Lorlatinib for untreated ALKpositive advanced non-small-cell lung cancer (Review of TA909)

PART 1

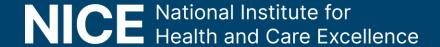
For screen – confidential information redacted

Technology appraisal committee D [12 March 2025]

Chair: Amanda Adler

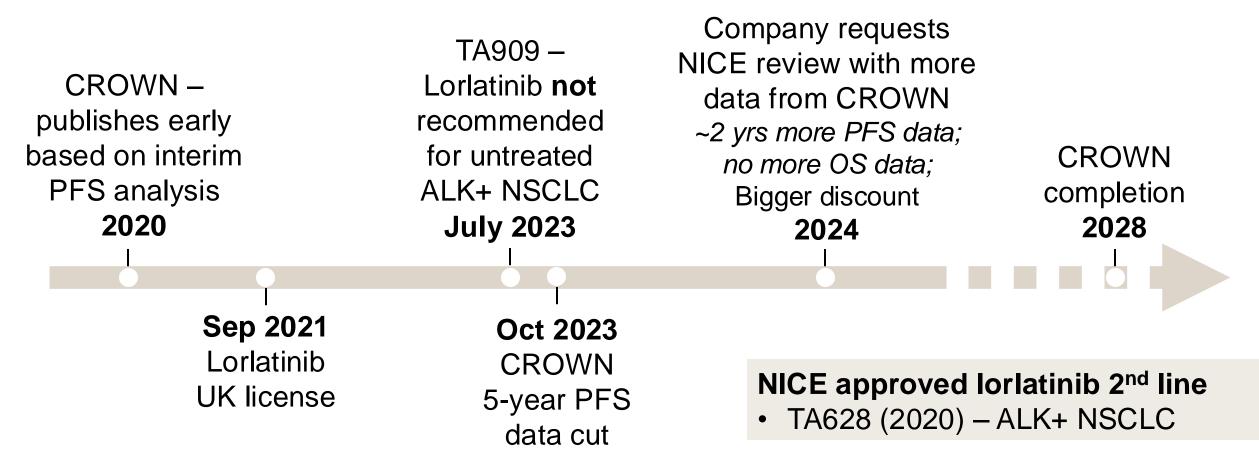
Lead team: Andy Fox (clinical), Matt Bradley (cost), Carole Pitkeathley (lay)

External assessment group: CRD and CHE Technology Assessment Group, York


Technical team: Tom Palmer, Alex Sampson, Ian Watson

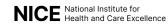
Company: Pfizer

© NICE 2025. All rights reserved. Subject to Notice of rights.


Lorlatinib for untreated ALK-positive advanced non-small-cell lung cancer (Review of TA909)

- ✓ Background and key issues
- Clinical effectiveness
- Modelling and cost effectiveness
- Other considerations
- Summary

Lorlatinib timeline – previously appraised – not recommended

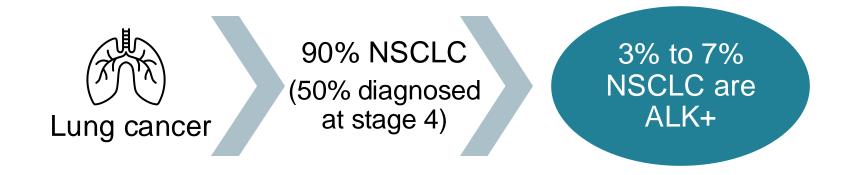

More PFS but not OS data; Key trial CROWN against crizotinib not relevant comparator

Previous appraisal (TA909) – same decision problem

Committee conclusions:

- Current NHS practice alectinib or brigatinib 1st line, then Iorlatinib 2nd line and chemotherapy 3rd line
- Neither comparator crizotinib nor 2nd line treatments in CROWN used in NHS
- Both PFS and OS immature
- Indirect comparison OK if 'global' network used
- Treatment-effect cap at 10 years
- Whether PFS associated with OS 'very uncertain'
- 3 months of treatment beyond progression for alectinib and brigatinib
- Adjust post progression survival for CNS disease

Lorlatinib for untreated ALK-positive advanced non-small-cell lung cancer


Technology appraisal guidance Published: 12 July 2023

www.nice.org.uk/guidance/ta909

Disease background

Epidemiology, classification, causes

In 2024, ≈ 39,097 people diagnosed with NSCLC in England & Wales

Prognosis and symptoms

- Often advanced disease at diagnosis
- 5-year survival <10%
- Poor quality of life pain, breathlessness, persistent cough
- Brain metastases 20 to 40% drowsiness, severe headaches, confusion, care needs

Experts say Iorlatinib has impressive PFS results and manageable toxicities

ALK Positive UK and Roy Castle Lung Foundation

- Symptoms debilitating and prognosis poor
- Patients often < 50 years old with active lives + young families
- Lorlatinib promising delays progression + affects brain metastases
- Need for additional, more effective treatments

