	Risk of progression significantly higher in the high-risk group
1 [Schmeusser 2023, Black ethnicity]	Progression-free survival	88	HR 10.72 (3.27, 35.18)	Low	Risk of progression significantly higher in the high-risk group
Intermediate risk vs low risk					
1 [Schmeusser 2023]	Cancer-specific survival	357	HR 1.94 (0.78, 4.81)	Very low	Could not differentiate
1 [Schmeusser 2023, Black ethnicity]	Cancer-specific survival	195		Very low	Could not differentiate

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Quality	Interpretation
			HR 3.65 (0.78, 17.05)		
1 [Schmeusser 2023]	Progression-free survival	357	HR 1.24 (0.55, 2.80)	Very low	Could not differentiate
1 [Schmeusser 2023, Black ethnicity]	Progression-free survival	195	HR 0.84 (0.31, 2.26)	Very low	Could not differentiate

Reasons for downgrading can be found in the full GRADE tables in appendix F.

Table 22: Summary of findings for TNM 2016 in papillary RCC (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Quality	Interpretation of discriminative ability
1 [Klatte 2019]	Recurrence-free survival/disease free survival	556	0.60 (0.54, 0.66)	Low	Poor

Reasons for downgrading can be found in the full GRADE tables in appendix F.

6 Table 23: Summary of findings for UISS in papillary RCC (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (C-statistic)	Quality	Interpretation of discriminative ability
1 [Klatte 2019]	Recurrence-free survival/disease free survival	556	0.62 (0.57, 0.68)	Low	Poor

Reasons for downgrading can be found in the full GRADE tables in appendix F.

Table 24: Summary of findings for VENUSS in papillary RCC (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistics)	Quality	Interpretation of discriminative ability
2 [Erdem 2022, Klatte 2019]	Recurrence-free survival/disease free survival	1536	C-statistic not pooled due to high heterogeneity Median (IQR): 0.739 (0.702, 0.775)	Very low	Median: Fair

Reasons for downgrading can be found in the full GRADE tables in appendix F.

Table 25: Summary of findings for VENUSS in papillary RCC (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Quality	Interpretation
High risk vs low risk					
1 [Piccinelli 2023a]	Cancer-specific survival	3180	HR 13.10 (9.91, 17.32)	Moderate	Risk of cancer-specific mortality significantly higher in the high-risk group
1 [Erdem 2022]	Recurrence-free survival/disease free survival	746	HR 17.90 (12.23, 26.20)	Moderate	Risk of recurrence or death significantly higher in the high-risk group
Intermediate risk vs low risk					
1 [Piccinelli 2023a]	Cancer-specific survival	3886	HR 2.70 (2.01, 3.62)	Moderate	Risk of cancer-specific mortality significantly higher in the intermediate-risk group
1 [Erdem 2022]	Recurrence-free survival/disease free survival	851	HR 2.91 (1.90, 4.46)	Moderate	Risk of recurrence or death significantly higher in the intermediate-risk group

High risk vs intermediate risk					
1 [Erdem 2022]	Recurrence-free survival/disease free survival	363	HR 6.07 (4.17, 8.83)	Moderate	Risk of recurrence or death significantly higher in the high-risk group

Reasons for downgrading can be found in the full GRADE tables in appendix F.

1 Chromophobe subtype

6

10 11 Table 26: Summary of findings for GRANT in chromophobe RCC (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Quality	Interpretation
1 [Piccinelli 2023b]	Cancer-specific survival	2761	Poor risk vs favourable risk HR 3.00 (2.17, 4.15)	Low	Risk of cancer-specific mortality significantly higher in the poor-risk group

Reasons for downgrading can be found in the full GRADE tables in appendix F.

5 Table 27: Summary of findings for Leibovich 2003 in chromophobe RCC (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Quality	Interpretation of discriminative ability
1 [Oza 2022]	Recurrence-free survival/disease-free survival	96	0.65 (0.54, 0.75)	Very low	Poor

Reasons for downgrading can be found in the full GRADE tables in appendix F.

Table 28: Summary of findings for Leibovich 2003 in chromophobe RCC (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Certainty	Interpretation
1 [Oza 2022]	Recurrence-free survival/disease-free survival	96	High risk vs intermediate risk HR 3.88 (1.56, 9.63)	Very low	Risk of recurrence or death significantly higher in the high-risk group

Reasons for downgrading can be found in the full GRADE tables in appendix F.

1 Table 29: Summary of findings for Leibovich 2018 in chromophobe RCC (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Certainty	Interpretation
High risk vs low risk					
2 [Piccinelli 2023b, Schmeusser 2023]	Cancer-specific survival	2560	HR 17.95 (11.32, 28.46)	High	Risk of cancer-specific mortality significantly higher in the high-risk group
1 [Schmeusser 2023]	Progression free survival	167	HR 45.35 (8.46, 243.18)	Low	Risk of progression significantly higher in the high-risk group
Intermediate risk vs low risk					
2 [Piccinelli 2023b, Schmeusser 2023]	Cancer-specific survival	2882	HR 3.49 (2.46, 4.95)	Moderate	Risk of cancer-specific mortality significantly higher in the intermediate-risk group
1 [Schmeusser 2023]	Progression free survival	174	HR 3.73 (0.47, 29.88)	Very low	Risk of progression significantly higher in the intermediate-risk group

² Reasons for downgrading can be found in the full GRADE tables in appendix F.

1 All RCC subtypes

2 Table 30: Summary of findings for GRANT for all RCC subtypes (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Certainty	Interpretation of discriminative ability
1 [Buti 2019]	Overall survival	73217	0.67 (0.66, 0.68)	Very low	Poor
2 [Cortellini 2020, Ishiyama 2024]	Recurrence-free survival/disease free survival	369	C-statistics not pooled due to high heterogeneity Median (IQR): 0.645 (0.618, 0.673)	Very low	Median: Poor

Reasons for downgrading can be found in the full GRADE tables in appendix F.

4

5 Table 31: Summary of findings for Karakiewicz in all RCC subtypes (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Certainty	Interpretation of discriminative ability
4 [Correa 2019, Liu 2009, Morgan 2018, Tan 2011]	Cancer-specific survival	3346	C-statistic not pooled due to high heterogeneity Median (IQR): 0.795 (0.712, 0.840)	Very low	Median: Fair
2 [Liu 2009, Tan 2011]	Overall survival	1043	0.74 (0.70, 0.77)	Moderate	Fair
2 [Liu 2009, Tan 2011]	Recurrence-free survival/disease-free survival	1043	0.8 (0.77, 0.82)	Moderate	Good

6 Reasons for downgrading can be found in the full GRADE tables in appendix F.

7

8

Table 32: Summary of findings Kattan in all RCC subtypes (c-statistics)

rabio 02. Cammary of infamigo Rattair in an 1100 cabtypeo			o (o ciationoc)		
Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Certainty	Interpretation of discriminative ability
3 [Cindolo 2005, Liu 2009, Tan 2011]	Cancer-specific survival	3447	0.77 (0.75, 0.79)	Very low	Fair
3 [Cindolo 2005, Liu 2009, Tan 2011]	Overall survival	3447	0.71 (0.62, 0.79)	Very low	Fair
7 [Cindolo 2005, Correa 2019, Hupertan 2006, Liu 2009, Tan 2011, Utsumi 2011 CUH cohort, Utsumi 2011 CCC cohort]	Recurrence-free survival/disease-free survival	5876	C-statistic not pooled due to high heterogeneity Median (IQR) 0.73 0.676, 0.805)	Very low	Median: Fair

Reasons for downgrading can be found in the full GRADE tables in appendix F.

Table 33: Summary of findings to Leibovich 2003 in all RCC subtypes (c-statistics)

rabio our carrillary	distribution of minimize to Ecisovich 2000 in an 1100 dastypes (o statistics)								
Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Certainty	Interpretation of discriminative ability				
2 [Shao 2020, Tan 2011]	Cancer-specific survival	1524	0.8 (0.76, 0.83)	Very low	Good				
2 [Shao 2020, Tan 2011]	Overall survival	1524	0.77 (0.73, 0.81)	Very low	Fair				
6 [Oza 2022, Shao 2020, Seles 2017, Tan 2011, Vasudev 2019 (his cohort), Vasudev 2019 (con cohort)]	Recurrence-free survival/disease-free survival	4220	C-statistic not pooled due to high heterogeneity Median (IQR) 0.754 (0.736, 0.793)	Very low	Median: Fair				

5 Reasons for downgrading can be found in the full GRADE tables in appendix F.

Table 34: Summary of findings to Leibovich 2003 in all RCC subtypes (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Certainty	Interpretation
High risk vs low risk					
2 [Vasudev 2019 (his cohort), Vasudev 2019 (con cohort)]	Recurrence-free survival/disease-free survival	326	HR 19.14 (9.46, 38.75)	Very low	Risk of recurrence or death significantly higher in the high-risk group
Intermediate risk vs low risk					
2 [Vasudev 2019 (his cohort), Vasudev 2019 (con cohort)]	Recurrence-free survival/disease-free survival	459	HR 4.60 (2.26, 9.36)	Very low	Risk of recurrence or death significantly higher in the intermediate-risk group
High risk vs intermediate risk					
1 [Oza 2022]	Recurrence-free survival/disease-free survival	1669	HR 2.74 (2.29, 3.28)	Low	Risk of recurrence/disease significantly higher in the high-risk group

Reasons for downgrading can be found in the full GRADE tables in appendix F.

5 Table 35: Summary of findings for Sorbellini in all RCC subtypes (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Certainty	Interpretation of discriminative ability
2 [Liu 2009, Tan 2011]	Cancer-specific survival	975	0.79 (0.75, 0.83)	Very low	Fair
2 [Liu 2009, Tan 2011]	Overall survival	975	0.74 (0.70, 0.78)	Low	Fair
2 [Liu 2009, Tan 2011]	Recurrence-free survival/disease-free survival	975	0.81 (0.78, 0.84)	Very low	Good

6 Reasons for downgrading can be found in the full GRADE tables in appendix F.

1

Table 36: Summary of findings for SSIGN in all RCC subtypes (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Certainty	Interpretation of discriminative ability
2 [Liu 2009, Shao 2020]	Recurrence-free survival/disease-free survival	1855	0.79 (0.76, 0.82)	Very low	Fair
3 [Hu 2020, Liu 2009, Tsujino 2017b]	Overall survival	1520	C-statistic not pooled due to high heterogeneity Median (IQR) 0.83 (0.8,	Very low	Median: Good
			0.838)		
6 [Hu 2020, Hutterer 2019, Liu 2009, Zhu 2024 – external test, Zhu 2024 – training, Zhu 2024 – internal validation]	Cancer-specific survival	3901	C-statistic not pooled due to high heterogeneity Median (IQR) 0.81 (0.80, 0.83)	Very low	Median: Good

4 Reasons for downgrading can be found in the full GRADE tables in appendix F.

5

Table 37: Summary of findings for SSIGN in all RCC subtypes (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Certainty	Interpretation
High risk vs low risk					
1 [Tsujino 2017a]	Recurrence-free survival/disease-free survival	268	HR 4.09 (2.36, 7.10)	Very low	Risk of recurrence or death significantly higher in the high-risk group
1 [Tsujino 2017b]	Cancer-specific survival	219	HR 13.85 (4.97, 38.57)	Very low	Risk of cancer-specific mortality significantly higher in the high-risk group

2 3

5

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Certainty	Interpretation
2 [Tsujino 2017b, Xiao 2021b]	Overall survival	338	HR 4.55 (2.73, 7.58)	Very low	Risk of mortality significantly higher in the high-risk group
1 [Xiao 2021b]	Progression-free survival	70	HR 3.03 (1.23, 7.46)	Very low	Risk of progression significantly higher in the high-risk group
Intermediate risk vs low risk					
1 [Xiao 2021]	Overall survival	125	HR 1.45 (0.48, 4.42)	Very low	Could not differentiate
1 [Xiao 2021]	Progression-free survival	125	HR 1.83 (0.87, 3.85)	Very low	Could not differentiate

Reasons for downgrading can be found in the full GRADE tables in appendix F.

Table 38: Summary of findings for UISS in all RCC subtypes (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (c-statistic)	Certainty	Interpretation of discriminative ability
5 [Cindolo 2005, Cortellini 2020, Ishiyama 2024, Liu 2009, Shao 2020]	Recurrence-free survival/disease-free survival	4628	C-statistic not pooled due to high heterogeneity Median (IQR): 0.653 (0.63, 0.67)	Very low	Median: Poor
5 [Cindolo 2005, Correa 2019, Hu 2020, Liu 2009, Tsujino 2017b]	Overall survival	5571	C-statistic not pooled due to high heterogeneity Median (IQR): 0.68 (0.64, 0.765)	Very low	Median: Poor
3 [Cindolo 2005, Hu 2020, Liu 2009]	Cancer-specific survival	3704	C-statistic not pooled due to high heterogeneity Median (IQR): 0.73 (0.69, 0.76)	Very low	Median: Fair

Reasons for downgrading can be found in the full GRADE tables in appendix F.

Table 39: Summary of findings for UISS in all RCC subtypes (hazard ratios)

Number of studies/cohorts	Outcome	Sample size	Effect estimate	Certainty	Interpretation
High risk vs low risk					
1 [Tsujino 2017b]	Cancer-specific survival	219	HR 18.20 (6.54, 50.64)	Very low	Risk of cancer-specific mortality significantly higher in the high-risk group
3 [Capogrosso 2018, Cortellini 2020, Tsujino 2019]	Recurrence-free survival/disease-free survival	1262	HR 2.42 (1.33, 4.42)	Low	Risk of recurrence or death significantly higher in the high-risk group
1 [Tsujino 2017a]	Overall survival	268	HR 4.39 (2.31, 8.33)	Very low	Risk of mortality significantly higher in the high-risk group
Intermediate risk vs low risk					
2 [Capogrosso 2018, Cortellini 2020]	Recurrence-free survival/disease-free survival	1443	HR 1.55 (0.94, 2.58)	Low	Risk of recurrence or death significantly higher in the intermediate-risk group
1 [Baykal 2025]	Overall survival	197	HR 2.84 (1.26, 6.41)	Very low	Risk of mortality significantly higher in the intermediate-risk group
High risk vs intermediate risk					
1 [Cortellini 2020]	Recurrence-free survival/disease-free survival	113	HR 0.99 (0.55, 1.78)	Very low	Could not differentiate
1 [Baykal 2025]	Overall survival	197	HR 4.64 (2.03, 10.61)	Very low	Risk of mortality significantly higher in the high-risk group

Reasons for downgrading can be found in the full GRADE tables in appendix F.

2

Table 40: Summary of findings for Zisman in all RCC subtypes (c-statistics)

Number of studies/cohorts	Outcome	Sample size	Effect estimate (C-statistic)	Certainty	Interpretation of discriminative ability
3 [Han 2003 (NN cohort), Han 2003 (MDA cohort), Han 2003 (UCLA cohort)]	Cancer-specific survival	1060	0.83 (0.80, 0.86)	Low	Good

4 Reasons for downgrading can be found in the full GRADE tables in appendix F.

1.1.7 Economic evidence

1

- 2 A literature search was conducted to identify published economic evaluations of relevance to
- 3 the review questions on risk prediction models (evidence review K for risk prediction models
- 4 for localised and locally advanced RCC, and evidence review L for risk prediction models for
- metastatic RCC), see <u>appendix B</u> for the search strategy. This search retrieved 787 studies,
- and none of these studies were considered relevant or applicable for either review question
- at title and abstract screening (see <u>appendix G</u> for economic evidence study selection).

8 1.1.7.1 Included studies

9 No studies were included for this evidence review.

10 1.1.7.2 Excluded studies

No studies were reviewed at full text and excluded.

12 1.1.8 Summary of included economic evidence

13 No economic evidence was identified for this review question.

14 1.1.9 Economic model

No original economic modelling was conducted for this review question.

1

2

1.1.12 The committee's discussion and interpretation of the evidence

1.1.12.1. The outcomes that matter most

- 3 The committee agreed that the most clinically useful outcome that the risk tools could predict
- 4 after surgery would be disease recurrence. They noted that disease recurrence was
- 5 measured using recurrence-free survival or disease-free survival in the evidence. This
- 6 outcome is important for both patients and clinicians as the ability to accurately predict the
- 7 risk of recurrence could guide shared decisions around appropriate follow-up after surgery
- 8 and who might benefit from adjuvant treatment. They also agreed that survival (measured as
- 9 overall survival and cancer specific survival) would be of interest to clinicians in terms of
- management, as well as being important to the person who has been treated for RCC.
- In order for the risk prediction tools to be useful for guiding management and follow up after
- 12 surgery, the committee agreed that they need to be able to discriminate well between
- different risk groups; the committee therefore considered discrimination measures (c-
- statistics, sensitivity and specificity and likelihood ratios) to be particularly important.
- Sensitivity, specificity and likelihood ratios were the highest standard of evidence available
- as they involve evaluating the performance of a measure using a specified threshold, and
- 17 link directly to decision making. However, in the absence of this type of data, c-statistics and
- hazard ratios (or odds ratios and risk ratios) were the key outcomes used to assess the
- 19 performance of the risk prediction tools. These outcome measures provide an indication of
- 20 classification accuracy, and the risk of an event associated with the classification.

21 1.1.12.2 The certainty of the evidence

- 22 Most of the evidence was judged to be low or very low certainty and was most frequently
- downgraded for risk of bias. Concerns that led to a judgment that there was a risk of bias
- included limited information provided by studies on the analysis, or inappropriate handling of
- 25 missing data. Evidence was also downgraded for concerns around heterogeneity due to
- variation of results. For some of the outcomes across some of the tools, heterogeneity was
- significant (l² was more than 80%) and therefore it was not possible to pool the data. For
- these outcomes, the median point estimates were reported with the interquartile range.
- 29 Evidence was also downgraded for concerns around imprecision, where the effect estimate
- 30 crossed more than one classification accuracy categories or sample size was smaller than
- 31 500 for HR or RR results.
- 32 The committee noted that the evidence for discrimination in this review was limited to
- 33 outcomes reported using c-statistics as data to calculate sensitivity and specificity was not
- reported in the studies. They were aware of the limitations of the c-statistic, which looks at
- 35 classification accuracy but places equal weight on false positives and false negatives. In
- comparison, if data is available to calculate sensitivity and specificity then the different
- decision thresholds can be set for both depending on whether it is more important to detect
- 38 people who could be at high risk of recurrence (high sensitivity) or whether it is more
- important to minimise false positives (higher specificity). The committee noted that in practice
- 40 the tools would be used to classify people into different risk groups to help determine which
- follow up strategy to use (see evidence review F on follow up for previously treated renal cell
- 42 carcinoma) and to help identify patients at high-risk of recurrence, who may benefit from
- adjuvant therapy. They agreed that it would be worse to not identify people at higher risk of
- recurrence because if they are mistakenly classified as lower risk then they may have a
- 45 shorter and less intense follow up schedule or not be offered adjuvant therapy, which may
- lead to worse outcomes for them. In the absence of sensitivity and specificity data, the

- committee agreed that the c-statistic data could provide information to select a suitable tool
- 2 to guide clinicians with treatment decisions and that a c-statistic of greater than 0.7 could
- 3 indicate a useful test for prognosis. This corresponded to 'fair' in the classification of c-
- 4 statistics that was used in this review. The committee agreed that this could be further
- 5 supported with a larger risk of the outcome of interest, shown by the hazard ratio (HR), in
- 6 more severe groups compared to less severe groups. They agreed that in practice this would
- 7 be useful for guiding treatment options and follow-up schedule planning. No data was
- 8 identified for the other outcome measures listed in the protocol.

1.1.12.3 Benefits and harms

9

10

Clear cell renal cell carcinoma

- The committee discussed the evidence by subtype of renal cell carcinoma. They noted that
- most of the evidence was for the clear cell subtype as this is the most common subtype. The
- tools that were used for the clear cell subtype were Kattan, Leibovich 2003, Leibovich 2018,
- 14 Sorbellini, SSIGN and UISS. In addition, many studies reported results from a mixed
- population of all subtypes but between 70% to 90% of the populations in these studies were
- of clear cell subtypes. Where this was the case, the committee agreed that the results could
- be considered alongside the evidence for clear cell only sub-populations. The tools that were
- used for mixed subtypes were GRANT, Karakiewicz, Kattan, Leibovich 2003, Sorbellini,
- 19 SSIGN, UISS and Zisman. They noted that across all the outcomes taken together, the
- 20 evidence did not show a single prognostic tool to be superior to others based on the c-
- statistics. As some tools were better at predicting one outcome over another, they therefore
- decided to consider the tools by outcome.
- 23 As discussed above, predicting recurrence (reported as recurrence-free survival or disease-
- free survival) is the most important use of these tools in clinical practice as this is used to
- 25 guide the multidisciplinary team (MDT) discussions around follow up schedules and whether
- someone needs adjuvant treatment. The Leibovich 2003, SSIGN and UISS tools have been
- tested on many populations and the discriminative ability of these tools to predict recurrence
- was classified as 'fair' (c-statistic of greater than or equal to 0.7) apart from Leibovich 2003.
- The median c-statistic estimate for Leibovich 2003 was in the poor range for discriminative
- ability, with the interguartile range spanning across 2 classification categories (median 0.68,
- interquartile ranges of 0.64 to 0.77). The committee discussed the concerns with
- 32 heterogeneity for this outcome which prevented meta-analysis of the data and noted that
- although the discriminative ability of the tool was poor in some cohorts, many cohorts
- reported fair to good discriminative ability. In addition, the c-statistics for recurrence-free
- 35 survival/ disease-free survival for the mixed population (which was mainly people with clear
- 36 cell RCC) had a 'fair' c-statistic. Taken together the committee agreed that Leibovich 2003
- could be used to predict risk of recurrence in people with clear cell RCC.
- The committee discussed the evidence on the risk of recurrence between the different risk
- groups, as reported by HR. There was evidence available for Leibovich 2003, SSIGN and
- 40 UISS tools that showed that the groups identified as high risk according to the prognostic
- 41 scores were more likely to have disease recurrence than those identified as intermediate or
- low risk. The committee agreed that this evidence supported the use of these risk prediction
- 43 tools for predicting recurrence.
- The committee also discussed the evidence for the Karakiewicz, Kattan and Sorbellini tools,
- and although the discriminative ability of these tools to predict recurrence was fair (Kattan) to
- 46 good (Karakiewicz and Sorbellini), the committee noted that they had only been tested in a
- few populations other than those they were developed in. The GRANT score data could not

- 1 be pooled due to high heterogeneity. The median c-statistic indicated that its discriminative
- 2 ability to predict recurrence was poor. There was no HR data reported for these risk
- 3 prediction tools.
- 4 The committee looked at the risk factors included in the tools. They agreed that the choice of
- tool should not only be informed by the ability to predict outcomes, but also by the availability
- of information about the prognostic factors included in the model. The Leibovich 2003 and
- 7 SSIGN scores could be calculated using information that was usually available on pathology
- 8 reports. Some of the risk factors required to calculate scores for UISS, Karakiewicz, Kattan
- and Sorbellini were also available in pathology reports, but these tools also required other
- information (such as ECOG scale of performance status) that would need to be provided by
- clinical assessment. However, the committee agreed that the information required to use
- these tools will be available in practice. The committee noted that the Leibovich 2003 tool is
- commonly used in current practice and that it is easy to calculate, as the risk factors are
- readily available in the pathology report.
- 15 The committee agreed that overall, using a risk prediction tool to help predict the risk of
- recurrence would be beneficial to the MDT in terms of guiding decisions around follow up
- schedules and identifying who could benefit from adjuvant therapy. Taking the evidence
- above about the discriminative ability of the tools, the availability of data to calculate risk
- scores and the difference in risk between the high and low risk groups into account, they
- recommended that clinicians consider using the Leibovich 2003, SSIGN, UISS, Karakiewicz,
- 21 Kattan or Sorbellini tools to predict risk of recurrence at 5 years.
- 22 The committee then discussed the evidence around the ability of the tools to predict survival
- outcomes (overall survival or cancer-specific survival). The discriminative ability of Leibovich
- 24 2003 to predict these outcomes was fair (for the clear cell specific population) to good (for
- cancer specific survival in the mixed population that mainly had clear cell RCC). The
- discriminative ability of Karakiewicz, Kattan and Sorbellini to predict these survival outcomes
- also ranged from fair to good, however the performance of these models had only been
- tested in a few external populations. Although the mixed population evidence suggested that
- 29 SSIGN had good discriminative ability for both overall survival and cancer-specific survival,
- the evidence specific to the clear cell specific population suggested poor to fair discriminative
- ability for SSIGN and UISS.
- Leibovich 2018 showed good discriminative ability for overall survival and cancer-specific
- 33 survival in the clear cell population, however this was based on a single study. The
- 34 committee noted that the Zisman model showed good discriminative ability for cancer
- 35 specific survival. However, the data contributing to the evidence for the Zisman model was
- from a mixed population of people with RCC and did not specify the proportions of
- participants with each subtype of RCC, therefore the committee could not confidently say
- that the evidence on this model provided enough information on its discriminative ability for
- any particular subtype. In addition, the data was only from 2 studies.
- 40 The committee noted that predictions of the risk of overall survival and cancer specific
- 41 survival would be unlikely to influence clinical decisions in terms of follow up or treatment
- options. Therefore, they only made recommendations around using risk prediction tools for
- 43 predicting recurrence.

44

Papillary renal cell carcinoma

- There was little evidence on risk prediction tools to predict recurrence (reported as
- recurrence-free survival or disease-free survival) in the papillary subtype of renal cell
- 47 carcinoma to help inform decisions around follow up schedules and whether adjuvant
- 48 treatment is suitable. The evidence for recurrence was limited to the Leibovich 2003, 2018
 Kidney cancer: evidence review for risk prediction tools and factors DRAFT FOR
 CONSULTATION (September 2025)

- and UISS models, which showed very poor to poor discriminative ability and VENUSS which
- 2 showed fair discriminative ability. They noted that the VENUSS model was specifically
- developed for prediction of the risk of papillary RCC recurrence, and that data was easily
- 4 available from the pathology report for the risk factors included in the model. They agreed
- 5 that the evidence supported the ability of the VENUSS score to predict the risk of recurrence
- 6 (based on a median follow-up of 33 months) for people with papillary RCC based on c-
- 7 statistic and HR data and made a consider recommendation to reflect this because it had
- 8 only been externally validated in 2 populations.
- 9 The committee discussed the evidence for the prediction of risk of overall survival or cancer-
- specific survival in people with papillary RCC. As with recurrence, there was little evidence
- available. The only data for these outcomes came from Leibovich 2018 for cancer specific
- survival and this came from one external population. The committee agreed that although the
- average discriminative ability of the Leibovich 2018 was fair, there were concerns around
- imprecision as the classification accuracy spanned 3 categories, and the sample size was
- small. As with recommendations for people with clear cell RCC, the committee agreed that
- predictions around risk of overall survival and cancer-specific survival would be unlikely to
- influence clinical decision making; they therefore did not make any recommendations around
- using these risk prediction tools to predict overall survival or cancer-specific survival. As
- above, in cases where this tool is used to inform decision making the committee agreed that
- it would be important to share information about it with the person with papillary RCC to
- 21 enable them to make an informed shared decision about their care.

Chromophobe

22

36

- 23 There was very little data for people with chromophobe RCC and this consisted of
- 24 discriminative ability data for the Leibovich 2003 model only for recurrence (reported as
- 25 recurrence-free survival or disease-free survival). The committee noted that it was current
- practice to use the Leibovich 2003, but also noted the challenge in that this model requires
- 27 provision of a grade for chromophobe RCC, where currently there is no strictly recommended
- grading system for this tumour type. In addition, the evidence in this review showed that the performance of Leibovich 2003 was poor at predicting recurrence. The committee therefore
- performance of Leibovich 2003 was poor at predicting recurrence. The committee therefore agreed that it would not be appropriate to recommend the Leibovich 2003 tool to predict the
- risk of recurrence for people with chromophobe RCC. The committee agreed that more
- 32 evidence was required to guide clinical practice in this area and made a research
- recommendation to develop tools or identify biomarkers and factors to predict the risk of
- recurrence for people with non- clear cell RCC, which would include chromophobe RCC and
- 35 other rare types of RCC.

1.1.12.4 Cost effectiveness and resource use

- 37 No published economic evidence was identified and original economic modelling was not
- 38 prioritised for this review question.
- The committee indicated that, in current practice, the information needed to calculate the
- recommended risk scores is already collected and reported in pathology reports, and it is not
- 41 expected to incur further resources to calculate these risk scores. The use of risk prediction
- 42 tools helps to provide follow-up and further care according to the individual's risk of
- 43 recurrence, and this will lead to better outcomes and cost savings, and so their use is likely
- 44 to be cost effective. Using these tools alongside clinical judgement is commonplace in
- 45 current clinical practice, so these recommendations are expected to encourage
- 46 standardisation of practice.

1.1.12.5 Other factors the committee took into account

- 2 The committee noted that most of the evidence in this review used external validation
- 3 populations followed up for 5 years following surgery, therefore they agreed the
- 4 recommendations that were supported by the evidence would be relevant to the risk of
- 5 developing recurrence at 5 years for both the clear cell RCC and papillary RCC populations.
- 6 The committee made a number of overarching recommendations that apply to both the clear
- 7 cell RCC and papillary RCC populations. They agreed that although prognostic models can
- 8 be useful in stratifying people into risk groups for recurrence to help guide decisions around
- 9 follow-up schedules and adjuvant treatment, the tools are not sufficiently accurate to be used
- in isolation. In addition, other factors such as co-morbidities, frailty, patient preferences and
- 11 quality of life can affect risk, and these are not included in the recommended risk prediction
- tools. The committee also acknowledged that some groups of people with RCC are at a
- higher risk of recurrence than others, such as people with heritable RCC predisposition
- syndromes. They noted that the risk prediction tools in the evidence base have not been
- developed for or validated in these populations or in people with rarer forms of RCC and so
- there is more uncertainty about the accuracy of these tools in these populations. The
- 17 committee therefore recommended that the risk prediction tools are not used in isolation and
- should be used alongside clinician judgement to inform decisions on management and
- 19 follow-up.

1

- The committee noted that the risk tools examined in this review were developed and
- 21 validated using data from people who had undergone nephrectomy to remove the primary
- tumour, and most of the prognostic factors included in the prognostic models would be based
- on characteristics from a surgical specimen. The committee agreed that risk prediction tools
- could possibly be used where pathology information is only available from biopsy samples,
- for example, in people who have received thermal ablation or stereotactic ablative
- 26 radiotherapy (SABR). However, they agreed that it was important to highlight that using
- 27 pathology from biopsy samples is likely to be less reliable and accurate than surgical
- samples, and that this should be considered in the holistic assessment. No evidence was
- 29 identified for risk prediction models for people who have not had surgery of the primary
- tumour, and the committee made a research recommendation to address the gap in the
- 31 evidence. This was intended to promote the development of tools or identification of
- 32 biomarkers and factors to predict the risk of recurrence for people who have had thermal
- 33 ablation or SABR. The committee also made another research recommendation to cover
- 34 prediction of the risk of progression, metastasis, or both of localised renal cell carcinoma
- 35 (RCC) in people who are undergoing active surveillance because this group of people was
- also not covered by the existing risk prediction tools.
- The committee highlighted that people may have more than one renal tumour, especially
- when they have a heritable RCC predisposition syndrome. In these cases, the committee
- recommended that the follow-up schedule is guided by risk score of the tumour with the
- 40 highest risk of recurrence to ensure that people have adequate follow-up.
- The committee were aware that in some cases technology appraisals (TAs) or NHS clinical
- 42 commissioning criteria used specific risk prediction tools or scores such as TNM to help
- identify people who are eligible for adjuvant treatment with a particular drug. To future proof
- 44 the guideline the committee recommended that where this happens the relevant tool should
- be used in addition to the recommended tools for clear cell RCC or papillary RCC.
- The committee identified that there is some variation in practice around which data are
- 47 routinely available in pathology reports, and that in some places the results of certain risk
- 48 prediction tools reported in them. They also noted that some of the scores require additional Kidney cancer: evidence review for risk prediction tools and factors DRAFT FOR

CONSULTATION (September 2025)

- 1 clinical information before they can be calculated. To make it easier for the MDT to make
- 2 faster follow up and treatment decisions the committee recommended that the pathology
- 3 report contains all the pathology information needed to calculate the risk scores that have
- 4 been chosen by the local MDTs. They also recommended that the pathology department
- should consider reporting these scores in the pathology report where possible.
- 6 The committee also agreed that it is important to record the risk score in the patient's clinical
- 7 record before any decisions regarding management are made. They noted that this could
- 8 improve transparency and facilitate shared decision making as it should prompt discussions
- 9 about the results of the risk prediction tool with the patient.
- 10 The committee discussed what information about risk prediction tools and their uses are
- routinely shared with the person. They highlighted that there was variation in practice, with
- some people feeling that they are not receiving enough information around their risk of
- recurrence or survival and not understanding how the tools are used to help inform decisions
- about their follow up schedule and adjuvant treatment going forward. The committee agreed
- that it was important to share information about the type of risk prediction tool being used by
- name, what it is being used to predict and what the results mean for the individual so they
- can take part in shared decision making. They made a recommendation to reflect this.
- 18 The committee also highlighted the importance of clinicians being able to communicate
- information about risk to people effectively. They agreed that discussing the information
- about the risks of recurrence could be complicated and sensitive. They discussed the
- 21 importance of understanding how best to communicate information for both patients and
- 22 healthcare professionals. They were aware of existing NICE guidance on patient experience
- in the adult NHS services and shared decision making that can facilitate these discussions.
- 24 The relevant sections are enabling patients to actively participate in their care in NICE's
- 25 <u>guideline on patient experience in adult NHS services</u>, and <u>communicating risks</u>, <u>benefits</u>
- and consequences in NICE's guideline on shared decision making. Cross references to
- these guidelines are included in the Information section of the guideline and so were not
- repeated here.

29

1.1.13 Recommendations supported by this evidence review

- This evidence review supports recommendations 1.8.1 to 1.8.9 and 3 research
- recommendations on risk prediction tools for people with localised renal cell carcinoma
- 32 undergoing active surveillance; risk prediction tools for people with localised or locally
- 33 advanced renal cell carcinoma having thermal ablation or stereotactic ablative radiotherapy;
- and risk prediction tools for people with localised or locally advanced chromophobe renal cell
- 35 carcinoma.

1 1.1.14 References – included studies

2 1.1.14.1 Prognostic evidence

3 Systematic reviews

- 4 Usher-Smith, Juliet A, Li, Lanxin, Roberts, Lydia et al. (2022) Risk models for
- 5 <u>recurrence and survival after kidney cancer: a systematic review.</u> BJU international
- 6 130(5): 562-579

7

Primary studies

- 9 An, Huimin, Xu, Le, Chang, Yuan et al. (2015) CXC chemokine receptor 2 is
- 10 <u>associated with postoperative recurrence and survival of patients with non-metastatic</u>
- 11 <u>clear-cell renal cell carcinoma.</u> European journal of cancer (Oxford, England : 1990)
- 12 51(14): 1953-61
- Baykal, Serdar, Yilmaz, Hasan, Cinar, Naci Burak et al. (2025) The pan-immune-
- inflammation value: A novel independent predictive factor for overall survival in
- 15 <u>>=pT2a nonmetastatic renal cell carcinoma.</u> Urologic oncology
- Beisland, Christian, Gudbrandsdottir, Gigja, Reisaeter, Lars A R et al. (2015)
- 17 Contemporary external validation of the Leibovich model for prediction of progression
- 18 <u>after radical surgery for clear cell renal cell carcinoma.</u> Scandinavian journal of
- 19 urology 49(3): 205-10
- 20 <u>Buti, Sebastiano, Karakiewicz, Pierre I, Bersanelli, Melissa et al. (2019) Validation of</u>
- the GRade, Age, Nodes and Tumor (GRANT) score within the Surveillance
- 22 Epidemiology and End Results (SEER) database: A new tool to predict survival in
- 23 <u>surgically treated renal cell carcinoma patients.</u> Scientific reports 9(1): 13218
- 24 Capogrosso, P., Larcher, A., Sjoberg, D.D. et al. (2018) Risk Based Surveillance
- 25 after Surgical Treatment of Renal Cell Carcinoma. Journal of Urology 200(1): 61-67
- 26 Cindolo, Luca, Patard, Jean-Jacques, Chiodini, Paolo et al. (2005) Comparison of
- 27 predictive accuracy of four prognostic models for nonmetastatic renal cell carcinoma
- 28 <u>after nephrectomy: a multicenter European study.</u> Cancer 104(7): 1362-71
- 29 Correa, Andres F, Jegede, Opeyemi, Haas, Naomi B et al. (2019) Predicting Renal
- 30 Cancer Recurrence: Defining Limitations of Existing Prognostic Models With
- 31 <u>Prospective Trial-Based Validation.</u> Journal of clinical oncology: official journal of the
- 32 American Society of Clinical Oncology 37(23): 2062-2071
- Cortellini, Alessio, Buti, Sebastiano, Bersanelli, Melissa et al. (2020) Predictive Ability
- for Disease-Free Survival of the GRade, Age, Nodes, and Tumor (GRANT) Score in
- 35 Patients with Resected Renal Cell Carcinoma. Current urology 14(2): 98-104
- 36 Erdem, Selcuk, Capitanio, Umberto, Campi, Riccardo et al. (2022) External validation
- of the VENUSS prognostic model to predict recurrence after surgery in non-
- metastatic papillary renal cell carcinoma: A multi-institutional analysis. Urologic
- 39 oncology 40(5): 198e9-198e17
- 40 Flippot, Ronan, Mouawad, Roger, Spano, Jean-Philippe et al. (2017) Expression of
- 41 <u>long non-coding RNA MFI2-AS1 is a strong predictor of recurrence in sporadic</u>
- 42 <u>localized clear-cell renal cell carcinoma.</u> Scientific reports 7(1): 8540

- 1 Fu, Qiang; Chang, Yuan; An, Huimin; Fu, Hangcheng; Zhu, Yu; Xu, Le; Zhang,
- Weijuan; Xu, Jiejie; (2015) Prognostic value of interleukin-6 and interleukin-6
- 3 receptor in organ-confined clear-cell renal cell carcinoma: a 5-year conditional
- 4 <u>cancer-specific survival analysis.</u>; British journal of cancer; vol. 113 (no. 11); 1581-9
- 5 Fu, Qiang, Chang, Yuan, Zhou, Lin et al. (2016) Positive intratumoral chemokine (C-
- 6 C motif) receptor 8 expression predicts high recurrence risk of post-operation clear-
- 7 <u>cell renal cell carcinoma patients.</u> Oncotarget 7(7): 8413-21
- 8 Haddad, Ahmed Q, Luo, Jun-Hang, Krabbe, Laura-Maria et al. (2017) Prognostic
- 9 value of tissue-based biomarker signature in clear cell renal cell carcinoma. BJU
- 10 international 119(5): 741-747
- Han, KR Bleumer, I Pantuck, AJ Kim, HL Dorey, FJ Janzen, NK Zisman, A Dinney,
- 12 CP Wood, CG Swanson, DA Said, JW Figlin, RA Mulders, PFA Belldegrun, AS;
- 13 (2003) Validation of an integrated staging system toward improved prognostication of
- 14 patients with localized renal cell carcinoma in an international population; JOURNAL
- 15 OF UROLOGY; vol. 170 (no. 6); 2221 2224
- He, Z; Deng, T; Duan, X; Zeng, G; (2020) Profiles of overall survival-related gene
- expression-based risk signature and their prognostic implications in clear cell renal
- cell carcinoma.; Bioscience reports; vol. 40 (no. 9)
- Hu, Xu, Yang, Zhi-Qiang, Dou, Wei-Chao et al. (2020) Validation of the Prognostic
- Value of Preoperative Albumin-to-Alkaline Phosphatase Ratio in Patients with
- 21 Surgically Treated Non-Metastatic Renal Cell Carcinoma. OncoTargets and therapy
- 22 13: 8287-8297
- Huang, H., Chen, S., Yu, W. et al. (2017) The association between renal sinus fat
- 24 area and the progressionfree survival in Chinese non-metastatic clear-cell renal cell
- 25 <u>carcinoma patients.</u> Oncotarget 8(39): 65481-65491
- Hupertan, Vincent; Roupret, Morgan; Poisson, Jean-Francois; Chretien, Yves;
- Dufour, Bertrand; Thiounn, Nicolas; Mejean, Arnaud; (2006) Low predictive accuracy
- of the Kattan postoperative nomogram for renal cell carcinoma recurrence in a
- 29 <u>population of French patients.</u>; Cancer; vol. 107 (no. 11); 2604-8
- Hutterer, Georg C, Posch, Florian, Buser, Lorenz et al. (2019) BioScore (B7-H1,
- 31 survivin, and Ki-67) does not predict cancer-specific mortality in surgically treated
- 32 patients with renal cell carcinoma: An external validation study. Urologic oncology
- 33 37(7): 510-518
- Hutterer, Georg C, Stoeckigt, Caroline, Stojakovic, Tatjana et al. (2014) Low
- preoperative lymphocyte-monocyte ratio (LMR) represents a potentially poor
- 36 prognostic factor in nonmetastatic clear cell renal cell carcinoma. Urologic oncology
- 37 32(7): 1041-8
- 38 Ishiyama, Yudai, Kondo, Tsunenori, Yoshida, Kazuhiko et al. (2024) Prognostic
- 39 <u>Value of the Lung Immune Prognostic Index on Recurrence after Radical Surgery for</u>
- 40 High-Risk Renal Cell Carcinoma. Cancers 16(4)
- 41 Kang, Xiangpeng, Shi, Hongzhe, Wang, Dong et al. (2020) Combination of
- 42 Hematology Indicators and Oncological Characteristics as a New Promising
- 43 Prognostic Factor in Localized Clear Cell Renal Cell Carcinoma. Cancer
- 44 management and research 12: 10023-10033

- 1 Klatte, T; Seligson, DB; LaRochelle, J; Shuch, B; Said, JW; Riggs, SB; Zomorodian,
- N; Kabbinavar, FF; Pantuck, AJ; Belldegrun, AS; (2009) Molecular signatures of
- 3 localized clear cell renal cell carcinoma to predict disease-free survival after
- 4 nephrectomy.; Cancer epidemiology, biomarkers & prevention : a publication of the
- 5 American Association for Cancer Research, cosponsored by the American Society of
- 6 Preventive Oncology; vol. 18 (no. 3); 894-900
- 7 Klatte, Tobias, Gallagher, Kevin M, Afferi, Luca et al. (2019) The VENUSS prognostic
- 8 model to predict disease recurrence following surgery for non-metastatic papillary
- 9 renal cell carcinoma: development and evaluation using the ASSURE prospective
- 10 <u>clinical trial cohort.</u> BMC medicine 17(1): 182
- 11 Kroeger, Nils, Lebacle, Cedric, Hein, Justine et al. (2022) Pathological and genetic
- 12 markers improve recurrence prognostication with the University of California Los
- 13 Angeles Integrated Staging System for patients with clear cell renal cell carcinoma.
- European journal of cancer (Oxford, England: 1990) 168: 68-76
- Lee, Byron H.; Feifer, Andrew; Feuerstein, Michael; Benfante, Nicole; Kou, Lei; Yu,
- 16 Changhong; Kattan, Michael W.; Russo, Paul; (2018) Validation of a Postoperative
- 17 Nomogram Predicting Recurrence in Patients with Conventional Clear Cell Renal
- 18 <u>Cell Carcinoma</u>; European urology focus; vol. 4 (no. 1); 100-105
- Lee, Han Jie, Lee, Alvin, Huang, Hong Hong et al. (2019) External validation of the
- 20 updated Leibovich prognostic models for clear cell and papillary renal cell carcinoma
- 21 in an Asian population. Urologic oncology 37(6): 356e9-356e18
- 22 Li, Xiaoxia, Zhang, Shaoting, Huang, Xiaolan et al. (2024) Development of a CT-
- assessed adiposity nomogram for predicting outcome in localized ccRCC. Abdominal
- 24 radiology (New York)
- Liu, Zheng, Lv, Jiaju, Ding, Kejia et al. (2009) Validation of the current prognostic
- 26 models for nonmetastatic renal cell carcinoma after nephrectomy in Chinese
- 27 population: a 15-year single center experience. International journal of urology:
- official journal of the Japanese Urological Association 16(3): 268-73
- 29 Liu, W.; Liu, Y.; Fu, Q.; Zhou, L.; Chang, Y.; Xu, L.; Zhang, W.; Xu, J.; (2016)
- 30 Elevated expression of IFN-inducible CXCR3 ligands predicts poor prognosis in
- patients with non-metastatic clear-cell renal cell carcinoma; Oncotarget; vol. 7 (no.
- 32 12); 13976-13983
- Lucca, Ilaria, de Martino, Michela, Hofbauer, Sebastian L et al. (2015) Comparison of
- 34 the prognostic value of pretreatment measurements of systemic inflammatory
- response in patients undergoing curative resection of clear cell renal cell carcinoma.
- 36 World journal of urology 33(12): 2045-52
- 37 Morgan, Todd M, Mehra, Rohit, Tiemeny, Placede et al. (2018) A Multigene
- 38 Signature Based on Cell Cycle Proliferation Improves Prediction of Mortality Within 5
- 39 Yr of Radical Nephrectomy for Renal Cell Carcinoma. European urology 73(5): 763-
- 40 769
- 41 Na, N., Si, T., Huang, Z. et al. (2016) High expression of HMGAGA2 predicts poor
- 42 survival in patients with clear cell renal cell carcinoma. OncoTargets and Therapy 9:
- 43 7199-7205
- 44 Nie, Pei, Yang, Guangiie, Wang, Yanmei et al. (2023) A CT-based deep learning
- radiomics nomogram outperforms the existing prognostic models for outcome

- 1 <u>prediction in clear cell renal cell carcinoma: a multicenter study.</u> European radiology
- 2 33(12): 8858-8868
- 3 Oza, Bhavna, Eisen, Tim, Frangou, Eleni et al. (2022) External Validation of the 2003
- 4 Leibovich Prognostic Score in Patients Randomly Assigned to SORCE, an
- 5 International Phase III Trial of Adjuvant Sorafenib in Renal Cell Cancer. Journal of
- 6 clinical oncology: official journal of the American Society of Clinical Oncology 40(16):
- 7 1772-1782
- 8 Piccinelli, Mattia L, Tappero, Stefano, Cano Garcia, Cristina et al. (2023) Assessment
- 9 of the VENUSS and GRANT Models for Individual Prediction of Cancer-specific
- 10 Survival in Surgically Treated Nonmetastatic Papillary Renal Cell Carcinoma.
- 11 European urology open science 53: 109-115
- 12 Piccinelli, Mattia Luca, Morra, Simone, Tappero, Stefano et al. (2023) Critical
- 13 Appraisal of Leibovich 2018 and GRANT Models for Prediction of Cancer-Specific
- 14 Survival in Non-Metastatic Chromophobe Renal Cell Carcinoma. Cancers 15(7)
- 15 <u>Pichler, Martin, Hutterer, Georg C, Chromecki, Thomas F et al. (2011) External</u>
- validation of the Leibovich prognosis score for nonmetastatic clear cell renal cell
- carcinoma at a single European center applying routine pathology. The Journal of
- 18 urology 186(5): 1773-7
- 19 Rini, Brian, Goddard, Audrey, Knezevic, Dejan et al. (2015) A 16-gene assay to
- 20 predict recurrence after surgery in localised renal cell carcinoma: development and
- 21 <u>validation studies.</u> The Lancet. Oncology 16(6): 676-85
- 22 Schmeusser, Benjamin N, Patil, Dattatraya H, Nicaise, Edouard H et al. (2024) 2018
- 23 Leibovich prognostic model for renal cell carcinoma: Performance in a large
- population with special consideration of Black race. Cancer 130(3): 453-466
- Seles, Maximilian, Posch, Florian, Pichler, Georg P et al. (2017) Blood Platelet
- Volume Represents a Novel Prognostic Factor in Patients with Nonmetastatic Renal
- 27 Cell Carcinoma and Improves the Predictive Ability of Established Prognostic Scores.
- 28 The Journal of urology 198(6): 1247-1252
- 29 Shao, Yanxiang, Xiong, Sanchao, Sun, Guangxi et al. (2020) Prognostic analysis of
- 30 <u>postoperative clinically nonmetastatic renal cell carcinoma.</u> Cancer medicine 9(3):
- 31 959-970
- 32 Sorbellini, Maximiliano, Kattan, Michael W, Snyder, Mark E et al. (2005) A
- 33 postoperative prognostic nomogram predicting recurrence for patients with
- conventional clear cell renal cell carcinoma. The Journal of urology 173(1): 48-51
- 35 Suzuki, Kazuya; Nishiyama, Tsutomu; Hara, Noboru; Akazawa, Kohei; Takahashi,
- Kota; (2011) Kattan postoperative nomogram for renal cell carcinoma: predictive
- 37 <u>accuracy in a Japanese population.</u>; International journal of urology: official journal of
- the Japanese Urological Association; vol. 18 (no. 3); 194-9
- 39 Tan, Min-Han, Kanesvaran, Ravindran, Li, Huihua et al. (2010) Comparison of the
- 40 UCLA Integrated Staging System and the Leibovich score in survival prediction for
- 41 patients with nonmetastatic clear cell renal cell carcinoma. Urology 75(6): 1365-3
- 42 Tan, Min-Han, Li, Huihua, Choong, Caroline Victoria et al. (2011) The Karakiewicz
- nomogram is the most useful clinical predictor for survival outcomes in patients with
- 44 localized renal cell carcinoma. Cancer 117(23): 5314-24

- 1 Tsujino, Takuya; Komura, Kazumasa; Ichihashi, Atsushi; Tsutsumi, Takeshi;
- 2 Matsunaga, Tomohisa; Yoshikawa, Yuki; Maenosono, Ryoichi; Okita, Kyohei; Takai,
- Tomoaki; Oide, Rintaro; Minami, Koichiro; Uehara, Hirofumi; Taniguchi, Kohei;
- 4 Hirano, Hajime; Nomi, Hayahito; Ibuki, Naokazu; Takahara, Kiyoshi; Inamoto, Teruo;
- 5 Azuma, Haruhito; The combination of preoperative platelet count and neutrophil
- 6 lymphocyte ratio as a prognostic indicator in localized renal cell carcinoma.;
- 7 Oncotarget; 2017; vol. 8 (no. 66); 110311-110325
- 8 Tsujino, Takuya; Komura, Kazumasa; Matsunaga, Tomohisa; Yoshikawa, Yuki;
- 9 Takai, Tomoaki; Uchimoto, Taizo; Saito, Kenkichi; Tanda, Naoki; Oide, Rintaro;
- Minami, Koichiro; Uehara, Hirofumi; Jeong, Seong Ho; Taniguchi, Kohei; Hirano,
- Hajime; Nomi, Hayahito; Ibuki, Naokazu; Takahara, Kiyoshi; Inamoto, Teruo; Azuma,
- 12 Haruhito; Preoperative Measurement of the Modified Glasgow Prognostic Score
- 13 Predicts Patient Survival in Non-Metastatic Renal Cell Carcinoma Prior to
- Nephrectomy; Annals of surgical oncology; 2017; vol. 24 (no. 9); 2787-2793
- 15 Tsujino, Takuya; Komura, Kazumasa; Hashimoto, Takeshi; Muraoka, Ryu; Satake,
- Naoya; Matsunaga, Tomohisa; Tsutsumi, Takeshi; Yoshikawa, Yuki; Takai, Tomoaki;
- 17 Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Ibuki, Naokazu;
- Takahara, Kiyoshi; Inamoto, Teruo; Ohno, Yoshio; Azuma, Haruhito; C-reactive
- protein-albumin ratio as a prognostic factor in renal cell carcinoma A data from
- 20 multi-institutional study in Japan.; Urologic oncology; 2019; vol. 37 (no. 11); 812e1-
- 21 812e8
- 22 Um, In Hwa, Scott-Hayward, Lindesay, Mackenzie, Monique et al. (2020)
- 23 Computerized Image Analysis of Tumor Cell Nuclear Morphology Can Improve
- 24 Patient Selection for Clinical Trials in Localized Clear Cell Renal Cell Carcinoma.
- Journal of pathology informatics 11: 35
- Utsumi, Takanobu; Ueda, Takeshi; Fukasawa, Satoshi; Komaru, Atsushi; Sazuka,
- Tomokazu; Kawamura, Koji; Imamoto, Takashi; Nihei, Naoki; Suzuki, Hiroyoshi;
- 28 Ichikawa, Tomohiko; Prognostic models for renal cell carcinoma recurrence: external
- 29 <u>validation in a Japanese population</u>.; International journal of urology : official journal
- of the Japanese Urological Association; 2011; vol. 18 (no. 9); 667-671
- 31 Vasudev, Naveen S, Hutchinson, Michelle, Trainor, Sebastian et al. (2020) UK
- 32 Multicenter Prospective Evaluation of the Leibovich Score in Localized Renal Cell
- 33 <u>Carcinoma: Performance has Altered Over Time.</u> Urology 136: 162-168
- 34 Viers, Boyd R.; Thompson, Robert Houston; Boorijan, Stephen A.; Lohse, Christine
- 35 M.; Leibovich, Bradley C.; Tollefson, Matthew K.; Preoperative neutrophil-lymphocyte
- ratio predicts death among patients with localized clear cell renal carcinoma
- 37 <u>undergoing nephrectomy</u>; Urologic oncology; 2014; vol. 32 (no. 8); 1277-1284
- Wang, Chao, Dong, Kegin, Wang, Yuning et al. (2021) Integrating HECW1
- 39 expression into the clinical indicators exhibits high accuracy in assessing the
- 40 prognosis of patients with clear cell renal cell carcinoma. BMC cancer 21(1): 890
- 41 Wang, Chao, Hong, TianYu, Wang, Yuning et al. (2021) Combining UBR5 and
- 42 CD163+ tumor-associated macrophages better predicts prognosis of clear cell renal
- 43 cell carcinoma patients. Cancer immunology, immunotherapy: CII 70(10): 2925-2935
- Wen, Hongzhuang; Zhang, Yong; Yang, Zhan; Zhai, Zhao; Han, Zhenwei; Wang, Hu;
- Wang, Mingshuai; Shi, Hongzhe; Chen, Xi; Wahafu, Wasilijiang; Guan, Kaopeng;
- Wang, Xiaolu; The LMR-SSIGN-MAPS model predicts disease-free survival in

- 1 <u>patients with localized clear cell renal cell carcinoma</u>.; Wideochirurgia i inne techniki
- 2 maloinwazyjne = Videosurgery and other miniinvasive techniques; 2023; vol. 18 (no.
- 3 2); 313-327
- 4 Xia, Yu; Liu, Li; Bai, Qi; Wang, Jiajun; Xi, Wei; Qu, Yang; Xiong, Ying; Long, Qilai;
- 5 Xu, Jiejie; Guo, Jianming; Dectin-1 predicts adverse postoperative prognosis of
- 6 patients with clear cell renal cell carcinoma.; Scientific reports; 2016; vol. 6; 32657
- 7 Xiao, Ruotao, Xu, Chuxiao, He, Wei et al. (2021) Preoperative anaemia and
- 8 thrombocytosis predict adverse prognosis in non-metastatic renal cell carcinoma with
- 9 <u>tumour thrombus.</u> BMC urology 21(1): 31
- 10 Xv, Yingjie, Wei, Zongjie, Jiang, Qing et al. (2024) Three-Dimensional (3D) deep
- learning model complements existing models for preoperative disease-free survival
- 12 prediction (DFS) in localized clear cell renal cell carcinoma (ccRCC): A multicenter
- 13 <u>retrospective cohort study.</u> International journal of surgery (London, England)
- 14 Yang, Guangjie, Nie, Pei, Yan, Lei et al. (2022) The radiomics-based tumor
- heterogeneity adds incremental value to the existing prognostic models for predicting
- outcome in localized clear cell renal cell carcinoma: a multicenter study. European
- journal of nuclear medicine and molecular imaging 49(8): 2949-2959
- Zhang, Haijian, Liu, Yidong, Xie, Huyang et al. (2017) Beta-1,4-galactosyltransferase
- 19 II predicts poor prognosis of patients with non-metastatic clear-cell renal cell
- 20 carcinoma. Tumour biology: the journal of the International Society for
- Oncodevelopmental Biology and Medicine 39(2): 1010428317691417
- 22 Zhu, D., Shi, X., Gao, S. et al. (2021) RNF43 is a novel tumor-suppressor and
- 23 prognostic indicator in clear cell renal cell carcinoma. Oncology Research 29(3): 159-
- 24 174
- 25 Zhu, Yan, Zhao, Yao-Rui, Yang, Xian-Fa et al. (2019) Postoperative prognostic
- model for patients with clear cell renal cell carcinoma in a Chinese population.
- 27 International journal of urology: official journal of the Japanese Urological
- 28 Association 26(6): 624-629
- 29 Zhu, Pingyi, Dai, Chenchen, Xiong, Ying et al. (2024) Tumor contour irregularity on
- preoperative CT predicts prognosis in renal cell carcinoma: a multi-institutional study.
- 31 EClinicalMedicine 75: 102775
- 32 **1.1.14.2 Economic**
- 33 No evidence was identified.

34

Appendices

2 Appendix A – Review protocols

- 3 Review protocol for the use of prognostic models to predict survival
- and/ or recurrence in adults with suspected or confirmed renal cell
- 5 carcinoma

1

carci	noma	
ID	Field	Content
1.	Review title	Prognostic models to predict survival and/ or recurrence in adults with suspected or confirmed renal cell carcinoma (RCC).
2.	Review question	In adults with suspected or confirmed renal cell carcinoma, which validated prognostic models are most effective at predicting survival and/or recurrence?
3.	Objective	To evaluate and compare the ability of validated prognostic models to predict survival and/or recurrence in adults with suspected or confirmed RCC to help inform decisions about management options.
4.	Searches	The following databases will be searched: Cochrane Central Register of Controlled Trials (CENTRAL) Cochrane Database of Systematic Reviews (CDSR) Embase MEDLINE Epistemonikos For the economics review the following databases will be searched: Embase MEDLINE Medline in Process Medline EPub Ahead of Print Econlit HTA (legacy records) NHS EED (legacy records) INAHTA Searches will be restricted by: Date limitations: None English language Human studies Abstracts, conference presentations and theses will be excluded The full search strategies will be published in the final review.
5.	Condition or domain being studied	Suspected or confirmed renal cell carcinoma
6.	Population	Adults (18 years or over) with suspected or confirmed RCC Suspected RCC refers to cases where there are diagnostic findings on CT or MRI suggestive of RCC but where a definitive diagnosis has not yet been made.

		Confirmed RCC refers to definitive diagnosis according to the clinical or
		pathological TNM staging and WHO subtyping classification, through histopathological examination of tissue samples obtained from biopsy or surgery.
7.	Predictor (Predictive prognostic model or score)	Validated prognostic models from the lists below. Validated models and scores may be augmented and further validated by additional individual factors.
		Localised or locally advanced RCC Post-first line treatment prognostic models to predict survival or recurrence outcomes: • GRANT • Karakiewicz • Kattan • Leibovich 2003 • Leibovich 2018 • Sorbellini • SSIGN • UISS • VENUSS • Zisman Prognostic models as above augmented with one or more additional scores (scores of interest are listed in review 2cii and below). Studies
		will be included if there is subsequent validation of the augmented model. For comparison (not a prognostic model): 2016 version of the TNM classification (based on pathology post-surgery TNM and for prognostic assessment of survival outcomes, not initial classification and staging. Does not include clinical TNM, which is used before surgery.)
		Metastatic RCC pre- and post-first line treatment prognostic
		models: • IMDC • Meet-URO • MSKCC Prognostic models augmented with one or more additional scores. Scores of interest are listed in protocol 2cii on risk scores and below) • Exclusion: Molecular and radiomic factors will not be included for prognostic assessment at any stage because there are no known fully validated scores or models in these areas, they are not used in clinical practice routinely and the evidence base remains investigational.
		Scores of interest: Clinical performance status (for predicting surgical and survival outcomes): ECOG
		 Patient factors (for predicting surgical and survival outcomes: Charlson comorbidity index Clinical frailty scale

		1
9.	Types of study to be included	The following types of studies will be included in the review, restricted to those reporting:
		 Prospective and retrospective cohort studies, (specifically validation studies of models or derivation studies that also include independent validation data) Systematic reviews of these studies
		Where good quality systematic reviews are identified, these may be used completely or as a source of references, depending on applicability.
		A recent systematic review (search date 12/12/2019) has been identified which will be considered for use in the analysis of post-treatment prognostic models, with a supplementary search for additional subsequent studies: Usher-Smith JA, Li L, Roberts L, Harrison H, Rossi SH, Sharp SJ,
		Coupland C, Hippisley-Cox J, Griffin SJ, Klatte T, Stewart GD. Risk models for recurrence and survival after kidney cancer: a systematic review. BJU Int. 2022 Nov;130(5):562-579.
10.	Other exclusion criteria	 Abstracts, conference presentations and theses Non-human studies Non-English language studies
11.	Context	 Model derivation studies that do not contain any validation data. There is currently no national guideline in the UK on the diagnosis and treatment of kidney cancer and audit data indicates variation in the clinical practice within NHS. Stakeholders identified this gap and NICE was commissioned to develop a guideline on kidney cancer by NHSE.
		Prognostic factors play a crucial role in the initial assessment of a patient's prognosis, in counselling patients, guiding treatment decisions, informing individualised surveillance protocols and in the design and recruitment of clinical trials. Therefore, this review aims to evaluate and compare the accuracy of individual or combined prognostic factors expressed as validated models or scores in adults with suspected or confirmed RCC to predict survival and recurrence outcomes. This information will help inform suitable management options.
	Outcomes to be	Outcomes predicted by prognostic models at the non-metastatic
12.	predicted	 post-treatment stage: Progression free survival Recurrence free survival Disease-free survival, including cancer-free survival Some studies may report disease-free survival as recurrence free survival, local recurrence, or distant metastases. These will be extracted as proxy outcomes where survival data is not reported in the studies. Overall survival Cancer specific survival
		Outcomes predicted by prognostic models at metastatic pre- and post-treatment stages: Overall survival Progression free survival

	<u> </u>	T =
13.	Outcome measures	For each outcome, prognostic accuracy measures will be reported where available, for example: Odds ratios/hazard ratios/ risk ratios Model fit statistics (for example R², Brier score) Discrimination (for example C statistic, area under ROC curve, sensitivity and specificity and likelihood ratios). Calibration (for example calibration slope) Where OR/RR and c-statistic data is reported at multiple time points
		then data will be pooled across studies for the timepoint closest to that in the model derivation paper/ time the model is used to predict outcomes for in practice (we expect that these will be the same). We will also extract data for the latest timepoint available and analyse this separately.
14.	Data extraction (selection and coding)	All references identified by the searches and from other sources will be uploaded into EPPI reviewer and de-duplicated. 10% of the abstracts will be reviewed by two reviewers, with any disagreements resolved by discussion or, if necessary, a third independent reviewer.
		The full text of potentially eligible studies will be retrieved and will be assessed in line with the criteria outlined above. A standardised form will be used to extract data from studies (see Developing NICE guidelines: the manual section 6.4). Study investigators may be contacted for missing data where time and resources allow.
15.	Risk of bias (quality) assessment	Risk of bias of individual studies will be assessed using the preferred checklist as described in Developing NICE guidelines: the manual :
		PROBAST checklist for prognostic studies ROBIS for systematic reviews of prediction models
16.	Strategy for data synthesis	Where possible, meta-analyses will be conducted to combine the results of studies for each outcome.
		Hazard ratio and odds ratio outcome measures Where appropriate, hazard ratios will be pooled using the generic inverse-variance method. Adjusted odds ratios, hazard ratios and risk ratios from multivariate models will only be pooled if the same set of factors are used across multiple studies and if the same thresholds to measure factors were used across studies.
		Fixed- and random-effects models (der Simonian and Laird) will be fitted for all outcomes, with the presented analysis dependent on the degree of heterogeneity in the assembled evidence. Fixed-effects models will be deemed to be inappropriate if one or both of the following conditions are met: • Significant between-study heterogeneity in methodology, population, predictors, or comparator was identified by the reviewer
		 in advance of data analysis. The presence of significant statistical heterogeneity in the meta- analysis, defined as l²≥50%.
		Prognostic test accuracy outcome measures Where five or more studies were available that reported data in a 2x2 format (or that could be manipulated to derive this information) a bivariate model will be fitted using the mada package in R v3.4.0, which accounts for the correlations between positive and negative likelihood

		ratios, and between sensitivities and specificities. Where sufficient data is not available (2-4 studies), separate independent pooling will be performed for positive likelihood ratios, negative likelihood ratios, sensitivity and specificity. Meta-analysis of c-statistics will be considered when the same prognostic models have been evaluated across multiple studies. Meta-analyses of c statistics will be carried out using the metamisc package in R v4.2.3, which confines the analysis results to between 0 and 1 matching the limited range of values that c-statistics can take. A modified version of GRADE will be used to assess the quality of the outcomes. All outcomes in this review which come from validated cohort studies and systematic reviews will be rated as high quality initially and downgraded from this point.
		GRADE will be carried out at the level of likelihood ratios with LR+ being downgraded for imprecision if the 95%CI cross 1 or 2. For LR- the results will be downgraded if the 95% CI crosses 0.5 or 1. For c-statistics the result will be downgraded once for imprecision if the 95% CI crosses 2 categories of test classification accuracy (see thresholds below) and twice if it crosses 3 or more categories.
		Decision making thresholds for HR/OR data To assess imprecision, where there are no defined minimally important differences (MIDs) we will set the MID as the line of no effect for all outcomes (1.0 for dichotomous outcomes and 0 for continuous outcomes). (The second downgrade for imprecision will be based on sample size.)
		Decision making thresholds for prediction test accuracy data We will use the thresholds from Evidence Based Emergency Medicine; Part 5 Receiver Operating Curve and Area under the Curve to classify the c-statistics. According to this AUC can be interpreted as follows: 90 -100 = excellent; 80 - 90 = good; 70 - 80 = fair; 60 - 70 = poor; 50 - 60 = fail.
		 Decision making thresholds (for likelihood ratios [LR]) For positive likelihood ratios: Potentially useful model LR ≥ 2.0 (with higher better) Not a useful model 1 < LR < 2.0 For negative likelihood ratios:
		 Useful model LR ≤ 0.5 (lower better) Not a useful model 0.5 < LR ≤ 1.0
17.	Analysis of sub-groups	RCC subtypes, for example, clear cell RCC, papillary RCC.
18.	Type and method of review	Intervention Diagnostic X Prognostic Qualitative Epidemiologic Service Delivery Other (please specify)

	T	
19.	Language	English
20.	Country	England
21.	Anticipated or actual start date	August 2024
22.	Anticipated completion date	March 2026
23.	Named contact	5a. Named contact Centre for Guidelines, NICE 5b Named contact e-mail kidneycancerguideline@nice.org.uk 5e Organisational affiliation of the review National Institute for Health and Care Excellence (NICE) and Guideline Development Team.
24.	Review team members	From the Guideline Development Team: Steve Sharp, Technical adviser Marie Harrisingh, Technical adviser Sarah Boyce, Senior technical analyst Fernando Zanghelini, Technical analyst Olivia Crane, Technical analyst Lindsay Claxton, Health economics adviser Hannah Tebbs, Senior Health economist Yuanyuan Zhang, Health economist Amy Finnegan, Senior Information specialist
25.	Funding sources/sponsor	This systematic review is being completed by the Guideline Development Team which receives funding from NICE.
26.	Conflicts of interest	All guideline committee members and anyone who has direct input into NICE guidelines (including the evidence review team and expert witnesses) must declare any potential conflicts of interest in line with NICE's code of practice for declaring and dealing with conflicts of interest. Any relevant interests, or changes to interests, will also be declared publicly at the start of each guideline committee meeting. Before each meeting, any potential conflicts of interest will be considered by the guideline committee Chair and a senior member of the development team. Any decisions to exclude a person from all or part of a meeting will be documented. Any changes to a member's declaration of interests will be recorded in the minutes of the meeting. Declarations of interests will be published with the final guideline.
27.	Collaborators	Development of this systematic review will be overseen by an advisory committee who will use the review to inform the development of evidence-based recommendations in line with section 3 of Developing NICE guidelines: the manual . Members of the guideline committee are available on the NICE website: Kidney Cancer (GID-NG10398).

