Appendix 1 Evidence Tables

Question 2: Are interventions to develop public transport routes and services effective at reducing the health impact of, or people's exposure to, traffic-related air pollution? Modelling studies

Study details	Population	Intervention / Comparator	Method of analysis	Model results				Notes
Full citation Alam, Ahsan, Diab, Ehab, El-Geneidy, Ahmed M.,	Number of participants n/a	Comparison The study assessed the	Type of model Emissions generated during bus operations were estimated using	Outcomes Linear regressior	Limitations identified by the author None reported			
Hatzopoulou,	Participant	improvements on PM2.5		Constant	28.19***	1.049	26.871	Limitations identified
Marianne, A	description	bus emissions.	developed by the	Express bus	-4.27***	0.444	-9.626	by the review team
Simulation of	A busy transit corridor	<u> </u>	United States	route				The time horizon is
Transit Bus	which runs north-south	The improvements	Environmental	Reserved	-4.44***	0.440	-10.084	insufficient to assess
	over a 5.8 mile length in		Protection Agency	lane				the longer term impact
	the east side of	A smart card fare	(USEPA).	PM peak	4.04***	0.428	9.444	on emissions. No
	Montreal. The majority	collection system	T	Southbound	1.25***	0.446	2.809	uncertainties in the
Changes under		An express bus	To capture the effects	<i>R</i> ² = 0.755; N = 13				model design or results
	of 3 lanes in each	service (limited	of various service	***Significant at 99				described. Strengths
	direction. Two types of	stops)	improvement strategies and bus attributes on	*Significant at 90%	0			and limitations were not discussed.
Strategies, Transportation	bus service run concurrently along the	Reserved bus	emissions, a linear					not discussed.
	corridor: a regular route	lanes (operated	regression is estimated.	Analysis				
Transport and	and an express route.	during peak	regression is estimated.	The largest positiv				
Environment. 31.	The regular route has	periods)		introduction of res				
189-98, 2014	an average stop			4.44mg/mile of bu				
100 00, 2014		Emissions were		largest impact, red	lucing PM _{2.5} emis	sions by 4.27mg/r	nile.	
Quality score	255 m in the	estimated at a segment level (including running		T			1.1	
-		and idling) and stop		Time of day and d				
	northbound (NB)	level (only idling).		affect bus emission				
Aim of the study	directions respectively,	level (only failing).		1.25mg /mile less				
	whereas the stop			during the PM pea	ik perioù were also	0 4.04mg/mile mg	ner than the Aw	
individual and	spacing for the express			peak period.				
	route is 611 m and 623							
a range of transit	m in the SB and NB							
service	directions, respectively.							
improvement on								
emissions along a	A sub-segment of the							
busy transit	corridor, including 28							
corridor.	signalised intersections							
	equipped with Transit							
Source of data	Signal Priority (TSP)							
	system, was the subject							
over a 2 week	of the analysis.							
period in October								
2013.	Inclusion criteria							
	n/a							

Study details	Population	Intervention / Comparator	Method of analysis	Model results	Notes
 Collection of bus speed profile: instantaneous bus speed were collected using GPS devices. Two separate devices were used for quality control. Collection of bus-stop based data: data were collected by research assistants riding the buses. Data was collected on the number of individuals 	Exclusion criteria n/a	Comparator			
boarding and alighting, idling time at each stop, fare payment type, and crowding near the door. The allocation of research assistants and GPS devices					
to trips/buses were randomised. Following a data cleaning process, a total of 132 segment level and 1556 stop level observations remained for analysis.					

Study details	Population	Intervention / Comparator	Method of analysis	Model results	Notes
 The model required the following additional inputs: Link length for each segment Fuel type and formulation – all current buses are articulated and run on ultra low sulfur diesel (ULSD) Vehicle type Vehicle model year Meteorology including temperature and relative humidity 					
Location and setting Montreal, Canada					
Length of study Not reported					
Source of funding The research was supported by federal funding through the Natural Sciences and Engineering Research Council of Canada (NSERC).					
Full citation Alam, Ahsan, Hatzopoulou, Marianne, Reducing transit bus emissions: Alternative fuels or	Number of participants n/a Participant description The study corridor runs	Intervention / Comparison PM _{2.5} emissions for two different fuels - Ultra Low Sulfur Diesel (ULSD - currently used)	Type of model Microsimulation of bus transit flow along the CDN corridor was conducted for the morning peak period (7- 9 AM) using the	Outcomes Running emissions under base-case operations (not including idling at bus stops) for different fuels (g/mile bus) SB NB Diesel CNG Reduction Diesel CNG Reduction	Limitations identified by the author None reported Limitations identified by the review team Insufficient time

Stu	dy details	Population	Intervention / Comparator	Method of analysis	Model	results						Notes
traff	ic operations?,	North-South with	and compressed	PTV VISSIM platform.				(%)			(%)	horizon to allow for the
		respect to the	natural gas (CNG) -	Emissions generated	PM2.	0.0463	0.0070		0.0256	0.0040		assessment of longer
		downtown(located	were modelled	during bus operations	F 1V12.	0.0403	0.0070	84.79	0.0350	-	88.68	term impacts. It was
		south of the corridor). The length of	for buses operating along a busy transit	were estimated using MOVES, a USEPA			4	<u> </u>	<u> </u>	3		unclear if the model was based on the best
Qua -	-	the corridor is about 5.1km with various	corridor in both the northbound (NB)	emission modeling tool. In order to				e operations f			ngers) at bus (g/mile bus)	available evidence. There was no
		grades ranging from	and southbound (SB)	simulate emissions,		SB			NB			discussion regarding
	of the study	470/1 00/ The	directions.	MOVES requires				Reduction			Reduction	the strengths and
	explore the	-17%to +8%. The	In addition, emissions	instantaneous speeds		Diesel	CNG	(%)	Diesel	CNG	(%)	limitations of the model
		corridor has a high frequency of buses (4-5	were simulated under 5	for each segment along the route. Therefore the	PM2.	0.0354	0.0048		0.0127	0.0018		and the results.
		min) during peak	different operational scenarios. In each	speed profiles of all	F 1V12.	0.0354 4	0.0048 6	86.28	9	0.0018	86.28	
		periods compared to	scenario, the emissions		3	4	0		9	9		
		other routes and it has	for ULSD and for CNG	morning peak period	•							
		one of the highest	were compared in order					emissions (g/ and fuels	mile bus) under (amerent	
		transit ridership in	to identify the additional	individual segments					11			
Sou		Montreal. It has	impact of an alternative	corresponding to the			(g/mile	bus) for	PM2.5 (a/mile b	us) for CNG	
Loc	al input data	significant differences in	technology under	individual links in the	rio	diesel			- (,			
	0	traffic flow between the	various bus operations.	traffic simulation. In		SB		NB	SB		NB	
		northbound (NB) and		addition, the model	Base-				0.00704	2 (0.004032	
		southbound (SB)	The operational	required the following	case	0.0463	11	0.035621	(-84.79%		(-88.68%)	
con		directions as well as	scenarios were:	inputs: bus age		0.0390	17	0.032501	0.00352	,	0.003521	
•		between morning and	 Transit signal priority (TSP) - use 	distribution, fuel	1	(-16%)		(-8.76%)	(-92.40%		(-90.12%)	
		afternoon peak periods. Along the route there	of technology to	and meteorological		, ,			<u> </u>			
		are 31 bus stops in the	reduce dwell time	data.	2	0.0417		0.035621	0.00352		0.004032	
		NB direction and 35	at bus stops and	Gata.		(-9.89%	⁄0)	(0.00%)	(-92.40%	,	(-88.68%)	
		stops in the SB	intersections		3	0.0387		0.035361	0.00352		0.004032	
		direction.	2. Relocation of bus-		U U	(-16.25	5%)	(-0.73%)	(-92.40%	6) ((-88.68%)	
	spring 2011.		stops without TSP -			0.0381	77	0.035124	0.00348	4 (0.004	
•	Turning	Inclusion criteria	relocation of bus		4	(-17.56		(-1.40%)	(-92.48%		(-88.77%)	
•	movements		stops away from			0.0378	1	0.034887	0.00338	4	0.004001	
	at each	Exclusion criteria	intersection to mid-		5	(-18.36		(-2.06%	(-92.69%		(-88.77%)	
	intersection		block to reduce				,			•)	(00.1170)	
	were observed		exposure		Perce	ntage ree		compared to be	ase case			
	for 10 min and		of passengers to		Analys	ic						
	the proportion		air pollutant				unnina a	nd dwell emis	cione cho	w that D	M _{2.5} emissions	
	of directional		concentrations.								ne results also	
	traffic was		3. Relocation of bus-		•			on in PM _{2.5} act				
	calculated.		stop with TSP -		ULSD t							
•	Road		Near-side bus									
1	geometry		stops were		The res	ults of th	e operat	ional scenario	simulatio	ons demo	onstrate that	
	information		relocated to mid- block and TSP was					ion benefit for				
	such as		applied at each								emits very little	
1	number		signalised					diesel and th				
	of lanes,		Signalisea									

Study details	Population	Intervention / Comparator	Method of analysis	Model results	Notes
slope, and parking lots were collected from various sources in order to best represent the road configuration of the CDN corridor. • The bus schedule for the morning peak period and passenger information at each stop (boarding and alighting) were obtained from the local transit operator. This information was validated by onboard GPS data collection in the morning peak period (conducted ov er one week in the Spring 2011). Location and setting Montreal, Canada Length of study Source of funding Not reported		 intersection. Queue jumper lane without TSP - Queue jumper lanes were introduced at each intersection without relocating bussops. Queue jumper lane, relocation of bus-stop and TSP strategy - This scenario combines all the previous improvements under one scenario: Near-side bus stops are moved to mid-block and queue jumper lanes are introduced with TSP. A transit specific signal-phase is installed on the jumper lane so that at the start of the green phase, the transit vehicle can move before other vehicles. Jumper lanes are also given priority over general traffic flow. 		induce reductions in particulate emissions that are higher than reductions obtained by any operational scenarios.	

Study details	Population	Intervention / Comparator	Method of analysis	Model results	Notes			
Full citation Stamos, Iraklis, Kitis, George, Basbas, Socrates, THE	Number of participants n/a Participant	Intervention / Comparison Partial replacement of a mixed-flow traffic lane on a 4-lane, one	Assignment of Traffic to Urban Road Networks)	Outcomes Environmental indicators be the contra flow bus lane - re lane was planned and exam	Limitations identified by the author Not reported Limitations identified			
IMPLEMENTATIO	description	direction, high traffic	traffic simulation model	Indicator	Difference %	by the review team		
N OF A CONTRA FLOW BUS LANE	n/a	volume road, with a 0.9km contra flow bus	was used.	NO _x emissions (kg)	27	27	-	Insufficient time horizon to allow for the
IN THE CITY OF	Inclusion criteria	lane. Environmental		Fuel consumption (l/hr)	1.998	2.143	7.2%	assessment of longer
IMPACTS,	n/a Exclusion criteria n/a	impacts were calculated before and after the implementation of the proposed bus lane.		Environmental indicators be the contra flow bus lane - re streets) of the contra flow b	efore and aft sults for the	er the in	nplementation of	term impacts. Insufficient details of the modelling used.
Fresenius				Indicator	Before	After	Difference %	
Environmental Bulletin, 22, 2191-				NO _x emissions (kg)	95	93	-2.1%	
2196, 2013								
Quality score				Fuel consumption (l/hr)	8092	8169	0.9%	
Aim of the study To assess the impact of a contra flow bus lane in the city centre of Thessaloniki Source of data Data used for the development of the model derive from Thessaloniki's General Transportation Study Location and setting Central business district in Thessaloniki, Greece Length of study n/a				Analysis In the area where the interver in NO _x emissions. However, to contra flow bus lane increases Within the buffer zone of the s arterial road north of the propo in NO _x emissions, and an incr	otal fuel cons s by 7.2%. cheme (adja osed lane), th	umption cent stre le was a	in the proposed ets plus on major reduction of 2.1%	

Study details	Population	Intervention / Comparator	Method of analysis	Model results	Notes
Source of funding Not reported					

Question 3: Are interventions to develop routes and infrastructure to support low emission modes of transport effective at reducing the health impact of, or people's exposure to, traffic-related air pollution?

Study details	Population	Intervention / Comparator	Results	Notes							
Full citation Bean, T., Carslaw, N.,	Number of participants Not reported	Intervention / Comparison	Outcom		Limitations identified by the author						
Ashmore, M., Gillah,		Three journeys,	Average	The off-road routes had							
	Participant characteristics	representative of			August			Sep	tember		a lower density of
does exposure to nitrogen dioxide	Route 1 On-road: 7km including busy roads	typical commuter routes, cycled on a				%				_	sampling tubes than the on-road routes.
compare between on-	into and around the city centre	daily basis were	Route	On-road	Off-road	Decrease	On-road	Off-ro	bad %	Decrease	the on-road routes.
road and off-road	Off-road: 7.8km including off-road	selected for	1	13.9	8.7	37	15.9	9.6	40		
cycle routes?, Journal	cycle paths and less trafficked roads	monitoring. For each	2			40	17.1	10.1	41		Limitations identified
of Environmental	Route 2	journey, an 'on-road'	3			29	15.5	9.7	37		by the review team
Monitoring, 13, 1039- 1045, 2011	On-road: 3.5km including roads in the city centre	of the routes were	All	14.5	10.2	29	10.0	9.7	57		The authors selected the routes to be
1040, 2011	Off-road: 4.5km including designated	used, giving six in	routes	14.7	9.5	35	16.2	9.8	40		monitored.
Quality score	off-road cycle paths	total. Measurement of	(mean)	17.7	5.5	00	10.2	5.0	-0		The on-road and off-
-	Route 3	NO ₂ concentrations	<u>[[]]</u>	JIJ			<u></u>	-11	I		road routes were
Study type	On-road: 8.6km including busy road or travelling adjacent to roads where	were made in August and September 2008.	Exposur	e to NO₂ (pp	b h) and jo	ourney tim	ne for each	route			different lengths and took different times to
Comparative study	the speed limit is ≥60mph	and September 2006.				-	August		Sep	tember	cycles which could bias
	Off-road: 8.7km including			Journey						Ī	the results.
Aim of the study To compare exposure of NO ₂ to cyclists	predominantly designated off-road cycle paths		Route	time: on- road/off-ro (minutes)	ad On-roa	nd Off- road	% Decreas e	On- road	Off- road	% Decrea se	
when using on-road or			1	20:01 / 23:2	27 5.3	3.6	32	5.9	4.0	32	
off-road cycle routes.	Inclusion criteria N/A		2	9:45 / 15:08		2.7	4	3.0	2.8	7	
Location and setting	N/A		2				4			/	
UK	Exclusion criteria		3	23:00 / 23:5	51 5.8	4.1	29	6.4	4.2	34	
	N/A		All			0.5			0 7	07	
Length of study			routes (mean)		4.6	3.5	24	5.1	3.7	27	
2 months Source of funding Not reported			Analysis Cycling t average of 37.5% route sho route and Exposure for Route	he off-road ra time-weighted A paired t-te owed that the d equivalent of e was higher to 2 the difference e in exposure	d concentra st using po difference ff-road rou for the on-r nce was m	ation of NC ooled mear between a te was sig oad than c uch smalle	D2 by between data for ea iverage cond nificant (t=1 off-road route er. A paired t	n 37 an ch on-ro centratic 1.78; p< es of Ro -test sho	d 41%, v bad and c ons on the 0.01). butes 1 ar owed tha	vith a mean off-road e on-road nd 3, but t the mean	

Study details	Population	Intervention / Comparator	Results								Notes							
Kamminga, J., Hoek,	Participant characteristics The routes were of approximately 10- 20 minutes duration with the same origin and destination for each transport mode. The shortest way	Intervention / Comparison Exposure of particle number concentrations (PNC) and PM2.5		ne partic	n averages of le concentration					icles	Limitations identified by the author In the city of Zwolle, air pollution data from 4 routes were totally							
ultrafine and fine	was chosen for both driving and	were measured while		-	Particle number	r concentrat	tion	Fine particu	lates		missing. Also PNC							
during cycling and	cycling therefore they did not follow exactly the same route. A total of	driving and cycling the predefined routes.			N (NR)	Mean (SD)	Мах	N (NR)	Mean (SD)	Max	data of a few (cycling) routes were							
driving in 11 Dutch cities, Atmospheric Environment, 43,	circa 40 km was undertaken per city.	Sampling time was between 12:00 - 19:00, excluding morning	Apeldoorn	Car	163 (12)	20,796 (17,485)	119,071	163 (12)	14 (6)	49	missing due to equipment failure in The Hague, Maastricht							
4234-4242, 2009	The routes were all in a radius of 2.5km within the city centre and were	rush hours. Driving conditions	Apeldoorn	Bicycle	167 (12)	17,070 (10,184)	77,472	168 (12)	11 (5)	36	and Nijmegen.							
Quality score -	selected to give a representative picture of the infrastructure for	were standardised as much as possible.	Delft	Car	112 (12)	24,460 (11,336)	79,061	117 (12)	33 (17)	96	Limitations identified by the review team							
Study type	cyclists.			Bicycle	153 (12)	27,998 (14,610)	94,558	155 (12)	26 (11)	89	The driving and cycling routes were not same							
Non-randomised controlled study			Den Bosch	Car	170 (12)	23,012 (14,761)	84,185	170 (12)	95 (30)	151	which would impact the results of the study.							
Aim of the study To compare real time				Bicycle	147 (12)	21,191 (11,178)	65,330	149 (12)	99 (33)	155								
exposure to particle numbers and fine			The Hague	Car	184 (11)	15,430 (11,596)	87,113	184 (11)	15 (11)	87								
particles during car driving and cycling.				Bicycle	131 (9)	15,697 (9,643)	61,811	154 (11)	6 (4)	34								
Location and setting 11 medium-sized			Eindhoven	Car	102 (12)	23,461 (16,069)	99,620	102 (12)	34 (1)	85								
cities, the Netherlands				Bicycle	143 (12)	28,141 (14,235)	80,695	145 (12)	39 (14)	84								
Length of study 11 weekdays						Groningen	Car	170 (12)	22,234 (15,652)	108,437	170 (12)	20 (9)						
(excluding Fridays) in late August until				Bicycle	138 (12)	21,326 (10,817)	79,262	138 (12)	13 (6)	38								
October 2006			Haarlem Bicy	Haarlem	Haarlem	Haarlem	Haarlem	Haarlem	Haarlem	Haarlem	Car	167 (12)	34,739 (22,847)	151,182	167 (12)	36 (11)	116	
Source of funding Not reported						30,369 (13,367)	71,309	176 (12)	29 (4)									
			Maastricht	Car	202 (12)	35,538 (20,574)	<u> </u> 	202 (12)	31 (28)	148								
				Bicycle	87 (8)	28,220 (17,851)	112,219	148 (12)	20 (40)	452								

Study details	Population	Intervention / Comparator	Results								Notes
			Nijmegen	Car	131 (11)	24,064 (20,966)	125,375	131 (11)	(66)	806	
			Nijmegen	Bicycle	121 (11)	20,244 (12,466)	74,396	122 (11)	95 (16)	148	
			Utrecht	Car	186 (12)	29,722 (20,086)	123,168	186 (12)	(37)	316	
				Bicycle	173 (12)	27,246 (14,770)	88,220	174 (12)	112 (45)	190	
			Zwolle	Car	89 (8)	23,583 (19,171)	117,159	102 (8)	45 (14)	79	
				Bicycle	101 (8)	31354 (16690)	99,907	103 (8)	44 (16)	100	
			Analysis								
			between cit	tions in m ties/sampl	inute averag ing days. Th	s ges of PNC v ne overall me ne car and 24	an of car of	drivers was 5	5% high	er than	
			Fine partic The overall cycling.		ncentration	of PM2.5 in t	ne car was	s 11% higher	r than du	uring	
Full citation Burgard, D. A., Provinsal, M. N., On- road, in-use gaseous	Control fleet (n=162) Retrofit fleet fitted with continuously		Outcomes Average er intervals ar	nissions fo		l fleet and th	e retrofit fl	eet with 95%	6 confide	ence	Limitations identified by the author The DOC, DPF, and control fleets are
emission measurements by		fleet of retrofitted school buses and a fleet not retrofitted with		Retrofit (g/kg)	fleet avera	ge	Control	fleet averaç	ge (g/kg	1)	composed of buses spanning many model years which were built
remote sensing of school buses	Participant characteristics	anti-soot technology.		DPF (n=7	4) DOC (I	n=53) All	buses (n=	162)			to different emissions
equipped with diesel	Control fleet with most comparable		NO ₂ *	17.2 ± 4.5	4.4 ± 1	.1 3.8	± 0.8				standards, making
diesel particulate	engines yet to be retrofitted with soot- reducing devices Retrofit fleet fitted with continuously		Modal year	2000	1993 -	1995 199	5 - 2002				comparison difficult Limitations identified
Air and Waste Management Association, 59, 1468-	regenerating technology (DPF) or with Purimuffler (DOC) Inclusion criteria Not reported		Analysis	increase	in emitted N	nts for the color IO_2 for the D		DC equipped	buses	when	by the review team NO ₂ initial measurements were lost for the control fleet and so had to be
Quality score - Study type	Exclusion criteria Not reported										revisited to measure at the end of the study period. Measurements were

Study details	Populati	on				Intervention / Comparator	Results												Notes
Non-randomised controlled study																			taken on different dates for the control and intervention fleets.
Aim of the study To determine the effect of School Buses Equipped with Diesel Oxidation Catalysts and Diesel Particulate Filters on emissions																			intervention neets.
Location and setting Washington, USA	l																		
Length of study 4.5 months	l																		
Source of funding Not reported	l																		
Burr, M. L., Karani, G.,	Number Question	nnaire o	of symp	ptoms ·		Intervention / Comparison	Outco		M	nd D	A	oncont	ration						Limitations identified by the author
	of partic informat					The construction of a by-pass.	wean	hourly P	IVI 10 a	na Pi	12.5	concent	ration	IS					Many of the subjects who participated
Effects on respiratory health of a reduction in air pollution from	Congeste Unconge	ed street ested stre	ts = 16 eets = :	5 283		Measurements of PM ₁₀ and PM _{2.5} were recorded in a		Before by pass opened	р	fter by ass pened		Chang	je	Befo pass oper		pa	er by- ss ened	Change	moved away during the study.
emissions, Occupational and	Participa	ant char Conges streets	sted	stics Uncong streets		congested and uncongested street before and after the	PM ₁₀ (mg/ m ³)	35.2		27.2		-22.7%	, D	11			.2	-28.9%	Limitations identified by the review team Participants self
environmental medicine, 61, 212-218, 2004		Origin al group	ot	Origin al group	Subs et	opening of the by- pass. A respiratory survey	PM _{2.5} (mg/ m ³)	21.2		16.2		-23.5%	, D	6.7	7	4	.9	-26.6%	measured their PEFR results.
Quality score -	Number Mean age	386 37.9 (20.0)	165 47.9 (16.5	425 38.4 (23.2)	283 40.2 (22.9	was conducted among the residents, together with the residents of nearby uncongested		-	ent in	sym	oton	n preval	ence	in co	onge	sted a	nd unco	ongested	
Study type	(SD), y)	streets, at baseline				ested			Unco				Diffor	ence* in net %	
after	Aged >65 y (%)	33 (8.5)	22 (13.3)	62 (14.6)	41 (14.5)	and again a year after the by-pass opened. Adult subjects were	What	70	Total no.							Net % better		(95% CI)	
Aim of the study	Inclusio	n ouito!				issued with Peak flow	Whee	ze Any	165	17	16	0.6	283	35	15	7.1	-6.5.(-'	14.9 to 2.0)	
respiratory health	Inclusion Resident unconges	s and wo	orkers		roote	meters for 2-3 weeks and asked to record their peak expiratory		No. attacks	163							8.5		18.2 to 1.2	

Study details	Population	Intervention / Comparator	Results							Notes			
reduction in exposure to traffic related air	expiratory flow rate (PEFR) before the intervention recorded the	flow rate (PEFR) on getting up in the	Disturbs sleep	164	12	11	0.6	283	26	18	2.8	-2.2 (-9.9 to 5.5)]
pollutants.	measurements again after the intervention at the same times of year	norning and on coming in later in the	Limits speech	164	4	2	1.2	282	12	7	1.8	-0.6 (-5.2 to 4.5)	
Location and setting UK	as before. The questionnaire	day. Subjects who had recorded PEFR were issued with peak flow	Affects activities	165	13	12	0.6	281	26	14	4.3	-3.7 (-11.3 to 4.0)]
Length of study	was readministered to the subjects who participated in the first phase of	meters at the same times of year as	Without a cold	162	12	15	-1.9	281	17	18	-0.4	1.5 (-6.2 to 9.3)]
Source of funding	the study.	before.	Treated	163	8	5	1.8	264	18	11	2.7	-0.8 (-7.1 to 5.6)]
Department of Health				reets. varia	tion	of p	eak flo	w rate	s (m	atche	ed data	- persons who	
			recorded their	PEFF	c on	at lea		ested			-0	ngested streets	ה
			On getting up									<u> </u>	
			No. subjects				81				99		
			Mean CV (Befo	ore) (S	SD)		5.09 (3.31)			6.17 (3.88)	
			Mean CV (Afte	r) (SD)		5.32 (4.35)			4.99 (3.54)]
			Mean change i	n CV	(SD)		+0.23	(4.52)			-1.18	(3.83)]
			95% CI				-0.75	, +1.21	1		-1.93	, -0.43]
			On coming in]
			No. subjects				79				95]
			Mean CV (Befo	ore) (S	SD)		5.09 (3.47)			5.77 (3.60)]
			Mean CV (Afte	r) (SD)		5.25 (4.07)			5.22 (3.67)]
			Mean change i	n CV	(SD)		+0.16	(3.60)			-0.55	(3.36)]
			95% CI				-0.63,	+0.95			-1.23,	+0.13]
			the intervention	. The ased a streets	peak fter t sho	flow he in wed	rates d itervent a lower	of parti ion. Fo net im	cipar or ind oprov	nts fro lices (remer	m cong of whee nt than t	ze, the subjects in hose in the	
Full citation Gramsch, E., Le Nir, G., Araya, M., Rubio, M. A., Moreno, F.,	Number of participants Measurements of black carbon were taken before (June-July 2005) and after (June-July 2007) the	Intervention / Comparison Implementation of 'Transantiago'. Before	Outcomes Summary of B Site	lack (Year		-		asurei 3C	nent		(µg m ⁻³)	Max (µg m ⁻³) n	Limitations identified by the author The measurements at the control site (E.