'Increase in PFS with Iorlatinib is seen as a game-changer'

British Thoracic Oncology Group

- Main aim of treatment is to prolong survival, reduce tumour size
- Control of metastatic disease in central nervous system remains a key outcome for clinicians and patients – vital for quality of life
- Different side effects with lorlatinib than with current standard care, but not more difficult to manage

'Lorlatinib PFS
benefit is one of
the most
pronounced and
impressive seen
in solid tumours'

Equality considerations

Company

 Some underserved communities and ethnic/socioeconomic groups have later diagnosis and worse outcomes, this likely includes those with ALK+ advanced NSCLC

Patient organisations

Inequitable access in UK – Iorlatinib available in Scotland

Treatment pathway

People can get loratinib 1st line (this appraisal) or 2nd line after alectinib or brigatinib No trial evidence of lorlatinib compared to alectinib or brigatinib

Lorlatinib (Lorviqua®, Pfizer)

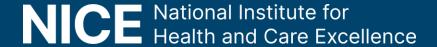
Marketing authorisation	 Adults with ALK+ advanced NSCLC not previously treated with an ALK inhibitor
Other indications	 2nd line – adults disease progressed after prior ALK inhibitor
Mechanism of action	 Inhibits ALK and ROS1 receptor tyrosine kinases, acts against a range of ALK resistant mutations
Duration	 'as long as the patient is deriving clinical benefit from therapy without unacceptable toxicity.'
Administration	100 mg orally once daily
Price	 List price: £5,283 per 30 x 100 mg tablets £7,044 per 120 x 25 mg tablets A patient access scheme is available

When would people stop taking Iorlatinib in the NHS?

Key issues and uncertainties previous appraisal (TA909)

Key issues remain unresolved in this appraisal

This	ap	prais	sal
		0.01.	


CROWN 2 nd line and beyond treatments do not reflect NHS			
CROWN immature overall survival			
Extrapolating progression-free survival	Remain key issues		
Modelling post-progression survival			
Utility values			
CROWN immature progression-free survival			
CROWN differences in CNS metastases with other trials	No longer key issues		
CNS metastases as modifier of treatment effect			
No network meta-analysis for adverse events			
Linking non-CNS and CNS progressed health states			
Modelling relative effect of Iorlatinib on CNS progression			

Key issues – Evidence Assessment Group

Issues	ICER impact
Clinical effectiveness issues	
Relevant comparator in NHS practice	N/A
Generalisability of treatment sequences in trials to NHS practice	Unknown
Immature overall survival data from CROWN	Unknown
Validity of overall survival estimates from network meta-analysis	Unknown
Cost-effectiveness issues	
Accounting for treatment sequences	Unknown
Inconsistent model structure	Small
Time on treatment and treatment beyond progression	Medium
Survival extrapolation	Medium
Waning of relative treatment effect over time	Medium
Utility values	Small
Implementing patient access scheme discount for Iorlatinib	Small
ICER, incremental cost-effectiveness ratio.	1

Lorlatinib for untreated ALK-positive advanced non-small-cell lung cancer (Review of TA909)

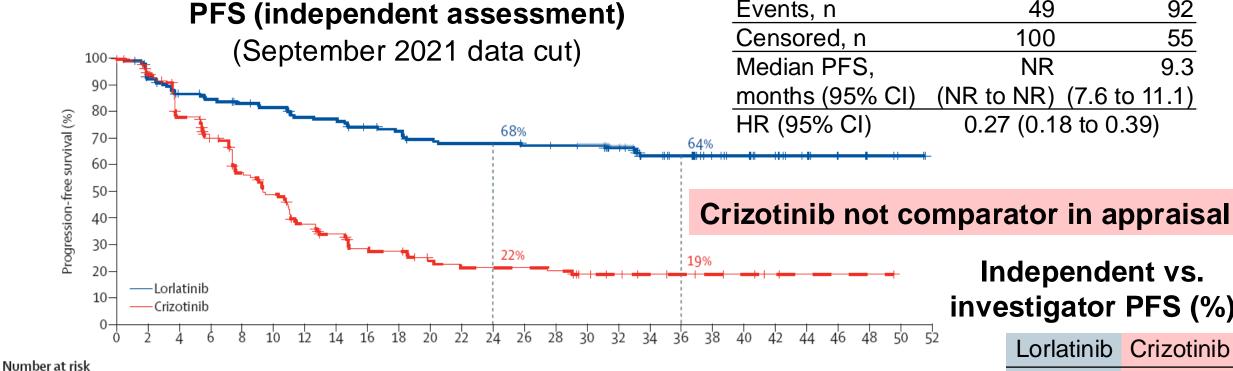
- □ Background and key issues
- ✓ Clinical effectiveness
- Modelling and cost effectiveness
- Other considerations
- Summary