Table 41: Economic review protocol

1 2

ID	Field	Content

1.	Review title	K: Cost effectiveness of prognostic models to predict survival and/ or recurrence in adults with suspected or confirmed localised or locally advanced renal cell carcinoma
		L: Cost effectiveness of prognostic models to predict survival and/ or recurrence in adults with suspected or confirmed metastatic renal cell carcinoma
2.	Objective	To identify economic studies for the review of prognostic models to predict survival and/or recurrence in adults with suspected or confirmed RCC
3.	Inclusion criteria	Populations, interventions and comparators as specified in the prognostic review protocol.
		Relevant comparative economic study design: cost–utility analysis
		Decision analytic model-based or within-trial economic analyses
		OECD countries (except USA)
		Healthcare and personal social services cost perspective
		Studies published from 2010 – this cut off has been applied to restrict the review to more recent studies which will have more applicable resource use and costs
		High-quality studies in line with the NICE reference case (recent UK NHS/PSS cost-utility analyses using the QALY as the measure of outcome) are the most applicable to NICE decision making.
4.	Exclusion criteria	Conference posters or abstract only studies – these do not provide sufficient information for quality assessment.
		Studies published before 2010 – this cut off has been applied to restrict the review to more recent studies which will have more applicable resource use and costs
		Studies from non-OECD countries or the USA – these are considered unlikely to be applicable to the UK NHS setting due to substantial differences in healthcare delivery and unit costs.
		Non-comparative economic analyses including cost-of-illness studies.
		 Letters, editorials or commentaries, study protocols or reviews of economic evaluations (recent reviews will be ordered and the bibliographies will be checked for relevant individual economic studies, which will then be ordered and checked for eligibility).
		Non-English language papers.
		 Studies considering exclusively intervention costs, e.g. medicine acquisition costs, without considering wider healthcare costs associated with the management of RCC.
		Studies only focussing on productivity losses or gains.
5.	Search	An economic study search will be undertaken using question-specific terms
	strategy	and an economic study filter. For search details see <u>appendix B</u> below.
		i or search details see <u>appendix D</u> below.
		The following databases will be searched:
		MEDLINE All, Ovid
		Embase, Ovid
		International HTA database, International Network of Agencies for Health Technology Assessment (INAHTA)
		• EconLit
		EED and HTA (legacy records)

6.	Review strategy	Studies meeting the inclusion and exclusion criteria will be assessed for applicability and methodological limitations using the NICE economic evaluation checklist in appendix H of Developing NICE guidelines: the manual . The NICE economic evaluation checklist assesses:
		 The NICE economic evaluation checklist assesses. Applicability to the NICE guideline decision making context with consideration of the NICE reference case relevant to the guideline. Recent UK studies that use the NICE reference case methods are the most applicable when considering cost effectiveness. Methodological limitations.
		 The aim is to present the best available economic evidence to inform committee decision-making in the context of the guideline, the current UK NHS setting and NICE methods. Therefore, the health economist may not present all studies that meet inclusion criteria. If recent high quality, UK cost-utility analyses are available for a question, it is often not deemed informative to present studies that are less applicable or lower quality such as older UK analyses or analyses from other countries. A similar principle is deemed to apply more generally when considering applicability and methodological limitations. Some specific examples are given below: If multiple versions of a model are available for the UK and other countries it is usually reasonable to only present the UK version. If multiple versions of the same UK model are available, it is usually reasonable to present only the most recent. If there has been a NICE MTA or guideline model that informs current NHS practice it is usually reasonable not to present older studies, unless they address a different subpopulation or other specific issue. If a UK model that includes all interventions in the decision space is available it may be reasonable not to present studies that only include individual or fewer interventions, if the analysis is sufficiently applicable
		 and of good methodological quality. Quality and relevance of effectiveness data used in the economic analysis: the more closely the clinical effectiveness data used in the economic analysis match with the outcomes of the studies included in the clinical review the more useful the analysis will be for decision-making in the guideline.
		 Hierarchy of economic evaluation evidence based on quality assessment 'Directly applicable' and 'Minor limitations' (only recent UK CUAs can get this rating). Usually presented and used in decision-making. Directly or partially applicable combined with minor or potentially serious limitations (other than 1). Discretion over whether these are presented and used in decision-making, depending on the availability of more relevant evidence. 'Not applicable' or 'Very serious limitations'. Typically not presented and not used in decision-making.
		The health economist will make a decision based on the relative applicability and quality of the available evidence for each question, in discussion with the guideline committee if required. All decisions will be transparently reported in the evidence report. Studies that are presented to the committee and used in decision-making when formulating recommendations will be included in the summary tables and will have an evidence extraction. Other studies may not be presented to the committee in detail but will be listed, with the reason for not being presented to the

1

	committee and thus not used in decision-making being provided. Committee members can review and query the decision not to present studies with the health economist and will be provided with full details of these studies where requested.
--	--

1 Appendix B – Literature search strategies

2 Background and development

3 Search design and peer review

- 4 A NICE Senior Information Specialist (SIS) conducted the literature searches. The MEDLINE
- 5 strategies below were quality assured (QA) by another NICE SIS. All translated search
- 6 strategies were peer reviewed to ensure their accuracy. Both procedures were adapted from
- 7 the Peer Review of Electronic Search Strategies Guideline Statement (for further details see:
- 8 McGowan J et al. PRESS 2015 Guideline Statement. Journal of Clinical Epidemiology, 75,
- 9 40-46).
- 10 The principal search strategies were developed in MEDLINE (Ovid interface) and adapted,
- as appropriate, for use in the other sources listed in the protocol, taking into account their
- size, search functionality and subject coverage.
- 13 This search report is based on the requirements of the PRISMA Statement for Reporting
- 14 Literature Searches in Systematic Reviews (for further details see: Rethlefsen M et al.
- 15 PRISMA-S. Systematic Reviews, 10(1), 39).

16 Review management

- 17 The search results were managed in EPPI-Reviewer v5. Duplicates were removed in EPPI-
- 18 R5 using a two-step process. First, automated deduplication is performed using a high-value
- 19 algorithm. Second, manual deduplication is used to assess "low-probability" matches. All
- decisions made for the review can be accessed via the deduplication history.

21 **Prior work**

- 22 The search maintained the same condition set as the combined search used for reviews A,
- B, C, H1 and H2 (review A: surgical interventions for localised RCC, review B: non-surgical
- interventions for localised RCC, review C: nephrectomy or stereotactic ablative radiotherapy
- 25 for locally advanced RCC, reviews H1 and H2: non-pharmacological management of
- advanced RCC).
- Nephrectomy was added to the population set for review K (current review) and review L as
- the question aimed to also include prognostic models that assessed surgical outcomes.
- 29 An exploratory search was performed prior to the search for review K (current review) and
- review L. The exploratory search looked for the names of validated prognostic models. The
- 31 validated models that passed the question's inclusion criteria were included in the second set
- 32 of the search strategy.
- 33 The analysts identified 3 test papers prior to the search being developed.

1 Search limits and other restrictions

2		_		 _	4-
,	_	n	r	2	ts
_		_		ч	

- 3 Limits were applied in adherence to standard NICE practice and the review protocol to
- 4 exclude:
- 5 Animal studies
- Editorials, letters, news items and commentaries
- 7 Conference abstracts and posters
- Registry entries for ongoing clinical trials or those that contain no results
- Theses and dissertations
- Papers not published in the English language.
- 11 The limit to remove animal studies in the searches was the standard NICE practice, which
- 12 has been adapted from:
- Dickersin K, Scherer R & Lefebvre C. (1994) <u>Systematic Reviews: Identifying relevant</u> studies for systematic reviews. *BMJ*, 309(6964), 1286.
- 15 Date limits

26

- No date limits were applied, in adherence to the review protocol.
- 17 Search filters and classifiers
- 18 Clinical searches
- 19 Systematic reviews filters:
- 20 Lee, E. et al. (2012) An optimal search filter for retrieving systematic reviews and meta-
- 21 <u>analyses</u>. BMC Medical Research Methodology, 12(1), 51.
- In MEDLINE, the standard NICE modifications were used: pubmed.tw added; systematic review.pt added from MeSH update 2019.
- In Embase, the standard NICE modifications were used: pubmed.tw added to line medline.tw.
- 27 Prognostic study filter (sensitive):
- Wilczynski, N and Haynes, R. (2004) <u>Developing optimal search strategies for detecting</u>
- 29 <u>clinically sound prognostic studies in MEDLINE: an analytic survey.</u> BMC Medicine 2

Cost effectiveness searches

2 3	The following search filters were applied to the search strategies in MEDLINE and Embase to identify cost-effectiveness studies:
4 5 6	Glanville J et al. (2009) <u>Development and Testing of Search Filters to Identify</u> <u>Economic Evaluations in MEDLINE and EMBASE</u> . Alberta: Canadian Agency for Drugs and Technologies in Health (CADTH)
7 8	Note: Several modifications have been made to these filters over the years that are standard NICE practice.
9	Key decisions
10	10 references, not retrieved by the search, were manually added to the main search results.
11	2 of the references were identified as being relevant by the committee and 8 of the
12	references were identified through systematic reviews captured by the search. The
13	references that were manually added to the search results were not captured by the search
14	as they did not mention model (intervention) terms or were filtered out of the results by the
15	study filters.
16	Additional searches were carried out for this topic. A broader search was carried out as the
17	same time as the main search on 16 th July 2024. The search looked for any relevant
18	prognostic studies, it was not limited to systematic review or cohort studies. The search was
19	run in Medline ALL (Ovid), Embase (Ovid) and Epistemonikos (Epistemonikos). The main
20	search results were excluded from the strategy using BOOLEAN NOT. The search results
21	were added to a separate EPPI database from the main search results. The results were
22	spot checked for relevancy.
23	On the 24 th September 2024 backwards citations searching was carried out in Web of
24	Science (WoS) across 35 papers after sifting the database searches carried out in July; 26 of
25	the references were identified in forest plots and 9 were missing from the main search. Only
26	those references that could be accessed through the NICE subscription to WOS were added
27	to the search results. Duplicates were removed from the marked list in WOS before
28	downloading the results.

29 Clinical searches

Database results

30

Databases	Date searched	Database platform	Database segment or version	No. of results downloaded
Cochrane Central Register of Controlled Trials (CENTRAL)	16/07/2024	Wiley	Issue 7 of 12, July 2024	93
Cochrane Database of Systematic Reviews (CDSR)	16/07/2024	Wiley	Issue 7 of 12, July 2024	0
Embase	16/07/2024	Ovid	1974 to 2024 July 15	2574
Epistemonikos	16/07/2024	Epistemonikos	N/A	190
International Health Technology Assessment Database (INAHTA)	16/07/2024	https://database.inahta.org/	N/A	11
MEDLINE ALL	16/07/2024	Ovid	1946 to July 15, 2024	989

Additional search methods

Databases	Date searched	No. of results downloaded
Medline	16/07/2024	989
Embase	16/07/2024	4151
Epistemonikos	16/07/2024	1507
WoS	24/09/2024	724

2 Search strategy history

1

3 Database name: Cochrane CENTRAL and CDSR

Search	nes		
#1	MeSH descriptor: [Kidney Neoplasms] explode all trees 1975		
#2	MeSH descriptor: [Nephrectomy] explode all trees 585		
t1a or t	#3 (Kidney* NEAR/2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or t1 or t1a or t1b or tb or t2a or t2b or t3 or t3a or t3b or t3c or stage-1 or stage-2 or stage-3 or stage-4)):ti,ab 1427		
#4 (collecting-duct* NEAR/2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or stage-4)):ti,ab 14			
#5 or hype	(renal-cell* or RCC or ccRCC or Renal-mass* or renal-tumo?r* or grawitz-tumo?r* ernephroma* or nephrocarcinoma*):ti,ab 3866		

- #6 (Kidney* NEAR/2 (Transitional-cell* or cell or urothelial* or duct or advanc*) NEAR/2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma*)):ti,ab 69
- #7 (nephron* NEAR/2 (surg* or remov* or partial* or procedur* or treat* or operat* or spar* or preserv*)):ti,ab 128
- #8 nephrectom*:ti,ab 1941
- #9 {or #1-#8} 6414
- #10 (UISS or karakiewicz or Kattan or leibovich or VENUSS or SSIGN or IMDC or Heng or Sorbellini* or Zisman* or Meet-URO or nephrometry):ti,ab 392
- #11 ("UCLA integrated staging system" or "Preoperative Aspects and Dimensions Used for an Anatomical Classification"):ti,ab 6
- #12 (("International Metastatic Renal Cell Carcinoma Database Consortium" or "grade age nodes and tumour" or "grade age nodes and tumor" or "Memorial Sloan-Kettering Cancer Center") NEAR/5 (grade* or index* or class* or scale* or model* or score* or scoring*)):ti,ab 6
- #13 ((MSKCC or TNM or PADUA or Centrality-index or C-index or GRANT or SPARE)
 NEAR/3 (classification* or system* or score* or scoring* or staging* or model*)):ti,ab
 1094
- #14 (("tumour node metastasis" or "tumor node metastasis" or "tumour node metastases" or "tumor node metastases" or "tumour nodes metastases" or "tumour nodes metastases" or "tumour nodes metastasis") near/5 (classification* or system* or score* or scoring* or staging*)):ti,ab 0
- #15 ((ECOG or "Eastern Cooperative Oncology Group" or Karnofsky or ASA or "American Society of Anesthesiologists" or Charlson-comorbidity or clinical-frail* or clinically-frail* or MSKCC or TNM or PADUA or Centrality-index or C-index or WHO or World-health-organisation* or ISUP or "International Society of Urological Pathology" or Fuhrman) NEAR/3 (grade* or index* or class* or scale* or model* or score* or scoring*)):ti,ab 29964
- #16 {or #10-#15} 30655
- #17 #9 and #16 591
- #18 MeSH descriptor: [Incidence] this term only 14390
- #19 MeSH descriptor: [Mortality] explode all trees 18908
- #20 MeSH descriptor: [Follow-Up Studies] this term only 74910
- #21 (prognos* or predict* or course*):ti,ab,kw 240578
- #22 {or #18-#21} 316167
- #23 #17 and #22 226
- #24 #17 and #22 in Cochrane Reviews 0
- #25 "conference":pt or (clinicaltrials or trialsearch):so 765632
- #26 #23 NOT #25 in Trials 93

1 Database name: Embase

Searches

- 1 exp kidney tumor/ or exp nephrectomy/ (216748)
- 2 (Kidney* adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or t1 or t1a or t1b or tb or t2a or t2b or t3 or t3a or t3b or t3c or stage-1 or stage-2 or stage-3 or stage-4)).ti,ab. (26798)
- 3 (collecting-duct* adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or stage-4)).ti,ab. (752)

- 4 (renal-cell* or RCC or ccRCC or Renal-mass* or renal-tumo?r* or grawitz-tumo?r* or hypernephroma* or nephrocarcinoma*).ti,ab. (108685)
- 5 (Kidney* adj2 (Transitional-cell* or cell or urothelial* or duct or advanc*) adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma*)).ti,ab. (1229)
- 6 (nephron* adj2 (surg* or remov* or partial* or procedur* or treat* or operat* or spar* or preserv*)).ti,ab. (4946)
- 7 nephrectom*.ti,ab. (64450)
- 8 or/1-7 (252846)
- 9 (UISS or karakiewicz or Kattan or leibovich or VENUSS or SSIGN or IMDC or Heng or Sorbellini* or Zisman* or Meet-URO or nephrometry).ti,ab. (5037)
- 10 ("UCLA integrated staging system" or "Preoperative Aspects and Dimensions Used for an Anatomical Classification").ti,ab. (81)
- 11 (("International Metastatic Renal Cell Carcinoma Database Consortium" or "grade age nodes and tumo?r" or "Memorial Sloan-Kettering Cancer Center") adj5 (grade* or index* or class* or scale* or model* or score* or scoring*)).ti,ab. (534)
- 12 ((MSKCC or TNM or PADUA or Centrality-index or C-index or GRANT or SPARE) adj3 (classification* or system* or score* or scoring* or staging* or model*)).ti,ab. (22950)
- 13 ("tumo?r node* metastas*" adj5 (classification* or system* or score* or scoring* or staging*)).ti,ab. (2748)
- 14 ((ECOG or "Eastern Cooperative Oncology Group" or Karnofsky or ASA or "American Society of Anesthesiologists" or Charlson-comorbidity or clinical*-frail* or MSKCC or TNM or PADUA or Centrality-index or C-index or WHO or World-health-organisation* or ISUP or "International Society of Urological Pathology" or Fuhrman) adj3 (grade* or index* or class* or scale* or model* or score* or scoring*)).ti,ab. (185750)
- 15 or/9-14 (200434)
- 16 8 and 15 (11887)
- 17 incidence.sh. (618107)
- 18 exp mortality/ (1454260)
- 19 follow-up studies.sh. (107)
- 20 prognos:.tw. (1276643)
- 21 predict:.tw. (2948385)
- 22 course:.tw. (1028156)
- 23 or/17-22 (6207241)
- 24 Cohort analysis/ or cohort.tw. or validat*.tw. (2770940)
- 25 (MEDLINE or pubmed).tw. (453291)
- 26 exp systematic review/ or systematic review.tw. (563805)
- 27 meta-analysis/ (321939)
- 28 intervention\$.ti. (285171)
- 29 or/24-28 (3711136)
- 30 16 and 23 and 29 (2628)
- 31 nonhuman/ not human/ (5484164)
- 32 30 not 31 (2612)
- 33 limit 32 to english language (2576)
- 34 ("clinical conference" or congress* or overall* or consensus*).pt. or (conference* or proceeding*).jn. or (conference* not (video* or conference-call* or case* or charter* or declaration* or treaty* or treaties)).ti. (279084)
- 35 33 not 34 (2574)

- 36 16 and 23 (6993)
- 37 nonhuman/ not human/ (5484164)
- 38 36 not 37 (6971)
- 39 limit 38 to english language (6731)
- 40 ("clinical conference" or congress* or overall* or consensus*).pt. or (conference* or proceeding*).jn. or (conference* not (video* or conference-call* or case* or charter* or declaration* or treaty* or treaties)).ti. (279084)
- 41 39 not 40 (6725)
- 42 41 not 35 (4151)

1 Database name: Epistemonikos

Searches

(title:((Kidney* AND (cancer* OR carcinoma* OR carcinosarcoma* OR adenocarcino* OR neoplas* OR tumor* OR tumour* OR mass OR metastat* OR malignan* OR sarcoma* OR parenchyma* OR t1 OR t1a OR t1b OR tb OR t2a OR t2b OR t3 OR t3a OR t3b OR t3c OR stage-1 OR stage-2 OR stage-3 OR stage-4)) OR ((collecting-duct* OR "collecting duct* AND (cancer* OR carcinoma* OR carcinosarcoma* OR adenocarcino* OR neoplas* OR tumor* OR tumour* OR mass OR metastat* OR malignan* OR sarcoma* OR parenchyma* OR stage-4)) OR (renal-cell* OR "renal cell*" OR RCC OR ccRCC OR Renal-mass* OR "Renal mass*" OR renal-tumor* OR renal-tumour* OR "renal tumor*" OR "renal tumour*" OR grawitz-tumor* OR grawitz-tumour* OR "grawitz tumor*" OR "grawitz tumour*" OR hypernephroma* OR nephrocarcinoma*) OR (Kidney* AND (Transitional-cell* OR "Transitional cell*" OR cell OR urothelial* OR duct OR advanc*) AND (cancer* OR carcinoma* OR carcinosarcoma* OR adenocarcino* OR neoplas* OR tumor* OR tumour* OR mass OR metastat* OR malignan* OR sarcoma* OR parenchyma*)) OR (nephron* AND (surg* OR remov* OR partial* OR procedur* OR treat* OR operat* OR spar* OR preserv*)) OR (nephrectom*)) OR abstract:((Kidney* AND (cancer* OR carcinoma* OR carcinosarcoma* OR adenocarcino* OR neoplas* OR tumor* OR tumour* OR mass OR metastat* OR malignan* OR sarcoma* OR parenchyma* OR t1 OR t1a OR t1b OR tb OR t2a OR t2b OR t3 OR t3a OR t3b OR t3c OR stage-1 OR stage-2 OR stage-3 OR stage-4)) OR ((collecting-duct* OR "collecting duct*") AND (cancer* OR carcinoma* OR carcinosarcoma* OR adenocarcino* OR neoplas* OR tumor* OR tumour* OR mass OR metastat* OR malignan* OR sarcoma* OR parenchyma* OR stage-4)) OR (renal-cell* OR "renal cell*" OR RCC OR ccRCC OR Renal-mass* OR "Renal mass*" OR renal-tumor* OR renal-tumour* OR "renal tumor*" OR "renal tumour*" OR grawitz-tumor* OR grawitz-tumour* OR "grawitz tumor*" OR "grawitz tumour*" OR hypernephroma* OR nephrocarcinoma*) OR (Kidney* AND (Transitional-cell* OR "Transitional cell*" OR cell OR urothelial* OR duct OR advanc*) AND (cancer* OR carcinoma* OR carcinosarcoma* OR adenocarcino* OR neoplas* OR tumor* OR tumour* OR mass OR metastat* OR malignan* OR sarcoma* OR parenchyma*)) OR (nephron* AND (surg* OR remov* OR partial* OR procedur* OR treat* OR operat* OR spar* OR preserv*)) OR (nephrectom*))) AND (title:((UISS OR karakiewicz OR Kattan OR leibovich OR VENUSS OR SSIGN OR IMDC OR Heng OR Sorbellini* OR Zisman* OR Meet-URO OR "Meet URO" OR nephrometry) OR ("UCLA integrated staging system" OR "Preoperative Aspects AND Dimensions Used for an Anatomical Classification") OR (("International Metastatic Renal Cell Carcinoma Database Consortium" OR "grade age nodes AND tumor" OR "grade age nodes AND tumour" OR "Memorial Sloan-Kettering Cancer Center") AND (grade* OR index* OR class* OR scale* OR model* OR score* OR scoring*)) OR ((MSKCC OR TNM OR PADUA OR Centrality-index OR Cindex OR "C index" OR GRANT OR SPARE) AND (classification* OR system* OR score* OR scoring* OR staging* OR model*)) OR (("tumour node metastasis" OR "tumor node metastasis" OR "tumour node metastases" OR "tumor node metastases" OR "tumour nodes metastases" OR "tumor nodes metastases" OR "tumour nodes metastasis" OR "tumor nodes metastasis") AND (classification* OR system* OR score* OR scoring* OR staging*)) OR ((ECOG OR "Eastern Cooperative Oncology Group" OR Karnofsky OR ASA OR "American Society of Anesthesiologists" OR Charlson-comorbidity OR clinical-frail* OR

clinically-frail* OR MSKCC OR TNM OR PADUA OR Centrality-index OR C-index OR WHO OR World-health-organisation* OR "World health organisation" OR ISUP OR "International Society of Urological Pathology" OR Fuhrman) AND (grade* OR index* OR class* OR scale* OR model* OR score* OR scoring*))) OR abstract:((UISS OR karakiewicz OR Kattan OR leibovich OR VENUSS OR SSIGN OR IMDC OR Heng OR Sorbellini* OR Zisman* OR Meet-URO OR "Meet URO" OR nephrometry) OR ("UCLA integrated staging system" OR "Preoperative Aspects AND Dimensions Used for an Anatomical Classification") OR (("International Metastatic Renal Cell Carcinoma Database Consortium" OR "grade age nodes AND tumor" OR "grade age nodes AND tumour" OR "Memorial Sloan-Kettering Cancer Center") AND (grade* OR index* OR class* OR scale* OR model* OR score* OR scoring*)) OR ((MSKCC OR TNM OR PADUA OR Centrality-index OR C-index OR "C index" OR GRANT OR SPARE) AND (classification* OR system* OR score* OR scoring* OR staging* OR model*)) OR (("tumour node metastasis" OR "tumor node metastasis" OR "tumour node metastases" OR "tumor node metastases" OR "tumour nodes metastases" OR "tumor nodes metastases" OR "tumour nodes metastasis" OR "tumor nodes metastasis") AND (classification* OR system* OR score* OR scoring* OR staging*)) OR ((ECOG OR "Eastern Cooperative Oncology Group" OR Karnofsky OR ASA OR "American Society of Anesthesiologists" OR Charlson-comorbidity OR clinical-frail* OR clinically-frail* OR MSKCC OR TNM OR PADUA OR Centrality-index OR C-index OR WHO OR Worldhealth-organisation* OR "World health organisation" OR ISUP OR "International Society of Urological Pathology" OR Fuhrman) AND (grade* OR index* OR class* OR scale* OR model* OR score* OR scoring*)))) AND (title:(Incidence* OR mortality* OR prognos* OR predict* OR course* OR "follow up study" OR "follow-up study" OR "follow up studies" OR "follow-up studies") OR abstract:(Incidence* OR mortality* OR prognos* OR predict* OR course* OR "follow up study" OR "follow-up study" OR "follow up studies" OR "follow-up studies"))

1 Database name: INAHTA

Searches

#1 (Kidney* AND (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumor* or tumour* or mass or metastat* or malignan* or sarcoma* or parenchyma* or t1 or t1a or t1b or t2a or t2b or t3 or t3a or t3b or t3c or stage-1 or stage-2 or stage-3 or stage-4)) OR ((collecting-duct* OR "collecting duct*") AND (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumor* or tumour* or mass or metastat* or malignan* or sarcoma* or parenchyma* or stage-4)) OR ((renal-cell* or "renal cell*" or RCC or ccRCC or Renal-mass* or "Renal mass*" or renal-tumor* or renal-tumour* or "renal tumor*" or "renal tumour*" or grawitz-tumor* or grawitz-tumour* or "grawitz tumor*" or "grawitz tumour*" or hypernephroma* or nephrocarcinoma*)) OR (Kidney* AND (Transitional-cell* or "Transitional cell*" or cell or urothelial* or duct or advanc*) AND (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumor* or tumour* or mass or metastat* or malignan* or sarcoma* or parenchyma*)) OR (nephron* AND (surg* or remov* or partial* or procedur* or treat* or operat* or spar* or preserv*)) AND (nephrectom*)

#2 (UISS or karakiewicz or Kattan or leibovich or VENUSS or SSIGN or IMDC or Heng or Sorbellini* or Zisman* or Meet-URO or "Meet URO" or nephrometry) OR ("UCLA integrated staging system" or "Preoperative Aspects and Dimensions Used for an Anatomical Classification") OR (("International Metastatic Renal Cell Carcinoma Database Consortium" or "grade age nodes and tumor" or "grade age nodes and tumour" or "Memorial Sloan-Kettering Cancer Center") AND (grade* or index* or class* or scale* or model* or score* or scoring*)) OR ((MSKCC or TNM or PADUA or Centrality-index or C-index OR "C index" or GRANT or SPARE) AND (classification* or system* or score* or scoring* or "tumour node metastasis" or "tumour node metastases" or "tumour node metastases" or "tumour nodes metastases" or "tumour nodes metastases" or "tumour nodes metastasis") AND (classification* or system* or score* or staging*)) OR ((ECOG or "Eastern

Cooperative Oncology Group" or Karnofsky or ASA or "American Society of Anesthesiologists" or Charlson-comorbidity or clinical-frail* or clinically-frail* or MSKCC or TNM or PADUA or Centrality-index or C-index or WHO or World-health-organisation* or "World health organisation" or ISUP or "International Society of Urological Pathology" or Fuhrman) AND (grade* or index* or class* or scale* or model* or score* or scoring*)) 1100

#3 #1 AND #2 11

1 Database name: Medline ALL

Searches

- 1 exp Kidney Neoplasms/ or exp nephrectomy/ (109945)
- 2 (Kidney* adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or t1 or t1a or t1b or tb or t2a or t2b or t3 or t3a or t3b or t3c or stage-1 or stage-2 or stage-3 or stage-4)).ti,ab. (17733)
- 3 (collecting-duct* adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or stage-4)).ti,ab. (503)
- 4 (renal-cell* or RCC or ccRCC or Renal-mass* or renal-tumo?r* or grawitz-tumo?r* or hypernephroma* or nephrocarcinoma*).ti,ab. (72591)
- 5 (Kidney* adj2 (Transitional-cell* or cell or urothelial* or duct or advanc*) adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma*)).ti,ab. (855)
- 6 (nephron* adj2 (surg* or remov* or partial* or procedur* or treat* or operat* or spar* or preserv*)).ti,ab. (2714)
- 7 nephrectom*.ti,ab. (41402)
- 8 or/1-7 (154034)
- 9 (UISS or karakiewicz or Kattan or leibovich or VENUSS or SSIGN or IMDC or Heng or Sorbellini* or Zisman* or Meet-URO or nephrometry).ti,ab. (2074)
- 10 ("UCLA integrated staging system" or "Preoperative Aspects and Dimensions Used for an Anatomical Classification").ti,ab. (56)
- 11 (("International Metastatic Renal Cell Carcinoma Database Consortium" or "grade age nodes and tumo?r" or "Memorial Sloan-Kettering Cancer Center") adj5 (grade* or index* or class* or scale* or model* or score* or scoring*)).ti,ab. (357)
- 12 ((MSKCC or TNM or PADUA or Centrality-index or C-index or GRANT or SPARE) adj3 (classification* or system* or score* or scoring* or staging* or model*)).ti,ab. (14276)
- 13 ("tumo?r node* metastas*" adj5 (classification* or system* or score* or scoring* or staging*)).ti,ab. (2500)
- 14 ((ECOG or "Eastern Cooperative Oncology Group" or Karnofsky or ASA or "American Society of Anesthesiologists" or Charlson-comorbidity or clinical*-frail* or MSKCC or TNM or PADUA or Centrality-index or C-index or WHO or World-health-organisation* or ISUP or "International Society of Urological Pathology" or Fuhrman) adj3 (grade* or index* or class* or scale* or model* or score* or scoring*)).ti,ab. (105881)
- 15 or/9-14 (114642)
- 16 8 and 15 (5125)
- 17 incidence.sh. (309064)
- 18 exp mortality/ (429835)
- 19 follow-up studies.sh. (700226)
- 20 prognos:.tw. (853921)
- 21 predict:.tw. (2203246)

Searches 22 course:.tw. (733615) 23 or/17-22 (4465499) 24 exp Cohort Studies/ or cohort.tw. or validat*.tw. (3676032) 25 (MEDLINE or pubmed).tw. (366550) 26 systematic review.tw. (308367) 27 systematic review.pt. (266180) 28 meta-analysis.pt. (204095) 29 intervention\$.ti. (217527) 30 or/24-29 (4318796) 31 16 and 23 and 30 (2231) 32 animals/ not humans/ (5206081) 33 31 not 32 (2229) 34 limit 33 to english language (2125) 35 limit 34 to (letter or historical article or comment or editorial or news or case reports) (19)36 34 not 35 (2106) ("clinical conference" or congress* or overall* or consensus*).pt. or (conference* or proceeding*).jn. or (conference* not (video* or conference-call* or case* or charter* or declaration* or treaty* or treaties)).ti. (388945) 38 36 not 37 (2104) 39 16 and 23 (3370) 40 animals/ not humans/ (5206081) 41 39 not 40 (3368) 42 limit 41 to english language (3190) 43 limit 42 to (letter or historical article or comment or editorial or news or case reports) (92)44 42 not 43 (3098) ("clinical conference" or congress* or overall* or consensus*).pt. or (conference* or proceeding*).in. or (conference* not (video* or conference-call* or case* or charter* or declaration* or treaty* or treaties)).ti. (388945) 44 not 45 (3093) 46 47 46 not 36 (989)

1

1 Cost-effectiveness searches

Database results

2

Databases	Date searched	Database platform	Database segment or version	No. of results downloaded
EconLit	18/07/2024	OVID	1886 to July 10, 2024	0
EED	18/07/2024	CRD	N/A	0
Embase	18/07/2024	Ovid	1974 to 2024 July 17	688
HTA	18/07/2024	CRD	N/A	1
INAHTA	18/07/2024	INAHTA	N/A	11
MEDLINE ALL	18/07/2024	Ovid	1946 to July 17, 2024	265

3

4 Search strategy history

5 Database name: Econlit

Searches

- 1 (Kidney* adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or t1 or t1a or t1b or tb or t2a or t2b or t3 or t3a or t3b or t3c or stage-1 or stage-2 or stage-3 or stage-4)).ti,ab. (8)
- 2 (collecting-duct* adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or stage-4)).ti,ab. (0)
- 3 (renal-cell* or RCC or ccRCC or Renal-mass* or renal-tumo?r* or grawitz-tumo?r* or hypernephroma* or nephrocarcinoma*).ti,ab. (22)
- 4 (Kidney* adj2 (Transitional-cell* or cell or urothelial* or duct or advanc*) adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma*)).ti,ab. (0)
- 5 (nephron* adj2 (surg* or remov* or partial* or procedur* or treat* or operat* or spar* or preserv*)).ti,ab. (0)
- 6 nephrectom*.ti,ab. (0)
- 7 or/1-6 (30)
- 8 (UISS or karakiewicz or Kattan or leibovich or VENUSS or SSIGN or IMDC or Heng or Sorbellini* or Zisman* or Meet-URO or nephrometry).ti,ab. (28)
- 9 ("UCLA integrated staging system" or "Preoperative Aspects and Dimensions Used for an Anatomical Classification").ti,ab. (0)
- 10 (("International Metastatic Renal Cell Carcinoma Database Consortium" or "grade age nodes and tumo?r" or "Memorial Sloan-Kettering Cancer Center") adj5 (grade* or index* or class* or scale* or model* or score* or scoring*)).ti,ab. (1)
- 11 ((MSKCC or TNM or PADUA or Centrality-index or C-index or GRANT or SPARE) adj3 (classification* or system* or score* or scoring* or staging* or model*)).ti,ab. (189)
- 12 ("tumo?r node* metastas*" adj5 (classification* or system* or score* or scoring* or staging*)).ti,ab. (0)

Searches

- 13 ((ECOG or "Eastern Cooperative Oncology Group" or Karnofsky or ASA or "American Society of Anesthesiologists" or Charlson-comorbidity or clinical*-frail* or MSKCC or TNM or PADUA or Centrality-index or C-index or WHO or World-health-organisation* or ISUP or "International Society of Urological Pathology" or Fuhrman) adj3 (grade* or index* or class* or scale* or model* or score* or scoring*)).ti,ab. (1018)
- 14 or/8-13 (1235)
- 15 7 and 14 (0)

1 Database name: EED and HTA

Searche	s	
Line	Search	Hits
1	MESH DESCRIPTOR Kidney Neoplasms EXPLODE ALL TREES	201
2	MESH DESCRIPTOR Nephrectomy EXPLODE ALL TREES	95
3	(Kidney* NEAR2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or t1 or t1a or t1b or t2a or t2b or t3 or t3a or t3b or t3c or stage-1 or stage-2 or stage-3 or stage-4))	194
4	(collecting-duct* NEAR2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or stage-4))	1
5	(renal-cell* or RCC or ccRCC or Renal-mass* or renal-tumo?r* or grawitz-tumo?r* or hypernephroma* or nephrocarcinoma*)	204
6	(Kidney* NEAR2 (Transitional-cell* or cell or urothelial* or duct or advanc*) NEAR2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma*))	3
7	(nephron* NEAR2 (surg* or remov* or partial* or procedur* or treat* or operat* or spar* or preserv*))	9
8	nephrectom*	139
9	#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8	342
10	(UISS or karakiewicz or Kattan or leibovich or VENUSS or SSIGN or IMDC or Heng or Sorbellini* or Zisman* or Meet-URO or nephrometry)	34
11	"UCLA integrated staging system" or "Dimensions Used for an Anatomical Classification"	0
12	("International Metastatic Renal Cell Carcinoma Database Consortium" or "grade age nodes" or "Memorial Sloan-Kettering Cancer Center") NEAR5 (grade* or index* or class* or scale* or model* or score* or scoring*)	1
13	((MSKCC or TNM or PADUA or Centrality-index or C-index or GRANT or SPARE) NEAR3 (classification* or system* or score* or scoring* or staging* or model*))	27
14	(("tumour node metastasis" or "tumor node metastasis" or "tumour node metastases" or "tumor node metastases" or "tumor nodes metastases" or "tumor nodes metastases" or "tumor nodes metastasis") near5 (classification* or system* or score* or scoring* or staging*))	6
15	((ECOG or "Eastern Cooperative Oncology Group" or Karnofsky or ASA or "American Society of Anesthesiologists" or Charlson-comorbidity or clinical-frail* or clinically-frail* or MSKCC or TNM or PADUA or Centrality-index or C-index or WHO or World-health-organisation* or ISUP or "International Society of Urological Pathology" or Fuhrman) NEAR3 (grade* or index* or class* or scale* or model* or score* or scoring*))	313
16	#10 OR #11 OR #12 OR #13 OR #14 OR #15	366
17	#9 AND #16	15
18	MESH DESCRIPTOR Incidence	1373
19	MESH DESCRIPTOR Mortality EXPLODE ALL TREES	2099
20	MESH DESCRIPTOR Follow-Up Studies	2032
21	(prognos* or predict* or course*)	8966
22	#18 OR #19 OR #20 OR #21	13139
23	#17 AND #22	6
24	(#23) IN NHSEED	0
25	(#23) IN HTA	1

1 Database name: Embase

Searches

- 1 exp kidney tumor/ or exp nephrectomy/ (216789)
- 2 (Kidney* adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or t1 or t1a or t1b or tb or t2a or t2b or t3 or t3a or t3b or t3c or stage-1 or stage-2 or stage-3 or stage-4)).ti,ab. (26808)
- 3 (collecting-duct* adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or stage-4)).ti,ab. (752)
- 4 (renal-cell* or RCC or ccRCC or Renal-mass* or renal-tumo?r* or grawitz-tumo?r* or hypernephroma* or nephrocarcinoma*).ti,ab. (108713)
- 5 (Kidney* adj2 (Transitional-cell* or cell or urothelial* or duct or advanc*) adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma*)).ti,ab. (1229)
- 6 (nephron* adj2 (surg* or remov* or partial* or procedur* or treat* or operat* or spar* or preserv*)).ti,ab. (4946)
- 7 nephrectom*.ti,ab. (64461)
- 8 or/1-7 (252893)
- 9 (UISS or karakiewicz or Kattan or leibovich or VENUSS or SSIGN or IMDC or Heng or Sorbellini* or Zisman* or Meet-URO or nephrometry).ti,ab. (5040)
- 10 ("UCLA integrated staging system" or "Preoperative Aspects and Dimensions Used for an Anatomical Classification").ti,ab. (81)
- 11 (("International Metastatic Renal Cell Carcinoma Database Consortium" or "grade age nodes and tumo?r" or "Memorial Sloan-Kettering Cancer Center") adj5 (grade* or index* or class* or scale* or model* or score* or scoring*)).ti,ab. (534)
- 12 ((MSKCC or TNM or PADUA or Centrality-index or C-index or GRANT or SPARE) adj3 (classification* or system* or score* or scoring* or staging* or model*)).ti,ab. (22957)
- 13 ("tumo?r node* metastas*" adj5 (classification* or system* or score* or scoring* or staging*)).ti,ab. (2749)
- 14 ((ECOG or "Eastern Cooperative Oncology Group" or Karnofsky or ASA or "American Society of Anesthesiologists" or Charlson-comorbidity or clinical*-frail* or MSKCC or TNM or PADUA or Centrality-index or C-index or WHO or World-health-organisation* or ISUP or "International Society of Urological Pathology" or Fuhrman) adj3 (grade* or index* or class* or scale* or model* or score* or scoring*)).ti,ab. (185802)
- 15 or/9-14 (200493)
- 16 8 and 15 (11890)
- 17 incidence.sh. (618367)
- 18 exp mortality/ (1454641)
- 19 follow-up studies.sh. (107)
- 20 prognos:.tw. (1277114)
- 21 predict:.tw. (2949422)
- 22 course:.tw. (1028312)
- 23 or/17-22 (6209156)
- 24 16 and 23 (6994)
- 25 nonhuman/ not human/ (5485460)
- 26 24 not 25 (6972)
- 27 limit 26 to english language (6732)
- 28 27 not (letter or editorial).pt. (6710)

Searches 29 exp Health Economics/ (1083212) 30 exp "Health Care Cost"/ (355582) 31 exp Pharmacoeconomics/ (244320) 32 Monte Carlo Method/ (54181) 33 Decision Tree/ (25166) 34 econom\$.tw. (530905) 35 cba.tw. (14606) 36 cea.tw. (43369) 37 cua.tw. (1987) 38 markov\$.tw. (42273) 39 (monte adj carlo).tw. (64709) 40 (decision adj3 (tree\$ or analys\$)).tw. (43496) 41 (cost or costs or costing\$ or costly or costed).tw. (1056833) 42 (price\$ or pricing\$).tw. (77523) 43 budget\$.tw. (49784) 44 expenditure\$.tw. (95221) 45 (value adj3 (money or monetary)).tw. (4531) (pharmacoeconomic\$ or (pharmaco adj economic\$)).tw. (9949) 46 47 or/29-46 (2386194) 48 "Quality of Life"/ (674998) 49 Quality Adjusted Life Year/ (37922) 50 Quality of Life Index/ (3301) 51 Short Form 36/ (42364) 52 Health Status/ (158972) 53 quality of life.tw. (635402) 54 quality adjusted life.tw. (28264) 55 (qaly\$ or qald\$ or qale\$ or qtime\$).tw. (28723) 56 disability adjusted life.tw. (7415) 57 daly\$.tw. (7121) (sf36 or sf 36 or short form 36 or shortform 36 or sf thirty six or shortform thirtysix or shortform thirty six or short form thirtysix or short form thirty six).tw. (51877) (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sfsix or shortform six or short form six).tw. (3112) (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve or sftwelve or shortform twelve or short form twelve).tw. (12830) (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sfsixteen or shortform sixteen or short form sixteen).tw. (73) (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty or sftwenty or shortform twenty or short form twenty).tw. (543) 63 (eurogol or euro gol or eq5d or eq 5d).tw. (32912) 64 (qol or hql or hqol or hrqol).tw. (140391) 65 (hye or hyes).tw. (193) 66 health\$ year\$ equivalent\$.tw. (41) 67 utilit\$.tw. (402088)

Kidney cancer: evidence review for risk prediction tools and factors DRAFT FOR CONSULTATION (September 2025)

(hui or hui1 or hui2 or hui3).tw. (3363)

68

- 69 disutili\$.tw. (1375)
- 70 rosser.tw. (144)
- 71 quality of wellbeing.tw. (79)
- 72 quality of well-being.tw. (591)
- 73 qwb.tw. (276)
- 74 willingness to pay.tw. (14111)
- 75 standard gamble\$.tw. (1219)
- 76 time trade off.tw. (2162)
- 77 time tradeoff.tw. (323)
- 78 tto.tw. (2364)
- 79 or/48-78 (1389661)
- 80 47 or 79 (3554361)
- 81 28 and 80 (688)

1 Database name: INAHTA

Searches

#1 (Kidney* AND (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumor* or tumour* or mass or metastat* or malignan* or sarcoma* or parenchyma* or t1 or t1a or t1b or tb or t2a or t2b or t3 or t3a or t3b or t3c or stage-1 or stage-2 or stage-3 or stage-4)) OR ((collecting-duct* OR "collecting duct*") AND (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumor* or tumour* or mass or metastat* or malignan* or sarcoma* or parenchyma* or stage-4)) OR ((renal-cell* or "renal cell*" or RCC or ccRCC or Renal-mass* or "Renal mass*" or renal-tumor* or renal-tumour* or "renal tumor*" or "renal tumor*" or grawitz-tumor* or grawitz-tumour* or "grawitz tumor*" or "grawitz tumour*" or hypernephroma* or nephrocarcinoma*)) OR (Kidney* AND (Transitional-cell* or "Transitional cell*" or cell or urothelial* or duct or advanc*) AND (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumor* or tumour* or mass or metastat* or malignan* or sarcoma* or parenchyma*)) OR (nephron* AND (surg* or remov* or partial* or procedur* or treat* or operat* or spar* or preserv*)) AND (nephrectom*) 153

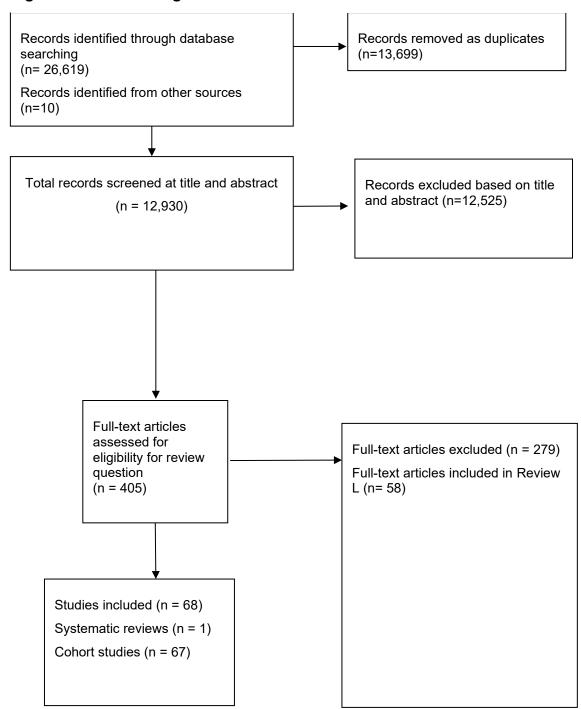
#2 (UISS or karakiewicz or Kattan or leibovich or VENUSS or SSIGN or IMDC or Heng or Sorbellini* or Zisman* or Meet-URO or "Meet URO" or nephrometry) OR ("UCLA integrated staging system" or "Preoperative Aspects and Dimensions Used for an Anatomical Classification") OR (("International Metastatic Renal Cell Carcinoma Database Consortium" or "grade age nodes and tumor" or "grade age nodes and tumour" or "Memorial Sloan-Kettering Cancer Center") AND (grade* or index* or class* or scale* or model* or score* or scoring*)) OR ((MSKCC or TNM or PADUA or Centrality-index or C-index OR "C index" or GRANT or SPARE) AND (classification* or system* or score* or scoring* or staging* or model*)) OR (("tumour node metastasis" or "tumor node metastasis" or "tumour node metastases" or "tumor node metastases" or "tumour nodes metastases" or "tumor nodes metastases" or "tumour nodes metastasis" or "tumor nodes metastasis") AND (classification* or system* or score* or scoring* or staging*)) OR ((ECOG or "Eastern Cooperative Oncology Group" or Karnofsky or ASA or "American Society of Anesthesiologists" or Charlson-comorbidity or clinical-frail* or clinically-frail* or MSKCC or TNM or PADUA or Centrality-index or C-index or WHO or World-health-organisation* or "World health organisation" or ISUP or "International Society of Urological Pathology" or Fuhrman) AND (grade* or index* or class* or scale* or model* or score* or scoring*)) 1100

#3 #1 AND #2 11

1 Database name: Medline ALL

Searches

- 1 exp Kidney Neoplasms/ or exp nephrectomy/ (109936)
- 2 (Kidney* adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or t1 or t1a or t1b or tb or t2a or t2b or t3 or t3a or t3b or t3c or stage-1 or stage-2 or stage-3 or stage-4)).ti,ab. (17737)
- 3 (collecting-duct* adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma* or stage-4)).ti,ab. (502)
- 4 (renal-cell* or RCC or ccRCC or Renal-mass* or renal-tumo?r* or grawitz-tumo?r* or hypernephroma* or nephrocarcinoma*).ti,ab. (72591)
- 5 (Kidney* adj2 (Transitional-cell* or cell or urothelial* or duct or advanc*) adj2 (cancer* or carcinoma* or carcinosarcoma* or adenocarcino* or neoplas* or tumo?r* or mass or metastat* or malignan* or sarcoma* or parenchyma*)).ti,ab. (855)
- 6 (nephron* adj2 (surg* or remov* or partial* or procedur* or treat* or operat* or spar* or preserv*)).ti,ab. (2711)
- 7 nephrectom*.ti,ab. (41398)
- 8 or/1-7 (154033)
- 9 (UISS or karakiewicz or Kattan or leibovich or VENUSS or SSIGN or IMDC or Heng or Sorbellini* or Zisman* or Meet-URO or nephrometry).ti,ab. (2071)
- 10 ("UCLA integrated staging system" or "Preoperative Aspects and Dimensions Used for an Anatomical Classification").ti,ab. (56)
- 11 (("International Metastatic Renal Cell Carcinoma Database Consortium" or "grade age nodes and tumo?r" or "Memorial Sloan-Kettering Cancer Center") adj5 (grade* or index* or class* or scale* or model* or score* or scoring*)).ti,ab. (356)
- 12 ((MSKCC or TNM or PADUA or Centrality-index or C-index or GRANT or SPARE) adj3 (classification* or system* or score* or scoring* or staging* or model*)).ti,ab. (14282)
- 13 ("tumo?r node* metastas*" adj5 (classification* or system* or score* or scoring* or staging*)).ti,ab. (2501)
- 14 ((ECOG or "Eastern Cooperative Oncology Group" or Karnofsky or ASA or "American Society of Anesthesiologists" or Charlson-comorbidity or clinical*-frail* or MSKCC or TNM or PADUA or Centrality-index or C-index or WHO or World-health-organisation* or ISUP or "International Society of Urological Pathology" or Fuhrman) adj3 (grade* or index* or class* or scale* or model* or score* or scoring*)).ti,ab. (105869)
- 15 or/9-14 (114632)
- 16 8 and 15 (5123)
- 17 incidence.sh. (309038)
- 18 exp mortality/ (429831)
- 19 follow-up studies.sh. (700181)
- 20 prognos:.tw. (853881)
- 21 predict:.tw. (2203330)
- 22 course:.tw. (733589)
- 23 or/17-22 (4465429)
- 24 16 and 23 (3373)
- 25 animals/ not humans/ (5206131)
- 26 24 not 25 (3371)
- 27 limit 26 to english language (3193)
- 28 limit 27 to (letter or historical article or comment or editorial or news or case reports) (92)


Searches 27 not 28 (3101) 29 30 Economics/ (27537) 31 exp "Costs and Cost Analysis"/ (271763) 32 Economics, Dental/ (1922) 33 exp Economics, Hospital/ (25902) 34 exp Economics, Medical/ (14440) 35 Economics, Nursing/ (4013) 36 Economics, Pharmaceutical/ (3141) 37 Budgets/ (11831) 38 exp Models, Economic/ (16414) 39 Markov Chains/ (16286) 40 Monte Carlo Method/ (33069) 41 Decision Trees/ (12271) 42 econom\$.tw. (439037) 43 cba.tw. (11416) 44 cea.tw. (28063) 45 cua.tw. (1510) 46 markov\$.tw. (33575) 47 (monte adj carlo).tw. (61974) 48 (decision adj3 (tree\$ or analys\$)).tw. (32918) 49 (cost or costs or costing\$ or costly or costed).tw. (797355) 50 (price\$ or pricing\$).tw. (56942) 51 budget\$.tw. (37769) 52 expenditure\$.tw. (72169) 53 (value adj3 (money or monetary)).tw. (3390) 54 (pharmacoeconomic\$ or (pharmaco adj economic\$)).tw. (4644) 55 or/30-54 (1528988) 56 "Quality of Life"/ (290886) 57 quality of life.tw. (406896) 58 "Value of Life"/ (5827) 59 Quality-Adjusted Life Years/ (16590) 60 quality adjusted life.tw. (18598) 61 (qaly\$ or qald\$ or qale\$ or qtime\$).tw. (15565) disability adjusted life.tw. (6190) 62 63 daly\$.tw. (5560) 64 Health Status Indicators/ (24132) (sf36 or sf 36 or short form 36 or shortform 36 or sf thirtysix or sf thirty six or shortform thirtysix or shortform thirty six or short form thirtysix or short form thirty six).tw. (31978) (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sfsix or shortform six or short form six).tw. (2782) (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve or sftwelve or shortform twelve or short form twelve).tw. (8114) (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sfsixteen or shortform sixteen or short form sixteen).tw. (42)

Searches (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty or sftwenty or shortform twenty or short form twenty).tw. (467) (eurogol or euro gol or eq5d or eq 5d).tw. (18396) 71 (qol or hql or hqol or hrqol).tw. (79365) 72 (hye or hyes).tw. (77) 73 health\$ year\$ equivalent\$.tw. (40) 74 utilit\$.tw. (288878) 75 (hui or hui1 or hui2 or hui3).tw. (2103) disutili\$.tw. (687) 76 77 rosser.tw. (111) 78 quality of wellbeing.tw. (52) 79 quality of well-being.tw. (511) 80 qwb.tw. (219) 81 willingness to pay.tw. (9444) 82 standard gamble\$.tw. (919) 83 time trade off.tw. (1451) 84 time tradeoff.tw. (268) 85 tto.tw. (1484) 86 or/56-85 (805571) 87 55 or 86 (2222501) 88 29 and 87 (265)

1 2

1 Appendix C – Prognostic evidence study selection

Figure 1: PRISMA diagram

1 Appendix D - Prognostic evidence

2 **An, 2015**

Bibliographic Reference

An, Huimin; Xu, Le; Chang, Yuan; Zhu, Yu; Yang, Yuanfeng; Chen, Lian; Lin, Zongming; Xu, Jiejie; CXC chemokine receptor 2 is associated with postoperative recurrence and survival of patients with non-metastatic clear-cell renal cell carcinoma.; European journal of cancer (Oxford, England: 1990); 2015; vol. 51 (no. 14); 1953-61

3

4 Study Characteristics

Study Char	acter 15tics		
Study design	Retrospective cohort study		
Study location	China		
Study dates	2003 to 2008		
Prognostic model(s)	Leibovich 2003		
Inclusion criteria	 Patients who underwent radical nephrectomy or nephron-sparing surgery no history of anti-cancer therapy no history of other malignant tumours histopathological proven clear cell renal cell carcinoma (ccRCC). 		
Exclusion criteria	Metastatic disease (N1 or M1 tumours)		
Selection of cohort	Single centre		
Number of participants	N=191		
Length of follow-up	67 months (range: 12–74 months)		
Follow-up schedule	Physical examinations, laboratory tests, chest imaging, abdominal ultrasound or CT scans were performed biannually for the first 5 years, and then annually after.		
	Model discrimination (C-stats)		
of interest	Recurrence-free/disease-free survival		
	Overall survival		
Source of funding	Not industry funded		
Additional comments	Survival curves were established using the Kaplan–Meier method. The significance of difference between the curves was analysed with		

the log-rank test. The Cox proportional hazards regression model was used to perform univariate analyses.

1 2

3

Population characteristics Study-level characteristics

Characteristic	Study (N = 191)
% Female	n = 52; % = 26.9
Sample size	
Age	55.2 (11.6)
Mean (SD)	
Т1	n = 138; % = 72.3
Sample size	
T2	n = 19; % = 9.9
Sample size	
Т3	n = 32; % = 16.8
Sample size	
T4	n = 2; % = 1
Sample size	

4 5

6

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis as assessed by Usher- Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

9 Baykal, 2025

Bibliographic Reference

Baykal, Serdar; Yilmaz, Hasan; Cinar, Naci Burak; Akdas, Enes Malik; Baynal, Enes Abdullah; Teke, Kerem; Dillioglugil, Ozdal; The pan-immune-inflammation value: A novel independent predictive factor for overall survival in >=pT2a nonmetastatic renal cell carcinoma.; Urologic oncology; 2025

10

11 Study Characteristics

Study design	Retrospective cohort study
Study location	Turkey
Study dates	2008 to 2022
Prognostic model(s)	UISS
Inclusion criteria	 People who underwent radical nephrectomy due to renal tumour People with histopathological RCC
Exclusion criteria	 People with non-RCC kidney carcinoma, urothelial carcinoma, cystic nephroma, angiomyolipoma, liposarcoma, polycystic kidney disease, multiple myeloma, cystic hydatid disease, perioperative deaths Missing variables and/or follow-up information Metastatic disease before nephrectomy
Selection of cohort	Single centre
Number of participants	n=197
Length of follow-up	Median follow-up time: 49 months (IQR 19 to 94.5)
Follow-up schedule	Follow-up at 1 month after surgery then every 3 months for the first year, every 6 months for the second year, and annually thereafter.
Outcome(s) of interest	Overall survival
Outcome(s) of interest	Overall survival Hazard ratios
Source of funding	None
Additional comments	None

1 2

Study arms

UISS - low risk (N = NR)

3 4 5

UISS - intermediate risk (N = NR)

6 7

UISS - high risk (N = NR)

8 9

10

Population characteristics

Study-level characteristics

Characteristic	Study (N = 197)
% Female	n = 68; % = 33.5

Characteristic	Study (N = 197)
Sample size	
Age Median (IQR)	59 (51 to 66)
RCC subtypes Sample size	n = NA ; % = NA
RCC subtypes - Clear cell Sample size	n = 134 ; % = 68
RCC subtypes - Papillary Sample size	n = 33 ; % = 16.7
RCC subtypes - Chromophobe Sample size	n = 21; % = 10.8
RCC subtypes - Other Sample size	n = 9; % = 4.5
TNM classification Sample size	n = NA ; % = NA
TNM classification - pT2 Sample size	n = 107; % = 54.3
TNM classification - pT3 Sample size	n = 89 ; % = 45.1
TNM classification - pT4 Sample size	n = 1; % = 0.6
TNM classification - pN0 Sample size	n = 186 ; % = 94.4
TNM classification - pN1 Sample size	n = 11; % = 5.6

2 Outcomes

Time-to-event outcomes

Outcome	UISS - intermediate risk vs UISS - low risk, N2 = NR, N1 = NR	UISS - high risk vs UISS - intermediate risk, N2 = NR, N1 = NR
Overall survival Hazard ratio/95% CI	2.84 (1.26 to 6.41)	4.64 (2.03 to 10.62)

4 5 6

1

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (Did not report discrimination and calibration)

Section	Question	Answer
Overall Risk of bias and Applicability	Concerns for applicability	Low

1 2

Beisland, 2015

Bibliographic Reference

Beisland, Christian; Gudbrandsdottir, Gigja; Reisaeter, Lars A R; Bostad, Leif; Wentzel-Larsen, Tore; Hjelle, Karin M; Contemporary external validation of the Leibovich model for prediction of progression after radical surgery for clear cell renal cell carcinoma.; Scandinavian journal of urology; 2015; vol. 49 (no. 3); 205-10

3

Study Characteristics

otady onara		
Study design	Retrospective cohort study	
Study location	Norway	
Study dates	1997 to 2013	
Prognostic model(s)	Leibovich 2003	
Inclusion criteria	 Primary-treated sporadic unilateral clear cell renal cell carcinoma (CCRCC). Operated on at Haukeland University Hospital Partial or radical nephrectomy 	
Exclusion criteria	 Bilateral synchronous tumours inheritable forms of renal cell carcinoma including hereditary papillary with von Hippel-Lindau and tuberous sclerosis syndromes with Wilms tumour prior or concurrent distant metastases age < 18 years at surgery denied access to medical records for research. 	
Selection of cohort	Single centre	
Number of participants	N=386	
Length of follow-up	51.6 ± 42.6 months (mean ± SD)	
Follow-up schedule	Clinical examination, blood tests and chest x-ray performed every 6 months for 5 years. Nephrectomy patients with intermediate and high-risk tumours had routine abdominal CT for follow-up. Chest CT was used based on individual evaluation.	

Covariates adjusted for in the multivariable regression modelling	Not reported
Outcome(s) of interest	Model discrimination (C-stats) Recurrence-free/disease-free survival
Source of funding	Not industry funded
Additional comments	To validate the discriminative ability of the model, the c-index was used. The discriminative ability was further tested by evaluating the hazard ratios over the risk groups in a Cox model.

Study arms

1 2

3 4

5 6 7

8

9

10

Leibovich 2003 low risk (N = 223)

Leibovich 2003 intermediate risk (N = 95)

Leibovich 2003 high risk (N = 65)

Population characteristics

Study-level characteristics

Characteristic	Study (N = 386)
% Female	n = 145; % = 37.6
Sample size	
Age	63.3 (12.1)
Mean (SE)	
Radical nephrectomy	n = 251 ; % = 65
No of events	
N1	n = 25; % = 6.5
Sample size	
N2	n = 202 ; % = 52.3
Sample size	
N3	n = 100 ; % = 25.9
Sample size	
N4	n = 56; % = 14.5

Characteristic	Study (N = 386)
Sample size	

1 2

Outcomes

3 Recurrence free survival

Outcome	Leibovich 2003 intermediate risk vs Leibovich 2003 low risk, N2 = 95, N1 = 223	
Recurrence free survival	5.29 (2.33 to 12.01)	21.56 (9.99 to 46.52)
Hazard ratio/95% CI		

4 5 6

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (high risk of bias for outcome or its determination assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

9

10

Buti, 2019

Bibliographic Reference

Buti, Sebastiano; Karakiewicz, Pierre I; Bersanelli, Melissa; Capitanio, Umberto; Tian, Zhe; Cortellini, Alessio; Taguchi, Satoru; Briganti, Alberto; Montorsi, Francesco; Leonardi, Francesco; Bandini, Marco; Validation of the GRade, Age, Nodes and Tumor (GRANT) score within the Surveillance Epidemiology and End Results (SEER) database: A new tool to predict survival in surgically treated renal cell carcinoma patients.; Scientific reports; 2019; vol. 9 (no. 1); 13218

11

12 Study Characteristics

Study design	Retrospective cohort study
Study location	United States
Study dates	2001 to 2015

Prognostic model(s)	GRANT
Inclusion criteria	 Histologically confirmed non-metastatic (M0 at diagnosis) renal cell carcinoma (RCC) stage pT1-4, N any death certificate only the histological subtypes included were clear cell RCC and papillary RC 18 years or older treated with partial or radical nephrectomy.
Exclusion criteria	 Autopsy cases patient with bilateral tumours unknown tumour grade unknown lymph node status unknown T classification unknown age unknown follow-up data.
Selection of cohort	Database or clinical registry (Surveillance, Epidemiology, and End Results (SEER) database)
Number of participants	N=73217
Length of follow-up	5 years
Follow-up schedule	Not reported
Covariates adjusted for in the multivariable regression modelling	Not reported
Outcome(s) of interest	Model discrimination (C-stats) Overall survival
Source of funding	Not industry funded
Additional comments	Kaplan-Meier used to plot overall survival. The validation of the GRANT score was investigated through the development of a Coxbased model.