Study details	Population	Intervention / Comparator	Results							Notes
large changes in	intervention along 4 roads (3 crossing the city with main avenues directly	Transantiago, the city had a fleet of about			period	average ± s.d. (µg m ⁻³)				Yañez) in 2007 had considerably more
(Transantiago) on the	affected by the intervention - Usach, Alameda and Departamental) and 1 where no public transportation was	7000 diesel buses which were reduced to about 5900,	Usach	2005	June 1 - July 29	7.91 ± 5.69	0.00	33.55	1303	errors than the other stations. There were many electricity failures
near streets, Atmospheric	available before or after the intervention - E. Yañez.	from which about 1500 of them were new		2007	June 1 - July 31	8.29 ± 5.78	0.05	47.02	1437	in this station resulting in loss of data.
Environment, 65, 153- 163, 2013	Participant characteristics	(Euro III). All Euro I buses were taken out	Alameda	2005	June 1 - July 4	19.31 ± 9.50	0.64	59.68	801	The sampling period is short compared to the
Quality score	Not reported	of circulation after implementation.		2007	June 6 - July 31	11.93 ± 7.64	0.40	59.80	1317	total time during which BC emissions occur (1 hr 20 min) and
Study type	Not reported		Departamental	2005	June 2 - July 2	9.36 ± 5.67	0.00	26.71	715	during this period large or very low emissions
Controlled before and after study	Exclusion criteria Not reported			2007	June 4 - July 31	10.21 ± 7.93	0.00	124.65	1389	may occur and introduce a bias in
Aim of the study To determine the			E. Yañez	2005	June 1 - July 2	5.05 ± 2.87	0.03	19.76	753	the measurements.
effect of a large change in the public				2007	June 29 - July 31	5.93 ± 3.81	0.16	23.71	483	by the review team Time period and dates
transportation system (Transantiago) on levels of black carbon air pollution.			Analysis The only site w was Almeda str							when data taken at E. Yañez site in 2007 were different to all other sites.
Location and setting Santiago, Chile										
Length of study Not reported										
Source of funding Airparif and the Department for Scientific and Technological Research (Dicyt) of the University of Santiago										
Full citation Hatzopoulou,	Number of participants n=4	Intervention / Comparison Four participants	Outcomes Personal expo		to air pallutia	on during me	ming and a	oning oveling	trina	Limitations identified by the author Did not have traffic
	Participant characteristics Routes ranged from 16 to 19 km in	cycled on weekdays (Monday to Thursday)	Pollutant	Mea (SD)	n MediR	ang Mean	Medi Rang		· ·	count data for each count point on

Study details		Intervention / Comparator	Results								Notes
Miranda-Moreno, Luis, Kulka, Ryan,	types of cycling facilities including lanes completely separated from	during the morning (0800-1000 hours) and evening	Black carbon (ng/m ³) n=57	1999 (1130)	1516	398- 4612	1052 (630)	948	196- 2506	947 (450, 1445)	every cycling day and as a result in some analyses the
Goldberg, Mark, The		commutes (1500–1700 hours). Cycling lanes were categorised	PM _{2.5} (µg/m³) n=50	10.4 (7.0)	8.8	4.3- 28.7	11.1 (9.8)	7.6	2.8- 38.2	-0.65 (-5.5, 4.2)	authors assumed a constant traffic flow at each count point which
volume, composition, and road geometry on	physical barrier in between.	as either separated (including fully separated lanes	Mixed-effect mo exposures and s	dels for t				en pei	rsonal a	air pollution	may have biased results if traffic counts varied between days.
		and lanes separated	Pollutant				Ana	alysis			Wind speed data were
Exposure Science & Environmental	Exclusion criteria Cycling did not take place during	by parked cars) or not separated (on-road lanes with no physical barrier between the		Limited counts p Cl)					re data nge (95	set percent % Cl)	based on a fixed monitoring site located outside of the downtown area. The
Epidemiology, 23, 46- 51, 2013		cycling lane and traffic). In total, 8	authors did not have detailed information								
Quality score		different routes were cycled in total (4	PM _{2.5} (µg/m ³)	7.8% (-1	7, 35)			2.0%	6 (-14, 1	9)	for wind speed at various points along
 Study type Comparative study Aim of the study Evaluate personal exposures to multiple air pollutants among cyclists and potential determinants of exposure such as the type of cycling lane (separated vs non- separated) Location and setting Montreal, Canada Length of study 32 days Source of funding Not reported 		reflected high-traffic areas and 4 low- traffic). All routes were cycled on 4 different days, twice each day (am and pm) for a total of 64 observation periods.	Impact of cyclin Each 5 m separa exposure of 2.5% separation was li exposure to PM ₂ Analysis Exposures were exposure to Blac Use of separated were associated was increased ex distance from tra statistically signif	tion of the 6 (95% CI nked with 5. similar du k carbon l cycling la with a dea qosure to ffic. Howe	e cyclin : -17, 1 a 3.5% ring the were hi anes ar crease o PM _{2.5}	g lane v 2) for bl 6 (95% (e mornir igher du nd increa in expos with sep	vas asso lack carb CI: -9.1, ng and ev uring the i ased cyc sure to B parated c	ciated on. Ho on. Ho 18) inc vening mornin ling lar lack Ca sycling	with a d wever, f rease in commu g comm ne distau arbon. I lane use	ecrease in the same personal tes for PM2.5 but nute. nce from traffic n contrast, there e and increased	each route; therefore, measuremen t error might have resulted in underestimation of the true impact of wind speed on personal air pollutant exposures. Limitations identified by the review team 14 PM _{2.5} and 7 Black Carbon sets of measurements during the study were lost due to instrument malfunction or technician error. Routes differed in length.
	Number of participants n=15	Intervention / Comparison Two cycle routes – a	Outcomes Paired t-test by	subject	Δvera		itant exp	osure	for eac	h subject's high-	Limitations identified by the author A major limitation of

Study details	Population	Intervention / Comparator	Results									Notes
Nazelle, A., Hanning,	Participant characteristics	low-traffic Bicycle	traffic ride v	s. low	-traffic ri	de avera	ge					this study was variable
C., Daly, L., Lipsitt, J., Balmes, J., Cyclist route choice, traffic-	Healthy adults (4 Female, 11 Male), Mean age = 32	Boulevard route which followed busy streets with more truck		N*	Mean		Standar the mea	d error of n		95% C differe		wind speed and other meteorological conditions, which
related air pollution, and lung function: A	Inclusion criteria Healthy adults (non asthmatic)	and bus traffic and a high-traffic route			Low- traffic	High- traffic	Low- traffic	High- traffic	p- value	Lower	Higher	affected measured concentratio
scripted exposure study, Environmental	Exclusion criteria	which followed residential streets. All	ΡM _{2.5} (μg/m ³)	8	4.88	4.53	0.40	0.39	0.60	-1.90	1.19	ns independent of road traffic volume.
Health: A Global Access Science Source, 12, 2013	Adults with respiratory health conditions, cardiovascular conditions, recent or current smoking habits.	routes were designated by the City of Berkeley as bicycle	Black Carbon (µg/ m³)	15	1.73	2.10	0.90	0.15	0.06	-0.02	0.77	Equipment failure also reduced the number of viable pollutant measurement
Quality score -		boulevards. Each participant cycled on the low-traffic route	*N = number of pairs)		-	C			or pollu	tant (i.e	number	s. Participants did not cycle to the study site,
Study type		once and the high-	Average mea		nents an	d chang	es in lung	1				but pre-study exposure
Non controlled comparative study		traffic route once.	Measuremen	nt				Low-traff	C	High-tra	affic	and potential exposure between the
Aim of the study To compare high and low traffic cycle routes			FVC (litres) baseline ± S Post-ride (dir 4-hour (diffe	fferend				4.90 ± 0.7 4.88 (-0.02 4.87 (-0.03	2)	5.01 ± 0 5.01 (0. 4.96 (-0	00)	post-ride and 4-hour follow-up spirometry measureme nts were not otherwise
on exposure to traffic related air pollution and lung function			FEV ₁ (litres) baseline ± S Post-ride (di 4-hour (diffe	D fferend				3.91±0.60 3.93 (0.02 3.95 (0.04)	3.95 ± 0 4.00 (0. 3.94 (-0	05)	controlled. Allowing participants to drive to the study site may have influenced their
Location and setting Berkeley, California Length of study			FEV ₁ / FVC baseline ± S Post-ride (di 4-hour (diffe	D fferend	ce from ba			0.81 ± 0.0 0.81 (0.00 0.81 (0.00)	0.79 ± 0 0.80 (0. 0.81 (0.	01)	pre-exposure to vehicle-related air pollutants. Due to equipment
3 months Source of funding Not reported			FEF _{25-75%} (lit baseline ± S Post-ride (di 4-hour (diffe	t res) D fferend	ce from b	aseline)		3.87 ± 0.9 3.77 (-0.10 3.94 (0.07	D)	3.61 ± 0 3.78 (0. 3.85 (0.	17)	failure, fine particulate matter measurements were missing for five study days. Two days of
			Baseline aver second (FEV between 25-7	1), the	ir ratio (Fl	EV1 / FV	C=%FEV1					measurement were excluded due to rain and a flat tire.
			Analysis There was a a additionally th route. There either route	nere w	as a high	er conce	ntration of	Black Carbo	on alon	g the hig	gh-traffic	Limitations identified by the review team There were a limited number of participants included in the study
			Compared the pairwise t-tes							ect usinç	ga	

Study details	Population	Intervention / Comparator	Resu	ts										Notes
				urements (Version 1								lyses.		
Kendrick Christine, M., Moore, Adam, Haire Ashley, Raye, Bigazzi Alexander, York,	Number of participants n/a Participant characteristics Measurements for the study were	Intervention / Comparison Ultrafine particle exposure concentrations	test r	omes Particle I esults for parisons									d t-	Limitations identified by the author None reported Limitations identified
Figliozzi, Miguel,	undertaken on a road with 2 traffic	were compared in	-		Bicycle	lane		Cycle tr	ack					by the review team
M., George, Linda, Transportation Research Board, Fifth Street N. W.	lanes (in addition to the cycle track), with an offset row of parallel parking providing a buffer to the cycle track,	2 settings: 1. A traditional	Date	Time	Median		Range	Median		Range	Mean diff	p- valu e	% diff	The study compared exposure concentration in 2 settings: a
	approximately 10 -11 feet in width. Traffic composition and volumes vary at this location throughout the day.	bicycle lane adjacent to the vehicular traffic	24,	5:45- 10:45 AM	31,400	43,78 8	14,500- 500,000	30,500	37,49 8	15,000- 365,000	6,125	<0.01	15	traditional bicycle lane and a cycle track design with a parking lane separating
Bicycle Lane Characteristics on Bicyclists' Exposure to		lanes 2. A cycle track design with a	Nov 24, 2009	10:58 AM -1:52 PM	28,200	56,84 5	4,510- 500,000	26,000	35,80 2	13,600- 500,000	21,043	<0.01	38	bicyclists from vehicular traffic. However, the
Traffic-Related Particulate Matter, Transportation		parking lane separating bicyclists from vehicular traffic	Nov 24, 2009	2:05- 4:51 PM	25,400	37,47 6	9,980- 500,000	20,600	24,61 8	2,230- 312,000	12,589	<0.01	35	measurements were collected with sensors placed on either side c
Research Board 90th Annual MeetingTransportation		lanes.	Feb 8, 2010	5:31- 10:49AM	30,600	47,60 1	12,300- 500,000	29,500	44,24 5	3,340- 500,000	3,309	<0.01	8	a parked car, rather than placing sensors within the two cycle
Research Board, 15 Quality score		Particle number concentrations and traffic measurements were made over	June 7, 2010	6:53 AM- 2:20 PM	14,700	25,27 1	3,340- 500,00	14,200	20,80 5	5,750- 500,000	4,465	<0.01	18	lanes – this could impact on the results of the study, particularly
- Study type Controlled study		4 days across several months. On each study day particle counters	July 13, 2010	7:24 AM- 9:42 PM	8,290	13,83 9	2,390- 500,000	7,660	10,55 8	5,620- 500,000	3,309	<0.01	24	as the passenger-side measurements were located a few feet from the actual cycle track.
Aim of the study To assess the impact of traffic levels and bicycle lane characteristics on bicyclists' exposure to ultrafine particles. Location and setting A multi-lane, one-way southbound street in downtown Portland, USA		were placed in a parked car in the parallel parking zone on the west side adjacent to the cycle track. The car was parked to compare simultaneous measurements of exposure concentrations that would be experienced in a conventional bicycle lane versus a cycle track	track differe Partic 300,0 meas	rsis e lane exp exposure l ences and le number 00-500,00 urements. ment to ca	evels al percent distribu 0pt/cc o This ma	though different tions sh ccurrect ay have	there wances. howed bind d more free been an	as a wide cycle lan equently i under e	range e meas compa stimate	in the me surement red to cy e due to the	ean of tl s greate cle trac	he er thar k	ı	The placement of the study vehicle was also different on one of the experiment days than the other days. Particle number concentrations and traffic measurements were made over four days in the span of several months with different combinations of equipment and study durations depending of

Study details	Population						Intervention / Comparator	Results			Notes
Length of study 8 months Source of funding Not reported							lane. Measuring exposure on the driver's side represented the exposure concentration in a traditional bicycle lane; exposure measured on the passenger-side represented the cycle track exposure concentration.				availability of equipment and personnel.
	Number of par		pant	ts			Intervention /	Outcomes			Limitations identified
MacNaughton, P., Melly, S., Vallarino, J.,	3 bike route typ	bes					Comparison Exposure to NO ₂ and	Route type	Mean (standard error)		by the author Measurements of
Adamkiewicz, G.,	Participant cha						black carbon (BC) was		Black Carbon (ng/m ³)	NO ₂ (ppb)	PM _{2.5} interrupted by
on exposure to traffic- related air pollution,	and bike route	e typ	be	ling	rou	tes	measured during morning (7:00am to 10:00am) and evening (15:00 to 18:00)	Sampled concentration Bike path Bike lane Designated bike lane	1670 (101) 2360 (85.1) 1980 (336)	14.7 (0.582) 19.5 (0.343) 24.2 (1.72)	vibrations, resulting in incomplete data sets.
related air pollution, Science of the total environment, 490, 37- 43, 2014 Bike path: a					4		commutes along 5 pre- designated bike routes, selected to represent travel over a	Background concentration Bike path Bike lane	640 (16.9) 641 (9.35) 1020 (129)	16.1 (0.115) 15.8 (0.102) 15.9 (0.245)	by the review team Route lengths differed across the 5 routes assessed and between
Quality score - Study type	separated	4	7	7 4	4) 17 .3	traffic and atmospheric conditions.	Designated bike lane Analysis The highest concentration (con	npared to background) of Bla	ack Carbon was found	route types.
Comparative study Aim of the study	adjacent to vehicle traffic	10 .2	10 .7	9. 7 4 7		10 48 6 .6	Each route was monitored 4 times using monitoring	in the Bike lane, for NO ₂ this wa	as found in the designated b	oike lane.	
To determine the impact of bicycle route type on exposure to traffic related air pollution.	e the Designated bike lane: a shared traffic lane for bicycles and buses 141 146 145 144 140 681										
Location and setting Boston, USA						10 68 6 .4					
2 monuns	Inclusion crite Not reported	eria									
	Exclusion crite	eria	l								

Study details	•	Intervention / Comparator	Results	Notes
1R44ES018494-01				

Question 3: Are interventions to develop routes and infrastructure to support low emission modes of transport effective at reducing the health impact of, or people's exposure to, traffic-related air pollution? Modelling studies

Study details	Population	Intervention	/ Com	parato	or			Method of analysis Model results No										
Full citation Chong, U., Yim, S. H. L.,	Number of participants n/a	Intervention The study as propulsion tee	sessed	the im	pact of			Type of model A bus traffic model was created to spatially		nes lity impacts n (metric to			us tech	nologie	s in Gre	eater	Limitations identified by the	
Barrett, S. R.		natural gas, h						simulate the Greater		•	1	BASE	SCRT	EGRD	CNGL	HYBR	author	
H., Boies, A.	Participant	emissions co						London bus network. A			Mean	2371	765	1499	901	1167	Non	
M., Air quality	description	regenerating						baseline and 4 future	NO₂		5th PRC	1696	539	1076	673	835	reported	
and climate	n/a	and selective						technology adoption			95th PRC	3021	978	1908	1156	1499	1	
impacts of alternative	Inclusion	the Greater L existing diese			et rela	tive to tr	ne	scenarios were defined. Emissions inventories			Mean	0.43	0.36	0.43	-	0.25	Limitations identified	
bus	criteria	Four scenario			v ac he	voll as t	ho	were calculated for each	Black Ca	arbon	5th PRC	0.35	0.30	0.35	1_	0.15	by the	
technologies	cinteria	current basel							Didek of		95th PRC	0.52	0.44	0.52		0.37	review team	
in Greater	Exclusion	2010 compos						quality impact quantified.			Mean	7.79	6.56	7.79	2.02	4.52		
London,	criteria	buses with pa						The Weather Research	Organic	a a r h a n	5th PRC	6.65	0.50 5.80	6.71	1.17	2.82		
Environmenta		limits. The oth	her sce	enarios	are se	t out in t	the	and Forecasting Model	Organic	carbon					_			
I Science and		table below.						(WRF) was applied to	-		95th PRC	8.80	7.37	8.91	3.03	6.43		
Technology,								provide meteorological	D									
48, 4613-		Definition of					age	fields for air quality		tion exposi	ure to Piv			naon ai	ue to er	nissions		
4622, 2014		of drive train	n and e	missio	ons co	ntrol		simulations.	from bu								1	
Quality		strategies	1	10000	1					Reduction in					<u> </u>			
score				SCRI	EGRD	CNGL	HYBR			PM2.5		k Carbon		inic carbo		02		
+		Euro-II +CRT	23.9%	<u> -</u>					Base	7.5x10 ⁷	1.8x		2.9 x			.0 x107		
		Euro-II +SCR +CRT	-	23.9%					SCRT	6.2 x10 ⁷	1.6 >	x106	2.5 x	107	1.	.2 x107		
Aim of the		Euro-II +EGR							EGRD	7.3 x10 ⁷	1.9 >	k106	3.0 x	107	1.	.7 x107		
study		+DPF	-	-	23.9%				CNGL	1.2 x10 ⁷	2.2 >	x106	7.8 x	106	-2	2.2 x107		
To assess the		Euro-III +CRT	48.5%	-	1				HYBR	5.3 x10 ⁷	1.1 >	x106	1.7 x	107	1.	.4 x107		
impact of alternative		Euro-III +SCR +CRT	-	48.5%					Analys	is								
bus technolog ies on air		Euro-III +EGR +DPF	-	-	48.5%					le presents iesel emissi								
quality emissions.		Euro-IV +SCR +CRT	15.9%	15.9%	15.9%				were re	ductions in I 16%) and C	NO ₂ (SCF	RT: 68%;	EGRD:	37%), E	lack Ća	arbon		
Source of		Euro-IV +EGR +DPF	3.6%	3.6%	3.6%				baseline		organic o					0		
data		Euro-V +SCR	6.7%	6.7%	6.7%					IYBR scena						Black		
Publicly available bus		+CRT	0.1 /0	0.1 /0	0.1 /0	ļļ				(42%) and								
schedule and		Euro-V +EGR +DPF	1.4%	1.4%	1.4%					o, there wer	e reductio	ons in NC	D ₂ (62%)	and Or	ganic Ca	arbon		
bus stop		Lean burn		11					(74%).									
location data		CNG	-			100%												
covering 700 bus routes		Hybrid electric diesel	-				100%											
and 19,500 bus stop																		

Study details	Population	Intervention / Comparator	Method of analysis	Mod	lel re	sults	6									Notes
locations were used. Location and setting London, UK																
Length of study n/a																
Source of funding Engineering and Physical Sciences Research Council funded the Energy Efficient Cities Initiative (EP/F034350/ 1)																
Full citation Goncalves, M., Jimenez- Guerrero, P.,	Number of participants 2 cities	Intervention / Comparison To assess the impact of the introduction of NGV a number of scenarios were modelled: (E1) Scenario 1. Substitution of 100% of urban	Type of model Changes in air quality are assessed by means of the WRE-	Cha and		s in 2 rid fo			rage NO e and 7						na	Limitations identified by the author
Baldasano, J.	Participant	buses fleet by NGV;	ARW/HERMES/CMAQ		1	elona	area			Мас	Irid ar	ea				None
M., High resolution	description	(E2) Scenario 2. Substitution of 50% of taxis fleet by NGV;	modeling system.		NO2 avera			PM10 avera			24-h rage		PM10 avera			reported
modeling of the effects of alternative fuels use on	Inclusion criteria n/a	 (E3) Scenario3. Substitution of 50% of inter city buses fleet by NGV; (E4) Scenario 4. Substitution of 50% of light commercial vehicles fleet by NGV; 			Con c (µg m-3)	∆ con c	Variati on (%)	C (und	∆ con c	Cor tic δ) (μg m-3	con	Variati on (%)	Con c (µg m-3)	con	Variati on (%)	Limitations identified by the review team
urban air quality: Introduction of natural gas	Exclusion criteria n/a	 (E5) Scenario 5. Substitution of 10% of private cars fleet by NGV; (E6) Scenario 6. Substitution of 100% of heavy duty freight transport vehicles fleet by NGV; 		Bas e cas e	35.0			10.4		22.2	!		4.9			There are meteorologic al differences
vehicles in Barcelona		(E7) Scenario 7. Combined scenario. The base case was defined taking into		E1	34.8	- 0.2 0	-0.56%	10.4	- 0.0 5 -0.48	% 21.8	- 0.4 4	-1.98%	4.9	- 0.0 6	-1.21%	between the locations
and Madrid Greater Areas		account the year 2004 data.			34.9	5	-0.15%		7	% 22.0	8	-1.24%		- 0.0 8	-1.64%	studied and the UK.
(Spain),				E3	34.9	-	-0.11%	10.4	0.29	% 21.6	-	-2.73%	4.8	-	-1.79%	Other

Science of the total environment, 407, 776-790, 2006	Study details	Population	Intervention / Comparator	Method of analysis														Notes
407, 776,790, 2009 Quality Score - Aim of the study Fill Study To Investigate he mact on urban air quality of difference of the mact on urban air quality of difference of the mact on urban air quality of difference of the differenc	the total									0.0 3			0.6 1			0.0 9		comments
score Image: Score in the study Image: Score in the score in th	407, 776-790,				E4	34.1		-0.89%	10.0		-3.99%	21.1		-5.04%	4.6	- 0.3 1	-6.24%	
Analysis To investigate the impact on urban air quality of different scenarios of emissions reduction, which consider the introduction of natural gas owniches natural gas vehicles (NV) to Barcelona and Madrid. Source of data modeling must base conditions of 17-18 June 2004. Location and setting Barcelona and Madrid, Spain					E5	34.6		-0.46%	103 4		-0.74%	20.4		-8.2%	4.7	- 0.1 7	-3.49%	
To investigate the impact on urban air (uality of differentET32.92.12.15%9.70.86.6%17.70.50.25%0.70.80.6%17.70.50.25%0.70.80.6%17.70.50.25%0.70.80.6%17.70.50.25%0.70.80.6%17.70.50.25%0.70.80.6%17.70.50.25%0.70.80.6%17.70.50.25%0.70.80.6%17.70.50.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.25%0.70.8%0.2%0.7%0.8%0.2%0.7%0.8%0.2%0.7%0.7%0.8%0.7%0.7%0.8%0.7%0.7%0.8%0.7%0.7%0.8%0.7%0.7%0.8%0.7%0.7%0.8%0.7%0.7%0.8%0.7%0.7%0.8%0.7%0.7%0.8%0.7%0.7%0.8%0.7%0.7%0.8%0.7%0.7%0.8%0.7%0.7%0.8%0.7%0.7%0.8%0.7%0.8%0.7%0					E6	34.8		-0.29%	10.4		-0.44%	22.0	- 0.2 1	-0.96%	4.9		-0.54%	
quality of different scenarios of emissions reduction, which consider the introduction of of natural gas commercial light vehicles (scenario E4) is the most effective individual scenario in reducing NOx and PM10 in Barcelona, while in Madrid substituting 10% of private cars (scenario E5) involves larger reductions of NOx emissions. The largest variation in traffic emissions is obtained in the combined scenario. Vehicles (NGV) to Barcelona and Madrid. Source of data Modelling was based on weather conditions of 17-18 June 2004. Location and setting Barcelona and Madrid, Spain Location and setting Barcelona and Madrid.	To investigate the impact on				E7	32.9	- 2.1 5	-2.15%	9.7		-6.6%	17.7		- 20.56 %	4.2	- 0.7 3	- 14.92 %	
data Modelling was based on weather conditions of 17-18 June 2004. Location and setting Barcelona and Madrid, Spain Length of study	different scenarios of emissions reduction, which consider the introduction of natural gas vehicles (NGV) to Barcelona				Corr natu effe while large	npare iral ga ctive i e in M er rec	d to as co indiv /ladri ductio	ommero idual so id subsi ons of N	cial lig cena titutir NOx	ght v rio in ng 10 emis	ehicles reduci % of pi sions. 7	(scer ng N rivate The la	nario Ox a e care arge	o E4) is nd PM s (scen st varia	the r 10 in ario I	nost Barc E5) i	celona, nvolves	
setting Barcelona and Madrid, Spain Length of study	data Modelling was based on weather conditions of 17-18 June																	
study	setting Barcelona and Madrid,																	
Source of	study n/a																	

Study details	Population	Intervention / Comparator	Method of analysis	Model	results			
funding This work was funded by the projects CICYTCGL20 06-08903 and CGL2006 -11879 of the Spanish Ministry of Education and Science and CALIOPE project 441/2006/3- 12.1 of the Spanish Ministry of the Environment								
invironment.								
Full citation Goncalves,	Number of participants	Intervention / Comparison The study assess several scenarios of natural	Type of model The HERMES emissions	Outco	mes ions reduction	from road traf	fic for each sce	nario
Maria,	2 cities	gas vehicle introduction in Barcelon and	model, specific for the		Barcelona		Madrid	, indire
Jimenez-		Madrid.	Iberian Peninsula was		NOx (kg d-1), %	PM10 (kg d-1),	NOx (kg d-1), %	PM10 (kg d-1),
Guerrero,	Participant	The base case scenario (EB) was based on	used to evaluate the		change	%change	change	%change
Pedro, Baldasano,	description There is a larger	in Barcelona and Madrid. Modelling was	change in traffic emissions for each	Base case	23,949	7,356	66,700	18,238
lose M.,	overall vehicle	undertaken to assess the impact on air quality	scenario.	E1	-3.6%	-3.1%	-2.7%	-2.9%
Emissions	fleet in Madrid	of different scenarios in vehicle fleet		E2	-2.8%	-4.2%	-1.8%	-3.9%
ariation in	than Barcelona	composition changed according to the type						
rban areas esulting from	(1.7m compared to 1m vehicles),	and percentage of Natural Gas Vehicle (NGV) introduced in each case. The scenarios were:		E3	-2.0%	-1.8%	-3.8%	-4.3%
esulting norm	while economic	E1: transformation to NGV (natural		E4	-15.1%	-24.5%	-6.7%	-13.9%
ntroduction	activity in Madrid	gas vehicles) of 1005 of urban bus		E5	-7.8%	-4.6%	-10.9%	-8.1%
				11		0.001	1.00/	-1.3%
of natural gas		fleet		E6	-3.4%	-2.8%	-1.3%	
f natural gas ehicles: pplication to				E6 E7	-3.4% -34.7%	-2.8% -41.0%	-1.3%	-34.3%

Study details	Population	Intervention / Comparator	Method of analysis	Model results	Notes
2009 Quality score -	and 81% respectively). Inclusion	• E7 combined scenario (when up to 26% of the vehicle fleet transformed in Barcelona and up to 23% in Madrid)			between the locations studied and the UK.
study To assess the impact on emissions of the introduction of Natural Gas as an alternative fuel in Barcelona	criteria n/a Exclusion criteria n/a				Other comments
and Madrid. Source of data Data on the vehicle fleet was provided for the year 2004 by data the national traffic management organisation of Spain					
Location and setting Madrid and Barcelona, Spain					
Length of study Emissions data was gathered on 1 day selected on the basis of a poor air					

Study details	Population	Intervention / Comparator	Method of analysis	Model results						Notes
quality episode and usual traffic circulati on pattern (working days), in order to obtain representativ e results.										
Source of funding The work was funded by the projects CICYT CGL2 006-08903 and CICYTCGL20 06-11879 of the Spanish Ministry of Education and Science and CALIOPE project 441/2006/3- 12.1 of the Spanish Ministry of the Environment.										
Full citation Soret, A., Guevara, M.,	Number of participants 2 cities	Intervention / Comparison Three fleet electrification scenarios (low, medium and high levels of electrification) were	Type of model The air quality impacts of fleet electrification were	Outcomes Total emissions and cor relative to the base case					enario	Limitations identified by the
Baldasano, J. M., The	Participant	compared with a Base Case scenario (the current situation in 2011 with no fleet	analysed using the Community Multiscale Air		Barcelo			adrid		author Not reported
potential	description	electrification) for an air pollution episode	Quality (OMAQ) mouch.	Scenario		M10 PM	2.5 N		0 PM2.5	
impacts of electric	The total vehicle- kilometres-	(worse-case) that affected the Iberian Peninsula during 2011.	The meteorological fields for CMAQ were	Total Base Case scenario	31.42 3			1.27 5.89		Limitations identified
vehicles on air quality in	travelled are estimated as	The 3 scenarios electrification were: • Low: ~13 % electrification. VKT in	generated by the Weather	Total Low scenario	30.30 3		6 38	3.90 5.83	4.59	by the review team
the urban	13,462,321	electric drive mode (passenger cars	Research and	Total Medium scenario	29.18 2			6.52 5.77		There are
areas of	(Barcelona) and	(PCs), light duty vehicles (LDVs),	Forecasting (WRF)	Total High scenario	28.06 2	.95 2.3	7 34	4.13 5.71	4.45	meteorologic

Study details	Population	Intervention / Comparator	Method of analysis	Model results						 Notes
Barcelona	Population 25,787,145 (Madrid). Inclusion criteria n/a Exclusion criteria n/a	 buses, mopeds and motorcycles) are 9.7 and 9.1% in Barcelona and Madrid, respectively. The percentages in hybrid drive mode (PCs, LDVs and buses) are 3.6 and 4.3% in Barcelona and Madrid, respectively. Medium: ~26% electrification. VKT in electric drive mode: 19.4 and 18.1%, and in hybrid drive mode: 7.1 and 8.6% in Barcelona and Madrid, respectively. 	Method of analysis meteorological model. The High Elective Resolution Emission Modelling System v2.0 (HERMESv2.0) provided the emissions for CMAQ.	$\Delta Low - EB$ $\Delta Medium - EB$ $\Delta High - EB$	s of 11 ^o nd Mad	ification % and rid res	17% of pectively	-17% proximat the tota y. Only	-3% ely 40% I NOx	 Notes al differences between the locations studied and the UK. The study period selected was a critical episode of air pollution affecting the entire
To analyse the impact of fleet electrification on urban emissions in Barcelona and Madrid. Source of data Information by road stretches for		 High: ~40% electrification. VKT in electric drive mode: 29.2 and 27.2%, and in hybrid drive mode: 10.6 and 12.9% in Barcelona and Madrid, respectively 								Iberian Peninsula which would not be relevant to the UK. Other comments
traffic intensity (daily average traffic and average circulation speed) were obtained from a digitised traffic network from observat ion stations and real circulation data.										
Location and setting Barcelona and Madrid,										

Study details	Population	Intervention / Comparator	Method of analysis	Model results	Notes
Spain					
Length of study					
Source of funding Grant SEV- 2011-00067 of Severo Ochoa Program awarded by the Spanish Government.					

Question 3: Are interventions to develop routes and infrastructure to support low emission modes of transport cost effective at reducing the health impact of, or people's exposure to, traffic-related air pollution?