Key clinical trial – CROWN

Design	Phase 3, multicentre, open-label, randomised trial
Population	Adults advanced ALK+ NSCLCNo previous systemic treatment
Intervention	Lorlatinib 100 mg, oral 1x daily
Comparator	Crizotinib 250 mg, oral 2x daily - not comparator in model for NHS
Treatment duration	Median 62 months; treatment beyond progression permitted
Median follow-up	Lorlatinib PFS: 60.2 months; crizotinib PFS: 55.1 months Lorlatinib OS: 20.0 months; crizotinib OS; 19.8 months
1° outcome	PFS based on independent assessment
Key 2° outcomes	Overall survival, PFS investigator assessment, intracranial outcomes, adverse effects, quality of life
Locations	104 sites in 23 countries [3 UK sites]
Used in model?	Yes (but not with crizotinib as comparator)

Presented in TA909 – Sept 21 data cut

Lorlatinib


CROWN primary outcome: Progression-free survival – <u>independent</u> assessment

Statistically and clinically significant improvement in PFS

(number censored)

Lorlatinib

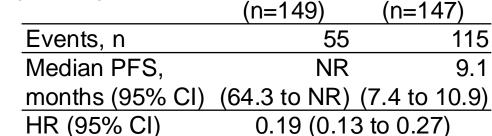
(n=149)(n=147)Events, n 49 Censored, n 100 Median PFS, NR months (95% CI) (NR to NR) (7.6 to 11.1) 0.27 (0.18 to 0.39) HR (95% CI)

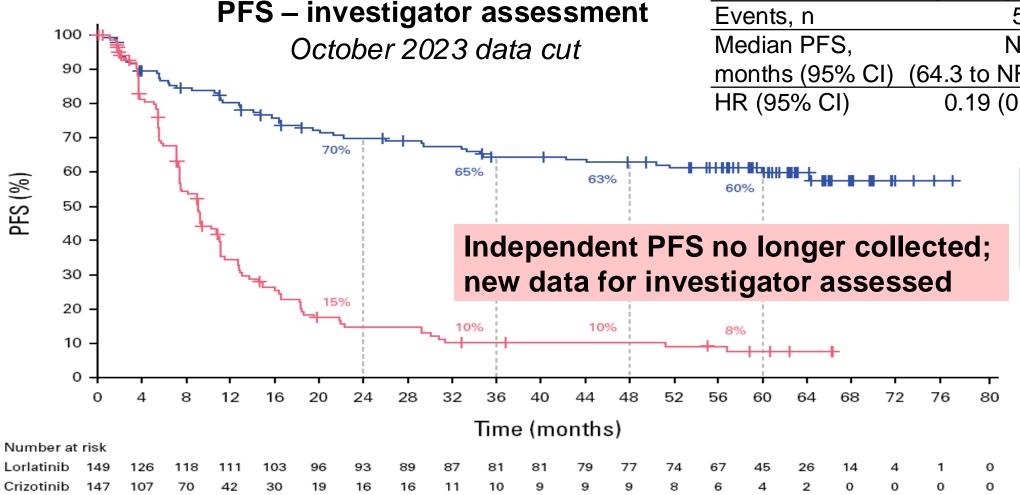
Independent vs. investigator PFS (%)

Crizotinib

52		Lorlatinib		Crizotinib	
		IND	INV	IND	INV
	24m	68	70	22	15
0	36m	64	65	19	10

CI, confidence interval; HR, hazard ratio; IND, independent, INV, investigator; NR, not reported; PFS, progressionfree survival.