1 2

Population characteristics Study-level characteristics

3

Characteristic	Study (N = 73217)
% Female	n = 26464 ; % = 36.1
Sample size	
Age	53 to 70
Range	
Partial nephrectomy	n = 25115; % = 34.3
Tartial nopiliotionly	20110, 70 01.0
No of events	
Radical nephrectomy	n = 48102 ; % = 65.7
No of events	
Clear cell	n = 60900 ; % = 83.2
	·
Sample size	
Papillary	n = 12317 ; % = 16.8
Sample size	
T stage T1-2-3a	n = 71819 ; % = 98.1
Sample size	1000 0/ 10
T stage T3b-3c-4	n = 1398 ; % = 1.9
Sample size	
N stage 0-X	n = 72139; % = 98.5
Sample size	
N stage 1	n = 1078 ; % = 1.5
Sample size	

1 2 3

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (high risk of bias around analysis and unclear risk of bias around outcome or its determination as assessed by

Section	Question	Answer
		Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

1

Capogrosso, 2018

Bibliographic Reference

Capogrosso, P.; Larcher, A.; Sjoberg, D.D.; Vertosick, E.A.; Cianflone, F.; Dell'Oglio, P.; Carenzi, C.; Salonia, A.; Vickers, A.J.; Montorsi, F.; Bertini, R.; Capitanio, U.; Risk Based Surveillance after Surgical Treatment of Renal Cell Carcinoma; Journal of Urology; 2018; vol. 200 (no. 1); 61-67

3

Study Characteristics

Study design	Retrospective cohort study	
Study location	United States	
Study dates	1995 to 2016	
Prognostic model(s)	UISS	
Inclusion criteria	 Patients with renal cell carcinoma (RCC) who had a partial or radical nephrectomy histology-proven malignant disease free from metastases at preoperative staging. 	
Exclusion criteria	Missing clinical or pathological data.	
Selection of cohort	Single centre	
Number of participants	N=1630	
Length of follow-up	3, 6 and 12 months, and 60 months	
Follow-up schedule	Total-body CT scans performed at 3 to 6 months and at 12 months after surgery over the first year, and annually thereafter. Additional evaluations were performed throughout the follow-up period if the patient's symptoms raised clinical suspicion of relapse. Patients who did not experience relapse were censored at the date of last follow-up.	
Covariates adjusted for in the multivariable	Not reported	

1

Study arms

UISS, low risk (N = 320)

UISS, intermediate risk (N = 1018)

UISS, high risk (N = 265)

7 8 9

10

Population characteristics

Study-level characteristics

Characteristic	Study (N = 1630)
Age	62 (52 to 70)
Median (IQR)	
Radical nephrectomy	n = 854 ; % = 52
No of events	
Partial nephrectomy	n = 776 ; % = 48
No of events	
Clear cell	n = 1273 ; % = 78
	,
Sample size	
Papillary type 1	n = 137; % = 8.4
Sample size	
Papillary type 2	n = 113; % = 6.9
Sample size	
Chromophobe	n = 107; % = 6.6
Sample size	
N0/Nx	n = 1571 ; % = 96.3

Characteristic	Study (N = 1630)
Sample size	
N1	n = 59; % = 3.6
Sample size	
t1	n = 1107; % = 68
Sample size	
t2	n = 163 ; % = 10
Sample size	
t3	n = 342 ; % = 21
Sample size	
t4	n = 18 ; % = 1.1
Sample size	

1 2

Outcomes

UISS

Outcome	UISS, intermediate risk vs UISS, low risk, N2 = 1018, N1 = 320	UISS, high risk vs UISS, low risk, N2 = 265, N1 = 320
local recurrence	1.65 (0.79 to 3.44)	2.27 (0.76 to 6.81)
Hazard ratio/95% CI		

4 5 6

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias around analysis and unclear risk of bias around selection of participants and outcome or its determination as assessed by Usher-Smith 2022)

Section	Question	Answer
Overall Risk of bias and Applicability	Concerns for applicability	Low

1 2

Chen, 2017

Bibliographic Reference

Chen, Zhen; Shao, Yingjie; Yao, Hongwei; Zhuang, Qianfeng; Wang, Kun; Xing, Zhaoyu; Xu, Xianlin; He, Xiaozhou; Xu, Renfang; Preoperative albumin to globulin ratio predicts survival in clear cell renal cell carcinoma patients.; Oncotarget; 2017; vol. 8 (no. 29); 48291-48302

3

4 Study Characteristics

Study design	Retrospective cohort study	
Study location	China	
Study dates	Validation cohort: May 2012 to December 2013	
Prognostic model(s)	Leibovich 2003 SSIGN	
Inclusion	Patients with RCC who underwent radical or partial nephrectomy	
criteria	, англи при при при при при при при при при пр	
Exclusion criteria	 Patients with a history of anti-tumour therapy and other concurrent tumours Other acute or chronic concurrent non-cancer diseases (including liver disease, inflammation, and infection) Concurrent distant metastasis Patients lost to follow-up 	
	Fatients lost to follow-up	
Selection of cohort	Single centre	
Number of participants	Validation cohort: n=176	
Length of follow-up	Validation cohort: median follow-up 42.3 months (range 3 to 50)	
Follow-up schedule	Postoperative follow-ups occurred every six months for the first three years and annually thereafter for locally advanced CCRCC patients. For localized CCRCC patients, follow-up imaging was performed twice in the first year and annually thereafter.	
Outcome(s) of interest	Model discrimination (C-stats) Overall survival	
Source of funding	National Science Foundation of Jiangsu Province	
Kidnov con	poor, avidance review for risk prediction tools and factors DDACT	

Additional	C-indices were derived from the validation cohort.
comments	

Population characteristics
Study-level characteristics

Study (N = 176)
n = 61; % = 34.7
n = 105 ; % = 59.7
n = 71; % = 40.3
n = 176 ; % = 100
n = 144 ; % = 81.8
n = 18; % = 10.2
n = 14 ; % = 8
n = 174 ; % = 98.9
n = 2; % = 1.1

4 5 6

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for outcome or its determination and analysis as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

9

Cindolo, 2005

Bibliographic Reference

Cindolo, Luca; Patard, Jean-Jacques; Chiodini, Paolo; Schips, Luigi; Ficarra, Vincenzo; Tostain, Jacques; de La Taille, Alexandre; Altieri, Vincenzo; Lobel, Bernard; Zigeuner, Richard E; Artibani, Walter; Guille, Francois; Abbou, Claude C; Salzano, Luigi; Gallo, Ciro; Comparison of predictive accuracy of four prognostic models for nonmetastatic renal cell carcinoma after nephrectomy: a multicenter European study.; Cancer; 2005; vol. 104 (no. 7); 1362-71

2

1

Study Characteristics

Study Charac	Cleristics	
Study design	Retrospective cohort study	
Study location	Italy, France and Austria	
Study dates	1984 to 2002	
Prognostic model(s)	Kattan UISS	
Inclusion criteria	 Patients who underwent surgery for renal cell carcinoma (RCC). 	
Exclusion criteria	 Patients with distant metastasis (M+) histologically confirmed lymph node-positive (N+) large tumours (pT4) benign disease bilateral disease carcinoma of the Bellini ducts unclassified histology those who died of surgical complications in the first month after nephrectomy follow-up <1 month. 	
Selection of cohort	Multicentre	
Number of participants	N=2404	
Length of follow-up	5 years	
Follow-up schedule	Not reported	
Covariates adjusted for in the multivariable	Not reported	

regression modelling	
Outcome(s) of interest	Model discrimination (C-stats)
	Recurrence-free/disease-free survival
	Overall survival
	Cancer-specific survival
Source of funding	Not industry funded
Additional comments	Survival curves were estimated by the product-limit method of Kaplan–Meier and compared by the log-rank statistic. The discriminating ability of the prognostic models was assessed using receiver operating characteristic (ROC) curves. The area under the ROC curves was calculated using a modified version for censored data of the c-index.

1 2

3

Population characteristics Study-level characteristics

Characteristic	Study (N = 2404)
% Female	% = 35.5
Sample size	
Age	62 (10 to 91)
Custom value	
Radical	n = 89.9
No of events	
Partial	n = 10.1
No of events	
Chromophobe	% = 3.5
Sample size	
Papillary	% = 9.6
Sample size	
Clear cell	% = 86.9
Sample size	
TNM 1	% = 58.5
Sample size	

Characteristic	Study (N = 2404)
TNM 2	% = 12.2
Sample size	
TNM 3a	% = 13.5
Sample size	
TNM 3b/c	% = 15.8
Sample size	

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

applied to all dates all the control of the control		
Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias due to outcome or its determination and analysis as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Correa, 2019

Bibliographic Reference

Correa, Andres F; Jegede, Opeyemi; Haas, Naomi B; Flaherty, Keith T; Pins, Michael R; Messing, Edward M; Manola, Judith; Wood, Christopher G; Kane, Christopher J; Jewett, Michael A S; Dutcher, Janice P; DiPaola, Robert S; Carducci, Michael A; Uzzo, Robert G; Predicting Renal Cancer Recurrence: Defining Limitations of Existing Prognostic Models With Prospective Trial-Based Validation.; Journal of clinical oncology: official journal of the American Society of Clinical Oncology; 2019; vol. 37 (no. 23); 2062-2071

8

9 Study Characteristics

Study design	Retrospective cohort study
Study location	USA
Study dates	2010 to 2017
Prognostic model(s)	Karakiewicz
	Kattan
	Leibovich 2003

	SSIGN		
	UISS		
Inclusion criteria	 Clear cell and non-clear cell RCC intermediate or high risk RCC per modified UISS (pT1b and G3-4; pT2/pT3/pT4; N1). 		
Exclusion criteria	 Metastatic central pathology unavailable collecting duct histology mixed histology. 		
Selection of cohort	Database or clinical registry ASSURE cohort		
Number of participants	N=1647		
Length of	Median follow-up, years		
follow-up	UISS: 2.5		
	SSIGN: 9.7 Leibovich 2003: 5.4 Kattan: 3.3 Karakiewicz: 12		
Follow-up schedule	Patients were assessed every 18 weeks by computed tomography or magnetic resonance imaging scans for recurrence during the first year. Then using scans and laboratory and clinical assessments every 6 months for another year, then once per year until disease recurrence or through 10 years.		
Outcome(s) of interest	Model discrimination (C-stats)		
or interest	Recurrence-free/disease-free survival		
	Overall survival		
	Cancer-specific survival		
Source of funding	Authors received research funding from:		
	Novartis, Sanofi		
	Argos Therapeutics, Pfizer		
	Bristol-Myers Squibb (Inst), Pfizer (Inst), AstraZeneca (Inst), Gilead Sciences (Inst), EMD Serono (Inst), eFFECTOR Therapeutics (Inst)		

Additional	Discrimination was measured using the C-index. Model calibration
comments	was assessed by using calibration plots depicting predicted versus
	observed 5-year recurrence-free survival probabilities.

Population characteristics Study-level characteristics

1

2

% Female n = 532 ; % = 32.3 Sample size 55.9 (10.7) Mean (SD) n = 10 ; % = 0.6 Sample size n = 145 ; % = 8.8 TNM classification - pT1b n = 145 ; % = 8.8 Sample size n = 219 ; % = 13.4 Sample size n = 158 ; % = 9.6 Sample size n = 1064 ; % = 64.8 Sample size n = 1064 ; % = 64.8 Sample size n = 25 ; % = 1.5 Sample size n = 6 ; % = 0.4 Sample size n = 14 ; % = 0.9 Sample size n = 14 ; % = 0.9	Characteristic	Study (N = 1647)
Age 55.9 (10.7) Mean (SD) n = 10; % = 0.6 Sample size n = 145; % = 8.8 Sample size n = 219; % = 13.4 Sample size n = 158; % = 9.6 Sample size n = 158; % = 9.6 Sample size n = 1064; % = 64.8 Sample size n = 25; % = 1.5 Sample size n = 6; % = 0.4 Sample size n = 14; % = 0.9	% Female	n = 532 ; % = 32.3
Mean (SD) TNM classification - pT1a	Sample size	
TNM classification - pT1a $n = 10$; % = 0.6Sample size $n = 145$; % = 8.8TNM classification - pT1b $n = 145$; % = 8.8Sample size $n = 219$; % = 13.4TNM classification - pT2b $n = 158$; % = 9.6Sample size $n = 1064$; % = 64.8TNM classification - pT3a $n = 1064$; % = 64.8Sample size $n = 25$; % = 1.5TNM classification - pT3c $n = 6$; % = 0.4Sample size $n = 6$; % = 0.4TNM classification - pT4 $n = 14$; % = 0.9	•	55.9 (10.7)
Sample size TNM classification - pT1b $n = 145$; % = 8.8 Sample size TNM classification - pT2a $n = 219$; % = 13.4 Sample size TNM classification - pT2b $n = 158$; % = 9.6 Sample size TNM classification - pT3a $n = 1064$; % = 64.8 Sample size TNM classification - pT3b $n = 25$; % = 1.5 Sample size TNM classification - pT3c $n = 6$; % = 0.4 Sample size TNM classification - pT4 $n = 14$; % = 0.9	Mean (SD)	
TNM classification - pT1b $n = 145$; % = 8.8Sample size $n = 219$; % = 13.4Sample size $n = 158$; % = 9.6TNM classification - pT2b $n = 158$; % = 9.6Sample size $n = 1064$; % = 64.8TNM classification - pT3a $n = 1064$; % = 64.8Sample size $n = 25$; % = 1.5TNM classification - pT3c $n = 6$; % = 0.4Sample size $n = 6$; % = 0.4TNM classification - pT4 $n = 14$; % = 0.9	·	n = 10; % = 0.6
Sample size TNM classification - pT2a $n = 219$; % = 13.4 Sample size TNM classification - pT2b $n = 158$; % = 9.6 Sample size TNM classification - pT3a $n = 1064$; % = 64.8 Sample size TNM classification - pT3b $n = 25$; % = 1.5 Sample size TNM classification - pT3c $n = 6$; % = 0.4 Sample size TNM classification - pT4 $n = 14$; % = 0.9	•	
TNM classification - pT2a $n = 219$; % = 13.4Sample size $n = 158$; % = 9.6Sample size $n = 1064$; % = 64.8TNM classification - pT3a $n = 1064$; % = 64.8Sample size $n = 25$; % = 1.5TNM classification - pT3b $n = 25$; % = 0.4Sample size $n = 6$; % = 0.4TNM classification - pT4 $n = 14$; % = 0.9	·	n = 145 ; % = 8.8
Sample size TNM classification - pT2b Sample size TNM classification - pT3a $n = 1064$; % = 64.8 Sample size TNM classification - pT3b $n = 25$; % = 1.5 Sample size TNM classification - pT3c $n = 6$; % = 0.4 Sample size TNM classification - pT4 $n = 14$; % = 0.9	•	
TNM classification - pT2b $n = 158$; % = 9.6Sample size $n = 1064$; % = 64.8TNM classification - pT3b $n = 25$; % = 1.5Sample size $n = 25$; % = 0.4TNM classification - pT3c $n = 6$; % = 0.4Sample size $n = 14$; % = 0.9	·	n = 219 ; % = 13.4
Sample size TNM classification - pT3a $n = 1064$; % = 64.8 Sample size TNM classification - pT3b $n = 25$; % = 1.5 Sample size TNM classification - pT3c $n = 6$; % = 0.4 Sample size TNM classification - pT4 $n = 14$; % = 0.9	•	
TNM classification - pT3a $n = 1064 ; \% = 64.8$ Sample size $n = 25 ; \% = 1.5$ Sample size $n = 6 ; \% = 0.4$ Sample size $n = 6 ; \% = 0.4$ TNM classification - pT4 $n = 14 ; \% = 0.9$	·	n = 158 ; % = 9.6
Sample size TNM classification - pT3b $n = 25$; % = 1.5 Sample size TNM classification - pT3c $n = 6$; % = 0.4 Sample size TNM classification - pT4 $n = 14$; % = 0.9	•	
TNM classification - pT3b $ n = 25 ; \% = 1.5 $ Sample size $ n = 6 ; \% = 0.4 $ Sample size $ n = 14 ; \% = 0.9 $	·	n = 1064 ; % = 64.8
Sample size	•	
TNM classification - pT3c $n = 6 \; ; \; \% = 0.4$ Sample size $n = 14 \; ; \; \% = 0.9$	TNM classification - pT3b	n = 25 ; % = 1.5
Sample size TNM classification - pT4 n = 14; % = 0.9	Sample size	
TNM classification - pT4	TNM classification - pT3c	n = 6; % = 0.4
	Sample size	
Sample size	TNM classification - pT4	n = 14; % = 0.9
	Sample size	

4 5 6

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Moderate (No information around loss to follow-up)

Section	Question	Answer
Overall Risk of bias and Applicability	Concerns for applicability	Low

Cortellini, 2020

Bibliographic Reference

Cortellini, Alessio; Buti, Sebastiano; Bersanelli, Melissa; Cannita, Katia; Pinterpe, Giada; Venditti, Olga; Verna, Lucilla; Porzio, Giampiero; Natoli, Clara; Tinari, Nicola; Cindolo, Luca; Di Clemente, Luigi; Grassadonia, Antonino; De Tursi, Michele; Ficorella, Corrado; Predictive Ability for Disease-Free Survival of the GRade, Age, Nodes, and Tumor (GRANT) Score in Patients with Resected Renal Cell Carcinoma.; Current urology; 2020; vol. 14 (no. 2); 98-104

3

4 Study Characteristics

Study design	Retrospective cohort study		
Study location	Italy		
Study dates	1998-2018		
Prognostic model(s)			
	UISS		
Inclusion criteria	 Histologically confirmed diagnosis of renal cell carcinoma (RCC) aged at least 18 years old partial or radical nephrectomy. 		
Exclusion criteria	Not specified		
Selection of cohort	Multicentre		
Number of participants	N=134		
Length of follow-up	Median 96 months (range 1.7–287.1 months)		
Follow-up schedule	Patients were monitored with haematological and radiological examinations as indicated by physician's choice, or at least every 6 months.		
Outcome(s) of interest	Recurrence-free/disease-free survival		
Source of funding	Supported by the Consorzio Interuniversitario Nazionale per la Bio-Oncologia (CINBO).		
Additional comments	Median disease-free survival (DFS) and median overall survival (OS) were computed with Kaplan-Meier survival analysis, and the log-rank		
121.1	· · · · · · · · · · · · · · · · · · ·		

test was used to compare the median DFS among different risk subgroups by GRANT and UISS scores, and to evaluate hazard ratios (HRs) for each comparison.

6

Study arms

UISS low risk (N = 21)

UISS intermediate risk (N = 84)

UISS high risk (N = 29)

7 8 9

10

Population characteristics

Study-level characteristics

Characteristic	Study (N = 134)
% Female	n = 41; % = 30.6
Sample size	
Age	Median 59 (range 29-84)
Custom value	
Clear cell	n = 105 ; % = 78.4
Sample size	
Papillary/chromophobe	n = 15; % = 11.2
Sample size	
Others	n = 14 ; % = 10.4
Sample size	
T1-3a	n = 105 ; % = 78.4
Sample size	
T3b-4	n = 29; % = 21.6
Sample size	

11 12

Outcomes

13 UISS disease-free survival

Outcome	UISS intermediate risk vs UISS low risk, N2 = 84, N1 = 21	UISS high risk vs UISS low risk, N2 = 29, N1 = 21	UISS high risk vs UISS intermediate risk, N2 = 29, N1 = 84
Disease- free survival	0.68 (0.34 to 1.38)	0.68 (0.34 to 1.38)	0.99 (0.55 to 1.77)
Hazard ratio/95% CI			

4

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Moderate (No specific description of whether all enrolled participants were analysed, however there is some indication that censoring was performed. No measure of calibration was reported.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Erdem, 2022

Bibliographic Reference

Erdem, Selcuk; Capitanio, Umberto; Campi, Riccardo; Mir, Maria Carme; Roussel, Eduard; Pavan, Nicola; Kara, Onder; Klatte, Tobias; Kriegmair, Maximilian C; Degirmenci, Enes; Aydin, Resat; Minervini, Andrea; Serni, Sergio; Berni, Alessandro; Rebez, Giacomo; Ozcan, Faruk; External validation of the VENUSS prognostic model to predict recurrence after surgery in nonmetastatic papillary renal cell carcinoma: A multi-institutional analysis.; Urologic oncology; 2022; vol. 40 (no. 5); 198e9-198e17

8

Study Characteristics

Study design	Retrospective cohort study		
Study location	7 tertiary institutions in Europe.		
Study dates	1987-2020		
Prognostic model(s)	VENUSS		
Inclusion criteria	 Sporadic, unilateral, non-metastatic and histopathological proven papillary renal cell carcinoma (papRCC). 		

Exclusion criteria	Without accurate postoperative follow-up data.			
Selection of cohort	Multicentre			
Number of participants	N=980			
Length of follow-up	Median: 48 months (IQR 23-88)			
Follow-up schedule	Not reported			
Outcome(s) of interest	Model discrimination (C-stats)			
	Local recurrence			
Source of funding	Not reported			
Additional comments	Univariate Cox Regression was performed to determine the association of VENUSS score and VENUSS risk groups with disease-recurrence (reported as a hazard ratio with 95% CI). Discrimination of disease-recurrence was assessed using the concordance index (reported with 95% CI).			

2 3 4

5

6

1

Study arms

VENUSS low risk (0-2) (N = 617)

VENUSS intermediate risk (3-5) (N = 234)

VENUSS high risk (6-11) (N = 129)

7 8 9

10

Population characteristics

Study-level characteristics

Characteristic	Study (N = 980)
% Female	n = 171 ; % = 17.4
Sample size	
Age	64 (55 to 70)
Median (IQR)	
Partial nephrectomy	n = 611; % = 62.3
Sample size	
Radical nephrectomy	n = 369 ; % = 37.7
Sample size	
Papillary type 1	n = 471 ; % = 48.1

Characteristic	Study (N = 980)
Sample size	
Papillary type 2	n = 320 ; % = 32.7
Sample size	
Papillary mixed	n = 4; % = 0.4
Sample size	
Papillary unknown subtype	n = 185 ; % = 18.9
Sample size	
pT1	n = 675 ; % = 68.9
Sample size	
рТ2	n = 108 ; % = 11.1
Sample size	
рТ3	n = 187; % = 19.1
Sample size	
pT4	n = 9; % = 0.9
Sample size	

12 Outcomes

Disease-recurrence

Outcome	VENUSS intermediate risk (3-5) vs VENUSS low risk (0-2), N2 = 234, N1 = 617	(6-11) vs VENUSS low risk (0-2), N2	•
Disease- recurrence	2.91 (1.9 to 4.46)	17.9 (12.25 to 26.25)	6.07 (4.17 to 8.83)
Hazard ratio/95% CI			

4 5 6

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Low
Overall Risk of bias and Applicability	Concerns for applicability	Low

9

Flippot, 2017

Bibliographic Reference

Flippot, Ronan; Mouawad, Roger; Spano, Jean-Philippe; Roupret, Morgan; Comperat, Eva; Bitker, Marc-Olivier; Parra, Jerome; Vaessen, Christophe; Allanic, Frederick; Manach, Quentin; Tannir, Nizar M; Khayat, David; Su, Xiaoping; Malouf, Gabriel G; Expression of long non-coding RNA MFI2-AS1 is a strong predictor of recurrence in sporadic localized clear-cell renal cell carcinoma.; Scientific reports; 2017; vol. 7 (no. 1); 8540

2

1

Study Characteristics

Study design	Retrospective cohort study		
Study location	France		
Study dates	Not reported - if the dates match the discovery cohort (not extracted as no relevant outcomes reported for that cohort) then August 2005 to January 2016.		
Prognostic model(s)	Leibovich 2003		
Inclusion criteria	 available fresh frozen tumour samples from stages I, II and III clear cell renal cell carcinoma nephrectomy status: not reported for validation cohort. Discovery cohort (not extracted, see above) had partial or radical nephrectomy. Unclear whether this criteria was applied for the validation cohort. 		
Exclusion criteria	 Patients withTFE3 or TFEB translocations and hereditary cancers were excluded because the natural history and oncogenic alterations might differ from those associated with sporadic ccRCC insufficient RNA yield Follow up less than 3 months 		
Selection of cohort	Single centre (Pitié-Salpêtrière Hospital)		
Number of participants	N=167		
Length of follow-up	Median 41 months (range 3-122)		
Follow-up schedule	Follow up for each patient was not standardised, but patients were monitored according to the standard of care, which included receiving a CT scan every 3–6 months		
Covariates adjusted for in the	Not reported		

multivariable regression modelling	
Outcome(s) of interest	Recurrence-free/disease-free survival
Source of funding	"Fondation Avec" (charity) provided laboratory equipment funding and research grants.
Additional comments	Disease free survival was defined as the time from initial surgery to first relapse, identified by physical examination, biopsy or imaging. DFS was censored at the last FU or death in patients without documented recurrence. Leibovich classification stratifies patients with low (0–2), intermediate (3–5) or high (>5) recurrence risk. This study also analysed between patients with Leibovich scores <5 and those with scores ≥5 to account for intermediate-risk patients with aggressive features and comply with current adjuvant trials. This study also reports a discovery cohort. No results from this cohort are relevant to this review. Statistical analysis: correlation between Leibovich scores and DFS was estimated by the Kaplan-Meier model (univariate analysis). C-statistics were determined but not presented with confidence intervals so not extracted.

5

6

7 8

1

Study arms

Leibovich 2003 low risk (N = 107)

Leibovich 2003 intermediate risk (N = 40)

Leibovich 2003 high risk (N = 20)

9 10 **Leibovich 2003 <5 points (N = 135)**

11 12 Leibovich 2003 ≥5 points (N = 32)

13

14

Population characteristics

Study-level characteristics

- 10.10.j . 10.10.1 0.110.1 0.	
Characteristic	Study (N = 167)
% Female	n = 56 ; % = 34
No of events	
Age	median 63, range 31-90
Custom value	

Characteristic	Study (N = 167)
TNM stage 1-2	n = 144; % = 86
No of overto	
No of events	
TNM stage 3-4	n = 23; % = 14
No of events	

Outcomes

Disease-free survival

Outcome	Leibovich 2003 intermediate risk vs Leibovich 2003 low risk, N2 = 40, N1 = 107	vs Leibovich	Leibovich 2003 high risk vs Leibovich 2003 intermediate risk, N2 = 20, N1 = 40	Leibovich 2003 ≥5 points vs Leibovich 2003 <5 points, N2 = 32, N1 = 135
Disease- free survival Univariate analysis	1.99 (0.8 to 4.93)	7.29 (1.63 to 32.58)	3.33 (1.11 to 9.99)	4.11 (1.52 to 11.1)
Hazard ratio/95% CI				

4 5 6

7

Disease-free survival - Polarity - Lower values are better

Critical appraisal PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis and unclear risk of bias for selection of participants: Participants with incomplete data were excluded, potentially leading to biased predictor-outcome associations and predictive performance. No measures of calibration reported. Inclusion and exclusion criteria not fully reported.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

1011

Fu, 2015

Bibliographic Reference

Fu, Qiang; Chang, Yuan; An, Huimin; Fu, Hangcheng; Zhu, Yu; Xu, Le; Zhang, Weijuan; Xu, Jiejie; Prognostic value of interleukin-6 and interleukin-6 receptor in organ-confined clear-cell renal cell carcinoma: a 5-year conditional cancer-specific survival analysis.; British journal of cancer; 2015; vol. 113 (no. 11); 1581-9

2 Study Characteristics

Otday Onare		
Study design	Retrospective cohort study	
Study location	China	
Study dates	2001-2004	
Prognostic model(s)	SSIGN UISS	
Inclusion criteria	Pathologically proven renal cell carcinomaclear cell	
Exclusion criteria	 Deficient follow-up unreached clinical records poor tumour sample preservation for TNM unqualified HR section suspicious death (died within 1 month after surgery) extensive necrosis inadequate control staining or ambiguous marker staining unexpected therapy (treated with cytokine; merely open biopsy) metastasis. 	
Selection of cohort	Single centre	
Number of participants	N=180	
Length of follow-up	Median (IQR): 110 (82–117) months	
Follow-up schedule	All patients had routine examination every 5–6 months during the first 5 years and annually thereafter.	
Outcome(s) of interest	Cancer-specific survival	
Source of funding	Grants from National Basic Research Program of China, National Natural Science Foundation of China, Program for New Century Excellent Talents in University (NCET-13-0146), and Shanghai Rising-Star Program	
Additional comments	CSS was assessed and graphically illustrated using Kaplan–Meier or life-table method, and log-rank test was used for comparing different scoring categories. The concordance index (C index) was used to assess the predictive accuracy of different models.	

3

Population characteristics

Study-level characteristics

Characteristic	Study (N = 180)
% Female	n = 61; % = 33.9
Sample size	
Age	58 (50 to 68)
Median (IQR)	
Nephrectomy status - Partial nephrectomy	n = 32 ; % = 17.8
Sample size	
Nephrectomy status - Radical nephrectomy	n = 148 ; % = 82.2
Sample size	
TNM classification - pT1	n = 117; % = 65
Sample size	
TNM classification - pT2	n = 21 ; % = 11.7
Sample size	
TNM classification - pT3	n = 41; % = 22.8
Sample size	
TNM classification - pT4	n = 1; % = 0.5
Sample size	

4

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

, , ,		•
Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Moderate (assessed by Usher-Smith 2022 as low risk. Downgraded as there was not enough information to judge whether there was a measure of calibration)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 Fu, 2016

Bibliographic Reference

Fu, Qiang; Chang, Yuan; Zhou, Lin; An, Huimin; Zhu, Yu; Xu, Le; Zhang, Weijuan; Xu, Jiejie; Positive intratumoral chemokine (C-C motif) receptor 8 expression predicts high recurrence risk of post-operation clear-cell renal cell carcinoma patients.; Oncotarget; 2016; vol. 7 (no. 7); 8413-21

7

Study Characteristics

Study design	Retrospective cohort study
Study location	China
Study dates	2008 to 2009
Prognostic model(s)	Leibovich 2003
Inclusion criteria	 histopathological-proven clear cell RCC received partial- or radical- nephrectomy between Jan 7, 2008 and Dec 23, 2009 had available specimen of tumor mass
Exclusion criteria	 people with T4 stage people with M1 metastatic cases with tissue which failed to stain
Number of participants	N=472
Length of follow-up	Median for patients alive at last follow-up: 73 months (IQR 72-74).
Follow-up schedule	All patients were examined routinely every 5-6 months during the first 5 years of follow-up and annually thereafter.
Outcome(s) of interest	Model discrimination (C-stats)
Source of	National Basic Research Program of China
funding	National Natural Science Foundation of China
	Program for New Century Excellent Talents in University
	Shanghai Rising-Star Program
Additional comments	Leibovich 2003 c index for recurrence free survival extracted.
comments	The Leibovich recurrence risk scores of all 472 patients were calculated and divided into three risk groups: low risk (score 0-2; n = 260, 55.1%), intermediate risk (score 3-5; n = 164, 34.7%), high risk (score≥6; n = 48, 10.2%).
	The concordance index (C index) and Akaike's Information Criteria (AIC) were used to assess the predictive accuracy and sufficiency of different models. To reduce overfit bias and internally validate the predictive accuracy estimates, multivariable models and C index calculations were subjected to 1000 bootstrap resamples.

2 Population characteristics

3 Study-level characteristics

Characteristic	Study (N = 472)
% Female	n = 137 ; % = 29
No of events	
Age	55 (46 to 63)
Median (IQR)	
Had partial nephrectomy	n = 227 ; % = 48.1
No of events	
Had radical nephrectomy	n = 245 ; % = 51.9
No of events	
TNM classification: pT1	n = 330 ; % = 69.9
No of events	
TNM classification: pT2	n = 33; % = 7
No of events	
TNM classification: pT3	n = 109 ; % = 23.1
No of events	

4

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Moderate (Unclear risk of bias for analysis: unclear whether all enrolled participants were included in the analysis, and whether missing data was handled appropriately.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Haddad, 2017

Bibliographic Reference

Haddad, Ahmed Q; Luo, Jun-Hang; Krabbe, Laura-Maria; Darwish, Oussama; Gayed, Bishoy; Youssef, Ramy; Kapur, Payal; Rakheja, Dinesh; Lotan, Yair; Sagalowsky, Arthur; Margulis, Vitaly;

Prognostic value of tissue-based biomarker signature in clear cell renal cell carcinoma.; BJU international; 2017; vol. 119 (no. 5);

741-747

8 9

Study Characteristics

Study design	Retrospective cohort study	
Study location	United States	
Study dates	1997 to 2010	
Prognostic model(s)	SSIGN	
Inclusion criteria	 Partial or radical nephrectomy clear cell renal cell carcinoma non-metastatic. 	
Exclusion criteria	 No complete immunostaining for the markers evaluated in the study. 	
Selection of cohort	Single centre	
Number of participants	N= 367 overall cohort n=183 training cohort	
	n=184 validation cohort	
Length of follow-up	Median 63.5 months (IQR 24.0 to 85.3)	
Follow-up schedule	Physical examination, serum chemistry, liver function tests, chest radiography and abdominal US or CT scan performed every 3 months for the first year and semi-annually after.	
Covariates adjusted for in the multivariable regression modelling	Not reported	
Outcome(s) of interest	Recurrence-free/disease-free survival	
Source of funding	No funding	
Additional comments	Survival probabilities were determined by Kaplan–Meier analysis. Cox regression was used to evaluate the association of the final risk classifier and SSIGN score with RFS.	

1 2

Study arms

SSIGN, score 0-5, overall cohort (N = 309)

4 5

3

SSIGN,>5, overall cohort (N = 58)

6

1 Population characteristics

2 Study-level characteristics

Characteristic	Study (N =)
% female, training set Sample size	n = 75 ; % = 41
% female, validation set	n = 76 ; % = 41.3
,	11 10,70 11.0
Sample size	
Age, training set	56 (27 to 85)
Median (IQR)	
Age, validation set	59 (17 to 85)
Median (IQR)	
Radical nephrectomy, training set	n = 107 ; % = 58.5
Sample size	
Partial nephrectomy, training set	n = 76 ; % = 41.5
	11 10,70 11.0
Sample size	0= 0/ =0=
Radical nephrectomy, validation set	n = 97; % = 52.7
Sample size	
Partial nephrectomy, training set	n = 87; % = 47.3
Sample size	
PT1a, training set	n = 81; % = 44.3
No of events	
pT1b, training set	n = 43 ; % = 23.5
prio, training set	11 - 40 , 70 - 20.0
No of events	
pT2, training set	n = 16; % = 8.7
No of events	
pT3a, training set	n = 12; % = 6.6
No of events	
pT3b, training set	n = 30 ; % = 16.4
No of events	n = 1; % = 0.5
pT3c, training set	11 - 1 , 70 - 0.0

Characteristic	Study (N =)
No of events	
pT4, training set	n = 0; % = 0
No of events	
pT1a, validation set	n = 100 ; % = 54.3
No of events	
pT1b, validation set	n = 37; % = 20.1
No of events	
pT2, validation set	n = 14; % = 7.6
No of events	
pT3a, validation set	n = 11; % = 6
No of events	
pT3b, validation set	n = 20 ; % = 10.9
No of events	
pT3c, validation set	n = 0; % = 0
No of events	
pT4, validation set	n = 2; % = 1.1
No of events	

2 Outcomes

Recurrence-free survival

Outcome	SSIGN,>5, overall cohort vs SSIGN, score 0-5, overall cohort, N2 = 58, N1 = 309
Recurrence-free survival	3.13 (1.69 to 5.78)
Hazard ratio/95% CI	

4 5 6

1

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

Han, 2003

Bibliographic Reference

Han, KR Bleumer, I Pantuck, AJ Kim, HL Dorey, FJ Janzen, NK Zisman, A Dinney, CP Wood, CG Swanson, DA Said, JW Figlin, RA Mulders, PFA Belldegrun, AS; Validation of an integrated staging system toward improved prognostication of patients with localized renal cell carcinoma in an international population; JOURNAL OF UROLOGY; 2003; vol. 170 (no. 6); 2221 - 2224

3

4 Study Characteristics

Study design	Retrospective cohort study
Study location	The Netherlands and the US
Study dates	NN: 1990 to 2001; MDA: 1987 to 2000; UCLA: 1989 to 2001
Prognostic model(s)	Zisman
Inclusion criteria	People who underwent radical or partial nephrectomy with localized disease who had no evidence of nodal involvement or metastatic spread.
Exclusion criteria	Not reported
Selection of cohort	Multicentre
Number of participants	NN: N=177; MDA: N=399; UCLA: N=484
Length of follow-up	NN: median 63 months; MDA: median 32 months; UCLA: median 33 months
Follow-up schedule	Not reported
Outcome(s) of interest	Model discrimination (C-stats)
	Cancer-specific survival
	Described as disease-specific survival
Source of funding	Not reported
Additional comments	None

5

6 Study arms

7 NN (N = 177)

8 University Medical Center Nijmegen, Netherlands

9

 $10 \quad MDA (N = 399)$

MD Anderson, US

1 2 3

UCLA (N = 484)

4 University of California, Los Angeles

5 6

Population characteristics

Arm-level characteristics

Characteristic	NN (N = 177)	MDA (N = 399)	UCLA (N = 484)
% Female Converted from number of males	n = 56 ; % = 32	n = 134 ; % = 34	n = 175; % = 36
Sample size			
Age	59.6 (<i>NR</i>)	58.1 (<i>NR</i>)	61.5 (<i>NR</i>)
Mean (SD)			
TNM classification - T1	n = 58 ; % = 33	n = 157 ; % = 39	n = 272 ; % = 56
Sample size			
TNM classification - T2	n = 32 ; % = 18	n = 89 ; % = 23	n = 69 ; % = 14
Sample size			
TNM classification - T3	n = 83 ; % = 47	n = 153 ; % = 38	n = 138 ; % = 29
Sample size			
TNM classification - T4	n = 4; % = 2	n = 0; % = 0	n = 5; % = 1
Sample size			

8 9

10

11

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (The paper did not report a measure of calibration. There was also a lack of clarity around follow-up, and how many people had the outcome.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

13 14

He, 2020

Bibliographic He, Z; Deng, T; Duan, X; Zeng, G; Profiles of overall survival-related gene expression-based risk signature and their prognostic

implications in clear cell renal cell carcinoma.; Bioscience reports; 2020; vol. 40 (no. 9)

1 2

Study Characteristics

Otday Onare	
Study design	Retrospective cohort study
Study location	China
Study dates	December 2019
Prognostic model(s)	TNM 2016
Inclusion criteria	Patients with ccRCC
	Patients with Fragments Per Kilobase per Million (FPKM) expression
Exclusion criteria	Patients with lack survival information
Selection of cohort	Multicentre
Number of participants	Total N = 614
	Training cohort N = 265
	Validation cohort N = 265
	ICGC cohort N = 84
Length of follow-up	Not reported
Outcome(s) of interest	Overall survival
Source of funding	This work was supported by the National Natural Science Foundation of China [grant numbers 1670643, 81870483, 81802821]; the Collaborative Innovation Project of Guangzhou Education Bureau [grant number 1201620011]; the Guangzhou Science Technology and Innovation Commission [grant number 201704020193]; and the Science and Technology Planning Project of Guangdong Province [grant number 2017B030314108].
Additional comments	To identify independent prognostic factors to OS, parameters including age, gender, TNM stage, history of prior malignancy, and the aforesaid risk score were included in univariate and multivariate Cox regression analyses in the training set.

3

Study arms
Training TCGA cohort (N = 265)

5 6 7

Validation TGCA cohort (N = 265)

8

ICGC cohort (N = 84)

2 3

1

Stage I/II (N = 322)

4 5

Stage III/IV (N = 205)

6 7 8

Population characteristics

Arm-level characteristics

% Female $n = 99$; % = 37.36 $n = 87$; % = 32.83 $n = 9$; % = 10.71 No of events Age 60.72 (12.84) 60.4 (11.41) 60.86 (9.68) Mean (SD) TNM classification - Stage I $n = 133$; % = 50.19 $n = 132$; % = 49.81 $n = 48$; % = 57.14 No of events $n = 28$; % = 10.57 $n = 29$; % = 10.94 $n = 12$; % = 14.29 No of events $n = 61$; % = 23.02 $n = 62$; % = 23.4 $n = 15$; % = 17.86 No of events $n = 43$; % = 16.22 $n = 39$; % = 14.72 $n = 9$; % = 10.71 No of events $n = 61$; % = 0 $n = 3$; % = 1.13 $n = 0$; % = 0 No of events $n = 3$; % = 1.13 $n = 0$; % = 0	Characteristic	Training TCGA cohort (N = 265)	Validation TGCA cohort (N = 265)	ICGC cohort (N = 84)
Age $60.72 (12.84)$ $60.4 (11.41)$ $60.86 (9.68)$ Mean (SD)TNM classification - Stage I $n = 133$; % = 50.19 $n = 132$; % = 49.81 $n = 48$; % = 57.14 No of eventsTNM classification - Stage II $n = 28$; % = 10.57 $n = 29$; % = 10.94 $n = 12$; % = 14.29 No of events $n = 61$; % = 23.02 $n = 62$; % = 23.4 $n = 15$; % = 17.86 TNM classification - Stage IV $n = 43$; % = 16.22 $n = 39$; % = 14.72 $n = 9$; % = 10.71 No of events $n = 60$; % = 10.71 $n = 10$; % = 10.71 $n = 10$; % = 10.71 TNM classification - Not available $n = 0$; % = 10.71 $n = 0$; % = 10.71	% Female	n = 99 ; % = 37.36	n = 87 ; % = 32.83	•
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	No of events			
TNM classification - Stage I $n = 133$; % = 50.19 $n = 132$; % = 49.81 $n = 48$; % = 57.14 No of events $n = 28$; % = 10.57 $n = 29$; % = 10.94 $n = 12$; % = 14.29 No of events $n = 61$; % = 23.02 $n = 62$; % = 23.4 $n = 15$; % = 17.86 No of events $n = 43$; % = 16.22 $n = 39$; % = 14.72 $n = 9$; % = 10.71 No of events $n = 61$; % = 0 $n = 3$; % = 1.13 $n = 6$; % = 0	Age	60.72 (12.84)	60.4 (11.41)	60.86 (9.68)
Stage I 57.14 No of events $n = 28$; % = 10.57 $n = 29$; % = 10.94 $n = 12$; % = 14.29 No of events $n = 61$; % = 23.02 $n = 62$; % = 23.4 $n = 15$; % = 17.86 No of events $n = 43$; % = 16.22 $n = 39$; % = 14.72 $n = 9$; % = 10.71 No of events $n = 3$; % = 1.13 $n = 0$; % = 0 TNM classification - Not available $n = 0$; % = 0	Mean (SD)			
	Stage I	n = 133 ; % = 50.19	n = 132 ; % = 49.81	•
Stage II 14.29 No of events $n = 61$; % = 23.02 $n = 62$; % = 23.4 $n = 15$; % = 17.86 No of events $n = 43$; % = 16.22 $n = 39$; % = 14.72 $n = 9$; % = 10.71 No of events $n = 39$; % = 14.72 $n = 9$; % = 10.71 No of events $n = 3$; % = 1.13 $n = 0$; % = 0 TNM classification - Not available $n = 0$; % = 0	No of events			
Stage III 17.86 No of events $n = 43$; % = 16.22 $n = 39$; % = 14.72 $n = 9$; % = 10.71 No of events $n = 0$; % = 0 $n = 3$; % = 1.13 $n = 0$; % = 0 Not available $n = 0$; % = 0 $n = 3$; % = 1.13 $n = 0$; % = 0	Stage II	n = 28 ; % = 10.57	n = 29 ; % = 10.94	•
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Stage III	n = 61; % = 23.02	n = 62; % = 23.4	·
Stage IV $ 10.71 $ No of events				
TNM classification - $n=0$; % = 0 $n=3$; % = 1.13 $n=0$; % = 0 Not available	Stage IV	n = 43 ; % = 16.22	n = 39 ; % = 14.72	· ·
Not available		2 2/ 2	0 0/ 1 10	0.04
No of events		n = 0; % = 0	n = 3; % = 1.13	n = 0; % = 0
	No of events			

9 10

Outcomes

11 Survival

Outcome	Stage III/IV vs Stage I/II, N2 = 205, N1 = 322
Overall survival	3.72 (2.41 to 5.75)
Hazard ratio/95% CI	

12 Overall survival - Polarity - Higher values are better

13

3

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Low
Overall Risk of bias and Applicability	Concerns for applicability	Low

56

Hu, 2020

Bibliographic Reference

Hu, Xu; Yang, Zhi-Qiang; Dou, Wei-Chao; Shao, Yan-Xiang; Wang, Yao-Hui; Lia, Thongher; Li, Xiang; Validation of the

Prognostic Value of Preoperative Albumin-to-Alkaline Phosphatase Ratio in Patients with Surgically Treated Non-Metastatic Renal Cell Carcinoma.; OncoTargets and therapy; 2020; vol. 13; 8287-8297

7 8

Study Characteristics

,				
Study design	Retrospective cohort study			
Study location	China			
Study dates	January 2010 to December 2013			
Prognostic model(s)	SSIGN			
Inclusion criteria	 Non-metastatic renal cell carcinoma Have had nephrectomy 			
Exclusion criteria	 Incomplete clinicopathological information Bilateral / multiple RCC with diseases that might influence albumin or alkaline phosphatase (e.g. bone diseases, liver diseases, active infection) Pathological N+ or distant metastases Without available follow-up data 			
Selection of cohort	Single centre (University West China Hospital)			
Number of participants	N=648			
Length of follow-up	Median: 84 months. No further information reported.			
Outcome(s) of interest	Model discrimination (C-stats)			

	Overall survival
	Cancer-specific survival
Source of funding	No conflicts of interest.
Additional comments	Discrimination evaluated using the concordance index (C-index) - no further information reported.
	All patients were regularly followed up every 3 months for the first 2 years, every 6 months for 3–5 years, and then once a year afterward.

Population characteristics Study-level characteristics

Characteristic	Study (N = 648)
% Female	n = 254 ; % = 39.2
No of events	
Age	54.84 (12.64)
Mean (SD)	
Radical nephrectomy	n = 437 ; % = 67.44
No of events	
Partial nephrectomy	n = 211 ; % = 32.56
No of events	
Clear cell RCC	n = 545; % = 84.1
No of events	
Non-clear cell RCC	n = 103; % = 15.9
No of events	
Pathological T1	n = 522 ; % = 80.56
No of events	
Pathological T2	n = 55 ; % = 8.49
No of events	
Pathological T3	n = 63; % = 9.72
No of events	
Pathological T4	n = 8; % = 1.23
No of events	

I	
2	
3	

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis: Participants with incomplete data were excluded, potentially leading to biased predictor-outcome associations and predictive performance.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

5

Huang, 2017

Bibliographic Reference

Huang, H.; Chen, S.; Yu, W.; Ye, Z.; Li, W.; Xing, J.; Wu, X.; The association between renal sinus fat area and the progressionfree survival in Chinese non-metastatic clear-cell renal cell carcinoma patients; Oncotarget; 2017; vol. 8 (no. 39); 65481-65491

7

Study Characteristics

Study Retrospective cohort study	
design	
Study China location	
Study dates December 2009 and December 2015	
Prognostic Leibovich 2003 model(s)	
Inclusion Patients with non-metastatic clear cell renal cell carcinon criteria	na
Patients were excluded from the analyses if (1) they were criteria our centre but had received CT scans in other hospitals to operation and therefore digital CT images were not available analysis; (2) they did not undergo operation (partial or ran nephrectomy) as the main treatment; and (3) they had surelsewhere.	pefore able for dical
Selection of cohort Single centre	
Number of participants $N = 268$ Low renal sinus fat area $N = 134$ High renal sinus fat area $N = 134$	
Length of Median: 38 months follow-up	
Follow-up Not reported schedule	

6 7

8

Study arms

Low renal sinus fat area (N = 134)

High renal sinus fat area (N = 134)

Population characteristics

Arm-level characteristics

Characteristic	Low renal sinus fat area (N = 134)	High renal sinus fat area (N = 134)
% Female	n = 46; % = 34.3	n = 42 ; % = 31.3
No of events		
Less than 60	n = 91 ; % = 67.9	n = 83; % = 64.9
No of events		
60 or greater	n = 43 ; % = 32.1	n = 51; % = 38.1
No of events		
stage I	n = 87; % = 64.9	n = 113 ; % = 84.3
No of events		
Stage II	n = 24 ; % = 17.9	n = 11; % = 8.2
No of events		
Stage III	n = 23 ; % = 17.2	n = 10; % = 7.5
No of events		

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis and unclear risk of bias for outcome or is determination.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

5 6

Hupertan, 2006

Bibliographic Reference

Hupertan, Vincent; Roupret, Morgan; Poisson, Jean-Francois; Chretien, Yves; Dufour, Bertrand; Thiounn, Nicolas; Mejean, Arnaud; Low predictive accuracy of the Kattan postoperative nomogram for renal cell carcinoma recurrence in a population of French patients.; Cancer; 2006; vol. 107 (no. 11); 2604-8

7 8

Study Characteristics

Study design	Retrospective cohort study		
Study location	France		
Study dates	1985 to 2000		
Prognostic model(s)	Kattan		
Inclusion criteria	 Had undergone surgery (open radical nephrectomy, partial nephrectomy, or in situ tumor resection after a subcostal or flank incision). 		
Exclusion criteria	 Performance status >3 and/or metastatic disease at diagnosis a large tumour (pT4) bilateral synchronous disease (ie, Von Hippel Lindau) preoperative lymph node invasion benign disease of final pathological exam collect duct carcinoma tumour with unclassified histology chronic renal insufficiency solitary kidney lost to follow-up. 		
Selection of cohort	Single centre		
Number of participants	N=565		

Length of follow-up	Median 60 months
Follow-up schedule	Annual abdominal US and CT abdomen
Outcome(s) of interest	Model discrimination (C-stats)
	Recurrence-free/disease-free survival
Source of funding	Not reported
Additional comments	Relations between all predictor variables included in the Kattan nomogram and survival were evaluated by Cox proportional hazards regression analysis.

1 2 3

Population characteristics Study-level characteristics

Characteristic	Study (N = 656)
% Female	n = 163; % = 28.9
Sample size	
Age	62 (empty data to empty data)
Median (IQR)	
Nephrectomy status - Radical	n = 477 ; % = 84.4
Sample size	
Nephrectomy status - Tumorectomy	n = 60 ; % = 10.6
Sample size	
Nephrectomy status - Nephron-sparing	n = 28; % = 5
Sample size	
RCC subtypes - Clear cell	n = 470 ; % = 83.2
Sample size	
RCC subtypes - Papillary	n = 74 ; % = 13.1
Sample size	
RCC subtypes - Chromophobe	n = 21; % = 3.7
Sample size	
TNM classification - TNM 1	n = 363 ; % = 64.2
Sample size	

Characteristic	Study (N = 656)
TNM classification - TNM 2	n = 118; % = 20.9
Sample size	
TNM classification - TNM 3a	n = 40 ; % = 7.1
Sample size	
TNM classification - TNM 3b/c	n = 44 ; % = 7.8
Sample size	

4

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

, , ,		•
Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7 8

Hutterer, 2019

Bibliographic Reference

Hutterer, Georg C; Posch, Florian; Buser, Lorenz; Zigeuner, Richard; Morshauser, Laura; Otto, Wolfgang; Wild, Peter J; Burger, Maximilian; May, Matthias; Pichler, Martin; Brookman-May, Sabine D; BioScore (B7-H1, survivin, and Ki-67) does not predict cancerspecific mortality in surgically treated patients with renal cell carcinoma: An external validation study.; Urologic oncology; 2019; vol. 37 (no. 7); 510-518

9 10

Study Characteristics

Study design	Retrospective cohort study		
Study location	Austria		
Study dates	1999 to 2004		
Prognostic model(s)	SSIGN		
Inclusion criteria	 Clinically localised (N0M0) renal cell carcinoma Had undergone surgery between 1999 and 2004 at a single centre 		
Exclusion criteria	Missing follow-up information / tissue specimens		

Selection of cohort	Single centre
	("academic tertiary centre")
Number of participants	N=382
Length of follow-up	7.8 years (6.3, 9.9) (Median, IQR)
Covariates adjusted for in the multivariable regression modelling	Not reported
Outcome(s) of interest	Model discrimination (C-stats) Cancer-specific survival
Source of funding	No funding received
Additional comments	C index quantified with Harrell's concordance index. Cancer-specific survival was analysed with Kaplan-Meier estimators and compared between 2 or more groups with the log-rank test. Hazards of death-from-RCC were modelled with uni- and multivariable Cox proportional hazards models. Hazard ratio is from a univariate analysis.

1

Population characteristics Study-level characteristics

2

Characteristic	Study (N = 382)
% Female	n = 150 ; % = 39
No of events	
Age	64 (57 to 71)
Median (IQR)	
Clear cell RCC	n = 277 ; % = 73
No of events	
Papillary RCC	n = 87 ; % = 23
No of events	
Chromophobe RCC	n = 18 ; % = 5
No of events	

Characteristic	Study (N = 382)
TNM pT3b-pT4	n = 14; % = 4
No of events	

4

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer	
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis: Participants with incomplete data were excluded, potentially leading to biased predictor-outcome associations and predictive performance. No measure of calibration presented.)	
Overall Risk of bias and Applicability	Concerns for applicability	Low	

6

Hutterer, 2014

Bibliographic Reference

Hutterer, Georg C; Stoeckigt, Caroline; Stojakovic, Tatjana; Jesche, Johanna; Eberhard, Katharina; Pummer, Karl; Zigeuner, Richard; Pichler, Martin; Low preoperative lymphocyte-monocyte ratio (LMR) represents a potentially poor prognostic factor in nonmetastatic clear cell renal cell carcinoma.; Urologic oncology; 2014; vol. 32 (no. 7); 1041-8

8

Study Characteristics

Study design	Retrospective cohort study
Study location	Austria
Study dates	2000 and 2010
Prognostic model(s)	Leibovich 2003
Inclusion criteria	 Participants with non-metastatic clear cell renal cell carcinoma (RCC) who underwent curative radical or partial nephrectomy.
Exclusion criteria	Not specified
Selection of cohort	Single centre
Number of participants	N=678

Length of follow-up	Mean 44 (range to 130) months
Follow-up schedule	Follow-up evaluations were carried out every 6 months for the first 5 years, and then annually after for locally advanced tumours. For organ confined cancers, imaging was performed 2 times in the first year after surgery, and then annually.
Covariates adjusted for in the multivariable regression modelling	Not reported
Outcome(s) of interest	Model discrimination (C-stats) Cancer-specific survival
Source of funding	Not reported
Additional comments	Patients' clinical endpoints were calculated using the Kaplan-Meier method and compared using the log-rank test. The Harrell concordance index(c-index) was used for assessment of the prognostic accuracy of the model in multivariate analyses.

Population characteristics Study-level characteristics

1 2

3

Characteristic	Study (N = 678)
% Female	n = 273; % = 40.3
Sample size	
Age	63.8 (11.97)
Mean (SD)	
T1a	n = 334 ; % = 49.3
Sample size	
T1b	n = 117; % = 17.2
Sample size	
T2a	n = 32; % = 4.7
Sample size	

Characteristic	Study (N = 678)
T2b	n = 5; % = 0.7
Sample size	
Т3а	n = 170 ; % = 25.1
Sample size	
T3b	n = 16; % = 2.4
Sample size	
ТЗс	n = 2; % = 0.3
Sample size	
Т4	n = 2; % = 0.3
Sample size	

4

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for outcome and its determination and analysis as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Ishiyama, 2024

Bibliographic Reference

Ishiyama, Yudai; Kondo, Tsunenori; Yoshida, Kazuhiko; Iizuka, Junpei; Takagi, Toshio; Prognostic Value of the Lung Immune Prognostic Index on Recurrence after Radical Surgery for High-Risk Renal Cell Carcinoma.; Cancers; 2024; vol. 16 (no. 4)

8

9 Study Characteristics

Study design	Retrospective cohort study	
Study location	Japan	
Study dates	January 2004 to August 2021	
Prognostic model(s)	GRANT UISS	
Inclusion criteria	Nonmetastatic renal cell carcinomaHad undergone curative surgery	

	 pT3 or higher staging, or pN1-2 lymph node involvement confirmed by histopathology
Exclusion criteria	 Inadequate laboratory data Incomplete follow up For patients who had enlarged regional lymph nodes in the pre-surgical imaging, only those with their nodes subsequently completely resected were included.
Selection of cohort	Multicentre (Two tertiary care centres affiliated with Tokyo Women's Medical
	University)
Number of participants	N=235
Length of follow-up	19.8 months (5.9, 48.3) (median, IQR)
Covariates adjusted for in the multivariable regression modelling	Not reported
Outcome(s) of interest	Model discrimination (C-stats)
	Recurrence-free/disease-free survival
Source of funding	No funding received.
Additional comments	Harrell's concordance index (C-index) was used to assess the discrimination of the UISS and GRANT scores. These were compared to a new model which is not included in the protocol for this review.

1 2

3

Population characteristics Study-level characteristics

Characteristic	Study (N = 235)
% Female	n = 69; % = 29.4
No of events	
Age	67 (61 to 73)
Median (IQR)	
Clear cell RCC	n = 202 ; % = 86
No of events	

Characteristic	Study (N = 235)
Non-clear cell RCC	n = 33; % = 14
No of events	
Pathological T stage: T1/T2	n = 62; % = 26.4
No of events	
Pathological T stage: T3a	n = 101 ; % = 43
No of events	
Pathological T stage: T3b	n = 47; % = 20
No of events	
Pathological T stage: T3c	n = 20; % = 8.5
No of events	
Pathological T stage: T4	n = 5; % = 2.1
No of events	

4

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis: Participants with incomplete data were excluded, potentially leading to biased predictor-outcome associations and predictive performance. No calibration results presented.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Jensen, 2009

Bibliographic Reference

Jensen, Hanne Krogh; Donskov, Frede; Marcussen, Niels; Nordsmark, Marianne; Lundbeck, Finn; von der Maase, Hans; Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma.; Journal of clinical oncology: official journal of the American Society of Clinical Oncology; 2009; vol. 27 (no. 28); 4709-17

8 9

Study Characteristics

•	
Study	Retrospective cohort study
design	

Study	Denmark
location	
Study dates	Between 1992 and 2001
Prognostic model(s)	Leibovich 2003
Inclusion criteria	Patients with radical nephrectomy
Exclusion criteria	 non-clear cell histology distant metastases or significant lymphadenopathy at diagnosis recurrence of previous RCC previous interleukin-2 treatment, other synchronic cancers, perioperative mortality, renal transplantation, and lack of tumour tissue
Selection of cohort	Single centre
Number of participants	N=121
Length of follow-up	Median 124 months (74 to 194) for patients who were alive at the end of the study
Follow-up schedule	Not reported
Outcome(s) of interest	Model discrimination (C-stats) Recurrence-free/disease-free survival
Source of funding	Aarhus University Hospital Research Initiative; Max and Inger Wørzner Foundation; Frits, Georg, and Marie Cecilie Glud Foundation; and Aarhus Radium Center Research Foundation.
Additional comments	The paper describes that "the low-risk population had a lower RFS than expected, which may be due to selection of patients with large tumours and other comorbidities who were referred to the specialized university hospital. Thus, the distribution according to stage was skewed toward locally advanced tumours."

Study arms Leibovich 2003, low risk (N = 26)

Leibovich 2003, intermediate risk (N = 52)

Leibovich 2003, high risk (N = 43)

6 7 8

5

1 Population characteristics

Study-level characteristics

Study (N = 121)
n = 47; % = 39
19 to 82
61 (NR to NR)
n = 121 ; % = 100
n = 121 ; % = 100
n = 50 ; % = 41
n = 16; % = 13
n = 51 ; % = 42
n = 4; % = 3

Outcomes

3

5

7 8

9

10

6 Arm-based data

Aim basca aut	ч		
Outcome	Leibovich 2003, low risk, Follow- up, N = 26	Leibovich 2003, intermediate risk, Follow-up, N = 52	Leibovich 2003, high risk, Follow- up, N = 43
Recurrence- free survival	n = 6; % = 23.1	n = 24; % = 46.2	n = 31; % = 72.1
No of events			

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (The follow-up schedule was not reported, so it was unclear whether all participants had similar follow-up. The paper did not report a measure of calibration. Staging was done retrospectively on the basis of pathology reports and patient files, and it was unclear whether this was done without knowledge of the outcome.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

Kang, 2020

Bibliographic Reference

Kang, Xiangpeng; Shi, Hongzhe; Wang, Dong; Xiao, Zejun; Tian, Jun; Bi, Xingang; Jiang, Weixing; Li, Changling; Ma, Jianhui; Zheng, Shan; Sun, Yueping; Shou, Jianzhong; Combination of Hematology Indicators and Oncological Characteristics as a New Promising Prognostic Factor in Localized Clear Cell Renal Cell Carcinoma.; Cancer management and research; 2020; vol. 12; 10023-10033

3

Study Characteristics

Study design	Retrospective cohort study
Study location	China
Study dates	March 2013 to March 2015
Prognostic model(s)	SSIGN
Inclusion criteria	 No primary cancer of any other organs before nephrectomy No chronic inflammatory allergic disease No history of taking anticoagulants such as for cardiovascular or cerebrovascular thrombosis Exact pathological diagnosis of clear cell renal cell carcinoma (ccRCC) Complete resection of the tumour, which was defined as a negative incisal margin Complete clinicopathological characteristics and follow-up data No evidence of extrarenal metastasis.
Exclusion criteria	Not reported
Selection of cohort	Single centre (Cancer Institute and Hospital of the Chinese Academy of Medical Sciences [CAMS])

Number of participants	o a constant of the constant o
	Validation cohort: N=221
Length of follow-up	58.7 months (51.7, 65.1) (median, range)
Outcome(s) of interest	Model discrimination (C-stats)
Source of funding	 Chinese Academy of Medical Sciences (CAMS) Initiative for Innovative Medicine Beijing hope run special fund of cancer foundation of China Chinese Academy of Medical Sciences (CAMS) Initiative for Innovative Medicine
Additional comments	The dataset was split into training and validation cohorts with repeated random sampling until there was no significant difference between the two cohorts with respect to all variables. The prognostic accuracy of the SSIGN risk model using Harrell's concordance index (C-index). The authors also reported on a new model which is not included in the protocol for this review. Characteristics are for all participants overall (N=442)

Population characteristics Study-level characteristics

Characteristic	Study (N = 442)
% Female	n = 127 ; % = 28.7
No of events	
Under 60 years old	n = 314 ; % = 71
No of events	
60 and older	n = 128 ; % = 29
No of events	
TNM stage 1-2	n = 390 ; % = 88.2
No of events	
TNM stage 3	n = 52; % = 11.8
No of events	

1 Critical appraisal - PROBAST tool - applies to all outcomes unless

2 otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis: Participants with incomplete data were excluded, potentially leading to biased predictor-outcome associations and predictive performance.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

4 5

Klatte, 2009

Bibliographic Reference

Klatte, T; Seligson, DB; LaRochelle, J; Shuch, B; Said, JW; Riggs, SB; Zomorodian, N; Kabbinavar, FF; Pantuck, AJ; Belldegrun, AS; Molecular signatures of localized clear cell renal cell carcinoma to predict disease-free survival after nephrectomy.; Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology; 2009; vol. 18 (no. 3); 894-900

6

Study Characteristics

Study location Study dates Prognostic model(s) Inclusion criteria Exclusion criteria Selection of cohort Number of participants Length of follow-up The US Between 1989 and 2000 UISS UISS Patients who underwent radical or partial nephrectomy for sporadic, clinically localised (N0M0) clear cell RCC Exclusion criteria Selection of cohort N=170 Median follow-up 7.1 years (range 0.6 to 16.9 years)		
Study dates Between 1989 and 2000 Prognostic model(s) Inclusion criteria Patients who underwent radical or partial nephrectomy for sporadic, clinically localised (N0M0) clear cell RCC Exclusion criteria Selection of cohort Number of participants Length of follow-up Median follow-up 7.1 years (range 0.6 to 16.9 years)	Study design	Retrospective cohort study
Prognostic model(s) Inclusion criteria Patients who underwent radical or partial nephrectomy for sporadic, clinically localised (N0M0) clear cell RCC Exclusion criteria Selection of cohort Number of participants Length of follow-up Median follow-up 7.1 years (range 0.6 to 16.9 years)	Study location	The US
Inclusion criteria Patients who underwent radical or partial nephrectomy for sporadic, clinically localised (N0M0) clear cell RCC Exclusion criteria Selection of cohort Number of participants Length of follow-up Patients who underwent radical or partial nephrectomy for sporadic, clinically localised (N0M0) clear cell RCC Not reported Single centre N=170 Median follow-up 7.1 years (range 0.6 to 16.9 years)	Study dates	Between 1989 and 2000
criteria clinically localised (N0M0) clear cell RCC Exclusion criteria Selection of cohort Number of participants Length of follow-up Clinically localised (N0M0) clear cell RCC Not reported Single centre Charteria N=170 Median follow-up 7.1 years (range 0.6 to 16.9 years)	_	UISS
Selection of cohort Number of participants Length of follow-up Single centre Single centre Cohort N=170 Median follow-up 7.1 years (range 0.6 to 16.9 years)	Inclusion criteria	
Number of participants Length of follow-up Median follow-up 7.1 years (range 0.6 to 16.9 years)		Not reported
participants Length of Median follow-up 7.1 years (range 0.6 to 16.9 years) follow-up		Single centre
follow-up		N=170
	Length of follow-up	Median follow-up 7.1 years (range 0.6 to 16.9 years)
Follow-up Not reported schedule	Follow-up schedule	Not reported
Outcome(s) Model discrimination (C-stats) of interest	· ·	Model discrimination (C-stats)
Recurrence-free/disease-free survival		Recurrence-free/disease-free survival

Source of funding	Not reported
Additional comments	None

Population characteristics

Study-level characteristics

Characteristic	Study (N = 170)
% Female	n = 62; % = 36
Sample size	
Age	27 to 89
Range	
Age	64 (NR to NR)
Median (IQR)	
Nephrectomy status - Radical	n = 124 ; % = 72.9
Sample size	
Nephrectomy status - Partial	n = 46 ; % = 27.1
Sample size	
RCC subtypes - Clear cell	n = 170 ; % = 100
Sample size	
TNM classification - T1	n = 94; % = 55
Sample size	40.0/.44
TNM classification - T2	n = 18 ; % = 11
Sample size	
TNM classification - T3	n = 54 ; % = 32
Sample size	
TNM classification - T4	n = 4; % = 2
Sample size	

4 5 6

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis and unclear risk of bias for outcome or its determination as assessed by Usher-Smith 2022.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

1 2 3

Klatte, 2019

Bibliographic Reference

Klatte, Tobias; Gallagher, Kevin M; Afferi, Luca; Volpe, Alessandro; Kroeger, Nils; Ribback, Silvia; McNeill, Alan; Riddick, Antony C P; Armitage, James N; 'Aho, Tevita F; Eisen, Tim; Fife, Kate; Bex, Axel; Pantuck, Allan J; Stewart, Grant D; The VENUSS prognostic model to predict disease recurrence following surgery for non-metastatic papillary renal cell carcinoma: development and evaluation using the ASSURE prospective clinical trial cohort.; BMC medicine; 2019; vol. 17 (no. 1); 182

4

Study Characteristics

Ctady Chara	0.01.01.00
Study design	Retrospective cohort study
Study location	USA
Prognostic model(s)	Leibovich 2018
(0)	UISS
	VENUSS
	TNM not specified
Inclusion criteria	 Completely resected non-metastatic renal cell carcinoma (RCC) high risk for recurrence.
Exclusion criteria	Not specified but same as exclusion criteria applied to participants entering the RCT where data is from.
Selection of cohort	Database or clinical registry
	ASSURE
Number of participants	N=556
Length of follow-up	Median: 53 months (SE = 3 months)

Follow-up schedule	Assessed every 18 weeks by computed tomography or magnetic resonance imaging scans for recurrence during the first year. Then using scan, laboratory and clinical assessments every 6 months for another year, then once per year until disease recurrence or through 10 years.
Covariates adjusted for in the multivariable regression modelling	Not reported
Outcome(s) of interest	Model discrimination (C-stats) Local recurrence
Source of funding	No funding received.
Additional comments	Fine and Gray's competing-risk regression was used to model the data. Potential predictors of recurrence were analysed by univariable and multivariable models. Calibration plots to compare predicted probabilities at 5 years to the observed frequencies.