Study details	Inclusion / Exclusion criteria	Population	Intervention / Comparison	Method of analysis	Results			Notes
Full citation	Inclusion criteria	Number of	Intervention /	Method of	Primary outcomes			Limitations
Cohen, Joshua T.,	Not reported	participants	Comparison	analysis				identified by author
Diesel vs.		Not reported	Compare ECD and		Central estimate cos			The model used
compressed	Exclusion criteria	Participant	CNG fueled buses in terms of QALYs	ratio (CE _{alt}). That ratio is defined to	Scenario	Cost-effectiveness	Cost-effectiveness	makes a series of simplifying
natural gas for school buses: a	Not reported	characteristics	lost and cost	be (Cost _{alt} -	Ocenano	of ECD (\$/QALY)	of CNG (\$/QALY)	assumptions and
cost-effectiveness		School Buses	effectiveness for	Cost _{CD}) / (QALYs _{CD})	Dense urban	\$450,000	\$4,200,000	because emissions
evaluation of		(CD) Conventional	school bus fleets	- QALYsalt); where	Moderate urban	\$640,000	\$3,600,000	data and cost data for
alternative fuels,		Diesel engines	against	quality adjusted life				school buses
Energy Policy, 33,		(ECD) Emission		years (QALYs) is a	Small system	\$900,000	\$4,000,000	are very limited the
1709-1722, 2005		controlled diesel	(CD)	measure of health				results are uncertain
		(diesel buses	"dense urban", is	damages, including			ons in health damages	
Quality score		equipped with	based on the 95th	reductions			ines. However, ECD is	
+		continuously regen	percentile values	in longevity and	far more cost effective			
a		erating particle	for population	impaired health	than CNG (around \$4	million per QALY sav	ea).	
Study type		filters).	density (1600/km ²),					
Health economics		(CNG)	annual distance traveled (38,000	(alt indicates alternative fuel, CD				
(comparative)		Compressed natural gas	km/bus), and	indicates				
Aim of the study		(engines fueled by	number of	Conventional				
To quantify the		CNG)	large buses (1428).					
health damages,		0	This scenario	,				
expressed in terms			assumes that					
of lost quality			heavy land					
adjusted life years			use makes land					
(QALYs) and cost			acquisition for new					
effectiveness of			infrastructure					
two alternative fuel			"expensive"					
school bus fleets			"moderate urban", is based on					
Location and			median values,					
setting			including a					
USA			population density					
00/1			of approximately					
Length of follow			400/km ² , annual					
up			distance traveled of					
N/A			23,000 km/bus,					
			and 455 large					
Source of funding			buses.					
International Truck			This analysis					
and Engine			assumes that					
Corporation.			moderate land use					
			makes					

Study details	Inclusion / Exclusion criteria	Population	Intervention / Comparison	Method of analysis	Results	Notes
			land acquisition for infrastructure "inexpensive" "small system", is based on the characteristics of Kenton, Ohio (20 buses, of which 15 are used daily. Total daily bus travel amounts to 1400km. Total annual travel for the fleet amounts to 250,000 km. Averaged over all 20 buses, this distance amounts to around 13,000km/bus each year. Population density, 26/km ² .			
Full citation Cohen, J. T., Hammitt, J. K., Levy, J. I., Fuels for urban transit buses: A cost- effectiveness analysis, Environmental Science & Technology, 37, 1477-84 Quality score + Study type Health Economics (comparative) Aim of the study To compare the	Inclusion criteria Not reported Exclusion criteria Not reported	Number of participants Not reported Participant characteristics Urban Transit Bus fleet (CD) Conventional Diesel engines (ECD) Emission controlled diesel (diesel buses equipped with continuously regen erating particle filters). (CNG) Compressed natural gas (engines fueled by CNG)	Intervention / Comparison Compare ECD and CNG fueled buses in terms of QALYs annually per 1000 buses and cost- effectiveness, in terms of \$ per QALY), for urban fleets against conventional diesel (CD)	ratio (CE _{alt}). That ratio is defined to be (Cost _{alt} - Cost _{CD}) / (QALYs _{CD} - QALYs _{alt}); where quality adjusted life years (QALYs) is a measure of health		Limitations identified by author The estimates are subject to much uncertainty: emissions data limited to small data set made on buses Limitations identified by review team Analysis based on a hypothetical transit district using estimated relationships between exposure and QALY lost

Study details	Inclusion / Exclusion criteria	Population	Intervention / Comparison	Method of analysis	Results	Notes
cost effectiveness of two alternative fuel systems to conventional diesel in urban transit buses						
Location and setting USA						
Length of follow up N/A						
Source of funding International Truck and Engine Corporation						
Full citation Krutilla, Kerry, Graham, John D., Are Green Vehicles Worth the Extra Cost? The Case of Diesel-Electric Hybrid Technology for Urban Delivery Vehicles, Journal of Policy Analysis and Management, 31, 501-32, 2012 Quality score + Study type Cost-benefit Aim of the study To determine the incremental costs and benefits of diesel-electric hybrid vehicles	Inclusion criteria Not reported Exclusion criteria Not reported	Number of participants N/A Participant characteristics Hybrid technology used to propel urban pick up and delivery vehicles, often referred to as PUADs.	technology in	Method of analysis An economic model is used to simulate the net present values (NPVs) of diesel- electric hybrid PUADs annually from 2012 to 2030	Primary outcomes Promoting the technology does not lead to positive expected EHNPVs (Event-horizon net present values) at a 7 percent discount rate under a significant range of assumptions about the probability of higher or lower fuel prices, more or less rapid technology cost decline, or more or less rapid improvements in relative fuel economy. However, evaluated at a 3 percent societal discount rate, expected EHNPVs are positive in five out of eight simulations. Thus, promoting diesel-electric hybrids seems reasonably likely to yield positive economic net benefits from a societal perspective. The fiscal impact of promoting hybrids at a 3 percent discount rate was shown to be significant in 5 of the model scenarios. The total fiscal effect varies between –\$4,983 and -\$12,156 on an annualized per-truck basis. These figures include both the net effect on tax receipts and the financing required to cover the losses of transportation firms purchasing the hybrid technology.	Limitations identified by author The results of the study are based on standard technology and data averages (e.g. a reference hybrid model with an assumed driving cycle, average tax rates and fuel prices. Different PUAD applications involving more or less driving, or geographic variation in tax rates and fuel prices, could yield more or less favourable economic and fiscal effects.

	Inclusion / Exclusion criteria		Method of analysis	Results	Notes
Location and setting USA					
Length of follow up Not reported					
Source of funding Navistar International Inc.					

Question 4: Are measures to promote absorption, adsorption or impingement deposition, and catalytic action effective at reducing the health impact of, or people's exposure to, traffic-related air pollution?

Atmospheric [eVel] [evel] </th <th>Study details</th> <th>Population</th> <th>Intervention / Comparator</th> <th>Results</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Notes</th>	Study details	Population	Intervention / Comparator	Results							Notes
barriers on airborne nanoparticles and pedestrians exposure under varying wind (sampling height line around 0.30 m from the road. CMU in the image of the ima	Al-Dabbous, A. N., Kumar, P., The influence of	N/A Participant characteristics	The effect of a roadside vegetation barrier was examined on particle	Summar	y of average						Limitations identified by the author Security issues
nanoparticles and pedestrians exposure under the exposure under under different wind directions and setting height 1.60 m above street level) of many convergent trees situated in one straight line. The exposure under under different wind directions and setting height 1.60 m above street level) of many convergent trees situated in one straight line. The exposure under under different wind directions and setting height 1.60 m above street level) inclusion criteria							Sampling loo	cations		as well as	
exposure under varying wind conditions, Atmospheric Environment, 90, Uality score Height of vegetation was around 3.40 m (sampling height 1.60 m above ground level and 0.3 m above street level) Four measuring sites were used: Nb 5800 1.78 ± 1.64 1.99 ± 1.77 1.71 ± 1.70 1.28 ± x 10 ⁵ Environment, 90, 113-124, 2014 Openings within the barrier were provided naturally by the space between tree leaves and branches. - L1 was in a vegetation- free point parallel to the front of the barrier NW-SW Cross-road Nu-00 2.12 × 10 ⁴ 2.50 × 10 ⁴ 2.07 × 10 ⁴ 1.50 × 1.02 × 10 ⁵ N.4 Study type Controlled study Inclusion criteria Not reported Not reported L3 and L4 were in the middle back of the barrier respectively. NN-SW Nu-500 6.17 ± 2.58 6.26 ± 3.31 1.80 ± 1.01 1.46 ± 1.42 × 104 Aim of the study To determine the effect of roadside vegetation on particulate exposure for pedestrians under different wind directions Nt reported Nt reported Nt reported Nt report reported 1.33 × 10 ⁰ 1.22 × 1.05 × 1.05 × 1.0 ¹ Nt report reported Nt report reported Nt report reported Nt report	nanoparticles and	straight line around 0.30 m from the	of many convergent trees				L ₁	L ₂	L ₃	L4	practical constraints, suc h as the access
Atmospheric Environment, 90, 113-124, 2014 Openings within the barrier were provided naturally by the space between tree leaves and branches. free point parallel to the front of the barrier use between tree leaves and branches. Ms.30 102 X 10 ⁴ 1.11 X 10 ⁻¹ 9.62 X 10 ⁻¹ 7.72 X 10 ⁴ 3.03 x 10 ⁴ 3.04 x 10 ⁶ 1.11 X 10 ⁻¹ 9.62 X 10 ⁶ 1.71 X 10 ⁵ 9.62 X 10 ⁶ 1.71 X 10 ⁵ 9.62 X 10 ⁶ 1.71 X 10 ⁵ 9.62 X 10 ⁶ 3.73 x 10 ³ Quality score - Inclusion criteria Not reported Inclusion criteria Not reported Not reported L2 was parallel to the wegetation NW-SW Cross-road Min 7.40 X 10 ³ 1.54 X 10 ⁴ 8.95 X 10 ⁵ 2.27 X 10 ⁶ 9.74 x 10 ⁴ 1.04 x 10 ⁴ 1.04	exposure under varying wind	Height of vegetation was around 3.40 m (sampling height 1.60 m above	Four measuring sites were used:								to power supply at the site, only
Environment, 90, 113-124, 2014 Openings within the barrier were provided naturally by the space between tree leaves and branches. front of the barrier L2 was parallel to L1 at the front of the vegetation NW-SW Cross-road Non-soo 0.44 0.33 0.04 5.20 x 10 ⁴ 3.73 x Study type Controlled study Inclusion criteria Not reported Not reported L2 was parallel to L1 at the front of the vegetation NW-SW Cross-road Non-soo 0.04 5.64 0.33 0.04 Aim of the study To determine the effect of roadside vegetation on particulate exposure for petestrians under different wind directions No reported Not reported 1.80 ± 1.01 1.46 ± x 104 1.80 ± 1.01 1.46 ± x 104 1.80 ± 1.01 1.46 ± x 104 1.26 x 10 ⁴ 2.20 x 10 ³ 1.53 x 10 ³ 1.33 x 10 ³ 1.33 x 10 ³ 1.34 x 104 104 104 No reported Not reported Not reported No reported No reported No reported 1.80 ± 1.01 1.46 ± x 104 1.40 ± x 104 1.41 ± x 104 1.41 ± x 104 1.41 ± x 104 1.41 ± x 104 1.42 ± x 104 1.41 ± x 104 1.41 ± x 104 1.41 ± x 104		0	L1 was in a vegetation-			N ₅₋₃₀	1.02 x 10 ⁵	1.11 x 10⁵	9.82 x 10 ⁴	7.22 x 10 ⁴	allowed the authors to make
113-124, 2014 Quality score provided naturally by the space between tree leaves and branches. L2 was parallel to L1 at the front of the vegetation NW-SW Cross-road N100-300 2.12 x 10 ⁴ 2.50 x 10 ⁴ 2.07 x 10 ⁴ 1.50 x Study type Controlled study Inclusion criteria Not reported Not reported L2 was parallel to L1 at the front of the vegetation NW-SW Cross-road N100-300 2.12 x 10 ⁴ 2.50 x 10 ⁴ 2.07 x 10 ⁴ 1.50 x Aim of the study To determine the effect of roadside vegetation on particulate exposure for pedestrians under different wind directions Not reported Not reported Ns-560 6.17 ± 2.58 6.26 ± 3.31 1.80 ± 1.01 1.46 ± 1.04 Location and setting A busy roadside in Guidford, UK Location and setting A busy roadside in Guidford, UK Ns-560 6.10 ± 1.05 1.01 ± 1.05 ± 4.50 ± 1.05 1.28 x 10 ⁴ 1.28 x 10 ⁴ 1.33 x 10 ³ 1.21 x Length of study 6 days Source of funding Kuwait Institute for NW-NE Nw-NE Ns-660 1.94 ± 1.07 ± 1.55 ± 10 ⁴ 0.46 x ± 10 ⁴ 1.82 x 10 ⁴ 1.33 x 10 ³ 1.21 x Num-NE Num-NE Ns-660 1.94 ± 1.05 ± 1.55 ± 0.10 0.10 x ± 10 ⁴ 1.95 ± 0.60 0.10 x ± 10 ⁴ 1.95 ± 0.60						N30-100	5.42 x 10 ⁴	6.30 x 10 ⁴	5.20 x 10 ⁴	3.73 x 10 ⁴	intermittent
Study type Controlled study Inclusion criteria Not reported Inclusion criteria	-			NW-SW	Cross-road	N100-300	2.12 x 10 ⁴	2.50 x 10 ⁴	2.07 x 10 ⁴	1.50 x 10 ⁴	measurements
Study type Controlled study Inclusion criteria Not reported L3 and L4 were in the middle and back of the barrier respectively. Max 12.04 x 10 ⁵ 4.05 x 10 ⁵ 2.27 x 10 ⁵ 9.74 x 9.74 x Aim of the study To determine the effect of roadside vegetation on particulate exposure for pedestrians under different wind directions Not reported Not reported Not reported 8.95 x 10 ³ 5.28 x Net-SE Net-Se0 6.17 ± 2.58 6.26 ± 3.31 1.80 ± 1.01 1.46 ± 1.26 x 10 ⁴ 1.40 ± 1.04 Not reported Not reported Not reported Not reported S.06 x 10 ³ 1.60 ± 1.01 1.46 ± 1.26 x 10 ⁴ 9.89 x Not reported 1.26 x 10 ⁴ 9.89 x Not reported	Quality score	between tree leaves and branches.				N ₃₀₀₋₅₆₀	0.04	5.64	0.33	0.04	during the day times.
Study type Controlled study Min 7.40 x 10 ³ 1.54 x 10 ⁴ 8.95 x 10 ³ 5.28 x 5.28 x Aim of the study To determine the effect of roadside vegetation on particulate exposure for pedestrians under different wind directions Not reported Min 7.40 x 10 ³ 1.54 x 10 ⁴ 8.95 x 10 ³ 5.28 x Not reported Not reported Not reported Not reported 1.44 x 104 1.04 x			J. J			Max	2.04 x 10 ⁶	4.05 x 10 ⁶	2.27 x 10 ⁶	9.74 x 10⁵	
Aim of the study To determine the effect of roadside vegetation on particulate exposure for pedestrians under different wind directions No. 1.00 1.00 1.00 1.00 1.04		Not reported				Min	7.40 x 10 ³	1.54 x 10 ⁴	8.95 x 10 ³	5.28 x 10 ³	Limitations
To determine the effect of roadside vegetation on particulate exposure for pedestrians under different wind directions NE-SE Cross foot path Ns-30 5.09 x 10 ⁴ 5.36 x 10 ⁴ 1.26 x 10 ⁴ 9.89 x NE-SE NE-SE Cross foot of path Ns-30 8.50 x 10 ³ 7.06 x 10 ³ 4.06 x 10 ³ 3.46 x Nuce of functions 1.28 x 10 ⁶ 3.25 x 10 ⁶ 2.82 x 10 ⁵ 1.28 x Location and setting Nuce of functions 1.94 ± 10 ³ 3.48 x 10 ³ 5.39 x 10 ³ 1.39 x A busy roadside in Guildford, UK Nuce of functions 1.94 ± 10 ³ 1.95 ± 0.60 6.10 x 10 ⁴ 8.89 ± x 10 ⁴ Length of study 6 days 5.31 x 10 ³ 4.67 x 10 ³ 3.71 x 10 ⁴ 9.52 x Source of funding Kuwait Institute for Min 2.37 x 10 ⁶ 4.46 x 10 ⁶ 4.44 x 10 ⁵ 8.75 x			barrier respectively.							1.46 ± 0.91 104	identified by the review team
vegetation on particulate exposure for pedestrians under different wind directions NE-SE Cross foot- path NB-S0 × 10 ³ 17.06 × 10 ³ 4.06 × 10 ³ 3.46 × 3.46 × Ne-SE Cross foot- path Number of the study for pedestrians 1.94 × 10 ³ 1.33 × 10 ³ 1.21 × 5.71 Name Number of the study for pedestrians 4.06 × 10 ⁵ 1.28 × 1.05 1.28 × 1.06 1.28 × 10 ⁶ 3.25 × 10 ⁶ 2.82 × 10 ⁵ 1.28 × 1.28 × Min Location and setting Ns-560 1.94 ± 0.25 × 10 ⁵ 1.95 ± 0.60 x 10 ⁵ 6.10 × 10 ⁴ 8.89 ± x 10 ⁴ A busy roadside in Guildford, UK Ns-560 1.94 ± 0.25 × 10 ⁵ 1.71 × 10 ⁵ 4.58 × 10 ⁴ 7.67 × x 10 ⁴ Length of study 6 days 1.68 × 10 ⁶ 1.71 × 10 ⁵ 4.58 × 10 ⁴ 7.67 × x 10 ⁴ Source of funding Kuwait Institute for Source of funding Min 2.37 × 10 ⁶ 4.46 × 10 ⁶ 4.44 × 10 ⁵ 8.75 × x 10 ⁴	To determine the					N5-30	5.09 x 10 ⁴	5.36 x 10 ⁴	1.26 x 10 ⁴	9.89 x 10 ³	No standard
Vegetation on particulate exposure for pedestrians under different wind directions NE-SE Cross root path N100-300 2.22 x 10 ³ 1.94 x 10 ³ 1.33 x 10 ³ 1.21 x Name Name 1.28 x 10 ⁶ 3.25 x 10 ⁶ 2.82 x 10 ⁵ 1.28 x Min 3.24 x 10 ³ 3.48 x 10 ³ 5.39 x 10 ³ 1.21 x Min 3.24 x 10 ³ 3.48 x 10 ³ 5.39 x 10 ³ 1.28 x Min 3.24 x 10 ³ 3.48 x 10 ³ 5.39 x 10 ³ 1.39 x A busy roadside in Guildford, UK 1.94 ± 1.95 ± 0.60 6.10 x 10 ⁴ 8.89 ± Length of study 6 days 1.68 x 10 ⁵ 1.71 x 10 ⁵ 4.58 x 10 ⁴ 7.67 x Source of funding Nuo-soo 7.73 8.98 27.15 12.29 Min 2.37 x 10 ⁶ 4.46 x 10 ⁶ 4.44 x 10 ⁵ 8.75 x					Cross fact	N ₃₀₋₁₀₀	8.50 x 10 ³	7.06 x 10 ³	4.06 x 10 ³	3.46 x 10 ³	deviation for
for pedestrians under different wind directions N300-560 4.75 5.71 6.41 5.11 Max 1.28 x 10 ⁶ 3.25 x 10 ⁶ 2.82 x 10 ⁵ 1.28 x Min 3.24 x 10 ³ 3.48 x 10 ³ 5.39 x 10 ³ 1.39 x A busy roadside in Guildford, UK 1.94 ± 1.95 ± 0.60 6.10 x 10 ⁴ 8.89 ± Length of study 6 days 1.68 x 10 ⁵ 1.71 x 10 ⁵ 4.58 x 10 ⁴ 7.67 x Source of funding Kuwait Institute for Nw-NE Along-road 1.90 ± 0.00 5.31 x 10 ³ 4.67 x 10 ³ 3.71 x 10 ⁴ 2.68 x				NE-SE			2.22 x 10 ³	1.94 x 10 ³	1.33 x 10 ³	1.21 x 10 ³	L ₃ (along-road wind) N ₅₋₅₆₀
under different wind directions Max 1.28 x 10 ⁶ 3.25 x 10 ⁶ 2.82 x 10 ⁵ 1.28 x Location and setting Min 3.24 x 10 ³ 3.48 x 10 ³ 5.39 x 10 ³ 1.39 x A busy roadside in Guildford, UK 1.94 ± 1.95 ± 0.60 6.10 x 10 ⁴ 8.89 ± x 10 ⁴ Length of study 6 days 1.68 x 10 ⁵ 1.71 x 10 ⁵ 4.58 x 10 ⁴ 7.67 x Source of funding Nuo-100 2.12 x 10 ⁴ 1.97 x 10 ⁴ 1.15 x 10 ⁴ 9.52 x Min 2.37 x 10 ⁶ 4.46 x 10 ⁶ 4.44 x 10 ⁵ 8.75 x	for pedestrians										levels
Location and setting Min 3.24 x 10 ³ 3.48 x 10 ³ 5.39 x 10 ³ 1.39 x Location and setting Nin 3.24 x 10 ³ 3.48 x 10 ³ 5.39 x 10 ³ 1.39 x A busy roadside in Guildford, UK Ns-560 1.94 ± 1.95 ± 0.60 6.10 x 10 ⁴ 8.89 ± Length of study 6 days 1.68 x 10 ⁵ 1.71 x 10 ⁵ 4.58 x 10 ⁴ 7.67 x Source of funding Nuv-NE Along-road Na0-100 2.12 x 10 ⁴ 1.97 x 10 ⁴ 1.15 x 10 ⁴ 9.52 x Min 2.37 x 10 ⁶ 4.46 x 10 ⁶ 4.44 x 10 ⁵ 8.75 x										1.28 x 10 ⁵	published.
Location and setting A busy roadside in Guildford, UK $1.94 \pm 0.5 \pm 0.60 \\ 0.25 \times 10^5 \end{bmatrix}$ $1.95 \pm 0.60 \\ 0.25 \times 10^5 \end{bmatrix}$ $6.10 \times 10^4 \\ \times 10^4 \\ 1.07 \times 10^4 \end{bmatrix}$ Length of study 6 daysAlong-road $N_{5-30} = 1.68 \times 10^5 = 1.71 \times 10^5 \\ 1.71 \times 10^5 = 4.58 \times 10^4 \\ 1.15 \times 10^4 \\ 9.52 \times 10^5 \\ 1.71 \times 10^3 \\ 1.67 \times 10^4 \\ 1.15 \times 10^4 \\ 9.52 \times 10^5 \\ 1.71 \times 10^5 \\ 1.71 \times 10^5 \\ 1.71 \times 10^4 \\ 1.15 \times 10^4 \\ 1$	unections									1.39 x 10 ³	
Guildford, UK Length of study 6 days Source of funding Kuwait Institute for	setting						1.94 ±	1.95 ± 0.60		8.89 ± 4.24	
Length of study NW-NE Along-road Nu-NE Nu-NE </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>N5-30</td> <td>1.68 x 10⁵</td> <td>1.71 x 10⁵</td> <td>4.58 x 10⁴</td> <td>7.67 x 10⁴</td> <td></td>						N5-30	1.68 x 10 ⁵	1.71 x 10⁵	4.58 x 10 ⁴	7.67 x 10 ⁴	
6 days Source of funding N100-300 5.31 x 10 ³ 4.67 x 10 ³ 3.71 x 10 ⁴ 2.68 x N300-560 7.73 8.98 27.15 12.29 Min 2.37 x 10 ⁶ 4.46 x 10 ⁶ 4.44 x 10 ⁵ 8.75 x						N30-100	2.12 x 10 ⁴	1.97 x 10 ⁴	1.15 x 10 ⁴	9.52 x 10 ³	
Source of funding N300-560 7.73 8.98 27.15 12.29 Min 2.37 x 10 ⁶ 4.46 x 10 ⁶ 4.44 x 10 ⁵ 8.75 x				NW-NE	Along-road		5.31 x 10 ³	4.67 x 10 ³	3.71 x 10 ⁴	2.68 x 10 ³	
Source of funding Kuwait Institute for	0 days						7.73	8.98	27.15	12.29	
										8.75 x 10⁵	
Scientific Research Max 9.08 x 10 ³ 9.60 x 10 ³ 1.06 x 10 ⁴ 8.28 x										8.28 x 10 ³	
(KISR) for the PhD fellowship.Sampling locations: L_1 = sited in gap between row of vegetation (0.3m from r L_2 = front of vegetation (0.3m from road), L_3 = middle of vegetation (1.1m from road) and L_4 = back of vegetation (2.2m from road) PNC data are divided into four size ranges: 5-30 nm (N ₅₋₃₀ ; nucleation mode)	(KISR) for the			$L_2 = front$ road) and	from road), 1m from						

Study details	Population	Intervention / Comparator	Results									Notes
			100 nm (N ₃₀₋₁₀ 300-560 nm (l Analysis The total PNC gradually with vegetation bai Comparison of barrier) showe cross-road win directions. For cross-road respectively, of For cross-foot with L ₂ . The PNCs at f and along-roa	N ₃₀₀₋₅₆₀ ; c s at the s the incre rier. f the PN d approx nds. Suc d winds, S compared path win hese loc	coarse m sampling easing di Cs at two ximately h differen the PNC d with L ₂ ds a dec	ode). I location stance fr parallel 11% hig nces wer s were d rease in	is L ₂ , L ₃ rom the e location her PNC re insigni ecrease PNCs w	and L₄ we edge of th is (with ar is at L₂ th ficant dur d by 14 a iere seen	ere foun the road and witho an those ring the nd 37% at L ₃ ar	nd to decr through the put the ve e at L1 du remaining at L3 and nd L4 com	ease he getation iring g wind d L4, upared	
	Number of participants	Intervention / Comparison	Outcomes									Limitations
Amato, Fulvio, Karanasiou,	N/A	The test road was treated in 3 phases:	Average and	ratio (co	ompared	l to cont	rol) of P	M ₁₀ cond	centrati	ons (µg/	m³)	identified by the author
Patricia, Alastuey,	Participant characteristics 2.5 km of trafficked road with	Phase 1: 25% CMA aqueous solution was		Before			1: CMA	Phase 2 (2300m)	: CMA		B: MgCl₂	No results obtained
	homogeneous traffic flow, seven store building height and 4000 vehicles/day. Traffic on the road is in one direction	spread on a 1400m stretch on 3 consecutive mornings.	Sample point	Mean (SD)	Ratio	Mean (SD)	Ratio	Mean (SD)	Ratio	Mean (SD)	Ratio	Limitations identified by
Silvia, Calzolai, Giulia, Querol,	heading north east and distributed over 3 lanes, with the right hand lane	 Phase 2: 25% CMA aqueous solution was 	13	28 (3)	1.3 (0.1)	43 (3)	-	35 (7)	1.1 (0.2)	27 (-)	1.3 (-)	the review team
	exclusively for buses and taxis and an additional parking lane on the left side.	spread on a 2300m stretch on 7 mornings	12	32 (3)	1.1 (0.1)	n/a	n/a	36 (3)	1 1	31 (4)	1.1 (0.1)	Intersections and pedestrian crossings were
levels in a	Inclusion criteria Other requirements were related to	over a 2 week period 4 days after the last stage of Phase 1.	11	28 (4)	1.3 (0.2)	42 (1)	1.1 (0.1)	34 (3)	1.2 (0.1)	24 (1)	1.5 (0.1)	not treated with suppressant.
	orientation of the road (parallel to the coastline) and no cycle lanes present.	• Phase 3: 20%	Control (V)	36 (4)	n/a	46 (5)	n/a	39 (3)	n/a	36 (1)	n/a	For traffic safety, a
Science & Technology, 48,	Exclusion criteria Not reported	MgCl ₂ .6H ₂ O aqueous solution was spread on a 2300m stretch on 2	Urban Background (UB)	24 (4)	n/a	31 (2)	n/a	30 (7)	n/a	23 (6)	n/a	number of measures were taken including
Quality score	not reported	mornings 8 days after the last stage of Phase	Average and	ratio (co	ompared	l to cont	rol) of P	M _{2.5-10} cc	oncentr	ations (u	ıq/m³)	change of speed limit
-		2. The calendar for		Before			1: CMA		2: CMA		B: MgCl₂	signals on the treated roads
Study type Controlled before and after		suppressant application was based on the weather	Sample point	Mean (SD)	Ratio	Mean (SD)	Ratio	Mean (SD)	Ratio	Mean (SD)	Ratio	from 50 to 30 km/h. This could have impacted
Aim of the study		forecast (no rain, temperature above 0°c) and to maximize effectiveness	12	12 (2)	1.6 (0.4)	-	n/a	9 (2)	1.0 (0.3)	9 (3)	1.0 (0.5)	on the results of the study.