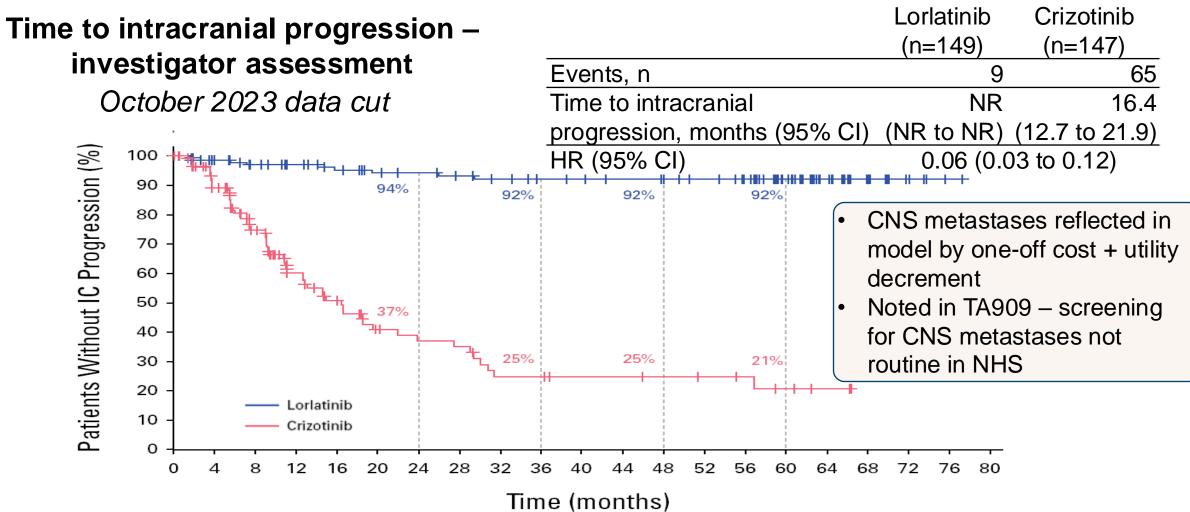

(37) (37) (40) (40) (40) (40) (40) (44) (46) (48) (49) (50) (51) (53) (54) (54) (55)


Lorlatinib

CROWN secondary outcome:

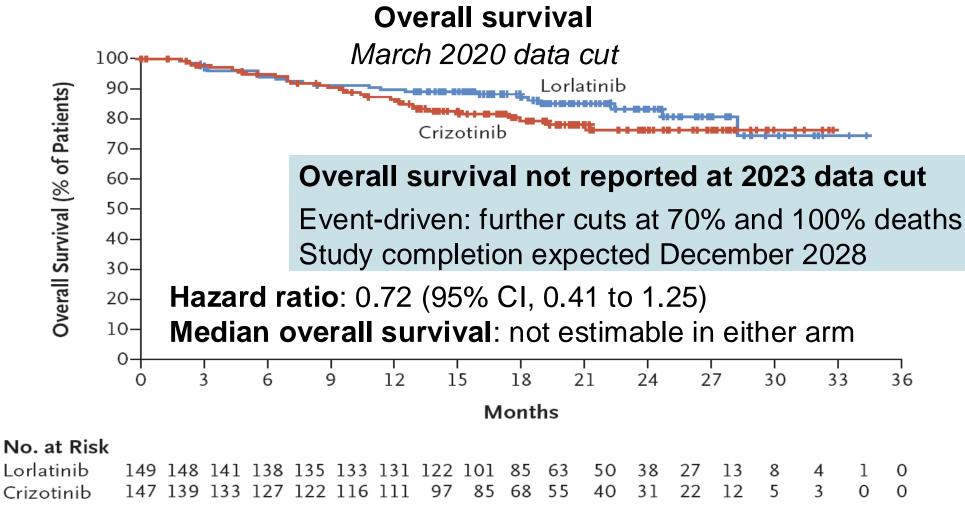
Progression-free survival – investigator assessment

Improvement in PFS, but not as defined in primary endpoint


Hazard ratio unchanged from previous cut (investigator assessed)

Crizotinib

confidence interval; HR, hazard ratio; NR, not reported; PFS, progression-free survival.


CROWN secondary outcome: Time to intracranial progression

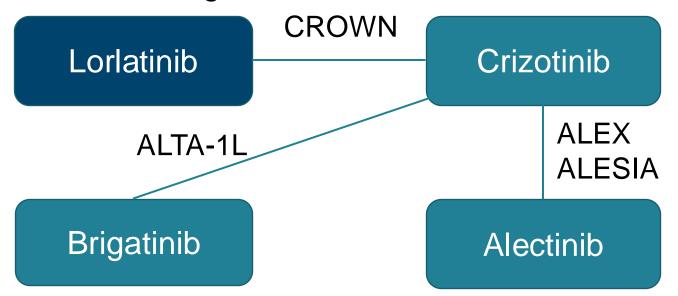
Statistically and clinically significant improvement in time to intracranial progression

CROWN secondary outcome: Overall survival

Overall survival data immature – no new data but further data cuts in future

Other clinical data company uses in its model

	Study 1001	PROFILE 1001/1005
Design	Single arm, open label, phase 1/2	Pooled retrospective analysis of 2 single arm, open label, phase 1 and 2 trials
Population	 EXP1 cohort: n=30 treatment-naïve EXP3B to 5 cohort: n=139 progression after ≥1 TKIs 	ALK+ NSCLC with progression
Relevant intervention	EXP1: lorlatinibEXP3B to 5: lorlatinib after previous TKI	Chemotherapy following progression on crizotinib
Comparator	None	None
	EXP1: long-term survival for lorlatinib EXP3B to 5: Post-progression survival for comparators	Post-progression survival for chemotherapy after lorlatinib or comparators
Median follow-up	72.7 months	Not reported
Locations	Multinational (0 UK sites)	US (1001), Multinational (1005; 8 UK sites)