Population characteristics Study-level characteristics

Characteristic	Study (N = 556)
% Female	n = 145 ; % = 26.1
Sample size	
Age	63 (54 to 70)
Median (IQR)	
RCC subtypes - Papillary type 1	n = 227 ; % = 46
Sample size	
RCC subtypes - Papillary type 2	n = 266 ; % = 54
Sample size	
TNM classification - TNM 1	n = 369 ; % = 66.4
Sample size	
TNM classification - TNM 2	n = 60 ; % = 10.8
Sample size	
TNM classification - TNM 3	n = 125 ; % = 22.5
Sample size	

Characteristic	Study (N = 556)
TNM classification - TNM 4	n = 2; % = 0.4
Sample size	

4

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Low
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Kroeger, 2022

Bibliographic Reference

Kroeger, Nils; Lebacle, Cedric; Hein, Justine; Rao, P N; Nejati, Reza; Wei, Shuanzeng; Burchardt, Martin; Drakaki, Alexandra; Strother, Marshall; Kutikov, Alexander; Uzzo, Robert; Pantuck, Allan J; Pathological and genetic markers improve recurrence prognostication with the University of California Los Angeles Integrated Staging System for patients with clear cell renal cell carcinoma.; European journal of cancer (Oxford, England: 1990); 2022; vol. 168; 68-76

8

9 Study Characteristics

- 10.0.j		
Study design	Retrospective cohort study	
Study location	United States	
Study dates	January 1989 to April 2007	
Prognostic model(s)	UISS	
Inclusion criteria	 Localised clear cell renal cell carcinoma Non-metastatic patients 	
Exclusion criteria	Not reported	
Selection of cohort	Database or clinical registry (UCLA cytogenetics RCC database)	
Number of	,	
Number of participants	N=240	
Length of follow-up	43.4 months (54.1 months) (median, standard deviation)	
Covariates adjusted for	Not reported	

in the multivariable regression modelling	
Outcome(s) of interest	Recurrence-free/disease-free survival
Source of funding	None received.
Additional comments	Survival estimates were done with Kaplan Meier method and associations with survival times were assessed with univariable and multivariable Cox regression analyses. Univariable results extracted.

Study arms

SSIGN low risk (N = 105)

4 5 6

SSIGN intermediate risk (N = 114)

SSIGN high risk (N = 21)

7 8 9

10

Population characteristics

Study-level characteristics

Characteristic	Study (N = 240)
% Female	n = 79; % = 33
No of events	
Age	60 (12.28)
Mean (SD)	
T stage: T1	n = 154 ; % = 64
No of events	
T stage: T2	n = 29 ; % = 12
No of events	
T stage: T3	n = 57; % = 24
No of events	
T stage: T4	n = 0; % = 0
No of events	

11

1 Outcomes

Recurrence

Outcome	SSIGN low risk vs SSIGN high risk, N2 = 105, N1 = 21	SSIGN intermediate risk vs SSIGN high risk, N2 = 114, N1 = 21
Recurrence-free survival	0.21 (0.08 to 0.54)	0.51 (0.23 to 1.16)
Hazard ratio/95% CI		

3 4 5

6

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis: No information on how missing data was dealt with. No calibration outcomes reported.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

8

Lee, 2018

Bibliographic Reference

Lee, Byron H.; Feifer, Andrew; Feuerstein, Michael; Benfante, Nicole; Kou, Lei; Yu, Changhong; Kattan, Michael W.; Russo, Paul; Validation of a Postoperative Nomogram Predicting Recurrence in Patients with Conventional Clear Cell Renal Cell Carcinoma; European urology focus; 2018; vol. 4 (no. 1); 100-105

10

11 Study Characteristics

otady onare	
Study design	Retrospective cohort study
Study location	The US
Study dates	Between 1990 and 2009
Prognostic model(s)	Sorbellini
Inclusion criteria	Patients who underwent partial or radical nephrectomy for clinically localized clear cell RCC
Exclusion criteria	 Patients with bilateral renal masses and familial RCC syndromes such as von Hippel-Lindau disease Patients with T3c and T4 tumours as well as those with sarcomatoid elements
Number of participants	

Length of follow-up	Median follow-up 39 months (IQR: 14-79 months)
Follow-up schedule	Patients were followed with chest radiograph and renal/retroperitoneal ultrasound or cross-sectional imaging every 3–6 months, depending on pathologic stage and grade. In general, patients with greater than pathological T2 disease or Fuhrman grade 3-4 underwent more intense follow-up.
Outcome(s) of interest	Model discrimination (C-stats) Recurrence-free/disease-free survival
	Tecurrence-ince/disease-ince survival
Source of funding	National Cancer Institute/National Institutes of Health (NIH); Kirschstein National Research Service Award Institutional Research Training Grant
Additional comments	The paper reported c-index for the validation cohort and combined validation and Sorbellini 2005 cohort.

Population characteristics Study-level characteristics

1

2 3

Study (N = 1642)
n = 829 ; % = 50
n = 813 ; % = 50
n = 1642 ; % = 100
n = 817 ; % = 49.8
n = 349 ; % = 21.3
n = 102 ; % = 6.2
n = 235 ; % = 14.3
n = 139 ; % = 8.5

Characteristic	Study (N = 1642)
TNM classification - Not available	n = 0; % = 0
Sample size	

4

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for outcome or its determinants and unclear risk of bias for analysis as assessed by Usher-Smith 2022.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Lee, 2019

Bibliographic Reference

Lee, Han Jie; Lee, Alvin; Huang, Hong Hong; Lau, Weber Kam On; External validation of the updated Leibovich prognostic models for clear cell and papillary renal cell carcinoma in an Asian population.; Urologic oncology; 2019; vol. 37 (no. 6); 356e9-356e18

8

Study Characteristics

Study design	Retrospective cohort study	
Study location	Singapore	
Study dates	1999 to 2015	
Prognostic model(s)	Leibovich 2018	
Inclusion criteria	 Binephric patients with sporadic, unilateral renal cell carcinoma (RCC) treated with radical or partial nephrectomy during study dates. 	
Exclusion criteria	 Bilateral synchronous tumours genetic causes of renal cell carcinoma including von Hippel-Lindau syndrome presence of metastases (regional/nonregional lymph node involvement or distant metastases) incomplete medical records other histological RCC including collecting duct RCC, acquired cystic disease associated RCC, mixed clear cell/papillary RCC and other rare types. 	

Selection of cohort	Single centre
Number of participants	N total=942
	Clear cell N=829
	Papillary N=113
Length of follow-up	Clear cell RCC: median 76 (42-117) months
	Papillary RCC: median 69.5 (33-115) months
Follow-up schedule	Not reported
Outcome(s) of interest	Model discrimination (C-stats)
	Progression-free survival
	Cancer-specific survival
Source of funding	No funding received
Additional comments	For clear cell RCC, scores were calculated without pooling the cases into risk groups. For papillary RCC, scores were calculated for risk groups 1/2/3. Discrimination and calibration was assessed for the Leibovich score.

2 3 4

1

Study arms

Clear cell (N = 829)

Papillary (N = 113)

5 6 7

8

Population characteristics

Arm-level characteristics

Characteristic	Clear cell (N = 829)	Papillary (N = 113)
% Female	n = 300 ; % = 36	n = 34 ; % = 30
Sample size		
Age	Median (range): 58 (50-67)	Median (range): 61 (52-68)
Custom value	,	·
Open radical nephrectomy	n = 192 ; % = 23	n = 29 ; % = 26
Sample size		
Open partial nephrectomy	n = 123 ; % = 15	n = 16 ; % = 14
Sample size		

Characteristic	Clear cell (N = 829)	Papillary (N = 113)
Laparoscopic radical nephrectomy	n = 387 ; % = 47	n = 51 ; % = 45
Sample size		
Laparoscopic partial nephrectomy	n = 127 ; % = 15	n = 17 ; % = 15
Sample size		
pT1a	n = 374 ; % = 45	n = 46 ; % = 41
Sample size		0/
pT1b	n = 189 ; % = 23	n = 23 ; % = 20
Sample size		
pT2a	n = 62; % = 7	n = 13 ; % = 12
Sample size	04.0/.0	44 0/ 40
pT2b	n = 24; % = 3	n = 11 ; % = 10
Sample size		
рТ3а	n = 156 ; % = 19	n = 44 ; % = 7
Sample size		
рТ3b	n = 11; % = 1	n = 2; % = 2
Sample size		
рТ3с	n = 4; % = 1	n = 0; % = 0
Sample size		
pT4	n = 9; % = 1	n = 1; % = 1
Sample size		

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Moderate (Unclear whether all enrolled participants were included in the analysis.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

1 Li, 2024

Bibliographic Reference

Li, Xiaoxia; Zhang, Shaoting; Huang, Xiaolan; Lin, Dengqiang; Zhou, Jianjun; Development of a CT-assessed adiposity

nomogram for predicting outcome in localized ccRCC.; Abdominal

radiology (New York); 2024

2 3

Study Characteristics

Study Characteristics			
Study design	Retrospective cohort study		
Study dates	January 2015 to December 2018		
Prognostic model(s)	SSIGN UISS TNM 2016		
Inclusion criteria	 Underwent preoperative CT scan Histological subtype of clear cell RCC and were classed as clinical stage I–III Complete clinical data and follow up information 		
Exclusion criteria	 Compromised CT image quality Previous preoperative or postoperative therapy (e.g. targeted therapy, immunotherapy) No complete image and clinical information 		
Selection of cohort	Single centre (Shanghai hospital)		
Number of participants	N=364		
Length of follow-up	49.55 months (39.05, 62.60) (median, IQR)		
Covariates adjusted for in the multivariable regression modelling	Not reported		
Outcome(s) of interest	Model discrimination (C-stats) Recurrence-free/disease-free survival		
Source of funding	Scientific Research Project of Fujian for Youth		

To identify independent outcome predictors for ccRCC patients, both univariable and multivariable Cox regression analyses were performed.

DeLong's test was conducted to examine the area under the receiver operating characteristic curve, evaluating the diagnostic performance of each model.

TNM staging follows the guidelines outlined in the "Cancer Staging Manual, eighth edition" by the American Joint Committee on Cancer (2016).

The participants were divided into a training set and a testing (validation) set for the paper's new model. Results are reported from both sets. Study characteristics are for participants overall.

Study arms

1 2

3

4 5

6 7

8

TNM stage 1-2 (N = 140)

TNM stage 3 (N = 24)

Population characteristics

Study-level characteristics

Characteristic	Study (N = 364)
% Female	n = 133 ; % = 36.5
No of events	
Age	59 (51 to 66)
Median (IQR)	
Radical nephrectomy	n = 214; % = 58.79
No of events	
Partial nephrectomy	n = 150 ; % = 41.21
No of events	
TNM stage 1	n = 306; % = 84.1
No of events	
TNM stage 2	n = 34 ; % = 9.34
No of events	
TNM stage 3	n = 24; % = 6.59

Characteristic	Study (N = 364)
No of events	

1 2

2 Outcomes

3 Disease-free survival

Outcome	TNM stage 3 vs TNM stage 1-2, N2 = 340, N1 = 24
Disease-free survival	2.55 (1.78 to 6.48)
Hazard ratio/95% CI	

4 5 6

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis: Fewer than 50 events, incomplete follow up data or clinicopathological information is exclusion criteria.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

9 10

Liu, 2009

Bibliographic Reference

Liu, Zheng; Lv, Jiaju; Ding, Kejia; Fu, Qiang; Cao, Qingwei; Wang, Facheng; Validation of the current prognostic models for nonmetastatic renal cell carcinoma after nephrectomy in Chinese population: a 15-year single center experience.; International journal of urology: official journal of the Japanese Urological Association; 2009; vol. 16 (no. 3); 268-73

11

12 Study Characteristics

Study design	Retrospective cohort study
Study location	China
Study dates	1993 to 2004
Prognostic model(s)	Karakiewicz Kattan Sorbellini
	SSIGN UISS

Inclusion criteria	 patients who underwent radical or partial nephrectomy due to renal cell carcinoma 	
Exclusion criteria	 Distant metastases lymph node invasion before or at the time of surgery large tumours (pT4) bilateral disease tumour with unclassified histology or Fuhrman grade chronic renal insufficiency lost to follow-up. 	
Selection of cohort	Single centre	
Number of participants	N=653	
Length of follow-up	Median 65 months, range 13 to 198 months	
Follow-up schedule	After surgery patient were followed up annually with abdominal ultrasonography and abdominal computed tomography.	
Outcome(s) of interest	Model discrimination (C-stats) Recurrence-free/disease-free survival Overall survival Cancer-specific survival	
Source of funding	Not reported	
Additional comments	Survival curves were performed using the Kaplan–Meier method and compared using the log–rank test.	

1 2

Population characteristics Study-level characteristics

Characteristic	Study (N = 653)
% Female	n = 209 ; % = 32
Sample size	
Age	61 (19 to 94)
Median (IQR)	
Radical	n = 544 ; % = 83.3
Sample size	
Partial	n = 109; % = 16.7

Characteristic	Study (N = 653)
Sample size	
Clear cell	n = 529 ; % = 81
Sample size	
Papillary	n = 97; % = 14.9
Sample size	
Chromophobe	n = 27; % = 4.1
Sample size	
TNM 1	n = 366 ; % = 56
Sample size	
TNM 2	n = 152; % = 23.3
Sample size	
TNM 3a	n = 80; % = 12.3
Sample size	
TNM 3b/c	n = 55; % = 8.4
Sample size	

4

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

, , ,		
Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis as judged by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Liu, 2016

Bibliographic Reference

Liu, W.; Liu, Y.; Fu, Q.; Zhou, L.; Chang, Y.; Xu, L.; Zhang, W.; Xu, J.; Elevated expression of IFN-inducible CXCR3 ligands predicts poor prognosis in patients with non-metastatic clear-cell renal cell carcinoma; Oncotarget; 2016; vol. 7 (no. 12); 13976-13983

8

Study Characteristics

Study	Retrospective cohort study
design	

Study location	China
Study dates	2001 to 2004
Prognostic model(s)	SSIGN
Inclusion criteria	Non-metastatic ccRCC patients who underwent radical or partial nephrectomy.
Exclusion criteria	The patients with larger necrotic and haemorrhagic area hampering the obtaining of representative area in sample or receiving preoperative neoadjuvant therapy were excluded.
Selection of cohort	Single centre
Number of participants	N=263
Length of follow-up	120 months
Follow-up schedule	Not reported
Outcome(s) of interest	Model discrimination (C-stats) Recurrence-free/disease-free survival Overall survival
Source of funding	National Basic Research Program of China, National Natural Science Foundation of China, Program for New Century Excellent Talents in University, and Shanghai Rising-Star Program
Additional comments	Meanwhile, OS and RFS were estimated by Kaplan-Meier method and analysed by log-rank test. The paper also reported hazard ratios for SSIGN, however, this was not dichotomised so could not be used.

Population characteristics Study-level characteristics 2 3

1

Characteristic	Study (N = 263)
% Female	n = 79 ; % = 30
Sample size	
Age	56.7 (<i>NR</i>)
Mean (SD)	
Age	56 (48 to 67)
Median (IQR)	
RCC subtypes	n = 263; % = 100

Characteristic	Study (N = 263)
Sample size	
TNM classification - pT1	n = 169; % = 64.3
Sample size	
TNM classification - pT2	n = 33; % = 12.5
Sample size	
TNM classification - pT3	n = 61; % = 12.9
Sample size	

4

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (There was an unclear risk of bias for outcome or its determination and analysis as reported by Usher-Smith 2022. The paper did not report a measure of calibration, and therefore was assessed as high risk of bias for this review.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6

Lucca, 2015

Bibliographic Reference

Lucca, Ilaria; de Martino, Michela; Hofbauer, Sebastian L; Zamani, Nura; Shariat, Shahrokh F; Klatte, Tobias; Comparison of the prognostic value of pretreatment measurements of systemic inflammatory response in patients undergoing curative resection of clear cell renal cell carcinoma.; World journal of urology; 2015; vol. 33 (no. 12); 2045-52

8

9 Study Characteristics

Study design	Retrospective cohort study
Study location	Austria
Study dates	2002 to 2014
Prognostic model(s)	SSIGN
Inclusion criteria	 Patients treated with radical or partial nephrectomy for clinically localised unilateral renal cell carcinoma (RCC)

Exclusion criteria	 Cell types other than clear cell relevant comorbidities affected systemic inflammatory response markers patients with missing data on at least one of the relevant preoperative laboratory parameters within 1 month prior to surgery.
Selection of cohort	Single centre
Number of participants	
Length of follow-up	Median 40 months (IQR 17-73)
Follow-up schedule	Follow-up as recommendations in guidelines - not specified further
Outcome(s) of interest	Model discrimination (C-stats)
	Recurrence-free/disease-free survival
Source of funding	TK is supported by funds of the Oesterreichische Nationalbank
Additional comments	Univariable and multivariable estimates were obtained from Cox models as hazard ratios and 95% confidence intervals. Discrimination of Cox models was assessed with Harrell's concordance index.

Population characteristics Study-level characteristics

ctually lover characteristics	
Characteristic	Study (N = 430)
% Female	n = 173 ; % = 40.2
Sample size	
Age	65.5 (57 to 73)
Median (IQR)	
pT1-2	n = 346 ; % = 80.5
Sample size	
рТ3-4	n = 84; % = 19.5
Sample size	

4 5 6

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis and unclear risk of bias for outcome or its determination as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

1 2

Morgan, 2018

Bibliographic Reference

Morgan, Todd M; Mehra, Rohit; Tiemeny, Placede; Wolf, J Stuart; Wu, Shulin; Sangale, Zaina; Brawer, Michael; Stone, Steven; Wu, Chin-Lee; Feldman, Adam S; A Multigene Signature Based on Cell Cycle Proliferation Improves Prediction of Mortality Within 5 Yr of Radical Nephrectomy for Renal Cell Carcinoma.; European urology; 2018; vol. 73 (no. 5); 763-769

3

4 Study Characteristics

Study Characteristics		
Study design	Retrospective cohort study	
Study location	USA	
Study dates	2000-2009	
Prognostic model(s)	Karakiewicz	
Inclusion criteria	 Patients who underwent radical nephrectomy. Localised pT1-T3 clear cell, papillary, or chromophobe renal cell carcinoma. 37 or more days of follow-up. 	
Exclusion criteria	 Received neoadjuvant therapy. Bilateral, sarcomatoid, collecting duct, node-positive tumours. Any clinical evidence of metastatic disease. 	
Selection of cohort	Multicentre	
Number of participants	N=565	
Length of follow-up	Median: 90.8 months (IQR 51.8 to 119.2 months)	
Follow-up schedule	Not reported.	
Covariates adjusted for in the multivariable	Not reported	

Population characteristics Study-level characteristics

Characteristic	Study (N = 565)
% Female	n = 194 ; % = 34
Sample size	
Age less than or equal to 50	n = 113 ; % = 20
Sample size	
Age 51-60	n = 150 ; % = 27
Sample size	
Age 61-70	n = 165 ; % = 29
Sample size	
Age 71-80	n = 105 ; % = 19
Sample size	
Age: 80+	n = 32 ; % = 6
Sample size	
Clear cell	n = 456 ; % = 81
Sample size	
Papillary	n = 62 ; % = 11
Sample size	
Chromophobe	n = 47 ; % = 8
Sample size	

Characteristic	Study (N = 565)
T1	n = 328 ; % = 58
Sample size	
T2	n = 74 ; % = 13
Sample size	
Т3	n = 136 ; % = 29
Sample size	

4

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis and unclear risk of bias for outcome or its determination ass assess by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Na, 2016

Bibliographic Reference

Na, N.; Si, T.; Huang, Z.; Miao, B.; Hong, L.; Li, H.; Qiu, J.; High expression of HMGAGA2 predicts poor survival in patients with clear cell renal cell carcinoma; OncoTargets and Therapy; 2016; vol. 9; 7199-7205

8

9 Study Characteristics

Study design	Retrospective cohort study
Study location	China
Study dates	2003 to 2004
Prognostic model(s)	SSIGN
	UISS TNM 2010
Inclusion criteria	 Radical nephrectomy by open surgery or laparoscopy confirmed clear cell renal cell carcinoma by postoperative histopathology no radiotherapy or chemotherapy before surgery no metastasis (M0).

Exclusion criteria	 Patients who died from postoperative complications.
Selection of cohort	Multicentre
Number of participants	N=162
Length of follow-up	Not reported
Follow-up schedule	Not reported
Covariates adjusted for in the multivariable regression modelling	Not reported
Outcome(s) of interest	Model discrimination (C-stats) Overall survival
Source of funding	Not industry funded
Additional comments	Kaplan–Meier survival analysis was used to assess the overall survival. Cox proportional hazard models were generated for multivariate analyses.

1 2

Population characteristics

Study-level characteristics

Characteristic	Study (N = 162)
% Female	n = 58; % = 37.7
Sample size	
Age	52.6 (10.6)
Mean (SD)	
T1	n = 42; % = 25.9
Sample size	
T2	n = 72; % = 44.4
Sample size	
Т3	n = 41; % = 25.3
Sample size	

Characteristic	Study (N = 162)
T4	n = 7; % = 4.3
Sample size	
Nx-N0	n = 133 ; % = 82.1
Sample size	
N1	n = 29 ; % = 17.9
Sample size	

4

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis and unclear risk of bias for outcome or its determination as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Nie, 2023

Bibliographic Reference

Nie, Pei; Yang, Guangjie; Wang, Yanmei; Xu, Yuchao; Yan, Lei; Zhang, Mingxin; Zhao, Lianzi; Wang, Ning; Zhao, Xia; Li, Xianjun; Cheng, Nan; Wang, Yicong; Chen, Chengcheng; Wang, Nan; Duan, Shaofeng; Wang, Ximing; Wang, Zhenguang; A CT-based deep learning radiomics nomogram outperforms the existing prognostic models for outcome prediction in clear cell renal cell carcinoma: a multicenter study.; European radiology; 2023; vol. 33 (no. 12); 8858-8868

8

9 Study Characteristics

otaay onan	20101101100
Study design	Retrospective cohort study
Study location	China
Study dates	May 2011 to June 2019
Prognostic model(s)	SSIGN
Inclusion	Pathologically confirmed localised clear cell renal cell
criteria	carcinoma • After surgery

Exclusion criteria	Insufficient image qualityAnti-tumour therapy before surgery
Selection of cohort	Multicentre (Training cohort: 6 hospitals; Test cohort: 3 different hospitals)
Number of participants	Training cohort: N=558
Length of follow-up	Median 53 months (range 1-118)
Follow-up schedule	Patients were postoperatively followed up every 6-12 months for the first 2 years and then annually. Follow-up information from medical records included physical exams, tumour biomarkers, and imaging findings (CT, PET/CT, ultrasound or MRI).
Outcome(s) of interest	Model discrimination (C-stats) Recurrence-free/disease-free survival
Source of funding	Postdoctoral Science Foundation of China and the National Natural Science Foundation of China.
Additional comments	Survival analysis. Harrel's concordance index used to evaluate predictive accuracy of the models.

2 3

Study arms Training cohort (N = 558)

5 6

4

1

Test cohort (N = 241)

Population characteristics Arm-level characteristics

Training cohort (N = 558)	Test cohort (N = 241)
n = 189 ; % = 33.9	n = 79 ; % = 32.8
60.5 (53 to 67)	63 (52.9 to 67)
57 (48 to 64)	55 (48 to 62)
n = 285 ; % = 51.1	n = 124 ; % = 51.5
n = 163 ; % = 29.2	n = 66; % = 27.4
	n = 189; % = 33.9 60.5 (53 to 67) 57 (48 to 64)

Characteristic	Training cohort (N = 558)	Test cohort (N = 241)
No of events		
TNM classification: stage 3	n = 55 ; % = 10	n = 23; % = 9.5
No of events		
TNM classification: stage 4	n = 55 ; % = 10	n = 28 ; % = 11.6
No of events		

4

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis: Participants with incomplete data were excluded, potentially leading to biased predictor-outcome associations and predictive performance.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Oza, 2022

Bibliographic Reference

Oza, Bhavna; Eisen, Tim; Frangou, Eleni; Stewart, Grant D; Bex, Axel; Ritchie, Alastair W S; Kaplan, Rick; Smith, Benjamin; Davis, Ian D; Stockler, Martin R; Albiges, Laurence; Escudier, Bernard; Larkin, James; Joniau, Steven; Hancock, Barry; Hermann, Gregers G; Bellmunt, Joaquim; Parmar, Mahesh K B; Royston, Patrick; Meade, Angela; External Validation of the 2003 Leibovich Prognostic Score in Patients Randomly Assigned to SORCE, an International Phase III Trial of Adjuvant Sorafenib in Renal Cell Cancer.; Journal of clinical oncology: official journal of the American Society of Clinical Oncology; 2022; vol. 40 (no. 16); 1772-1782

8

Study Characteristics

Study design	Prospective cohort study
Study location	147 centres in seven countries: United Kingdom, Australia, France, Belgium, the Netherlands, Spain, and Denmark
Study dates	July 2007 to April 2013
Prognostic model(s)	Leibovich 2003
Inclusion criteria	patients with intermediate (3-5) or high (≥ 6) Leibovich scores

Exclusion criteria	Non-clear cell histology
Selection of cohort	Multicentre
	(SORCE cohort (a phase 3 trial in RCC))
Number of participants	Clear cell RCC N=1,445
	Papillary RCC N = 128
	Chromophobe N = 96
	Main results are presented for clear cell RCC only. Secondary analysis results are presented for non-clear cell, papillary only and chromophobe only.
Length of follow-up	Median follow-up - Years (IQR): 7.3 (6.1-8.4)
Follow-up schedule	Not reported
Covariates adjusted for in the multivariable regression modelling	Not reported
Outcome(s) of interest	Model discrimination (C-stats)
or interest	Recurrence-free/disease-free survival
Source of funding	Not reported
Additional comments	Survival analysis allowing for late entry was used. Missing surgery dates were estimated by random selection from the distribution of observed data.
	Discrimination was assessed graphically by observing the degree of separation between the Kaplan-Meier curves and by the hazard ratio (HR) between intermediate-risk and high-risk Leibovich risk groups in each cohort. Discrimination quantified with Harrell's c-index.

Study arms

Non-clear cell RCC (N = 266)

Papillary RCC (N = 128)

Chromophobe RCC (N = 96)

1

Population characteristics

Intermediate risk (N = 776)

6 Study-level characteristics

Characteristic	Study (N =)
Clear cell	n = 1445 ; % = 84
No of events	
Papillary	n = 128 ; % = 7
No of events	
Chromophobe	n = 96 ; % = 6
No of events	
Collecting duct	n = 4; % = 1
No of events	
Other	n = 38; % = 2
No of events	
pT1a	n = 7; % = 1
No of events	
pT1b	n = 197 ; % = 12
No of events	
pT2	n = 400 ; % = 23
No of events	
рТ3а-4	n = 1107; % = 65
No of events	

7 8

Outcomes

Survival

Outcome	Intermediate risk vs High risk, N2 = 776, N1 = 669
Metastasis-free survival - whole cohort	2.74 (2.29 to 3.28)
Hazard ratio/95% CI	

Outcome	Intermediate risk vs High risk, N2 = 776, N1 = 669
Metastasis-free survival - Non- clear cell	3.21 (2.05 to 5.03)
Hazard ratio/95% CI	
Metastasis-free survival - Papillary	2.61 (1.44 to 4.7)
Hazard ratio/95% CI	
Metastasis-free survival - Chromophobe	3.88 (1.56 to 9.61)
Hazard ratio/95% CI	

Metastasis-free survival - whole cohort - Polarity - Higher values are better

2 3 4

5

1

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Moderate (Unclear risk of bias for analysis as there is no information on the number of events for the outcome assessed and missing data.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

7 8

Piccinelli, 2023a

Bibliographic Reference

Piccinelli, Mattia L; Tappero, Stefano; Cano Garcia, Cristina; Barletta, Francesco; Incesu, Reha-Baris; Morra, Simone; Scheipner, Lukas; Tian, Zhe; Luzzago, Stefano; Mistretta, Francesco A; Ferro, Matteo; Saad, Fred; Shariat, Shahrokh F; Ahyai, Sascha; Longo, Nicola; Tilki, Derya; Briganti, Alberto; Chun, Felix K H; Terrone, Carlo; de Cobelli, Ottavio; Musi, Gennaro; Karakiewicz, Pierre I; Assessment of the VENUSS and GRANT Models for Individual Prediction of Cancer-specific Survival in Surgically Treated Nonmetastatic Papillary Renal Cell Carcinoma.; European urology open science; 2023; vol. 53; 109-115

9 10

Study Characteristics

Study design	Retrospective cohort study
Study location	USA
Study dates	2004-2019

Prognostic model(s)	GRANT VENUSS	
Inclusion criteria	 Aged 18 or over radial or partial nephrectomy only patients who fulfilled criteria that were subsequently used to generate the VENUSS and GRANT risk categories. 	
Exclusion criteria	Non-papillary subtypes.	
Selection of cohort	Database or clinical registry	
	Surveillance Epidemiology, and End Results (SEER) database	
Number of participants	N=4184	
Length of follow-up	Median (IQR): 4.9 years (2.1-8.8)	
Follow-up schedule	Not reported	
Outcome(s) of interest	Cancer-specific survival	
Source of funding	Not industry funded	
Additional comments	GRANT or VENUSS risk categories were applied and the regression coefficient quantified for the risk groups relative to low risk. Accuracy was generated for the cross-validation model-derived probability for every subject and was quantified using Heagerty's concordance index. Predicted 5-year cancer specific survivals were plotted against the actual observed and calibration plots generated.	

Study arms VENUSS low-risk (N = 2882)

VENUSS intermediate-risk (N = 1004)

VENUSS high-risk (N = 298)

GRANT favourable risk (N = 3144)

GRANT unfavourable risk (N = 1040)

11 12

1 2

3 4

5 6 7

8

9 10

1 Population characteristics

Study-level characteristics

Characteristic	Study (N = 4184)
% Female	n = 1021 ; % = 24
Sample size	
Age	62 (55 to 69)
Median (IQR)	
Nephrectomy status - Partial	n = 2142 ; % = 51
Sample size	
TNM classification - T1	n = 3263 ; % = 78
Sample size	
TNM classification - T2	n = 504 ; % = 12
Sample size	
TNM classification - T3	n = 384 ; % = 9.2
Sample size	
TNM classification - T4	n = 33; % = 0.8
Sample size	

3

4 Outcomes

5 **VENUSS**

Outcome	VENUSS intermediate-risk vs VENUSS low-risk, N2 = 1004, N1 = 2882	VENUSS high-risk vs VENUSS low-risk, N2 = 298, N1 = 2882
Cancer- specific survival	2.7 (2 to 3.6)	13.1 (9.9 to 17.3)
Hazard ratio/95% CI		

6 **GRANT**

Outcome	GRANT unfavourable risk vs GRANT favourable risk, N2 = 1040, N1 = 3144
Cancer-specific survival	3.6 (2.9 to 4.5)
Hazard ratio/95% CI	

7 8

1 Critical appraisal - PROBAST tool - applies to all outcomes unless

otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Low
Overall Risk of bias and Applicability	Concerns for applicability	Low

4 5

Piccinelli, 2023b

Bibliographic Reference

Piccinelli, Mattia Luca; Morra, Simone; Tappero, Stefano; Cano Garcia, Cristina; Barletta, Francesco; Incesu, Reha-Baris; Scheipner, Lukas; Baudo, Andrea; Tian, Zhe; Luzzago, Stefano; Mistretta, Francesco Alessandro; Ferro, Matteo; Saad, Fred; Shariat, Shahrokh F; Carmignani, Luca; Ahyai, Sascha; Tilki, Derya; Briganti, Alberto; Chun, Felix K H; Terrone, Carlo; Longo, Nicola; de Cobelli, Ottavio; Musi, Gennaro; Karakiewicz, Pierre I; Critical Appraisal of Leibovich 2018 and GRANT Models for Prediction of Cancer-Specific Survival in Non-Metastatic Chromophobe Renal Cell Carcinoma.; Cancers; 2023; vol. 15 (no. 7)

6

7 Study Characteristics

Study Chara	cteristics
Study design	Retrospective cohort study
Study location	USA
Study dates	2000-2019
Prognostic model(s)	GRANT Leibovich 2018
Inclusion criteria	 Aged 18 or over non-metastatic chromophobe kidney cancer radical or partial nephrectomy for unilateral renal cell carcinoma (RCC) complete data for age at diagnosis, T stage, N stage, grade, tumour size and sarcomatoid differentiation.
Exclusion criteria	Not specified
Selection of cohort	Database or clinical registry Surveillance, Epidemiology, and End Results (SEER) database
Number of participants	N=2761

	Study also reports an external validation cohort however this information has not been extracted as the Hazard ratios extracted are for the development cohort.
Length of follow-up	5 years
Follow-up schedule	Not reported
Covariates adjusted for in the multivariable regression modelling	Not reported
Outcome(s) of interest	Cancer-specific survival
Source of funding	No funding received
Additional comments	Leibovich 2018 and GRANT risk categories were applied to the cohort and quantified the regression coefficients for the prediction of cancer-specific mortality (CSM). Univariable Cox regression models tested time to CSM.

1 2

Study arms

Leibovich 2018 risk group 1 (N = 2340)

4 5 6

Leibovich 2018 risk group 2 (N = 368)

7

Leibovich 2018 risk group 3 (N = 53)

8

GRANT favourable (N = 2251)

10 11

GRANT unfavourable (N = 510)

12 13

14

Population characteristics

Study-level characteristics

Characteristic	Study (N = 2761)
% Female	n = 1181 ; % = 43
Sample size	
Age	59 (49 to 68)
Median (IQR)	
Nephrectomy status - Radical	n = 1772 ; % = 64
Sample size	

Characteristic	Study (N = 2761)
Nephrectomy status - Partial	n = 989 ; % = 36
Sample size	
TNM classification - T1	n = 1722 ; % = 62
Sample size	
TNM classification - T2	n = 491 ; % = 18
Sample size	
TNM classification - T3	n = 503 ; % = 18
Sample size	
TNM classification - T4	n = 45; % = 2
Sample size	

1

2 Outcomes

3 Leibovich 2018

Outcome	Leibovich 2018 risk group 2 vs Leibovich 2018 risk group 1, , N2 = 368, N1 = 2340	Leibovich 2018 risk group 3 vs Leibovich 2018 risk group 1, , N2 = 53, N1 = 2340
Cancer- specific mortality	3.3 (2.3 to 4.7)	17 (10.6 to 27.5)
Hazard ratio/95% CI		

4 GRANT

Outcome	GRANT unfavourable vs GRANT favourable, , N2 = 510, N1 = 2251
Cancer specific- mortality	3 (2.2 to 4.2)
Hazard ratio/95% CI	

5 6 7

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Moderate (Unclear risk of bias for analysis as there is not enough information on the number of participants with the outcome.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

Pichler, 2011

Bibliographic Reference

Pichler, Martin; Hutterer, Georg C; Chromecki, Thomas F; Jesche, Johanna; Kampel-Kettner, Karin; Rehak, Peter; Pummer, Karl; Zigeuner, Richard; External validation of the Leibovich prognosis score for nonmetastatic clear cell renal cell carcinoma at a single European center applying routine pathology.; The Journal of urology; 2011; vol. 186 (no. 5); 1773-7

3

Study Characteristics

Study Characteristics			
Study design	Retrospective cohort study		
Study location	Austria		
Study dates	1984 to 2006		
Prognostic model(s)	Leibovich 2003		
Inclusion criteria	 Patients with renal cell carcinoma (RCC) who underwent partial or radical nephrectomy. 		
Exclusion criteria	 Nonclear cell histology metastatic disease at diagnosis bilateral tumours younger than 18 years old at diagnosis. 		
Selection of cohort	Single centre		
Number of participants	N=1754		
Length of follow-up	Median follow-up: 82 months (IQR 39 to 142 months)		
Follow-up schedule	Follow-up evaluations were performed every 6 months for the first 5 years and then annually thereafter for locally advanced tumours.		
Covariates adjusted for in the multivariable regression modelling	Not reported		
Outcome(s) of interest	Recurrence-free/disease-free survival		
Source of funding	Not reported		

Additional comments	Metastasis-free survival was assessed using the Kaplan-Meier method. Univariate and multivariate Cox proportional hazards	
	models were fit to determine statistically significantly parameters associated with distant metastasis. The concordance index described by Harrell et al was used to assess the multivariate prognostic ability of the model.	

3

Population characteristics Study-level characteristics

Characteristic	Study (N =)
Age	62.6 (11.2)
Mean (SD)	

4 5 6

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis and unclear risk of bias for outcome or its determination as assessed by Usher-Smith 2022.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

9 10

Rini, 2015

Bibliographic Reference

Rini, Brian; Goddard, Audrey; Knezevic, Dejan; Maddala, Tara; Zhou, Ming; Aydin, Hakan; Campbell, Steven; Elson, Paul; Koscielny, Serge; Lopatin, Margarita; Svedman, Christer; Martini, Jean-Francois; Williams, J Andrew; Verkarre, Virginie; Radulescu, Camelia; Neuzillet, Yann; Hemmerle, Isabelle; Timsit, Marc Olivier; Tsiatis, Athanasios C; Bonham, Michael; Lebret, Thierry; Mejean, Arnaud; Escudier, Bernard; A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies.; The Lancet. Oncology; 2015; vol. 16 (no. 6); 676-85

11 12

Study Characteristics

Study design	Retrospective cohort study
Study location	France
Study dates	1995 to 2007
Prognostic model(s)	Leibovich 2003

Inclusion criteria	 Clear cell renal cell carcinoma stage 1, 2 or 3 treated with nephrectomy alone available fixed tumour tissue. 		
Exclusion criteria	 Neoadjuvant or adjuvant systemic therapy synchronous or metachronous bilateral renal cell carcinoma history of inherited von Hippel-Lindau disease insufficient RNA for RT-PCR analysis inadequate RNA quality measured by standard methods patients with recurrence within 6 months of surgery in absence of adequate imaging at the time of surgery or during the 6 months following surgery. 		
Selection of cohort	Multicentre		
Number of participants	N=626		
Length of follow-up	Median 5.5 years (IQR 3.5 to 7.9)		
Follow-up schedule	Not reported		
Covariates adjusted for in the multivariable regression modelling	Not reported		
Outcome(s) of interest	Model discrimination (C-stats)		
or interest	Recurrence-free/disease-free survival		
Source of funding	Funded by Genomic Health Inc and Pfizer Inc.		
Additional comments	Cox proportional hazards regression models stratified by stage (stage I vs stage II–III) were used to assess time-to-event endpoints.		

1 2

Study arms Leibovich 2003, low risk (N = 1)

3 4 5

Leibovich 2003, intermediate risk (N = 1)

6 7

Leibovich 2003, high risk (N = 1)

8

1 Population characteristics

Study-level characteristics

Characteristic	Study (N = 626)
% Female	n = 183 ; % = 29
Sample size	
Age	61.4 (12)
Mean (SD)	
Radical nephrectomy	n = 399 ; % = 64
Sample size	

3

Outcomes

5 Recurrence-free survival

Outcome	, –	Leibovich 2003, intermediate risk vs Leibovich 2003, low risk, N2 = , N1 =
Recurrence-free interval	4.31 (1.66 to 11.2)	3.08 (1.35 to 7.05)
Hazard ratio/95% CI		

6 7

8

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis and unclear risk of bias for outcome or its determination as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

1112

Schmeusser, 2024

Bibliographic Reference

Schmeusser, Benjamin N; Patil, Dattatraya H; Nicaise, Edouard H; Armas-Phan, Manuel; Nabavizadeh, Reza; Narayan, Vikram M; Joshi, Shreyas S; Ogan, Kenneth; Osunkoya, Adeboye O; Bilen, Mehmet A; Master, Viraj A; 2018 Leibovich prognostic model for renal cell carcinoma: Performance in a large population with special consideration of Black race.; Cancer; 2024; vol. 130 (no. 3); 453-466

13

1 Study Characteristics

acteristics	
Retrospective cohort study	
USA	
2000-2022	
Leibovich 2018	
 Informed consent first radical or partial nephrectomy chromophobe, papillary and clear cell renal cell carcinomas nephrectomy performed in the year 2000 or later non-metastatic at the time of surgery no missing critical demographic, clinical, pathological, or surgical variables (as specified in original Leibovich 2018 paper). 	
Not specified	
Database or clinical registry	
A renal cell carcinoma institutional database	
N=2295	
Median 52 months (IQR, 38.5–79.0 months)	
Regular follow-up which included chest and cross-sectional abdominal imaging, blood samples, and physical examinations according to standard-of-care guidelines or appropriate physician discretion for patients after surgical treatment of RCC.	
Progression-free survival	
Cancer-specific survival	
John Robinson Family Foundation, the Christopher Churchill Foundation, and the Cox Immunology Fund.	
Hazard ratios (HRs) were fit with Cox proportional models for 2018 Leibovich scores in the respective histologic cohorts. To determine	
the performance of each respective histologic 2018 Leibovich model, area under the curve (AUC) analysis and calibration plots were constructed.	

2 3

Study arms

Papillary RCC (N = 402)

5

Chromophobe RCC (N = 177)

1 2 3

4 5

6 7

8 9

10

11 12 13

14

15 16 Papillary risk score 1 (N = 153)

Papillary risk score 2 (N = 204)

Papillary risk score 3 (N = 37)

Chromophobe risk score 1 (N = 164)

Chromophobe risk score 2 (N = 10)

Chromophobe risk score 3 (N = 3)

Population characteristics

Arm-level characteristics

Characteristic	Papillary RCC (N = 402)	Chromophobe RCC (N = 177)
% Female	n = 105; % = 26.1	n = 74 ; % = 41.8
Sample size		
Age	61 (52 to 68)	58 (48 to 67)
Median (IQR)		
Nephrectomy status - Partial, laparoscopic-assisted	n = 108 ; % = 26.9	n = 45 ; % = 25.4
Sample size		
Nephrectomy status - Radical, laparoscopic-assisted	n = 146 ; % = 36.3	n = 60; % = 33.9
Sample size		
Nephrectomy status - Partial, open Sample size	n = 73 ; % = 18.2	n = 36; % = 20.3
•	·· - 75 · 0/ - 40 7	· 20 · 0/ - 20 2
Nephrectomy status - Radical, open	11 - 75; $% = 18.7$	11 - 30 ; % = 20.3
Sample size		
TNM classification - T1a	n = 184 ; % = 45.8	n = 70 ; % = 39.5
Sample size		

Characteristic	Papillary RCC (N = 402)	Chromophobe RCC (N = 177)
TNM classification - T1b	n = 119; % = 29.6	n = 38; % = 21.5
Sample size		
TNM classification - T2a	n = 38; % = 9.5	n = 13; % = 7.3
Sample size		
TNM classification - T2b	n = 18; % = 4.5	n = 14; % = 7.9
Sample size		
TNM classification - T3a	n = 29; % = 7.2	n = 36; % = 20.3
Sample size		
TNM classification - T3b	n = 8; % = 2	n = 1; % = 0.6
Sample size		
TNM classification - T3c	n = 4; % = 1	n = 1; % = 0.6
Sample size		
TNM classification - T4	n = 2; % = 0.5	n = 4; % = 2.3
Sample size		

Outcomes

1 2

Papillary renal cell carcinoma

Outcome	Papillary risk score 2 vs Papillary risk score 1, N2 = 204, N1 = 153	Papillary risk score 3 vs Papillary risk score 1, N2 = 37, N1 = 153
Progression free survival	1.24 (0.55 to 2.8)	11.22 (5.05 to 24.96)
Hazard ratio/95% CI		
Cancer specific survival	1.94 (0.78 to 4.81)	9.16 (3.38 to 24.82)
Hazard ratio/95% CI		

1 Chromophobe renal cell carcinoma

Outcome	Chromophobe risk score 2 vs Chromophobe risk score 1, N2 = 10, N1 = 164	·
Progression free survival	3.73 (0.47 to 29.88)	45.35 (8.46 to 243.18)
Hazard ratio/95% CI		
Cancer specific survival	12.28 (2.22 to 67.85)	39.13 (6.44 to 237.68)
Hazard ratio/95% CI		

2 Black ethnicity

Outcome	Papillary risk score 2 vs Papillary risk score 1, N2 = 121, N1 = 74	Papillary risk score 3 vs Papillary risk score 1, N2 = 14, N1 = 74
Progression free survival Hazard ratio/95%	0.84 (0.31 to 2.26)	10.72 (3.27 to 35.18)
CI		
Cancer specific survival	3.65 (0.78 to 17.05)	27.72 (4.96 to 155.03)
Hazard ratio/95% CI		

3 4 5

6

Critical appraisal - PROBAST tool – applies to all outcomes unless

otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Low
Overall Risk of bias and Applicability	Concerns for applicability	Low

8 9

Seles, 2017

Bibliographic Reference

Seles, Maximilian; Posch, Florian; Pichler, Georg P; Gary, Thomas; Pummer, Karl; Zigeuner, Richard; Hutterer, Georg C; Pichler, Martin; Blood Platelet Volume Represents a Novel Prognostic Factor in Patients with Nonmetastatic Renal Cell Carcinoma and Improves the Predictive Ability of Established Prognostic Scores.; The Journal of urology; 2017; vol. 198 (no. 6); 1247-1252

10

1 Study Characteristics

Otday Onare		
Study design	Retrospective cohort study	
Study location	Austria	
Study dates	2005-2013	
Prognostic model(s)	Leibovich 2003	
Inclusion criteria	 Localised renal cell carcinoma (RCC) open or laparoscopic curative nephron sparing surgery or radical nephrectomy. 	
Exclusion criteria	Missing data	
Selection of cohort	Single centre	
Number of participants	N=676	
Length of follow-up	Median of 6.1 years (range 1 day to 11.3 years)	
Follow-up schedule	Not specified	
	Model discrimination (C-stats)	
of interest	Recurrence-free/disease-free survival	
	Cancer-specific survival	
Source of funding	Austrian Society of Urology and Andrology fund and a Oesterreichische Nationalbank fund	
Additional comments	Uni- and multivariable modelling of time-to-event was performed with Cox proportional hazards models for the death-from-any cause endpoint and with Fine & Gray proportional sub-distribution hazards model for all other endpoints.	

2 3

4

Study arms Leibovich 2003 high risk (N = 171)

5

Leibovich 2003 moderate risk (N = 195)

8

Leibovich 2003 low risk (N = 286)

9

1 Population characteristics

Study-level characteristics

Characteristic	Study (N = 652)
% Female	n = 253 ; % = 38.8
Sample size	
Age	65.6 (56.5 to 73.4)
Median (IQR)	
Nephrectomy status - Partial	n = 314 ; % = 48.2
Sample size	
RCC subtypes - Non-clear cell	n = 121 ; % = 18.6
Sample size	
TNM classification - pT1a + pT1b	n = 467 ; % = 71.6
Sample size	
TNM classification - pT2a + pT2b	n = 44 ; % = 6.8
Sample size	
TNM classification - pT3a-c	n = 141; % = 21.6
Sample size	

3

4 Outcomes

Leibovich 2003

Outcome	Leibovich 2003 moderate risk vs Leibovich 2003 low risk, N2 = 195, N1 = 286	Leibovich 2003 high risk vs Leibovich 2003 low risk, N2 = 171, N1 = 286
Recurrence- free	3.97 (1.57 to 10.03)	15.24 (6.58 to 35.29)
Hazard ratio/95% CI		
Cancer-specific survival	5.85 (0.65 to 52.26)	46 (6.34 to 333.63)
Hazard ratio/95% CI		

6 7 8

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis and unclear risk of bias for outcome or its determination as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

1 2

Shao, 2020

Bibliographic Reference

Shao, Yanxiang; Xiong, Sanchao; Sun, Guangxi; Dou, Weichao; Hu, Xu; Yang, Weixiao; Lia, Thongher; Deng, Shi; Wei, Qiang; Zeng, Hao; Li, Xiang; Prognostic analysis of postoperative clinically nonmetastatic renal cell carcinoma.; Cancer medicine; 2020; vol. 9 (no. 3); 959-970

3

Study Characteristics

otady onaractoriotics			
Study design	Retrospective cohort study		
Study location	China		
Study dates	1999 to 2012		
Prognostic model(s)	Leibovich 2003		
model(3)	SSIGN		
	UISS		
Inclusion criteria	 Non-metastatic patients who underwent radical nephrectomy or partial nephrectomy 		
Exclusion criteria	 Bilateral renal neoplasms ECOG score >1 those not willing to provide information regarding their disease. 		
Selection of cohort	Single centre		
Number of participants	N=1202		
Length of follow-up	Median: 63.02 months (IQR 47.2 - 83.4)		
Follow-up schedule	Chest and abdominal computerized tomography (CT) performed 3 months after surgery. Abdominal ultrasound or CT performed twice annually for the first 5 years, and once annually thereafter. Chest X-rays performed annually. All patients received a telephone call follow-up every year.		

Covariates adjusted for in the multivariable regression modelling	Not reported
Outcome(s) of interest	Model discrimination (C-stats)
Source of funding	National Natural Science Foundation of China
Additional comments	Univariate and multivariate Cox regression analyses were performed to determine the clinicopathological parameters associated with survival. Patients were stratified using the SSIGN, Leibovich, and UISS scores. The predictive ability of these models was evaluated using the concordance index (c-index).

3

Population characteristics Study-level characteristics

Characteristic	Study (N = 1202)
% Female	n = 452 ; % = 37.6
Sample size	
Age - over 50	n = 755 ; % = 62.8
Sample size	
Age - less than or equal to 50	n = 447 ; % = 37.2
Sample size	
RCC subtypes - Clear cell	n = 1066 ; % = 88.7
Sample size	
RCC subtypes - Papillary	n = 43; % = 3.6
Sample size	
RCC subtypes - Chromophobe	n = 51; % = 4.2
Sample size	
RCC subtypes - Other	n = 42; % = 3.5
Sample size	
TNM classification - pT1	n = 921 ; % = 76.6
Sample size	
TNM classification - pT2	n = 149 ; % = 12.4

Study (N = 1202)
n = 89; % = 7.4
n = 43 ; % = 3.6

4

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis: No calibration measures reported and no information on number of participants with the outcome)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Sorbellini, 2005

Bibliographic Reference

Sorbellini, Maximiliano; Kattan, Michael W; Snyder, Mark E; Reuter, Victor; Motzer, Robert; Goetzl, Manlio; McKiernan, James; Russo, Paul; A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma.; The Journal of urology; 2005; vol. 173 (no. 1); 48-51

8

9 Study Characteristics

otaay onare			
Study design	Retrospective cohort study		
Study location	United States		
Study dates	1989 to 2002 (dates for development cohort, but dates for validation cohort not reported)		
Prognostic model(s)	Sorbellini		
Inclusion criteria	 Patients who had undergone single nephrectomy for unilateral locally confined disease radical or partial nephrectomy. 		
Exclusion criteria	 Patients with von Hippel-Lindau disease hereditary papillary renal cell carcinoma (RCC) bilateral renal masses stage pT4 and pT3c 		

	distant metastasesmetastatic regional lymph nodes.		
Selection of cohort	Single centre		
Number of participants	N=200		
Length of follow-up	Median 33 months, maximum 149 months		
Follow-up schedule	Not reported		
Outcome(s) of interest	Model discrimination (C-stats) Recurrence-free/disease-free survival		
Source of funding	Not reported		
Additional comments	Progression-free probability was estimated using the Kaplan-Meier method. Multivariate analysis was performed with Cox proportional hazards regression. A nomogram was constructed for freedom from recurrence with the information obtained from the Cox proportional hazards regression model.		

Population characteristics Study-level characteristics

Characteristic	Study (N = 200)
pT1a	n = 76 ; % = 38
Sample size	
pT1b	n = 34 ; % = 17
Sample size	
pT2	n = 10; % = 5
Sample size	
рТ3а	n = 42 ; % = 21
Sample size	
pT3b	n = 38 ; % = 19
Sample size	

4 5 6

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis and unclear risk of bias for outcome or its determination as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

1 2

Suzuki, 2011

Bibliographic Reference

Suzuki, Kazuya; Nishiyama, Tsutomu; Hara, Noboru; Akazawa, Kohei; Takahashi, Kota; Kattan postoperative nomogram for renal cell carcinoma: predictive accuracy in a Japanese population.; International journal of urology: official journal of the Japanese Urological Association; 2011; vol. 18 (no. 3); 194-9

3

Study Characteristics

Study Characteristics			
Study design	Retrospective cohort study		
Study location	Japan		
Study dates	1991 to 2004		
Prognostic model(s)	Kattan		
Inclusion criteria	Clear cell renal cell carcinomaN0M0 tumour		
Exclusion criteria	Not specified		
Selection of cohort	Single centre		
Number of participants	N=211		
Length of follow-up	Median 81 months (range: 4–208).		
Follow-up schedule	Clinical examination, laboratory tests, chest–abdominal CT every 6 months during the first 5 years, and yearly thereafter.		
Outcome(s) of interest	, , , , , , , , , , , , , , , , , , ,		
	Recurrence-free/disease-free survival		
Source of funding	Not reported		
Additional comments	A scatterplot was used to compare the probability of remaining free of RCC at 5 years as estimated by the Kattan nomogram and as given by the Cox proportional hazards analysis. The predictive accuracy of		

the nomogram was evaluated using c-index. The 95% confidence intervals (95%CI) of the c-index were calculated by bootstrapping.

1 2

3

Population characteristics Study-level characteristics

Characteristic	Study (N = 211)
% Female	n = 59 ; % = 28
Sample size	
Age	59.1 (NR to NR)
Median (IQR)	
Nephrectomy status - Radical	n = 173 ; % = 82
Sample size	
Nephrectomy status - Nephron-sparing	n = 38 ; % = 18
Sample size	
TNM classification - T1	n = 140 ; % = 66.4
Sample size	
TNM classification - T2	n = 26 ; % = 12.3
Sample size	
TNM classification - T3a	n = 24 ; % = 11.4
Sample size	
TNM classification - T3b-c	n = 21 ; % = 9.9
I INIVI CIASSIIICALIOII - I SD-C	11 - 21, 70 - 9.9
Sample size	

4 5

6

7

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

9 10

Tan, 2010

Bibliographic Tan, Min-Han Tan, Puay Ho

Tan, Min-Han; Kanesvaran, Ravindran; Li, Huihua; Tan, Hwei Ling; Tan, Puay Hoon; Wong, Chin Fong; Chia, Kee Seng; Teh, Bin Tean; Yuen, John; Chong, Tsung Wen; Comparison of the UCLA

Integrated Staging System and the Leibovich score in survival prediction for patients with nonmetastatic clear cell renal cell carcinoma.; Urology; 2010; vol. 75 (no. 6); 1365-3

1

2 Study Characteristics

Olday Ollar		
Study design	Retrospective cohort study	
Study location	Singapore	
Study dates	1990 to 2006	
Prognostic model(s)	Leibovich 2003 UISS	
Inclusion criteria	 Non-metastatic unilateral clear call renal cell carcinoma (RCC) who underwent nephrectomies. 	
Exclusion criteria	Metastatic diseaseregional or non-regional lymph nodes.	
Selection of cohort	Single centre	
Number of participants	N=355	
Length of follow-up	Median 56 months	
Follow-up schedule	Not reported	
	Model discrimination (C-stats)	
of interest	Recurrence-free/disease-free survival	
	Overall survival	
	Cancer-specific survival	
Source of funding	Not reported	
Additional comments		

3

Study arms

Leibovich, low risk (N = 137)

5 6 7

Leibovich, intermediate risk (N = 166)

8

6

7 8 9

10

Leibovich, high risk (N = 52)

UISS, low risk (N = 107)

UISS, intermediate risk (N = 201)

UISS, high risk (N = 47)

Population characteristics

Study-level characteristics

Characteristic	Study (N = 355)
% Female	n = 127; % = 35.8
Sample size	
Age	57 (12.4)
Mean (SD)	
pT1a	n = 96; % = 27
Sample size	
pT1b	n = 82; % = 23.1
Sample size	
pT2	n = 76 ; % = 21.4
Sample size	
рТ3а	n = 57; % = 16.1
Sample size	
pT3b	n = 39 ; % = 11
Sample size	
рТ3с	n = 1; % = 0.3
Sample size	
pT4	n = 4; % = 1.1
Sample size	

11

1 Outcomes

Leibovich

Outcome	Leibovich, intermediate risk vs Leibovich, low risk, N2 = 166, N1 = 137	Leibovich, high risk vs Leibovich, low risk, N2 = 52, N1 = 137	
Overall survival	2.05 (1.09 to 3.86)	5.17 (2.59 to 10.32)	
Hazard ratio/95% CI			
Cancer- specific survival	3.41 (1.3 to 8.97)	10.84 (4 to 29.41)	
Hazard ratio/95% CI			
Disease-free survival	2.32 (1.34 to 4.02)	7.74 (4.32 to 13.87)	
Hazard ratio/95% CI			

3 **UIS**

Outcome	UISS, intermediate risk vs UISS, low risk, N2 = 201, N1 = 107	UISS, high risk vs UISS, low risk, N2 = 47, N1 = 107
Overall survival	2.63 (1.28 to 5.38)	4.28 (1.92 to 9.55)
Hazard ratio/95% CI		
Cancer-specific survival	3.94 (1.39 to 11.19)	6.54 (2.1 to 20.34)
Hazard ratio/95% CI		
Disease-free survival	2.72 (1.5 to 4.95)	5.17 (2.64 to 10.12)
Hazard ratio/95% CI		

4 5 6

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

,		·
Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Moderate – overall survival and recurrence- free survival (Unclear risk of bias for outcome or its

Section	Question	Answer
		determination and analysis as assessed by Usher-Smith 2022)
		High – cancer-specific survival (High risk of bias for analysis and unclear risk of bias for outcome or its determination as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

1 2

Tan, 2011

Bibliographic Reference

Tan, Min-Han; Li, Huihua; Choong, Caroline Victoria; Chia, Kee Seng; Toh, Chee Keong; Tang, Tiffany; Tan, Puay Hoon; Wong, Chin Fong; Lau, Weber; Cheng, Christopher; The Karakiewicz nomogram is the most useful clinical predictor for survival outcomes in patients with localized renal cell carcinoma.; Cancer; 2011; vol. 117 (no. 23); 5314-24

3

4 Study Characteristics

- 10.0.J	
Study design	Retrospective cohort study
Study location	Singapore
Study dates	1990 to 2006
Prognostic model(s)	Karakiewicz
	Kattan
	Leibovich 2003
	Sorbellini
Inclusion criteria	 Patients who underwent nephrectomy for sporadic non- metastatic unilateral renal cell carcinoma (RCC)
Exclusion criteria	 Subtypes other than clear cell, papillary or chromophobe renal cell carcinoma large tumours - pT4 Eastern Cooperative Oncology Group (ECOG) >1.
Selection of cohort	Single centre
Number of participants	Cohort: N=390
	N=390 Kattan and Karakiewicz

	N=322 Sorbellini
	N=322 Leibovich
Length of follow-up	5 years
Follow-up schedule	Not reported
Outcome(s) of interest	Model discrimination (C-stats)
	Recurrence-free/disease-free survival
	Overall survival
	Cancer-specific survival
Source of funding	Not industry funded
Additional comments	Outcomes were estimated by the Kaplan-Meier approach, and Cox regression was used to evaluate the effects of covariates.

Population characteristics Study-level characteristics

Characteristic	Study (N = 390)
% Female	n = 134 ; % = 34
Sample size	
Age Median (range)	57 (16 to 91)
Custom value	
Radical nephrectomy	n = 355 ; % = 91
Sample size	
Partial nephrectomy	n = 34; % = 9
Sample size	
Unknown nephrectomy	n = 1; % = 0
Sample size	
Clear cell	n = 334 ; % = 86
Sample size	
Papillary	n = 44 ; % = 11
Sample size	

Characteristic	Study (N = 390)
Chromophobe	n = 12; % = 3
Sample size	
TNM 1	n = 214 ; % = 55
Sample size	
TNM 2	n = 65; % = 17
Sample size	
TNM 3a	n = 69 ; % = 18
Sample size	
TNM 3 b/c	n = 42 ; % = 11
Sample size	

4

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Moderate (Unclear risk of bias for analysis and outcome or its determination as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Tsujino, 2017a

Bibliographic Reference

Tsujino, Takuya; Komura, Kazumasa; Ichihashi, Atsushi; Tsutsumi, Takeshi; Matsunaga, Tomohisa; Yoshikawa, Yuki; Maenosono, Ryoichi; Okita, Kyohei; Takai, Tomoaki; Oide, Rintaro; Minami, Koichiro; Uehara, Hirofumi; Taniguchi, Kohei; Hirano, Hajime; Nomi, Hayahito; Ibuki, Naokazu; Takahara, Kiyoshi; Inamoto, Teruo; Azuma, Haruhito; The combination of preoperative platelet count and neutrophil lymphocyte ratio as a prognostic indicator in localized renal cell carcinoma.; Oncotarget; 2017; vol. 8 (no. 66); 110311-110325

8

Study Characteristics

Study design	Retrospective cohort study
Study location	Japan
Study dates	2002 to 2015

Prognostic model(s)	SSIGN UISS	
Inclusion criteria	RCC patients who underwent nephrectomy	
Exclusion criteria	 Patients with metastasis at the time of nephrectomy Patients with missing clinicopathological information 	
Selection of cohort	Single centre Osaka Medical College Hospital	
Number of participants	N=268	
Length of follow-up	60 months median	
Follow-up schedule	Follow-up CT and chest X-ray every 3 months in the first year and every 6 months thereafter	
Outcome(s) of interest	Recurrence-free/disease-free survival Overall survival	
Source of funding	Not reported	
Additional comments	A Kaplan-Meier analysis was carried out to estimate survival free ratio, and log-rank test was performed to compare the difference between assigned patient groups. For the extracted univariate analysis, Cox proportional-hazard regression models were used to estimate crude hazard ratios (HR).	

3

Study arms UISS, low risk (N = 164)

4 5

UISS, intermediate-high risk (N = 104)

7 8

6

SSIGN, 0-2 (N = 222)

9 10 SSIGN, >=3 (N = 46)

11 Population characteristics12 Study-level characteristics

Characteristic	Study (N = 268)
% Female	n = 82; % = 30.6
Sample size	
Age	64 (11.3)

Characteristic	Study (N = 268)
Mean (SD)	
RCC subtypes - Clear	n = 241 ; % = 89.9
Sample size	
RCC subtypes - Papillary	n = 12; % = 4.5
Sample size	
RCC subtypes - Chromophobe	n = 9; % = 3.4
Sample size	
RCC subtypes - Others	n = 6; % = 2.2
Sample size	
TNM classification - T classification I-II	n = 236 ; % = 88.1
Sample size	
TNM classification - T classification III-IV	n = 32; % = 11.9
Sample size	

12 Outcomes

3

4 5

6

Study timepoints

Median 60 months

UISS

Outcome	UISS, low risk vs UISS, intermediate-high risk, Median 60 months, N2 = , N1 =
Recurrence-free survival	3.17 (1.83 to 5.64)
Hazard ratio/95% CI	
Overall survival	4.39 (2.39 to 8.61)
Hazard ratio/95% CI	

7 SSIGN

Outcome	SSIGN, 0-2 vs SSIGN, >=3, Median 60 months, N2 = , N1 =
Recurrence-free survival	4.09 (2.34 to 7.05)
Hazard ratio/95% CI	

Outcome	SSIGN, 0-2 vs SSIGN, >=3, Median 60 months, N2 = , N1 =
Overall survival	4.28 (2.42 to 7.56)
Hazard ratio/95% CI	

5

1

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis as assessed by Usher-Smith 2022.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

7 8

Tsujino, 2017b

Bibliographic Reference

Tsujino, Takuya; Komura, Kazumasa; Matsunaga, Tomohisa; Yoshikawa, Yuki; Takai, Tomoaki; Uchimoto, Taizo; Saito, Kenkichi; Tanda, Naoki; Oide, Rintaro; Minami, Koichiro; Uehara, Hirofumi; Jeong, Seong Ho; Taniguchi, Kohei; Hirano, Hajime; Nomi, Hayahito; Ibuki, Naokazu; Takahara, Kiyoshi; Inamoto, Teruo; Azuma, Haruhito; Preoperative Measurement of the Modified Glasgow Prognostic Score Predicts Patient Survival in Non-Metastatic Renal Cell Carcinoma Prior to Nephrectomy; Annals of surgical oncology; 2017; vol. 24 (no. 9); 2787-2793

9 10

Study Characteristics

-	
Study design	Retrospective cohort study
Study location	Japan
Study dates	2005 to 2015
Prognostic model(s)	SSIGN UISS
Inclusion criteria	Patients who underwent nephrectomy with curative (for localised RCC) or non-curative (for cytoreduction to metastatic RCC) intent due to diagnosis of RCC.
Exclusion criteria	Patients who did not undergo nephrectomy or had missing clinicopathological information.
Selection of cohort	Single centre
Number of participants	N=219

Median follow-up 57 months
After discharge, follow-up CT and chest X-ray were performed every 3 months in the first year to detect any findings suspicious of disease progression. Thereafter, patients were followed-up every 6 months.
Model discrimination (C-stats) Overall survival Overall survival Hazard ratio reported, however, due to overlap, data from Tsujino 2017a will be used instead Cancer-specific survival Hazard ratio
Not reported
A Kaplan–Meier analysis was carried out to estimate the survival-free ratio, and the log-rank test was performed to compare the difference between assigned patient groups. On univariate analysis, Cox proportional hazard regression models were used to estimate crude hazard ratios (HRs). The Harrell's concordance index (C-index) was determined to compare the predictive value of each scoring model systems.

1 2 Study arms

UISS, low risk (N = 161)

Patients without metastasis at baseline

5 6

3

UISS, **intermediate-high** (N = 34)
Patients without metastasis at baseline

8 9

SSIGN, 0-2 (N = 156)

Patients without metastasis at baseline

10 11 12

SSIGN, <=3 (N = 39)

Patients without metastasis at baseline

13 14 15

Population characteristics

Study-level characteristics 16

Characteristic	Study (N = 195)
% Female Patients without metastasis at baseline	n = 58; % = 29.7
Sample size	

Characteristic	Study (N = 195)
Age	65.1 (10.8)
Mean (SD)	
RCC subtypes - Clear	n = 179 ; % = 91.8
Sample size	
RCC subtypes - Papillary	n = 10; % = 5.1
Sample size	
RCC subtypes - Chromophobe	n = 5; % = 2.6
Sample size	
RCC subtypes - Others	n = 1; % = 0.5
Sample size	
TNM classification - T classification I-II	n = 171 ; % = 87.7
Sample size	
TNM classification - T classification III-IV	n = 24 ; % = 12.3
Sample size	

Outcomes

1 2

3

5

7

9

10 11

Study timepoints

median 57 months

Contrast data

Outcome	UISS, intermediate-high vs UISS, low risk, median 57 months, N2 = , N1 =	SSIGN, <=3 vs SSIGN, 0-2, median 57 months, N2 = , N1 =
Cancer- specific survival	18.2 (7.17 to 55.5)	13.85 (5.45 to 42.27)
Hazard ratio/95% CI		

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis as assessed by Usher-Smith 2022.)