Study details Po	opulation	Intervention / Comparator	Results									Notes
To evaluate the effectiveness of dust		during the most polluted hours, solutions were spread		12 (2)	n/a	16 (6)	n/a	9 (4)	n/a	9 (7)	n/a	There was a difference in the
suppressants in reducing road dust emissions in a		between 5 and 9am. Three sampling sites (I1, I2, and I3) were positioned	Urban Background (UB)	12 (3)	1.1 (0.3)	15 (3)	n/a	12 (5)	1.3 (0.4)	13 (7)	1.5 (0.4)	number of vehicles travelling on the
Mediterranean city. Location and setting 2.5km of trafficked road in a commercial district in Barcelona, Spain Length of study 2 months Source of funding AIRUSE LIFE+ ENV/ES/584 project. Spanish Ministry of Sciences and Innovation. City Hall of Barcelona Generalitat de Catalunya and AGAUR		 along the test road where concentrations of PM₁₀ and PM_{2.5-10} were measured. During phase 1, only stations I1 and I2 were inside the section of road treated; during phase 2 and 3, all stations were inside the section treated. Comparator Two sites served as control: A kerbside sampling site was installed on a parallel untreated road (11000 vehicles/day) at 	Analysis Phase 1: There the interventio Phase 2: PM ₁₀ and I3. There	n sites w concent was a de tion to th 0.05). centration site I1. A elation to	trations a crease i ne UB sit ns of PM additiona o the UB	npared to after the n both P te and th no did no lly, the c site and	the con intervent M_{10} and ese decr ot decrea oncentra this was	trol. ion did no PM _{2.5-10} c reases we se at site tion of PI not stati	ot decre concentr ere not s s I2 and M _{2.5-10} do stically s	ase at sit ations at statisticall 13 but the ecreased significant	es I1 site I2 y ere was at site sult of	intervention and control roads per day - control road had 11000 vehicles/day travelling on it, whereas the test road had 4000 vehicles/day. Phase 1 corresponded with construction work nearby and a Saharan dust event which raised PM levels and may have affected the efficacy of CMA. Other comments In addition to road traffic (the main source of PM in Barcelona), other local and regional sources of air pollution have been identified in the area.
Full citationNuAmato, F., Querol,N/A		Intervention / Comparison Street washing with water	Outcomes									Limitations identified by
X., Alastuey, A.,			Mean concen		of PM ₁₀				tes			the author
	ain 19 m wide, 5 lane city centre road	road, additionally for the last	Measuremen	t site			PM₁₀ (μ ξ Days wit			without s	1	Limitations
	nean traffic flow of 19,000	3 washings, a mechanical					1 12//6 14/17	n etroot			troot !!	identified by

Study details	Population	Intervention / Comparator	Results	Notes
Evaluating urban PM10 pollution benefit induced by street cleaning activities, Atmospheric Environment, 43, 4472-4480, 2009 Quality score - Study type Controlled trial Aim of the study To determine the effect of mechanical sweeping/water flushing of roads on ambient PM ₁₀ concentrations. Location and setting A commercial and residential street in Barcelona, Spain Length of study 4 weeks Source of funding Spanish Ministry of Environment and the Spanish Ministry of Education and Sciences	vehicles/day). 1 lane reserved for parking lots and 1 was a bus lane. Building height varies from 6-7 storeys. Inclusion criteria Site selection was due to the fact that traffic flow is unidirectional, parallel to the coast and fairly constant across the whole road. Exclusion criteria Not reported	installed in two different sites	Average daily concentrations of PM ₁₀ The average daily concentration of PM ₁₀ during street washing days decreased 8.8 μg mg ³ at the downwind measurement site with respect to days without street washing. The decrease was only 3.7 μg mg ³ at the upwind measurement site. An analysis of meteorological variables found that at two of the background monitoring sites there was a decrease of between 3.7 and 4.9 μg mg ³ during street washing days. Analysis There was a decrease in mean PM ₁₀ concentration at both sampling sites on the days where street washing had taken place. Average daily concentration of PM ₁₀ during street washing days decreased by 8.8 μg mg ³ at the downwind site and 3.7 μg mg ³ at the upwind site. Taking into account a regional daily decrease in PM ₁₀ concentrations, it was concluded that there was an effective decrease of 4–5	the review team Mechanical sweeping was not undertaken for all study days. The intervention (8 washes) was spaced irregularly over a 4 week period and were not always undertaken on concurrent days. Other comments
Full citation Baldauf, R.W. Isakov, V Deshmukh, P Venkatram, A. Yang, B. Zhang K.M. Influence of	 Number of participants 2 segments of highway Participant characteristics One segment was located on the west side and 1 segment on the east side of the highway within 1 km from one 	Intervention / Comparison Concentrations of NO ₂ , ultrafine particles (UFPs), and black carbon (BC) were measured using a mobile platform and fixed sites along two limited access	Median and mean reduction in near-road pollutant concentrations measured under all meteorological and temporal conditionsPollutantSamplingDistanceMedianMean range (m)sectionrange (m)reductionreduction	Limitations identified by the author Not reported. Limitations identified by

Study details	Population	Intervention / Comparator	Results							Notes
solid noise barriers	another.	stretches of highway that	NO ₂	Ea	st	0-50	37	37		the review
on near-road and		contained a section of noise				50-150	41	39		team
on-road air quality.	Each segment was approximately 2km	barrier and a section with no				150-300	33	28		There were
Atmospheric	in length and 500m in width and	noise barrier.		We	est	0-50	34	34		potential
Environment 129	primarily residential.					50-150	20	17	7	differences in
(2016) 265-276.	L	The choice of monitoring				150-300	19	11	1	vehicle volume
0	The noise barriers were approximately	either the east or west	BC	Ea	st	0-50	53	43	3	at different part
Quality score	4.5m in height, less than 1m thick,	segment each day was				50-150	63	49		of the highway
-	approximately 3m from the nearest travel lane, and had an access road	based on predicted wind directions for the sampling				150-300	26	18		sections and adjacent acces
Study type	immediately behind the wall.	period.		We	est	0-50	57	48		Hoads which
Non-randomised		period.				50-150	55	30		could affect
controlled trial	Inclusion criteria	22 valid sampling periods				150-300	37	24		results.
	Not reported	were collected during the	UFP	Ea	st	0-50	48	50		
Aim of the study		study. The majority (18) of				50-150	34	44	4	\mathbb{T}
To assess the	Exclusion criteria	the sampling occurred along				150-300	16	15	5	\mathbf{T}
impact of noise	Not reported	the western section of the		We	est	0-50	54	66		
barriers on both on-		highway to capture				50-150	27	31		\square
road and downwind		downwind pollutant				150-300	12	23	3	
Location and setting A large highway in Phoenix, Arizona, USA. Length of study 1 month (October – November 2013) Source of funding U.S. Environmental Protection Agency		12:00pm. The remaining sampling periods (4) occurred along the eastern section of the highway, typically during the afternoon hours of 2:00pm to 5:00pm.	concentrati data collect closer to th between th In general,	ons by ed in e e road e on-ro the gre	distance range each distance ra (e.g. the reduc oad and 0-50m eatest reductior	e. The calcu ange as con tion in the 0 measureme ns in pollutar	ction in near-roa lations represen npared to the pr -50m range rep ents). nt concentratior neasurements).	nt the reduc revious dist presents the	ctions for all ance range difference	
Full citation Brantley, H. L.,	Number of participants	Intervention / Comparison The study assessed the	Outcomes							Limitations identified by
Hagler, G. S. W., J.		effects of an existing, mixed-	Summarv	statist	ics of Black C	arbon (uo r	n ⁻³) by wind ca	tegorv		the author
Deshmukh P,	Participant characteristics An area of vegetation barrier adjacent to an area without any obstructions to	species tree barrier on near- road black carbon (BC) and particulate matter	Wind category*		Mean concentration (Clearing)		Mean concentration (Tree barrier)		% difference	None reported
effects of roadside vegetation on near-	air flow along the same stretch of limited-access highway. Both the	concentrations.	Low speed	1201	1.27	1.23-1.31	1.20	1.16-1.24	-5.9% (NS)	identified by the review
road black carbon	clearing and the tree stand were	Measurements of BC were	Downwind	2762	1.70	1.66-1.74	1.49	1.46-1.53	-12.4% (S)	team
and particulate	separated from the highway by a bike	taken at two sites using	Parallel		0.93	0.89-0.96	0.85	0.83-0.88	-7.8% (S)	Background
matter, Science of	lane. The tree stand ranged from	portable samplers		1000	0.00	0.00-0.00	0.00	0.00-0.00	1.070(0)	concentration

Study details	Population	Intervention / Comparator	Results								Notes
the total environment, 468- 469, 120-129, 2013 Quality score	approximately 5–78 min width at the locations where sampling occurred, and consisted primarily of maple and oak trees extending to 10 min height with underbrush creating a barrier from ground-level to the top of the tree canopy.	 during May and June 2011 for a total of 28 days: 1. Site 1 was at a clearing approximately 30 m from the highway, without any obstructions to air flow between the 	NS — not S — signif	signific cant di	0.69 tive to highway ant difference, fference, 95%	95% conficence	idence ir	ntervals o		-6.0% (NS)	of black carbon were not recorded which could have impacted on the reductions reported in the
Study type Controlled trial Aim of the study To determine the effects of a vegetation barrier on		highway and the sampler or within 15 m in all other directions. The site was approximately 40 m from the beginning of the vegetative barrier	Wind category* Low speed Downwind Parallel	N 1440 3326	Mean concentration (Clearing) 158 155 76				95% CI 148-165 147-156 72-80	% difference -1.1%(NS) -2.5%(NS) -0.1%(NS)	paper.
near-road black carbon (BC) and particulate matter	Not reported	section. 2. Site 2 was approximately 340 m	Upwind Summary	2476	86 ics for PM _{2.0-10}	82-90	89		85-93	4/3%(NS)	
concentrations.		north, at an equal distance from the highway and behind an approximately 15 m	Wind category*	N	Mean concentration (Clearing)				95% CI	% difference	
setting Roadside area adjacent to a six- lane highway in Detroit, Michigan, USA		thick tree barrier with a measured leaf area index (LIA) of 3.9	Low speed Downwind Parallel Upwind	3326	9.2 8.9 5.5 5.7	8.9-9.6 8.7-9.1 5.3-5.6 5.5-5.8	8.6 8.9 5.7 6.1		8.3-9 8.7-9.1 5.5-5.9 5.9-6.3	-6.7%(NS) 0.3%(MS) 4.4%(NS) 8.2%(S)	
Length of study 28 days Source of funding Not reported			the barrier (7.8% lowe clearing sit upwind co	relativ er) winc e was nditions	owed statistical e to a clearing, d conditions. No observed durin s, PM _{2.0-10} level tribution from s	during do difference g up wince s were 8.	ownwind ce betwe l or low s 2% highe	I (12.4% lo een the ve speed win er behind	ower) and p getation sit d condition the vegetat	arallel e and the s. During	
Watson, J. G., Rogers, C. F., DuBois, D., Chow, J. C., Langston, R.,	Number of participants N/A Participant characteristics The road for the test site was chosen because it possessed a straight length	Intervention / Comparison The following dust suppressants were tested: 1. EMC ² (a biocatalyst stabiliser – BS) 2. Soil Sement (a polymer		M₁₀ en		periods	sions Fa	actors (g	r for each -PM10 / VKT	F) with	None reported
Sweet, J., Long- term efficiencies of dust suppressants to reduce PM10	of 3 km, an east-west direction so the dominant valley winds would be perpendicular to the road, and relatively level topography. It also had	emulsuion – PE) 3. Coherex (petroleum with emulsion – PEP) 4. NHCO (non- hazardous crude oil	Test period	Vehicle (km/hr)	e speed	11		Coherex (PEP)	Soil Sement (PE)	NHCO	identified by the review team It is not reported

Study details	Population	Intervention / Comparator	Results								Notes
unpaved roads, Journal of the Air	vehicles.	One test section		55		754 (353)	460 (60)	9 (10)	23 (31)	N/A	was not applied at the same
and Waste	Inclusion criteria	approximately 500 m in									time point as all
Management	Not reported	length on a standard	2	40		382 (85)	434 (36)	123 (5)	22 (10)	N/A	the other
Association, 49, 3-		unpaved road was assigned		55		857 (868)		151 (122)		N/A	suppressants
16, 1999	Exclusion criteria	to each suppressant and							0.0 (1)		and thus no
Quality score	Not reported	each was applied according to their standard		40		407 (00)	404 (57)	75 (40)	00 (4)		data available for the first 2
-		procedures.	3	40		167 (39)		75 (10)	20 (4)	17 (14)	test periods.
		ľ		55	:	522 (226)	861 (441)	290 (123)	78 (8)	31 (29)	However the
Study type Controlled trial		PM ₁₀ emissions from the test sections were created by a 3/4-ton pick-up truck		e PM₁₀ sup e monitor	ing peri	iods.	cies for eac		-		paper notes that for NHCO the section was
Aim of the study To determine the		traveling back and forth along the roadway for			Supp (SD)		fficiency (%	%) with Sta	ndard de	eviations	graded before application with
long term efficiency of four dust suppressants to reduce the emission		100 passes over each six- hour sampling interval. Constant vehicle speeds of 40 km/hr and 55	lest	Vehicle speed (km/hr)	EMC ² (BS)		oherex EP)	Soil Ser (PE)	ment	NHCO	subsequent grading and rolling.
of PM ₁₀ from		km/hr were maintained and	1	40	38 (1	8) 10	00 (1)	92 (8)		N/A	EMC ² is a
unpaved roads		alternated from day to day.		55	28 (3	6) 98	3 (3)	97 (3)		N/A	biocatalyst
Location and		PM ₁₀ was measured at each test section. Emission tests									stabilizer (BS); Coherex is a
setting		were conducted on 6	2	40	-17 (2	26) 67	' (6)	94 (3)		N/A	petroleum
An unpaved road in		consecutive days in July		55	13 (34		(8)	100 (0)		N/A	emulsion with
California, USA		1995, October 1995 and June 1996.				<u>, , , , , , , , , , , , , , , , , , , </u>	, (0)				polymer (PEP); Soil Sediment is
Length of study			3	40	-11 (2	26) 54	(11)	88 (2)		90 (7)	a polymer
12 months		Comparator A section of untreated road.		55	-64 (2	25) 44	(7)	83 (6)		95 (3)	emulsion (PE). NHCO is non-
Source of funding San Joaquin Valley Unified Air Pollution Control District with Department of Motor Vehicle surcharge fees through the Districts REduce MOtor Vehicle Emissions (REMOVE) program and the Western States Petroleum Association		A section of untreated road.	Analysis There wa increase PM ₁₀ em tested. C untreate The mea	e values de s as a gener d. Addition hissions wh Only EMC ² d. asured effic	enote em al increa hally, the hen com (BS) at	ase in PM ₁₀ majority of pared to the test periods	enter than the emission faither suppresented as 2 and 3 shoressant proceedings of the speed	actors as ve essants sho road at bot nowed high	ehicle spe wed a rec th vehicle er levels t	eed duction in speeds than	hazardous crude oil containing material.
Full citation Hagler, G. S. W.,	Number of participants 3 roadside locations	Intervention / Comparison Comparing 3 roadside	Outcom	es							Limitations identified by

Study details	Populatio	on			Intervention / Comparator	Results							Notes
Lin, M. Y., Khlystov, A., Baldauf, R. W.,	Participa	int charac	teristics		barrier types (Evergreen vegetative, Deciduous	On-road each loca	and backgroation.	ound avera	ge and stan	dard deviat	tion concer	trations at	the author PM _{2.5} and PM ₁₀
	Site 1: Ch	napel Hill -	primarily	evergreen	vegetative and brick noise		Chapel Hill		Mebane		Raleigh		concentrations
J., Jackson, L. E.,	tree stand		ted along	an	barrier) measuring		Average wind	d sneed · 1 5		d sneed: 1 25	Average win	d speed: 1 27	were estimated.
Field investigation of					particulate levels behind		m/s	1 Speed. 1.5	m/s	u specu. 1.20	m/s	u specu. 1.27	The PM _{2.5} and
roadside vegetative	Site 2: Me				each one and comparing to		Major road	Background		Background		Background	PM ₁₀ values
and structural	tree stand		ted along	an	background (no barrier)			Background		Background		Background	should thus be
barrier impact on	interstate				levels.	PM _{2.5} (µg m⁻³)ª	6.2 (1.8) ^b	4.7 (0.9)	8.1 (1.8)	4.7 (1.7)	8.7 (2.6)	7.5 (1.9)	considered
near-road ultrafine		aleigh - ha		ioise	Sampling took place during								estimates of the
particle concentrations	an intersta	nd is locate			weekday morning commute periods (7–9 AM) for a	PM ₁₀ (µg m ⁻³) ^a	9.8 (7.1)	6.2 (3.9)	12.1 (5.9)	6.6 (4.5)	11.0 (5.0)	8.9 (3.3)	relative range of concentrations
under a variety of		and Chape		Mane	consecutive series of	· ,							at these sites
wind conditions,		dered by re			approximately 6–10 days	BC (µg	2.3 (3.5)	1.1 (2.0)	6.0 (5.1)	0.7 (0.4)	5.0 (3.4)	1.7 (1.5)	and not
Science of the total	with one a				over a two week period.	m⁻³)							considered
					Two sampling sessions were	UFPs	4.3 x 10 ⁴	1.1 x 10 ⁴	1.5 x 10 ⁵		1.1 x 10 ⁵	2.0×10^4	comparable to
15, 2012		story reside			conducted for each of the	(cm⁻³)	(4.1 x 10 ⁴)		(1.0 x 10 ⁵)	(9.0 x 10 ³)	(9.0 x 10 ⁴)	(1.1 x 10 ⁴)	federal
Quality score		ial building			vegetative barrier sites – in		es are estim						reference
-	area		5		the early-fall and then again		d deviation is			age of the st	andard devia	ations	method (FRM)
	At all sites	s, backgrc	ound areas	s were	in the late-fall/winter.	calculated	d for each ind	dividual ses	sion.				derived values
Study type	designate				One sampling session was	Analyzia							or ambient air
Controlled study	minimal tr				conducted at the Raleigh	Analysis		harriara tha	oonoontratii	ono oro high	or than the l	pookaround	quality
	200m fror	m the majo	or roadway	y	site with the brick noise	values.	llutants and	Damers, me	concentratio	Jis ale nigh		Jackyrounu	standards.
Aim of the study					barrier during the mid-fall		ounting for ba	ackaround c	oncentration	the solid (I	Raleigh) har	rier reduced	Due to failure of
To determine the		Chapel Hill	Mebane	Raleigh	season.		centrations b						the internal
effect of roadside			Deciduous				s and by 33-						motherboard,
vegetation and	Barrier		tree stand (Maple,	Brick noise			concentratio					loud	the APS
barriers on Ultrafine	type		(iviaple, Birch,	barrier			trends at the					arrier effect	(Aerodynamic
particulate (UFP) concentrations.		Magnolia)	Elder)			was unce							Particle Sizer) data are
concentrations.	Barrier	6.1 ± 2.3	7.2 ± 1.3 m	6 m									available only
Location and	height	111	-										for
setting	Barrier	3.6 ± 1.6 m	4.5 ± 1.0 m	0.5 m									approximately
Major roadways and	unickness	-	-										half of the field
near-road locations	Distance from road	3.2 ± 0.7 m	7.7 ± 1.7 m	5 m									sessions
at 3 locations in	to barrier ^c	а	b	5 111									
North Carolina, USA		Early fall	Early fall										Limitations
	Leaf area	(autumn):	(autumn):										identified by
Length of study	indox d	3.3 ± 1.0		n/a									the review
Sampling was		Winter: 2.8 ± 1.6	Winter: 1.0 ± 0.5										team
conducted during	Major												Large variation
the early-autumn to	roadway	38,000	84,000	108,000									in barrier height,
winter, 2008	traffic	36,000	04,000	106,000									thickness,
	(AADT) ^e												distance sited
Source of funding	a Average												from road and
Not reported			or 11 trees	or shrubs									average daily
	along bar		مامعما مادينان	-									traffic of road sited next to
	b Average and standard deviation values measured for 10 trees or shrubs												Author
	values me	sasureu 10	n to trees	or sinups									

Study details	Population	Intervention / Comparator	Results						Notes
	along barrier. c Distance from edge of road to roadside edge of barrier d LAI values were measured on two separate days in the fall and in the winter. e Annual Average Daily Traffic (AADT) from North Carolina Department of Transportation 2008/2009 maps								compares measurements behind the barrier to those in a 'clearing', but no data published on 'clearing' values
	Inclusion criteria The road sampling sites were selected based on roadside barrier properties: a stretch of roadway having a vegetative buffer or structural noise wall as well as an adjacent roadside area without a barrier for comparison and moderate to heavy traffic during morning commute periods. In addition, relatively thin vegetative buffers were sought (<10 m in thickness). A final site requirement was a low degree of side road traffic. Exclusion criteria Not reported								
Full citation Ning, Z., Hudda, N., Daher, N., Kam, W.,	Number of participants N/A	Intervention / Comparison Pollution levels were measured at 2 sampling	Outcomes Average polluta	int concentrat	ions measure	d in imme	ediate proxim	ity of the	Limitations identified by the author
Herner, J., Kozawa, K., Mara, S.,	Participant characteristics Two highly trafficked freeways with	sites (one with roadside noise barrier and the other	freeway Pollutant		Freeway 1		Freeway 2		None reported
Sioutas, C., Impact of roadside noise barriers on particle	different traffic fleet compositions were selected. The barrier and non-barrier sites had	without) located along the span of each freeway.			Non-noise barrier	Noise barrier	Non-noise barrier	Noise barrier	Limitations identified by the review
size distributions and pollutants concentrations near	similar meteorological and traffic conditions allowing for direct comparison between the results of the		Black Carbon (µg m⁻³)	Average Standard deviation	11.0 6.3	11.6 1.4	10.6 4.2	9.5 1.5	team The noise barriers were
freeways, Atmospheric	2 sites.		NO ₂ (ppb)	Average Standard deviation	152.2 38.0	87.3 8.2	93.9 31.2	79.3 4.9	not the same height on both
Environment, 44, 3118-3127, 2010 Quality score - Study type Controlled trial	Inclusion criteria None reported Exclusion criteria None reported		Particle number of highways were 1 5. Levels fell exp 180m for I-5. Wit 3.1e4 particles of at 20m without a	.2e5 particles of onentially, read h barriers, cond m ⁻³ for I-5. The	cm ⁻³ for the I-7 ching backgrou centrations we se are 43% ar	10 and 8.0 und levels re 4.8e4 p id 45% low	e4 particles c within 200m fo articles cm ⁻³ f /er than those	m ⁻³ for the I- or I-710 and or I-710 and measured	freeways. Average pollutant concentrations were measured at different times on sampling dates

Study details	Population	Intervention / Comparator	Results	Notes
Aim of the study To investigate the effect of noise barriers on the			concentrations are 2.4 and 2.2 times higher than those observed at the corresponding distance for non-barrier sites. Levels reach background levels at around 400m.	which could impact on the results.
dispersion of particles and pollutants emitted from freeways.			There was a decrease in the concentration of NO_2 in the immediate vicinity of the freeway with the presence of the roadside noise barrier but Black Carbon concentrations showed conflicting results with an increase in one test site and a decrease in the other.	
Location and setting Two major freeways in the greater Los Angeles area, USA				
Length of study 2 months				
Source of funding EPA under the STAR program through grant RD- 8324-1301-0 and by California Air Resources Board through ARB Contact 05-317 to the University of Southern California				

Question 4: Are measures to promote absorption, adsorption or impingement deposition, and catalytic action effective at reducing the health impact of, or people's exposure to, traffic-related air pollution? Modelling studies

Study details	Population	Intervention / Comparator	Method of analysis	Model resu	lts						Notes	
Full citation Pugh, Thomas A. M., Robert MacKenzie, A., Duncan Whyatt, J., Nicholas Hewitt, C.,	participants N/A	Intervention / Comparison Control stat was canyon with brick walls and roof;	Type of model Atmospheric chemistry model CiTTyCAT, enhanced to		under diffe		d expected ir configuratio				Limitations identified by the author Simulation of effec on central London	
Effectiveness of Green		interventions were green wall (100%)	simulate mixing and dry deposition				Concent		ge relative t ario (%)	o control	limited to a scaling	
Improvement of Air Quality in Urban Street Canyons,	Inclusion	and green roof.	within street canyons.		single canyon run. Single deposition							
Environmental Science & Technology, 46, 7692-	criteria N/A				Deposition (cm s-1)	velocities	Aspect ratio			0.5ms-1 atio = 2 (h/w atio)	velocity in middle or range for common	
7699, 2012	Exclusion				NO ₂	PM10	Numerous canyons	Í	Single can	yon	reported values for different species	
Quality score -	criteria N/A			Green walls (100%)	Walls: 0.3	Walls: 0.64	NO ₂ : -8.9% PM10: - 13.1%	NO ₂ : - 6.4% PM10: -	NO ₂ : - 19.9% PM10: -	NO ₂ : - 42.9% PM10: -	used. Secondary processes	
Aim of the study To model street-canyon chemistry and deposition to			(100%) 13.1% PM10: - 10.8 PM10: - 32.0% PM10: - 61.9% PM10: - (re Green Walls: Roof: 0.02 NO ₂ : -0.9 - - - 61.9% de roof 0.05 PM10: - - 10.8 - - 61.9% de									
identify the effect of the use of enhanced-deposition surfaces in concert with the urban form on air quality at street level in street canyons. Source of data Air pollution concentrations taken from London Bloomsbury urban background site Location and setting Central London, based on a scaling-up of the single canyon run to represent the large area of generic street canyons Length of study N/A				annual aver respectively canyon werv was increas Adoption of NO2 and PI height to wid (dependent greened but canyon was small conce For surfaces in-canyon si than green	age concent by greening e 7% and 11 ed to 2. green walls M10 of up to dth (h/w) rati on wind spe t not the initia reduced by ntration redu s with compa urfaces is mo	rations of NG of canyon v %, increasin on large are 15% and 23 o 1). The rec ed and cany al pollutant c 2-11% for N uctions in the arable leaf in ore effective ts on the rela	at reducing st atively small v	were redu rge areas. 31% wher anyons resu y (wind spe ependent c and the fra The net po ne inward ary layer. ence depos treet-level	ced by 9% a Reductions in the height ulted in a re eed 1 ms-1, on residence action of car ollutant flux for PM10, le sition velocit pollutant co	and 13% s for a single /width ratio duction of canyon e time nyon wall out of the eading to ties) greening ncentrations	explicitly modelled	
Source of funding												

Study details	Population	Intervention / Comparator	Method of analysis	Model results	Notes
UK EPSRC Sustainable Urban Environment Program, grant number EP/F007426/1					
Full citationVos, Peter E. J., Maiheu, Bino, Vankerkom, Jean, Janssen, Stijn, Improving local air quality in cities: to tree or not to tree?, Environmental pollution (Barking, Essex : 1987), 183, 113-22, 2013Quality score-Aim of the study Examination of the impact on pollution of a variety of real-life examples of urban vegetation.Source of data Default values used and 	participants N/A Participant	Intervention / Comparison 19 real life urban vegetation designs based on designs for implementation in Belgium and the Netherlands. Each modelled with and without vegetation.	Type of model ENVI-met model, a three dimensional computational fluid dynamics model tailored for simulating different urban atmospheric process such as dispersion and microclimate effects.	Outcomes Analysis Trees have less influence on PM10 than on NO2 or EC due to the higher contribution to PM10 from other sources. Trees significantly increase pollutant concentrations. A deterioration in air quality is also seen with hedges. Green barriers improve air quality at the footpath due to their impermeable core. Simulations with 5 times higher deposition speeds than default show no significant difference in results, suggesting that it is the aerodynamic effect that determines the overall impact on air quality rather than the pollutant removal capacity.	Limitations identified by the author In the examination of 19 different real- life urban vegetation designs only one wind direction (perpendicular to the street) was considered. Limitations identified by the review team Other comments Data is presented graphically for each pollutant and design. It is not possible to extract individual data from these figures so only the overall commentary on the results is given.