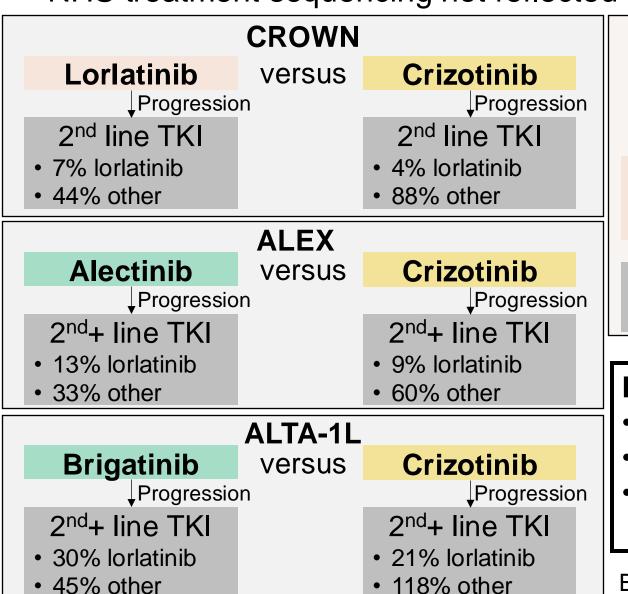

NICE ALK, Anaplastic lymphoma kinase; NSCLC, non-small cell lung cancer; TKI, tyrosine kinase inhibitor.

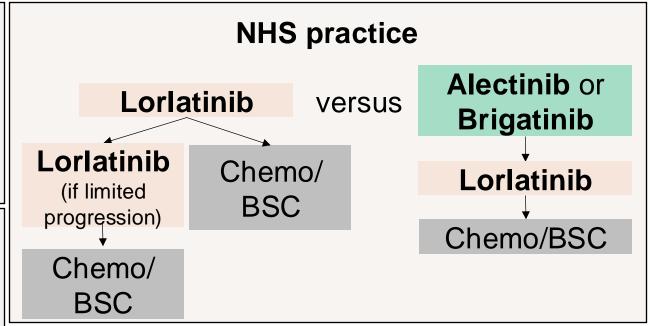
Network meta-analysis

No head-to-head trials of lorlatinib and alectinib/brigatinib

Company approach

- Standard Bayesian network meta-analysis
- Fixed effects model used for all analyses


Results – hazard ratio (95% Crl) Iorlatinib versus


Progression-free survival		Intracranial progression	Overall	survival	
	Independent	Investigator	Investigator	Unadjusted	Crossover adj.
Alectinib	0.59 (0.37, 0.95)	0.49 (0.32, 0.75)	0.39 (0.17, 0.89)	1.12 (0.59, 2.11)	1.20 (0.57, 2.52)
Brigatinib	0.56 (0.34, 0.93)	0.44 (0.27, 0.72)	0.20 (0.07, 0.54)	0.89 (0.44, 1.78)	1.44 (0.65, 3.18)

-

Key issue: Generalising treatment sequences from trial to NHS

NHS treatment sequencing not reflected in intervention or comparator trials

People in trials:

- Had 2nd line treatments <u>not</u> used in NHS
- Didn't have treatments that <u>are</u> used in NHS
- If NHS treatments were had, they were in different proportions

BSC, best supportive care; TKI, tyrosine kinase inhibitor. 20

Key issue: Generalising treatment sequences from trial to NHS

NHS treatment sequencing not reflected in intervention or comparator trials

Company:

- Acknowledge CROWN + trials for comparators do not reflect NHS treatment
- To reduce uncertainty:
- → Post-progression survival from Study 1001 EXP3B to 5 cohorts for 2nd line Iorlatinib
- → Matching-adjusted indirect comparison to compare to Iorlatinib to alectinib using real-world data

EAG:

- Company efforts have limitations data not randomised
- Study 1001 + PROFILE 1001/1005 do not represent NHS practice
- Real-world MAIC has limitations, any comparison with lorlatinib unanchored

NICE MAIC, matching-adjusted indirect comparison; TKI, tyrosine kinase inhibitor.

Key issue: Immature overall survival data from CROWN

No new data – uncertainty in overall survival unchanged

Background: OS not measured at October 2023 cut, protocol requires 139 (70%) deaths

Company:

- Acknowledge long-term OS is uncertain
- Clinical advice expect PFS will translate to OS, with potential 10-year median
- Study 1001 (EXP1 cohort, n=30, follow-up to 73 months) pooled with CROWN to inform long-term OS extrapolations

EAG:

- OS data remains very immature median not estimable in either treatment arm
- Company have provided no evidence to justify PFS-OS relationship in the model
- Value of Study 1001 is limited due to size, design, dissimilarity with CROWN
- Further CROWN cuts of limited value due to issues in 2nd line treatments including getting Iorlatinib 2nd line instead of 1st line

Key issue: Indirect treatment comparison for overall survival

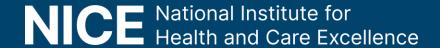
Benefit for overall survival highly uncertain

Company

- Network meta-analysis no difference in overall survival between Iorlatinib + comparators
- CROWN results are uncertain, but hazard ratio should improve with further cuts