Section	Question	Answer
Overall Risk of bias and Applicability	Concerns for applicability	Low

Tsujino, 2019

Bibliographic Reference

Tsujino, Takuya; Komura, Kazumasa; Hashimoto, Takeshi; Muraoka, Ryu; Satake, Naoya; Matsunaga, Tomohisa; Tsutsumi, Takeshi; Yoshikawa, Yuki; Takai, Tomoaki; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Ibuki, Naokazu; Takahara, Kiyoshi; Inamoto, Teruo; Ohno, Yoshio; Azuma, Haruhito; C-reactive protein-albumin ratio as a prognostic factor in renal cell carcinoma - A data from multi-institutional study in Japan.; Urologic oncology; 2019; vol. 37 (no. 11); 812e1-812e8

3

Study Characteristics

Study design	Retrospective cohort study
Study location	Japan
Study dates	1990 to 2015
Prognostic model(s)	UISS
Inclusion criteria	Patients with RCC who underwent nephrectomy
Exclusion criteria	 Patients who did not undergo nephrectomy Patients missing any clinicopathological information Patients with insufficient follow-up (less than 12 months)
Selection of cohort	Multicentre
Number of participants	N=699
Length of follow-up	Median follow-up time of 73 months
Follow-up schedule	Follow-up CT and Chest X-ray were performed to detect any findings suspected to disease progression every three months in the first 2 year. Thereafter, patients were followed up every 6 months.
Outcome(s) of interest	Model discrimination (C-stats)
or interest	Recurrence-free/disease-free survival
	Hazard ratio extracted for people with no metastasis at time of nephrectomy
Source of funding	Not reported

Additional

RFS was calculated from the date of surgery to the date of disease **comments** recurrence or metastasis or the last follow-up in M0 RCC patients who underwent nephrectomy. A Kaplan-Meier analysis was carried out to estimate survival free ratio, and log-rank test was performed to compare the difference between assigned patient groups. On univariate analysis, Cox proportional-hazard regression models were used to estimate crude hazard ratios (HR).

1 2

3

Study arms

UISS, low risk (N = 394)

Patients without metastasis at baseline

4 5 6

UISS, intermediate-high risk (N = 233)

Patients without metastasis at baseline

7 8 9

10

Population characteristics

Study-level characteristics

Characteristic	Study (N = 627)
% Female All characteristics for patients without metastasis at baseline	n = 176 ; % = 28.1
Sample size	
Age	61.7 (11.9)
Mean (SD)	
Nephrectomy status - Radical	n = 522 ; % = 83.3
Sample size	
Nephrectomy status - Partial	n = 105 ; % = 16.7
Sample size	
RCC subtypes - Clear	n = 562 ; % = 89.6
Sample size	
RCC subtypes - Papillary	n = 229 ; % = 36.5
Sample size	
RCC subtypes - Chromophobe	n = 16; % = 2.6
Sample size	
RCC subtypes - Others	n = 20 ; % = 3.2
Sample size	
TNM classification - T classification 1-2	n = 540 ; % = 86.1
Sample size	
	16 4 DDAET

Characteristic	Study (N = 627)
TNM classification - T classification 3-4	n = 87 ; % = 13.9
Sample size	
TNM classification - N classification 0	n = 611 ; % = 97.4
Sample size	
TNM classification - N classification 1	n = 16; % = 2.6
Sample size	

3

Outcomes

Study timepoints

Median 73 months

4 5 6

Hazard ratios - patients without metastasis at baseline

Outcome	UISS, intermediate-high risk vs UISS, low risk, Median 73 months, N2 = , N1 =
Recurrence-free survival	3.48 (2.47 to 4.94)
Hazard ratio/95% CI	

7 8

9

10

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis as assessed by Usher-Smith 2022.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

12 13

14

Um, 2020

Bibliographic Reference

Um, In Hwa; Scott-Hayward, Lindesay; Mackenzie, Monique; Tan, Puay Hoon; Kanesvaran, Ravindran; Choudhury, Yukti; Caie, Peter D; Tan, Min-Han; O'Donnell, Marie; Leung, Steve; Stewart, Grant D; Harrison, David J; Computerized Image Analysis of Tumor Cell Nuclear Morphology Can Improve Patient Selection for Clinical Trials in Localized Clear Cell Renal Cell Carcinoma.; Journal of pathology informatics; 2020; vol. 11; 35

15 16

Study Characteristics

Study	Retrospective cohort study
design	

Study location	Scotland
Study dates	Scotland: 2007 to 2010
Prognostic model(s)	Leibovich 2003
Inclusion criteria	 clear cell renal cell carcinoma TNM9 pathological stage pT1-3 disease having had extirpative surgery (presumed to mean either radical or partial nephrectomy) between 2007 and 2010)
Exclusion criteria	None reported
Selection of cohort	Database or clinical registry
	(Scottish Collaboration on Translational Research into Renal Cell Carcinoma [SCOTRRCC])
Number of participants	N=120
Length of follow-up	Length of follow up not reported
Follow-up schedule	Not reported
Covariates adjusted for in the multivariable regression modelling	Not reported
Outcome(s) of interest	Sensitivity/specificity
Source of funding	Laboratory Medicine R&D Fund and iCAIRD
Additional comments	The primary clinical end point was disease recurrence-free status. If the patient had a disease recurrence by imaging or a biopsy either locally or remotely at the time of data collection, it was deemed to be a recurrence; otherwise, the patient was censored as non-recurrence.
	C index was reported but not extracted because confidence intervals were not available.
Outcome(s) of interest Source of funding Additional	Laboratory Medicine R&D Fund and iCAIRD The primary clinical end point was disease recurrence-free status. If the patient had a disease recurrence by imaging or a biopsy either locally or remotely at the time of data collection, it was deemed to be a recurrence; otherwise, the patient was censored as non-recurrence. C index was reported but not extracted because confidence intervals

1

1 Population characteristics

Study-level characteristics

Characteristic	Study (N = 120)
% Female	n = 56; % = 47
No of events	
Age	Median 65, range 31-90
Custom value	
TNM stage 1	n = 54; % = 45
No of events	
TNM stage 2	n = 14; % = 12
No of events	
TNM stage 3	n = 52; % = 43
No of events	

3 4 5

6

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis: No calibration outcomes reported. Unclear reporting about missing data and whether these participants were assumed to have no recurrence.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

8 9

Usher-Smith, 2022

Bibliographic Reference

Usher-Smith, Juliet A; Li, Lanxin; Roberts, Lydia; Harrison, Hannah; Rossi, Sabrina H; Sharp, Stephen J; Coupland, Carol; Hippisley-Cox, Julia; Griffin, Simon J; Klatte, Tobias; Stewart, Grant D; Risk models for recurrence and survival after kidney cancer: a systematic review.; BJU international; 2022; vol. 130 (no. 5); 562-579

10

11 Study Characteristics

Study design	Systematic review
Study details	Dates searched

	1 January 2000 to 12 December 2019		
	Databases searched		
	Medline, EMBASE and Cochrane Library		
	Sources of funding		
	Various support of authors by Cancer Research UK; NHS in the East of England through the Clinical Academic Reserve; Renal Cancer Research Fund; the Mark Foundation for Cancer Research, National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre.		
Inclusion criteria	 Peer-reviewed studies reported a quantitative measure of the performance of one or more risk models including a combination of 2 or more risk factors to predict at least one of the outcomes of interest patients after surgical resection for localised renal cell carcinoma external validation studies studies reporting performance of an existing model alongside the performance of that model plus additional prognostic markers. 		
Outcome(s)	 Recurrence-free survival (metastasis-free survival; local recurrence-free survival; progression to metastatic disease; recurrence of disease) Cancer-specific survival Overall survival 		
Number of studies included in the systematic review	 Studies where it was not possible to separate patients with localised disease from metastatic disease studies only including specific groups (for example those with high-grade disease) 		
Studies from the systematic review that are relevant for use in the current review	 An 2015 Beisland 2014 Buti 2019 Capogrosso 2018 Chen 2017 Cindolo 2005 Fu 2015 Haddad 2017 Han 2003 Hupertan 2006 Hutterer 2014 Jensen 2009 Klatte 2009 		

Lee 2018 Liu 2009 Liu 2016 Lucca 2015 Morgan 2018 Na 2016 Pichler 2011 Rini 2015 **Seles 2017** Sorbellini 2005 Suzuki 2011 Tan 2010 Tan 2011 Tsujino 2017 Tsujino 2019 Utsumi 2011 Vasudev 2020 Verine 2018 Viers 2014 Wang 2016 Xia 2016 **Xiong 2017 Zhang 2017** Zhu 2019 Studies Bai 2015 from the Bezan 2015 • Brookman-Amissah 2009 systematic review that Brooks 2014 Chang 2015 are not Chang 2016 relevant for use in the • Fu 2015b Jeong 2017 current review Liu 2014 Liu 2015 May 2009 Morshaeuser 2018 Niu 2016 Pan 2015 Pichler 2012 Pichler 2013 Qu 2016 Sekar 2017 Sim 2012 Song 2019 Tsujino 2018 Verine 2018

Kidney cancer: evidence review for risk prediction tools and factors DRAFT FOR CONSULTATION (September 2025)

Wei 2019 Wu 2015 Xia 2017 Xu 2015

	 Xu 2017 Yang 2015 Yang 2016 Zhu 2015 Zhu 2017
Additional comments	None

Critical appraisal - ROBIS checklist

Section	Question	Answer
Overall study ratings	Overall risk of bias	Low (Overall low risk of bias: no concerns about study eligibility criteria. methods used to identify and select studies, or collecting data and appraising studies. Some concerns about robustness of data due to a lack of sensitivity analysis or further testing of results.)
Overall study ratings	Applicability as a source of data	Partially applicable (This systematic review covers a discrete subsection of the review protocol: it presents c index results for clear cell carcinoma only. It does not include locally advanced cancer, other histological subtypes, and does not fully present other outcomes from the protocol (for example, area under the ROC curve, hazard ratios).)

4

Utsumi, 2011

Bibliographic Reference

Utsumi, Takanobu; Ueda, Takeshi; Fukasawa, Satoshi; Komaru, Atsushi; Sazuka, Tomokazu; Kawamura, Koji; Imamoto, Takashi; Nihei, Naoki; Suzuki, Hiroyoshi; Ichikawa, Tomohiko; Prognostic models for renal cell carcinoma recurrence: external validation in a Japanese population.; International journal of urology: official journal of the Japanese Urological Association; 2011; vol. 18 (no. 9); 667-671

6

Study Characteristics

Class, Chart	
Study design	Retrospective cohort study
Study location	Japan
Study dates	Between 1990 and 2005
Prognostic model(s)	Kattan
Inclusion criteria	Patients who underwent partial or radical nephrectomy for non-metastatic RCC
Exclusion criteria	Patients with large tumour (T4), bilateral disease, tumour with unclassified histology, chronic renal insufficiency or lost to follow up.

Selection of cohort	Multicentre
Number of participants	N=217
Length of follow-up	Not reported
Follow-up schedule	A follow up of the patients was basically carried out every 3 months. Radiological tests were carried out in accordance with the protocols of each institution.
Outcome(s) of interest	Model discrimination (C-stats) Recurrence-free/disease-free survival
Source of funding	Not reported
Additional comments	None

2 3 4

1

Study arms

CUH cohort (N = 152)

5 6 7

8

CCC cohort (N = 65)

Population characteristics

Arm-level characteristics

Characteristic	CUH cohort (N = 152)	CCC cohort (N = 65)
% Female	n = 38; % = 25	n = 18; % = 27.7
Sample size		
Age	31 to 79	26 to 81
Range		
Age	58 (IQR not reported)	61 (IQR not reported)
Median (IQR)		
Nephrectomy status - Radical	n = 142; % = 93.4	n = 64; % = 98.5
Sample size		
Nephrectomy status - Partial	n = 10; % = 6.6	n = 1; % = 1.5
Sample size		
RCC subtypes - Clear cell	n = 143 ; % = 94.1	n = 58; % = 89.2
Sample size		

Characteristic	CUH cohort (N = 152)	CCC cohort (N = 65)
RCC subtypes - Papillary	n = 5; % = 3.3	n = 5; % = 7.7
Sample size		
RCC subtypes - Chromophobe	n = 4; % = 2.6	n = 2; % = 3.1
Sample size		
TNM classification - 1997 TNM classification 1	n = 117 ; % = 77	n = 35; % = 53.9
Sample size		
TNM classification - 1997 TNM classification 2	n = 11; % = 7.2	n = 8; % = 12.2
Sample size		
TNM classification - 1997 TNM classification 3a	n = 8; % = 5.3	n = 12; % = 18.5
Sample size		
TNM classification - 1997 TNM classification 3b/c	n = 16; % = 10.5	n = 10 ; % = 15.4
Sample size		

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis and unclear risk of bias for outcome or its determination as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Vasudev, 2020

Bibliographic Reference

Vasudev, Naveen S; Hutchinson, Michelle; Trainor, Sebastian; Ferguson, Roisean; Bhattarai, Selina; Adeyoju, Adebanji; Cartledge, Jon; Kimuli, Michael; Datta, Shibendra; Hanbury, Damian; Hrouda, David; Oades, Grenville; Patel, Poulam; Soomro, Naeem; Stewart, Grant D; Sullivan, Mark; Webster, Jeff; Messenger, Michael; Selby, Peter J; Banks, Rosamonde E; UK Multicenter Prospective Evaluation of the Leibovich Score in Localized Renal Cell Carcinoma: Performance has Altered Over Time.; Urology; 2020; vol. 136; 162-168

2 Study Characteristics

Study design	Prospective cohort study	
Study location	UK	
Study dates	1998 to 2006 - historic cohort 2011 to 2014 - contemporary cohort	
Prognostic model(s)	Leibovich 2003	
Inclusion criteria	 Patients with newly diagnosed suspected renal cell carcinoma all stages all histologic types no prior treatment. 	
Exclusion criteria	 Known familial renal cell carcinoma renal cancer acquired following and/or during renal replacement therapy those and high risk or known HIV hepatitis B/C or other blood-borne infectious disease. 	
Selection of cohort	Single centre (historic cohort) Multicentre (contemporary cohort)	
Number of participants	N= 384 contemporary cohort N=191 historical cohort	
Length of follow-up	Contemporary cohort: Median 4.4 years (IQR 3.4, 5.2)	
	Historical cohort: Median 10.7 years (IQR 7.87, 12.71)	
Follow-up schedule	Not reported	
Outcome(s) of interest	Model discrimination (C-stats)	
	Recurrence-free/disease-free survival	
Source of funding	Not industry funded	
Additional comments	Cox proportional hazard models with Leibovich risk group as the predictor were used to estimate hazard ratios and c-index to assess discrimination.	

The Kaplan-Meier method was used to estimate and visualize metastasis-free survival to assess calibration.

1 2 3

Study arms

Contemporary cohort, low risk (N = 150)

4 5

Contemporary cohort, intermediate risk (N = 163)

6

Contemporary cohort, high risk (N = 71)

8

Historic cohort, low risk (N = 60)

10 11

Historic cohort, intermediate risk (N = 86)

12 13

Historic cohort, high risk (N = 45)

14

Population characteristics

15

16 Study-level characteristics

Study level ondiductions	
Characteristic	Study (N = 575)
% Female, contemporary cohort	n = 132 ; % = 34
Sample size	
% Female, historic cohort	n = 81 ; % = 42
Sample size	
Age, contemporary cohort median, range	63 (29 to 92)
Custom value	
Age, historic cohort median, range	64 (29 to 86)
Custom value	
Partial nephrectomy, contemporary cohort	n = 100 ; % = 26
Sample size	
Radical nephrectomy, contemporary cohort	n = 284 ; % = 74
Sample size	
Missing nephrectomy status, contemporary cohort	n = 0; % = 0
Sample size	
Partial nephrectomy, historic cohort	n = 12; % = 6
Sample size	

Characteristic	Study (N = 575)
Radical nephrectomy, historic cohort	n = 178 ; % = 93
Sample size	
Missing nephrectomy status, historic cohort	n = 1; % = 1
Sample size	
T1a, contemporary cohort	n = 126 ; % = 33
Sample size	
T1b, contemporary cohort	n = 102 ; % = 27
Sample size	
T2, contemporary cohort	n = 42 ; % = 11
Sample size	
T3, contemporary cohort	n = 114 ; % = 29
Sample size	
T1a, historic cohort	n = 45 ; % = 24
Sample size	40 - 0/ 05
T1b, historic cohort	n = 48 ; % = 25
Sample size	
T2, historic cohort	n = 16 ; % = 8
Sample size	
T3, historic cohort	n = 82 ; % = 43
Sample size	

Outcomes

1 2

Leibovich, contemporary cohort

Outcome	Contemporary cohort, intermediate risk vs Contemporary cohort, low risk, N2 = 163, N1 = 150	Contemporary cohort, high risk vs Contemporary cohort, low risk, N2 = 71, N1 = 150
Disease- free survival	5.11 (1.77 to 14.8)	23.4 (8.3 to 66)
Hazard ratio/95% CI		

1 Leibovich, historic cohort

Outcome	Historic cohort, intermediate risk vs Historic cohort, low risk, N2 = 86, N1 = 60	Historic cohort, high risk vs Historic cohort, low risk, N2 = 45, N1 = 60
Disease-free survival	4.22 (1.62 to 11)	16.1 (6.16 to 42.2)
Hazard ratio/95% CI		

2 3 4

5

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

moon, while the second of the		
Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis and unclear risk of bias for outcome or its determination as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

7 8

Viers, 2014

Bibliographic Reference

Viers, Boyd R.; Thompson, Robert Houston; Boorjian, Stephen A.; Lohse, Christine M.; Leibovich, Bradley C.; Tollefson, Matthew K.; Preoperative neutrophil-lymphocyte ratio predicts death among patients with localized clear cell renal carcinoma undergoing nephrectomy; Urologic oncology; 2014; vol. 32 (no. 8); 1277-1284

9

10 Study Characteristics

Study Char	20101101100
Study design	Retrospective cohort study
Study location	The US
Study dates	Between 1995 and 2008
Prognostic model(s)	SSIGN
Inclusion criteria	Patients treated with radical nephrectomy for sporadic, unilateral, non-cystic, M0 ccRCC
Exclusion criteria	Not reported
Selection of cohort	Database or clinical registry
Number of participants	

Length of follow-up	Median 9.3 years (IQR: 6.3 to 12.8)
Follow-up schedule	At Mayo clinic, follow-up follow-up was generally done quarterly for the first 2 years, semi-annually for the next 2 years, and annually there after for patients without evidence of recurrent disease. For patients followed up elsewhere, the Nephrectomy Registry monitored outcomes annually.
Outcome(s) of interest	Model discrimination (C-stats)
	Cancer-specific survival
Source of funding	Not reported
Additional comments	None

Population characteristics

Study-level characteristics

Characteristic	Study (N = 827)
% Female	n = 292 ; % = 35
Sample size	
Age	65 (56 to 73)
Median (IQR)	
Nephrectomy status - Open radical	n = 716; % = 87
Sample size	
Nephrectomy status - Laparoscopic radical	n = 111; % = 13
Sample size	
RCC subtypes	n = 827 ; % = 100
Sample size	
TNM classification - 2009 Primary tumour classification - pT1a Sample size	n = 136; % = 16
·	000 - 0/ 05
TNM classification - 2009 Primary tumour classification - pT1b	n = 206 ; % = 25
Sample size	
TNM classification - 2009 Primary tumour classification - pT2a	n = 105; % = 13
Sample size	

Characteristic	Study (N = 827)
TNM classification - 2009 Primary tumour classification - pT2b	n = 47 ; % = 6
Sample size	
TNM classification - 2009 Primary tumour classification - pT3a	n = 223 ; % = 27
Sample size	
TNM classification - 2009 Primary tumour classification - pT3b Sample size	n = 78 ; % = 9
·	n - 45 · 0/ - 0
TNM classification - 2009 Primary tumour classification - pT3c	n = 15; % = 2
Sample size	
TNM classification - 2009 Primary tumour classification - pT4	n = 15 ; % = 2
Sample size	
TNM classification - pNx	n = 520 ; % = 63
Sample size	
TNM classification - pN0	n = 252; % = 30
Sample size	
TNM classification - pN1	n = 55 ; % = 7
Sample size	

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

applied to all dates all the property of the p		
Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (Unclear risk of bias for analysis as assessed by Usher-Smith 2022. However, no measure of calibration was reported for the model of interest, and therefore a high risk of bias was assigned for this review)
Overall Risk of bias and Applicability	Concerns for applicability	Low

Wang, 2016

Bibliographic Reference

Wang, Zewei; Xie, Huyang; Zhou, Lin; Liu, Zheng; Fu, Hangcheng; Zhu, Yu; Xu, Le; Xu, Jiejie; CCL2/CCR2 axis is associated with postoperative survival and recurrence of patients with non-metastatic clear-cell renal cell carcinoma; Oncotarget; 2016; vol. 7 (no. 32); 51525-51534

2

1

3 Study Characteristics

Study design Retrospective cohort study Study location China Study dates Between 2001 and 2004 Prognostic model(s) Leibovich 2003 UISS Inclusion criteria Patients with non-metastatic ccRCC who underwent surgical treatment Exclusion criteria Not reported Selection of cohort Single centre Number of participants N=268 Length of follow-up Median follow-up 89 months (range: 12 to 120 months) Follow-up schedule After surgery, patients accepted physical examination, laboratory diagnosis, chest imaging, abdominal CT scans or ultrasound twice a year for the first two years and annually thereafter. Outcome(s) of interest Model discrimination (C-stats) Source of funding National Key Projects for Infectious Diseases of China, National Natural Science Foundation of China, Program for New Century Excellent Talents in University Additional comments None	Study Chara	acteristics
Study dates	-	Retrospective cohort study
Prognostic model(s) UISS Inclusion criteria Patients with non-metastatic ccRCC who underwent surgical treatment Exclusion criteria Selection of cohort Number of participants Length of follow-up Follow-up schedule diagnosis, chest imaging, abdominal CT scans or ultrasound twice a year for the first two years and annually thereafter. Outcome(s) of interest Model discrimination (C-stats) Recurrence-free/disease-free survival Overall survival Source of funding None		China
Inclusion criteria Patients with non-metastatic ccRCC who underwent surgical treatment Exclusion criteria Selection of Single centre Number of participants Length of follow-up Follow-up Senedule After surgery, patients accepted physical examination, laboratory diagnosis, chest imaging, abdominal CT scans or ultrasound twice a year for the first two years and annually thereafter. Outcome(s) of interest Recurrence-free/disease-free survival Overall survival Source of funding National Key Projects for Infectious Diseases of China, National Natural Science Foundation of China, Program for New Century Excellent Talents in University Additional None	Study dates	Between 2001 and 2004
criteria treatment Exclusion criteria Selection of cohort Number of participants Length of follow-up Follow-up schedule Coutcome(s) of interest Source of funding Source of funding Additional Not reported treatment Not reported National treatment National treatment Not reported Single centre National treatment National treatment Not reported Single centre National treatment National treatment Not reported Single centre National treatment Not reported Single treatment treatment Not reported Not rep	_	
Selection of cohort Number of participants Length of follow-up Follow-up schedule Outcome(s) of interest Source of funding National Key Projects for Infectious Diseases of China, National funding Additional N=268 Median follow-up 89 months (range: 12 to 120 months) Median follow-up 89 months (range: 12 to 120 months) After surgery, patients accepted physical examination, laboratory diagnosis, chest imaging, abdominal CT scans or ultrasound twice a year for the first two years and annually thereafter. Outcome(s) of interest Noverall survival National Key Projects for Infectious Diseases of China, National Natural Science Foundation of China, Program for New Century Excellent Talents in University Additional		
Cohort Number of participants Length of follow-up Follow-up Schedule After surgery, patients accepted physical examination, laboratory diagnosis, chest imaging, abdominal CT scans or ultrasound twice a year for the first two years and annually thereafter. Outcome(s) of interest Recurrence-free/disease-free survival Overall survival Source of funding National Key Projects for Infectious Diseases of China, National Natural Science Foundation of China, Program for New Century Excellent Talents in University Additional		Not reported
Length of follow-up Follow-up After surgery, patients accepted physical examination, laboratory diagnosis, chest imaging, abdominal CT scans or ultrasound twice a year for the first two years and annually thereafter. Outcome(s) of interest Model discrimination (C-stats) Recurrence-free/disease-free survival Overall survival Source of funding National Key Projects for Infectious Diseases of China, National Natural Science Foundation of China, Program for New Century Excellent Talents in University Additional		Single centre
Follow-up schedule After surgery, patients accepted physical examination, laboratory diagnosis, chest imaging, abdominal CT scans or ultrasound twice a year for the first two years and annually thereafter. Outcome(s) of interest Recurrence-free/disease-free survival Overall survival Source of funding National Key Projects for Infectious Diseases of China, National Natural Science Foundation of China, Program for New Century Excellent Talents in University Additional None		
diagnosis, chest imaging, abdominal CT scans or ultrasound twice a year for the first two years and annually thereafter. Outcome(s) Model discrimination (C-stats) Fecurrence-free/disease-free survival Overall survival National Key Projects for Infectious Diseases of China, National Natural Science Foundation of China, Program for New Century Excellent Talents in University Additional None	_	Median follow-up 89 months (range: 12 to 120 months)
of interest Recurrence-free/disease-free survival Overall survival Source of funding National Key Projects for Infectious Diseases of China, National Natural Science Foundation of China, Program for New Century Excellent Talents in University Additional None		diagnosis, chest imaging, abdominal CT scans or ultrasound twice a
funding Natural Science Foundation of China, Program for New Century Excellent Talents in University Additional None		Recurrence-free/disease-free survival
		Natural Science Foundation of China, Program for New Century
		None

4

1 **Population characteristics** 2

Study-level characteristics

Characteristic	Study (N = 268)
% Female	n = 80 ; % = 70.1
Sample size	
Age	48 to 67
Range	
Age	56 (NR to NR)
Median (IQR)	
RCC subtypes	n = 268 ; % = 100
Sample size	
TNM classification - T1a	n = 96; % = 35.8
Sample size	
TNM classification - T1b	n = 74; % = 27.6
Sample size	
TNM classification - T2	n = 34; % = 12.7
Sample size	
TNM classification - T3 + T4	n = 64; % = 23.9
Sample size	

3 4 5

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) - applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (Unclear risk of bias for analysis as assessed by Usher-Smith 2022. Because calibration measures were not reported for the model of interest the risk of bias was judged as high in this review)
Overall Risk of bias and Applicability	Concerns for applicability	Low

8 9

10

Wang, 2021a

Wang, Chao; Hong, TianYu; Wang, Yuning; Peng, Guang; Yu, Bibliographic Yongwei; Zhang, Jing; Zhuo, Dong; Zheng, Jingcun; Ma, Xiaojing; Reference

Cui, Xingang; Combining UBR5 and CD163+ tumor-associated macrophages better predicts prognosis of clear cell renal cell carcinoma patients.; Cancer immunology, immunotherapy: CII; 2021; vol. 70 (no. 10); 2925-2935

1

2 Study Characteristics

Study Chara	Cicristics		
Study design	Retrospective cohort study		
Study location	China		
Study dates	2010 to 2014		
Prognostic model(s)	SSIGN TNM not specified		
Inclusion criteria	 People who underwent nephron sparing surgery or radical nephrectomy Clear cell renal cell carcinoma 		
Exclusion criteria	Not reported		
Selection of cohort			
	(Changhai Hospital)		
Number of participants	N=310		
Length of follow-up	Outcomes estimated at 5 years - no further information reported		
Follow-up schedule	Not reported		
Covariates adjusted for in the multivariable regression modelling	Not reported		
Outcome(s) of interest	Model discrimination (C-stats)		
Source of funding	Various national science foundations and funds.		
Additional comments	Prognostic accuracy of the models was indicated by Harrell's concordance index. Study is primarily concerned with additional prognostic markers and compares these to TNM and SSIGN. TNM version is unspecified -		
	due to date of publication it is assumed TNM 2016 is used.		

Population characteristics

3 Study-level characteristics

Characteristic	Study (N = 310)
% Female	n = 87; % = 28.1
No of events	
Age under 60	n = 185 ; % = 59.7
No of events	
Age 60 and over	n = 125 ; % = 40.3
No of events	
TNM stage 1-2	n = 270 ; % = 92.3
No of events	
TNM stage 3	n = 40 ; % = 12.9
No of events	

4

6

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis: no information about missing information, including whether participants with missing information were included in the study / analysis or not. No calibration results.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

9 10

Wang, 2021b

Bibliographic Reference

Wang, Chao; Dong, Keqin; Wang, Yuning; Peng, Guang; Song, Xu; Yu, Yongwei; Shen, Pei; Cui, Xingang; Integrating HECW1 expression into the clinical indicators exhibits high accuracy in assessing the prognosis of patients with clear cell renal cell carcinoma.; BMC cancer; 2021; vol. 21 (no. 1); 890

11 12

Study Characteristics

Study design	Retrospective cohort study
Study location	China`

Study dates	2012-2014
Prognostic model(s)	SSIGN
	TNM not specified
Inclusion criteria	 Patients with pathologically diagnosed clear cell renal cell carcinoma (ccRCC).
Exclusion criteria	Not reported
Selection of cohort	Single centre
Number of participants	N=300
Length of follow-up	Not specified
Follow-up schedule	Not specified
Outcome(s) of interest	Model discrimination (C-stats)
	Progression-free survival
	Overall survival
Source of funding	Funding from various research projects in China. Not industry funded.
Additional comments	Survival curves were plotted using Kaplan-Meier analysis and compared via log-rank test. Prognostic accuracy of prognostic indicators was indicated by Harrell's concordance index using 'rms' package(c-index).
	Study reports results for participants in 3:2 randomisation ratio and 1:1 randomisation ratio. Only results for 1:1 have been extracted to avoid double counting.

```
Study arms
Training cohort (N = 150)

Validation cohort (N = 150)
```

SSIGN 1-4 (N = 281)

1 SSIGN >=5 (N = 19)

2

3 Population characteristics

4 Study-level characteristics

Characteristic	Study (N = 300)
Nephrectomy status - Partial nephrectomy	n = 174
Sample size	
Nephrectomy status - Radical nephrectomy	n = 126
Sample size	

5

Arm-level characteristics

Characteristic	_	Validation cohort (N = 150)
% Female	n = 40 ; % = 26.7	n = 45 ; % = 30
Sample size		
Age 60 or over	n = 69 ; % = 46	n = 49 ; % = 32.7
Sample size		
TNM stage 1-2	n = 108 ; % = 72	n = 120 ; % = 80
Sample size		
TNM stage 3-4	n = 14; % = 9.3	n = 20 ; % = 13.3
Sample size		

7

8 Outcomes

9 Training cohort

Outcome	SSIGN >=5 vs SSIGN 1-4, N2 = 11, N1 = 139
Overall survival	9.24 (3.88 to 21.98)
Hazard ratio/95% CI	
Progression-free survival	17.91 (8.06 to 39.8)
Hazard ratio/95% CI	

10 Validation cohort

Outcome	SSIGN >=5 vs SSIGN 1-4, N2 = 8, N1 = 142
Overall survival	7.22 (2.73 to 19.14)
Hazard ratio/95% CI	

Outcome	SSIGN >=5 vs SSIGN 1-4, N2 = 8, N1 = 142
Progression-free survival	15.16 (5.37 to 42.77)
Hazard ratio/95% CI	

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for outcome and its determination and analysis)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Wen, 2023

Bibliographic Reference

Wen, Hongzhuang; Zhang, Yong; Yang, Zhan; Zhai, Zhao; Han, Zhenwei; Wang, Hu; Wang, Mingshuai; Shi, Hongzhe; Chen, Xi; Wahafu, Wasilijiang; Guan, Kaopeng; Wang, Xiaolu; The LMR-SSIGN-MAPS model predicts disease-free survival in patients with localized clear cell renal cell carcinoma.; Wideochirurgia i inne techniki maloinwazyjne = Videosurgery and other miniinvasive techniques; 2023; vol. 18 (no. 2); 313-327

8

Study Characteristics

Study Chara	de le listics
Study design	Retrospective cohort study
Study location	China
Study dates	2010 to 2015
Prognostic model(s)	SSIGN
Inclusion criteria	 Definitive pathological diagnosis and complete resection of tumour with negative margins complete preoperative medical information or follow-up data available preoperative MAPS measurements with computerized tomography (CT) or magnetic resonance imaging (MRI) scan.
Exclusion criteria	 Any solid tumours before surgery history of using statins for hyperlipidaemia thyroid disease, liver or kidney dysfunction bilateral or multiple ccRCC previous kidney surgery or kidney injury signs of extrarenal metastases and preoperative adjuvant therapy.

Selection of cohort	Single centre
Number of participants	
	Training cohort: n=414
	Validation cohort: n=198
Length of follow-up	Mean, (SD): 73.71 (28.49) months
Follow-up schedule	Physical examination, routine haematological index, and imaging such as CT or MRI were performed every 3–6 months 2 years after surgery and annually thereafter.
Outcome(s) of interest	Model discrimination (C-stats) Recurrence-free/disease-free survival
Source of funding	Not reported
Additional comments	The LASSO Cox regression was conducted to determine the DFS-related variables to develop predictive models for feature selection of high-dimensional variables and multicollinearity among variables.

1 2

Population characteristics

Study-level characteristics

Characteristic	Study (N = 612)
% Female	n = 180 ; % = 29.4
Sample size	
Age - Less than 60	n = 439 ; % = 71.7
Sample size	
Nephrectomy status - Partial	n = 220 ; % = 35.9
Sample size	
Nephrectomy status - Radical	n = 392 ; % = 64.1
Sample size	
TNM classification - T1	n = 486 ; % = 79.4
Sample size	
TNM classification - T2	n = 17; % = 2.8
Sample size	
TNM classification - T3	n = 109 ; % = 17.8

Characteristic	Study (N = 612)
Sample size	

1 2 3

4

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Low
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Xia, 2016

Bibliographic Reference

Xia, Yu; Liu, Li; Bai, Qi; Wang, Jiajun; Xi, Wei; Qu, Yang; Xiong, Ying; Long, Qilai; Xu, Jiejie; Guo, Jianming; Dectin-1 predicts adverse postoperative prognosis of patients with clear cell renal cell carcinoma.; Scientific reports; 2016; vol. 6; 32657

8

9 Study Characteristics

Study design	Retrospective cohort study
Study location	China
Study dates	Jan 2005 to 2007
Prognostic model(s)	Leibovich 2003 Described as SSIGN localized (Leibovich) - reported in Usher-Smith as Leibovich 2003 UISS
Inclusion criteria	 Pathologically proven ccRCC Received partial or radical nephrectomy Available Formalin Fixed Paraffin Embedded (FFPE) specimen of tumour mass (≥ 1cm3).
Exclusion criteria	Those who had other former malignant tumour, perioperative mortalities, histories of adjuvant or neoadjuvant targeted therapies and patients with mixed type renal cancer, bilateral renal cancer and FFPE samples necrosis area >80%.
Selection of cohort	Single centre
Number of participants	N=290
Length of follow-up	Median follow-up time 99.03 months (range 2.63-120.47)

Follow-up schedule	The follow-up interval was three months during the first 5 years and annually thereafter.
Outcome(s) of interest	Model discrimination (C-stats) Recurrence-free/disease-free survival
Source of funding	National Key Projects for Infectious Diseases of China, National Natural Science Foundation of China, Program for New Century Excellent Talents in University and Science and Technology Commission of Shanghai Municipality
Additional comments	The paper also reported c-indices for OS, however, these were not extracted as they included patients with preoperative metastases.

Population characteristics Study-level characteristics

Characteristic	Study (N = 290)
% Female Baseline characteristics include patients with distant metastasis	n = 91; % = 34.4
Sample size	
Age - less than or equal to 55 years	n = 143; % = 49.3
Sample size	
Age - greater than 55 years	n = 147; % = 50.7
Sample size	
RCC subtypes	n = 290 ; % = 100
Sample size	
RCC subtypes - Clear cell	n = 290 ; % = 100
Sample size	
TNM classification - TNM stage I	n = 177 ; % = 61
Sample size	
TNM classification - TNM stage II	n = 23 ; % = 7.9
Sample size	
TNM classification - TNM stage I-II	n = 70; % = 24.1
Sample size	
TNM classification - TNM stage IV	n = 20; % = 6.9
Sample size	

1 Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022

2 used) - applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (Low risk of bias assessed by Usher-Smith 2022. However, as a measure of calibration was not provided for the model of interest, this was assessed as high risk in this review)
Overall Risk of bias and Applicability	Concerns for applicability	Low

4 5

Xiao, 2021

Bibliographic Reference

Xiao, Ruotao; Xu, Chuxiao; He, Wei; Liu, Lei; Zhang, Hongxian; Liu, Cheng; Ma, Lulin; Preoperative anaemia and thrombocytosis predict adverse prognosis in non-metastatic renal cell carcinoma with tumour thrombus.; BMC urology; 2021; vol. 21 (no. 1); 31

6 7

Study Characteristics

otaay onaraotoriotioo			
Study design	Retrospective cohort study		
Study location	China		
Study dates	2014 to 2019		
Prognostic model(s)	SSIGN		
Inclusion criteria	 Diagnosed with renal neoplasms and tumour thrombus receiving nephrectomy and thrombectomy. 		
Exclusion criteria	 Non-renal cell carcinoma preoperative suspicious distant metastasis bilateral or recurrent tumour combined with haematological disease or gastrointestinal disease past history of splenectomy. 		
Selection of cohort	Single centre		
Number of participants			
Length of follow-up	139 (95.2 %) patients were followed up for a median of 19 months (IQR 8–32).		
	28 (19.2 %) patients died with the mean overall survival (OS) of 46.82 months (median OS was not reached).		

Follow-up schedule	Patients were recommended to a follow-up every 3 months for the first years, every 6 months for the next 2 years, and then yearly. Laboratory examination, X-ray, ultrasound scan or abdominal CT were performed at follow-up visits.
Outcome(s) of interest	Progression-free survival Overall survival
Source of funding	No funding received.
Additional comments	The OS and progression-free survival (PFS) were estimated using the Kaplan–Meier curves and survival differences were compared using the log-rank test.

1 2 3

Study arms

SSIGN low-risk (score 2-4) (N = 49)

4 5 6

SSIGN intermediate-risk (score 5-7) (N = 76)

7

SSIGN high-risk (score 8-11) (N = 21)

8

10

Population characteristics

Study-level characteristics

Characteristic	Study (N = 146)
% Female	n = 33; % = 22.6
Sample size	
Age	60 (54 to 66.25)
Median (IQR)	
Clear cell	n = 124 ; % = 84.9
Sample size	
Non-clear cell	n = 22 ; % = 15.1
Sample size	

11 12

Outcomes

13

Outcome	SSIGN intermediate-risk (score 5-7) vs SSIGN low-risk (score 2-4), N2 = 76, N1 = 49	
Overall survival	1.45 (0.45 to 4.19)	5.85 (1.84 to 18.6)
Hazard ratio/95% CI		

Outcome	SSIGN intermediate-risk (score 5-7) vs SSIGN low-risk (score 2-4), N2 = 76, N1 = 49	•
Progression- free survival	1.83 (0.87 to 3.86)	3.03 (1.23 to 7.44)
Hazard ratio/95% CI		

4

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

omor mos oposmos.		
Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (No information on number with the outcome, or information on any missing data. There was also no measure of calibration reported.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Xiong, 2017

Bibliographic Reference

Xiong, Ying; Liu, Li; Xia, Yu; Wang, Jiajun; Xi, Wei; Bai, Qi; Qu, Yang; Xu, Jiejie; Guo, Jianming; Low CCL17 expression associates with unfavorable postoperative prognosis of patients with clear cell renal cell carcinoma.; BMC cancer; 2017; vol. 17 (no. 1); 117

8

9 Study Characteristics

Retrospective cohort study
China
Jan 2005 to June 2007
SSIGN
Patients with pathologically proved ccRCC, having received nephrectomy and having available Formalin Fixed Paraffin Embedded (FFPE) specimen of tumor mass (≥1 cm3).
Patients who had other former malignant tumours, perioperative mortalities, histories of adjuvant or neo-adjuvant therapies including targeted therapies, mixed type renal cancer or bilateral renal cancer were excluded. Samples with over 80% necrotic or haemorrhagic area were also excluded.

Selection of cohort	Single centre
Number of participants	N=286
Length of follow-up	Median follow-up time was 90.87 months (range 2.63 to 120.47)
Follow-up schedule	Recurrence was confirmed by imaging, biopsy or physical examination. Patients were followed up every 3 months during the first 5 years after operation and once a year thereafter.
Outcome(s) of interest	Model discrimination (C-stats) Recurrence-free/disease-free survival
Source of funding	National Natural Science Foundation of China, Program for New Century Excellent Talents in University, Shanghai Municipal Natural Science Foundation and Zhongshan Hospital Science Foundation
Additional comments	The paper reported c-indices for RFS for UISS, however, these were not extracted due to overlap with Xia 2016. The paper also reported c-indices for OS, however, these were not extracted as the OS analyses included patients with pre-operational metastasis.

Population characteristics Study-level characteristics

1

2 3

Characteristic	Study (N = 286)
% Female	n = 87; % = 30.4
Sample size	
Age	55.37 (13.24)
Mean (SD)	
RCC subtypes - Clear cell	n = 286 ; % = 100
Sample size	
TNM classification - pT1	n = 181; % = 63.3
Sample size	
TNM classification - pT2	n = 26 ; % = 9.1
Sample size	
TNM classification - pT3	n = 75 ; % = 26.2
Sample size	
TNM classification - pT4	n = 4; % = 1.4

Characteristic	Study (N = 286)
TNM classification - pNx	n = 240 ; % = 83.9
Sample size	
TNM classification - pN0	n = 44 ; % = 15.4
Sample size	
TNM classification - pN1	n = 2; % = 0.7
Sample size	

4

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

, , ,		
Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (Assessed as low risk by Usher-Smith 2022. However, because a calibration measure was not reported for the model of interest, the review was judged as high risk for this review.)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6 7

Xv, 2024

Bibliographic Reference

Xv, Yingjie; Wei, Zongjie; Jiang, Qing; Zhang, Xuan; Chen, Yong; Xiao, Bangxin; Yin, Siwen; Xia, Zongyu; Qiu, Ming; Li, Yang; Tan, Hao; Xiao, Mingzhao; Three-Dimensional (3D) deep learning model complements existing models for preoperative disease-free survival prediction (DFS) in localized clear cell renal cell carcinoma (ccRCC): A multicenter retrospective cohort study.; International journal of surgery (London, England); 2024

9 10

Study Characteristics

Study design	Retrospective cohort study
Study location	China
Study dates	Patients were enrolled during two time periods: (1) At Center 1, Center 2, and Center 3, recruitment occurred between December 2013 and March 2020; (2) At Center 4, Center 5, and Center 6, recruitment took place between June 2013 and December 2016.
Prognostic model(s)	Leibovich 2003 UISS

Patients who underwent partial/radical nephrectomies and histologically diagnosed as ccRCC
Patients with incomplete clinic-pathological data; lack of preoperative contrast-enhanced CT images or the image quality was unsuitable for analysis; who received pre-surgery neoadjuvant or adjuvant therapies; with multiple renal tumours or/and had synchronous metastasis
Multicentre
N = 707 Training set $N = 364$
Internal testing set N = 156 External testing set N = 187
Follow-up all participants (months) = 57.8 (40.6-83.3)
Training and = 54.0 (20.0, 00.0)
Training set = 54.0 (39.6- 66.9)
Internal testing set = 58.2 (29.9-85.9)
External testing = 79.9 (54.4-96.9)
Pathological grade, age, sex, pathological necrosis, tumour laterality, surgical procedure, tumour size, ECOG-PS, pT stage, pN status, TNM stage, UISS risk and SSIGN risk
Model discrimination (C-stats)
Recurrence-free/disease-free survival
Not reported
The DFS predictive performances of models were assessed by the Harrell's consistency index (C-index) and time-dependent receiver operating characteristic (ROC) curve analysis. The DFS differences between the stratified groups and subgroups split by pathological grade, age, sex, pathological necrosis, tumour laterality, surgical procedure, tumour size, ECOG-PS, pT stage, pN status, TNM stage, UISS risk and SSIGN risk were further explored by the Univariate Cox analysis and Kaplan-Meier survival analysis with log-rank test. The calibration curve analysis was performed to determine the consistency between nomogram predicted and observed DFS probability.

3

4

Study arms

Training set (N = 364)

5 6 Internal testing set (N = 156)

6 7

External testing set (N = 187)

8

Population characteristics

10 Study-level characteristics

Characteristic	Study (N = 707)
% Female	n = 255 ; % = 36.1
Sample size	
Age - <60	n = 355 ; % = 50.2
Sample size	
Nephrectomy status - Partial nephrectomy	n = 353 ; % = 49.9
Sample size	
Nephrectomy status - Radical nephrectomy	n = 354 ; % = 50.1
Sample size	
TNM classification - TNM 1	n = 539 ; % = 76.2
Sample size	
TNM classification - TNM 2	n = 68; % = 9.6
Sample size	
TNM classification - TNM 3	n = 100 ; % = 14.2
Sample size	

11 12 13

14

Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Low
Overall Risk of bias and Applicability	Concerns for applicability	Low

1516

Yang, 2022

Bibliographic Reference

Yang, Guangjie; Nie, Pei; Yan, Lei; Zhang, Mingxin; Wang, Yangyang; Zhao, Lianzi; Li, Mingyao; Xie, Fei; Xie, Haizhu; Li, Xianjun; Xiang, Fawei; Wang, Nan; Cheng, Nan; Zhao, Xia; Wang, Ning; Wang, Yicong; Chen, Chengcheng; Yun, Canhua; Cui,

Jingjing; Duan, Shaofeng; Zhang, Ran; Hao, Dapeng; Wang, Ximing; Wang, Zhenguang; Niu, Haitao; The radiomics-based tumor heterogeneity adds incremental value to the existing prognostic models for predicting outcome in localized clear cell renal cell carcinoma: a multicenter study.; European journal of nuclear medicine and molecular imaging; 2022; vol. 49 (no. 8); 2949-2959

1

2 Study Characteristics

Study design Study China
location
Study dates Not reported
Prognostic SSIGN model(s) UISS
 Patients with a pathologically confirmed clear cell renal cell carcinoma (ccRCC) after surgery patients who had a contrast-CT scan less than 15 days before surgery favourable image quality for analysis complete follow-up data.
 Synchronous metastasis other malignancies received anti-tumour therapy before surgery.
Selection of Cohort Multicentre
Number of N=866 participants
Length of Median: 50 months (range 1-118) follow-up
Follow-up schedule Patients were followed up every 6-12 months for the first 2 years and then annually. Follow-up data was collected from medical records including physical examinations and images.
Covariates adjusted for in the multivariable regression modelling
Outcome(s) Recurrence-free/disease-free survival of interest

Source of funding	Postdoctoral Science Foundation of China
Additional comments	Univariate Cox regression analysis, Cox regression analysis, calibration plots, survival analysis and C-index, were performed with R statistical software.

3 4 5

6

7 8 9

10

11

1 2

Study arms UISS low-risk (N = 353)

UISS intermediate-risk (N = 469)

UISS high-risk (N = 44)

SSIGN low-risk (N = 635)

SSIGN intermediate-risk (N = 188)

12 13 **SSIGN high-risk (N = 43)**

14 15

Population characteristics

16 Study-level characteristics

04
Study (N = 866)
n = 293
Median 56.5 (range 18-84)
Median 62 (range 28-87)
n = 695
n = 84
n = 42
n = 42
n = 1

Characteristic	Study (N = 866)
Sample size	
TNM classification - pT4	n = 2
Sample size	

1 2

Outcomes

UISS

Outcome	UISS intermediate-risk vs UISS low-risk, N2 = 469, N1 = 353	UISS high-risk vs UISS low-risk, N2 = 44, N1 = 353
Recurrence-free survival	2.77 (1.79 to 4.3)	6.33 (3.39 to 11.83)
Hazard ratio/95% CI		

4 SSIGN

Outcome	SSIGN intermediate-risk vs SSIGN low-risk, N2 = 188, N1 = 635	SSIGN high-risk vs SSIGN low-risk, N2 = 43, N1 = 635
Recurrence-free survival	4.71 (3.18 to 6.97)	13.55 (8.41 to 21.84)
Hazard ratio/95% CI		

5 6

7

8

Critical appraisal - PROBAST tool - applies to all outcomes unless

otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Low
Overall Risk of bias and Applicability	Concerns for applicability	Low

1011

Zhang, 2017

Bibliographic Reference

Zhang, Haijian; Liu, Yidong; Xie, Huyang; Fu, Qiang; Liu, Zheng; Zhu, Yu; Xu, Le; Zhang, Weijuan; Yang, Yuanfeng; Xu, Jiejie; Beta-1,4-galactosyltransferase II predicts poor prognosis of patients with non-metastatic clear-cell renal cell carcinoma.; Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine; 2017; vol. 39 (no. 2); 1010428317691417

12 13

Study Characteristics

Study	Retrospective cohort study
design	

Study location	China		
Study dates	2008-2009		
Prognostic model(s)	Leibovich not specified		
	SSIGN		
	UISS		
Inclusion criteria	 No history of previous anticancer therapy no history of other malignancies radical or partial nephrectomy histopathological confirmed ccRCC. 		
Exclusion criteria	 Mixed type of primary renal cancer as confirmed by histopathology tumours with necrosis >80%, death within the first month of surgery due to surgical complications N1 or M1 tumours/ metastatic disease. 		
Selection of cohort	Single centre		
Number of participants	N=585		
Length of follow-up	Training set: Median 68 months (range: 39–74 months)		
	Validation set: 67 months (range: 40–74 months)		
Follow-up schedule	Not reported		
	Model discrimination (C-stats)		
of interest	Recurrence-free/disease-free survival		
	Overall survival		
Source of funding	Not industry funded		
Additional comments	Student's t-test or $\chi 2$ -test, Kaplan–Meier survival curves, univariate and multivariate Cox analysis were performed.		

Population characteristics Study-level characteristics

1

2 3

Characteristic	Study (N = 585)
% Female	n = 94; % = 32.08

Characteristic	Study (N = 585)
Sample size	
Age	55.6 (12.54)
Mean (SD)	
T1	n = 211 ; % = 72.01
Sample size	
T2	n = 20; % = 6.82
Sample size	
Т3	n = 57; % = 19.45
Sample size	
T4	n = 5; % = 1.71
Sample size	

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	Moderate (Unclear risk of bias for outcome or its determination and analysis as assessed by Usher-Smith 2022)
Overall Risk of bias and Applicability	Concerns for applicability	Low

6

Zhu, 2019

Bibliographic Reference

Zhu, Yan; Zhao, Yao-Rui; Yang, Xian-Fa; Wei, Mao-Ti; Niu, Yuan-Jie; Chang, Ji-Wu; Wang, Ai-Xiang; Liang, Xuan; Postoperative prognostic model for patients with clear cell renal cell carcinoma in a Chinese population.; International journal of urology: official journal of the Japanese Urological Association; 2019; vol. 26 (no. 6); 624-629

8

Study Characteristics

Study design	Retrospective cohort study
Study location	China
Study dates	2006 to 2013
Prognostic model(s)	Leibovich 2018

Inclusion criteria	 Clear cell renal cell carcinoma radical or partial nephrectomy. 	
Exclusion criteria	 Distant metastases bilateral renal masses before or at the time or surgery hereditary renal cell carcinoma von Hippel-Lindau disease those lost to follow-up. 	
Selection of cohort	Single centre	
Number of participants	N=942	
Length of follow-up	Median 72 months (range 1 to 143 months)	
Follow-up schedule	Clinical and radiological assessments (chest and abdominal CT) every 3 months for first 2 years after surgery, then every 6 months until 4 years, then every year thereafter.	
Outcome(s) of interest	Model discrimination (C-stats)	
	Recurrence-free/disease-free survival	
Source of funding	Not reported	
Additional comments	None	

Population characteristics Study-level characteristics 2

1

Characteristic	Study (N = 942)
% Female	n = 266 ; % = 28.2
Sample size	
Less than 57 years old	n = 468 ; % = 49.7
Sample size	
57 years old or over	n = 474 ; % = 50.3
Sample size	
Radical nephrectomy	n = 816; % = 86.6
Sample size	
Partial nephrectomy	n = 126 ; % = 13.4
Sample size	

Characteristic	Study (N = 942)
TNM pt3 + pt4	n = 80; % = 8.5
Sample size	

1 2 3

4

Critical appraisal - PROBAST tool (assessment by Usher-Smith 2022 used) – applies to all outcomes unless otherwise specified

and the state of t			
Section	Question	Answer	
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis as assessed by Usher-Smith 2022)	
Overall Risk of bias and Applicability	Concerns for applicability	Low	

6

7

Zhu, 2021

Bibliographic Reference

Zhu, D.; Shi, X.; Gao, S.; Yue, C.; Zhang, L.; Bai, Y.; Wang, Q.; Okada, A.; Yasui, T.; Wang, C.; Cui, X.; Zuo, L.; RNF43 is a novel tumor-suppressor and prognostic indicator in clear cell renal cell carcinoma; Oncology Research; 2021; vol. 29 (no. 3); 159-174

8

9 Study Characteristics

Study design	Retrospective cohort study
Study location	China
Study dates	Between 2010 and 2014
Prognostic model(s)	SSIGN
Inclusion criteria	Patients who were pathologically diagnosed with ccRCC
Exclusion criteria	Not reported
Selection of cohort	Multicentre
Number of participants	Total N = 640
	Cohort 1 N = 193
	Cohort 2 N = 127
	Training cohort N = 160
	Validation cohort N = 160

Length of follow-up	Not reported
Covariates adjusted for in the multivariable regression modelling	Survival curves were depicted using the Kaplan-Meier method and analysed by the log-rank test. Variables with p < 0.1 in univariate analysis were included in multivariate Cox proportional hazards analysis. The prognostic accuracy was assessed by Harrell's concordance index (c-index).
Outcome(s) of interest	Progression-free survival Overall survival
Source of funding	This work was supported by the Top-Level Clinical Discipline Project of Shanghai Pudong (PWYgf2018-03), National Natural Science Foundation of China (Nos. 81773154, 81902565, 81772747, 81974391), Shanghai Natural Science Foundation (No. 20ZR1449600), Pudong New Area Science and Technology Development Fund Special Fund for People's Livelihood Research (Medical and Health) (PKJ2019-Y19), Young Scientists Foundation of Changzhou No. 2 People's Hospital (2019K008), Changzhou Sci & Tech Program (CJ20190100), and the Program of Shanghai Academic/Technology Research Leader (No. 19XD1405100).
Additional comments	Univariable analysis of RNF43, YAP expression classifier and clinical characteristics such as age (<60 y vs. \geq 60 y), Gender (Male vs. Female), WHO/ISUP Grading (1-2 vs. 3-4), TNM stage (1-2 vs. 3-4), and SSIGN (1-4 vs. \geq 5)

1

Study arms 1 Cohort 1 (N = 193) 2 3 4 Cohort 2 (N = 127) 5 6 Training cohort (N = 160) 7 8 Validation cohort (N = 160) 9 10 **TNM I-II (Cohort 1) (N = 158)** 11 12 TNM III-IV (Cohort 1) (N = 35)13 14 **TNM I-II (Cohort 2) (N = 118)**

15 16

TNM III-IV (Cohort 2) (N = 9)

17 18

Population characteristics

19 Arm-level characteristics

Characteristic	Cohort 1 (N = 193)		Training cohort (N = 160)	Validation cohort (N = 160)
% Female	n = 64; % = 33.2	,	n = 46 ; % = 28.8	n = 48 ; % = 30
No of events				
TNM classification - TNM stage I-II	n = 158; % = 81.9	·	n = 144 ; % = 90	n = 132 ; % = 82.5
No of events				
TNM classification - TNM stage III-IV	•	n = 9; % = 7.1	n = 16 ; % = 10	n = 28 ; % = 17.5
No of events				

20 21

Outcomes

22 Survival

Outcome	TNM III-IV (Cohort 1) vs TNM I-II (Cohort 1), N2 = 35, N1 = 158	TNM III-IV (Cohort 2) vs TNM I-II (Cohort 2), N2 = 9, N1 = 118
Overal survival	11.95 (5.47 to 26.11)	20.74 (7.17 to 59.98)
Hazard ratio/95% CI		

Outcome	TNM III-IV (Cohort 1) vs TNM I-II (Cohort 1), N2 = 35, N1 = 158	TNM III-IV (Cohort 2) vs TNM I-II (Cohort 2), N2 = 9, N1 = 118
Progression free survival	11.79 (5.4 to 25.74)	24.44 (8.37 to 71.36)
Hazard ratio/95% Cl		

Overal survival - Polarity - Higher values are better

Progression free survival - Polarity - Higher values are better

3 4 5

1

2

Critical appraisal - PROBAST tool – applies to all outcomes unless

otherwise specified

Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (High risk of bias for analysis)
Overall Risk of bias and Applicability	Concerns for applicability	Low

8

Zhu, 2024

Bibliographic Reference

Zhu, Pingyi; Dai, Chenchen; Xiong, Ying; Qu, Jianyi; Wang, Ruiting; Yao, Linpeng; Zhang, Feng; Hou, Jun; Zeng, Mengsu; Guo, Jianming; Wang, Shuo; Chen, Feng; Zhou, Jianjun; Tumor contour irregularity on preoperative CT predicts prognosis in renal cell carcinoma: a multi-institutional study.; EClinicalMedicine; 2024; vol. 75; 102775

10

11 Study Characteristics

otaay onara	
Study design	Retrospective cohort study
Study location	China
Study dates	Training set and Internal validation set: 2009 to 2019 External test set: 2016 to 2017 and 2017 to 2023
Prognostic model(s)	SSIGN
Inclusion criteria	People with pathologically confirmed RCC who received nephrectomy: • Complete clinic-pathologic and follow-up data • Pre-treatment CT imaging
Exclusion criteria	 Poor image quality Anti-tumour therapy before surgery Other history of malignancy Stage 4

Selection of cohort	Single centre Multicentre
Number of participants	Training set n=1185 Internal validation set n=297 External test set n=736
Length of follow-up	Median follow-up 62 months (range 6 to 154)
Follow-up schedule	Follow-up ever 6 to 12 months for the first 2 years post-surgery followed by annual check-ups.
Covariates adjusted for in the multivariable regression modelling	NA
Outcome(s) of interest	Model discrimination (C-stats)
Source of funding	National Natural Science Foundation of China; Shanghai Municipal Health Commission; China National Key R&D Program; Science and Technology Commission of Shanghai Municipality
Additional comments	N/A

Study arms

3 Zhongshan cohort (N = 1482)

Participants made up the Testing and Internal validation sets

4 5 6

Zhejiang cohort (N = 433)

Participants included in the External test cohort

7 8 9

Xiamen cohort (N = 126)

Participants included in the External test cohort

10 11 12

TCIA (N = 177)

Participants included in the External test cohort

13 14 15

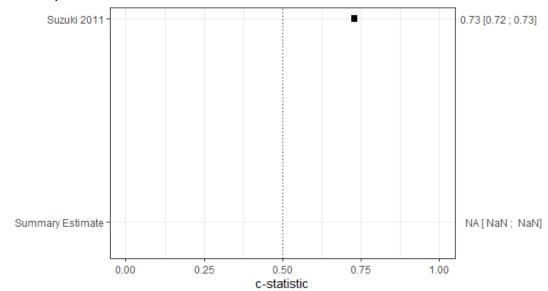
Population characteristics

16 Arm-level characteristics

Characteristic	Zhongshan cohort (N = 1482)	Zhejiang cohort (N = 433)	Xiamen cohort (N = 126)	TCIA (N = 177)
% Female Sample size	n = 512; % = 34.5	n = 145; % = 33.5	· ·	n = 59; % = 33.3
Age Median (IQR)	58 (50 to 65)	56 (48 to 64)	56 (45 to 67)	59 (50 to 70)

4

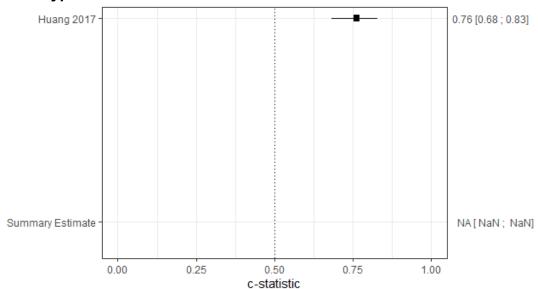
Critical appraisal - PROBAST tool – applies to all outcomes unless otherwise specified


Section	Question	Answer
Overall Risk of bias and Applicability	Risk of bias	High (No information around the number of outcomes and no measure of calibration.)

DRAFT FOR CONSULTATION

Section	Question	Answer
Overall Risk of bias and Applicability	Concerns for applicability	Low

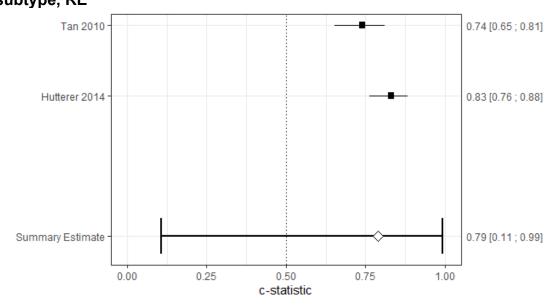
1 Appendix E – Forest plots


- 2 Clear cell subtype
- 3 **GRANT**
- 4 No evidence identified for this model.
- 5 Karakiewicz
- 6 No evidence identified for this model.
- 7 Kattan
- 8 Figure 2: Kattan: recurrence-free survival/disease-free survival c-
- 9 statistic, clear cell

1 Leibovich 2003

2 Figure 3: Leibovich 2003: progression-free survival - c-statistic, clear

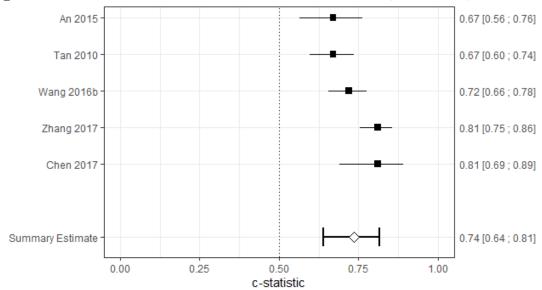
3 cell subtype



4

5

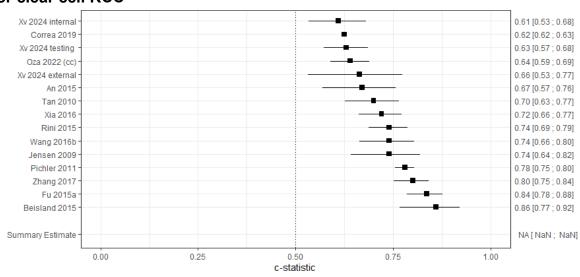
6


Figure 4: Leibovich 2003: cancer-specific survival - c-statistic, clear cell subtype, RE

7

 $8 I^2 = 67.86\%$

Figure 5: Leibovich 2003: overall survival - c-statistic, clear cell, RE



3 4 I² = 73.90%

5

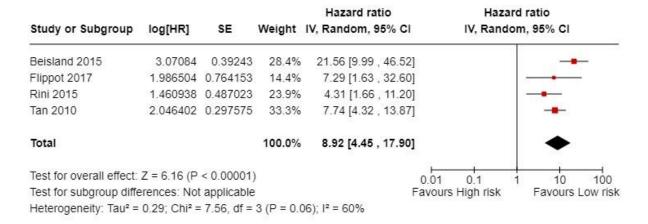
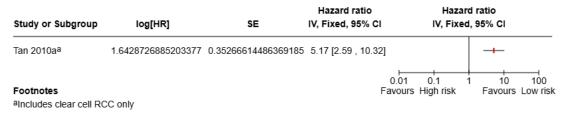

1

Figure 6: Leibovich 2003 recurrence-free survival/disease-free survival for clear cell RCC

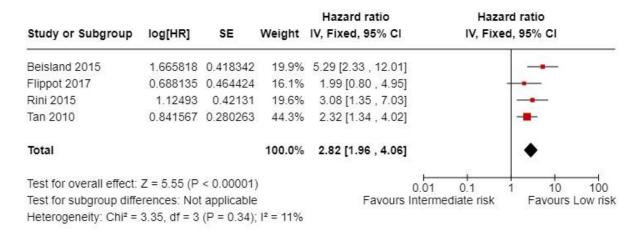
9 Evidence could not be pooled as I² was above 80%.