Study details	Population	Intervention / Comparator	Method of analysis	Mode	el resu	lts												Notes
Belgium and the Netherlands																		
Length of study N/A																		
Source of funding European Interreg IV-A project 'Functioneel Groen'. Partial support from Flemish Agency for Innovation by Science and Technology (IWT) in the framework of the Climaqs project.																		
Full citation Vranckx, S., Vos, P., Maiheu, B., Janssen, S., Impact of trees on pollutant dispersion in street	N/A	Intervention / Comparison Comparison of annual average pollution	Type of model OpenFOAM CFD package	Annu Back		d ann .45µg	ual av s-1.	erage					//10 со 9.32µg				sion	Limitations identified by the author Conclusions for the annual average
canyons: A numerical study		concentrations with				W-E	orienta	ation	N-S	orienta	ation		NE-SW ientatio	n		W-SE		effect of trees on air
of the annual average effects in Antwerp,	N/A	and without influence of urban		Cx	LA	Wa	Wa	Av	Wa	Wal	Ave	Wal	Wall	Av	w	W	Av	quality in urban street canyons
Belgium, Science of the	Inclusion	trees.			\mathbf{D}_{vd}	II A	IIΒ	е	II A	IB		IA	в	е	all A	all B	е	based on the
total environment, 532, 474-483, 2015	criteria N/A			0	0	31.	32.	31. 8	31. 9	31. 4	31. 7	31.4	31.6	31 .5	32. 1	31.	31	following assumptions:
Quality score	Exclusion criteria			0. 24	0	5 1.4 %	2.0 %	8 1.7 %	9 1.7 %	4 1.6 %	7 1.6 %	1.5 %	1.4 %	1. 5	2.0 %	8 1.6 %	.9 1. 8	Isolated street canyon Artificial trees
Aim of the study	N/A			0. 24	0.00 8	1.2 %	1.8 %	1.5 %	1.5 %	1.4 %	1.4 %	1.3 %	1.2 %	% 1. 3	1.8 %	1.3 %	% 1. 5	(dimensions, vegetation
To quantify the annual average effect of trees on the air quality in street				0. 24	0.08	0.5 %	1.2 %	0.8 %	0.7 %	0.7 %	0.7 %	0.6 %	0.5 %	% 0. 6	1.0 %	0.6 %	% 0. 7	parameters and seasonal effects) Touching tree
canyons				0.	0	1.9	2.6	2.3	1.9	1.8	1.8	1.8	1.7	%	1.6	2.3	% 2.	crowns
Source of data				53	•	%	%	%	%	%	%	%	%	5 %	%	%	0 %	Solutions for a single in flow profile
Meteorological data from Luchtbal (near Antwerp), Belgium.				0. 53	0.00 88	1.6 %	2.3 %	1.9 %	1.8 %	1.8 %	1.8 %	1.7 %	1.5 %	1. 6 %	2.3 %	1.6 %	2. 0 %	No wall deposition and resuspension of pollutants
Urban background concentrations of PM10				0. 53	0.08 8	0.7 %	1.5 %	1.1 %	0.8 %	1.0 %	0.9 %	0.9 %	0.6 %	0. 8 %	1.5 %	0.5 %	1. 0 %	No emissions from vegetation
and EC for 2009 from Antwerp.				1. 33	0	1.9 %	2.6 %	2.2 %	1.8 %	2.3 %	2.1 %	2.1 %	1.6 %	70 1. 9	2.9 %	1.9 %	2. 4	No deposition of back ground

Study details	Population	Intervention / Comparator	Method of analysis	Mode	el resu	lts												Notes
Location and setting Antwerp, Belgium				1. 33	0.02 2	1.4 %	2.1 %	1.8 %	1.3 %	1.8 %	1.6 %	1.6 %	1.1 %	1. 4 %	2.3 %	1.3 %	1. 8 %	street canyon No thermal effects
Length of study N/A				1. 33	0.22	0.5 %	1.1 %	0.8 %	0.3 %	0.9 %	0.6 %	0.7 %	0.2 %	0. 4 %	1.3 %	0.3 %	0. 8 %	Limitations identified by the review team
Source of funding Partially funded by the LIFE+ programme of the EU through the Atmosys project (LIFE+ 2009 project ENV/BE/000409).				depe canyo	, nnual (nding c	on orie ribute	ntatio aroun	n and nd 7.5°	type o % of th	of vege ne total	tation. . The e	of arou For PN effect o	/110, er	nissior	ns froi	m witl	nin the	Other comments

Appendix 2 Quality of included studies

EPOC Checklist

					Question					
-	1	2	3	4	5	6	7	8	9	Score
Al-Dabbous et al., 2014	-	-	NA	+	+	NA	NA	++	-	-
Amato et al., 2009	-	NA	Unclear	NA	Unclear	++	+	++	-	-
Amato et al., 2014	-	-	Unclear	-	-	++	NA	++	-	-
Bean 2011	-	-	NA	Unclear	Unclear	+	-	++	-	-
Boogaard 2009	-	-	NA	-	-	+	+	++	-	-
Brantley et al., 2014	-	NA	NA	+	++	NA	-	++	-	-
Burgard 2009	-	-	-	NA	-	NA	-	++	-	-
Burr 2004	-	-	NA	NA	+	+	Unclear	++	-	-
Bandaulf	-	-	Unclear	-	unclear	+	unclear	++	++	-
Gillies et al., 1999	-	NA	Unclear	NA	Unclear	NA	-	++	-	-
Gramsch 2013	-	-	-	+	Unclear	NA	+	++	-	-
Hagler et al., 2012	-	-	NA	+	+	NA	NA	++	-	-
Hatzopoulou 2013	Unclear	Unclear	NA	-	-	+	Unclear	++	-	-
Jarjour 2013	-	-	Unclear	NA	-	+	NA	++	-	-
Kendrick 2009	-	-	NA	Unclear	+	+	-	++	-	-
MacNaughton 2014	-	-	Unclear	-	Unclear	+	-	++	-	-
Ning et al., 2010	-	-	NA	+	+	NA	NA	++	-	-

Key to questions:

- 1. Was the allocation sequence adequately generated?
- 2. Was the allocation adequately concealed?
- 3. Were baseline outcome measurements similar?
- 4. Were baseline characteristics similar?
- 5. Were incomplete outcome data adequately addressed?
- 6. Was knowledge of the allocated interventions adequately prevented during the study?
- 7. Was the study adequately protected against contamination?
- 8. Was the study free from selective outcome reporting?
- 9. Was the study free from other risks of bias?

Modelling checklist

			Releva	ance							Cred	libility						
	1	2	3	4	Overall	5	6	7	8	9	10	11	12	13	14	15	Overall	Score
Alam 2014	Yes	No	No	Yes	Sufficient	Not reported	Yes	No	Not reported	Not reported	Yes	No	Not enough info	No	Not reported	Not reported	Insufficient	-
Alam 2014b	Yes	No	No	Yes	Sufficient	Not reported	Not reported	No	Not enough info	Not reported	Yes	No	Not enough info	No	Not enough info	Not reported	Insufficient	-
Chong 2014	Yes	No	No	Yes	Sufficient	Yes	Not enough info	Yes	Not enough info	Yes	Yes	Yes	Yes	Yes	Not enough info	Not enough info	Sufficient	+
Goncalves 2009	Yes	No	Yes	No	Sufficient	Not reported	Not reported	Yes	Not enough info	Yes	Yes	Not reported	Not enough info	No	Not reported	Not reported	Insufficient	-
Goncalves 2009a	Yes	No	Yes	No	Sufficient	Yes	Not reported	Not enough info	Not enough info	Not reported	Yes	Yes	Not enough info	No	Not reported	Not reported	Insufficient	-
Pugh 2012	Yes	No	No	Yes	Sufficient	Not enough info	Not enough info	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	NA	Sufficient	+
Soret 2014	Yes	No	Yes	No	Sufficient	Yes	Not reported	Not enough info	Not enough info	Not enough info	Yes	Not reported	Yes	Yes	Not reported	Not reported	Insufficient	-
Stamos 2013	Yes	No	No	Yes	Sufficient	Not reported	Not reported	Not enough info	Not enough info	Not enough info	Not enough info	Not reported	Not reported	No	Not reported	Not reported	Insufficient	-
Vos 2013	Yes	No	No	Yes	Sufficient	Yes	Not enough info	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Not enough info	Not enough info	Sufficient	+
Vranckx 2015	Yes	No	No	Yes	Sufficient	Yes	Yes	Yes	Not enough info	Yes	Yes	Yes	Yes	Yes	Not enough info	Not enough info	Sufficient	+

Key to questions:

Relevance

- 1. Is the population relevant?
- 2. Are any critical interventions missing?
- 3. Are any relevant outcomes missing?
- 4. Is the context (settings and circumstance) applicable?
- 5. Is external validation of the model sufficient to make its results credible for your decision?
- 6. Is internal verification of the model sufficient to make its results credible for your decision?
- 7. Does the model have sufficient face validity to make its results credible for your decision?
- 8. Is the design of the model adequate for your decision problem?

- 9. Are the data used in populating the model suitable for your decision problem?
- 10. Were the analyses performed using the model adequate to inform your decision problem?
- 11. Was there an adequate assessment of the effects of uncertainty?
- 12. Was the reporting of the model adequate to inform your decision problem?
- 13. Was the interpretation of results fair and balanced?
- 14. Were there any potential conflicts of interest?
- 15. If there were potential conflicts of interest, were steps taken to address these?

Economic studies

										(Questi	ion										Overall Assessment
				S	ection [•]	1									S	ection	2					
	1	2	3	4	5	6	7	8	9		1	2	3	4	5	6	7	8	9	10	11	
Cohen 2003	+	++	+	+	+	-	+	-	+		+	+	+	+	+	+	+	+	++	++	-	+
Cohen 2005																						+
Krutilla 2012	NA	+	-	++	+	++	-	++	+		Uncl ear	++	++	+	+	+	+	+	-	+	-	+

Section 1: Applicability

- 1. Is the study population appropriate for the review question?
- 2. Are the interventions appropriate for the review question?
- 3. Is the system in which the study was conducted sufficiently similar to the current UK context?
- 4. Are the perspectives clearly stated and are they appropriate for the review question?
- 5. Are all direct effects on individuals included, and are all other effects included where they are material?
- 6. Are all future costs and outcomes discounted appropriately?
- 7. Is QALY used as an outcome, and was it derived using NICE's preferred methods? If not, describe rationale and outcomes used in line with analytical perspectives taken (item 1.4 above).
- 8. Are costs and outcomes from other sectors fully and appropriately measured and valued?
- 9. Overall judgement

Section 2: Study limitations

- 1. Does the model structure adequately reflect the nature of the topic under evaluation?
- 2. Is the time horizon sufficiently long to reflect all important differences in costs and outcomes?
- 3. Are all important and relevant outcomes included?
- 4. Are the estimates of baseline outcomes from the best available source?
- 5. Are the estimates of relative intervention effects from the best available source?
- 6. Are all important and relevant costs included?
- 7. Are the estimates of resource use from the best available source?
- 8. Are the unit costs of resources from the best available source?
- 9. Is an appropriate incremental analysis presented or can it be calculated from the data?
- 10. Are all important parameters whose values are uncertain subjected to appropriate sensitivity analysis?
- 11. Is there any potential conflict of interest?
- 12. Overall assessment

Appendix 3 Search strategy

Str	ategy
Da	tabase: Ovid MEDLINE(R) <1946 to September Week 4 2015>
Sea	arch Strategy:
1	((fuel or emission* or diesel or petrol or exhaust or fume*) adj3 (road* or vehicle* or motor* or car or cars or traffic)).ti,ab. (2942)
2	("transport pollution" or "street pollution").ti,ab. (15)
3	Air Pollution/ or Air Pollutants/ (51623)
4	Inhalation Exposure/ (7037)
5	Smog/ (388)
6	Vehicle Emissions/ (7631)
7	(particle* or particulate* or "fine particle*" or "ultrafine particle*" or PM10 or PM5 or PM2* or "particulate matter" or "PM emission*").ti, ab.
(20	8946)
8	Particulate Matter/ (9185)
9	("nitrogen oxide*" or "nitrogen dioxide*" or NO2 or ozone or nox or "black carbon").ti,ab. (26714)
10	Carbon Dioxide/ (76818)
11	Nitrogen Dioxide/ (3775)
12	("concentrated ambient air particle*" or smog or "air pollut*" or "air toxics" or "inhalation exposure" or "roadside concentration*").ti,ab.
(20	250)
13	air quality.ti,ab. (5761)
14	or/1-13 (354248)
15	exp Motor Vehicles/ (16179)
16	Automobile Driving/ (14997)
17	Transportation/ (7264)

- 18 (car or cars or bus or buses or truck* or van or vans or lorry or lorries or taxi or taxis or motorbike* or motorcycle* or automobile* or "motor vehicle*").ti,ab. (54779)
- 19 fleet.ti,ab. (988)
- 20 (road* or street* or kerb* or pavement* or highway* or motorway* or "trunk route*" or traffic or multistorey).ti,ab. (62214)
- 21 (driver* or driving or passenger* or commut* or pedestrian* or cyclist*).ti,ab. (78434)
- 22 (commut* or traffic or congest* or "rush hour" or tailback* or idling or "school run" or "tail back*" or tail-back* or "rush hour*" or rushhour*).ti,ab. (80246)
- 23 or/15-22 (236690)
- 24 14 and 23 (12222)

25 ((infrastructure* or plan* or develop* or design* or allocat* or control* or space*) adj3 (route* or road* or walkway* or street* or pavement* or urban or city or cities or town* or transport* or green or environment* or building*)).ti,ab. (46847)

- 26 City Planning/ or Environment Design/ (5687)
- 27 ("health impact assessment*" or "environmental impact assessment*").ti,ab. (768)
- 28 Health Impact Assessment/ (230)
- 29 "cycle route*".ti,ab. (12)
- 30 ((bus or buses or "public transport*") and (lane* or route* or trip* or service* or plan*)).ti,ab. (795)
- 31 (("zero emission*" or "ultralow nox" or "ultra low nox" or "ultra-low nox") and (route* or service* or mode or modes or facilit* or develop* or design*)).ti,ab. (17)
- 32 ("clean bus technology" or "low carbon vehicle procurement" or "city air" or "green bus*").ti,ab. (85)
- 33 ("green technolog*" or "emission* standard*" or "Euro 6" or Euro6 or "Euro VI").ti,ab. (418)
- 34 (barrier* or "urban greening" or vegetation or hedge* or planting* or tree* or foliage or "urban woodland*" or "ecological engineering" or ecosystem*).ti,ab. (281199)
- 35 Trees/ (20220)
- 36 ((dispersion or deposition or absorption or adsorption or impingement) adj3 (road* or street* or kerb* or pavement* or highway* or

motorway* or intersection or traffic or vehicle*)).ti,ab. (212)

- 37 ("road surface*" or "dust suppressant*" or "porous asphalt" or "very open asphalt" or "calcium magnesium acetate" or "surface treatment*" or "titanium oxide*" or "titanium dioxide*").ti,ab. (5984)
- 38 (("catalytic action" or photocataly*) and (road* or highway* or street* or pavement* or paving or concrete or asphalt)).ti,ab. (16)
- 39 or/25-38 (346576)
- 40 ((traffic or road) adj2 (sign or signal* or light*)).ti,ab. (760)
- 41 ((continuous adj2 flow*) or "green wave").ti,ab. (7582)
- 42 ((traffic or road* or vehicle*) adj2 (flow* or control* or ban or manage* or restrict* or enforce* or calm*)).ti,ab. (11872)
- 43 (speed* adj2 (limit* or restric* or reduc* or charg* or fine*)).ti,ab. (2468)
- 44 ((charg* or toll* or pay or payment) and (road* or vehicle* or congestion or zone*)).ti,ab. (3061)
- 45 ("low emission zone*" or "ultra-low emission zone*" or LEZ or ULEZ).ti,ab. (21)
- 46 ((parking or idling or waiting or loading) and (charg* or restrict* or enforce* or zone* or control*)).ti,ab. (28440)
- 47 or/40-46 (53669)
- 48 ("travel plan*" or "journey plan*").ti,ab. (69)
- 49 (car adj (use* or trip* or journey*)).ti,ab. (143)

50 (((mode* or modal) adj2 (shift* or change* or choice*)) or "active travel*" or "active transport*" or walk* or cycle or cycling or cyclist* or bicycl* or pedestrian* or bike* or "travel mode" or "travel behaviour" or "travel behavior").ti,ab. (448890)

- 51 (Bikability or "Cycling Cities and Towns").ti,ab. (2)
- 52 (vehicle occupancy or "CarLite" or ((car or cars or vehicle* or bike or lift) adj2 (pool* or shar* or club*))).ti,ab. (79)
- 53 or/48-52 (449093)

54 ((educat* or aware* or inform* or advice or advise or develop* or promot* or initiative* or intervention*) and (travel* or fuel or driver* or driving or car or cars)).ti,ab. (50165)

55 ("alternative fuel*" or "compressed natural gas" or CNG or "liquid petroleum gas" or "liquified petroleum gas" or "liquefied petroleum gas" or biofuel* or biodiesel* or "low carbon transport fuel*" or LPG).ti,ab. (7548)

56 ("plugged-in" or ((hybrid or electric*) adj2 (car or cars or bus or buses or taxi or taxis or vehicle*))).ti,ab. (262)

57 ((driver* or driving) adj2 (style* or behaviour* or behavior* or training)).ti,ab. (1751)

- 58 ("fuel consumption" or "fuel economy" or "fuel choice*" or "stop go driving" or acceleration or deceleration or braking or eco-driving).ti,ab. (37386)
- 59 ((miles or mileage or vehicle* or route* or travel*) and (habit* or pattern* or drive* or choice* or reduc* or behavior* or behaviour*)).ti,ab. (80986)
- 60 Hotlines/ or Mass Media/ or Social Media/ (13630)
- 61 ((warning* or advice or advisory or forecast* or alerts or alerting or telehealth) adj3 (health or risk* or exposure)).ti,ab. (4207)
- 62 or/54-61 (185282)
- 63 39 or 47 or 53 or 62 (991405)
- 64 24 and 63 (3971)
- 65 letter/ or historical article/ or comment/ or editorial/ or congress/ (1731561)
- 66 64 not 65 (3931)
- 67 animals/ not humans/ (4021057)
- 68 66 not 67 (3659)
- 69 limit 68 to english language (3441)
- 70 limit 69 to yr="1995 -Current" (3211)

Appendix 4 Excluded studies

Study	Reason for Exclusion
Abhijith, K. V., Gokhale, Sharad, Passive control potentials of trees and on-street parked cars in reduction of air pollution exposure in urban street canyons, Environmental pollution (Barking, Essex : 1987), 204, 99-108, 2015	Modelling study
Abou Zeid, Maya, Rossi Thomas, F., Gardner, Brian, Modeling Time-of-Day Choice in Context of Tour- and Activity-Based Models, Transportation Research Record: Journal of the Transportation Research Board, 42-49	No relevant outcomes
Abou-Senna, Hatem, Radwan, Essam, VISSIM/MOVES Integration to Investigate the Effect of Major Key Parameters on CO2 Emissions, Transportation Research: Part D: Transport and Environment, 21, 39-46, 2013	Outcomes not in protocol; No intervention
Acero, J. A., Simon, A., Padro, A., Santa Coloma, O., Impact of local urban design and traffic restrictions on air quality in a medium-sized town, Environmental Technology, 33, 2467-77, 2012	Modelling study
Acha Daza, J. A., Mahmassani, H. S., University of Texas, Austin Center for Transportation Research Red River Suite Austin T. X. U. S. A. Southwest Region University Transportation Center Texas Transportation Institute Texas A., M University, College Station T. X. U. S. A., USER'S RESPONSE TO PRICING IN A TRAFFIC NETWORK, Supported by a grant from the Office of the Governor of the State of Texas	No relevant outcomes
Adamou, Adamos, Sclerides, Sofronis, Zachariadis, Theodoros, Designing Carbon Taxation Schemes for Automobiles: A Simulation Exercise for Germany, 2011	Out of scope
Adams, H. S., Nieuwenhuijsen, M. J., Colvile, R. N., Determinants of fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK, Atmospheric Environment, 35, 4557-4566, 2001	No intervention
Adams, H. S., Nieuwenhuijsen, M. J., Colvile, R. N., McMullen, M. A. S., Khandelwal, P., Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK, Science of the total environment, 279, 29-44, 2001	No intervention
Adar, S. D., D'Souza, J., Sheppard, L., Kaufman, J. D., Hallstrand, T. S., Davey, M. E., Sullivan, J. R., Jahnke, J., Koenig, J., Larson, T. V., Liu, L. J. S., Adopting clean fuels and technologies on school buses: Pollution and health impacts in children, American journal of respiratory and critical care medicine, 191, 1413-1421, 2015	No true comparator Outcomes measured outside of scope
Addison, Paul S., Currie, John I., Low, David J., McCann, Joanna M., An Integrated Approach to Street Canyon Pollution Modelling, Environmental Monitoring & Assessment, 65, 333-342, 2000	No intervention
Affum, J. K., Brown, A. L., Chan, Y. C., The urban footprint and pollution prediction modelling, ROAD SYSTEM AND ENGINEERING TECHNOLOGY FORUM, 2005, BRISBANE, QUEENSLAND, 22P	Conference abstract
Affum, J. K., Brown, A. L., Chan, Y. C., Integrating air pollution modelling with scenario testing in road transport planning: The TRAEMS approach, Science of the total environment, 312, 1-14, 2003	Description of a modelling tool

Agar, Betsy J., Baetz, Brian W., Wilson, Bruce G., Fuel consumption, emissions estimation, and emissions cost estimates using global positioning data, Journal of the Air & Waste Management Association (1995), 57, 348-54, 2007	No intervention
Ahlvik, P., Swedish experiences from low emission city buses: Impact on health and environment, 39p	Review No intervention
Ahn, Kyoungho, Rakha Hesham, Ahmed, Transportation Research Board, Fifth Street N. W. Washington D. C. U. S. A., Energy and Environmental Effects of Traffic Calming Measures, Transportation Research Board 87th Annual MeetingTransportation Research Board, 16	Conference abstract
Ahn, Kyoungho, Rakha Hesham, Ahmed, Transportation Research Board, Fifth Street N. W. Washington D. C. U. S. A., Energy and Environmental Impacts of Route Choice Decisions, Transportation Research Board 86th Annual MeetingTransportation Research Board, 21	Conference abstract
Ahn, Kyoungho, Rakha, Hesham, The effects of route choice decisions on vehicle energy consumption and emissions, Transportation Research: Part D, 13, 151-167, 2008	Modelling study
Ahn, Kyoungho, Rakha, Hesham A., Network-Wide Impacts of Eco-routing Strategies: A Large- Scale Case Study, Transportation Research: Part D: Transport and Environment, 25, 119-30, 2013	Modelling study
Alam, Ahsan, Hatzopoulou, Marianne, Investigating the Isolated and Combined Effects of Congestion, Roadway Grade, Passenger Load, and Alternative Fuels on Transit Bus Emissions, Transportation Research: Part D: Transport and Environment, 29, 12-21, 2014	No intervention
Alexandrova, Olga, Kaloush Kamil, E., Allen Jonathan, O., Impact of Asphalt Rubber Friction Course Overlays on Tire Wear Emissions and Air Quality Models for Phoenix, Arizona, Airshed, Transportation Research Record: Journal of the Transportation Research Board, 98- 106	Outcomes measured not in protocol
Allen Jonathan, O., Alexandrova, Olga, Kaloush Kamil, E., Arizona State University, Tempe Department of Civil, Environmental Engineering, P. O. Box Tempe A. Z. U. S. A. Arizona Department of Transportation South th Avenue Phoenix A. Z. U. S. A., Tire Wear Emissions for Asphalt Rubber and Portland Cement Concrete Pavement Surfaces, 42	Outside of scope
Alqhatani, M., Setunge, S., Mirodpour, S., Can a polycentric structure affect travel behaviour? A comparison of Melbourne, Australia and Riyadh, Saudi Arabia, Journal of Modern Transportation, 22, 156-166	No intervention
Amato, F., Nava, S., Lucarelli, F., Querol, X., Alastuey, A., Baldasano, J. M., Pandolfi, M., A comprehensive assessment of PM emissions from paved roads: Real-world Emission Factors and intense street cleaning trials, Science of the total environment, 408, 4309-4318, 2010	Modelling study
Amirjamshidi, Glareh, Mostafa, Toka S., Misra, Aarshabh, Roorda, Matthew J., Integrated Model for Microsimulating Vehicle Emissions, Pollutant Dispersion and Population Exposure, Transportation Research: Part D: Transport and Environment, 18, 16-24, 2013	No data to extract
Amorim, J. H., Rodrigues, V., Tavares, R., Valente, J., Borrego, C., CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion, Science of the total environment, 461-462, 541-551, 2013	Outcomes modelled not in protocol
Arvidsson, Niklas, Browne, Michael, A Review of the Success and Failure of Tram Systems to Carry Urban Freight: The Implications for a Low Emission Intermodal Solution Using Electric	Out of scope

Vehicles on Trams, European Transport/Trasporti Europei, 0, 2013	
Asadi, Somayeh, Hassan, Marwa, Kevern John, T., Rupnow, Tyson, Nitrogen Oxide Reduction and Nitrate Measurements on TiOsubscript two Photocatalytic Pervious Concrete Pavement, International Journal of Pavement Research and Technology, 7, 273-279	No intervention / lab study
Asadi, Somayeh, Hassan, Marwa, Nadiri, Ataallah, Dylla, Heather, Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification, Environmental science and pollution research international, 21, 8847-57, 2014	Modelling study
Baik, J. J., Kwak, K. H., Park, S. B., Ryu, Y. H., Effects of building roof greening on air quality in street canyons, Atmospheric Environment, 61, 48-55, 2012	Outcomes modelled not clear
Baker, J., Walker, H. L., Cai, X., A study of the dispersion and transport of reactive pollutants in and above street canyons - A large eddy simulation, Atmospheric Environment, 38, 6883-6892, 2004	No intervention
Baldasano, J. M., Goncalves, M., Soret, A., Jimenez-Guerrero, P., Air pollution impacts of speed limitation measures in large cities: The need for improving traffic data in a metropolitan area, Atmospheric Environment, 44, 2997-3006, 2010	Modelling study
Ballardin, Giorgio, Environmental Benefits and Economic Rationale of Expanding the Italian Natural Gas Private Car Fleet, Economia delle Fonti di Energia e dell'Ambiente/Economics and Policy of Energy and the Environment, 48, 103-23, 2005	Out of scope
Bandeira, J. M., Coelho, M. C., Sa, M. E., Tavares, R., Borrego, C., Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city, Science of the total environment, 409, 1154-1163, 2011	No intervention
Bandeira, Jorge, Almeida, Tiago, Khattak Asad, J., Rouphail Nagui, M., Coelho Margarida, Cabrita, Transportation Research Board, Fifth Street N. W. Washington D. C. U. S. A., Generating Emission Information for Route Selection: Experimental Monitoring and Route Characterization, Transportation Research Board 90th Annual MeetingTransportation Research Board, 19	Modelling study
Bandeira, Jorge, Coelho, Margarida, Pimentel, Miguel, Khattak, Asad, Impact of Intercity Tolls in Portugal - An Environmental Perspective, Transport Research Arena 2012European CommissionFrench Institute of Science and Technology for Transport, Development and Networks (IFSTTAR), 48, 1174-1183	Emissions modelled
Baptista, Patricia C., Silva, Carla M., Farias, Tiago L., Heywood, John B., Energy and Environmental Impacts of Alternative Pathways for the Portuguese Road Transportation Sector, Energy Policy, 51, 802-15, 2012	Out of scope
Barlow, J. F., Dobre, A., Smalley, R. J., Arnold, S. J., Tomlin, A. S., Belcher, S. E., Referencing of street-level flows measured during the DAPPLE 2004 campaign, Atmospheric Environment, 43, 5536-5544, 2009	Model evaluation
Barlow, T., Boulter, P., McCrae, I., Sivellet, P., Non-exhaust particulate matter emissions from road traffic: summary report, 11, 2007	Modelling study
Barrett, Julia R., Air Pollution Intervention: Study Links Use of Face Masks to Improved Cardiovascular Outcomes, Environmental health perspectives, 120, A122-A122, 2012	Outside of scope
Barros, N., Fontes, T., Silva, M. P., Manso, M. C., How wide should be the adjacent area to an	No intervention
	56 of 95

urban motorway to prevent potential health impacts from traffic emissions?, TRANSPORTATION RESEARCH PART A: POLICY AND PRACTICE, 50, 113-128	
Bartle, C., Avineri, Erel, Personalised travel plans in the workplace: a case study, Proceedings of the Institution of Civil Engineers - Municipal Engineer, 167, 183-190, 2015	Outcome measures not in scope
Bearman, Nick, Singleton Alex, D., Modelling the Potential Impact on CO2 Emissions of an Increased Uptake of Active Travel for the Home to School Commute Using Individual Level Data, Journal of Transport & Health, 1, 295-304	Outcomes not in protocol
Beck, Matthew J., Rose, John M., Hensher, David A., Behavioural Responses to Vehicle Emissions Charging, Transportation, 38, 445-63, 2011	No relevant intervention
Beck, Matthew J., Rose, John M., Hensher, David A., Environmental Attitudes and Emissions Charging: An Example of Policy Implications for Vehicle Choice, Transportation Research: Part A: Policy and Practice, 50, 171-82, 2013	Survey / modelling
Bedsworth Louise, Wells, Public Policy Institute of California, Washington Street Suite San Francisco C. A. U. S. A., Climate Change Challenges: Vehicle Emissions and Public Health in California, 40	No interventions outlined
Beevers, S. D., Carslaw, D. C., The impact of congestion charging on vehicle speed and its implications for assessing vehicle emissions, Atmospheric Environment, 39, 6875-6884, 2005	Outcomes not in protocol
Beevers, S. D., Carslaw, D. C., The impact of congestion charging on vehicle emissions in London, Atmospheric Environment, 39, 1-5, 2005	Modelling study
Bel, Germa, Rosell, Jordi, Effects of the 80 km/h and variable speed limits on air pollution in the metropolitan area of barcelona, Transportation Research Part D: Transport and Environment, 23, 90-97	Modelling study
Bell, Margaret, Ayodele, Emmanuel, Galatioto, Fabio, Its America, th Street N. W. th Floor Washington D. C. U. S. A., Creating an Evaluation Platform to Deliver Sustainable Urban Networks using Bluetooth Technology, 19th ITS World CongressERTICO - ITS EuropeEuropean CommissionITS AmericaITS Asia-Pacific, 11	Not a comparative study
Bender, F. A., Bosse, T., Sawodny, O., An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles, Waste Management, 34, 1577-1583, 2014	Out of scope
BenDor, Todd, Ford, Andrew, Simulating a combination of feebates and scrappage incentives to reduce automobile emissions, Energy, 31, 1197-1214, 2006	No relevant interventions
Bento, Antonio, Kaffine, Daniel, Roth, Kevin, Zaragoza-Watkins, Matthew, The Effects of Regulation in the Presence of Multiple Unpriced Externalities: Evidence from the Transportation Sector, American Economic Journal: Economic Policy, 6, 1-29, 2014	No relevant intervention
Beusen, Bart, et al.,, Using On-Board Logging Devices to Study the Longer-Term Impact of an Eco-driving Course, Transportation Research: Part D: Transport and Environment, 14, 514-20, 2009	Outside of scope
Beuving, E., De Jonghe, T., Goos, D., Lindahl, T., Stawiarski, A., Fuel efficiency of road pavements, PROCEEDINGS OF THE 3RD EURASPHALT AND EUROBITUME CONGRESS HELD VIENNA, MAY, 983-92	Outside of scope
Bigazzi Alexander, Y., Figliozzi Miguel, A., Clifton Kelly, J., Traffic Congestion and Air Pollution	No relevant intervention