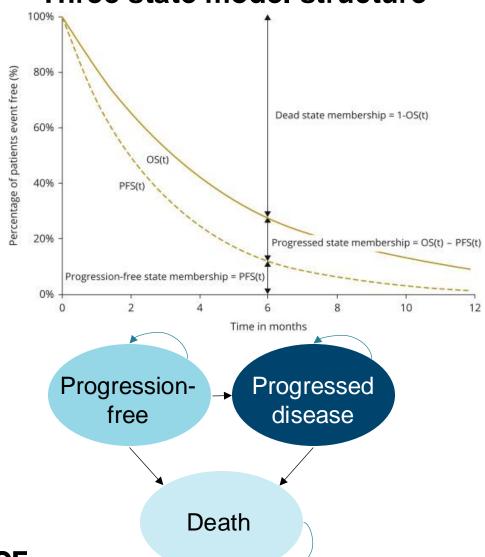
EAG

- CROWN overall survival data very immature so uncertain
- Proportional hazards assumption likely violated
 - Approaches to resolve this would generate more uncertainty
- High risk of confounding due to crossover + treatment sequences that do not reflect NHS
- Can make no conclusions whether people on Iorlatinib live longer, same, or shorter than current NHS 1st line treatments



- What does the network meta-analysis show for lorlatinib compared with alectinib/brigatinib? Are the results valid?
- Would it be better to use randomised evidence or evidence from external sources to model overall survival? Would more data on overall survival help?

NICE


Lorlatinib for untreated ALK-positive advanced non-small-cell lung cancer (Review of TA909)

- □ Background and key issues
- Clinical effectiveness
- Modelling and cost effectiveness
- Other considerations
- Summary

Company's model overview

Three state model structure

Lorlatinib affects **costs** by:

- ↑ 1st line treatment costs
- ↓ 2nd line treatment costs

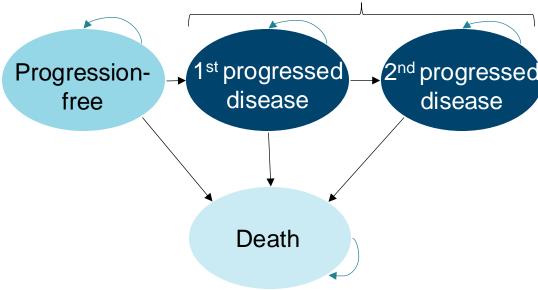
Lorlatinib affects **QALYs** by:

- † quality of life when progression free
- † progression-free survival
- ↑ overall survival

Assumptions that drive ICER:

- Model structure
- † progression-free survival benefit
- · How time on treatment is modelled
- How the PAS is applied to lorlatinib in comparator arm

Key issue: Treatment sequences in trials do not reflect NHS


EAG propose a 4-state model to better reflect 2nd line treatments

EAG:

- Company model unable to fully account for the impact of 2nd line treatments within catch-all progressed disease health state
- Propose 4 state model to better capture 2nd line by splitting progressed state into 1st + 2nd progression (not implemented due to time)
- Proposed benefits:
 - Differentiate cost & benefits of Iorlatinib 2nd
 line compared to alternatives
 - Better estimate costs in PD state currently
 ToT is independent of time in PD time spent in PD greatly impacts model predictions
 - Transparency on where the health benefits are accrued and inform extrapolations in PD

EAG suggested 4-state model

Key issue: Inconsistent model structure

Company model uses different modelling approaches for lorlatinib + comparators

Company: Trials of comparators did not use Iorlatinib 2nd line – may underestimate efficacy

- To better reflect NHS, used data from additional, external sources
- This approach required state transition model for comparator post-progression survival
- Different to partitioned survival model used for lorlatinib and comparator PFS

EAG: Should use consistent modelling approach for intervention and comparators

- Fundamentally different assumptions for different models, will lead to bias in results
- Prefer state transition due to generalisability issues with CROWN + issues with using NMA for overall survival – better to use external source

	Partitioned survival model	State transition model
Pros	Comparisons based on randomised evidence	 Emphasises mature CROWN PFS – not confounded by 2nd line treatments Can incorporate real-world data
Cons	 Overall survival immature and confounded by 2nd line treatments Implausible results for comparators 	 Modelled overall survival no longer based on randomised comparisons Limited evidence for post-progression survival