Figure 7:Leibovich 2003: Disease-free survival - Hazard ratio for high risk vs low risk, clear cell RCC


Figure 8: Leibovich 2003: Local recurrence - Hazard ratio for high risk vs low risk, clear cell RCC

	Leibovich 200	•			Risk ratio		ratio
Study or Subgroup	Events	Total	Events	Total	IV, Fixed, 95% C	I IV, FIXE	d, 95% CI
Jensen 2009	31	43	6	26	3.12 [1.51 , 6.46	5]	-
						0.01 0.1 Favours high risk	1 10 100 Favours low risk

Figure 9: Leibovich 2003: Cancer-specific survival - Hazard ratio for high risk vs low risk, clear cell RCC


Figure 10: Overall survival - Hazard ratio for high risk vs low risk, clear cell RCC

Kidney cancer: evidence review for risk prediction tools and factors DRAFT FOR CONSULTATION (September 2025)

1 Figure 11: Leibovich 2003: Disease-free survival - Hazard ratio for

intermediate risk vs low risk, clear cell RCC

3

5

6

Figure 12: Leibovich 2003: Local recurrence - Risk ratio for intermediate risk vs low risk, clear cell RCC

	Leibovich 2003: In	termediate risk	Leibovich 200	3: Low risk	Risk ratio	Risk	ratio
Study or Subgroup	Events	Total	Events	Total	IV, Fixed, 95% CI	IV, Fixe	d, 95% CI
Jensen 2009	24	52	6	26	5 2.00 [0.93 , 4.28]		+
						0.01 0.1	1 10 100
					Favours in	ntermediate risk	Favours low risk

78

9

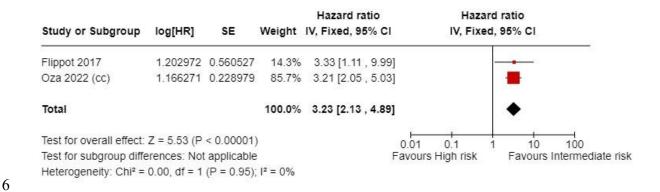
10

Figure 13: Leibovich 2003: Cancer-specific survival - Hazard ratio for intermediate risk vs low risk, clear cell RCC

Study or Subgroup	log[HR]	SE	Hazard ratio IV, Fixed, 95% CI		d ratio d, 95% Cl
Tan 2010a ^a	1.2267122912954256	0.4927441085031634	3.41 [1.30 , 8.96]]	-
Footnotes alncludes clear cell R	00		Favours	0.01 0.1 Intermediate risk	1 10 100 Favours Low risk


11

Figure 14: Overall survival - Hazard ratio for intermediate risk vs low


risk, clear cell RCC

1

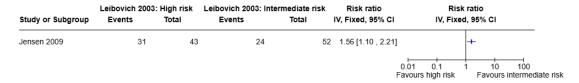
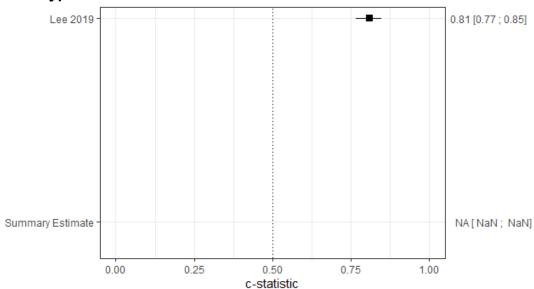

3

Figure 15: Leibovich 2003: Disease-free survival - Hazard ratio for high risk vs intermediate risk, clear cell RCC

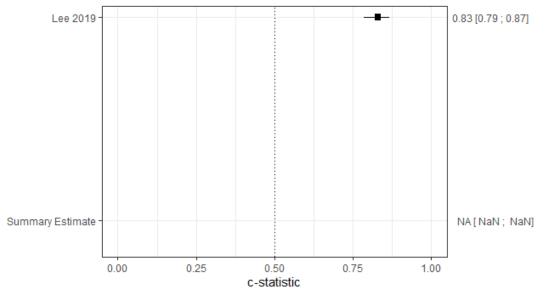
Figure 16: Leibovich 2003: Local recurrence - Risk ratio for high risk vs intermediate risk, clear cell RCC



10 11

1 Leibovich 2018

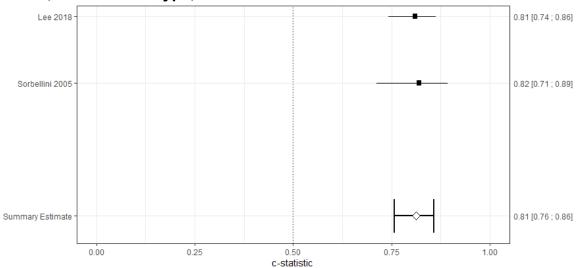
2 Figure 17: Leibovich 2018: progression-free survival - c-statistic, clear


3 cell subtype

4

5

6 Figure 18: Leibovich 2018: cancer-specific survival - c-statistic, clear cell


7

DRAFT FOR CONSULTATION

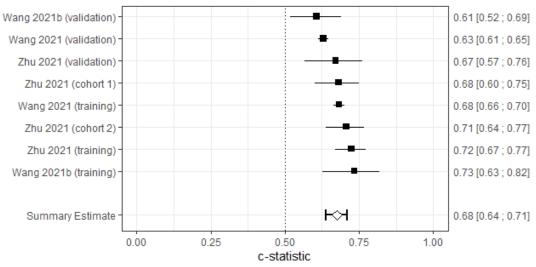
1 Sorbellini

2 Figure 19: Sorbellini: recurrence-free survival/disease-free survival - c-

statistic, clear cell subtype, FE

4

 $5 I^2 = 0.00\%$

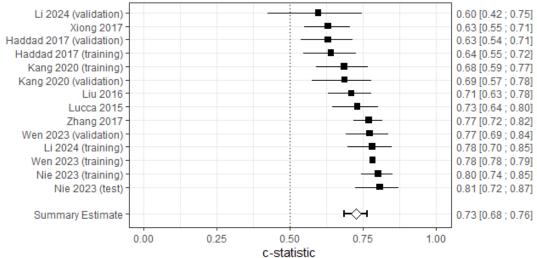

6

7

SSIGN

8 Figure 20: SSIGN: progression-free survival, clear cell subtype - c-

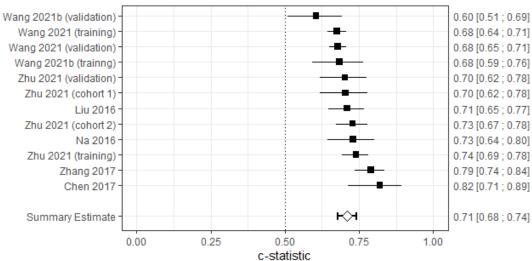
9 statistic, RE


10

11 $I^2 = 74.92\%$

12

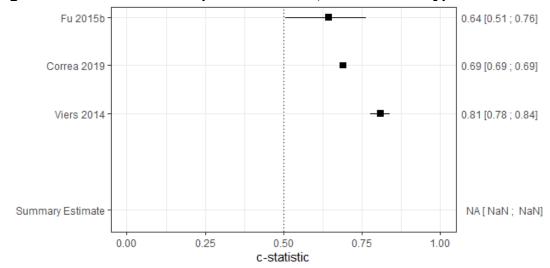
1 Figure 21: SSIGN: recurrence-free survival/disease-free survival - c-


2 statistic, clear cell subtype, RE

3 4
$$I^2 = 75.19\%$$

5

6 Figure 22: SSIGN: overall survival - c-statistic, clear cell subtype, RE


$$8^{\prime}$$
 $I^2 = 65.48\%$

2

4

7

Figure 23: SSIGN: cancer-specific survival, clear cell subtype - c-statistic

Evidence could not be pooled as I² was above 80% 3

5 Figure 24: SSIGN: Disease-free survival - Hazard ratio for high risk vs 6

low risk, clear cell RCC

Study or Subgroup	log[HR]	og[HR] SE		Hazard ratio IV, Random, 95% CI		
Haddad 2017a	1.1410330045520618	0.3136984056934506	3.13 [1.69 , 5.79	9]	+	
Yang 2022b	2.6063865473257097	0.2434538810082405	13.55 [8.41 , 21.84	1]	+	
				0.01 0.1	1 10 100	
Footnotes				Favours High risk	Favours Low risk	
aSSIGN score 0-5 vs	>5					

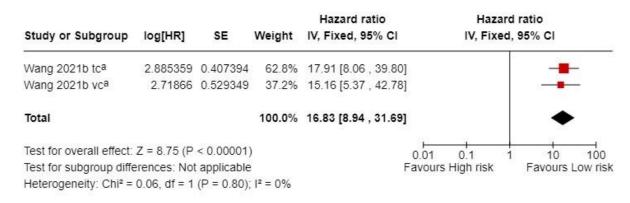
bSSIGN risk groups reported as high-risk vs low risk and intermediate risk vs low risk. No score reported

Evidence could not be pooled as I² was above 80% 8

Figure 25: SSIGN: Overall survival - Hazard ratio for high risk vs low risk, clear cell RCC [Zhu 2021 removed]

Study or Subgroup	log[HR]	SE	Weight	Hazard ratio IV, Fixed, 95% CI	Hazard IV, Fixed,	
Wang 2021b tca	2.222459	0.442431	55.8%	9.23 [3.88 , 21.97]		-
Wang 2021b vca	1.976855	0.496682	44.2%	7.22 [2.73 , 19.11]		-
Total			100.0%	8.28 [4.33 , 15.82]		•
Test for overall effect:	Z = 6.40 (P	< 0.00001)	0.0	01 01 1	10 100
Test for subgroup diffe	erences: Not	applicable		Fav	ours High risk	Favours Low risk
Heterogeneity: Chi² =	0.14, df = 1	(P = 0.71)	I2 = 0%		owaerdoegeet e r omfe flydfig	

Footnotes

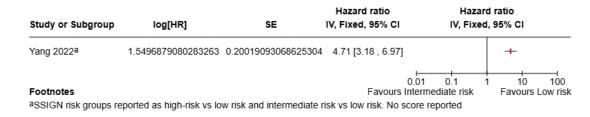

aSSIGN (≥5 vs 1-4)

4

- 5 Data from Zhu 2021 were removed as the reported hazard ratios favoured the
- 6 high-risk subgroup. Including the data from Zhu 2021 introduced a high
- 7 degree of heterogeneity, and it was judged likely that there was an error in the
- 8 reporting of the results in this study.

9

Figure 26: SSIGN: Progression-free survival - Hazard ratio for high risk vs low risk, clear cell RCC [Zhu 2021 removed]


Footnotes

a(SSIGN ≥5 vs 1-4)

12

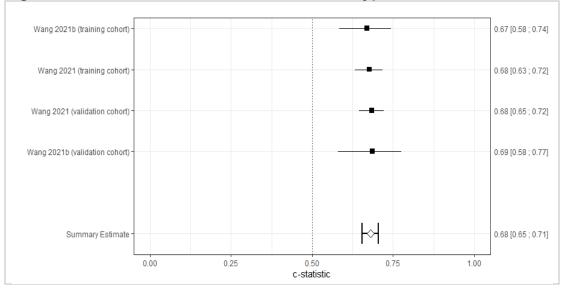
- Data from Zhu 2021 were removed as the reported hazard ratios favoured the
- 14 high-risk subgroup. Including the data from Zhu 2021 introduced a high
- degree of heterogeneity, and it was judged likely that there was an error in the
- reporting of the results in this study.

Figure 27: SSIGN: Recurrence-free survival - Hazard ratio for intermediate risk vs low risk, clear cell RCC

4 5

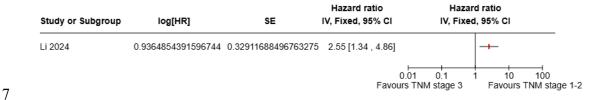
7

6 TNM 2016

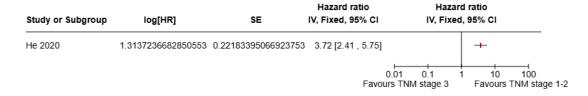

Figure 28: TNM: progression-free survival, clear cell subtype - c-statistic,

8 **FE**

 $I^2 = 0.00\%$



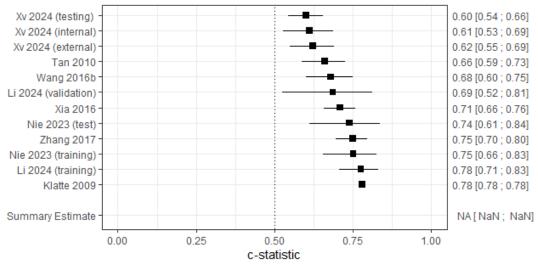
 $I^2 = 0.00\%$


4

1

Figure 30: TNM: Disease-free survival - Hazard ratio for stages 3 vs 1-2, clear cell subtype

Figure 31: TNM: Overall survival - Hazard ratio for stages 3 vs 1-2, clear cell subtype

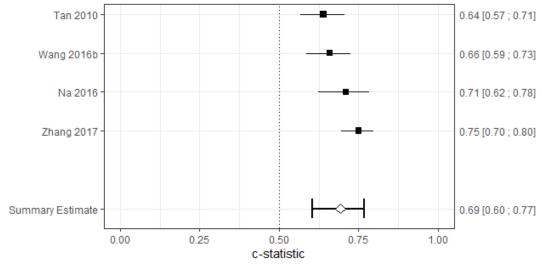


12 13

8 9 10

1 UISS

2 Figure 32: UISS: disease-free survival - c-statistic, clear cell subtype

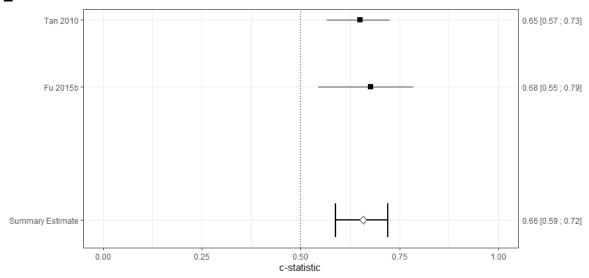


3

4 Evidence could not be pooled as I² was above 80%

5

6 Figure 33: UISS: overall survival - c-statistic, clear cell subtype, RE



7

$$I^2 = 62.37\%$$

1 Figure 34: UISS: cancer-specific survival - c-statistic, clear cell subtype,

2 **FE**

3

4 $I^2 = 0.00\%$

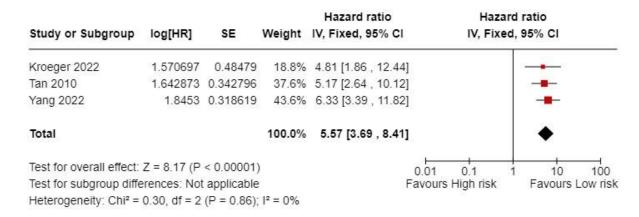
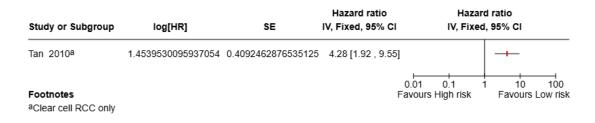

5

Figure 35: UISS: Cancer-specific survival - Hazard ratio for high risk vs low risk, clear cell RCC

Study or Subgroup	log[HR]	SE	Hazard ratio IV, Fixed, 95% CI	Hazar IV, Fixed	
Tan 2010 ^a	1.8779371654691073	0.5792586151787921	6.54 [2.10 , 20.35]	
Footnotes aClear cell RCC only				0.01 0.1 Favours High risk	1 10 100 Favours Low risk

Figure 36: UISS: Disease-free survival - Hazard ratio for high risk vs low

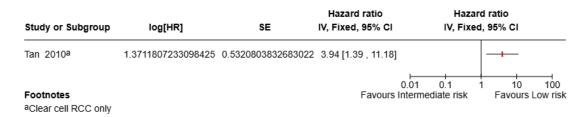
risk, clear cell RCC



3

5

6


Figure 37: UISS: Overall survival - Hazard ratio for high risk vs low risk, clear cell RCC

7 8

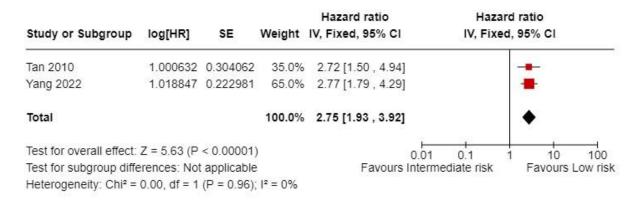

9 10

Figure 38: UISS: Cancer-specific survival - Hazard ratio for intermediate risk vs low risk, clear cell RCC

1 Figure 39: UISS: Disease-free survival - Hazard ratio for intermediate risk

vs low risk, clear cell RCC

3

5 Figure 40: UISS: Overall survival - Hazard ratio for intermediate risk vs

6 low risk, clear cell subtype

Study or Subgroup	log[HR]	SE	Hazard ratio IV, Fixed, 95% CI	Hazard ratio IV, Fixed, 95% CI
Tan 2010 ^a	0.9669838461896731	0.366289459462022	2.63 [1.28 , 5.39]	-
Footnotes aClear cell RCC only			Favours	0.01 0.1 1 10 100 Intermediate risk Favours Low risk

78

9

10

Figure 41: UISS: Disease-free survival - Hazard ratio for high risk vs intermediate risk, clear cell RCC

11

12

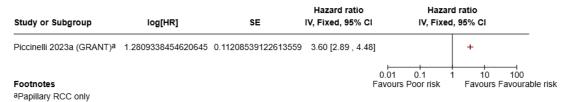
VENUSS

13 No evidence identified for this model.

14

15 Zisman

16 No evidence identified for this model.


17

1 Papillary subtype

2 **GRANT**

3 Figure 42: GRANT: Cancer-specific survival - Hazard ratio for poor risk

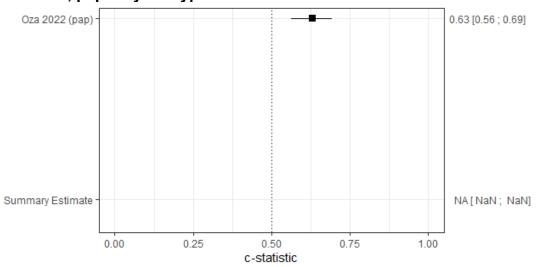
4 vs favourable risk, papillary RCC

5

6 Karakiewicz

7 No evidence identified for this model.

8 Kattan


9 No evidence identified for this model.

10

11 Leibovich 2003

12 Figure 43: Leibovich 2003: recurrence-free survival/disease-free survival

13 - c-statistic, papillary subtype

14

Figure 44: Leibovich 2003: disease-free survival, hazard ratio for high

risk vs intermediate risk, papillary subtype

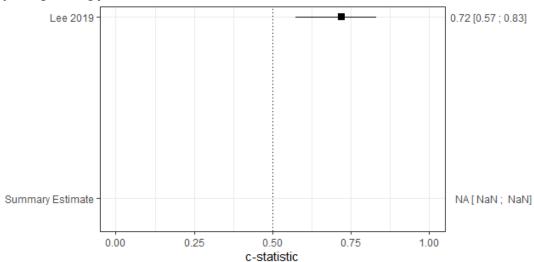
4

5

7

3

1

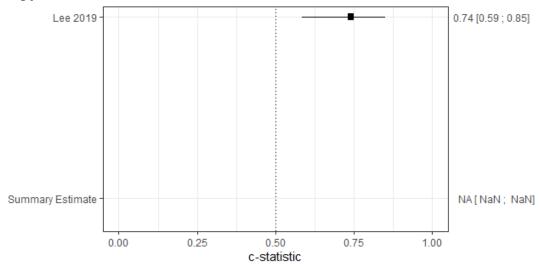

2

•

Leibovich 2018

6 Figure 45: Leibovich 2018: progression-free survival - c-statistic,

papillary subtype

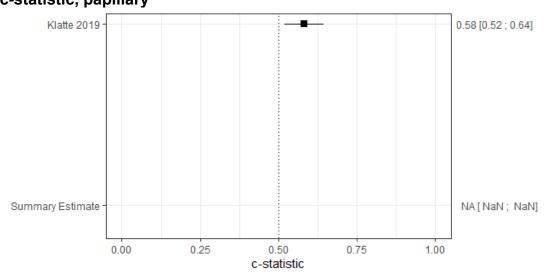


8

Figure 46: Leibovich 2018: cancer-specific survival - c-statistic, papillary

2 subtype

1


3

4

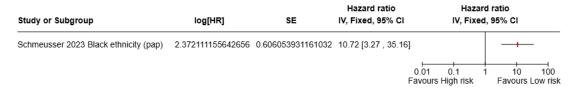
5

6

Figure 47: Leibovich 2018: recurrence-free survival/disease-free survival - c-statistic, papillary

7

Figure 48: Leibovich 2018: Cancer-specific survival - Hazard ratio for high risk vs low risk, papillary RCC


Figure 49: Leibovich 2018: Cancer-specific survival - Hazard ratio for high risk vs low risk, papillary subtype [Black ethnicity only]

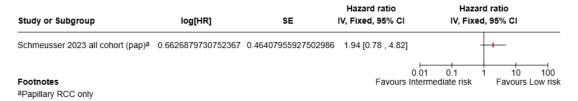

Figure 50: Leibovich 2018: Progression-free survival - Hazard ratio for high risk vs low risk, papillary RCC

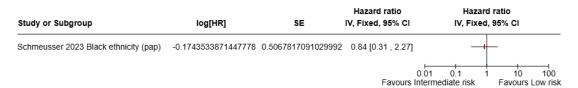
Figure 51: Leibovich 2018: Progression-free survival - Hazard ratio for high risk vs low risk, papillary subtype [Black ethnicity only]

Figure 52: Leibovich 2018: Cancer-specific survival - Hazard ratio for intermediate risk vs low risk, papillary RCC

Figure 53: Leibovich 2018: Cancer-specific survival - Hazard ratio for intermediate risk vs low risk, papillary subtype [Black ethnicity only]

4 5 6

Figure 54: Leibovich 2018: Progression-free survival - Hazard ratio for intermediate risk vs low risk, papillary RCC



8

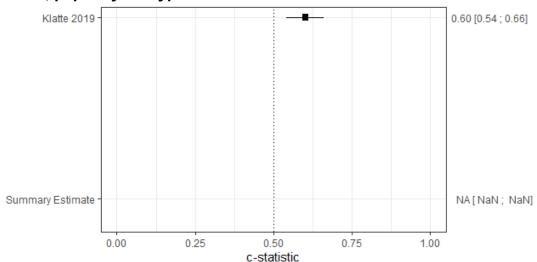
10

11

Figure 55: Leibovich 2018: Progression-free survival - Hazard ratio for intermediate risk vs low risk, papillary subtype [Black ethnicity only]

12 13

14 Sorbellini

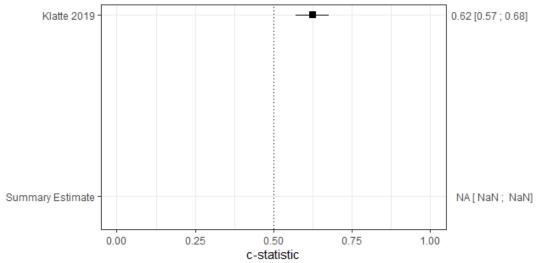

15 No evidence identified for this model.

16 SSIGN

17 No evidence identified for this model.

1 TNM 2016

- 2 Figure 56: TNM: recurrence-free survival/disease-free survival c-
- 3 statistic, papillary subtype

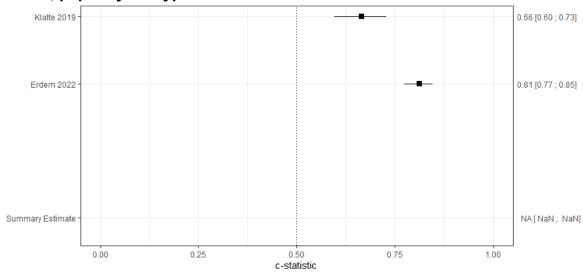


4

5

6 UISS

- 7 Figure 57: UISS: recurrence-free survival/disease-free survival c-
- 8 statistic, papillary subtype



9

1 **VENUSS**

2 Figure 58: VENUSS: recurrence free survival/disease free survival - c-

3 statistic, papillary subtype

5 Evidence could not be pooled as I² was above 80%

Figure 59: VENUSS: Cancer-specific survival - Hazard ratio for high risk vs low risk, papillary subtype

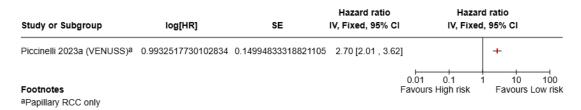
Study or Subgroup	log[HR]	SE	Hazard ratio IV, Fixed, 95% CI		d ratio I, 95% CI
Piccinelli 2023a (VENUSS)a	2.5726122302071057	0.142393367692263	13.10 [9.91 , 17.32	<u>!</u>]	+
Footnotes				0.01 0.1 Favours High risk	1 10 100 Favours Low risk
aPapillary RCC only				. areare riight new	. arouro zon non

Figure 60: VENUSS: Disease-free survival - Hazard ratio for high risk vs low risk, papillary subtype

Study or Subgroup	log[HR]	SE	IV, Fixed, 95% CI	Hazaro IV, Fixed	
Erdem 2022	2.884800712846709	0.1944270554001752	17.90 [12.23 , 26.20]	l	+
				0.01 0.1 1 Favours high risk	10 100 Favours low risk

1314

4

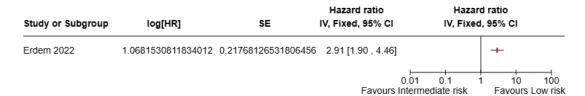

6

7 8

9 10 11

1 Figure 61: VENUSS: Cancer-specific survival - Hazard ratio for

intermediate risk vs low risk, papillary subtype



4 5

6

3

Figure 62: VENUSS: Disease-free survival - Hazard ratio for intermediate risk vs low risk, papillary subtype

7

9

10

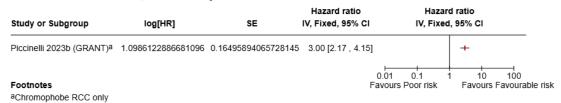
Figure 63: VENUSS: Disease-free survival - Hazard ratio for high risk vs intermediate risk, papillary subtype

11

12

13

Zisman


14 No evidence identified for this model.

1 Chromophobe subtype

2 **GRANT**

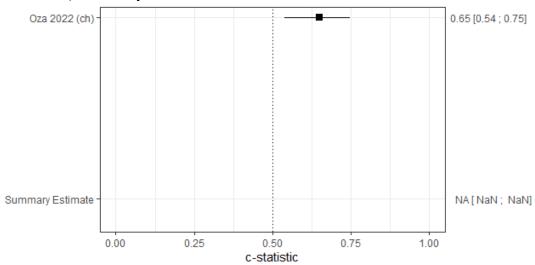
3 Figure 64: GRANT: Cancer-specific survival - Hazard ratio for poor risk

4 vs favourable risk, chromophobe RCC

5

6 Karakiewicz

7 No evidence identified for this model.


8 Kattan

9 No evidence identified for this model.

10 **Leibovich 2003**

11 Figure 65: Leibovich 2003: recurrence-free survival/disease-free survival

12 - c-statistic, chromophobe

13

Figure 66: Leibovich 2003: Disease-free survival - Hazard ratio for high

risk vs intermediate risk, chromophobe RCC

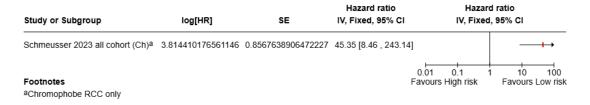
4 Leibovich 2018

Figure 67: Leibovich 2018: Cancer-specific survival - Hazard ratio for

6 high risk vs low risk, chromophobe RCC

Study or Subgroup	log[HR]	SE	Weight	Hazard ratio IV, Fixed, 95% CI	Hazard IV, Fixed,	
Piccinelli 2023b (Leib)	2.833213	0.24320140868078446	93.5%	17.00 [10.55 , 27.38]		
Schmeusser 2023 all cohort (Ch)	3.666889	0.9205262752824097	6.5%	39.13 [6.44 , 237.72]		
Total			100.0%	17.95 [11.32 , 28.46]		•
Test for overall effect: Z = 12.28 (F	< 0.00001)			0.0	002 0.1 1	10 500
Test for subgroup differences: Not	applicable			3530	ours High risk	Favours Low risk
Heterogeneity: Chi ² = 0.77, df = 1	(P = 0.38); I	² = 0%				

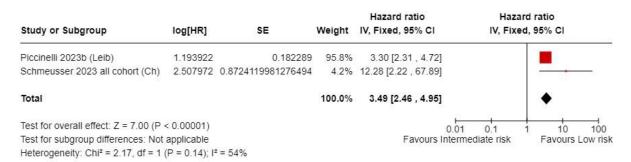
8


10

7

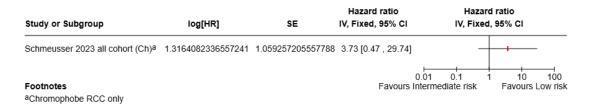
3

5


Figure 68: Leibovich 2018: Progression-free survival - Hazard ratio for high risk vs low risk, chromophobe RCC

11 12

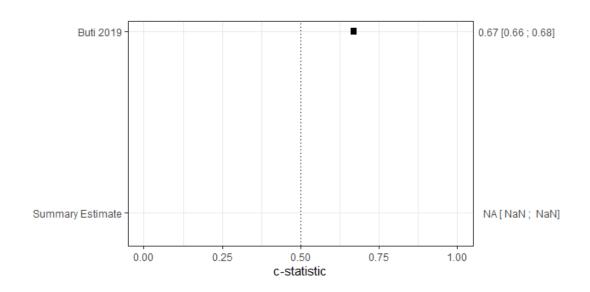
13 14


Figure 69: Leibovich 2018: Cancer-specific survival - Hazard ratio for intermediate risk vs low risk, chromophobe RCC

15 16

1 Figure 70: Leibovich 2018: Progression-free survival - Hazard ratio for

intermediate risk vs low risk, chromophobe RCC

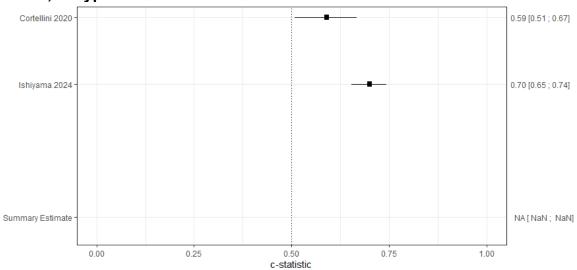


- 5 Sorbellini
- 6 No evidence identified for this model.
- 7 SSIGN
- 8 No evidence identified for this model.
- 9 TNM 2016
- 10 No evidence identified for this model.
- 11 **UISS**
- 12 No evidence identified for this model.
- 13 **VENUSS**
- 14 No evidence identified for this model.
- 15 Zisman
- 16 No evidence identified for this model.

1 All subtypes

2 **GRANT**

Figure 71: GRANT: overall-survival - c-statistic, all types

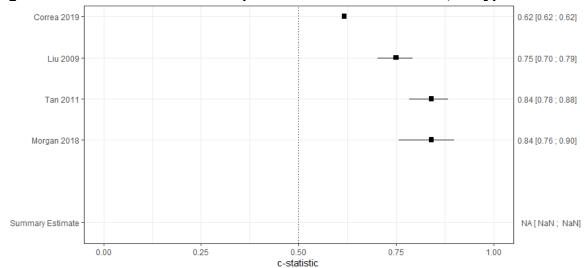


3

5

Figure 72: GRANT: recurrence-free survival/disease-free survival - c-

6 statistic, all types

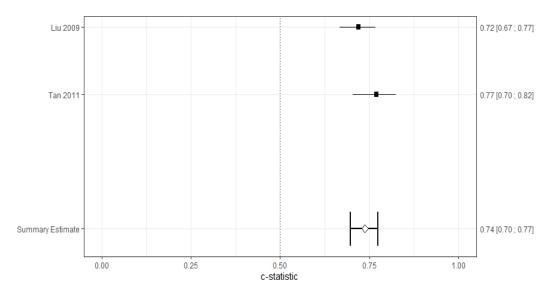

7

8 Evidence could not be pooled as I² was above 80%.

9

1 Karakiewicz

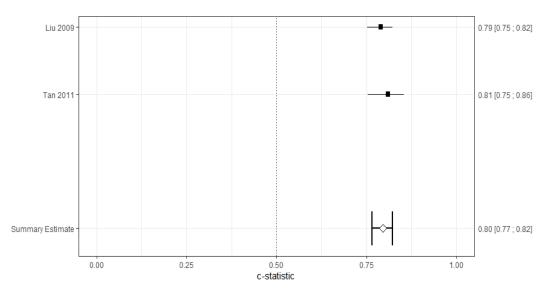
2 Figure 73: Karakiewicz: cancer-specific survival - c-statistic, all types



4 Evidence could not be pooled as I² was above 80%.

3

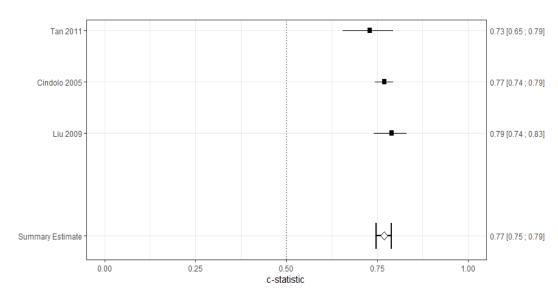
5


Figure 74: Karakiewicz: overall survival - c-statistic, all subtypes, FE

 $6 I^2 = 36.48\%$

7

Figure 75: Karakiewicz: recurrence-free survival/disease-free survival - c-statistic, all subtypes, FE



1 $I^2 = 0.00\%$

2

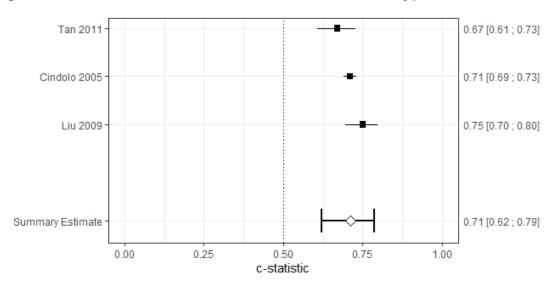
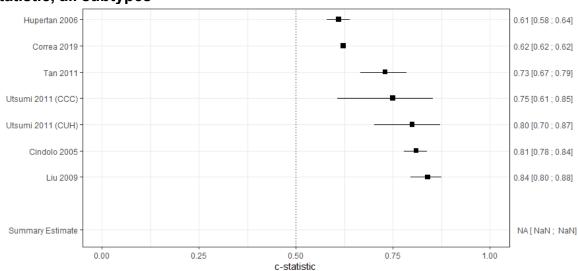

3 Kattan

Figure 76: Kattan: cancer-specific survival - c-statistic, all subtypes, FE

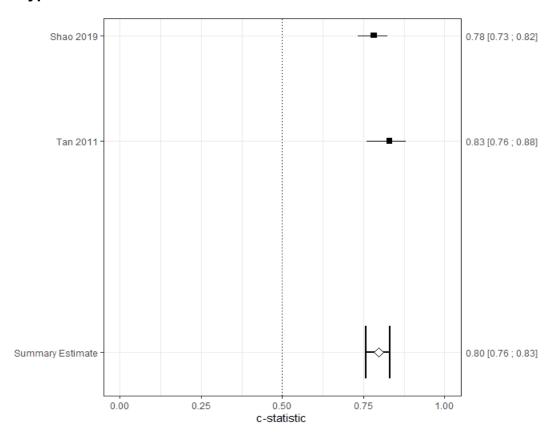
4 $I^2 = 0.41\%$


Figure 77: Kattan: overall survival - c-statistic, all subtypes, RE

1 $I^2 = 51.66\%$

2 3

Figure 78: Kattan: recurrence-free survival/disease-free survival- c-statistic, all subtypes



5

6 Evidence could not be pooled as I² was above 80%.

1 Leibovich 2003

Figure 79: Leibovich 2003: cancer-specific survival - c-statistic, all subtypes

 $1^2 = 35.42\%$

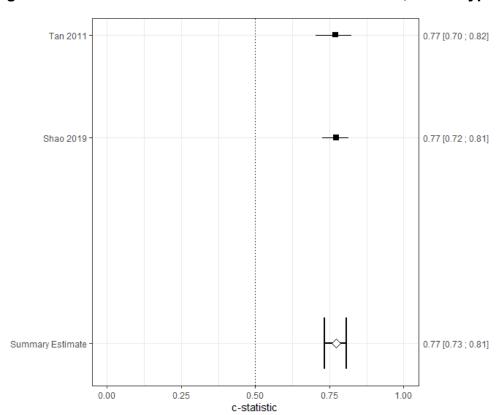
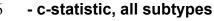
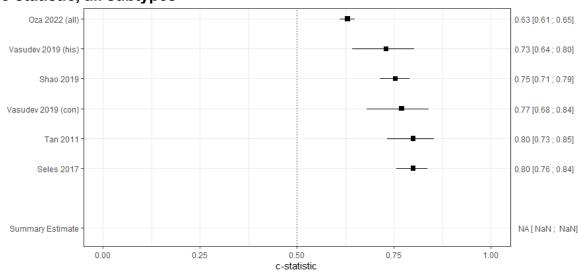


Figure 80: Leibovich 2003: overall survival - c-statistic, all subtypes


1 $I^2 = 0.00\%$


5

3 Leibovich 2003: recurrence-free survival/disease-free survival - c-

4 statistic, all subtypes

Figure 81: Leibovich 2003: recurrence-free survival/disease-free survival

7

1 Evidence could not be pooled as l² was above 80%.

2 3

4

Figure 82: Leibovich 2003: Disease-free survival - Hazard ratio for high risk vs low risk, all subtypes

Study or Subgroup	log[HR]	SE	Weight	Hazard ratio IV, Fixed, 95% CI				ratio 95% CI	
Vasudev 2019 (con)	3.152736	0.528899	46.3%	23.40 [8.30 , 65.98]				_	_
Vasudev 2019 (his)	2.778819	0.490964	53.7%	16.10 [6.15 , 42.14]				-	
Total			100.0%	19.14 [9.46 , 38.75]				•	•
Test for overall effect:	Z = 8.20 (P	< 0.00001)	(0.01	0.1	1	10	100
Test for subgroup diffe	erences: No	t applicable	:	Fa	avours	High risk		Favours	Low risk
Heterogeneity: Chi2 =	0.27, df = 1	(P = 0.60)	$I^2 = 0\%$						

56

8

Figure 83: Leibovich 2003: Disease-free survival - Hazard ratio for intermediate risk vs low risk, all subtypes

Study or Subgroup	log[HR]	SE	Weight	Hazard ratio IV, Fixed, 95% CI		Hazard IV, Fixed,	
Vasudev 2019 (con)	1.631199	0.541412	operate Haraca	5.11 [1.77 , 14.77]			
Vasudev 2019 (his)	1.439835	0.488649	55.1%	4.22 [1.62 , 11.00]			-
Total			100.0%	4.60 [2.26 , 9.36]			•
Test for overall effect:	Z = 4.21 (P	< 0.0001)			0.01 0	1 1	10 100
Test for subgroup differ Heterogeneity: Chi ² =				Favours I	ntermediat	te risk	Favours Low risk

9 10

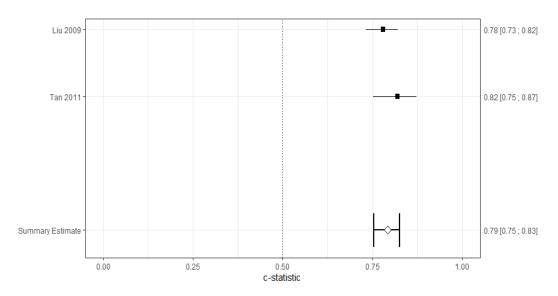
11

12

Figure 84: Leibovich 2003: Disease-free survival - Hazard ratio for high risk vs intermediate risk, all subtypes

13

14


Leibovich 2018

15 No evidence identified for this model.

16

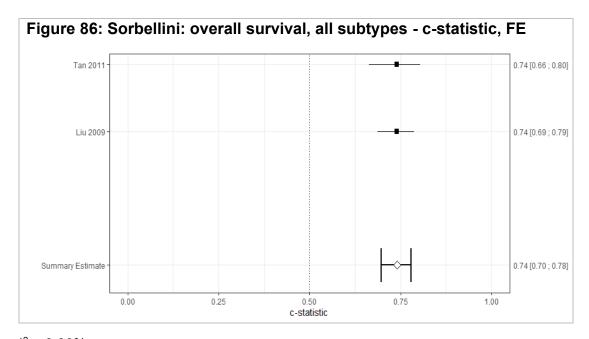
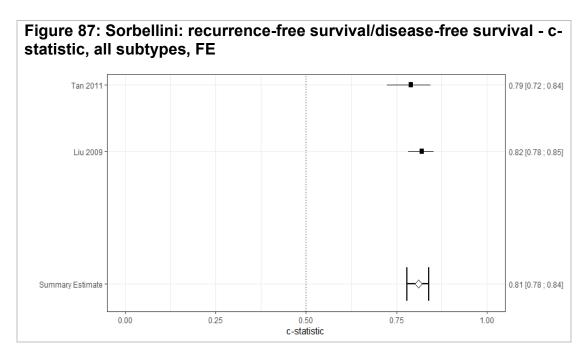

1 Sorbellini

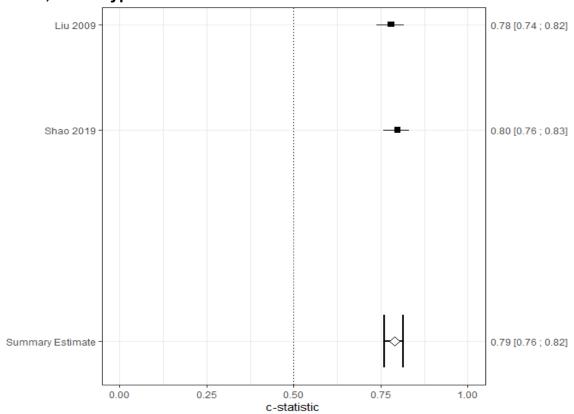
Figure 85: Sorbellini: cancer-specific survival - c-statistic, all subtypes, FE



 $1^2 = 8.49\%$

3

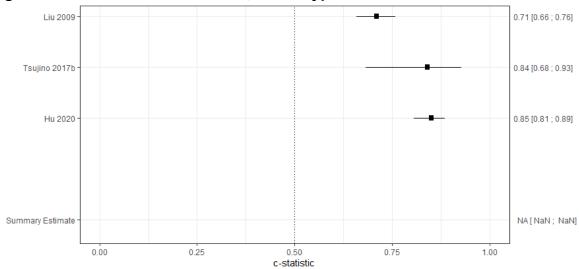
4 $I^2 = 0.00\%$



1 $I^2 = 0.00\%$

1 SSIGN

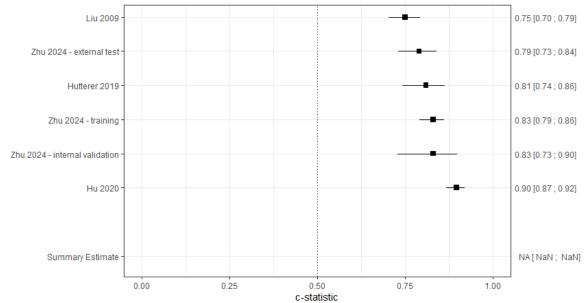
2 Figure 88: SSIGN: recurrence-free survival/disease-free survival - c-


3 statistic, all subtypes

4 5 6 l² =0.00%

8

7 Figure 89: SSIGN: overall survival, all subtypes - c-statistic



9 Evidence could not be pooled as I² was above 80%.

Kidney cancer: evidence review for risk prediction tools and factors DRAFT FOR CONSULTATION (September 2025)

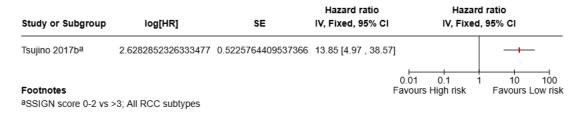
1

2 Figure 90: SSIGN: cancer-specific survival - c-statistic, all subtypes

3

4 Evidence could not be pooled as I² was above 80%.

5

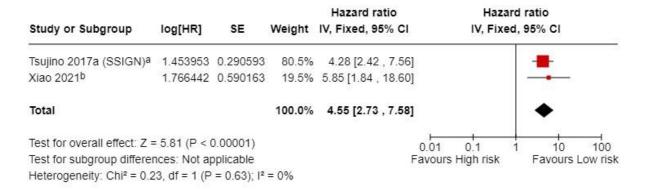

Figure 91: SSIGN: Disease-free survival - Hazard ratio for high risk vs low risk, all subtypes

Study or Subgroup	log[HR]	SE	Hazard ratio IV, Fixed, 95% (rd ratio d, 95% CI
Tsujino 2017a (SSIGN) ^a	1.4085449700547104	0.2813512637675896	4.09 [2.36 , 7.	10]	+
Footnotes aSSIGN score 0-2 vs ≥3				0.01 0.1 Favours High risk	1 10 100 Favours Low risk

9

8

Figure 92: SSIGN: Cancer-specific survival - Hazard ratio for high risk vs low risk, all subtypes



12

13

Figure 93: SSIGN: Overall survival - Hazard ratio for high risk vs low risk,

all subtypes

Footnotes

aSSIGN score 0-2 vs ≥3

bSSIGN low risk 2-4; intermediate risk 5-7; high risk 8-11

3

1

5 Figure 94: SSIGN: Progression-free survival - Hazard ratio for high risk

6 vs low risk, all subtypes

Study or Subgroup	log[HR]	SE	Hazard ratio IV, Fixed, 95% C		rd ratio d, 95% Cl
Xiao 2021 ^a	1.1085626195212777	0.4591555494164518	3.03 [1.23 , 7.4	5]	-
Footnotes				0.01 0.1 Favours High risk	1 10 100 Favours Low risk
	intermediate risk 5-7; hig	h risk 8-11		r avouro r ngri rion	r around zon non

7 8 9

10


Figure 95: SSIGN: Overall survival - Hazard ratio for intermediate risk vs low risk, all subtypes

11

1 Figure 96: SSIGN: Progression-free survival - Hazard ratio for

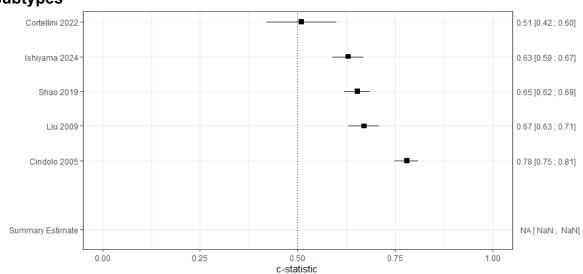
2 intermediate risk vs low risk, all subtypes

3

5

TNM 2016

6 No evidence identified for this model.


7

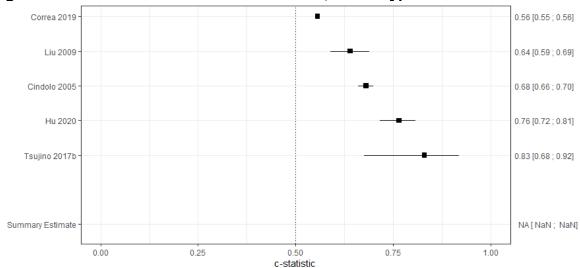
9

8 UISS

Figure 97: UISS: recurrence-free/disease-free survival - c-statistic, all

10 subtypes

11


12 Evidence could not be pooled as I² was above 80%.

1

2

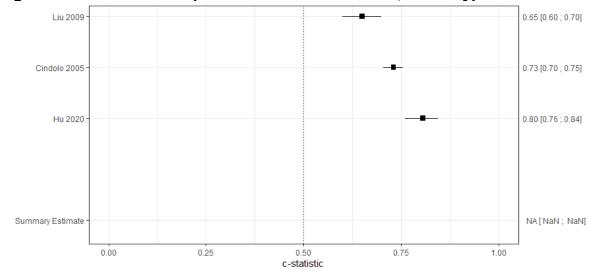

4

Figure 98: UISS: overall survival - c-statistic, all subtypes

3 Evidence could not be pooled as I² was above 80%.

5 Figure 99: UISS: cancer-specific survival - c-statistic, all subtypes

7 Evidence could not be pooled as I² was above 80%.

Figure 100: UISS: Cancer-specific survival - Hazard ratio for high risk vs low risk, all subtypes

Figure 101: UISS: Disease-free survival - Hazard ratio for high risk vs low risk, all subtypes

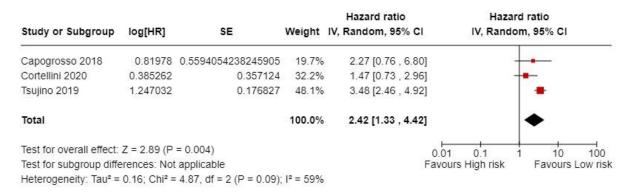
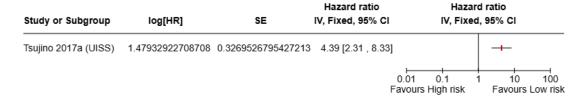
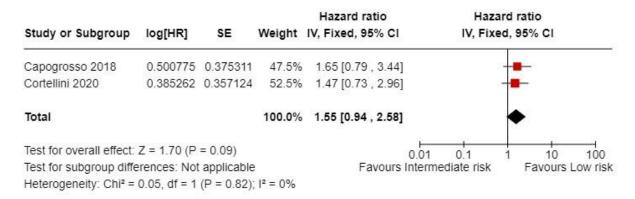
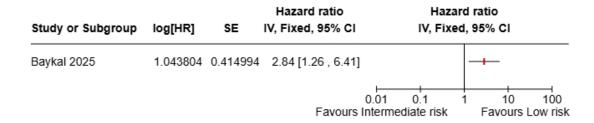


Figure 102: UISS: Overall survival - Hazard ratio for high risk vs low risk, all subtypes


Figure 103: UISS: Disease-free survival - Hazard ratio for intermediate risk vs low risk, all subtypes

Kidney cancer: evidence review for risk prediction tools and factors DRAFT FOR CONSULTATION (September 2025)

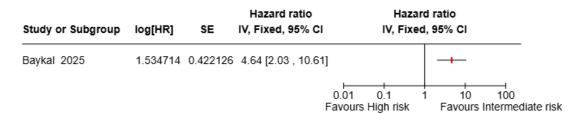
1 2 I 3 I

Figure 104: UISS: Overall survival - Hazard ratio for intermediate risk vs low risk, all subtypes

4

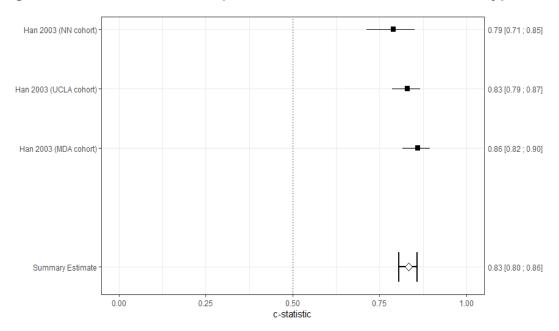
5

6 7


Figure 105: UISS: Disease-free survival - Hazard ratio for high risk vs intermediate risk, all subtypes

8 9 10

11


Figure 106: UISS: Overall survival - Hazard ratio for high risk vs intermediate risk, all subtypes

12

1 Zisman

Figure 107: Zisman: cancer-specific survival - c-statistic, all subtypes

 $2 I^2 = 35.88\%$

Appendix F – GRADE tables

- 2 Clear cell subtype
- 3 **GRANT**
- No evidence identified for this model.
- **Karakiewicz**
- 6 No evidence identified for this model.
- 7 Kattan

Table 42: Clinical evidence profile (C-statistics): Kattan model, clear cell RCC subtypes

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Kattan model for	prediction of re-	currence-free s	urvival/disease-free	survival for cle	ar cell RCC, mediar	า 81 months follow-เ	ıp	
1 (Suzuki 2011)	Retrospective cohort	211	0.73 (0.72, 0.73)	Very serious ^a	Not serious	Serious ^b	Not serious	Very low
•	ed twice because ed once as single	,	risk of bias					

Leibovich 2003

Table 43: Clinical evidence profile (C-statistics): Leibovich 2003 model, clear cell RCC subtypes

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Leibovich 2003 m			sion-free survival fo	r clear cell RCC	, median 38 month			
1 (Huang 2017)	Retrospective cohort	268	0.76 (0.68, 0.83)	Very serious ^a	Not serious	Serious ^b	Very serious ^c	Very low
Leibovich 2003 m	nodel for predict	ion of cancer-s	pecific survival for	clear cell RCC,	median 50 months	follow-up		
2 (Hutterer 2014, Tan 2010)	Retrospective cohort	1033	0.79 (0.11, 0.99)	Very serious ^a	Not serious	Very serious ^d	Very serious ^c	Very low
Leibovich 2003 m	nodel for predict	ion of overall s	urvival for clear cell	RCC, median 6	7 months follow-u	р		
5 (An 2015, Chen 2017, Tan 2010, Wang 2016b, Zhang 2017)	Retrospective cohort	1575	0.74 (0.64, 0.81)	Very serious ^a	Not serious	Very serious ^d	Very serious ^c	Very low
Leibovich 2003 m	nodel for predict	ion of recurren	ce-free survival/disc	ease-free surviv	al for clear cell RC	C, median 67 mont	hs follow-up	
1 (An 2015)	Retrospective cohort	191	0.67 (0.57, 0.76)	Serious ^e	Not serious	Serious ^b	Serious ^f	Very low
1 (Beisland 2015)	Retrospective cohort	386	0.86 (0.79, 0.94)					
1 (Correa 2019)	Retrospective cohort	1647	0.625 (0.623, 0.626)					
1 (Fu 2016)	Retrospective cohort	472	0.836 (0.79, 0.882)					

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	
1 (Jensen 2009)	Retrospective cohort	121	0.74 (0.65, 0.83)					
1 (Oza 2022)	Retrospective cohort	1445	0.64 (0.59, 0.69)					
1 (Pichler 2011)	Retrospective cohort	1754	0.78 (0.75, 0.8)					
1 (Rini 2015)	Retrospective cohort	626	0.74 (0.69, 0.79)					
1 (Tan 2010)	Retrospective cohort	355	0.7 (0.63, 0.77)					
1 (Wang 2016b)	Retrospective cohort	268	0.74 (0.67, 0.81)					
1 (Xia 2016)	Retrospective cohort	290	0.72 (0.66, 0.77)					
1 (Xv 2024) (testing cohort)	Retrospective cohort	364	0.63 (0.573, 0.687)					
1 (Xv 2024) (internal cohort)	Retrospective cohort	156	0.609 (0.535, 0.683)					
1 (Xv 2024) (external cohort)	Retrospective cohort	187	0.663 (0.539, 0.786)					
1 (Zhang 2017)	Retrospective cohort	585	0.8 (0.76, 0.85)					

- a. Downgraded twice as >50% of the weight in the meta-analysis came from studies at high risk of bias
- b. Downgraded once as I²40-60%, or the point estimates span 2 categories of c-statistic classification accuracy, or data came from a single study
- c. Downgraded twice as 95% confidence interval crossed 3 or more categories of c-statistic classification accuracy
- d. Downgraded twice as $l^2 > 60\%$, or the point estimates span 3 categories of c-statistic classification accuracy
- e. Downgraded once as >50% of the population weight across the studies came from studies at some concerns or high risk of bias
- f. Downgraded once as 95% confidence interval crossed 2 categories of c-statistic classification accuracy

Table 44: Clinical evidence profile (Hazard ratios): Leibovich 2003 model high risk vs low risk, clear cell RCC subtypes

								-
No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Leibovich 2003 m	nodel – high risk	vs low risk - fo	r prediction of dise	ase-free surviva	al for clear cell RCC	, median 53.8 month	s follow-up	
4 (Beisland 2015, Flippot 2017, Rini 2015, Tan 2010a)	Retrospective cohort	1270	8.92 (4.45, 17.90)	Serious ^a	Not serious	Serious ^b	Not serious	Low
Leibovich 2003 m	nodel – high risk	vs low risk - fo	r prediction of recu	rrence for clear	cell, median 124 m	onths follow-up		
1 (Jensen 2009)	Retrospective cohort	69	RR 3.12 (1.51, 6.46)	Very serious ^c	Not serious	Serious ^b	Serious ^d	Very low
Leibovich 2003 m	nodel – high risk	vs low risk - fo	r prediction of cand	er-specific surv	vival for clear cell R	CC, median 56 mon	ths follow-up	
1 (Tan 2010a)	Retrospective cohort	189	10.84 (4.00, 29.39)	Very serious ^c	Not serious	Serious ^b	Serious ^d	Very low
Leibovich 2003 m	nodel – high risk	vs low risk - fo	r prediction of over	all survival for o	clear cell RCC, med	lian 56 months follow	w-up	
1 (Tan 2010a)	Retrospective cohort	189	5.17 (2.59, 10.32)	Very serious ^c	Not serious	Serious ^b	Serious ^d	Very low
b. Downgrad	led once as I ² 40-	60%, or data on	a meta-analysis can the outcome was on at high risk of bias			high risk of bias		

d. Downgraded once as sample size <500

Table 45: Clinical evidence profile (Hazard ratios): Leibovich 2003 model intermediate risk vs low risk, clear cell RCC subtypes

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Leibovich 2003 m	nodel – intermed	iate risk vs low	risk - for prediction	of disease-free	survival for clear o	cell RCC, median 53.	9 months follow-	up
4 (Beisland 2015, Flippot 2017, Rini 2015, Tan 2010a)	Retrospective cohort	1414	2.82 (1.96, 4.06)	Serious ^a	Not serious	Not serious	Not serious	Moderate
Leibovich 2003 m	nodel – intermed	iate risk vs low	risk - for prediction	of recurrence	for clear cell RCC, r	nedian 124 months 1	follow-up	
1 (Jensen 2009)	Retrospective cohort	78	RR 2.00 (0.93, 4.28)	Very serious ^b	Not serious	Serious ^c	Very serious ^d	Very low
Leibovich 2003 m	nodel – intermed	iate risk vs low	risk - for prediction	of cancer-spec	cific survival for cle	ar cell RCC, median	56 months follow	-up
1 (Tan 2010a)	Retrospective cohort	303	3.41 (1.30, 8.96)	Very serious ^b	Not serious	Serious ^c	Seriouse	Very low
Leibovich 2003 m	nodel – intermed	iate risk vs low	risk - for prediction	of overall surv	ival for clear cell Ro	CC, median 56 mont	hs follow-up	
1 (Tan 2010a)	Retrospective cohort	303	2.05 (1.09, 3.86)	Very serious ^b	Not serious	Serious ^c	Serious ^e	Very low

a. Downgraded once as >50% of the weight in a meta-analysis came from studies at some concerns or high risk of bias

b. Downgraded twice because the study is at high risk of bias

c. Downgraded once as single study

d. Downgraded twice as sample size <500 and 95% confidence intervals crossed the line of no effect

e. Downgraded once as sample size <500

Table 46: Clinical evidence profile (Hazard ratios): Leibovich 2003 model high risk vs intermediate risk, clear cell RCC subtypes

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Leibovich 2003 m	odel – high risk	vs intermediate	e risk - for predictio	n of disease-fre	e survival for clear	cell RCC, median 63	3.7 months follow	-up
2 (Flippot 2017, Oza 2022)	Retrospective cohort	1612	3.23 (2.13, 4.89)	Serious ^a	Not serious	Not serious	Not serious	Moderate
Leibovich 2003 m	odel – high risk	vs intermediate	e risk - for predictio	n of recurrence	for clear cell RCC,	median 124 months	follow-up	
1 (Jensen 2009)	Retrospective cohort	95	RR 1.56 (1.10, 2.21)	Very serious ^b	Not serious	Serious ^c	Serious ^d	Very low

- a. Downgraded once as >50% of the weight in a meta-analysis came from studies at some concerns or high risk of bias
- b. Downgraded twice because the study is at high risk of bias
- c. Downgraded once as single study
- d. Downgraded once as sample size <500

Leibovich 2018

4 Table 47: Clinical evidence profile (C-statistics): Leibovich 2018, clear cell RCC subtypes

		(,	,				
No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Leibovich 2018 m	nodel for predict	ion of progress	ion-free survival for	r clear cell RCC	, median 76 months	follow-up		
1 (Lee 2019)	Retrospective cohort	829	0.81 (0.77, 0.85)	Serious ^a	Not serious	Serious ^b	Serious ^c	Very low
Leibovich 2018 m	nodel for predict	ion of cancer-s	pecific survival for	clear cell RCC, i	median 76 months f	ollow-up		
1 (Lee 2019)	Retrospective cohort	829	0.83 (0.79, 0.87)	Serious ^a	Not serious	Serious ^b	Serious ^c	Very low
•	led once because	•	ome concerns for risl	k of bias				

- b. Downgraded once as single study
- c. Downgraded once as 95% confidence interval crossed 2 categories of c-statistic classification accuracy

1

2 Sorbellini

Table 48: Clinical evidence profile (C-statistics): Sorbellini model, clear cell RCC subtypes

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Sorbellini model	for prediction of	recurrence-fre	e survival/disease f	ree survival for	clear cell RCC, med	lian 36 months follo	w-up	
2 (Lee 2018, Sorbellini 2005)	Retrospective	1842	0.81 (0.76, 0.86)	Very serious ^a	Not serious	Not serious	Serious ^b	Very low
_		_	the meta-analysis c			N.		

b. Downgraded once as 95% confidence interval crossed 2 categories of c-statistic classification accuracy

1

5 SSIGN

Table 49: Clinical evidence profile (C-statistics): SSIGN model, clear cell RCC subtypes

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
SSIGN prognostic model for the prediction of progression-free survival in people with clear cell RCC, median 60 months follow-up										
8 (Wang 2021 (training), Wang 2021 (validation), Wang 2021b (training), Wang 2021b (validation), Zhu 2021 (cohort 1),	Retrospective cohort	1250	0.68 (0.64, 0.71)	Very serious ^a	Not serious	Very serious ^b	Serious ^c	Very low		

No. of studies/cohorts S	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Zhu 2021 (cohort 2), Zhu 2021 (training), Zhu 2021 (validation))								
SSIGN prognostic m	model for predi	iction of recurre	ence-free/disease-fi	ree survival in p	eople with clear ce	II RCC, median 61.1	months follow-up)
14 (Haddad R		4,148	0.73 (0.68, 0.76)	Very serious ^a	Not serious	Very serious ^b	Serious	Very low

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Xiong 2017, Zhang 2017)								
SSIGN prognostic	c model for pred	liction of overal	l survival in people	with clear cell F	RCC, median 60 mo	nths follow-up		
12 (Chen 2017, Liu 2016, Na 2016, Wang 2021 (Training), Wang 2021 (Validation), Wang 2021b (Training), Wang 2021b (Validation), Zhang 2017, Zhu 2021 (cohort 1), Zhu 2021 (cohort 2), Zhu 2021 (training), Zhu 2021 (validation))	Retrospective cohort	2436	0.71 (0.68, 0.74)	Very serious ^a	Not serious	Very serious ^b	Serious ^c	Very low
SSIGN prognostic	c model for pred	iction of cance	r-specific survival i	n people with cl	ear cell RCC, media	an 111.6 months foll	ow-up	
1 (Fu 2015)	Retrospective cohort	180	0.645 (0.513, 0.777)	Serious ^d	Not serious	Very serious ^e	Not serious	Very low
1 (Viers 2014)	Retrospective cohort	827	0.81 (0.78, 0.84)					
1 (Correa 2019)	Retrospective cohort	1647	0.69 (0.686, 0.689)					
a. Downgrad	ed twice as >50%	of the weight in	the meta-analysis c	ame from studies	s at high risk of bias			

No. of			C-statistic							
studies/cohorts	Study design	Sample size	(95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
b. Downgrad	led twice as $l^2 > 6$	60%								
c. Downgrad	c. Downgraded once as 95% confidence interval crossed 2 categories of c-statistic classification accuracy									
d. Downgrad	d. Downgraded once as >50% of the studies by population weight came from studies at unclear or high risk of bias									
e. Downgrad	e. Downgraded twice as the point estimates span 3 or more categories of c-statistic classification accuracy									

Table 50: Clinical evidence profile (Hazard ratios): SSIGN model high risk vs low risk, clear cell RCC subtypes

	a. criaciloo pron	io (ilazaia i		J.1 Gadi i		isk, cieai celi NCC			
No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty	
SSIGN prognosti	c model – high risk v	s low risk - fo	r the predict	ion of disease	e-free survival in pec	ple with clear cell RC0	C, median 56.75 mo	nths follow-up	
1 (Haddad 2017)	Retrospective cohort	367	3.13 (1.69, 5.79)	Not serious	Not serious	Serious ^a	Not serious	Moderate	
1 (Yang 2022)	Retrospective cohort	866	13.55 (8.41, 21.84)						
SSIGN prognosti up not reported	c model – high risk v	s low risk - fo	or the predict	ion of overall	survival in people w	rith clear cell RCC [Zhu	ı 2021 removed], m	edian follow-	
2 (Wang 2021b (training), Wang 2021b (validation))	Retrospective cohort	300	8.28 (4.33, 15.82)	Very serious ^b	Not serious	Not serious	Serious ^c	Very low	
SSIGN prognostic model – high risk vs low risk - for the prediction of progression-free survival in people with clear cell RCC [Zhu 2021 removed], follow-up not reported									
2 (Wang 2021b (training),	Retrospective cohort	300	16.83 (8.94, 31.69)	Very serious ^b	Not serious	Not serious	Serious ^c	Very low	

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Wang 2021b (validation))								

- a. Downgraded once as pooled I² was above 80%, however, the point estimates did not span the line of no effect
- b. Downgraded twice as >50% of the weight in the meta-analysis came from studies at high risk of bias
- c. Downgraded once as sample size <500

2 Table 51: Clinical evidence profile (Hazard ratios): SSIGN model intermediate risk vs low risk, clear cell RCC subtypes

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
SSIGN prognostic model – intermediate risk vs low risk - for the prediction of recurrence-free survival in people with clear cell RCC, median 50 months follow-up										
1 (Yang 2022)	Retrospective cohort	231	4.71 (3.18, 6.97)	Not serious	Not serious	Serious ^a	Serious ^b	Low		
a. Downgraded once as single studyb. Downgraded once as sample size <500										

TNM 2016

3

Table 52: Clinical evidence profile (C-statistics): TNM 2016 model, clear cell RCC subtypes

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
TNM (not specifie	ed) prognostic m	odel for predic	tion of progression	-free survival in	people with clear c	ell RCC, median 60	months follow-up	
4 (Wang 2021 (training),	Retrospective cohort	610	0.64 (0.63, 0.66)	Very serious ^a	Not serious	Not serious	Not serious	Low

a. Downgraded twice as >50% of the weight in the meta-analysis came from studies at high risk of bias

Table 53: Clinical evidence profile (Hazard ratios): TNM model stages 3 vs 1-2. clear cell RCC subtypes

No. of			Hazard ratio							
studies/cohorts	Study design	Sample size	(95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
TNM model – stages 3 vs 1-2 – for the prediction of disease-free survival in people with clear cell RCC, median 49.6 months follow-up										
1 (Li 2024)	Retrospective cohort	344	2.55 (1.34, 4.86)	Very serious ^a	Not serious	Serious ^b	Serious ^c	Very low		
TNM model - sta	ges 3 vs 1-2 – fo	r the prediction	of overall survival	in people with c	lear cell RCC, follow	w-up not reported				
1 (He 2020)	Prospective cohort	Not reported	3.72 (2.41, 5.75)	Not serious	Not serious	Serious ^b	Serious ^d	Low		

b. Downgraded once as 95% confidence interval crossed one of the clinical decision thresholds

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
a. Downgrad	ed twice because	e the study is at l	nigh risk of bias					
b. Downgrad	ed once as single	e study						
c. Downgrad	c. Downgraded once as sample size <500							
d. Downgrad	ed once as samp	ole size not repor	ted					

UISS

Table 54: Clinical evidence profile (C-statistics): UISS model, clear cell RCC subtypes

				,		•		
No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
UISS prognostic	model for prediction	n of disease-f	ree survival in	people with cle	ear cell RCC, medi	an 57.1 months follow	/-up	
1 (Tan 2010)	Retrospective cohort	355	0.66 (0.59, 0.73)	Very serious ^a	Not serious	Serious ^b	Serious ^c	Very low
1 (Klatte 2009)	Retrospective cohort	170	0.78 (0.776, 0.784)					
1 (Zhang 2017)	Retrospective cohort	585	0.75 (0.7, 0.8)					
1 (Xia 2016)	Retrospective cohort	290	0.71 (0.66, 0.76)					
1 (Wang 2016b)	Retrospective cohort	268	0.68 (0.6, 0.75)					
1 (Li 2024) (training)	Retrospective cohort	254	0.776 (0.714, 0.839)					
1 (Li 2024) (validation)	Retrospective cohort	110	0.686 (0.538, 0.834)					