Exposure for Motorists: Comparing Exposure Duration and Intensity, International Journal of Sustainable Transportation, 9, 443-456	
Bigazzi, Alexander Y., Figliozzi, Miguel A., Marginal Costs of Freeway Traffic Congestion with On-Road Pollution Exposure Externality, Transportation Research: Part A: Policy and Practice, 57, 12-24, 2013	No relevant intervention
Biluck, Joe, Jr., The use of biodiesel in a school transportation system: the case of Medford Township, New Jersey, Inhalation toxicology, 19, 1041-3, 2007	no relevant outcomes
Bishop, G. A., Stedman, D. H., Hutton, R. B., Bohren, L., Lacey, N., Drive-by motor vehicle emissions: Immediate feedback in reducing air pollution, Environmental Science and Technology, 34, 1110-1116, 2000	Non-UK based qualitative study
Black, J., Golzar, R., Environmental transport pricing based on air quality criteria, AUSTRALASIAN TRANSPORT RESEARCH FORUM (ATRF), 25TH, 2002, CANBERRA, ACT, A, 15P	No relevant intervention
Blake, P., Reducing greenhouse emissions by improving traffic signal operations, ARRB CONFERENCE, 23RD, 2008, ADELAIDE, SOUTH AUSTRALIA, AUSTRALIA, 15P	Outcomes measured not in the protocol - emissions modelled based on outcomes
Boddy, J. W. D., Smalley, R. J., Dixon, N. S., Tate, J. E., Tomlin, A. S., The spatial variability in concentrations of a traffic-related pollutant in two street canyons in York, UK - Part I: The influence of background winds, Atmospheric Environment, 39, 3147-3161, 2005	Outside of scope
Boddy, J. W. D., Smalley, R. J., Goodman, P. S., Tate, J. E., Bell, M. C., Tomlin, A. S., The spatial variability in concentrations of a traffic-related pollutant in two street canyons in York, UK-Part II: The influence of traffic characteristics, Atmospheric Environment, 39, 3163-3176, 2005	Outside of scope
Boongrapue, N., Dia, H., Zito, R., Modelling of vehicle emissions using traffic simulation, CONFERENCE OF AUSTRALIAN INSTITUTES OF TRANSPORT RESEARCH (CAITR), 27TH, 2, 16P	Conference abstract
Borck, Rainald, Will Skyscrapers Save the Planet? Building Height Limits and Urban Greenhouse Gas Emissions, 2014	Modelling study
Boriboonsomsin, Kanok, Barth Matthew, J., Vu, Alexander, Transportation Research Board, Fifth Street N. W. Washington D. C. U. S. A., Evaluation of Driving Behavior and Attitude Toward Eco-Driving: Southern California Limited Case Study, Transportation Research Board 90th Annual MeetingTransportation Research Board, 14	Not evaluating intervention
Bos, I., Jacobs, L., Nawrot, T. S., de Geus, B., Torfs, R., Int Panis, L., Degraeuwe, B., Meeusen, R., No exercise-induced increase in serum BDNF after cycling near a major traffic road, Neuroscience Letters, 500, 129-132, 2011	No intervention
Bosetti, Valentina, Longden, Thomas, Light Duty Vehicle Transportation and Global Climate Policy: The Importance of Electric Drive Vehicles, Energy Policy, 58, 209-19, 2013	No relevant intervention
Botwright, D., LOCAL AUTHORITY FLEETS: THE IPSWICH EXPERIENCE, CONFERENCE PAPERS FROM CONFERENCE ON CLEANER FUELS, CLEANER FLEETS: THEIR, 3P	Conference abstract
Boubaker, Samia, Rehimi, Férid, Kalboussi, Adel, Effect of vehicular technology on energy consumption and emissions, International Journal of Environmental Studies, 72, 667-684, 2015	No relevant intervention

Boulter, P. G., Cox, J. A., A review of European emission measurements and model for diesel- fuelled buses, TRL REPORT 378, 28p	No relevant intervention
Boulter, P. G., McCrae,, OSCAR: Final summary report, PUBLISHED PROJECT REPORT PPR137, 48p	No relevant intervention
Boulter, P. G., Wayman, M., McCrae, I., Harrison, R. M., A review of abatement measures for non-exhaust particulate matter from road vehicles, PUBLISHED PROJECT REPORT PPR230, 31p	Not a comparative study
Bowker, G. E., Baldauf, R., Isakov, V., Khlystov, A., Petersen, W., The effects of roadside structures on the transport and dispersion of ultrafine particles from highways, Atmospheric Environment, 41, 8128-8139, 2007	Modelling study
Bowker, G. E., Baldauf, R., Isakov, V., Khlystov, A., Petersen, W., Thoma, E., Bailey, C., Pulugurtha Srinivas S, O'Loughlin Robert Hallmark Shauna, American Society of Civil Engineers, Alexander Bell Drive Reston V. A. U. S. A., The Influence of a Noise Barrier and Vegetation on Air Quality Near a Roadway, Transportation Land Use, Planning, and Air QualityFederal Highway AdministrationTransportation Research Boardlowa State University, AmesUniversity of North Carolina, CharlotteAmerican Society of Civil Engineers, 372-381	modelling
Brady, John, O'Mahony, Margaret, Travel to Work in Dublin: The Potential Impacts of Electric Vehicles on Climate Change and Urban Air Quality, Transportation Research: Part D: Transport and Environment, 16, 188-93, 2011	No relevant intervention
Brazil, William, Caulfield, Brian, Rieser-Schussler, Nadine, Understanding Carbon: Making Emissions Information Relevant, Transportation Research: Part D: Transport and Environment, 19, 28-33, 2013	survey
Brebbia, C. A., Martin Duque, J. F., Wadhwa, L. C., Antonucci, E., Garzia, F., The Sustainable City II. Urban regeneration and sustainability. The automatic vehicles access control system of the historical centre of Rome, 853-61	No outcomes measured relating to the impact of the system on emissions etc.
Bresser, Coen, Rooke, Andy, Traffic Management in Holland. Improving Network Conditions using Effective Road Side Messaging, TRAFFIC ENGINEERING AND CONTROL, 52, 410-411	news article. no relevant outcomes
Bright, V. B., Bloss, W. J., Cai, X., Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions, Atmospheric Environment, 68, 127-142, 2013	No intervention
Brinkman, G. L., Denholm, P., Hannigan, M. P., Milford, J. B., Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado, Environmental Science and Technology, 44, 6256-6262, 2010	Out of scope
Buccolieri, Riccardo, Gromke, Christof, Di Sabatino, Silvana, Ruck, Bodo, Aerodynamic effects of trees on pollutant concentration in street canyons, The Science of the total environment, 407, 5247-56, 2009	outcomes modelled not in protocols
Buliung, Ron N., Soltys, Kalina, Bui, Randy, Habel, Catherine, Lanyon, Ryan, Catching a Ride on the Information Super-Highway: Toward an Understanding of Internet-Based Carpool Formation and Use, Transportation, 37, 849-73, 2010	Modelling study
Bulteau, Julie, Tradable Emission Permit System for Urban Motorists: The Neo-classical Standard Model Revisited, Research in Transportation Economics, 36, 101-09, 2012	Out of scope
Bureau, Benjamin, Glachant, Matthieu, Distributional Effects of Road Pricing: Assessment of	No relevant outcomes reported
	59 of 95

Nine Scenarios for Paris, Transportation Research: Part A: Policy and Practice, 42, 994-1007, 2008	
Burge, P., Munro, C., Read, P., Heywood, C., Investigating the likely behavioural responses to alternative congestion charge schemes in London, PROCEEDINGS OF THE EUROPEAN TRANSPORT CONFERENCE 2007 HELD 17-19 OCTOBER 2	No relevant outcomes reported
Cairns, A., Monitoring the social impacts of the central London congestion charge, PROCEEDINGS OF ETC 2005, STRASBOURG, FRANCE 18-20 SEPTEMBER 2005 - TRANSPO, 16p	Outside of scope
Camus, R., Longo, G., An integrated UTCS/AVM pollution control system, TRAFFIC MANAGEMENT, SAFETY AND INTELLIGENT TRANSPORT SYSTEMS. PROCEEDINGS, 261-71	No relevant outcomes reported
Cao, Xinyu, Mokhtarian, Patricia L., Handy, Susan L., Neighborhood Design and Vehicle Type Choice: Evidence from Northern California, Transportation Research: Part D: Transport and Environment, 11, 133-45, 2006	Out of scope
Carnovale, Maria, Gibson, Matthew, The Effects of Driving Restrictions on Air Quality and Driver Behavior, 2013	Modelling study
Carslaw, D. C., Priestman, M., Williams, M. L., Stewart, G. B., Beevers, S. D., Performance of optimised SCR retrofit buses under urban driving and controlled conditions, Atmospheric Environment, 105, 70-77, 2015	No clear control
Carslaw, David C., Beevers, Sean D., The Efficacy of Low Emission Zones in Central London as a Means of Reducing Nitrogen Dioxide Concentrations, Transportation Research: Part D: Transport and Environment, 7, 49-64, 2002	Modelling study
Caton, F., Britter, R. E., Dalziel, S., Dispersion mechanisms in a street canyon, Atmospheric Environment, 37, 693, 2003	No intervention
Caulfield, Brian, Estimating the Environmental Benefits of Ride-Sharing: A Case Study of Dublin, Transportation Research: Part D: Transport and Environment, 14, 527-31, 2009	modelling
Centers for Disease, Control, Prevention,, Corporate action to reduce air pollutionAtlanta, Georgia, 1998-1999, MMWR. Morbidity and mortality weekly report, 49, 153-6, 2000	No outcomes measured / modelling
Cesaroni, Giulia, Boogaard, Hanna, Jonkers, Sander, Porta, Daniela, Badaloni, Chiara, Cattani, Giorgio, Forastiere, Francesco, Hoek, Gerard, Health benefits of traffic-related air pollution reduction in different socioeconomic groups: the effect of low-emission zoning in Rome, Occupational & Environmental Medicine, 69, 133-139, 2012	Modelling study
Chakour, Vincent, Eluru, Naveen, Examining the Influence of Urban form and Land Use on Bus Ridership in Montreal, 2nd Conference of Transportation Research Group of India (2nd CTRG)Transportation Research Group of India, 104, 875-884	Out of scope
Chang, Y. M., Chou, C. M., Su, K. T., Tseng, C. H., Effectiveness of street sweeping and washing for controlling ambient TSP, Atmospheric Environment, 39, 1891-1902, 2005	Non-OECD/EU
Chatterton, T. J., Coulter, A., Musselwhite, C., Lyons, G., Clegg, S., Understanding how transport choices are affected by the environment and health: views expressed in a study on the use of carbon calculators, Public Health, 123, e45-9, 2009	Intervention outside of scope

Chen, D., Traffic reallocation impacts and automobile toxic pollutants emission for a general network in urban highway system: A second-best congestion pricing analysis, International Journal of Environment and Pollution, 53, 64-86, 2013	Modelling study
Chen, Hong, Goldberg, Mark S., Crouse, Dan L., Burnett, Richard T., Jerrett, Michael, Villeneuve, Paul J., Wheeler, Amanda J., Labrèche, France, Ross, Nancy A., Back-extrapolation of estimates of exposure from current land-use regression models, Atmospheric Environment, 44, 4346-4354, 2010	No relevant intervention
Chen, M., Liu, Y., NOx removal from vehicle emissions by functionality surface of asphalt road, Journal of Hazardous Materials, 174, 375-379, 2010	Not a comparative study
Chien Steven, I. Jy, Fallat, George, New Jersey Department of Transportation, Parkway Avenue Trenton N. J. U. S. A. Federal Highway Administration New Jersey Avenue S. E. Washington D. C. U. S. A., Computer Modeling and Simulation of New Jersey Signalized Highways, 149	No relevant outcomes reported
China, S., James, D. E., Influence of pavement macrotexture on PM10 emissions from paved roads: A controlled study, Atmospheric Environment, 63, 313-326, 2012	no intervention
Chiquetto, S., THE ENVIRONMENTAL IMPACTS FROM THE IMPLEMENTATION OF A PEDESTRIANIZATION SCHEME, TRANSPORTATION RESEARCH, PART D, 2D, 133-46	Modelling study
Chowdhury Md, Shoab, Varma Amiy, Gosling Geoffrey D., American Society of Civil Engineers, Alexander Bell Drive Reston V. A. U. S. A., Easing Congestion with Pedestrian Crossing at Midblock, Second Transportation & Development Congress 2014American Society of Civil Engineers, 430-436	Conference abstract
Cifuentes, L., Borja-Aburto, V. H., Gouveia, N., Thurston, G., Davis, D. L., Assessing the health benefits of urban air pollution reductions associated with climate change mitigation (2000-2020): Santiago, Sao Paulo, Mexico City, and New York City, Environmental health perspectives, 109, 419-425, 2001	No relevant intervention
Cloke, J., Harris, G, Latham, S., Quimby, A, Smith, L., Baughan, C., Reducing the environmental impact of driving: a reivew of training and in-vehicle technologies, 32, 1999	Not an intervention study, not a systematic review
Coelho, Margarida C., Farias, Tiago L., Rouphail, Nagui M., Impact of Speed Control Traffic Signals on Pollutant Emissions, Transportation Research: Part D: Transport and Environment, 10, 323-40, 2005	no data to extract
Collet, S., Kidokoro, T., Sonoda, Y., Lohman, K., Karamchandani, P., Chen, S. Y., Minoura, H., Air quality impacts of motor vehicle emissions in the south coast air basin: Current versus more stringent control scenario, Atmospheric Environment, 47, 236-240, 2012	No relevant interventions
Colls, J. J., Micallef, A., Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon, The Science of the total environment, 235, 221-33, 1999	No intervention
Colls, J. J., Namdeo, A. K., Baker, C. J., Dispersion and re-suspension of fine and coarse particulates in an urban street canyon, Science of the total environment, 235, 3, 1999	no intervention.
Conquest, J., Patey, I., Holt, A., Sustainability and road technology schemes, Traffic Engineering & Control, 48, 391-393	Commentary
Conquest, John, Patey, Ian, Holt, Aidan, Its America, th Street N. W. Washington D. C. U. S.	Outside of scope
Evidence review protocol	61 of 95

A., Using ITS to Cut Carbon Costs, 15th World Congress on Intelligent Transport Systems and ITS America's 2008 Annual MeetingITS AmericaERTICOITS JapanTranscore, 10	
Cowie, C. T., Rose, N., Gillett, R., Walter, S., Marks, G. B., Redistribution of traffic related air pollution associated with a new road tunnel, Environmental Science and Technology, 46, 2918-2927, 2012	Road infrastructure project - out of scope
Cowie, H, Crawford, J, Davis, A, Steinle, S, Reis, S, Dixon, K, Morris, G, Hurley, F, Air Quality, Health, Wellbeing and Behaviour, 1-102, 2015	Not an intervention study, not a systematic review
Cruickshank, Samantha, Kendall, Michaela, Low-emission vehicle adoption in a UK local authority fleet: economic barriers and air quality benefits, International Journal of Low Carbon Technologies, 7, 16-22, 2012	Modelling study
Currie, Janet, Walker, Reed, Traffic Congestion and Infant Health: Evidence from E-ZPass, American Economic Journal: Applied Economics, 3, 65-90, 2011	Modelling study
Cyrys, Josef, Peters, Annette, Soentgen, Jens, Wichmann, H. Erich, Low emission zones reduce PM 10 mass concentrations and diesel soot in German cities, Journal of the Air & Waste Management Association (Taylor & Francis Ltd), 64, 481-487, 2014	Review, not comparative study
Czogalla, Olaf, Herrmann, Andreas, Its Japan, Tokyo Japan, Estimation of Vehicle Emissions of Improved Traffic Management Performance using Microsimulation, 20th ITS World CongressITS Japan, 11	Conference abstract
Dahlgren, J., HIGH OCCUPANCY VEHICLE LANES: NOT ALWAYS MORE EFFECTIVE THAN GENERAL PURPOSE LANES, TRANSPORTATION RESEARCH, PART A, 32A, 99- 114	No relevant outcomes reported
Daniel, Joseph I., Bekka, Khalid, The Environmental Impact of Highway Congestion Pricing, Journal of Urban Economics, 47, 180-215, 2000	Modelling study
Davis, Lucas W., The Effect of Driving Restrictions on Air Quality in Mexico City, Journal of Political Economy, 116, 38-81, 2008	Modelling study
De Coensel, B., Can, A., Degraeuwe, B., De Vlieger, I., Botteldooren, D., Effects of traffic signal coordination on noise and air pollutant emissions, Environmental Modelling & Software, 35, 74-83, 2012	No data to extract
de Nazelle, A., Fruin, S., Westerdahl, D., Martinez, D., Ripoll, A., Kubesch, N., Nieuwenhuijsen, M., A travel mode comparison of commuters' exposures to air pollutants in Barcelona, Atmospheric Environment, 59, 151-159, 2012	No intervention
de Nazelle, Audrey, Rodríguez, Daniel A., Crawford-Brown, Douglas, The built environment and health: Impacts of pedestrian-friendly designs on air pollution exposure, Science of the total environment, 407, 2525-2535, 2009	out of scope
De Nicola, Flavia, Murena, Fabio, Costagliola, M. Antonietta, Alfani, Anna, Baldantoni, Daniela, Prati, M. Vittoria, Sessa, Ludovica, Spagnuolo, Valeria, Giordano, Simonetta, A multi-approach monitoring of particulate matter, metals and PAHs in an urban street canyon, Environmental science and pollution research international, 20, 4969-79, 2013	No relevant intervention
de Palma, Andre, Kilani, Moez, De Lara, Michel, Piperno, Serge, Cordon Pricing in the Monocentric City: Theory and Application to Paris Region, Recherches Economiques de Louvain/Louvain Economic Review, 77, 105-24, 2011	No relevant outcomes reported
	62 of 95

DeCorla-Souza, Patrick, Creating a Financially Feasible High-Performance Metropolitan Transportation System, Journal of the Transportation Research Forum, 49, 21-38, 2010	Outcomes measured not in scope
Delhomme, P., Chappe, J., Grenier, K., Pinto, M., Martha, C., Reducing air-pollution: a new argument for getting drivers to abide by the speed limit?, Accident; analysis and prevention, 42, 327-38, 2010	outcomes measured out of scope
Department for Transport Local, Government, Personalised travel planning: evaluation of 14 pilots part funded by DfT, 77, 2005	Not a comparative study / don't measure outcomes in the protocol
Department for Transport Local, Government, Making personal travel planning work: research report, 163, 2007	Not a comparative study / don't measure outcomes in the protocol
Dogan, Ebru, Bolderdijk, Jan Willem, Steg, Linda, Making Small Numbers Count: Environmental and Financial Feedback in Promoting Eco-driving Behaviours, Journal of Consumer Policy, 37, 413-22, 2014	Survey
Donaghy, K. P., Schintler, L. A., MANAGING CONGESTION, POLLUTION, AND PAVEMENT CONDITIONS IN A DYNAMIC TRANSPORTATION NETWORK MODEL, TRANSPORTATION RESEARCH, PART D, 3D, 59-80	No relevant intervention
Dong, Jing, Lin, Zhenhong, Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure, Transportation Research: Part D: Transport and Environment, 17, 405-12, 2012	Outcomes not relevant
Dons, E., Temmerman, P., Van Poppel, M., Bellemans, T., Wets, G., Int Panis, L., Street characteristics and traffic factors determining road users' exposure to black carbon, Science of the total environment, 447, 72-79, 2013	Outside of scope
Dzierzanowski, Kajetan, Popek, Robert, Gawronska, Helena, Sæbø, Arne, Gawronski, Stanislaw W., Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species, International Journal of Phytoremediation, 13, 1037-1046, 2011	not an intervention.
Egbue, Ona, Long, Suzanna, Barriers to Widespread Adoption of Electric Vehicles: An Analysis of Consumer Attitudes and Perceptions, Energy Policy, 48, 717-29, 2012	No intervention
El Assar, H., Institute of Transportation Engineers, th Street N. W. Washington D. C. U. S. A., A PROACTIVE APPROACH TO TRAFFIC SIGNAL OPERATION IMPROVEMENTS, ITE 2004 Annual Meeting and ExhibitInstitute of Transportation Engineers, 7	Outcomes measured not in protocol
Ellison Richard, B., Greaves Stephen, P., Hensher David, A., Five years of London's low emission zone: Effects on vehicle fleet composition and air quality, Transportation Research Part D: Transport and Environment, 23, 25-33	Not a comparative study; insufficient data to extract
Eppstein, Margaret J., Grover, David K., Marshall, Jeffrey S., Rizzo, Donna M., An Agent- Based Model to Study Market Penetration of Plug-In Hybrid Electric Vehicles, Energy Policy, 39, 3789-3802, 2011	Out of scope
Erdem, Cumhur, Senturk, Ismail, Simsek, Turker, Identifying the Factors Affecting the Willingness to Pay for Fuel-Efficient Vehicles in Turkey: A Case of Hybrids, Energy Policy, 38, 3038-43, 2010	Out of scope
Faria, Marta V., Baptista, Patricia C., Farias, Tiago L., Electric Vehicle Parking in European and American Context: Economic, Energy and Environmental Analysis, Transportation Research:	Outcomes reported not relevant
Evidence review protocol	63 of 95

Part A: Policy and Practice, 64, 110-21, 2014	
Fellendorf, Martin, Hirschmann, Karin, Transportation Research Board, Fifth Street N. W. Washington D. C. U. S. A., A Toolbox to Quantify Emission Reductions due to Signal Control, Transportation Research Board 89th Annual MeetingTransportation Research Board, 12	Conference abstract
Fiorello, Davide, Martino, Angelo, Options for Road User ChargesTwo Italian Case Studies, European Transport/Trasporti Europei, 0, 49-63, 2009	No data to extract
Fishman, Elliot, Washington, Simon, Haworth, Narelle, Bike Share's Impact on Car Use: Evidence from the United States, Great Britain, and Australia, Transportation Research: Part D: Transport and Environment, 31, 13-20, 2014	Outside of scope
Fontes, T., Pereira, S. R., Impact Assessment of Road Fleet Transitions on Emissions: The Case Study of a Medium European Size Country, Energy Policy, 72, 175-85, 2014	No relevant intervention
Fontes, Tania, et al.,, Are HOV/Eco-lanes a Sustainable Option to Reducing Emissions in a Medium-Sized European City?, Transportation Research: Part A: Policy and Practice, 63, 93-106, 2014	Modelling study
Frank Lawrence, D., Sallis James, F., Conway Terry, L., Chapman James, E., Saelens Brian, E., Bachman, William, Many Pathways from Land Use to Health: Associations between Neighborhood Walkability and Active Transportation, Body Mass Index, and Air Quality, JOURNAL OF THE AMERICAN PLANNING ASSOCIATION, 72, 75-87	Modelling
French, Jim, French Millie, S., Institute of Transportation Engineers, Eye Street N. W. Suite Washington D. C. U. S. A., Development and Application of Microsimulation in Congested Corridor Analysis, ITE 2007 Annual Meeting and ExhibitInstitute of Transportation Engineers, 16	Conference abstract
Frey, H. C., Rouphail, N. M., Zhai, H., Farias, T. L., Goncalves, G. A., Comparing real-world fuel consumption for diesel- and hydrogen-fueled transit buses and implication for emissions, TRANSPORTATION RESEARCH PART D, 12, 281-291	Modelling study
Friedman, M. S., Powell, K. E., Hutwagner, L., Graham, L. M., Teague, W. G., Impact of changes in transportation and commuting behaviors during the 1996 Summer Olympic Games in Atlanta on air quality and childhood asthma, JAMA, 285, 897-905, 2001	Insufficient detail provided on the interventions used
Friesz Terry, L., Han, Ke, Liu, Hongcheng, Yao, Tao, Dynamic Congestion and Tolls with Mobile Source Emission, Procedia - Social and Behavioral Sciences, 80, 818-836	Modelling study
Fu, Miao, Andrew Kelly, J., Peter Clinch, J., King, Fearghal, Environmental Policy Implications of Working from Home: Modelling the Impacts of Land-Use, Infrastructure and Socio- demographics, Energy Policy, 47, 416-23, 2012	Outcomes not in protocol
Fuller, Stephen, Robinson, John, Fraire, Francisco, Vadali, Sharada, Feasibility of an Intermodal Terminal in Rural Texas to Enhance Marketing and Transportation Efficiency, Journal of the Transportation Research Forum, 51, 25-42, 2012	Modelling
Gaines, Linda, Transportation Research Board, Fifth Street N. W. Washington D. C. U. S. A., Energy Use and Emissions Comparison of Idling Reduction Options for Heavy-Duty Diesel Trucks, Transportation Research Board 88th Annual MeetingTransportation Research Board	Modelling
Galatioto, Fabio, Bell, Margaret, Hill, Graeme, Rose, Paul, Hodges, Nick, Its America, th Street N. W. th Floor Washington D. C. U. S. A., Evaluation of Carbon Reduction Traffic Measures	Conference abstract
Evidence review protocol	64 of 05

Employing a Novel Approach to Micro-simulation Modelling of Real-world Emissions, 19th ITS World CongressERTICO - ITS EuropeEuropean CommissionITS AmericaITS Asia-Pacific, 9	
Galatioto, Fabio, Huang, Yue, Parry, Tony, Bird, Roger, Bell, Margaret, Traffic Modelling in System Boundary Expansion of Road Pavement Life Cycle Assessment, Transportation Research: Part D: Transport and Environment, 36, 65-75, 2015	Out of scope
Gallagher, J., Gill, L. W., McNabola, A., Optimizing the use of on-street car parking system as a passive control of air pollution exposure in street canyons by large eddy simulation, Atmospheric Environment, 45, 1684-1694, 2011	Outcomes not in protocol
Gallagher, J., Gill, L. W., McNabola, A., Numerical modelling of the passive control of air pollution in asymmetrical urban street canyons using refined mesh discretization schemes, Building & Environment, 56, 232-240, 2012	Outcomes not in protocol
Gallagher, J., Gill, L. W., McNabola, A., The passive control of air pollution exposure in Dublin, Ireland: A combined measurement and modelling case study, Science of the total environment, 458-460, 331-343, 2013	Modelling study
Genon, G., Brizio, E., Poggio, M., Mander U, Brebbia C. A. Tiezzi E., Wit Press, Bridge Street Billerica M. A. U. S. A., Use of Atmospheric Modelling for the Territorial Planning of Technological Structures, 4th International Conference on Urban Regeneration and Sustainability (The Sustainable City)WIT Transactions on Ecology and the EnvironmentInternational Journal of Ecodynamics, 199-208	Conference abstract
Giannouli, M., Kalognomou, E. A., Mellios, G., Moussiopoulos, N., Samaras, Z., Fiala, J., Impact of European emission control strategies on urban and local air quality, Atmospheric Environment, 45, 4753-4762, 2011	No specific intervention
Givoni, Moshe, Re-assessing the Results of the London Congestion Charging Scheme, Urban Studies, 49, 1089-1105, 2012	No data reported for extraction
Glaeser, Edward L., Kahn, Matthew E., The Greenness of Cities: Carbon Dioxide Emissions and Urban Development, Journal of Urban Economics, 67, 404-18, 2010	No intervention
Glaister, Stephen, Graham, Daniel J., Pricing our roads: Vision and reality, 131, 2004	Modelling study
Gokhale, S., Traffic flow pattern and meteorology at two distinct urban junctions with impacts on air quality, Atmospheric Environment, 45, 1830-1840, 2011	Model validation
Gokhale, Sharad B., Rebours, Arnaud, Pavageau, Michel, The performance evaluation of WinOSPM model for urban street canyons of Nantes in France, Environmental Monitoring & Assessment, 100, 153-176, 2005	Model validation
Golzar, R., Optimum road pricing based on environmental capacity, 264P	Conference abstract
Gonçalves, María, Jiménez-Guerrero, Pedro, López, Eugeni, Baldasano, José M., Air quality models sensitivity to on-road traffic speed representation: Effects on air quality of 80kmhâ [^] 1 speed limit in the Barcelona Metropolitan area, Atmospheric Environment, 42, 8389-8402, 2008	Modelling study
Gouge, Brian, Dowlatabadi, Hadi, Ries, Francis J., Minimizing the health and climate impacts of emissions from heavy-duty public transportation bus fleets through operational optimization, Environmental Science & Technology, 47, 3734-42, 2013	Modelling
Grabow Maggie, L., Spak Scott, N., Holloway, Tracey, Stone, Brian, Mednick Adam, C., Patz	No relevant intervention