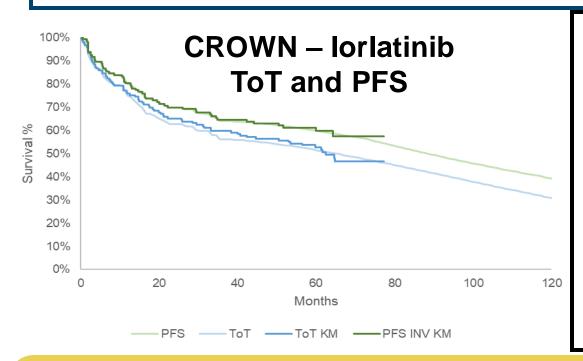
Key issue: Inconsistent model structure

EAG: state transition should be used for both lorlatinib and comparator PPS

	Company base case		EAG	base case
	Lorlatinib	Alectinib/brigatinib	Lorlatinib	Alectinib/brigatinib
Progression- free survival	Fitted curves to lorlatinib PFS Source: CROWN	Fitted curves to crizotinib PFS + hazard ratio	Same as company	Fitted curves to <u>lorlatinib</u> PFS + hazard ratio
		Source: CROWN + NMA		Source: CROWN + NMA
Post- progression	OS minus PFS	Transition probability estimated (STM)	Transition probability	Same as company
survival		Source: Study 1001	estimated (STM)	
		(EXP3B-5) and PROFILE 1001/1005	Source: PROFILE 1001/1005	
Overall survival	Fitted curves to lorlatinib OS Source: pooled CROWN + Study	PFS plus PPS	PFS plus PPS	Same as company
IVII E	1001 (EXP1)			

NICE

Model structure key questions


- How could modelling better reflect treatment options at 2nd line and beyond?
- What is committee's preferred approach for modelling post-progression and overall survival for lorlatinib (state transition vs. partitioned survival model)?

Key issue: Iorlatinib time on treatment and treatment beyond progression

Company uses time on treatment; EAG uses PFS + treatment beyond progression

Company: CROWN time on treatment data most robust

- Higher chance of stopping Iorlatinib before progression due to long duration
- CROWN permitted treatment beyond progression, but not included in model because clinicians chose not to

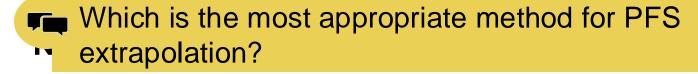
EAG: TA909 – committee concluded treatment beyond progression should be included and company updated base accepted this

- Comparators in model assume ToT = PFS
- Clinical advice: NHS treatment duration longer than CROWN + often beyond progression
- Use Iorlatinib ToT = PFS and treatment beyond progression (5.7 months for 75.6%) to model costs, not benefits due to lack of data

How should lorlatinib time on treatment and treatment beyond progression be modelled?

PFS, progression-free survival; ToT, time on treatment.

Key issue: Extrapolating investigator PFS


New 5-year data; Company and EAG differ on reference arm and survival curve choice

Company:

- Fit independent curves to lorlatinib and crizotinib from CROWN (<u>fit statistics</u>)
- Hazard ratio from NMA applied to crizotinib for alectinib and brigatinib
- Lorlatinib: 36-month piecewise Weibull
- Crizotinib: Weibull full extrapolation

EAG:

- Inconsistent to use piecewise for lorlatinib + fully extrapolated for comparators, and survival is implausible without waning (also see <u>appendix</u>)
- Prefer to use Iorlatinib as reference arm + apply 36month piecewise Gompertz to extrapolate

PFS %	Company	EAG
1 year	80.2%	80.2%
5 years	60.5%	60.5%
10 years	40.9%	27.9%
20 years	10.6%	0.0%
30 years	1.6%	0.0%
-		21

Key issue: Relative treatment effect waning

EAG: waning should not be used to correct implausible extrapolations

Company:

 PFS uncertain after 10 years – as in TA909, hazards waned to crizotinib

EAG: Waning reasonable, but should be used to address durability of effect rather than correct implausible PFS

- In company base case, Iorlatinib PFS estimations vary depending on crizotinib distribution (see <u>appendix</u>)
- EAG base case does not use crizotinib as reference arm, so at 10 years, hazards waned to alectinib
- How should relative treatment effect waning be applied?

NICE PFS, progression-free survival.

Company PFS estimations with waning

	Lorlatinib	Alectinib	Brigatinib
1 year	80.2%	74.7%	72.4%
5 years	60.5%	21.5%	18.3%
10 years	40.9%	4.2%	3.0%
15 years	0.6%	0.1%	0%
20 years	0%	0%	0%

Key issue: Utility values

EAG disagree with treatment-specific utilities and suggest higher values after progression

Company: Apply treatment-specific and on/off treatment PFS utilities to capture specific experience of each treatment

- CROWN progressed disease utilities implausibly high use brigatinib values
 - → High progressed utility in CROWN as analysis based on small number of patients, collected close to progression

EAG: Company changed approach since TA909, where agreed to use brigatinib utilities

- Treatment-specific utilities contradict clinical advice, previous appraisals + inconsistent with PD state
 - → Remove treatment-specific utilities
- In PFS, different on/off-treatment utilities potentially double-counts adverse event disutility
 - → Remove PFS on/off treatment
- In progressed disease, using 2nd line ALK-inhibitors could mean higher utility
 - → Add PD on/off treatment, with value about midpoint between PFS and PD off-treatment

Is it appropriate to reject CROWN utility? Which utility values are most appropriate?