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty	
1 (Nie 2023) (training)	Retrospective cohort	558	0.751 (0.665, 0.836)						
1 (Nie 2023) (test)	Retrospective cohort	241	0.739 (0.625, 0.852)						
1 (Xv 2024) (training)	Retrospective cohort	364	0.601 (0.544, 0.658)						
1 (Xv 2024) (internal)	Retrospective cohort	156	0.611 (0.531, 0.691)						
1 (Xv 2024) (external)	Retrospective cohort	187	0.62 (0.55, 0.69)						
UISS prognostic	model for prediction	of overall su	rvival in people	e with clear ce	II RCC, median 67 m	onths follow-up			
4 (Na 2016, Tan 2010, Wang 2016b, Zhang 2017)	Retrospective cohort	1,370	0.69 (0.60, 0.77)	Serious ^d	Not serious	Very serious ^e	Serious ^f	Very low	
UISS prognostic	model for prediction	n of cancer-sp	ecific survival	in people with	clear cell RCC, med	lian 83 months follow-	up		
2 (Fu 2015, Tan 2010)	Retrospective cohort	535	0.66 (0.59, 0.72)	Serious ^d	Not serious	Not serious	Serious ^f	Very low	
b. Downgrad	 b. Downgraded once as the point estimates span 2 categories of c-statistic classification accuracy c. Downgraded once as >50% of the studies by population weight have 95% CIs that cross one of the decision thresholds 								

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
e. Downgrad	ded twice as I2>60%							

Table 55: Clinical evidence profile (Hazard ratios): UISS model high risk vs low risk, clear cell subtype

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
UISS prognostic	model – high ris	k vs low risk - f	or the prediction of	cancer-specific	survival in people	with clear cell RCC,	median 56 month	s follow-up
1 (Tan 2010)	Retrospective cohort	154	6.54 (2.10, 20.35)	Very serious ^a	Not serious	Serious ^b	Serious ^c	Very low
UISS prognostic	model – high ris	k vs low risk - f	or the prediction of	disease-free su	rvival in people wit	h clear cell RCC, me	dian 50 months f	ollow-up
3 (Kroeger 2022, Tan 2010b, Yang 2022)	Retrospective cohort	677	5.57 (3.69, 8.41)	Serious ^d	Not serious	Not serious	Not serious	Moderate
UISS prognostic	model – high ris	k vs low risk - f	or the prediction of	overall surviva	in people with clea	r cell RCC, median	56 months follow	-up
1 (Tan 2010)	Retrospective cohort	154	4.28 (1.92, 9.55)	Seriouse	Not serious	Serious ^b	Serious ^c	Very low

- Downgraded twice because the study is at high risk of bias
- b. Downgraded once as single study
- Downgraded once as sample size<500
- d. Downgraded once as >50% of the weight in the meta-analysis came from studies at some concerns or high risk of bias
- e. Downgraded once because study has some concerns for risk of bias

Downgraded once as 95% confidence interval crossed 2 categories of c-statistic classification accuracy

Table 56: Clinical evidence profile (Hazard ratios): UISS model intermediate risk vs low risk, clear cell subtype

		•						
No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
UISS prognostic follow-up	model – interme	diate risk vs lov	w risk - for the pred	iction of cancer	-specific survival in	n people with clear c	ell RCC, median 5	66 months
1 (Tan 2010)	Retrospective cohort	308	3.94 (1.39, 11.18)	Very serious ^a	Not serious	Serious ^b	Serious ^c	Very low
UISS prognostic follow-up	model – interme	diate risk vs lov	w risk - for the pred	iction of diseas	e-free survival in pe	eople with clear cell	RCC, median 53 r	nonths
2 (Tan 2010, Yang 2022)	Retrospective cohort	1,103	2.75 (1.93, 3.92)	Not serious	Not serious	Not serious	Not serious	High
UISS prognostic	model – interme	diate risk vs lov	w risk - for the pred	iction of overall	survival in people	with clear cell RCC,	median 56 month	s follow-up
1 (Tan 2010)	Retrospective cohort	308	2.63 (1.28, 5.39)	Serious ^d	Not serious	Serious ^b	Serious ^c	Very low
a. Downgrad	led twice because	the study is at h	nigh risk of bias					

- b. Downgraded once as single study
- Downgraded once as sample size<500
- d. Downgraded once because study has some concerns for risk of bias

Table 57: Clinical evidence profile (Hazard ratios): UISS model high risk vs intermediate risk, clear cell subtype

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
UISS prognostic follow-up	model – high ris	k vs intermedia	te risk - for the pred	diction of diseas	se-free survival in p	eople with clear cell	RCC, median 43.	3 months
1 (Kroeger 2022)	Retrospective cohort	135	1.96 (0.87, 4.40)	Very serious ^a	Not serious	Serious ^b	Very serious ^c	Very low
_	ed twice because ed once as single	-	nigh risk of bias					

No. of			Hazard ratio					
studies/cohorts	Study design	Sample size	(95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
c. Downgrad	ed twice as samp	ole size >500 and	d 95% confidence into	ervals cross the l	line of no effect			

2 VENUSS

- No evidence identified for this model.
- 4 Zisman
- No evidence identified for this model.
- Papillary subtype
- 8 GRANT
- 9 Table 58: Clinical evidence profile (Hazard ratios): GRANT model poor risk vs favourable risk, papillary RCC subtype

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
GRANT prognos follow-up	tic model – poor	risk vs favoura	ble risk – for the pr	ediction of cand	er-specific survival	in people with papil	lary RCC, median	60 months
1 (Piccinelli 2023a)	Retrospective cohort	4,184	3.60 (2.89, 4.48)	Not serious	Not serious	Serious ^a	Not serious	Moderate
a. Downgrad	ded once as single	e study						

10

- Karakiewicz
- No evidence identified for this model.
- Kattan
- No evidence identified for this model.
- Leibovich 2003

Table 59: Clinical evidence profile (C-statistics): Leibovich 2003 model, papillary RCC subtype

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
			ce-free survival/dise	ease-free surviv	al for papillary RCC	, median 86.4 month		,
1 (Oza 2022)	Retrospective	128	0.63 (0.56, 0.69)	Serious ^a	Not serious	Serious ^b	Serious ^c	Very low
a Downgrad	led once because	the study has s	ome concerns for rist	of hias				

- b. Downgraded once as single study
- c. Downgraded once as 95% confidence interval crossed 2 categories of c-statistic classification accuracy

Table 60: Clinical evidence profile (Hazard ratios): Leibovich 2003 model high risk vs intermediate risk, papillary RCC subtype

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Leibovich 2003 m	odel – high risk	vs intermediate	e risk - for predictio	n of disease-fre	e survival for papill	ary RCC, median 87	.6 months follow-	up
1 (Oza 2022)	Retrospective cohort	128	2.61 (1.44, 4.72)	Serious ^a	Not serious	Serious ^b	Serious ^c	Very low

- Downgraded once because the study has some concerns for risk of bias
- b. Downgraded once as single study
- c. Downgraded once as sample size <500

1

Leibovich 2018

Table 61: Clinical evidence profile (C-statistics): Leibovich 2018 model, papillary RCC subtype

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
Leibovich 2018 m	Leibovich 2018 model for prediction of progression-free survival for papillary RCC, median 69.5 months follow-up									
1 (Lee 2019)	Retrospective cohort	113	0.72 (0.57, 0.83)	Seriousª	Not serious	Serious ^b	Very serious ^c	Very low		
Leibovich 2018 m	odel for predicti	on of cancer-sp	pecific survival for p	papillary RCC, n	nedian 69.5 months	follow-up				
1 (Lee 2019)	Retrospective cohort	113	0.74 (0.59, 0.85)	Seriousª	Not serious	Serious ^b	Very serious ^c	Very low		
Leibovich 2018 m	odel for predicti	on of recurrence	e-free survival/dise	ase free surviv	al for papillary RCC	, median 53 months	follow-up			
1 (Klatte 2019)	Retrospective cohort	556	0.58 (0.52, 0.64)	Not serious	Not serious	Serious ^b	Serious ^d	Low		

- a. Downgraded once because study has some concerns for risk of bias
- b. Downgraded once as single study
- c. Downgraded twice as 95% confidence interval crossed 3 or more categories of c-statistic classification accuracy
- d. Downgraded once as 95% confidence interval crossed 2 categories of c-statistic classification accuracy

Table 62: Clinical evidence profile (Hazard ratios): Leibovich 2018 model high risk vs low risk, papillary RCC subtype

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Leibovich 2018 n	nodel – high risk	vs low risk - fo	r prediction of cand	er-specific surv	vival for papillary RO	CC, median 52 mont	hs follow-up	
1 (Schmeusser 2023)	Retrospective cohort	190	9.16 (3.38, 24.82)	Not serious	Not serious	Serious ^a	Serious ^b	Low
Leibovich 2018 n	nodel – hiah risk	vs low risk - fo	r prediction of cand	er-specific surv	vival for papillary RO	CC (Black ethnicity),	median 52 month	ns follow-up

No. of

Table 63: Clinical evidence profile (Hazard ratios): Leibovich 2018 model intermediate risk vs low risk, papillary RCC subtype

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
Leibovich 2018 m	nodel – intermed	liate risk vs low	risk - for prediction	of cancer-spec	cific survival for par	oillary RCC, median	52 months follow	-up		
1 (Schmeusser 2023)	Retrospective cohort	357	1.94 (0.78, 4.81)	Not serious	Not serious	Serious ^a	Very serious ^b	Very low		
Leibovich 2018 n follow-up	Leibovich 2018 model – intermediate risk vs low risk - for prediction of cancer-specific survival for papillary RCC (Black ethnicity), median 52 months follow-up									
1 (Schmeusser 2023)	Retrospective cohort	195	3.65 (0.78, 17.05)	Not serious	Not serious	Serious ^a	Very serious ^b	Very low		
Leibovich 2018 m	Leibovich 2018 model – intermediate risk vs low risk - for prediction of progression-free survival for papillary RCC, median 52 months follow-up									
1 (Schmeusser 2023)	Retrospective cohort	357	1.24 (0.55, 2.8)	Not serious	Not serious	Serious ^a	Very serious ^b	Very low		

Kidney cancer: evidence review for risk prediction tools and factors DRAFT FOR CONSULTATION (September 2025)

Hazard ratio

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
Leibovich 2018 n follow-up	nodel – intermed	iate risk vs low	risk - for prediction	of progression	n-free survival for pa	apillary RCC (Black	ethnicity), median	52 months		
1 (Schmeusser 2023)	Retrospective cohort	195	0.84 (0.31, 2.26)	Not serious	Not serious	Serious ^a	Very serious ^b	Very low		
_										

2 Sorbellini

No evidence identified for this model.

4 SSIGN

5 No evidence identified for this model.

6 TNM 2016

Table 64: Clinical evidence profile (C-statistics): TNM 2016 model, papillary RCC

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
TNM (not specifie	ed) prognostic m	odel for predict	tion of recurrence-f	ree/disease-free	survival in people	with papillary RCC,	median 53 month	s follow-up
1 (Klatte 2019)	Retrospective cohort	556	0.60 (0.54, 0.66)	Not serious	Not serious	Seriousª	Serious ^b	Low
	ed once as single							

b. Downgraded once as 95% confidence interval crossed 2 categories of c-statistic classification accuracy

8

UISS

Table 65: Clinical evidence profile (C-statistics): UISS model, papillary RCC subtype

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
UISS prognostic model for prediction of disease-free survival in people with papillary RCC, median 53 months follow-up								
1 (Klatte 2019)	Retrospective cohort	556	0.62 (0.57, 0.68)	Not serious	Not serious	Serious ^a	Serious ^b	Low
a. Downgra	ded once as single	e study						

- b. Downgraded once as 95% confidence interval crossed 2 categories of c-statistic classification accuracy

VENUSS

Table 66: Clinical evidence profile (C-statistics): VENUSS model, papillary RCC subtype

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
VENUSS prognos	stic model for the	e prediction of	disease-free surviva	al in people with	papillary RCC, me	dian 33 months follo	w-up	
1 (Klatte 2019)	Retrospective cohort	980	0.812 (0.775, 0.848)	Not serious	Not serious	Very serious ^a	Serious ^b	Very low
1 (Erdem 2022)	Retrospective cohort	556	0.665 (0.605, 0.737)					

- Downgraded twice as the point estimates span ≥3 categories of c-statistic classification accuracy
- b. Downgraded once as >50% of the studies by population weight have 95% CIs that cross one of the decision thresholds

1 Table 67: Clinical evidence profile (Hazard ratios): VENUSS model high risk vs low risk, papillary subtype

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
VENUSS prognostic model – high risk vs low risk - for the prediction of cancer-specific survival in people with papillary RCC, median 58.8 months follow-up 1 (Piccinelli, Retrospective cohort 3,180 13.10 (9.91, 17.32) Not serious Serious Serious Serious Not serious Moderate								nonths
•		3,180	• '	Not serious	Not serious	Serious ^a	Not serious	Moderate
VENUSS prognos	stic model – high	n risk vs low ris	k - for the prediction	n of disease-fre	e survival in people	with papillary RCC,	median 48 month	s follow-up
1 (Erdem 2022)	Retrospective cohort	746	17.90 (12.23, 26.20)	Not serious	Not serious	Seriousª	Not serious	Moderate
a. Downgrad	led once as single	study						

Table 68: Clinical evidence profile (Hazard ratios): VENUSS model intermediate risk vs low risk, papillary subtype

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
VENUSS prognos months follow-up		rmediate risk v	s low risk - for the p	rediction of car	cer-specific surviv	al in people with par	oillary RCC, media	n 58.8		
1 (Piccinelli, 2023a)	Retrospective cohort	3,886	2.70 (2.01, 3.62)	Not serious	Not serious	Serious ^a	Not serious	Moderate		
VENUSS prognos follow-up	VENUSS prognostic model – intermediate risk vs low risk - for the prediction of disease-free survival in people with papillary RCC, median 48 months									
1 (Erdem 2022)	Retrospective cohort	851	2.91 (1.90, 4.46)	Not serious	Not serious	Serious ^a	Not serious	Moderate		
a. Downgrad	led once as single	study								

1 Table 69: Clinical evidence profile (Hazard ratios): VENUSS model high risk vs intermediate risk, papillary subtype

		`	,	-		, i i	<i>,</i> , , ,	
No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
VENUSS prognos follow-up	stic model – inte	rmediate risk v	s low risk - for the p	rediction of dis	ease-free survival i	n people with papilla	ary RCC, median	18 months
1 (Erdem 2022)	Retrospective cohort	363	6.07 (4.17, 8.83)	Not serious	Not serious	Serious ^a	Serious ^b	Moderate
	led once as single led once as samp	•						

3 **Zisman**

4 No evidence identified for this model.

Chromophobe subtype

6 GRANT

Table 70: Clinical evidence profile (Hazard ratio): GRANT model poor risk vs favourable risk, chromophobe RCC subtype

				<u> </u>				<i>7</i> 1
No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
GRANT prognos months follow-u		risk vs favoura	ble risk – for the pr	ediction of cand	er-specific survival	in people with chro	mophobe RCC, m	nedian 58.8
1 (Piccinelli 2023b)	Retrospective cohort	2761	3.00 (2.17, 4.15)	Serious ^a	Not serious	Serious ^b	Not serious	Low
	ded once because		ome concerns for ris	k of bias				

8

Karakiewicz

No evidence identified for this model.

3 Kattan

No evidence identified for this model.

5 Leibovich 2003

6 Table 71: Clinical evidence profile (C-statistic): Leibovich 2003 model, chromophobe RCC subtype

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Leibovich 2003 m	odel for predicti	on of recurrence	e-free survival/dise	ase-free surviv	al for chromophobe	subtype RCC, medi	ian 86.4 months fo	ollow-up
1 (Oza 2022)	Retrospective cohort	96	0.65 (0.54, 0.75)	Serious ^a	Not serious	Serious ^b	Very serious ^c	Very low

- a. Downgraded once because the study has some concerns for risk of bias
- b. Downgraded once as single study
- c. Downgraded twice as 95% confidence interval crossed 3 or more categories of c-statistic classification accuracy

8 Table 72: Clinical evidence profile (Hazard ratio): Leibovich 2003 model high risk vs intermediate risk, chromophobe RCC

9 subtype

7

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Leibovich 2003 m	nodel – high risk	vs intermediate	e risk - for predictio	n of disease-fre	e survival for chron	nophobe RCC, medi	an 87.6 months fo	ollow-up
1 (Oza 2022)	Retrospective cohort	96	3.88 (1.56, 9.63)	Serious ^a	Not serious	Serious ^b	Serious ^c	Very low
a. Downgrad	ed once because	the study has so	ome concerns for risk	c of bias				

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
b. Downgraded once as single study								
c. Downgrad	c. Downgraded once as sample size <500							

2 Leibovich 2018

Table 73: Clinical evidence profile (Hazard ratio): Leibovich 2018 model high risk vs low risk, chromophobe RCC subtype

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty	
Leibovich 2018 model – high risk vs low risk - for prediction of cancer-specific survival for chromophobe RCC, median 56 months follow-up									
2 (Piccinelli 2023b, Schmeusser 2023)	Retrospective cohort	2560	17.95 (11.32, 28.46)	Not serious	Not serious	Not serious	Not serious	High	
Leibovich 2018 m	nodel – high risk	vs low risk - fo	r prediction of prog	ression-free su	rvival for chromoph	nobe RCC, median 5	2 months		
1 (Schmeusser 2023)	Retrospective cohort	167	45.35 (8.46, 243.18)	Not serious	Not serious	Serious ^a	Serious ^b	Low	
 a. Downgraded once as data on the outcome was only available from one study b. Downgraded once as sample size <500 									

Table 74: Clinical evidence profile (Hazard ratio): Leibovich 2018 model intermediate risk vs low risk, chromophobe RCC

6 subtype

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty	
Leibovich 2018 model – intermediate risk vs low risk - for prediction of cancer-specific survival for chromophobe RCC, median 56 months follow-up									

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
2 (Piccinelli 2023b,	Retrospective cohort	2882	3.49 (2.46, 4.95)	Not serious	Not serious	Serious ^a	Not serious	Moderate		
Schmeusser 2023)										
Leibovich 2018 m	Leibovich 2018 model – intermediate risk vs low risk - for prediction of progression-free survival for chromophobe RCC, median 52 months									
1 (Schmeusser 2023)	Retrospective cohort	174	3.73 (0.47, 29.88)	Not serious	Not serious	Serious ^a	Very serious ^b	Very low		
a. Downgraded once as I ² 40-60%, or data on the outcome was only available from one study										

- a. Downgraded once as 1440-60%, or data on the outcome was only available from one study
- b. Downgraded twice as sample size <500 and 95% confidence intervals cross the line of no effect

2 Sorbellini

- No evidence identified for this model.
- 4 SSIGN
- No evidence identified for this model.
- 6 TNM 2016.
- No evidence identified for this model.
- 8 UISS
- No evidence identified for this model.

1 VENUSS

2 No evidence identified for this model.

3 Zisman

No evidence identified for this model.

5 All subtypes

6 GRANT

7 Table 75: Clinical evidence profile (C-statistics): GRANT model, all RCC subtypes

No. of			C-statistic					
studies/cohorts	Study design	Sample size	(95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
GRANT model for	RANT model for prediction of overall survival for all types of RCC, median 60 months follow-up							
1 (Buti 2019)	Retrospective cohort	73217	0.67 (0.66, 0.68)	Very serious ^a	Not serious	Serious ^b	Not serious	Very low
GRANT model for	prediction of re	ecurrence-free s	survival/disease fre	e survival for all	types of RCC, med	ian 57.9 months foll	ow-up	
1 (Ishiyama 2024)	Retrospective cohort	235	0.7 (0.66, 0.75)	Very serious ^c	Not serious	Very serious ^d	Seriouse	Very low
1 (Cortellini 2020)	Retrospective cohort	134	0.59 (0.51, 0.67)					

- a. Downgraded twice because the study is at high risk of bias
- b. Downgraded once as data from the outcome was only available from one study
- c. Downgraded twice as >50% of the studies by population weight came from studies at high risk of bias
- d. Downgraded twice as the point estimates span 3 or more categories of c-statistic classification accuracy
- e. Downgraded once as >50% of the studies by population weight have 95% CIs that cross 2 categories of c-statistic classification accuracy

Karakiewicz

Table 76: Clinical evidence profile (C-statistics): Karakiewicz model, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
Karakiewicz mod		cancer-specif		all subtypes of	of RCC, median 77.	9 months follow-up				
1 (Correa 2019)	Retrospective cohort	1647	0.617 (0.616, 0.619)	Serious ^a	Not serious	Serious ^b	Not serious	Low		
1 (Liu 2009)	Retrospective cohort	653	0.75 (0.71, 0.8)							
1 (Morgan 2018)	Retrospective cohort	656	0.84 (0.77, 0.91)							
1 (Tan 2011)	Retrospective cohort	390	0.84 (0.79, 0.89)							
Karakiewicz mod	lel for prediction of	overall surviv	al for all subty	pes of RCC, n	nedian 62.5 month	s follow-up				
2 (Liu 2009, Tan 2011)	Retrospective cohort	1043	0.74 (0.70, 0.77)	Very serious ^c	Not serious	Not serious	Not serious	Moderate		
Karakiewicz model for prediction of recurrence-free survival/disease-free survival for all subtypes of RCC, median 62.5 months follow-up										
2 (Liu 2009, Tan 2011)	Retrospective cohort	1043	0.8 (0.77, 0.82)	Very serious ^c	Not serious	Not serious	Seriousd	Moderate		

a. Downgraded once as >50% of the studies by population weight came from studies at some concerns or high risk of bias

b. Downgraded once as the point estimates span ≥2 categories of c-statistic classification accuracy

c. Downgraded twice as >50% of the weight in the meta-analysis came from studies at high risk of bias

d. Downgraded once as 95% confidence interval crossed 2 categories of c-statistic classification accuracy

Kattan

2 Table 77: Clinical evidence profile (C-statistics): Kattan model, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Kattan model for	prediction of ca	ncer-specific s	urvival for all subty	pes of RCC, me	dian 60 months foll	low-up		
3 (Cindolo 2005, Liu 2009, Tan 2011)	Retrospective cohort	3447	0.77 (0.75, 0.79)	Very serious ^a	Not serious	Serious ^b	Not serious	Very low
Kattan model for	prediction of ov	erall survival fo	or all subtypes of Re	CC, median 60 r	nonths follow-up			
3 (Cindolo 2005, Liu 2009, Tan 2011)	Retrospective cohort	3447	0.71 (0.62, 0.79)	Very serious ^a	Not serious	Serious ^b	Serious ^c	Very low
Kattan model for	prediction of re-	currence-free s	urvival/disease-free	survival for all	subtypes of RCC, i	median 60 months	follow-up	
1 (Cindolo 2005)	Retrospective cohort	2404	0.81 (0.78, 0.84)	Very serious ^d	Very serious ^d Not serious	Serious ^b	Serious ^c	Very low
1 (Correa 2019)	Retrospective cohort	1647	0.622 (0.621, 0.623)					
1 (Hupertan 2006)	Retrospective cohort	565	0.61 (0.58, 0.64)					
1 (Liu 2009)	Retrospective cohort	653	0.84 (0.80, 0.88)					
1 (Tan 2011)	Retrospective cohort	390	0.73 (0.67, 0.79)					
1 (Utsumi 2011) (CUH cohort)	Retrospective cohort	152	0.75 (0.62, 0.87)					
1 (Utsumi 2011)	Retrospective	65	0.8 (0.71, 0.88)					

a. Downgraded twice as >50% of the weight in the meta-analysis came from studies at high risk of bias

b. Downgraded once as I² 40 - 60%, or the point estimates span 2 categories of c-statistic classification accuracy

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
c. Downgraded once as 95% confidence interval crossed 2 categories of c-statistic classification accuracy								
d. Downgraded twice as >50% of the studies by population weight came from studies at high risk of bias								

2 Leibovich 2003

Table 78: Clinical evidence profile (C-statistics): Leibovich 2003 model, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
Leibovich 2003 n	nodel for predict	ion of cancer-s	pecific survival for	all subtypes of	RCC, median 62 mo	nths follow-up				
2 (Shao 2020, Tan 2011)	Retrospective cohort	1524	0.80 (0.76, 0.83)	Very serious ^a	Not serious	Not serious	Serious ^b	Very low		
Leibovich 2003 model for prediction of overall survival for all subtypes of RCC, median 62 months follow-up										
2 (Shao 2020, Tan 2011)	Retrospective cohort	1524	0.77 (0.73, 0.81)	Very serious ^a	Not serious	Not serious	Serious ^b	Very low		
Leibovich 2003 n	nodel for predict	ion of recurren	ce-free survival/disc	ease-free surviv	al for all subtypes o	of RCC, median 68 n	nonths follow-up			
1 (Oza 2022)	Retrospective cohort	1445	0.63 (0.61, 0.65)	Very serious ^d	Not serious	Very serious ^c	Not serious	Very low		
1 (Shao 2020)	Retrospective cohort	1202	0.75 (0.72, 0.79)							
1 (Seles 2017)	Retrospective cohort	676	0.8 (0.76, 0.84)							
1 (Tan 2011)	Retrospective cohort	322	0.8 (0.74, 0.86)							

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
1 (Vasudev 2019) (his)	Retrospective cohort	191	0.73 (0.65, 0.81)	10000				
1 (Vasudev 2019) (con)	Retrospective cohort	384	0.77 (0.69, 0.85)					

- a. Downgraded twice as >50% of the weight in the meta-analysis came from studies at high risk of bias
- b. Downgraded once as 95% confidence interval crossed 2 categories of c-statistic classification accuracy
- c. Downgraded twice as the point estimates span ≥3 categories of c-statistic classification accuracy
- d. Downgraded twice as >50% of the studies by population weight came from studies at high risk of bias

Table 79: Clinical evidence profile (Hazard ratios): Leibovich 2003 high risk vs low risk, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
Leibovich 2003 model – high risk vs low risk - for prediction of disease-free survival for all subtypes RCC, median 90.6 months										
2 (Vasudev 2019 (con), Vasudev 2019 (his))	Retrospective cohort	326	19.14 (9.46, 38.75)	Very serious ^a	Not serious	Not serious	Serious ^b	Very low		

- a. Downgraded twice as >50% of the weight in a meta-analysis came from studies at high risk of bias
- b. Downgraded once as sample size <500

4 Table 80: Clinical evidence profile (Hazard ratios): Leibovich 2003 intermediate risk vs low risk, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty	
Leibovich 2003 n	Leibovich 2003 model – intermediate risk vs low risk - for prediction of disease-free survival for all types RCC, median 90.6 months								

Kidney cancer: evidence review for risk prediction tools and factors DRAFT FOR CONSULTATION (September 2025)

3

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
2 (Vasudev 2019 (con), Vasudev 2019 (his))	Retrospective cohort	459	4.60 (2.26, 9.36)	Very serious ^a	Not serious	Not serious	Serious ^b	Very low

- a. Downgraded twice as >50% of the weight in a meta-analysis came from studies at high risk of bias
- b. Downgraded once as sample size <500

2 Table 81: Clinical evidence profile (Hazard ratios): Leibovich 2003 high risk vs intermediate risk, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty	
Leibovich 2003 model – high risk vs intermediate risk - for prediction of disease-free survival for all types RCC, median									
1 (Oza 2022)	Retrospective cohort	1669	2.74 (2.29, 3.28)	Serious ^a	Not serious	Serious ^b	Not serious	Low	
a. Downgraded once because the study has some concerns for risk of biasb. Downgraded once as single study									

4 Leibovich 2018

No evidence identified for this model.

Sorbellini

Table 82: Clinical evidence profile (C-statistics): Sorbellini model, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Sorbellini model	for prediction of	cancer-specific	survival for all typ	es of RCC, med	lian 62.5 months			
2 (Liu 2009, Tan 2011)	Retrospective	975	0.79 (0.75, 0.83)	Very serious ^a	Not serious	Not serious	Serious ^b	Very low
Sorbellini model	for prediction of	overall surviva	I for all types of RC	C, median 62.5	months			
2 (Liu 2009, Tan 2011)	Retrospective	975	0.74 (0.70, 0.78)	Very serious ^a	Not serious	Not serious	Not serious	Low
Sorbellini model	for prediction of	recurrence-fre	e survival/disease f	ree survival for	all types of RCC, m	edian 62.5 months		
2 (Liu 2009, Tan 2011)	Retrospective	975	0.81 (0.78, 0.84)	Very serious ^a	Not serious	Not serious	Serious ^b	Very low
_								

4 SSIGN

3

Table 83: Clinical evidence profile (C-statistics): SSIGN model, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
SSIGN prognosti	c model for pred	liction of recurr	ence-free/disease-f	ree survival in p	eople with RCC all	types, median 64 m	onths follow-up	
2 (Liu 2009, Shao 2020)	Retrospective cohort	1855	0.79 (0.76, 0.82)	Very serious ^a	Not serious	Not serious	Serious ^b	Very low

a. Downgraded twice as >50% of the weight in the meta-analysis came from studies at high risk of bias

b. Downgraded once as 95% confidence interval crossed 2 categories of c-statistic classification accuracy

c. Downgraded twice as >50% of the studies by population weight came from studies at high risk of bias

d. Downgraded once as the point estimates span 2 categories of c-statistic classification accuracy

Table 84: Clinical evidence profile (Hazard ratios): SSIGN model high risk vs low risk, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
SSIGN prognosti	c model – high r	isk vs low risk	for the prediction	of disease-free	survival in people v	vith RCC all types, m	edian 60 months	follow-up
1 (Tsujino 2017a)	Retrospective cohort	268	4.09 (2.36, 7.10)	Very serious ^a	Not serious	Serious ^b	Serious ^c	Very low
SSIGN prognosti up	c model – high r	isk vs low risk	for the prediction	of cancer-speci	fic survival in peop	le with RCC all types	s, median 57 mon	ths follow-
1 (Tsujino 2017b)	Retrospective cohort	219	13.85 (4.97, 38.57)	Very serious ^a	Not serious	Serious ^b	Serious ^c	Very low
SSIGN prognosti	c model – high r	isk vs low risk	for the prediction	of overall surviv	al in people with R	CC all types, mediar	39.5 months foll	ow-up
2 (Tsujino 2017a, Xiao 2021b)	Retrospective cohort	338	4.55 (2.73, 7.58)	Very serious ^d	Not serious	Not serious	Serious ^c	Very low
SSIGN prognosti up	c model – high r	isk vs low risk	for the prediction	of progression-	free survival in peo	ple with RCC all type	es, median 19 mo	nths follow-
1 (Xiao 2021b)	Retrospective cohort	70	3.03 (1.23, 7.46)	Very serious ^a	Not serious	Serious ^b	Serious ^c	Very low
a. Downgrad	led twice because	the study is at h	nigh risk of bias					

- b. Downgraded once as single study
- c. Downgraded once as sample size <500
- d. Downgraded twice as >50% of the weight in a meta-analysis came from studies at high risk of bias

Table 85: Clinical evidence profile (Hazard ratios): SSIGN model intermediate risk vs low risk, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
SSIGN prognostic model – intermediate risk vs low risk - for the prediction of overall survival in people with RCC all types, median 19 months follow-up								

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
1 (Xiao 2021)	Retrospective cohort	125	1.45 (0.48, 4.42)	Very serious ^a	Not serious	Serious ^b	Very serious ^c	Very low
SSIGN prognostic follow-up	c model – interm	iediate risk vs l	ow risk - for the pre	diction of progr	ession-free surviva	Il in people with RC0	C all types, media	n 19 months
1 (Xiao 2021)	Retrospective cohort	125	1.83 (0.87, 3.85)	Very serious ^a	Not serious	Serious ^b	Very serious ^c	Very low

- a. Downgraded once because the study is at high risk of bias
- b. Downgraded once as single study
- c. Downgraded twice as sample size <500 and 95% confidence intervals cross the line of no effect

TNM 2016

No evidence identified for this model.

6 UISS

5

Table 86: Clinical evidence profile (C-statistics): UISS model, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
UISS prognostic model for prediction of recurrence-free/disease-free survival in people with RCC all types, median 63 months follow-up										
1 (Cindolo 2005)	Retrospective cohort	2404	0.78 (0.75, 0.81)	Very serious ^a		Very serious ^b	Serious	Very low		
1 (Liu 2009)	Retrospective cohort	653	0.67 (0.63, 0.71)							

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
1 (Ishiyama 2024)	Retrospective cohort	235	0.63 (0.59, 0.67)					
1 (Cortellini 2020)	Retrospective cohort	134	0.51 (0.42, 0.6)					
1 (Shao 2020)	Retrospective cohort	1202	0.653 (0.62, 0.686)					
UISS prognostic	model for predic	ction of overall	survival in people v	with RCC all type	es, median 60 mo	nths follow-up		
1 (Tsujino 2017b)	Retrospective cohort	219	0.83 (0.71, 0.95)	Very serious ^a	Not serious	Very serious ^b	Serious ^c	Very low
1 (Cindolo 2005)	Retrospective cohort	2404	0.68 (0.66, 0.7)					
1 (Liu 2009)	Retrospective cohort	653	0.64 (0.59, 0.69)					
1 (Hu 2020)	Retrospective cohort	648	0.765 (0.719, 0.81)					
1 (Correa 2019)	Retrospective cohort	1647	0.556 (0.555, 0.557)					
UISS prognostic	model for predic	ction of cancer-	specific survival in	people with RC	C all types, media	an 65 follow-up		
1 (Cindolo 2005)	Retrospective cohort	2404	0.73 (0.71, 0.76)	Very serious ^a	Not serious	Very serious ^b	Not serious	Very low
1 (Liu 2009)	Retrospective cohort	653	0.65 (0.6, 0.7)					
1 (Hu 2020)	Retrospective cohort	647	0.805 (0.763, 0.847)					

No. of			C-statistic					
studies/cohorts	Study design	Sample size	(95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
a. Downgraded once as >500/ of the studies by population weight have 0.50/. Cla that cross 2 estagaries of a statistic elegation accuracy.								

c. Downgraded once as >50% of the studies by population weight have 95% CIs that cross 2 categories of c-statistic classification accuracy

Table 87: Clinical evidence profile (Hazard ratios): UISS model high risk vs low risk, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty	
UISS prognostic	model - high ris	k vs low risk - f	or the prediction of	cancer-specific	survival in people	with RCC all types,	median 57 month	s follow-up	
1 (Tsujino 2017b)	Retrospective cohort	219	18.20 (6.54, 50.64)	Very serious ^a	Not serious	Serious ^b	Serious ^c	Very low	
UISS prognostic	model - high ris	k vs low risk - f	or the prediction of	disease-free su	ırvival in people wit	th RCC all types, me	dian 73 months fo	ollow-up	
3 (Capogrosso 2018, Cortellini 2020, Tsujino 2019)	Retrospective cohort	1,262	2.42 (1.33, 4.42)	Serious ^d	Not serious	Seriouse	Not serious	Low	
UISS prognostic model - high risk vs low risk - for the prediction of overall survival in people with RCC all types, median 60 months follow-up									
1 (Tsujino 2017a)	Retrospective cohort	268	4.39 (2.31, 8.33)	Very serious ^a	Not serious	Serious ^b	Serious ^c	Very low	

- a. Downgraded twice because the study is at high risk of bias
- b. Downgraded once as single study
- c. Downgraded once as sample size<500
- d. Downgraded once as >50% of the weight in a meta-analysis came from studies at some concerns or high risk of bias
- e. Downgraded once as I² 40-60%

Table 88: Clinical evidence profile (Hazard ratios): UISS model intermediate risk vs low risk, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	Hazard ratio (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty		
UISS prognostic model – intermediate risk vs low risk - for the prediction of disease-free survival in people with RCC all types, median 78 months follow-up										
2 (Capogrosso 2018, Cortellini 2020)	Retrospective cohort	1,443	1.55 (0.94, 2.58)	Serious ^a	Not serious	Not serious	Serious ^b	Low		
UISS prognostic	UISS prognostic model – intermediate risk vs low risk - for the prediction of overall survival in people with RCC all types, median 49 months follow-up									
1 (Baykal 2025)	Retrospective cohort	197	2.84 (1.26, 6.41)	Very serious ^c	Not serious	Serious ^d	Seriouse	Very low		

- a. Downgraded once as >50% of the weight in a meta-analysis came from studies at some concerns or high risk of bias
- b. Downgraded once as 95% confidence intervals crossed the line of no effect
- c. Downgraded twice because the study is at high risk of bias
- d. Downgraded once as single study
- e. Downgraded once as sample size <500

Table 89: Clinical evidence profile (Hazard ratios): UISS model high risk vs intermediate risk, all RCC subtypes

No. of			Hazard ratio					
studies/cohorts	Study design	Sample size	(95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
UISS prognostic model – high risk vs intermediate risk - for the prediction of disease-free survival in people with RCC all types, median 96 months follow-up								
1 (Cortellini 2020)	Retrospective cohort	113	0.99 (0.55, 1.78)	Serious ^a	Not serious	Serious ^b	Very serious ^c	Very low
UISS prognostic model – high risk vs intermediate risk - for the prediction of overall survival in people with RCC all types, median 49 months follow-up								
1 (Baykal 2025)	Retrospective cohort	197	4.64 (2.03, 10.61)	Very serious ^d	Not serious	Serious ^b	Seriouse	Very low
Downgraded once because the study has some concerns for risk of bias Downgraded once as single study								

No. of			Hazard ratio					
studies/cohorts	Study design	Sample size	(95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
a. Downgraded twice as comple size <500 and 05% confidence intervals cross the line of no effect								

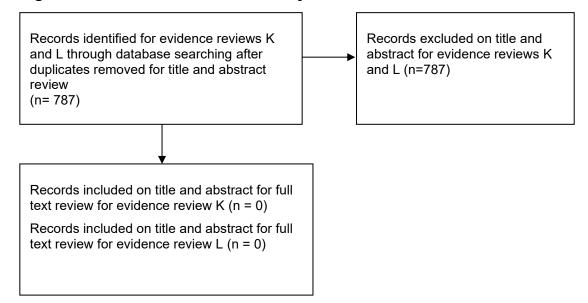
- Downgraded twice as sample size <500 and 95% confidence intervals cross the line of no effect
- d. Downgraded twice because the study is at high risk of bias
- e. Downgraded once as sample size <500

2 **Zisman**

Table 90: Clinical evidence profile (C-statistics): Zisman model, all RCC subtypes

No. of studies/cohorts	Study design	Sample size	C-statistic (95% CI)	Risk of bias	Indirectness	Inconsistency	Imprecision	Certainty
Zisman prognost	Zisman prognostic model for the prediction of cancer-specific survival in people with RCC all types, median 33 months follow-up							
3 (Han 2003 (NN cohort), Han 2003 (MDA cohort), Han 2003 (UCLA cohort))	Retrospective cohort	1,060	0.83 (0.80, 0.86)	Very serious ^a	Not serious	Not serious	Not serious	Low

a. Downgraded twice as >50% of the weight in the meta-analysis came from studies at high risk of bias


Appendix G – Economic evidence study selection

2

3

1

Figure 108: Economic evidence study selection

1 Appendix H – Economic evidence tables

2 No economic evidence was identified for this review question.

3

4

1 Appendix I – Health economic model

No economic modelling was conducted for this review question.

2 3

1 Appendix J – Excluded studies

2 Table 91: Excluded clinical studies

Study	Reason for exclusion
Abd Ghafar, Nahjatul Kursyiah, Alip, Adlinda, Ong, Teng Aik et al. (2018) Efficacy, safety, and prognostic indicators of first-line sunitinib in patients with metastatic renal cell carcinoma: A single center experience. Journal of cancer research and therapeutics 14(6): 1303-1311	- Data not reported in an extractable format
Abel, E Jason, Master, Viraj A, Spiess, Philippe E et al. (2024) The Selection for Cytoreductive Nephrectomy (SCREEN) Score: Improving Surgical Risk Stratification by Integrating Common Radiographic Features. European urology oncology 7(2): 266-274	- Does not report data by specific treatment line
Abel, E Jason, Masterson, Timothy A, Karam, Jose A et al. (2017) Predictive Nomogram for Recurrence following Surgery for Nonmetastatic Renal Cell Cancer with Tumor Thrombus. The Journal of urology 198(4): 810-816	- C statistic without SE / 95% CI ("parked" studies code) AUC for SSIGN, Sorbellini and UISS models with no CI / SE
Aktepe, Oktay Halit, Guner, Gurkan, Guven, Deniz Can et al. (2021) The platelet to lymphocyte ratio predicts overall survival better than the neutrophil to lymphocyte ratio in metastatic renal cell carcinoma. Turkish journal of medical sciences 51(2): 757-765	- Does not report data by specific treatment line
Albiges, Laurence, Flechon, Aude, Chevreau, Christine et al. (2021) Real-world evidence of cabozantinib in patients with metastatic renal cell carcinoma: Results from the CABOREAL Early Access Program. European journal of cancer (Oxford, England: 1990) 142: 102-111	- Does not report data by specific treatment line
An, Huimin, Zhu, Yu, Xu, Le et al. (2015) Notch1 predicts recurrence and survival of patients with clear-cell renal cell carcinoma after surgical resection. Urology 85(2): 483e9-483e14	- C statistic without SE / 95% CI ("parked" studies code) OS and RFS, c index for TNM, UISS and SSIGN, no CI/SE
Arikan, Rukiye, Demircioglu, Ozlem, Ozguven, Salih et al. (2024) Prognostic value of psoas muscle index in metastatic renal cell carcinoma patients treated with anti-VEGF therapy. Indian journal of cancer 61(4): 789-796	- Judged likely that there was overlap between databases in other included study

Study	Reason for exclusion
Arikan, Rukiye, Ozguven, Salih, Telli, Tugba Akin et al. (2023) Prognostic significance of 18F-FDG PET/CT indices in metastatic renal cell cancer and evaluation of revised IMDC risk model by including 18F-FDG PET-CT parameters. Acta radiologica (Stockholm, Sweden: 1987) 64(5): 2040- 2049	- Judged likely that there was overlap between databases in other included study Bayoglu 2023 included due to larger sample size
Badiola, Laura Basterretxea, Milagro, Nuria Lainez, Lavin, Diego Cacho et al. (2024) RENO Study: Clinical characteristics, treatment patterns and survival results in patients with metastatic renal cell carcinoma in Northern Spain. Seminars in oncology 51(34): 77-86	- Exclude - Results reported in non-extractable format
Bai, Junjie, Lu, Qing, Wen, Yahui et al. (2024) Development and validation of a nomogram for predicting the impact of tumor size on cancer-specific survival of locally advanced renal cell carcinoma: a SEER-based study. Aging 16(4): 3823-3836	- Exclude - Study didn't assess a prognostic model of interest
Bamias, A, Tzannis, K, Beuselinck, B et al. (2013) Development and validation of a prognostic model in patients with metastatic renal cell carcinoma treated with sunitinib: a European collaboration. British journal of cancer 109(2): 332-41	- Does not report data by specific treatment line
Beulque, Yana, Kinget, Lisa, Roussel, Eduard et al. (2024) Baseline neutrophil-to-eosinophil-ratio and outcome in metastatic clear-cell renal cell carcinoma treated with nivolumab or ipilimumab/nivolumab. Acta oncologica (Stockholm, Sweden) 63: 658-668	- Does not report data by specific treatment line
Beyplnar, I.; Sozel, Y.; Onder, A.H. (2023) Assessing the prognostic value of IMDC risk score for nivolumab-treated patients with renal cancer and malignant melanoma. Cancer Biomarkers 38(3): 367-377	 Exclude - Study reported the outcome as median Exclude - Study reported the HR without comparing it with a reference group/breaking it down into categories
Bezan, Angelika, Mrsic, Edvin, Krieger, Daniel et al. (2015) The Preoperative AST/ALT (De Ritis) Ratio Represents a Poor Prognostic Factor in a Cohort of Patients with Nonmetastatic Renal Cell Carcinoma. The Journal of urology 194(1): 30-5	- C statistic without SE / 95% CI ("parked" studies code)

Study	Reason for exclusion
Bhindi, Bimal, Abel, E Jason, Albiges, Laurence et al. (2019) Systematic Review of the Role of Cytoreductive Nephrectomy in the Targeted Therapy Era and Beyond: An Individualized Approach to Metastatic Renal Cell Carcinoma. European urology 75(1): 111-128	- Systematic review used as a source of primary studies
Bimbatti, Davide, Pierantoni, Francesco, Lai, Eleonora et al. (2023) Advanced Non- Clear Cell Renal Cell Carcinoma Treatments and Survival: A Real-World Single-Centre Experience. Cancers 15(17)	- Exclude - Results reported as % or median
Blackmur, James P, Gaba, Fortis, Fernando, Dilini et al. (2021) Leibovich score is the optimal clinico-pathological system associated with recurrence of non- metastatic clear cell renal cell carcinoma. Urologic oncology 39(7): 438e11-438e21	- Exclude - Outcome reported as AUC
Blute, M.L. (2008) 1. Redefining pT3 renal cell carcinoma in the modern era: A proposal for a revision of the current TNM primary tumor classification system. Margulis V, Tamboli P, Matin SF, Meisner M, Swanson DA, Wood CG, Department of Urology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX. Urologic Oncology: Seminars and Original Investigations 26(1): 99-100	- Exclude - conference abstract
Boegemann, Martin, Goebell, Peter Jurgen, Woike, Michael et al. (2021) Assessment of prognosis by established prognosis scores and physicians' judgement in mRCC patients: an analysis of the STAR-TOR registry. Translational andrology and urology 10(10): 4062-4074	- Exclude - Results reported as % or median
Brookman-May, Sabine D, May, Matthias, Shariat, Shahrokh F et al. (2013) Time to recurrence is a significant predictor of cancer-specific survival after recurrence in patients with recurrent renal cell carcinomarresults from a comprehensive multi-centre database (CORONA/SATURN-Project). BJU international 112(7): 909-16	- Exclude - Study didn't assess a prognostic model of interest
Bugdayci Basal, Fatma, Karacin, Cengiz, Bilgetekin, Irem et al. (2021) Can Systemic Immune-Inflammation Index Create a New Perspective for the IMDC Scoring System in Patients with Metastatic Renal Cell	- Data only reported for multivariate analysis

Study	Reason for exclusion
Carcinoma?. Urologia internationalis 105(78): 666-673	
Buti, S, Puligandla, M, Bersanelli, M et al. (2017) Validation of a new prognostic model to easily predict outcome in renal cell carcinoma: the GRANT score applied to the ASSURE trial population. Annals of oncology: official journal of the European Society for Medical Oncology 28(11): 2747-2753	- Not a peer-reviewed publication
Cai, Wen, Kong, Wen, Dong, Baijun et al. (2017) Pretreatment Serum Prealbumin as an Independent Prognostic Indicator in Patients With Metastatic Renal Cell Carcinoma Using Tyrosine Kinase Inhibitors as First-Line Target Therapy. Clinical genitourinary cancer 15(3): e437-e446	- Judged likely that there was overlap between databases in other included study Cai 2017a included due to larger sample size
Cheng, Yuling; Kou, Wei; Zhu, Yu (2023) Preoperative Inflammation-Associated Blood Cell Markers in Patients with Non- Metastatic Clear Cell Renal Cell Carcinoma: A Retrospective Study. International journal of general medicine 16: 3067-3080	- C statistic without SE / 95% CI ("parked" studies code) OS and CSS, SSIGN and CSS
Choi, Chang II, Kang, Minyong, Sung, Hyun Hwan et al. (2018) Oncologic Outcomes of Cytoreductive Nephrectomy in Synchronous Metastatic Renal-Cell Carcinoma: A Single- Center Experience. Clinical genitourinary cancer 16(6): e1189-e1199	- Exclude - Study doesn't report an outcome of interest
Chong, Yue, Zhou, Haibin, Zhang, Peng et al. (2025) Establishing cM0 (i+) stage criteria in localized renal cell carcinoma based on postoperative circulating tumor cells monitoring. BMC cancer 25(1): 436	- Exclude - Outcome reported as AUC
Choueiri TK, Xie W, Kollmannsberger C et al. (2011) The impact of cytoreductive nephrectomy on survival of patients with metastatic renal cell carcinoma receiving vascular endothelial growth factor targeted therapy. The Journal of urology 185(1): 60-66	- Exclude - Study doesn't report an outcome of interest
Chow, G K; Myles, J; Novick, A C (2001) The Cleveland Clinic experience with papillary (chromophil) renal cell carcinoma: clinical outcome with histopathological correlation. The Canadian journal of urology 8(2): 1223-8	- Exclude - Study didn't assess a prognostic model of interest

Study	Reason for exclusion
Chrom, Pawel, Stec, Rafal, Bodnar, Lubomir et al. (2018) Incorporating Neutrophil-to-lymphocyte Ratio and Platelet-to-lymphocyte Ratio in Place of Neutrophil Count and Platelet Count Improves Prognostic Accuracy of the International Metastatic Renal Cell Carcinoma Database Consortium Model. Cancer research and treatment 50(1): 103- 110	- Judged likely that there was overlap between databases in other included study Chrom 2019 included due to larger sample size
Cindolo, Luca, Chiodini, Paolo, Brookman-May, Sabine et al. (2013) Assessing the accuracy and generalizability of the preoperative and postoperative Karakiewicz nomograms for renal cell carcinoma: results from a multicentre European and US study. BJU international 112(5): 578-84	- Does not separate out metastatic and non-metastatic participants
Cindolo, Luca, Chiodini, Paolo, Gallo, Ciro et al. (2008) Validation by calibration of the UCLA integrated staging system prognostic model for nonmetastatic renal cell carcinoma after nephrectomy. Cancer 113(1): 65-71	- Secondary publication with no new data Secondary publication of Cindolo 2005
Coffin, Gregoire, Hupertan, Vincent, Taksin, Lionel et al. (2011) Impact of elective versus imperative indications on oncologic outcomes after open nephron-sparing surgery for the treatment of sporadic renal cell carcinomas. Annals of surgical oncology 18(4): 1151-7	- Exclude - Study didn't assess a prognostic model of interest
Cortes, Julian A, Saitta, Cesare, Yuen, Kit L et al. (2024) Combined Charlson comorbidity/C-Reactive Protein Index Is a Novel Predictor in Renal Cell Carcinoma: Analysis of the International Marker Consortium for Renal Cancer (INMARC) Registry. Clinical genitourinary cancer 22(5): 102126	- Exclude - Outcome reported as AUC
Cortes, Julian A, Saitta, Cesare, Yuen, Kit L et al. (2024) Combined Charlson comorbidity/C-Reactive Protein Index Is a Novel Predictor in Renal Cell Carcinoma: Analysis of the International Marker Consortium for Renal Cancer (INMARC) Registry. Clinical genitourinary cancer 22(5): 102126	- Exclude - C-index without SE/95%CI
Dai, Chenchen, Huang, Jiaqi, Li, Yaohui et al. (2021) Tumor contour irregularity on	- Does not separate out metastatic and non- metastatic participants

Study	Reason for exclusion
preoperative imaging: a practical and useful prognostic parameter for papillary renal cell carcinoma. European radiology 31(6): 3745-3753	
<u>Dal Bianco, M, Artibani, W, Bassi, P F et al.</u> (1988) Prognostic factors in renal cell carcinoma. European urology 15(12): 73-6	- TNM prior to 2016
Damassi, Alessandra, Cremante, Malvina, Signori, Alessio et al. (2024) Prognostic Stratification by the Meet-URO Score in Real-World Older Patients With Metastatic Renal Cell Carcinoma (mRCC) Receiving Cabozantinib: A Subanalysis of the Prospective ZEBRA Study (Meet-URO 9). Clinical genitourinary cancer 22(2): 126-133e2	- Does not report data by specific treatment line
Day D, Kanjanapan Y, Kwan E et al. (2016) Benefit from cytoreductive nephrectomy and the prognostic role of neutrophil-to-lymphocyte ratio in patients with metastatic renal cell carcinoma. Internal medicine journal 46(11): 1291-1297	- Does not report data by specific treatment line
De Giorgi, Ugo, Rihawi, Karim, Aieta, Michele et al. (2014) Lymphopenia and clinical outcome of elderly patients treated with sunitinib for metastatic renal cell cancer. Journal of geriatric oncology 5(2): 156-63	- Judged likely that there was overlap between databases in other included study Lolli 2016 included due to larger sample size
De Giorgi, Ugo, Scarpi, Emanuela, Sacco, Cosimo et al. (2014) Standard vs adapted sunitinib regimen in elderly patients with metastatic renal cell cancer: results from a large retrospective analysis. Clinical genitourinary cancer 12(3): 182-9	- Judged likely that there was overlap between databases in other included study Lolli 2016 included due to larger sample size
de Martino, M., Leitner, C.V., Hofbauer, S.L. et al. (2016) Serum Adiponectin Predicts Cancer-specific Survival of Patients with Renal Cell Carcinoma. European Urology Focus 2(2): 197-203	- Study does not contain a relevant outcome
de Martino, Michela, Klatte, Tobias, Haitel, Andrea et al. (2012) Serum cell-free DNA in renal cell carcinoma: a diagnostic and prognostic marker. Cancer 118(1): 82-90	- Study does not contain a relevant outcome
Dong, Yi, Wang, Zheng, Lu, Xin et al. (2020) Clinical outcomes of 168 Chinese patients after local surgery for bone	- Data not reported in an extractable format

Study	Reason for exclusion
metastases arising from advanced renal cell carcinoma. Cancer 126suppl9: 2079-2085	
Donskov, Frede, Michaelson, M Dror, Puzanov, Igor et al. (2015) Sunitinibassociated hypertension and neutropenia as efficacy biomarkers in metastatic renal cell carcinoma patients. British journal of cancer 113(11): 1571-80	- Exclude - Study integrate biomarkers into the MSKCC and IMDC prognostic models
Drljevic-Nielsen, Aska, Donskov, Frede, Mains, Jill Rachel et al. (2022) Prognostic Utility of Parameters Derived From Pretreatment Dual-Layer Spectral-Detector CT in Patients With Metastatic Renal Cell Carcinoma. AJR. American journal of roentgenology 218(5): 867-876	- C statistic without SE / 95% CI ("parked" studies code)
Du, Meijun, Giridhar, Karthik V, Tian, Yijun et al. (2017) Plasma exosomal miRNAs-based prognosis in metastatic kidney cancer. Oncotarget 8(38): 63703-63714	- Does not report data by specific treatment line
Elcicek, O.F. and Kucukoner, M. (2024) Prognostic Factors and Treatment Outcomes in Renal Cell Carcinoma: A Comprehensive Analysis. Namik Kemal Medical Journal 12(3): 217	- Exclude - study does not contain a relevant outcome
El-Mokadem, Ismail, Kidd, Thomas, Pratt, Norman et al. (2016) Tumour suppressor gene (CDKNA2) status on chromosome 9p in resected renal tissue improves prognosis of localised kidney cancer. Oncotarget 7(45): 73045-73054	- C statistic without SE / 95% CI ("parked" studies code) Disease specific survival: SSIGN c indexRFS: Leibovich c index
Ernst, Matthew S, Navani, Vishal, Wells, J Connor et al. (2023) Outcomes for International Metastatic Renal Cell Carcinoma Database Consortium Prognostic Groups in Contemporary First- line Combination Therapies for Metastatic Renal Cell Carcinoma. European urology 84(1): 109-116	- Exclude - Results reported as % or median
Erol, Cihan, Yekeduz, Emre, Tural, Deniz et al. (2023) Clinical Features and Prognostic Factors of Metastatic Non-Clear Cell Renal Cell Carcinoma: A Multicenter Study from the Turkish Oncology Group Kidney Cancer Consortium. Urologia internationalis 107(6): 595-601	- Data only reported for multivariate analysis
Fan, Bo, Wang, Wei, Zhang, Xianping et al. (2019) Prevalence and prognostic value of	- C statistic without SE / 95% CI ("parked" studies code)

Study	Reason for exclusion
FBXO11 expression in patients with clear cell renal cell carcinoma. BMC cancer 19(1): 534	OS: UISS and SSIGN c statistic
Faraj Tabrizi, P., Zeuschner, P., Katzendorn, O. et al. (2024) Robot-assisted partial nephrectomy of multiple tumors: a multicenter analysis. Minerva Urology and Nephrology 76(6): 698	- Exclude - Hazard ratios presented for biomarker stratified by model of interest
Fei, LI, Xiaodong, WEN, Hongqiang, CHAI et al. (2024) Development and validation of a prognostic nomogram for locally advanced renal cell carcinoma patients after surgery. Journal of Modern Urology: 334-341	- Exclude - non-English language
Ficarra, Vincenzo, Martignoni, Guido, Lohse, Christine et al. (2006) External validation of the Mayo Clinic Stage, Size, Grade and Necrosis (SSIGN) score to predict cancer specific survival using a European series of conventional renal cell carcinoma. The Journal of urology 175(4): 1235-9	- C statistic without SE / 95% CI ("parked" studies code)
Ficarra, Vincenzo, Novara, Giacomo, Galfano, Antonio et al. (2004) Application of TNM, 2002 version, in localized renal cell carcinoma: is it able to predict different cancer-specific survival probability?. Urology 63(6): 1050-4	- Exclude - Population non mRCC
Ficarra, Vincenzo, Novara, Giacomo, Galfano, Antonio et al. (2009) The 'Stage, Size, Grade and Necrosis' score is more accurate than the University of California Los Angeles Integrated Staging System for predicting cancer-specific survival in patients with clear cell renal cell carcinoma. BJU international 103(2): 165-70	- Study does not contain a relevant outcome Included in Usher-Smith but AUC only
Ficarra, Vincenzo, Righetti, Rita, Pilloni, Stefania et al. (2002) Prognostic factors in patients with renal cell carcinoma: retrospective analysis of 675 cases. European urology 41(2): 190-8	- Exclude - Study didn't assess a prognostic model of interest
Fina, Widia, Agus Rizal, AH Hamid, Chaidir A, Mochtar et al. (2016) Clinical Factors Predictive of Metastases from Renal Cell Carcinomas. Asian Pacific journal of cancer prevention: APJCP 17(9): 4503-4506	Exclude - Study uses AJCC TNM 2010 classificationExclude - TNM model broken down

Study	Reason for exclusion
Fu, Hangcheng, Liu, Yidong, Xu, Le et al. (2015) Galectin-9 predicts postoperative recurrence and survival of patients with clear-cell renal cell carcinoma. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 36(8): 5791-9	- C statistic without SE / 95% CI ("parked" studies code)
Fu, Hangcheng, Liu, Yidong, Xu, Le et al. (2016) Low Expression of Mucin-4 Predicts Poor Prognosis in Patients With Clear-Cell Renal Cell Carcinoma. Medicine 95(17): e3225	- TNM 2010
Fu, Qiang, Liu, Zheng, Pan, Deng et al. (2014) Tumor miR-125b predicts recurrence and survival of patients with clear-cell renal cell carcinoma after surgical resection. Cancer science 105(11): 1427-34	- Study reports on the same dataset as an included study, without providing additional information
Fujii, Yasuhisa, Saito, Kazutaka, Iimura, Yasumasa et al. (2008) External validation of the Mayo Clinic cancer specific survival score in a Japanese series of clear cell renal cell carcinoma. The Journal of urology 180(4): 1290-6	- C statistic without SE / 95% CI ("parked" studies code) SSIGN CSS
Fujikawa, K, Sasaki, M, Aoyama, T et al. (1997) Role of volume weighted mean nuclear volume for predicting disease outcome in patients with renal cell carcinoma. The Journal of urology 157(4): 1237-41	- Exclude - Study didn't assess a prognostic model of interest
Fujiwara, Ryo, Yuasa, Takeshi, Yamamoto, Shinya et al. (2023) Geriatric Nutritional Risk Index as a Predictor of Prognosis in Metastatic Renal Cell Carcinoma Treated with Nivolumab. Nutrition and cancer 75(2): 670-677	- Does not report data by specific treatment line
Fukuda, Hironori, Takagi, Toshio, Kondo, Tsunenori et al. (2018) Prognostic value of the Glasgow Prognostic Score for patients with metastatic renal cell carcinoma treated by cytoreductive nephrectomy. International journal of clinical oncology 23(3): 539-546	- Does not report data by specific treatment line
Fukushima, Hiroshi, Nakanishi, Yasukazu, Kataoka, Madoka et al. (2016) Prognostic Significance of Sarcopenia in Patients with Metastatic Renal Cell Carcinoma. The Journal of urology 195(1): 26-32	- Does not report data by specific treatment line

Study	Reason for exclusion
Fukushima, Tatsuo, Tsujino, Takuya, Sakamoto, Moritoshi et al. (2025) Deciphering RCC immunotherapy outcomes: insights from a Japanese multi-institutional study on the CANLPH score's impact. World journal of urology 43(1): 135	- Study does not contain a relevant outcome Reports CSS
Galfano, Antonio, Novara, Giacomo, Iafrate, Massimo et al. (2008) Mathematical models for prognostic prediction in patients with renal cell carcinoma. Urologia internationalis 80(2): 113-23	- Systematic review used as a source of primary studies
Gettman, M T, Blute, M L, Spotts, B et al. (2001) Pathologic staging of renal cell carcinoma: significance of tumor classification with the 1997 TNM staging system. Cancer 91(2): 354-61	- Exclude - Study didn't assess a prognostic model of interest
Gofrit, O N, Shapiro, A, Kovalski, N et al. (2001) Renal cell carcinoma: evaluation of the 1997 TNM system and recommendations for follow-up after surgery. European urology 39(6): 669-675	- Exclude - Population non mRCC
Gontero, Paolo, Sun, Maxine, Antonelli, Alessandro et al. (2013) External validation of the preoperative Karakiewicz nomogram in a large multicentre series of patients with renal cell carcinoma. World journal of urology 31(5): 1285-90	- Exclude - Outcome reported as AUC
Gu, Liangyou, Ma, Xin, Xie, Yongpeng et al. (2017) Pretreatment Lymphocyte to Monocyte Ratio is an Independent Prognostic Factor in Metastatic Clear Cell Renal Cell Carcinoma. Clinical genitourinary cancer 15(3): e369-e377	- C statistic without SE / 95% CI ("parked" studies code)
Gu, Weijie, Zhang, Guiming, Sun, Lijiang et al. (2015) Nutritional screening is strongly associated with overall survival in patients treated with targeted agents for metastatic renal cell carcinoma. Journal of cachexia, sarcopenia and muscle 6(3): 222-30	- Model / factor assessed is not included in the protocol
Gui, Cheng-Peng, Chen, Yu-Hang, Zhao, Hong-Wei et al. (2023) Multimodal recurrence scoring system for prediction of clear cell renal cell carcinoma outcome: a discovery and validation study. The Lancet. Digital health 5(8): e515-e524	- Exclude - Outcome reported as AUC
Gupta, Alind, Arora, Paul, Brenner, Darren et al. (2021) Risk Prediction Using Bayesian	- Exclude - Outcome reported as AUC

Study	Reason for exclusion
Networks: An Immunotherapy Case Study in Patients With Metastatic Renal Cell Carcinoma. JCO clinical cancer informatics 5: 326-337	
Hahn, A.W., Surasi, D.S., Viscuse, P.V. et al. (2024) Treatment Outcomes in Patients with Metastatic Renal Cell Carcinoma with Sarcomatoid and/or Rhabdoid Dedifferentiation after Progression on Immune Checkpoint Therapy. Oncologist 29(5): 392-399	- Data only reported for multivariate analysis
Hahn, Andrew W, Alhalabi, Omar, Msaouel, Pavlos et al. (2020) Validation of prognostic scoring systems for patients with metastatic renal cell carcinoma enrolled in phase I clinical trials. ESMO open 5(6): e001073	- Does not report data by specific treatment line
Haider, M.A., Vosough, A., Khalvati, F. et al. (2017) CT texture analysis: A potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated with sunitinib. Cancer Imaging 17(1): 4	- Exclude - Results reported in non- extractable format
Han, Jang Hee, Jeong, Seung-Hwan, Han, Sanghun et al. (2022) Association between decreased ipsilateral renal function and aggressive behavior in renal cell carcinoma. BMC cancer 22(1): 1143	- Data not reported in an extractable format
Harada, Ken-Ichi, Sato, Ryo, Bando, Yukari et al. (2023) Efficacy and safety of pembrolizumab and axitinib as first-line treatment for patients with advanced renal cell carcinoma: Real-world experience in Japan. International journal of urology: official journal of the Japanese Urological Association 30(9): 772-777	- Data not reported for model of interest
Heng, Daniel Y C, Xie, Wanling, Regan, Meredith M et al. (2009) Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 27(34): 5794-9	- Exclude - Outcome reported as AUC
Heng, Daniel Y C, Xie, Wanling, Regan, Meredith M et al. (2013) External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium	- Does not report data by specific treatment line

Study	Reason for exclusion
prognostic model: a population-based study. The Lancet. Oncology 14(2): 141-8	
Herrmann, Edwin, Trojan, Lutz, Becker, Frank et al. (2010) Prognostic factors of papillary renal cell carcinoma: results from a multi-institutional series after pathological review. The Journal of urology 183(2): 460-6	- Exclude - Study didn't assess a prognostic model of interest
Higgins, Michelle I, Martini, Dylan J, Patil, Dattatraya H et al. (2021) Sarcopenia and modified Glasgow Prognostic Score predict postsurgical outcomes in localized renal cell carcinoma. Cancer 127(12): 1974-1983	- Exclude - Outcome reported as AUC
Horie, Shigemitsu, Naito, Sei, Hatakeyama, Shingo et al. (2023) Preoperative prognostic model for localized and locally advanced renal cell carcinoma: Michinoku Japan Urological Cancer Study Group. International journal of clinical oncology 28(11): 1538-1544	- Model / factor assessed is not included in the protocol
Hou, Min, Xing, Haiyan, He, Shuangshuang et al. (2022) The Predictive Value of Three Variables in Patients with Metastatic Renal Cell Carcinoma Treated with Immune-Based Combination Therapies in Randomized Clinical Trials: A Systematic Review and Meta-Analysis. Journal of oncology 2022: 7733251	- Systematic review used as a source of primary studies
limura, Yasumasa, Saito, Kazutaka, Fujii, Yasuhisa et al. (2009) Development and external validation of a new outcome prediction model for patients with clear cell renal cell carcinoma treated with nephrectomy based on preoperative serum C-reactive protein and TNM classification: the TNM-C score. The Journal of urology 181(3): 1004-1012	- Exclude - Study didn't assess a prognostic model of interest
Ishikawa, Gaku, Tamura, Keita, Tsuchiya, Yoshihiro et al. (2025) Comparing Immuno-oncology Combination Therapy With Tyrosine Kinase Inhibitor Monotherapy for Advanced Renal Cell Carcinoma. Anticancer research 45(1): 379-386	- Exclude - Study doesn't report an outcome of interest
Isik, Deniz, Kinikoglu, Oguzcan, Akdag, Goncagul et al. (2024) Clinical Effectiveness of Targeted Therapies Following Nivolumab Therapy in Patients with Metastatic Renal Cell Carcinoma: A	- Exclude - Study doesn't report an outcome of interest