Jonathan, A., Air Quality and Exercise-Related Health Benefits from Reduced Car Travel in the Midwestern United States, Environmental health perspectives, 120, 68-76	
Greater London, Authority, Congestion charging: a first review, 2004	No measurement of particulates/health impact
Gromke, C., Buccolieri, R., Di Sabatino, S., Ruck, B., Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations - Evaluation of CFD data with experimental data, Atmospheric Environment, 42, 8640-8650, 2008	No data for extraction
Gromke, C., Ruck, B., Influence of trees on the dispersion of pollutants in an urban street canyon-Experimental investigation of the flow and concentration field, Atmospheric Environment, 41, 3287-3302, 2007	No data for extraction
Gromke, Christof, Blocken, Bert, Influence of avenue-trees on air quality at the urban neighborhood scale. Part II: traffic pollutant concentrations at pedestrian level, Environmental pollution (Barking, Essex : 1987), 196, 176-84, 2015	No data for extraction
Grundstrom, Maria, Pleijel, Hakan, Limited effect of urban tree vegetation on NO2 and O3 concentrations near a traffic route, Environmental pollution (Barking, Essex : 1987), 189, 73-6, 2014	No comparator
Gualtieri, G., A street canyon model intercomparison in Florence, Italy, Water, Air, and Soil Pollution, 212, 461-482, 2010	Model comparison
Guerrini, G. L., Beeldens, A., Crispino, M., D'Ambrosio, G., Vismara, S., International Society for Concrete Pavements, Oyster Bay Court Bridgeville Pennsylvania U. S. A., Environmental Benefits of Innovative Photocatalytic Cementitious Road Materials, 10th International Conference on Concrete PavementsInternational Society for Concrete PavementsHolcim (Canada)Transports Quebec, 912-923	Conference abstract
Gustafsson, Mats, Johansson, Christer, Trafikverket, Borlange Sweden, Road pavements and PM10: summary of the results of research funded by the Swedish Transport Administration on how the properties of road pavements influence emissions and the properties of wear particles, PUBLIKATION, 33	Not relevant intervention
Hagler, G. S. W., Tang, W., Freeman, M. J., Heist, D. K., Perry, S. G., Vette, A. F., Model evaluation of roadside barrier impact on near-road air pollution, Atmospheric Environment, 45, 2522-2530, 2011	Outcomes reported not relevant
Haller, Megan, Welch, Eric, Lin, Jie, Fulla, Shelley, Economic Costs and Environmental Impacts of Alternative Fuel Vehicle Fleets in Local Government: An Interim Assessment of a Voluntary Ten-Year Fleet Conversion Plan, Transportation Research: Part D: Transport and Environment, 12, 219-30, 2007	Outcomes not relevant
Hallmark, Shauna, Wang, Bo, Mudgal, Abhisek, Isebrands Hillary, N., Transportation Research Board, Fifth Street N. W. Washington D. C. U. S. A., On-Road Evaluation of Emission Impacts of Roundabouts, Transportation Research Board 90th Annual MeetingTransportation Research Board, 17	Modelling
Hammadou, Hakim, Papaix, Claire, Policy Packages for Modal Shift and CO2 Reduction in Lille, France, Transportation Research: Part D: Transport and Environment, 38, 105-16, 2015	Outcomes measured not in protocol
Harvey, Joan, Thorpe, Neil, Fairchild, Richard, Attitudes towards and perceptions of eco-driving and the role of feedback systems, Ergonomics, 56, 507-21, 2013	No clear intervention

Hassan, Marwa, Okeil, Ayman, Louisiana State University, Baton Rouge Department of Civil, Environmental Engineering, Baton Rouge L. A. U. S. A. Gulf Coast Research Center for Evacuation, Transportation Resiliency, Louisiana State University Baton Rouge L. A. U. S. A. Research, Innovative Technology Administration, New Jersey Avenue S. E. Washington D. C. U. S. A., Field and Laboratory Investigation of Photocatalytic Pavements, This research was sponsored by the U.S. Department of Transportation	No data to extract
Hatzopoulou, M., Weichenthal, S., Barreau, G., Goldberg, M., Farrell, W., Crouse, D., Ross, N., A web-based route planning tool to reduce cyclists' exposures to traffic pollution: A case study in Montreal, Canada, Environmental Research, 123, 58-61, 2013	modelling study. May be relevant to 3a.
Henderson, D. K., Koenig, B. E., Mokhtarian, P. L., Using travel diary data to estimate the emissions impacts of transportation strategies: The Puget Sound Telecommuting Demonstration Project, Journal of the Air and Waste Management Association, 46, 47-57, 1996	No relevant intervention
Henriksson, Greger, Hagman, Olle, Andreasson, Hakan, Environmentally reformed travel habits during the 2006 congestion charge trial in Stockholma qualitative study, International Journal of Environmental Research and Public Health, 8, 3202-15, 2011	Outcomes not measured directly
Henry, Gary T., Gordon, Craig S., Driving Less for Better Air: Impacts of a Public Information Campaign, Journal of Policy Analysis and Management, 22, 45-63, 2003	Modelling study
Hertel, Ole, Hvidberg, Martin, Ketzel, Matthias, Storm, Lars, Stausgaard, Lizzi, A proper choice of route significantly reduces air pollution exposurea study on bicycle and bus trips in urban streets, The Science of the total environment, 389, 58-70, 2008	Modelling study
Hickman, A., Travel Awareness Campaigns: Travelwise in West Sussex; Managing demand for Car Travel, TRANSPORT POLICY AND ITS IMPLEMENTATION., p402, 12, 1996	Not an intervention study
Hixson, M., Mahmud, A., Hu, J., Bai, S., Niemeier, D. A., Handy, S. L., Gao, S., Lund, J. R., Sullivan, D. C., Kleeman, M. J., Influence of regional development policies and clean technology adoption on future air pollution exposure, Atmospheric Environment, 44, 552-562, 2010	No relevant intervention
Hodges, N., Intelligent Transport Systems and the Health Impact of Traffic in Leicester (UK), PROCEEDINGS OF THE ITS WORLD CONGRESS, HELD LONDON, 8-12 OCTOBER 2006, 12p	Conference abstract
Hodgkinson, M., Whitehouse, J., Grubb, E., Urban street activity in 20mph zones, TRAFFIC ENGINEERING AND CONTROL, 13-15, 2002	No outcomes measured
Hodgson, F., May, T., Tight, M., Corner, M, Evaluation of the MIST travel awareness campaign 2. The before-and-after study, Traffic Engineering & Control, 39, 103-112, 1998	No behaviour change measured
Holman, C., Harrison, R., Querol, X., Review of the efficacy of low emission zones to improve urban air quality in European cities, Atmospheric Environment, 111, 161-169, 2015	Not an intervention study - literature review
Hosking, Jamie, Macmillan, Alexandra, Connor, Jennie, Bullen, Chris, Ameratunga, Shanthi, Organisational travel plans for improving health, Cochrane Database of Systematic Reviews, 2010	Outcomes not relevant
Hutton Jessica, M., Bokenkroger Courtney, D., Meyer Melanie, M., Midwest Research Institute, Volker Boulevard Kansas City M. O. U. S. A. Missouri Department of Transportation Organizational Results Division P. O. Box Jefferson City M. O. U. S. A. Federal Highway	Modelling study

Administration New Jersey Avenue S. E. Washington D. C. U. S. A., Evaluation of an Adaptive Traffic Signal System: Route 291 in Lee's Summit, Missouri, 86	
Hyden, C., Varhelyi, A., The effects on safety, time consumption and environment of large scale use of roundabouts in an urban area: a case study, Accident; analysis and prevention, 32, 11-23, 2000	modelled emissions
Hyland, Jackie, Donnelly, Peter, Air Pollution and Health - The Views of Policy Makers, Planners, Public and Private Sector on Barriers and Incentives for Change, Journal of Transport & Health, 2, 120-126	No outcomes measured
Hymel, Kent M., Small, Kenneth A., Dender, Kurt Van, Induced Demand and Rebound Effects in Road Transport, Transportation Research: Part B: Methodological, 44, 1220-41, 2010	No relevant intervention
Institute for Public Policy, Research, Grayling, T., Foley, J., Sansom, N., In the fast lane: fair and effective road user charging in Britain, 32, 2004	Out of scope
Int Panis, L., Broekx, S., Liu, R., Modelling instantaneous traffic emission and the influence of traffic speed limits, Science of the total environment, 371, 270-285, 2006	Out of scope
Irving, P., Moncrieff, I., New Zealand traffic and local air quality, Science of the total environment, 334-335, 299-306, 2004	Outside of scope
Ishaque, Muhammad M., Noland, Robert B., Simulated Pedestrian Travel and Exposure to Vehicle Emissions, Transportation Research: Part D: Transport and Environment, 13, 27-46, 2008	Modelling
Issariyanukula, Apichai, Labi, Samuel, Nextrans, Purdue University Nextrans Center Kent Avenue West Lafayette I. N. U. S. A. Research, Innovative Technology Administration, New Jersey Avenue S. E. Washington D. C. U. S. A., Financial and Technical Feasibility of Dynamic Congestion Pricing as a Revenue Generation Source in Indiana - Exploiting the Availability of Real-Time Information and Dynamic Pricing Technologies, This document is disseminated under the sponsorship of the Department of Transportation	Modelling study / outcomes not relevant
Jackson, Eric, Holmen, Britt, Transportation Research Board, Fifth Street N. W. Washington D. C. U. S. A., Modal Analysis of Vehicle Operation and Particulate Emissions from Connecticut Transit Buses, Transportation Research Board 88th Annual MeetingTransportation Research Board, 26	No measurement of specific particulates
Jacobs, L., Nawrot, T. S., De Geus, B., Meeusen, R., Degraeuwe, B., Bernard, A., Sughis, M., Nemery, B., Panis, L. I., Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: An intervention study, Environmental Health: A Global Access Science Source, 9, 2010	No intervention
James, R., Application of environmental monitoring and forecasting systems in transport, TRANSIT NEW ZEALAND AND NEW ZEALAND INSTITUTE OF HIGHWAY TECHNOLOGY (NZIHT, 29P	Conference abstract
Janhall, S., Review on urban vegetation and particle air pollution - Deposition and dispersion, Atmospheric Environment, 105, 130-137, 2015	Not a primary study, not a systematic review
Janssen, S., Lefebvre, W., Mensink, C., Degraeuwe, B., The multi-scale character of air pollution: Impact of local measures in relation to European and regional policies - A case study in Antwerp, Belgium, International Journal of Environment and Pollution, 54, 203-212, 2014	No data for extraction

Jayaratne, E. R., Meyer, N. K., Ristovski, Z. D., Morawska, L., Miljevic, B., Critical analysis of high particle number emissions from accelerating compressed natural gas buses, Environmental Science & Technology, 44, 3724-31, 2010	Outside of scope
Jazcilevich, Aron, Mares Vazquez Jose, Maria, Ramirez Pablo, Lopez, Perez Irma, Rosas, Economic-environmental analysis of traffic-calming devices, Transportation Research Part D: Transport and Environment, 36, 86-95	Not a comparative study
Jeanjean, A. P. R., Hinchliffe, G., McMullan, W. A., Monks, P. S., Leigh, R. J., A CFD study on the effectiveness of trees to disperse road traffic emissions at a city scale, Atmospheric Environment, 120, 1-14, 2015	Modelling
Jensen Soren, Underlien, Transportation Research Board, Fifth Street N. W. Washington D. C. U. S. A., Bicycle Tracks and Lanes: A Before-and-After Study, Transportation Research Board 87th Annual MeetingTransportation Research Board, 15	Outside of scope
Jensen, S. S., Larson, T., Deepti, K. C., Kaufman, J. D., Modeling traffic air pollution in street canyons in New York City for intra-urban exposure assessment in the US Multi-Ethnic Study of atherosclerosis and air pollution, Atmospheric Environment, 43, 4544-4556, 2009	Model evaluation
Johansson, C., Burman, L., Forsberg, B., The effects of congestions tax on air quality and health, Atmospheric Environment, 43, 4843-4854, 2009	Modelling study
Jones, P., Hervik, A., Edward Elgar Publishers, William Pratt House Dewey Court Northampton M. A. U. S. A., RESTRAINING CAR TRAFFIC IN EUROPEAN CITIES: AN EMERGING ROLE FOR ROAD PRICING. IN: THE AUTOMOBILE, Classics in Transport Analysis, 7, 609	Published prior to search dates (1992)
Jong-Tae, Lee, Ji-Young, Son, Yong-Sung, Cho, Benefits of Mitigated Ambient Air Quality Due to Transportation Control on Childhood Asthma Hospitalization during the 2002 Summer Asian Games in Busan, Korea, Journal of the Air & Waste Management Association (Air & Waste Management Association), 57, 968-973, 2007	Modelling study
Jullien, A., Moneron, P., Quaranta, G., Gaillard, D., Air emissions from pavement layers composed of varying rates of reclaimed asphalt, Resources, Conservation and Recycling, 47, 356-374, 2006	Outside of scope
Karanasiou, A., Moreno, T., Amato, F., Tobias, A., Boldo, E., Linares, C., Lumbreras, J., Borge, R., Alastuey, A., Querol, X., Variation of PM2.5 concentrations in relation to street washing activities, Atmospheric Environment, 54, 465-469, 2012	Modelling study
Karanasiou, Angeliki, Moreno, Teresa, Amato, Fulvio, Lumbreras, Julio, Narros, Adolfo, Borge, Rafael, Tobías, Aurelio, Boldo, Elena, Linares, Cristina, Pey, Jorge, Reche, Cristina, Alastuey, Andrés, Querol, Xavier, Road dust contribution to PM levels – Evaluation of the effectiveness of street washing activities by means of Positive Matrix Factorization, Atmospheric Environment, 45, 2193-2201, 2011	Outside of scope
Kaur, S., Nieuwenhuijsen, M. J., Colvile, R. N., Pedestrian exposure to air pollution along a major road in Central London, UK, Atmospheric Environment, 39, 7307-7320, 2005	Outside of scope
Kaur, S., Nieuwenhuijsen, M., Colvile, R., Personal exposure of street canyon intersection users to PM2.5, ultrafine particle counts and carbon monoxide in Central London, UK, Atmospheric Environment, 39, 3629-3641, 2005	No intervention
Kelly, F. J., Fuller, G. W., Walton, H. A., Fussell, J. C., Monitoring air pollution: Use of early	Not an intervention study, not a systematic review

warning systems for public health, Respirology, 17, 7-19, 2012	
Kelly, Frank, Anderson, H. Ross, Armstrong, Ben, Atkinson, Richard, Barratt, Ben, Beevers, Sean, Derwent, Dick, Green, David, Mudway, Ian, Wilkinson, Paul, H. E. I. Health Review Committee, The impact of the congestion charging scheme on air quality in London. Part 2. Analysis of the oxidative potential of particulate matter, Research report (Health Effects Institute), 73-144, 2011	Outside of scope
Kelly, Frank, Armstrong, Ben, Atkinson, Richard, Anderson, H. Ross, Barratt, Ben, Beevers, Sean, Cook, Derek, Green, Dave, Derwent, Dick, Mudway, Ian, Wilkinson, Paul, H. E. I. Health Review Committee, The London low emission zone baseline study, Research report (Health Effects Institute), 3-79, 2011	Modelling study
Keuken, M. P., Jonkers, S., Verhagen, H. L. M., Perez, L., Trueb, S., Okkerse, W. J., Liu, J., Pan, X. C., Zheng, L., Wang, H., Xu, R., Sabel, C. E., Impact on air quality of measures to reduce CO2 emissions from road traffic in Basel, Rotterdam, Xi'an and Suzhou, Atmospheric Environment, 98, 434-441, 2014	No clear intervention
Keuken, M. P., Jonkers, S., Zandveld, P., Voogt, M., Elshout van den, S., Elemental carbon as an indicator for evaluating the impact of traffic measures on air quality and health, Atmospheric Environment, 61, 1-8, 2012	Modelling study
King, E. A., Murphy, E., McNabola, A., Reducing Pedestrian Exposure to Environmental Pollutants: A Combined Noise Exposure and Air Quality Analysis Approach, Transportation Research: Part D: Transport and Environment, 14, 309-16, 2009	Modelling study
Kings College London, Environmental Research Group, Air Pollution Alert Services Evidence Development Strategy - Prediction of Possible Effectiveness and Assessment of Intervention Study Feasibility, 1-83, 2014	Modelling
Kovacs, Kent F., Haight, Robert G., Jung, Suhyun, Locke, Dexter H., O'Neil-Dunne, Jarlath, The Marginal Cost of Carbon Abatement from Planting Street Trees in New York City, Ecological Economics, 95, 1-10, 2013	Outcomes not relevant - looks at the cost effectiveness of street-tree planting on carbon abatement
Ksiazek, A., Brebbia C A, Miralles i Garcia J. L., Wit Press, Ashurst Lodge Ashurst Southampton S. O. A. A. United Kingdom, Approach to Simulation Assessment of Area-wide Traffic Calming in the Context of Sustainable Development, 21st International Conference on Urban Transport and the Environment, 13	Review, not comparative study
Kuhns, H., Etyemezian, V., Green, M., Hendrickson, K., McGown, M., Barton, K., Pitchford, M., Vehicle-based road dust emission measurement - Part II: Effect of precipitation, wintertime road sanding, and street sweepers on inferred PM 10 emission potentials from paved and unpaved roads, Atmospheric Environment, 37, 4573-4582, 2003	Measured potential of particulates
Lai, Frank, Carsten, Oliver, Tate, Fergus, How much benefit does Intelligent Speed Adaptation deliver: an analysis of its potential contribution to safety and environment, Accident; analysis and prevention, 48, 63-72, 2012	No relevant intervention
Lai, Wen-Tai, The Effects of Eco-driving Motivation, Knowledge and Reward Intervention on Fuel Efficiency, Transportation Research: Part D: Transport and Environment, 34, 155-60, 2015	Outside of scope
Larsson, Hanna, Ericsson, Eva, The Effects of an Acceleration Advisory Tool in Vehicles for Reduced Fuel Consumption and Emissions, Transportation Research: Part D: Transport and	Outside of scope
Evidence review protocol	70 of 05

Environment, 14, 141-46, 2009	
Lee, Gunwoo, Joo, Shinhye, Oh, Cheol, Choi, Keechoo, An evaluation framework for traffic calming measures in residential areas, Transportation Research Part D: Transport and Environment, 25, 68-76	Modelling study
Lefebvre, W., Fierens, F., Trimpeneers, E., Janssen, S., Van de Vel, K., Deutsch, F., Viaene, P., Vankerkom, J., Dumont, G., Vanpoucke, C., Mensink, C., Peelaerts, W., Vliegen, J., Modeling the effects of a speed limit reduction on traffic-related elemental carbon (EC) concentrations and population exposure to EC, Atmospheric Environment, 45, 197-207, 2011	Modelling study
Li, Zhi-Chun, Wang, Ya-Dong, Lam, William H. K., Sumalee, Agachai, Choi, Keechoo, Design of Sustainable Cordon Toll Pricing Schemes in a Monocentric City, Networks and Spatial Economics, 14, 133-58, 2014	Modelling study
Lilley, William, Cope, Martin, Marquez, Leorey, Smith Nariida, C., Its America, Virginia Avenue S. W. Suite Washington D. C. U. S. A., Demonstrating the Value of ITS for Reducing Near Road Pollution, 12th World Congress on Intelligent Transport SystemsITS AmericaITS JapanERTICO, 9	Modelling study
Lin, J., Yu, D., Traffic-related air quality assessment for open road tolling highway facility, Journal of Environmental Management, 88, 962-969, 2008	Modelling
Lindsay, Graeme, Macmillan, Alexandra, Woodward, Alistair, Moving urban trips from cars to bicycles: impact on health and emissions, Australian and New Zealand Journal of Public Health, 35, 54-60, 2011	Modelling study
Lurmann, Fred, Avol, Ed, Gilliland, Frank, Emissions reduction policies and recent trends in Southern California's ambient air quality, Journal of the Air & Waste Management Association (1995), 65, 324-35, 2015	No intervention
Macmillan, A. K., Hosking, J., Connor, J. L., Bullen, C., Ameratunga, S., A Cochrane systematic review of the effectiveness of organisational travel plans: Improving the evidence base for transport decisions, Transport Policy, 29, 249-256	Not primary research
Macmillan, A., Connor, J., Witten, K., Kearns, R., Rees, D., Woodward, A., The societal costs and benefits of commuter bicycling: Simulating the effects of specific policies using system dynamics modeling, Environmental health perspectives, 122, 335-344, 2014	No relevant outcomes
MacNeill, S. J., Goddard, F., Pitman, R., Tharme, S., Cullinan, P., Childhood peak flow and the Oxford Transport Strategy, Thorax, 64, 651-6, 2009	Modelling study
Madireddy, Madhava, et al.,, Assessment of the Impact of Speed Limit Reduction and Traffic Signal Coordination on Vehicle Emissions Using an Integrated Approach, Transportation Research: Part D: Transport and Environment, 16, 504-08, 2011	Modelling study
Malina, Christiane, Scheffler, Frauke, The Impact of Low Emission Zones on Particulate Matter Concentration and Public Health, Transportation Research: Part A: Policy and Practice, 77, 372-85, 2015	Modelling study
Mandavilli, S., Rys, M. J., Russell, E. R., Environmental impact of modern roundabouts, International Journal of Industrial Ergonomics, 38, 135-142, 2008	Modelling
Mansfield Theodore, J., Rodriguez Daniel, A., Huegy, Joseph, Gibson Jacqueline, MacDonald, The Effects of Urban Form on Ambient Air Pollution and Public Health Risk: A Case Study in	No relevant intervention
Evidence review protocol	71 of 95

Raleigh, North Carolina, Risk Analysis, 35, 901-918	
Masiol, M., Agostinelli, C., Formenton, G., Tarabotti, E., Pavoni, B., Thirteen years of air pollution hourly monitoring in a large city: Potential sources, trends, cycles and effects of car-free days, Science of the total environment, 494, 84-96, 2014	No data for extraction
Massiani, Jerome, Stated preference surveys for electric and alternative fuel vehicles: are we doing the right thing?, Transportation Letters, 6, 152-160	Out of scope
McCrae, I. S., Green, J. M., Hickman, A. J., Hitchcock, G., Parker, T., Ayland, N., Traffic management during high pollution episodes: a review, TRL REPORT 459, 54p	Not a comparative study. not a systematic review
McNabola, A., Broderick, B. M., Gill, L. W., Reduced exposure to air pollution on the boardwalk in Dublin, Ireland. Measurement and prediction, Environment International, 34, 86-93, 2008	No relevant data to extract
McNabola, A., Broderick, B. M., Gill, L. W., A numerical investigation of the impact of low boundary walls on pedestrian exposure to air pollutants in urban street canyons, Science of the total environment, 407, 760-769, 2009	Outcomes reported not in protocol
Meinardi, S., Nissenson, P., Barletta, B., Dabdub, D., Sherwood Rowland, F., Blake, D. R., Influence of the public transportation system on the air quality of a major urban center. A case study: Milan, Italy, Atmospheric Environment, 42, 7915-7923, 2008	Outside of scope
Meurs, Henk, Haaijer, Rinus, Geurs, Karst T., Modeling the Effects of Environmentally Differentiated Distance-Based Car-Use Charges in the Netherlands, Transportation Research: Part D: Transport and Environment, 22, 1-9, 2013	Out of scope
Meyer Michael, D., Chu Hsing, Chung, Transportation Research Board, Fifth Street N. W. Washington D. C. U. S. A., Approach to Measure CO2 Emissions of Truck-Only Lanes, Transportation Research Board 88th Annual MeetingTransportation Research Board	Conference abstract
Meyer, Michael D., Demand Management as an Element of Transportation Policy: Using Carrots and Sticks to Influence Travel Behavior, Transportation Research: Part A: Policy and Practice, 33, 575-99, 1999	No outcomes measured
Mitchell, G., Namdeo, A., Milne, D., The air quality impact of cordon and distance based road user charging: An empirical study of Leeds, UK, Atmospheric Environment, 39, 6231-6242, 2005	Modelling study
Mitchell, Gordon, Hargreaves, Anthony, Namdeo, Anil, Echenique, Marcial, Land Use, Transport, and Carbon Futures: The Impact of Spatial Form Strategies in Three UK Urban Regions, Environment and Planning A, 43, 2143-63, 2011	Outcome measured not in protocol
Miyoshi, Chikage, Rietveld, Piet, Measuring the Equity Effects of a Carbon Charge on Car Commuters: A Case Study of Manchester Airport, Transportation Research: Part D: Transport and Environment, 35, 23-39, 2015	Outcomes measured not in protocol
Moore, Adam, Kendrick Christine, M., Bigazzi Alexander, York, Haire Ashley, Raye, George, Linda, Figliozzi, Miguel, Monsere Christopher, M., Transportation Research Board, Fifth Street N. W. Washington D. C. U. S. A., Assessing Bicyclist and Pedestrian Exposure to Ultrafine Particles: Passive Shielding with Noise Barriers, Transportation Research Board 90th Annual MeetingTransportation Research Board, 13	Outcomes measured not in protocol
Mullen, M. A., Wilson, J. H., Gottsman, L., Noland, R. B., Schroeer, W. L., Transportation Research Board, Fifth Street N. W. Washington D. C. U. S. A., EMISSIONS IMPACT OF	Modelling / not a comparative study / looks at impact of imbcreasing speed limits on air pollution levels
Evidence review protocol	72 of 95

ELIMINATING NATIONAL SPEED LIMITS: ONE YEAR LATER, Transportation Research Record, 120	
Namdeo, Anil, Mitchell, Gordon, An empirical study of estimating vehicle emissions under cordon and distance based road user charging in Leeds, UK, Environmental Monitoring and Assessment, 136, 45-51, 2008	Modelling
Nasir, Mostofa Kamal, Md Noor, Rafidah, Kalam, M. A., Masum, B. M., Reduction of fuel consumption and exhaust pollutant using intelligent transport systems, TheScientificWorldJournal, 2014, 836375, 2014	Outside of scope / modelling
Ng, W. Y., Chau, C. K., Evaluating the role of vegetation on the ventilation performance in isolated deep street canyons, International Journal of Environment and Pollution, 50, 98-110, 2012	Outcomes measured not in protocol
Norman, M., Johansson, C., Studies of some measures to reduce road dust emissions from paved roads in Scandinavia, Atmospheric Environment, 40, 6154-6164, 2006	Intervention not relevant
Oduyemi, K. O. K., Davidson, B., The impacts of road traffic management on urban air quality, Science of the total environment, 218, 59-66, 1998	no specific intervention
Ogilvie, D., Bull, F., Cooper, A., Rutter, H., Adams, E., Brand, C., Ghali, K., Jones, T., Mutrie, N., Powell, J., Preston, J., Sahlqvist, S., Song, Y., Evaluating the travel, physical activity and carbon impacts of a 'natural experiment' in the provision of new walking and cycling infrastructure: Methods for the core module of the iConnect study, BMJ Open, 2, 2012	No outcomes measured
Orru, Hans, Lovenheim, Boel, Johansson, Christer, Forsberg, Bertil, Potential health impacts of changes in air pollution exposure associated with moving traffic into a road tunnel, Journal of Exposure Science & Environmental Epidemiology, 25, 524-31, 2015	Modelling study
Ragettli, M. S., Corradi, E., Braun-Fahrlander, C., Schindler, C., de Nazelle, A., Jerrett, M., Ducret-Stich, R. E., Kunzli, N., Phuleria, H. C., Commuter exposure to ultrafine particles in different urban locations, transportation modes and routes, Atmospheric Environment, 77, 376-384, 2013	Outcomes measured not in protocol
RICARDO_AEA, Farnham Traffic Management and Low Emission Strategy, 1, 2014	No details on modelling used
Roby, Helen, Understanding the Development of Business Travel Policies: Reducing Business Travel, Motivations and Barriers, Transportation Research: Part A: Policy and Practice, 69, 20-35, 2014	Outcomes/ interventions not relevant
Rojas-Rueda, D., de Nazelle, A., Teixido, O., Nieuwenhuijsen, M. J., Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: A health impact assessment study, Environment International, 49, 100-109, 2012	No relevant intervention
Saelensminde, Kjartan, Cost-Benefit Analyses of Walking and Cycling Track Networks Taking into Account Insecurity, Health Effects and External Costs of Motorized Traffic, Transportation Research: Part A: Policy and Practice, 38, 593-606, 2004	Intervention not relevant - not about implementation of or changes to cycle routes or pedestrianised areas; or options for siting of routes
Saka Anthony, A., Agboh Dennis, K., Jamiat al-Imarat al-Arabiyah al-Muttahidah, Partners for Advanced Transit, Highways, University of California South th Street Building Richmond C. A. U. S. A. Partners for Advanced Transit, Highways, University of California Richmond C. A. U. S. A. University of Minnesota Twin Cities Department of Civil Engineering Pillsbury Drive S. E. Minneapolis M. N. U. S. A. University of California Irvine Institute of Transportation Studies	No relevant intervention

Irvine C. A. U. S. A. Joint Transportation Research Program Insurance Institute for Highway Safety North Glebe Road Arlington V. A. U. S. A. Texas Transportation Institute Texas A., M University System, College Station T. X. U. S. A. Chicago Transit Authority Chicago I. L. U. S. A. University of Utah Salt Lake City Utah Traffic Laboratory S. Central Campus Drive Salt Lake City U. T. U. S. A. University of Toronto Intelligent Transportation Systems Centre University of Hawaii Manoa Department of Civil Engineering Dole Street Holmes Hall Honolulu H. I. U. S. A., ASSESSMENT OF THE IMPACT OF ELECTRONIC TOLL COLLECTION ON MOBILE EMISSIONS IN THE BALTIMORE METROPOLITAN AREA, National Research Council (U.S.). Transportation Research Board. Meeting (81st : 2002 : Washington, D.C.). Preprint CD-ROM, 21	
Santos, G., Rojey, L., Newbery, D., The Environmental Benefits from Road Pricing, 2000	Modelling study
Schram-Bijkerk, D., van Kempen, E., Knol, A. B., Kruize, H., Staatsen, B., van Kamp, I., Quantitative health impact assessment of transport policies: two simulations related to speed limit reduction and traffic re-allocation in the Netherlands, Occupational and environmental medicine, 66, 691-8, 2009	Modelling study
Schulte, N., Snyder, M., Isakov, V., Heist, D., Venkatram, A., Effects of solid barriers on dispersion of roadway emissions, Atmospheric Environment, 97, 286-295, 2014	Model comparison
Steffens, J. T., Wang, Y. J., Zhang, K. M., Exploration of effects of a vegetation barrier on particle size distributions in a near-road environment, Atmospheric Environment, 50, 120-128, 2012	Model evaluation
Stieb, David M., Evans, Gregory J., Sabaliauskas, Kelly, Chen, L. I., Campbell, Monica E., Wheeler, Amanda J., Brook, Jeffrey R., Guay, Mireille, A scripted activity study of the impact of protective advice on personal exposure to ultra-fine and fine particulate matter and volatile organic compounds, Journal of Exposure Science & Environmental Epidemiology, 18, 495-502, 2008	outcomes not relevant
Stromberg, Helena K., Karlsson, I. C. MariAnne, Comparative Effects of Eco-driving Initiatives Aimed at Urban Bus DriversResults from a Field Trial, Transportation Research: Part D: Transport and Environment, 22, 28-33, 2013	Results not presented by comparator group
Sunitiyoso, Yos, Waterson, Ben, McDonald, Mike, Its America, th Street N. W. Washington D. C. U. S. A., Toward Informed Travellers: Developing a Real-Time Route Planner with Consideration of Travellers' Exposure to Air Pollution, 16th ITS World Congress and Exhibition on Intelligent Transport Systems and ServicesITS AmericaERTICOITS Japan, 8	Conference abstract
Tate, J. E., Bell, M. C., Evaluation of a traffic demand management strategy to improve air quality in urban areas, PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON ROAD TRANSPORT INFORMA, 158-62	Conference abstract
Tonne, C., Beevers, S., Armstrong, B., Kelly, F., Wilkinson, P., Air pollution and mortality benefits of the London Congestion Charge: spatial and socioeconomic inequalities, Occupational & Environmental Medicine, 65, 620-627, 2008	Modelling study
Transport for London, Taxi & private hire eco/smarter driving, 82, 2009	Baseline study - evaluating views on eco-driving prior to a campaign
Tribby Calvin, P., Miller Harvey, J., Song, Ying, Smith Ken, R., Do air quality alerts reduce traffic? An analysis of traffic data from the Salt Lake City metropolitan area, Utah, USA, Transport Policy, 30, 173-185	Not a comparative study / Outcomes do not meet the protocol

Tscharaktschiew, Stefan, Hirte, Georg, The Drawbacks and Opportunities of Carbon Charges in Metropolitan AreasA Spatial General Equilibrium Approach, Ecological Economics, 70, 339-57, 2010	Out of scope
Van Ristell, Jessica, Quddus, Mohammed, Enoch, Marcus, Wang, Chao, Hardy, Peter, Quantifying the Transport-Related Impacts of Parental School Choice in England, Transportation, 40, 69-90, 2013	No relevant intervention
Varhelyi, Andras, The Effects of Small Roundabouts on Emissions and Fuel Consumption: A Case Study, Transportation Research: Part D: Transport and Environment, 7, 65-71, 2002	Modelling
Weber, Frauke, Kowarik, Ingo, Säumel, Ina, Herbaceous plants as filters: Immobilization of particulates along urban street corridors, Environmental Pollution, 186, 234-240, 2014	Outcomes measured not in protocol
West, J. J., Osnaya, P., Laguna, I., Martinez, J., Fernandez, A., Co-control of urban air pollutants and greenhouse gases in Mexico City, Environmental Science and Technology, 38, 3474-3481, 2004	No clear intervention
Whitlow, Thomas H., Hall, Andrew, Zhang, K. Max, Anguita, Juan, Impact of local traffic exclusion on near-road air quality: findings from the New York City "Summer Streets" campaign, Environmental pollution (Barking, Essex : 1987), 159, 2016-27, 2011	No data to extract (only charts presented)
Wood, Helen E., Marlin, Nadine, Mudway, Ian S., Bremner, Stephen A., Cross, Louise, Dundas, Isobel, Grieve, Andrew, Grigg, Jonathan, Jamaludin, Jeenath B., Kelly, Frank J., Lee, Tak, Sheikh, Aziz, Walton, Robert, Griffiths, Christopher J., Effects of Air Pollution and the Introduction of the London Low Emission Zone on the Prevalence of Respiratory and Allergic Symptoms in Schoolchildren in East London: A Sequential Cross-Sectional Study, PloS one, 10, e0109121, 2015	Cross sectional survey - not a comparative study

Appendix 5 Quality Appraisal checklists

QA EPOC Checklist for RCTs, non-randomised controlled trials and controlled before-after studies: draft

Administrative details

Study name or author and year	STAR ID	
[Type study name, or author and year (include letter if more than 1 paper with the same author and year, e.g. 'Smith 2010a')]	[Type STAR ID]	
Citation		
[Include citation details - usually authors, title of study, journal details, year]		
Linked studies (study name or author, year, STAR ID)		
[Include study name or author, year and STAR ID of any related studies, or state 'None']		
Final study quality score		
[Click to choose the final quality score. See 'Calculation of final study quality score' below for details on how to complete this.]		
Date of QA Reviewer(s) names		
[Click to choose the date the QA was completed]	[Type name of the reviewer/reviewers completing the quality assessment]	

Calculation of final study quality score (from box 6.1 on page 95 of the NICE Guidelines Manual)

- ++ All or most of the checklist criteria have been fulfilled, and where they have not been fulfilled the conclusions are very unlikely to alter.
- + Some of the checklist criteria have been fulfilled, and where they have not been fulfilled, or are not adequately described, the conclusions are unlikely to alter.
- Few or no checklist criteria have been fulfilled and the conclusions are likely or very likely to alter.

Quality Assessment

For all questions:

- ++ 'Yes' The study full meets the criterion.
- + 'Partly' The study largely meets the criterion but differs in some important respect.
- 'No' The study deviates substantially from the criterion.
 - 'Unclear' Report provides insufficient information to judge whether the study complies with the criterion.
 - 'NA (not applicable' The criterion is not relevant in this particular instance.

Item	Decision	Comments
1. Was the allocation sequence adequately generated?	[Click here to choose a decision. ++ if a random component in the sequence generation process is described (e.g. a random number table), - if a non- random method is used (e.g. date of admission) or if study is a non- randomised controlled trial or controlled before-after study]	[State how the allocation sequence was generated.]
2. Was the allocation adequately concealed?	[Click here to choose a decision. ++ if allocation by institution, team or professional and allocation performed on all units at start of the study, or if the unit of allocation was by patient or episode of care and there was a centralised randomisation scheme (on- site computer system or sealed opaque envelopes). – if controlled before-after study.]	[State how the allocation was concealed.]
3. Were baseline outcome measurements similar?	[Click here to choose a decision.++ if performance or patient outcomes were measured prior to intervention and no important differences present across study groups. In RCTs score ++ if imbalanced but appropriate adjusted analysis was performed (e.g. analysis of covariance). Score - if important differences were present and not adjusted for in analysis.]	[State whether the baseline outcome measurements were similar.]
4. Were baseline characteristics similar?	[Click here to choose a decision. ++ if baseline characteristics of the study and control providers are reported and similar. Score - if there is no report of characteristics or if there are differences between control and intervention providers.]	[State whether the baseline characteristics were similar.]
5. Were incomplete outcome data adequately addressed?	[Click here to choose a decision. ++ if missing outcome measures were unlikely to bias the results (e.g. the proportion of missing data was similar in the intervention and control groups	[State whether incomplete outcome data were adequately addressed.]

	or the proportion of missing data was less than the effect size i.e. unlikely to overturn the study result). Score - if missing outcome data was likely to bias the results.]	
6. Was knowledge of the allocated interventions adequately prevented during the study?	[Click here to choose a decision. ++ if the authors state explicitly that primary outcome variables were assessed blindly, or outcomes are objective, e.g. length of hospital stay. Score - if primary outcomes were not assessed blindly.]	[State whether knowledge of the allocated interventions was adequately prevented during the study.]
7. Was the study adequately protected against contamination?	[Click here to choose a decision. ++ if allocation by community, institution or practice and it is unlikely that the control group received the intervention. Score - if it is likely that the control group received the intervention (e.g. if patients rather than professionals were randomised). Score "unclear" if professionals were allocated within a clinic or practice and it is possible that communication between intervention and control professionals could have occurred (e.g. physicians within practices were allocated to intervention or control).]	[State whether the study was adequately protected against contamination.]
8. Was the study free from selective outcome reporting?	[Click here to choose a decision. ++ if there is no evidence that outcomes were selectively reported (e.g. all relevant outcomes in the methods section are reported in the results section). Score - if some important outcomes are subsequently omitted from the results.]	[State whether the study was free from selective outcome reporting.]
9. Was the study free from other risks of bias?	[Click here to choose a decision. Score ++ if there is no evidence of other risk of biases.]	[State whether the study was free from other risks of bias.]

QA EPHPP Checklist for uncontrolled before and after studies (EPHPP)

Administrative details

Study name or author and year	STAR ID	
[Type study name, or author and year (include letter if more than 1 paper with the same author and year, e.g. 'Smith 2010a')]	[Type STAR ID]	
Citation		
[Include citation details - usually authors, title of study, journal details, year]		
Linked studies (study name or author, year, STAR ID)		
[Include study name or author, year and STAR ID of any related studies, or state 'None']		
Final study quality score		
[Click to choose the final quality score. See 'Calculation of final study quality score' below for details on how to complete this.]		
Date of QA Reviewer(s) names		
[Click to choose the date the QA was completed]	[Type name of the reviewer/reviewers completing the quality assessment]	

Calculation of final study quality score (from EPHPP tool http://www.ephpp.ca/PDF/Quality%20Assessment%20Tool 2010 2.pdf)

- ++ Strong. No weak ratings.
- + Moderate. One weak rating.
- Weak. Two or more weak ratings.

Quality Assessment

Item	Component Rating	Section Rating	Comments
Selection bias			
1. Are the individuals selected to participate in the study likely to be representative of the target population?	[Click here to choose a rating. Score 'very likely' if randomly selected from a comprehensive list of individuals in target population, 'somewhat likely' if referred from a source (e.g. clinic) in a systematic manner, 'not likely' if self-referred.]	[Click here to choose a decision. ' Strong ' if Q1 is 'very likely' and Q2 is 80 to 100%. ' Moderate ' if Q1 is 'very likely' or 'somewhat likely' and Q2 is 60 or 79% or 'can't tell'. ' Weak ' if Q1 is 'not likely' or 'can't tell' and Q2 is 'can't tell'.]	[Add comments if necessary.]
2. What percentage of selected individuals agreed to participate?	[Click here to choose a rating.]		
Study design			
3. What is the study design?	[Click here to choose a rating.]	[Click here to choose a decision. ' Strong ' if RCT or CCT, ' moderate ' if cohort analytic	[Add comments if necessary, including description of study design if 'other'.]
4. Was the study described as randomised?	[Click here to choose a rating. If 'no', mark questions 5 and 6 as 'not applicable' and go straight to 'Confounders' section.]	study, case control study, a cohort design, or interrupted time series, ' weak ' for any other method or did not state method	
5. Was the method of randomisation described?	[Click here to choose a rating.]	used.]	
6. Was the method of randomisation appropriate?	[Click here to choose a rating.]		
Confounders			
7. Were there important differences between groups prior to the intervention?	[Click here to choose a rating. Example of confounders include race, sex, marital status/family, age, socioeconomic status, education, health status, pre-intervention score on outcome measure.]	[Click here to choose a decision. ' Strong ' if Q7 is 'no' or Q2 is 80% or more. ' Moderate ' if Q7 is 'yes' and Q8 is 60 to 79%. ' Weak ' if Q7 is 'yes' and Q8 is less than 60%, or if Q7 is 'cant' tell' and Q8 is	[Add comments if necessary.]
8. If yes, what percentage of relevant confounders were controlled (either in the design [e.g. stratification, matching] or analysis)?	[Click here to choose a rating.]	'can't tell'.]	
Blinding			
9. Was/were the outcome assessor/s aware of the intervention or exposure status of participants?	[Click here to choose a rating.]	[Click here to choose a decision. ' Strong ' if Q9 is 'no' and Q10 is 'no'. ' Moderate ' if Q9 is 'no' or Q10 is 'no', or Q9 is 'can't tell' and Q10 is 'can't tell'. ' Weak ' if Q9 is 'yes'	[Add comments if necessary.]

			1
10. Were the study	[Click here to choose a rating.]	and Q10 is 'yes'.]	
participants aware of the			
research question?			
Data collection methods			
11. Were data collection	[Click here to choose a rating.]	[Click here to choose a decision. 'Strong' if	[Add comments if necessary.]
tools shown to be valid?		Q11 is 'yes' and Q12 is 'yes'. 'Moderate' if	
12. Were data collection	[Click here to choose a rating.]	Q11 is 'yes' and Q12 is 'no' or Q12 is 'can't	
tools shown to be reliable?		tell'. 'Weak ' if Q11 is 'no' or Q11 is 'can't tell' and Q12 is 'can't tell'.]	
	-		
Withdrawals and drop-out			
13. Were withdrawals and	[Click here to choose a rating.]	[Click here to choose a decision. 'Strong' if	[Add comments if necessary.]
drop-outs reported in		Q14 is 80% or more. ' Moderate ' if Q14 is	
terms of numbers and/or		60 to 79% or 'not applicable'. ' Weak ' if Q14 is less than 60% or 'can't tell'.]	
reasons per group?			
14. What percentage of participants completed the	[Click here to choose a rating. If percentage		
survey?	differs by groups, record the lowest.]		
Intervention integrity			
15. What percentage of	[Click here to choose a rating. If percentage	Section rating not required.	[Add comments if necessary.]
participants received the	differs by groups, record the lowest.]	Section rating not required.	[Add comments if necessary.]
allocated intervention or	differences by groups, record the lowest.j		
exposure of interest?			
16. Was the consistency of	[Click here to choose a rating.]	-	
the intervention			
measured?			
17. Is it likely that subjects	[Click here to choose a rating.]		
received an unintended			
intervention (contamination			
or co-intervention) that			
may influence the results?			
Analyses		-	
18. What is the unit of	[Click here to choose a rating.]	Section rating not required.	[Add comments if necessary. Add details if
allocation?			'other' selected for question 18 and/or 19.]
19. What is the unit of	[Click here to choose a rating.]		
analysis?			
20. Are the statistical	[Click here to choose a rating.]		
methods appropriate for			
the study design?			
21. Is the analysis	[Click here to choose a rating.]		
performed by intervention			
allocation status (i.e.			

intention to treat) rather		
than the actual intervention		
received?		

A.4 Methodology checklist: Qualitative studies

Study identification	
Guidance topic:	Key research question/aim:
Checklist completed by:	

Theoretical approach		
1. Is a qualitative approach appropriate?		Comments:
For example,	Choose an	
 Does the research question seek to understand processes or structures, or illuminate subjective experiences or meanings? 	item.	
Could a quantitative approach better have addressed the research question?		
2. Is the study clear in what it seeks to do?		Comments:
For example,	Choose an	
 Is the purpose of the study discussed – aims/objectives/research question/s? Is there adequate/appropriate reference to the literature? 	item.	
 Are underpinning values/assumptions/theory discussed? 		
Study design		
3. How defensible/rigorous is the research design/methodology?		Comments:
For example,	Choose an	
 Is the design appropriate to the research question? 	item.	
 Is a rationale given for using a qualitative approach? 		
• Are there clear accounts of the rationale/justification for the sampling, data		
collection and data analysis techniques used?		
 Is the selection of cases/sampling strategy theoretically justified? 		
Data collection		

4. How well was the data collection carried out?		Comments:
For example,	Choose an	
Are the data collection methods clearly described?	item.	
Were the appropriate data collected to address the research question?		
Was the data collection and record keeping systematic?		
Trustworthiness		
5. Is the role of the researcher clearly described?		Comments:
For example,	Choose an	
Has the relationship between the researcher and the participants been adequately considered?	item.	
• Does the paper describe how the research was explained and presented to the participants?		
6. Is the context clearly described?		Comments:
For example,	Choose an	
Are the characteristics of the participants and settings clearly defined?	item.	
Were observations made in a sufficient variety of circumstances?		
Was context bias considered?		
7. Were the methods reliable?		Comments:
For example,	Choose an	
 Was data collected by more than one method? 	item.	
 Is there justification for triangulation, or for not triangulating? 		
 Do the methods investigate what they claim to? 		
Analysis	1	
8. Is the data analysis sufficiently rigorous?		Comments:
For example,	Choose an	
 Is the procedure explicit – i.e. is it clear how the data was analysed to arrive at the results? 	item.	
 How systematic is the analysis, is the procedure reliable/dependable? 		
 Is it clear how the themes and concepts were derived from the data? 		
9. Is the data 'rich'?		Comments:
For example,	Choose an	
 How well are the contexts of the data described? 	item.	
 Has the diversity of perspective and content been explored? 		
 How well has the detail and depth been demonstrated? 		
 Are responses compared and contrasted across groups/sites? 		

10. Is the analysis reliable?		Comments:
For example,	Choose an	
Did more than one researcher theme and code transcripts/data?	item.	
If so, how were differences resolved?		
• Did participants feed back on the transcripts/data if possible and relevant?		
 Were negative/ discrepant results addressed or ignored? 		
11. Are the findings convincing?		Comments:
For example,	Choose an	
Are the findings clearly presented?	item.	
Are the findings internally coherent?		
Are extracts from the original data included?		
 Is the data appropriately referenced? 		
Is the reporting clear and coherent?		
· ·		
12. Are the findings relevant to the aims of the study?		Comments:
	Choose an	
	item.	
13. Conclusions		Comments:
For example,	Choose an	
 How clear are the links between data, interpretation and conclusions? 	item.	
 Are the conclusions plausible and coherent? 		
 Have alternative explanations been explored and discounted? 		
 Does this enhance understanding of the research topic? 		
 Are the implications of the research clearly defined? 		
 Is there adequate discussion of any limitations encountered? 		
Ethics	-	
14. How clear and coherent is the reporting of ethics?		Comments:
For example,	Choose an	
 Have ethical issues been taken into consideration? 	item.	
• Are they adequately discussed e.g. do they address consent and anonymity?		
 Have the consequences of the research been considered i.e. raising 		
expectations, changing behaviour etc?		
 Was the study approved by an ethics committee? 		
Overall Assessment		

As far as can be ascertained from the paper, how well was the study		Comments:
conducted?	Choose an	
	item.	

QA Checklist to Assess Relevance and Credibility of Modelling Studies: draft

Administrative details STAR ID Study name or author and year Type study name, or author and year (include letter if more than 1 paper with the [Type STAR ID] same author and year, e.g. 'Smith 2010a')] Citation [Include citation details – usually authors, title of study, journal details, year] Linked studies (study name or author, year, STAR ID) [Include study name or author, year and STAR ID of any related studies, or state 'None'] Final study quality score [Click to choose the final quality score. See 'Calculation of final study quality score' below for details on how to complete this.] Date of QA **Reviewer(s)** names [Click to choose the date the QA was completed] [Type name of the reviewer/reviewers completing the guality assessment]

Calculation of final study quality score (from box 6.1 on page 95 of the NICE Guidelines Manual)

- ++ All or most of the checklist criteria have been fulfilled, and where they have not been fulfilled the conclusions are very unlikely to alter.
- + Some of the checklist criteria have been fulfilled, and where they have not been fulfilled, or are not adequately described, the conclusions are unlikely to alter.
- Few or no checklist criteria have been fulfilled and the conclusions are likely or very likely to alter.

Quality Assessment

Item	Decision	Comments
Relevance	•	
Relevance addresses the extent to which the results of		to the decision maker.
1. Is the population relevant?	[Click here to choose a decision.	
Are there similar demographics?		
Are the risk factors similar?		
Are behaviours similar?		
2. Are any critical interventions missing?	[Click here to choose a decision.	
• Does the intervention analysed in the model match the intervention you are interested in?		
Have all relevant comparators been		
considered?		
3. Are any relevant outcomes missing?	[Click here to choose a decision.	
Are the health outcomes relevant to you		
considered?		
4. Is the context (settings and circumstance) applicable?	[Click here to choose a decision.	
Is the geographic location similar?		
 Is the system similar? 		
 Is the time horizon applicable to your 		
decision?		
Is the analytic perspective appropriate to		
your decision problem?		
Overall decision	[Click here to choose a decision.	
		and the life of the second
insufficient.	igth, neutral, weakness of fatal flaw (seriol	us credibility issues) and overall credibility assessed as sufficient or
Validation	[Click here to choose a decision.	
5. Is external validation of the model sufficient to	[Click here to choose a decision.	
make its results credible for your decision?		
Has the model been shown to accurately		
reproduce what was observed in the data used to create the model?		
 Has the model been shown to accurately 		
estimate what actually happened in one or		
more separate studies?		
Has the model been shown to accurately		

forecast what eventually happens in reality?		
 6. Is internal verification of the model sufficient to make its results credible for your decision? Have the process of internal verification and its results been documented in detail? Has the testing been performed systematically? Does the testing indicate that all the equations are consistent with their data sources? Does the testing indicate that the coding has been correctly implemented? 	[Click here to choose a decision.	
 7. Does the model have sufficient face validity to make its results credible for your decision? Does the model contain all the aspects considered relevant to the decision? Are all the relevant aspects represented and linked according to the best understanding of their characteristics? Have the best available data sources been used to inform the various aspects? Is the time horizon sufficiently long to account for all relevant aspects of the decision problem? Are the results plausible? If others have rated the face validity, did they have a stake in the results? 	[Click here to choose a decision.	
Design	[Click here to choose a decision.	
 8. Is the design of the model adequate for your decision problem? Was there a clear, written statement of the decision problem, modelling objective, and scope of the model? Was there a formal process for developing the model design (e.g. influence diagram, concept map? Is the model concept and structure consistent with and adequate to address, the decision problem/objective and the policy context? Have any assumptions implied by the design 	[Click here to choose a decision.	

 of the model been described and are they reasonable for your decision problem? Is the choice of model type appropriate? Were key uncertainties in model structure identified and their implications discussed? 	[Click here to choose a decision.	
9. Are the data used in populating the model suitable	[Click here to choose a decision.	
for your decision problem? • All things considered, do you agree with the		
values used for the inputs?		
Did the approaches to obtaining and processing the data inputs meet the criteria from their corresponding questionnaires?		
Analysis	[Click here to choose a decision.	
10. Were the analyses performed using the model adequate to inform your decision problem?	Click here to choose a decision.	
11. Was there an adequate assessment of the effects of uncertainty?	[Click here to choose a decision.	
Reporting	[Click here to choose a decision.	
12. Was the reporting of the model adequate to inform your decision problem?	[Click here to choose a decision.	
• Did the report of the analyses provide the results needed for your decision problem?		
Was adequate nontechnical documentation freely accessible to any interested reader?		
Was technical documentation, in sufficient detail to allow (potentially) for replication, made available openly or under agreements that protect intellectual property?		
Interpretation	[Click here to choose a decision.	
13. Was the interpretation of results fair and balanced?	[Click here to choose a decision.	
Conflict of interest	[Click here to choose a decision.	
14. Were there any potential conflicts of interest?	[Click here to choose a decision.	
15. If there were potential conflicts of interest, were steps taken to address these?	[Click here to choose a decision.	
Overall decision	[Click here to choose a decision.	

QA Checklist for Economic evaluations

Administrative details

Study name or author and year	STAR ID
[Type study name, or author and year (include letter if more than 1 paper with the same author and year, e.g. 'Smith 2010a')]	[Type STAR ID]
Citation	
[Include citation details - usually authors, title of study, journal details, year]	
Linked studies (study name or author, year, STAR ID)	
[Include study name or author, year and STAR ID of any related studies, or state 'None	ſ
Final study quality score	
[Click to choose the final quality score. See 'Calculation of final study quality score' below	ow for details on how to complete this.]
Date of QA	Reviewer(s) names
[Click to choose the date the QA was completed]	[Type name of the reviewer/reviewers completing the quality assessment]

Calculation of final study quality score (from box 6.1 on page 95 of the NICE Guidelines Manual)

- ++ All or most of the checklist criteria have been fulfilled, and where they have not been fulfilled the conclusions are very unlikely to alter.
- + Some of the checklist criteria have been fulfilled, and where they have not been fulfilled, or are not adequately described, the conclusions are unlikely to alter.
- Few or no checklist criteria have been fulfilled and the conclusions are likely or very likely to alter.

Quality Assessment

		-
For	all	questions:

-		
+	++ 'Yes'	The study full meets the criterion.
+	⊦ 'Partly'	The study largely meets the criterion but differs in some important respect.
-	'No'	The study deviates substantially from the criterion.
	'Unclear'	Report provides insufficient information to judge whether the study complies with the criterion.
	'NA (not applicable'	The criterion is not relevant in this particular instance.

For detailed notes on completing the checklist, please see p10-20 of <u>Appendix H</u> of the Manual.

Item	Decision	Comments
Section 1: Applicability (relevance to specific review questions and the This checklist should be used first to filter out irrelevant studies.	NICE reference case as described in section 7.3	of the Manual)
1.1 Is the study population appropriate for the review question?	[Click here to choose a decision.	
1.2 Are the interventions appropriate for the review question?	[Click here to choose a decision.	
1.3 Is the system in which the study was conducted sufficiently similar to the current UK context?	[Click here to choose a decision.	
1.4 Are the perspectives clearly stated and are they appropriate for the review question?	[Click here to choose a decision.	
1.5 Are all direct effects on individuals included, and are all other effects included where they are material?	[Click here to choose a decision.	
1.6 Are all future costs and outcomes discounted appropriately?	[Click here to choose a decision.	
1.7 Is QALY used as an outcome, and was it derived using NICE's preferred methods? If not, describe rationale and outcomes used in line with analytical perspectives taken (item 1.4 above).	[Click here to choose a decision.	
1.8 Are costs and outcomes from other sectors fully and appropriately measured and valued?	[Click here to choose a decision.	
 1.9 Overall judgement: There is no need to use section 2 of the checklist if the study is considered 'not applicable'. Directly applicable – the study meets all applicability criteria, or fails to meet 1 or more applicability criteria but this is unlikely to change the conclusions about cost effectiveness. Partially applicable – the study fails to meet 1 or more of the applicability criteria, and this could change the conclusions about cost effectiveness. 	[Click here to choose a decision. Score ++ for on not applicable	directly applicable, + for partially applicable and – for

• Not applicable – the study fails to meet 1 or more of the applicability criteria, and this is likely to change the conclusions about cost effectiveness. Such studies would usually be excluded from further consideration and there is no need to continue with the rest of the checklist.		
Other comments:		
Section 2: Study limitations (the level of methodological quality) This checklist should be used once it has been decided that the study is s	sufficiently applicable to the context of the guidelin	ne
2.1 Does the model structure adequately reflect the nature of the topic under evaluation?	[Click here to choose a decision.	
2.2 Is the time horizon sufficiently long to reflect all important differences in costs and outcomes?	[Click here to choose a decision.	
2.3 Are all important and relevant outcomes included?	[Click here to choose a decision.	
2.4 Are the estimates of baseline outcomes from the best available source?	[Click here to choose a decision.	
2.5 Are the estimates of relative intervention effects from the best available source?	[Click here to choose a decision.	
2.6 Are all important and relevant costs included?	[Click here to choose a decision.	
2.7 Are the estimates of resource use from the best available source?	[Click here to choose a decision.	
2.8 Are the unit costs of resources from the best available source?	[Click here to choose a decision.	
2.9 Is an appropriate incremental analysis presented or can it be calculated from the data?	[Click here to choose a decision.	
2.10 Are all important parameters whose values are uncertain subjected to appropriate sensitivity analysis?	[Click here to choose a decision.	
2.11 Is there any potential conflict of interest?	[Click here to choose a decision.	
2.12 Overall assessment: Minor limitations/potentially serious limitations/very serious limitations.	[Click here to choose a decision. Score ++ for r and – for very serious limitations	ninor limitations, + for potentially serious limitations
 Minor limitations – the study meets all quality criteria, or fails to meet 1 or more quality criteria but this is unlikely to change the conclusions about cost effectiveness. Potentially serious limitations – the study fails to meet 1 or more quality criteria, and this could change the conclusions about cost 		
Friday en anticus proto del	00 -6 05	

•	effectiveness. Very serious limitations – the study fails to meet 1 or more quality criteria, and this is highly likely to change the conclusions about cost effectiveness. Such studies should usually be excluded from further consideration.	
Ot	her comments:	

Appendix 6 Review Protocols

T:\GUIDANCE PH\TRAP - Outdoor Air pollution\Evidence\Review Protocol\TRAP Review protocol Oct 2015 - amended.docx