Study	Reason for exclusion
Real-World Study. Medicina (Kaunas, Lithuania) 60(7)	
Jiang, Liming, Wang, Chengcheng, Tong, Yuexin et al. (2023) Web-based nomogram and risk stratification system constructed for predicting the overall survival of older adults with primary kidney cancer after surgical resection. Journal of cancer research and clinical oncology 149(13): 11873-11889	- Exclude - Study didn't assess a prognostic model of interest
Johnson, T V, Abbasi, A, Owen-Smith, A et al. (2010) Absolute preoperative C-reactive protein predicts metastasis and mortality in the first year following potentially curative nephrectomy for clear cell renal cell carcinoma. The Journal of urology 183(2): 480-5	- Study does not contain a relevant outcome Multivariable analysis only
Joshi, A, Ramaswamy, A, Noronha, V et al. (2016) Efficacy and safety of sorafenib in advanced renal cell cancer and validation of Heng criteria. Indian journal of cancer 53(3): 423-428	- Exclude - Results reported as % or median
Juul, Simon, Donskov, Frede, Clark, Peter E et al. (2022) GRade, Age, Nodes, and Tumor (GRANT) compared with Leibovich score to predict survival in localized renal cell carcinoma: A nationwide study. International journal of urology: official journal of the Japanese Urological Association 29(7): 641-645	- C statistic without SE / 95% CI ("parked" studies code) GRANT and Leibovich, c index for OS and RFS
Kammerer-Jacquet, Solene-Florence, Brunot, Angelique, Bensalah, Karim et al. (2017) Hilar fat infiltration: A new prognostic factor in metastatic clear cell renal cell carcinoma with first-line sunitinib treatment. Urologic oncology 35(10): 603e7-603e14	- Exclude - doesn't state what risk groups the HRs relate to
Kang, Minyong, Yu, Jiwoong, Sung, Hyun Hwan et al. (2018) Prognostic impact of the pretreatment aspartate transaminase/alanine transaminase ratio in patients treated with first-line systemic tyrosine kinase inhibitor therapy for metastatic renal cell carcinoma. International journal of urology: official journal of the Japanese Urological Association 25(6): 596-603	- Judged likely that there was overlap between databases in other included study Kim 2018 included due to larger sample size
Karakiewicz, Pierre I, Briganti, Alberto, Chun, Felix K-H et al. (2007) Multi- institutional validation of a new renal	- Study does not contain a relevant outcome

Study	Reason for exclusion
cancer-specific survival nomogram. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 25(11): 1316-22	
Karakiewicz, Pierre I, Hutterer, Georg C, Trinh, Quoc-Dien et al. (2007) C-reactive protein is an informative predictor of renal cell carcinoma-specific mortality: a European study of 313 patients. Cancer 110(6): 1241-7	- TNM 2002
Karakiewicz, Pierre I, Suardi, Nazareno, Capitanio, Umberto et al. (2009) Conditional survival predictions after nephrectomy for renal cell carcinoma. The Journal of urology 182(6): 2607-12	- Study does not contain a relevant outcome
Kawai, Y, Osawa, T, Kobayashi, K et al. (2015) Factors Prognostic for Survival in Japanese Patients Treated with Sunitinib as First-line Therapy for Metastatic Clear Cell Renal Cell Cancer. Asian Pacific journal of cancer prevention: APJCP 16(14): 5687-90	- Exclude - doesn't state what risk groups the HRs relate to
Khene, Zine-Eddine, Larcher, Alessandro, Bernhard, Jean-Christophe et al. (2021) External Validation of the ASSURE Model for Predicting Oncological Outcomes After Resection of High-risk Renal Cell Carcinoma (RESCUE Study: UroCCR 88). European urology open science 33: 89-93	- Data not reported in an extractable format Data presented as graphs only
Kikuchi, Hiroshi, Osawa, Takahiro, Matsushita, Yuto et al. (2025) Validation of five prognostic models treated with axitinib beyond first-line nivolumab plus ipilimumab therapy for metastatic renal cell carcinoma: a Japanese multicenter retrospective study. Japanese journal of clinical oncology	- Judged likely that there was overlap between databases in other included study
Kim, Hyung L, Seligson, David, Liu, Xueli et al. (2004) Using protein expressions to predict survival in clear cell renal carcinoma. Clinical cancer research: an official journal of the American Association for Cancer Research 10(16): 5464-71	- Exclude - Study didn't assess a prognostic model of interest
Kim, S.H., Kim, J.K., Park, E.Y. et al. (2019) Liver metastasis and Heng risk are prognostic factors in patients with non- nephrectomized synchronous metastatic renal cell carcinoma treated with systemic therapy. PLoS ONE 14(2): e0211105	- Exclude - duplicate paper

Study	Reason for exclusion
Kim, Simon P, Alt, Angela L, Weight, Christopher J et al. (2011) Independent validation of the 2010 American Joint Committee on Cancer TNM classification for renal cell carcinoma: results from a large, single institution cohort. The Journal of urology 185(6): 2035-9	- Exclude - Study didn't assess a prognostic model of interest
Kim, Sung Han, Kim, Sohee, Joo, Jungnam et al. (2016) A retrospective study of predictive factors for unexpectedly prolonged or shortened progression-free survival and overall survival among patients with metastatic renal cell carcinoma who received first-line targeted therapy. BMC cancer 16: 577	- Exclude - Results reported in non- extractable format
Kim, Sung Han, Kwon, Whi-An, Kim, Sohee et al. (2018) The neutrophil-to-lymphocyte ratio makes the Heng risk model improve better the prediction of overall survival in metastatic renal cell cancer patients. Japanese journal of clinical oncology 48(9): 835-840	- Does not report data by specific treatment line
Klumper, Niklas, Ralser, Damian J, Zarbl, Romina et al. (2021) <ovid:i>CTLA4</ovid:i> promoter hypomethylation is a negative prognostic biomarker at initial diagnosis but predicts response and favorable outcome to anti-PD-1 based immunotherapy in clear cell renal cell carcinoma. Journal for immunotherapy of cancer 9(8)	- Model / factor assessed is not included in the protocol
Kohli, M., Tan, W., Vire, B. et al. (2021) Prognostic value of plasma HPG80 (Circulating progastrin) in metastatic renal cell carcinoma. Cancers 13(3): 1-13	- Exclude - Study doesn't report an outcome of interest
Konishi, Sakae, Hatakeyama, Shingo, Numakura, Kazuyuki et al. (2019) Validation of the IMDC Prognostic Model in Patients With Metastatic Renal-Cell Carcinoma Treated With First-Line Axitinib: A Multicenter Retrospective Study. Clinical genitourinary cancer 17(5): e1080-e1089	- Data not reported in an extractable format
Kotecha, Ritesh R, Flippot, Ronan, Nortman, Taylor et al. (2021) Prognosis of Incidental Brain Metastases in Patients With Advanced Renal Cell Carcinoma. Journal of the National Comprehensive Cancer Network: JNCCN 19(4): 432-438	- Exclude - Study doesn't report an outcome of interest

Study	Reason for exclusion
Kubackova, Katerina, Melichar, Bohuslav, Bortlicek, Zbynek et al. (2015) Comparison of Two Prognostic Models in Patients with Metastatic Renal Cancer Treated with Sunitinib: a Retrospective, Registry-Based Study. Targeted oncology 10(4): 557-63	- Exclude - Results reported as % or median
Kwon, Whi-An, Cho, In-Chang, Yu, Ami et al. (2013) Validation of the MSKCC and Heng risk criteria models for predicting survival in patients with metastatic renal cell carcinoma treated with sunitinib. Annals of surgical oncology 20(13): 4397-404	- Does not report data by specific treatment line
Lamb, G W A, Aitchison, M, Ramsey, S et al. (2012) Clinical utility of the Glasgow Prognostic Score in patients undergoing curative nephrectomy for renal clear cell cancer: basis of new prognostic scoring systems. British journal of cancer 106(2): 279-83	- Study does not contain a relevant outcome Included in Usher-Smith but AUC only
Lamb, G W A, McMillan, D C, Ramsey, S et al. (2006) The relationship between the preoperative systemic inflammatory response and cancer-specific survival in patients undergoing potentially curative resection for renal clear cell cancer. British journal of cancer 94(6): 781-4	- Study does not contain a relevant outcome
Lauridsen, K.M., Moller, H.J., Kristensen, M.W. et al. (2025) Soluble CD206 in metastatic renal cell carcinoma: Relation to clinical-biochemical parameters and patient outcome. International Journal of Cancer 156(4): 875	- Exclude - Study didn't analyse a prognostic model listed in the protocol
Lee, Alvin, Lee, Han Jie, Huang, Hong Hong et al. (2020) Prognostic Significance of Inflammation-associated Blood Cell Markers in Nonmetastatic Clear Cell Renal Cell Carcinoma. Clinical genitourinary cancer 18(4): 304-313	- C statistic without SE / 95% CI ("parked" studies code) CSS Leibovich and UISS c index
Lee, Chung-Han, Hotker, Andreas M, Voss, Martin H et al. (2016) Bevacizumab Monotherapy as Salvage Therapy for Advanced Clear Cell Renal Cell Carcinoma Pretreated With Targeted Drugs. Clinical genitourinary cancer 14(1): 56-62	- Does not report data by specific treatment line
Lee, Chunwoo, You, Dalsan, Park, Junsoo et al. (2011) Validation of the 2009 TNM Classification for Renal Cell Carcinoma: Comparison with the 2002 TNM	- Exclude - Study didn't assess a prognostic model of interest

Study	Reason for exclusion
Classification by Concordance Index. Korean journal of urology 52(8): 524-30	
Lee, In Hee, Kang, Byung Woog, Kim, Jong Gwang et al. (2020) Comparison of three risk stratification models for non-clear cell renal cell carcinoma patients treated with temsirolimus as first-line therapy. The Korean journal of internal medicine 35(1): 185-193	- Exclude - Study doesn't report an outcome of interest
Leibovich, BC Cheville, JC Lohse, CM Zincke, H Kwon, ED Frank, I Thompson, RH Blute, ML (2005) Cancer specific survival for patients with pT3 renal cell carcinoma - Can the 2002 primary tumor classification be improved?. JOURNAL OF UROLOGY 173(3): 716 - 719	- Exclude - Prognostic factor - Exclude - non-metastatic
Leibovich, BC, Blute, ML, Cheville, JC et al. (2003) Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 97(7): 1663-71	Exclude - Study uses TNM 2002 classificationExclude - TNM model broken down
Lemelin, Audreylie, Takemura, Kosuke, Heng, Daniel Y C et al. (2023) Prognostic Models in Metastatic Renal Cell Carcinoma. Hematology/oncology clinics of North America 37(5): 925-935	- Review article but not a systematic review
Li, Shuaishuai, Zhu, Jiawei, He, Zhenwei et al. (2022) Development and validation of nomograms predicting postoperative survival in patients with chromophobe renal cell carcinoma. Frontiers in oncology 12: 982833	- Exclude - Study didn't assess a prognostic model of interest
Li, Xiaoxia, Lin, Dengqiang, Xiong, Ying et al. (2025) Node-RADS category on preoperative CT predicts prognosis in patients with papillary renal cell carcinoma. European radiology	Exclude - C-index without SE/95%CIExclude - AUC reported without other relevant outcomes
Lin, Haiyue, Sun, Qi, Li, Zeyang et al. (2023) Comparison and validation of different risk models for papillary renal cell carcinoma. Urologic oncology 41(8): 358e1-358e7	- C statistic without SE / 95% CI ("parked" studies code) TNM, UISS, SSIGN, Leibovich, VENUSS, RFS, CSS and OS.
Lin, Haiyue, Wang, Caiying, Zhao, Yun et al. (2024) Validation of novel grading schemes and refinement of the Leibovich risk groups for chromophobe renal cell	- C statistic without SE / 95% CI ("parked" studies code)

Study	Reason for exclusion
carcinoma. World journal of urology 43(1): 45	
Lin, Mingxin; Wang, Cong; Zhou, Jianan (2023) Development and validation of prognostic nomogram for elderly patients with clear cell renal cell carcinoma based on the SEER database. Medicine 102(42): e35694	- Exclude - Results reported in non- extractable format
Liu, Bing, Cui, Zhiming, Xu, Shenhao et al. (2024) Computed Tomography Measures of Perinephric Adipose Tissue and C-Reactive Protein-to-Albumin Ratio are Associated with Common Prognostic Models for Nonmetastatic Clear Cell Renal Cell Carcinoma Patients. Archivos espanoles de urologia 77(9): 1054-1061	- Exclude - Study doesn't report an outcome of interest
Liu, Weisi, Liu, Haiou, Liu, Yidong et al. (2014) Prognostic significance of p21-activated kinase 6 expression in patients with clear cell renal cell carcinoma. Annals of surgical oncology 21suppl4: 575-83	- C statistic without SE / 95% CI ("parked" studies code)
Liu, Weisi, Liu, Yidong, Liu, Haiou et al. (2015) Snail predicts recurrence and survival of patients with localized clear cell renal cell carcinoma after surgical resection. Urologic oncology 33(2): 69e1-10	- C statistic without SE / 95% CI ("parked" studies code)
Liu, Yao, Liu, J, Liu, C et al. (2024) Expression and Significance of BCCIP and Glutathione Peroxidase 4 in Clear Cell Renal Cell Carcinoma. Bulletin of experimental biology and medicine 176(3): 363-368	- Exclude - Study didn't assess a prognostic model of interest
Liu, Yidong, Liu, Haiou, Liu, Weisi et al. (2015) beta1,6-N-acetylglucosaminyltransferase V predicts recurrence and survival of patients with clear-cell renal cell carcinoma after surgical resection. World journal of urology 33(11): 1791-9	- C statistic without SE / 95% CI ("parked" studies code)
Liu, Yidong, Liu, Weisi, Xu, Le et al. (2014) GALNT4 predicts clinical outcome in patients with clear cell renal cell carcinoma. The Journal of urology 192(5): 1534-41	- TNM 2010 (Usher-Smith 2022 paper)
Liu, Zheng, Liu, Yidong, Xu, Le et al. (2015) P2X7 receptor predicts postoperative cancer-specific survival of patients with	- C statistic without SE / 95% CI ("parked" studies code) TNM, UISS, SSIGN c index, 6.2% metastatic

Study	Reason for exclusion
clear-cell renal cell carcinoma. Cancer science 106(9): 1224-31	
Longoni, Mattia, Rosiello, Giuseppe, Scilipoti, Pietro et al. (2025) Recurrence after surgery for clear cell and papillary renal cell carcinoma: Head-to head comparison of validated risk scores. Urologic oncology	- Exclude - Outcome reported as AUC
Lv, Zheng, Feng, Hua-Yi, Wang, Tao et al. (2022) Preoperative systemic inflammation response index indicates poor prognosis in patients treated with resection of renal cell carcinoma with inferior vena cava tumor thrombus. Urologic oncology 40(4): 167e9-167e19	- Does not separate out people with metastatic and non-metastatic RCC
M W Kattan 1, V Reuter, R J Motzer, J Katz PR (2001) A postoperative prognostic nomogram for renal cell carcinoma. 1(166): 63-67	- Not a relevant study design Derivation only (validation conducted by boot-strapping)
Maffezzoli, Michele, Signori, Alessio, Campobasso, Davide et al. (2025) External Validation of the GRade, Age, Nodes and Tumor (GRANT) Score for Patients with Surgically Treated Papillary Renal Cell Carcinoma. Technology in cancer research & treatment 24: 15330338251329848	- C statistic without SE / 95% CI ("parked" studies code)
Majidova, Nargiz, Seyyar, Mustafa, Bayraktar, Demet Isik et al. (2024) Which factors help to determine the long-term response to first-line tyrosine kinase inhibitors in patients with metastatic renal cell carcinoma: A Turkish multi-centre study. Biomolecules & biomedicine 24(6): 1776-1784	- Exclude - Study doesn't report an outcome of interest
Marconi, L, de Bruijn, R, van Werkhoven, E et al. (2018) External validation of a predictive model of survival after cytoreductive nephrectomy for metastatic renal cell carcinoma. World journal of urology 36(12): 1973-1980	- Exclude - New model, not included in the protocol
Martella, Oreste, Galatioto, Giuseppe Paradiso, Necozione, Stefano et al. (2011) Integrated staging systems for conventional renal cell carcinoma: a comparison of two prognostic models. Archivio italiano di urologia, andrologia: organo ufficiale [di] Societa italiana di ecografia urologica e nefrologica 83(3): 121-7	- Exclude - Outcome reported as AUC

Study	Reason for exclusion
Martini, Dylan J, Liu, Yuan, Shabto, Julie M et al. (2020) Novel Risk Scoring System for Patients with Metastatic Renal Cell Carcinoma Treated with Immune Checkpoint Inhibitors. The oncologist 25(3): e484-e491	- C statistic without SE / 95% CI ("parked" studies code)
Martini, Dylan J, Olsen, T Anders, Goyal, Subir et al. (2021) Body Composition Variables as Radiographic Biomarkers of Clinical Outcomes in Metastatic Renal Cell Carcinoma Patients Receiving Immune Checkpoint Inhibitors. Frontiers in oncology 11: 707050	- C statistic without SE / 95% CI ("parked" studies code)
Massaad, Elie, Saylor, Philip J, Hadzipasic, Muhamed et al. (2021) The effectiveness of systemic therapies after surgery for metastatic renal cell carcinoma to the spine: a propensity analysis controlling for sarcopenia, frailty, and nutrition. Journal of neurosurgery. Spine 35(3): 356-365	- Does not report data by specific treatment line
Massari, Francesco, Di Nunno, Vincenzo, Guida, Annalisa et al. (2021) Addition of Primary Metastatic Site on Bone, Brain, and Liver to IMDC Criteria in Patients With Metastatic Renal Cell Carcinoma: A Validation Study. Clinical genitourinary cancer 19(1): 32-40	- Data not reported for model of interest
Mattila, Kalle E, Laajala, Teemu D, Tornberg, Sara V et al. (2021) A three- feature prediction model for metastasis-free survival after surgery of localized clear cell renal cell carcinoma. Scientific reports 11(1): 8650	- Data not reported in an extractable format Unclear data
May, Matthias, Surcel, Cristian, Capitanio, Umberto et al. (2017) Prognostic and discriminative power of the 7th TNM classification for patients with surgically treated papillary renal cell carcinoma: results of a multi-institutional validation study (CORONA subtype project). Scandinavian journal of urology 51(4): 269-276	- Exclude - Study didn't assess a prognostic model of interest
McKay, Rana R, Kroeger, Nils, Xie, Wanling et al. (2014) Impact of bone and liver metastases on patients with renal cell carcinoma treated with targeted therapy. European urology 65(3): 577-84	- Data not reported for model of interest

Study	Reason for exclusion
Minervini, Andrea, Di Cristofano, Claudio, Collecchi, Paola et al. (2005) Intracapsular clear cell renal carcinoma: ploidy status improves the prognostic value of the 2002 TNM classification. The Journal of urology 174(4pt1): 1203-1207	 Exclude - Population non mRCC Exclude - Study didn't assess a prognostic model of interest
Minervini, R, Minervini, A, Fontana, N et al. (2000) Evaluation of the 1997 tumour, nodes and metastases classification of renal cell carcinoma: experience in 172 patients. BJU international 86(3): 199-202	- Exclude - Study didn't assess a prognostic model of interest
Mischinger, Johannes, Frohlich, Eleonore, Mannweiler, Sebastian et al. (2019) Prognostic value of B7-H1, B7-H3 and the stage, size, grade and necrosis (SSIGN) score in metastatic clear cell renal cell carcinoma. Central European journal of urology 72(1): 23-31	- Study does not contain a relevant outcome
Mizuno, Ryuichi, Miyajima, Akira, Hibi, Taizo et al. (2017) Impact of baseline visceral fat accumulation on prognosis in patients with metastatic renal cell carcinoma treated with systemic therapy. Medical oncology (Northwood, London, England) 34(4): 47	- Data only reported for multivariate analysis
Mollica, V., Rizzo, A., Tassinari, E. et al. (2021) Prognostic and predictive factors to nivolumab in patients with metastatic renal cell carcinoma: A single center study. Anti-Cancer Drugs 32(1): 74-81	- Exclude - Prognostic model doesn't compare the different risk groups
Mollica, Veronica, Rizzo, Alessandro, Tassinari, Elisa et al. (2021) Prognostic and predictive factors to nivolumab in patients with metastatic renal cell carcinoma: a single center study. Anti-cancer drugs 32(1): 74-81	 Exclude - Results reported in non-extractable format Exclude - Results reported as % or median
Motzer, RJ, Bacik, J, Murphy, BA et al. (2002) Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 20(1): 289-96	- Exclude - Study didn't analyse a prognostic model listed in the protocol
Murianni, Veronica, Signori, Alessio, Buti, Sebastiano et al. (2024) Time to strategy failure and treatment beyond progression in pretreated metastatic renal cell carcinoma patients receiving nivolumab: post-hoc	- Exclude - prognostic model report the result from multivariate analysis

Study	Reason for exclusion
analysis of the Meet-URO 15 study. Frontiers in oncology 14: 1307635	
Nagpal, Ria, Campione, Marina, Rebuzzi, Sara Elena et al. (2025) Prognostic Value of G8 Geriatric Screening and Meet-URO Scores in Metastatic Renal Cell Carcinoma Patients Receiving First-Line Ipilimumab-Nivolumab Combination Immunotherapy. Technology in cancer research & treatment 24: 15330338251316626	- Judged likely that there was overlap between databases in other included study
Naito, Sei, Kato, Tomoyuki, Numakura, Kazuyuki et al. (2021) Prognosis of Japanese metastatic renal cell carcinoma patients in the targeted therapy era. International journal of clinical oncology 26(10): 1947-1954	 C statistic without SE / 95% CI ("parked" studies code) Exclude - Outcome reported as AUC
Ng, Chi-Fai, Wan, Siu-Ho, Wong, Annie et al. (2007) Use of the University of California Los Angeles Integrated Staging System (UISS) to predict survival in localized renal cell carcinoma in an Asian population. International urology and nephrology 39(3): 699-703	- Exclude - Results were reported in %
Niu, Tian, Liu, Yidong, Zhang, Yuan et al. (2016) Increased expression of MUC3A is associated with poor prognosis in localized clear-cell renal cell carcinoma. Oncotarget 7(31): 50017-50026	- C statistic without SE / 95% CI ("parked" studies code)
Noe, Allard, de Bruijn, Roderick E, Blank, Christian et al. (2016) Comparison of pretreatment MSKCC and IMDC prognostic risk models in patients with synchronous metastatic renal cell carcinoma treated in the era of targeted therapy. World journal of urology 34(8): 1067-72	 Exclude - Results reported in non- extractable format Exclude - Results reported as % or median
Novara, Giacomo, Ficarra, Vincenzo, Antonelli, Alessandro et al. (2010) Validation of the 2009 TNM version in a large multi-institutional cohort of patients treated for renal cell carcinoma: are further improvements needed?. European urology 58(4): 588-95	- Exclude - Study didn't assess a prognostic model of interest
Ohashi, Riuko, Martignoni, Guido, Hartmann, Arndt et al. (2020) Multi- institutional re-evaluation of prognostic factors in chromophobe renal cell carcinoma: proposal of a novel two-tiered grading scheme. Virchows Archiv: an	- Exclude - Study didn't assess a prognostic model of interest

Study	Reason for exclusion
international journal of pathology 476(3): 409-418	
Ohsugi, Haruyuki, Yoshida, Takashi, Ohe, Chisato et al. (2021) The SSPN Score, a Novel Scoring System Incorporating PBRM1 Expression, Predicts Postoperative Recurrence for Patients with Non-metastatic Clear Cell Renal Cell Carcinoma. Annals of surgical oncology 28(4): 2359-2366	- Data not reported in an extractable format
Okita, Kazutaka, Hatakeyama, Shingo, Naito, Sei et al. (2021) External validation of the REMARCC model for the selection of cytoreductive nephrectomy in patients with primary metastatic renal cell carcinoma: A multicenter retrospective study. Urologic oncology 39(12): 836e11-836e17	- C statistic without SE / 95% CI ("parked" studies code)
Omae, Kenji; Kondo, Tsunenori; Tanabe, Kazunari (2015) High preoperative C-reactive protein values predict poor survival in patients on chronic hemodialysis undergoing nephrectomy for renal cancer. Urologic oncology 33(2): 67e9-13	- Exclude - Study didn't assess a prognostic model of interest
Osorio, Lucia, Grazioso, Tatiana P, de Velasco, Guillermo et al. (2024) Retrospective study assessing the role of the androgen receptor in clear cell renal cell cancer patients treated with VEGFR inhibitors in monotherapy. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico	- Exclude - Study didn't analyse a prognostic model listed in the protocol
Palumbo, Carlotta, Mistretta, Francesco A, Knipper, Sophie et al. (2020) Conditional Survival of Patients With Nonmetastatic Renal Cell Carcinoma: How Cancer-Specific Mortality Changes After Nephrectomy. Journal of the National Comprehensive Cancer Network: JNCCN 18(1): 44-51	- Exclude - Population non mRCC
Palumbo, Carlotta, Perri, Davide, Zacchero, Monica et al. (2022) Risk of recurrence after nephrectomy: Comparison of predictive ability of validated risk models. Urologic oncology 40(4): 167e1-167e7	- C statistic without SE / 95% CI ("parked" studies code)
Pan, Deng, Xu, Le, Liu, Haiou et al. (2015) High expression of interleukin-11 is an independent indicator of poor prognosis in	- C statistic without SE / 95% CI ("parked" studies code)

Study	Reason for exclusion
clear-cell renal cell carcinoma. Cancer science 106(5): 592-7	
Pan, Deng, Xu, Le, Liu, Haiou et al. (2015) Interleukin-11 receptor predicts post- operative clinical outcome in patients with early-stage clear-cell renal cell carcinoma. Japanese journal of clinical oncology 45(2): 202-9	- C statistic without SE / 95% CI ("parked" studies code) RFS and OS Leibovich c index
Papworth, K., Bergh, A., Grankvist, K. et al. (2013) Osteopontin but not parathyroid hormone-related protein predicts prognosis in human renal cell carcinoma. Acta Oncologica 52(1): 159-165	- Exclude - Study didn't assess a prognostic model of interest
Parker, William P, Cheville, John C, Frank, Igor et al. (2017) Application of the Stage, Size, Grade, and Necrosis (SSIGN) Score for Clear Cell Renal Cell Carcinoma in Contemporary Patients. European urology 71(4): 665-673	- Does not separate out metastatic and non-metastatic participants
Patard, Jean-Jacques, Dorey, Frederick J, Cindolo, Luca et al. (2004) Symptoms as well as tumor size provide prognostic information on patients with localized renal tumors. The Journal of urology 172(6pt1): 2167-71	- Exclude - Study uses TNM 2002 classification
Patard, Jean-Jacques, Kim, Hyung L, Lam, John S et al. (2004) Use of the University of California Los Angeles integrated staging system to predict survival in renal cell carcinoma: an international multicenter study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 22(16): 3316-22	- Exclude - C-index without SE/95%CI
Patel, N., Hakansson, A., Ohtake, S. et al. (2023) Transcriptomic recurrence score improves recurrence prediction for surgically treated patients with intermediaterisk clear cell kidney cancer. Cancer Medicine 12(5): 6437-6444	- Study does not contain a relevant outcome
Perez-Valderrama, B, Arranz Arija, J A, Rodriguez Sanchez, A et al. (2016) Validation of the International Metastatic Renal-Cell Carcinoma Database Consortium (IMDC) prognostic model for first-line pazopanib in metastatic renal carcinoma: the Spanish Oncologic Genitourinary Group (SOGUG) SPAZO study. Annals of oncology: official journal of	- Exclude - Results reported in non-extractable format

Study	Reason for exclusion
the European Society for Medical Oncology 27(4): 706-11	
Petraki, Constantina D, Gregorakis, Alkiviadis K, Vaslamatzis, Michael M et al. (2006) Prognostic implications of the immunohistochemical expression of human kallikreins 5, 6, 10 and 11 in renal cell carcinoma. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 27(1): 1-7	- Exclude - Study uses TNM 2002 classification - Exclude - TNM model broken down
Peyton, Charles C, Abel, E Jason, Chipollini, Juan et al. (2020) The Value of Neutrophil to Lymphocyte Ratio in Patients Undergoing Cytoreductive Nephrectomy with Thrombectomy. European urology focus 6(1): 104-111	- C statistic without SE / 95% CI ("parked" studies code)
Piccinelli, M.L., Barletta, F., Tappero, S. et al. (2023) Development and External Validation of a Novel Nomogram Predicting Cancer-specific Mortality-free Survival in Surgically Treated Papillary Renal Cell Carcinoma Patients. European Urology Focus 9(5): 799-806	- Study does not contain a relevant outcome
Pichler, M, Hutterer, G C, Stoeckigt, C et al. (2013) Validation of the pre-treatment neutrophil-lymphocyte ratio as a prognostic factor in a large European cohort of renal cell carcinoma patients. British journal of cancer 108(4): 901-7	- C statistic without SE / 95% CI ("parked" studies code)
Pichler, Martin, Hutterer, Georg C, Chromecki, Thomas F et al. (2012) Prognostic value of the Leibovich prognosis score supplemented by vascular invasion for clear cell renal cell carcinoma. The Journal of urology 187(3): 834-9	- C statistic without SE / 95% CI ("parked" studies code)
Pichler, Martin, Hutterer, Georg C, Chromecki, Thomas F et al. (2013) Comparison of the 2002 and 2010 TNM classification systems regarding outcome prediction in clear cell and papillary renal cell carcinoma. Histopathology 62(2): 237- 46	- TNM 2002 - TNM 2010
Pichler, Martin, Hutterer, Georg C, Chromecki, Thomas F et al. (2013) Predictive ability of the 2002 and 2010 versions of the Tumour-Node-Metastasis classification system regarding metastasis-	- Exclude - Study didn't assess a prognostic model of interest

Study	Reason for exclusion
free, cancer-specific and overall survival in a European renal cell carcinoma single-centre series. BJU international 111(4ptb): e191-5	
Pichler, Martin, Hutterer, Georg C, Chromecki, Thomas F et al. (2011) External validation of the Leibovich prognosis score for nonmetastatic clear cell renal cell carcinoma at a single European center applying routine pathology. The Journal of urology 186(5): 1773-7	- Exclude - Population non mRCC
Polanco Pujol, L, Herranz Amo, F, Cano Velasco, J et al. (2020) Recurrence risk groups after nephrectomy for renal cell carcinoma. Actas urologicas espanolas 44(2): 111-118	- Exclude - Study didn't assess a prognostic model of interest
Poprach, Alexandr, Pavlik, Tomas, Melichar, Bohuslav et al. (2014) Clinical and laboratory prognostic factors in patients with metastatic renal cell carcinoma treated with sunitinib and sorafenib after progression on cytokines. Urologic oncology 32(4): 488-95	Exclude - Prognostic factorsExclude - model not in protocol or new model
Poprach, Alexandr, Rumanova, Kristina, Lakomy, Radek et al. (2019) Tyrosine kinase inhibitors in the first-line treatment for metastatic nonclear cell renal carcinoma: A retrospective analysis of a national database. Urologic oncology 37(4): 294e1-294e8	- Data only reported for multivariate analysis
Powles T, Kayani I, Blank C et al. (2011) The safety and efficacy of sunitinib before planned nephrectomy in metastatic clear cell renal cancer. Annals of oncology: official journal of the European Society for Medical Oncology 22(5): 1041-1047	- Exclude - Study didn't assess a prognostic model of interest
Procopio, G, Verzoni, E, Iacovelli, R et al. (2012) Prognostic factors for survival in patients with metastatic renal cell carcinoma treated with targeted therapies. British journal of cancer 107(8): 1227-32	- Does not report data by specific treatment line, or treatment line unclear
Qu, Le, Wang, Ze-Lin, Chen, Qi et al. (2018) Prognostic Value of a Long Non-coding RNA Signature in Localized Clear Cell Renal Cell Carcinoma. European urology 74(6): 756-763	- Study reports on the same dataset as an included study, without providing additional information Changhai Hospital for SSIGN and TNM reported in Wang 2021 for a more recent time period

Study	Reason for exclusion
Qu, Yang, Liu, Li, Wang, Jiajun et al. (2016) Dot1l expression predicts adverse postoperative prognosis of patients with clear-cell renal cell carcinoma. Oncotarget 7(51): 84775-84784	- C statistic without SE / 95% CI ("parked" studies code)
Ramsey, Sara, Lamb, Gavin W A, Aitchison, Michael et al. (2008) Prospective study of the relationship between the systemic inflammatory response, prognostic scoring systems and relapse-free and cancer-specific survival in patients undergoing potentially curative resection for renal cancer. BJU international 101(8): 959-	- Exclude - study does not contain a relevant outcome
Rebuzzi, Sara Elena, Cerbone, Luigi, Signori, Alessio et al. (2022) Application of the Meet-URO score to metastatic renal cell carcinoma patients treated with secondand third-line cabozantinib. Therapeutic advances in medical oncology 14: 17588359221079580	- Does not report data by specific treatment line
Rebuzzi, Sara Elena, Signori, Alessio, Banna, Giuseppe Luigi et al. (2022) The prognostic value of the previous nephrectomy in pretreated metastatic renal cell carcinoma receiving immunotherapy: a sub-analysis of the Meet-URO 15 study. Journal of translational medicine 20(1): 435	Does not report data by specific treatment lineData not reported in an extractable format
Rebuzzi, Sara Elena, Signori, Alessio, Banna, Giuseppe Luigi et al. (2021) Inflammatory indices and clinical factors in metastatic renal cell carcinoma patients treated with nivolumab: the development of a novel prognostic score (Meet-URO 15 study). Therapeutic advances in medical oncology 13: 17588359211019642	- Does not report data by specific treatment line
Rosiello, Giuseppe, Larcher, Alessandro, Fallara, Giuseppe et al. (2022) Head-to-head comparison of all the prognostic models recommended by the European Association of Urology Guidelines to predict oncologic outcomes in patients with renal cell carcinoma. Urologic oncology 40(6): 271e19-271e27	- Exclude - AUC reported without other relevant outcomes
Roussel, Eduard, Kinget, Lisa, Verbiest, Annelies et al. (2021) C-reactive protein and neutrophil-lymphocyte ratio are prognostic in metastatic clear-cell renal cell carcinoma	 - Data only reported for multivariate analysis - C statistic without SE / 95% CI ("parked" studies code)

Study	Reason for exclusion
patients treated with nivolumab. Urologic oncology 39(4): 239e17-239e25	
Rouvinov, Keren, Mermershtain, Wilmosh, Dresler, Hadas et al. (2017) Circulating Cell-Free DNA Levels in Patients with Metastatic Renal Cell Carcinoma. Oncology research and treatment 40(11): 707-710	- Data not reported in an extractable format HR was reported, but did not compare one or more risk groups to one or more other risk groups, or did not provide enough information to extract this.
Ruatta, F, Derosa, L, Escudier, B et al. (2019) Prognosis of renal cell carcinoma with bone metastases: Experience from a large cancer centre. European journal of cancer (Oxford, England: 1990) 107: 79-85	- Data only reported for multivariate analysis
Russo, Giorgio Ivan, Di Rosa, Alessandro, Favilla, Vincenzo et al. (2015) Accuracy capabilities comparisons between Karakiewicz, Kattan and Cindolo nomograms in predicting outcomes for renal cancer carcinoma: A systematic review and meta-analysis. Canadian Urological Association journal = Journal de l'Association des urologues du Canada 9(56): e359-66	- Systematic review used as a source of primary studies
Saal, J, Bald, T, Holzel, M et al. (2022) In the phase III IMmotion151 trial of metastatic renal cell carcinoma the easy-to-implement modified Glasgow prognostic score predicts outcome more accurately than the IMDC score. Annals of oncology: official journal of the european society for medical oncology 33(9): 982-984	- Letter to the editor
Sacre, Anne, Barthelemy, Philippe, Korenbaum, Clement et al. (2016) Prognostic factors in second-line targeted therapy for metastatic clear-cell renal cell carcinoma after progression on an anti- vascular endothelial growth factor receptor tyrosine kinase inhibitor. Acta oncologica (Stockholm, Sweden) 55(3): 329-40	- Exclude - Prognostic model doesn't compare the different risk groups
Sagie, Shira, Sarfaty, Michal, Levartovsky, Meital et al. (2022) RCC Real-World Data: Prognostic Factors and Risk Stratification in the Immunotherapy Era. Cancers 14(13)	- Does not report data by specific treatment line
Salama, M E, Guru, K, Stricker, H et al. (2005) pT1 substaging in renal cell carcinoma: validation of the 2002 TNM staging modification of malignant renal epithelial tumors. The Journal of urology 173(5): 1492-5	- Exclude - Population non mRCC

Study	Reason for exclusion
Sandlund, Johanna, Ljungberg, Borje, Wikstrom, Pernilla et al. (2009) Hypoxia-inducible factor-2alpha mRNA expression in human renal cell carcinoma. Acta oncologica (Stockholm, Sweden) 48(6): 909-14	- Exclude - Study didn't assess a prognostic model of interest
Santoni, Matteo, Buti, Sebastiano, Conti, Alessandro et al. (2015) Prognostic significance of host immune status in patients with late relapsing renal cell carcinoma treated with targeted therapy. Targeted oncology 10(4): 517-22	- Data not reported in an extractable format HR reported, however, this was reported for the whole model and did not specify comparison between risk groups
Santoni, Matteo, Conti, Alessandro, Procopio, Giuseppe et al. (2015) Bone metastases in patients with metastatic renal cell carcinoma: are they always associated with poor prognosis?. Journal of experimental & clinical cancer research: CR 34: 10	- Data not reported in an extractable format HR reported for MSKCC, however this is given for the model as a whole and does not specify comparisons between risk groups
Sanz Del Pozo, Monica, Orlandi Oliveira, Walter, Linacero Gracia, Alvaro et al. (2024) Validation and Comparison of Prognostic Models in Renal Carcinoma in a Tertiary Hospital. Archivos espanoles de urologia 77(6): 622-631	- C statistic without SE / 95% CI ("parked" studies code)
Sastre-Heres, Alejandro Jose, Iglesias, Irene, Alaguero-Calero, Miguel et al. (2019) Comparative Study of Different Classification Models in Renal-Cell Carcinoma. Pathology oncology research: POR 25(4): 1357-1362	- Exclude - Results reported as % or median
Sekiya, Ken, Ito, Masaya, Takemura, Kosuke et al. (2021) Prognostic significance of the controlling nutritional status score in patients with metastatic renal cell carcinoma diagnosed before an era of first-line immune-oncology combination therapies. Japanese journal of clinical oncology 51(10): 1570-1576	- Does not report data by specific treatment line
Shao, Ning, Wang, Hong-Kai, Zhu, Yao et al. (2018) Modification of American Joint Committee on cancer prognostic groups for renal cell carcinoma. Cancer medicine 7(11): 5431-5438	- Exclude - Study didn't assess a prognostic model of interest
Shin Lee, Ji, Seok Kim, Hyung, Bok Kim, Young et al. (2003) Expression of PTEN in renal cell carcinoma and its relation to	- Exclude - Study used the TNM 1997 system to classify the stages

Study	Reason for exclusion
tumor behavior and growth. Journal of surgical oncology 84(3): 166-72	
Shin, Seung Jea, Kim, Taejin, Sung, Hyun Hwan et al. (2019) Novel Predictive Models of Early Death Less Than 1 Year in Patients With Metastatic Renal Cell Carcinoma After Treatment With First-line Tyrosine Kinase Inhibitors. Clinical genitourinary cancer 17(6): e1137-e1146	- C statistic without SE / 95% CI ("parked" studies code)
Shinohara, Nobuo, Abe, Takashige, Mochizuki, Tango et al. (2013) Is Memorial Sloan-Kettering Cancer Center risk classification appropriate for Japanese patients with metastatic renal cell carcinoma in the cytokine era?. Urologic oncology 31(7): 1276-82	- Does not report data by specific treatment line, or treatment line unclear
Siemer, S, Lehmann, J, Loch, A et al. (2005) Current TNM classification of renal cell carcinoma evaluated: revising stage T3a. The Journal of urology 173(1): 33-7	- Exclude - Study didn't assess a prognostic model of interest
Sim, S H, Messenger, M P, Gregory, W M et al. (2012) Prognostic utility of pre- operative circulating osteopontin, carbonic anhydrase IX and CRP in renal cell carcinoma. British journal of cancer 107(7): 1131-7	- C statistic without SE / 95% CI ("parked" studies code)
Stukalin, I., Connor Wells, J., Fraccon, A. et al. (2018) Fourth-line therapy in metastatic renal cell carcinoma (mRCC): Results from the international mRCC database consortium (IMDC). Kidney Cancer 2(1): 31-36	- Study does not contain a relevant outcome
Stukalin, I., Wells, C., Fraccon, A.P. et al. (2017) Fourth-line targeted therapy in metastatic renal cell carcinoma (mRCC): Results from the International mRCC Database Consortium (IMDC). Journal of Clinical Oncology 35(6supplement1)	- Exclude - Prognostic model doesn't compare the different risk groups
Takemura, K, Yuasa, T, Lemelin, A et al. (2024) Prognostic significance of absolute lymphocyte count in patients with metastatic renal cell carcinoma receiving first-line combination immunotherapies: results from the International Metastatic Renal Cell Carcinoma Database Consortium. ESMO open 9(7): 103606	- C statistic without SE / 95% CI ("parked" studies code)

Study	Reason for exclusion
Takemura, Kosuke, Lemelin, Audreylie, Ernst, Matthew S et al. (2024) Outcomes of Patients with Brain Metastases from Renal Cell Carcinoma Receiving First-line Therapies: Results from the International Metastatic Renal Cell Carcinoma Database Consortium. European urology 86(6): 488-492	- Data only reported for multivariate analysis
Tanaka, Nobuyuki, Mizuno, Ryuichi, Yasumizu, Yota et al. (2017) Prognostic value of neutrophil-to-lymphocyte ratio in patients with metastatic renal cell carcinoma treated with first-line and subsequent second-line targeted therapy: A proposal of the modified-IMDC risk model. Urologic oncology 35(2): 39e19-39e28	- C statistic without SE / 95% CI ("parked" studies code)
Teishima, J., Inoue, S., Hayashi, T. et al. (2020) Impact of the systemic immune-inflammation index for the prediction of prognosis and modification of the risk model in patients with metastatic renal cell carcinoma treated with first-line tyrosine kinase inhibitors. Canadian Urological Association Journal 14(11)	- Exclude - model not in protocol or new model
Terakawa, Tomoaki, Miyake, Hideaki, Kusuda, Yuji et al. (2013) Expression level of vascular endothelial growth factor receptor-2 in radical nephrectomy specimens as a prognostic predictor in patients with metastatic renal cell carcinoma treated with sunitinib. Urologic oncology 31(4): 493-8	- Judged likely that there was overlap between databases in other included study Miyake 2015 and Miyake 2014 extracted due to larger sample size
Tian, Jihua, Zeng, Xing, Guan, Wei et al. (2022) Prognostic indicators for survival in renal cell carcinoma with venous thrombus and development of predictive nomograms. Translational andrology and urology 11(10): 1374-1388	- Exclude - Study didn't assess a prognostic model of interest
Tian, S, Sun, S, Mao, W et al. (2021) Development and Validation of Prognostic Nomogram for Young Patients with Kidney Cancer. International journal of general medicine 14: 5091-5103	- Exclude - Study used the TNM 1997 system to classify the stages
Tjokrowidjaja, A, Goldstein, D, Hudson, HM et al. (2020) The impact of neutrophillymphocyte ratio on risk reclassification of patients with advanced renal cell cancer to guide risk-directed therapy. Acta oncologica (Stockholm, Sweden) 59(1): 20-27	- C statistic without SE / 95% CI ("parked" studies code)

Study	Reason for exclusion
Tran, Hai T, Liu, Yuan, Zurita, Amado J et al. (2012) Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: a retrospective analysis of phase 2 and phase 3 trials. The Lancet. Oncology 13(8): 827-37	- Exclude - Study doesn't report an outcome of interest
Uzun, Mehmet, Yildirim, Eda Caliskan, Ekinci, Ferhat et al. (2022) Is CRP/Albumin Ratio (CAR) a New Parameter to be Added to Risk Stratification Systems in Metastatic Renal Cell Carcinoma Patients?. Journal of the College of Physicians and SurgeonsPakistan: JCPSP 32(11): 1425-1429	- Data only reported for multivariate analysis
Veeratterapillay, R, Simren, R, El-Sherif, A et al. (2012) Accuracy of the revised 2010 TNM classification in predicting the prognosis of patients treated for renal cell cancer in the north east of England. Journal of clinical pathology 65(4): 367-71	- Exclude - Study didn't assess a prognostic model of interest
Veeratterapillay, Rajan, Rakhra, Simren, El-Sherif, Amira et al. (2012) Can the Kattan nomogram still accurately predict prognosis in renal cell carcinoma using the revised 2010 tumor-nodes-metastasis reclassification?. International journal of urology: official journal of the Japanese Urological Association 19(8): 773-6	- Data not reported in an extractable format
Verine, J, Colin, D, Nheb, M et al. (2018) Architectural Patterns are a Relevant Morphologic Grading System for Clear Cell Renal Cell Carcinoma Prognosis Assessment: Comparisons With WHO/ISUP Grade and Integrated Staging Systems. The American journal of surgical pathology 42(4): 423-441	- Exclude - AUC reported without other relevant outcomes
Vermaat, J S, van der Tweel, I, Mehra, N et al. (2010) Two-protein signature of novel serological markers apolipoprotein-A2 and serum amyloid alpha predicts prognosis in patients with metastatic renal cell cancer and improves the currently used prognostic survival models. Annals of oncology: official journal of the European Society for Medical Oncology 21(7): 1472-1481	- Does not report data by specific treatment line
Vermaat, Joost S, Gerritse, Frank L, van der Veldt, Astrid A et al. (2012) Validation of serum amyloid alpha as an independent biomarker for progression-free and overall	- Exclude - Outcome reported as AUC

Study	Reason for exclusion
survival in metastatic renal cell cancer patients. European urology 62(4): 685-95	
Voskuil-Galos, Diana, Calinici, Tudor, Piciu, Andra et al. (2024) Evaluation of prognostic factors for late recurrence in clear cell renal carcinoma: an institutional study. Frontiers in oncology 14: 1446953	- Exclude - Population non mRCC Non-metastatic population and IMDC
Wang, Chao, Li, Yan, Chu, Chuan-Min et al. (2019) Gankyrin is a novel biomarker for disease progression and prognosis of patients with renal cell carcinoma. EBioMedicine 39: 255-264	- Study reports on the same dataset as an included study, without providing additional information
Wang, Hanfeng, Li, Xintao, Huang, Qingbo et al. (2021) Prognostic role of bland thrombus in patients treated with resection of renal cell carcinoma with inferior vena cava tumor thrombus. Urologic oncology 39(5): 302e1-302e7	- Does not separate out metastatic and non-metastatic participants
Wang, J., Liu, Y., Yang, Y. et al. (2016) High expression of galectin-7 associates with poor overall survival in patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget 7(27): 41986-41995	- Exclude - C-index without SE/95%CI
Wang, Jinkui, Zhanghuang, Chenghao, Tan, Xiaojun et al. (2022) Development and Validation of a Competitive Risk Model in Elderly Patients With Chromophobe Cell Renal Carcinoma: A Population-Based Study. Frontiers in public health 10: 840525	- TNM model broken down
Wang, L., Cai, W., Kong, W. et al. (2018) Plasma fibrinogen as prognostic predictor in patients with metastatic renal cell carcinoma receiving target therapy. Translational Cancer Research 7(6): 1384-1392	- Judged likely that datasets overlapped with another included study
Wang, Xuhui (2024) Clinical and molecular prognostic nomograms for patients with papillary renal cell carcinoma. Discover oncology 15(1): 780	- Does not separate out people with metastatic and non-metastatic RCC
Warren, Hannah, Fernando, Archana, Thomas, Kay et al. (2019) Surgery for highrisk locally advanced (pT3c) renal tumours: oncological outcomes and prognostic significance of a modified International Metastatic Renal Cell Cancer Database Consortium (IMDC) score. BJU international 124(3): 462-468	- Data not reported for model of interest

Study	Reason for exclusion
Wei, Jin Huan, Feng, Zi Hao, Cao, Yun et al. (2019) Predictive value of single-nucleotide polymorphism signature for recurrence in localised renal cell carcinoma: a retrospective analysis and multicentre validation study. The Lancet. Oncology 20(4): 591-600	- Exclude - AUC reported without other relevant outcomes
Westerman, Mary E, Shapiro, Daniel D, Tannir, Nizar M et al. (2020) Survival following cytoreductive nephrectomy: a comparison of existing prognostic models. BJU international 126(6): 745-753	- Does not report data by specific treatment line
Wong, Emily C L and Kapoor, Anil (2020) Does Bone-targeted Therapy Benefit Patients with Metastatic Renal Cell Carcinoma?. Translational oncology 13(2): 241-244	- Exclude - Results reported in non- extractable format
Wu, Qian, Yang, Liu, Liu, Haiou et al. (2015) Elevated Expression of N-Acetylgalactosaminyltransferase 10 Predicts Poor Survival and Early Recurrence of Patients with Clear-Cell Renal Cell Carcinoma. Annals of surgical oncology 22(7): 2446-53	- C statistic without SE / 95% CI ("parked" studies code)
Xia, Yu, Liu, Li, Long, Qilai et al. (2016) Decreased expression of CTR2 predicts poor prognosis of patients with clear cell renal cell carcinoma. Urologic oncology 34(1): 5e1-9	- Exclude - Study didn't assess a prognostic model of interest
Xiao, Ruotao, Liu, Cheng, He, Wei et al. (2021) Prognostic Factors and a Nomogram Predicting Overall Survival and Cancer-Specific Survival for Patients with Collecting Duct Renal Cell Carcinoma. BioMed research international 2021: 6736008	- Exclude - TNM model broken down
Xiao, Ruotao, Qin, Yanchun, Liu, Lei et al. (2021) Development and validation of nomogram based on a novel platelet index score to predict prognosis in patients with renal cell carcinoma. Journal of Cancer 12(21): 6301-6309	- Does not separate out people with metastatic and non-metastatic RCC
Xie, Ruiyang, Shang, Bingqing, Shi, Hongzhe et al. (2023) Neutrophil extracellular traps in relationship to efficacy of systemic therapy for metastatic renal cell carcinoma. Cancer medicine 12(24): 21807-21819	- Exclude - Prognostic model compares all 3 at once

Study	Reason for exclusion
Xie, Yongpeng, Ma, Xin, Li, Hongzhao et al. (2017) Prognostic Value of Clinical and Pathological Features in Chinese Patients with Chromophobe Renal Cell Carcinoma: A 10-Year Single-Center Study. Journal of Cancer 8(17): 3474-3479	- Exclude - Study uses AJCC TNM 2010 classification
Xing, Jiajun, Liu, Yiyang, Wang, Zhongyuan et al. (2023) Incremental value of radiomics with machine learning to the existing prognostic models for predicting outcome in renal cell carcinoma. Frontiers in oncology 13: 1036734	- Study does not contain a relevant outcome
Xiong, Ying, Liu, Li, Bai, Qi et al. (2020) Individualized immune-related gene signature predicts immune status and oncologic outcomes in clear cell renal cell carcinoma patients. Urologic oncology 38(1): 7e1-7e8	- Model / factor assessed is not included in the protocol Assesses stage, but does not specify TNM or other
Xu, Le, Chang, Yuan, An, Huimin et al. (2015) High APOBEC3B expression is a predictor of recurrence in patients with low-risk clear cell renal cell carcinoma. Urologic oncology 33(8): 340e1-8	- C statistic without SE / 95% CI ("parked" studies code)
Yamaguchi, Yoshitomo, Tanaka, Hajime, Kimura, Koichiro et al. (2023) Prognostic impact of the radiological infiltrative feature of primary renal tumor in metastatic renal cell carcinoma. International journal of urology: official journal of the Japanese Urological Association 30(10): 913-921	- Exclude - Outcome out of scope - Exclude - Study doesn't report an outcome of interest
Yamamoto, Yoshiaki, Matsuyama, Hideyasu, Matsumoto, Hiroaki et al. (2020) Prognostic value of risk stratification using blood parameters for nivolumab in Japanese patients with metastatic renal-cell carcinoma. Japanese journal of clinical oncology 50(2): 214-220	 Exclude - Results reported in non-extractable format Exclude - Outcome out of scope Exclude - Study doesn't report an outcome of interest
Yang, Liu, Wu, Qian, Xu, Le et al. (2015) Increased expression of colony stimulating factor-1 is a predictor of poor prognosis in patients with clear-cell renal cell carcinoma. BMC cancer 15: 67	- C statistic without SE / 95% CI ("parked" studies code)
Yang, Xiaoxiao, Han, Bo, Xie, Qian et al. (2025) Low Expression of Mitochondrial Ribosomal Protein S5 is Associated With Poor Prognosis in Patients With Clear Cell Renal Cell Carcinoma. Applied	- Exclude - Study reported the HR without comparing it with a reference group/breaking it down into categories

Study	Reason for exclusion
immunohistochemistry & molecular morphology : AIMM 33(1): 22-28	
Yao, C., Feng, B., Li, S. et al. (2024) Predicting postoperative prognosis in clear cell renal cell carcinoma using a multiphase CT-based deep learning model. Abdominal Radiology	- Exclude - Prognostic model compares all 3 at once
Yildiz, I, Sen, F, Kilic, L et al. (2013) Prognostic factors associated with the response to sunitinib in patients with metastatic renal cell carcinoma. Current oncology (Toronto, Ont.) 20(6): e546-53	- Exclude - Results reported in non- extractable format
Yilmaz, Hatice; Yilmaz, Ali; Demirag, Guzin (2021) Prognostic significance of hemoglobin-to-red cell distribution width ratio in patients with metastatic renal cancer. Future oncology (London, England) 17(29): 3853-3864	- Exclude - Prognostic model doesn't compare the different risk groups
Yip, Steven M, Wells, Connor, Moreira, Raphael et al. (2018) Checkpoint inhibitors in patients with metastatic renal cell carcinoma: Results from the International Metastatic Renal Cell Carcinoma Database Consortium. Cancer 124(18): 3677-3683	- Exclude - Results reported as % or median
Yuasa, Takeshi, Tsuchiya, Norihiko, Urakami, Shinji et al. (2012) Clinical efficacy and prognostic factors for overall survival in Japanese patients with metastatic renal cell cancer treated with sunitinib. BJU international 109(9): 1349-54	- Exclude - Prognostic model doesn't compare the different risk groups
Yuasa, Takeshi, Urakami, Shinji, Yamamoto, Shinya et al. (2011) Treatment outcome and prognostic factors in renal cell cancer patients with bone metastasis. Clinical & experimental metastasis 28(4): 405-11	- Exclude - Results reported in non- extractable format
Yukihiro, Kazuma, Teishima, Jun, Goto, Keisuke et al. (2022) Impact of modified Glasgow prognostic score on predicting prognosis and modification of risk model for patients with metastatic renal cell carcinoma treated with first line tyrosine kinase inhibitor. Urologic oncology 40(10): 455e11-455e18	- C statistic without SE / 95% CI ("parked" studies code)
Zastrow, Stefan, Brookman-May, Sabine, Cong, Thi Anh Phuong et al. (2015) Decision curve analysis and external	- TNM 2002

Study	Reason for exclusion
validation of the postoperative Karakiewicz nomogram for renal cell carcinoma based on a large single-center study cohort. World journal of urology 33(3): 381-8	- C statistic without SE / 95% CI ("parked" studies code)
Zelenkevich, I., Sukonko, O., Mirylenka, L. et al. (2014) Is current staging system accurately predicts survival of stage I and II renal cell carcinoma?. European Urology, Supplements 13(1): e315	- Exclude - Population non mRCC
Zhang, Hai-Liang, Sheng, Xi-Nan, Li, Xue-Song et al. (2017) Sorafenib versus sunitinib as first-line treatment agents in Chinese patients with metastatic renal cell carcinoma: the largest multicenter retrospective analysis of survival and prognostic factors. BMC cancer 17(1): 16	- Exclude - Results reported in non-extractable format
Zhang, Yushi, Li, Yongqiang, Cai, Yi et al. (2016) Efficacy of sorafenib correlates with Memorial Sloan-Kettering Cancer Center (MSKCC) risk classification and bone metastasis in Chinese patients with metastatic renal cell carcinoma. Cellular oncology (Dordrecht) 39(1): 15-21	- Data only reported for multivariate analysis
Zhang, Zhilei, Yu, Yongbo, Zheng, Jilu et al. (2021) Prognostic significance of preoperative neutrophil-to-lymphocyte ratio in papillary renal cell carcinoma patients after receiving curative surgery based on a retrospective cohort. BMC urology 21(1): 43	- Exclude - Study didn't assess a prognostic model of interest
Zhanghuang, Chenghao, Wang, Jinkui, Zhang, Zhaoxia et al. (2022) A nomogram for predicting cancer-specific survival and overall survival in elderly patients with nonmetastatic renal cell carcinoma. Frontiers in surgery 9: 1018579	- TNM model broken down - Model / factor assessed is not included in the protocol
Zheng, Jianyi, Li, Shijie, Zhao, Yiqiao et al. (2022) Nomograms for predicting overall and cancer-specific survival of patients with chromophobe renal cell carcinoma after nephrectomy: a retrospective SEER-based study. BMJ open 12(9): e062129	- TNM model broken down - Model / factor assessed is not included in the protocol
Zhou, Lin, Chang, Yuan, Xu, Le et al. (2016) The Presence of Vascular Mimicry Predicts High Risk of Clear Cell Renal Cell Carcinoma after Radical Nephrectomy. The Journal of urology 196(2): 335-42	- C statistic without SE / 95% CI ("parked" studies code) RFS: Leibovich c index - TNM 2010

Study	Reason for exclusion
Zhu, D., Shi, X., Gao, S. et al. (2021) RNF43 is a novel tumor-suppressor and prognostic indicator in clear cell renal cell carcinoma. Oncology Research 29(3): 159	- Does not separate out people with metastatic and non-metastatic RCC
Zhu, Jun, Liu, Zhifu, Zhang, Zhongyuan et al. (2020) Development and internal validation of nomograms for the prediction of postoperative survival of patients with grade 4 renal cell carcinoma (RCC). Translational andrology and urology 9(6): 2629-2639	- Exclude - model not in protocol or new model
Zhu, Yu, Xu, Le, An, Huimin et al. (2015) p21-activated kinase 1 predicts recurrence and survival in patients with non-metastatic clear cell renal cell carcinoma. International journal of urology: official journal of the Japanese Urological Association 22(5): 447-53	- C statistic without SE / 95% CI ("parked" studies code)
Zigeuner, Richard, Hutterer, Georg, Chromecki, Thomas et al. (2010) External validation of the Mayo Clinic stage, size, grade, and necrosis (SSIGN) score for clear-cell renal cell carcinoma in a single European centre applying routine pathology. European urology 57(1): 102-9	- TNM model broken down - Data not reported in an extractable format
Zubac, Dragomir P, Bostad, Leif, Gestblom, Charlotta et al. (2007) Renal cell carcinoma: a clinicopathological follow-up study after radical nephrectomy. Scandinavian journal of urology and nephrology 41(3): 191-7	- Exclude - Study didn't assess a prognostic model of interest
Zubac, Dragomir P, Bostad, Leif, Kihl, Bjorn et al. (2009) The expression of thrombospondin-1 and p53 in clear cell renal cell carcinoma: its relationship to angiogenesis, cell proliferation and cancer specific survival. The Journal of urology 182(5): 2144-9	Exclude - Study uses TNM 2002 classificationExclude - TNM model broken down

2 Economic references excluded at full text (n=0)

3

1

Appendix K- Research recommendations - full details

2 K1.1 Research recommendation

1

- 3 Which risk prediction tools, biomarkers or factors can most accurately predict the risk
- 4 of progression, metastasis, or both of localised renal cell carcinoma (RCC) in people
- 5 who are undergoing active surveillance across a broad population with different
- 6 characteristics (for example ethnicity and sex), including all subtypes of RCC?

7 K1.1.1 Why this is important

- 8 Currently prognostic tools for predicting outcomes in renal cell carcinoma rely on
- 9 information from a tissue specimen following surgery of the tumour. Some patients
- 10 choose to decline or delay surgery in favour of active surveillance. Predicting the risk
- progression and metastasis for these people is limited to clinical judgement alone as
- 12 no surgical specimen of the tumour is available.

13 K1.1.2 Rationale for research recommendation

14 Table 92: Rationale for research recommendation

Importance to 'patients' or the population	There are no validated prognostic tools for predicting recurrence or survival in those suspected renal cell carcinoma who choose to undergo active surveillance. It would be useful to be able to predict the risk of progression and metastasis for these people as people, as people at higher risk may choose not to have active surveillance and instead have surgery if they are aware of this.
Relevance to NICE guidance	Predicting renal cell carcinoma has been considered in this guideline and there is a lack of data on prognostic tools for those who have not had primary surgery of the tumour.
Relevance to the NHS	A prognostic tool would assist healthcare professionals in making a clinical judgement around treatment options and follow-up schedules.
National priorities	Low
Current evidence base	No studies were identified to assess the risk of progression and metastasis for people undergoing active surveillance.
Equality considerations	None known

15 K1.1.3 Modified PICO table

16 Table 93: Modified PICO table

Population	Adults (18 or years or over) with suspected or biopsyconfirmed renal cell carcinoma (RCC), who have not had surgery or ablation of the primary renal tumour and are undergoing active surveillance. Excluded: Adults with metastatic RCC
Predictor (Predictive prognostic model or score)	The development and validation of prognostic models to predict survival outcomes (or biomarkers or clinical factors, which may include pathological features, to help develop such a tool)

Outcomes	Progression free survival
	Overall survival
	Cancer specific survival
Study design	 Prospective and retrospective cohort studies (specifically validation studies of models or derivation studies that also include independent validation data)
Timeframe	5 years
Additional information	Subgroup data should be available by:
	• Ethnicity
	• Sex
	RCC subtype

1 K1.2 Research recommendation

- Which risk prediction tools, biomarkers or clinical factors can most accurately predict
- 3 the risk of recurrence in people with localised or locally advanced chromophobe renal
- 4 cell carcinoma across a broad population with different characteristics (for example
- 5 ethnicity and sex)?

6 K1.2.1 Why this is important

- 7 The chromophobe renal cell carcinoma is a rare tumour type. Currently validated risk
- 8 prediction models include prognostic factors that are not appropriate for
- 9 chromophobe subtypes therefore scores cannot be calculated.

10 K1.2.2 Rationale for research recommendation

11 Table 94: Rationale for research recommendation

	Importance to 'patients' or the population	There are no validated risk prediction tools for predicting recurrence or survival in people with chromophobe renal cell carcinoma. Patient management and care is based on clinical assessment only. A risk prediction tool would guide treatment.
	Relevance to NICE guidance	Chromophobe renal cell carcinoma has been considered in this guideline and there is a lack of data on risk prediction tools for this subtype.
	Relevance to the NHS	A risk prediction tool would assist healthcare professionals in making a clinical judgement around treatment options and follow-up schedules.
	National priorities	Low
	Current evidence base	No models that had been specifically developed for use in people who had been treated for chromophobe RCC were identified and other models contained factors that were not appropriate for chromophobe RCC.
	Equality considerations	None known

1 K1.2.3 Modified PICO table

2 Table 95: Modified PICO table

Population	Adults (18 or years or over) with suspected or confirmed chromophobe renal cell carcinoma (RCC) that is localised or locally advanced Excluded: Adults with metastatic RCC
Predictor (Predictive prognostic model or score)	The development and validation of prognostic tools to predict survival or recurrence outcomes (or biomarkers or clinical factors, which may include pathological features, to help develop such a tool)
Outcomes	 Progression free survival Recurrence free survival Disease-free survival, including cancer-free survival
Study design	 Prospective and retrospective cohort studies (specifically validation and derivation cohorts)
Timeframe	5 years after developing tool
Additional information	Subgroup data should be available by: • Ethnicity • Sex

3 K1.3 Research recommendation

- 4 Which risk prediction tools, biomarkers or clinical factors can most accurately predict
- 5 the risk of recurrence in people with localised or locally advanced renal cell
- 6 carcinoma who have not had surgery of the primary renal lesion (that is, they are
- 7 having thermal ablation or stereotactic ablative radiotherapy) across a broad
- 8 population with different characteristics (for example ethnicity and sex), including all
- 9 renal cell carcinoma subtypes?

10 K1.3.1 Why this is important

- 11 Currently prognostic tools for predicting outcomes in renal cell carcinoma rely on
- 12 histology information from a tissue specimen following surgery of the tumour. For
- some people, surgery is contraindicated so they may have ablative therapy or SABR,
- meaning that they may either not have a tissue specimen, or will only have histology
- from a biopsy. No evidence was identified for people who had not undergone
- surgery, and so the accuracy of the risk prediction tools in these people is unclear.

17 K1.3.2 Rationale for research recommendation

18 Table 96: Rationale for research recommendation

Importance to 'patients' or the	There are no validated prognostic tools for predicting
population	recurrence or survival in those suspected renal cell carcinoma
	who have not had surgery of the primary tumour. Some
	patients are frail or have comorbidities that mean surgery is
	contraindicated, therefore patient management and care is
	based on clinical assessment only.

Relevance to NICE guidance	Predicting renal cell carcinoma has been considered in this guideline and there is a lack of data on risk prediction tools for those who have not had primary surgery of the tumour.
Relevance to the NHS	A risk prediction tool would assist healthcare professionals in making a clinical judgement around treatment options and follow-up schedules.
National priorities	Low
Current evidence base	No studies of risk prediction tools were identified that specifically allowed risk to be calculated for people who had not had surgery.
Equality considerations	None known

1 K1.3.3 Modified PICO table

2 Table 97: Modified PICO table

A 1.16 (40)
Adults (18 or years or over) with suspected or biopsyconfirmed renal cell carcinoma (RCC) that is localised or locally advanced, who have not had surgery of the primary renal tumour
Excluded: Adults with metastatic RCC
The development and validation of a prognostic tools to predict survival or recurrence outcomes (or biomarkers or clinical factors, which may include pathological features, to help develop such a tool)
Recurrence free survival
Disease-free survival, including cancer-free survival
Overall survival
Cancer specific survival
 Prospective and retrospective cohort studies (specifically derivation and validation cohorts)
5 years after developing tool
 Subgroup data should be available by: Ethnicity Sex RCC subtype