NICE ALK, Anaplastic lymphoma kinase; CNS, central nervous system; PD, progressed disease; PFS, progression-free survival.

Key issue: Modelling Iorlatinib conditional PAS

Company and EAG disagree on methodological approach for implementing PAS

Background: Lorlatinib has existing PAS for 2nd line use

 Lorlatinib offered with new PAS on condition of positive recommendation (would apply at 1st line and 2nd line if positive recommendation)

Company: Decision problem compares world with 1st line Iorlatinib versus world without

• So, new PAS only available in intervention arm, does not exist in comparator arm

EAG: Company incorrectly frames decision as 'before and after'

- Means model results are invalidated with positive guidance, as new PAS applies to both arms – comparator becomes significantly cheaper
- New PAS should be used for both 1st and 2nd line lorlatinib in model

NICE tech team advice: question of interpretation and application of methods

- Limitations of both approaches
- Company approach reflects current decision for committee; EAG approach more appropriate for decision on optimal treatment pathway (e.g. in a guideline)

NICE

How should the conditional PAS be implemented?

Summary of company and EAG base case assumptions

Assumption	Company base case	EAG base case
Model structure for PPS	Lorlatinib: partitioned survivalComparators: state transition	Lorlatinib: state transitionComparators: state transition
Time on treatment	CROWN time on treatment	CROWN progression-free survival
Lorlatinib treatment beyond progression	Not included	Included – 75.6% continue lorlatinib for 5.7 months
Progression-free survival	 CROWN + survival analysis Lorlatinib: 36m piecewise Weibull Comparators: NMA hazard ratio applied to crizotinib Reference arm: crizotinib 	 CROWN + survival analysis Lorlatinib: 36m piecewise Gompertz Comparators: NMA hazard ratio applied to lorlatinib Reference arm: lorlatinib
Post-progression survival	 Lorlatinib: Sum of OS – PFS (PSM) Comparators: Study 1001 (EXP3B-5) 	 Lorlatinib: PROFILE 1001/1005 (STM) Comparators: Study 1001 (EXP3B-5)
Overall survival	 Lorlatinib: pooled CROWN and Study 1001 (EXP1) + survival analysis Comparators: Sum of PFS + PPS 	 Lorlatinib: Sum of PFS + PPS Comparators: Sum of PFS + PPS
Waning	Waning to crizotinib hazards from 10yrs	Waning to alectinib hazards from 10yrs

NICE NMA, network meta-analysis; OS, overall survival; PFS, progression-free survival; PPS, post-progression survival; PSM, partitioned survival model; STM, state transition model.

Summary of company and EAG base case assumptions

Assumption	Company base case	EAG base case
Utility values	 PFS: CROWN and past appraisals, treatment-specific, on/off treatment-specific PD: TA670 (brigatinib), no on/off treatment-specific 	 PFS: TA670 (brigatinib), not treatment-specific, not on/off treatment-specific PD: TA670 (brigatinib), on/off treatment-specific
Lorlatinib conditional PAS implementation	Use of new PAS for 1st line and existing PAS for 2nd line (comparator arm)	Use of new PAS for 1st line and 2nd line

Results – cost-effectiveness ranges

Confidential discounts for comparators – ICERs in Part 2 slides ICER ranges presented below

Summary – Iorlatinib versus alectinib/brigatinib for untreated ALK+ advanced NSCLC*

Company base case probabilistic ICER:

EAG base case probabilistic ICER:

> £30,000 per QALY gained

Company and EAG scenario analyses:

- Lowest ICER: < £20,000 per QALY gained
- Highest ICER: > £30,000 per QALY gained

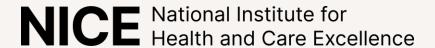
Committee decision making slide

Assumption	Question for committee				
Comparators	What is(are) the most appropriate comparator(s) for lorlatinib?				
Marketing authorisation	When would people stop taking lorlatinib in the NHS?				
Immature clinical data and NMA	 What does the network meta-analysis show for lorlatinib compared with alectinib/brigatinib? Are the results valid? Would it be better to use randomised evidence or evidence from external sources to model overall survival? Would more data on overall survival help? 				
Model structure	 How could modelling better reflect treatment options at 2nd line and beyond? What is committee's preferred approach for modelling post-progression and overall survival for lorlatinib (state transition vs. partitioned survival model)? 				
Time on treatment	How should lorlatinib time on treatment and treatment beyond progression be modelled?				
PFS extrapolation	Which is the most appropriate method for PFS extrapolation?				

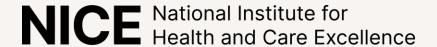
Committee decision making slide

Assumption	Question for committee					
Waning	How should relative treatment effect waning be applied?					
Utilities	s it appropriate to reject CROWN utility? Which utility values are most appropriate?					
PAS	How should the conditional PAS be implemented?					
Other factors	 Are there any equality considerations that need to be accounted for? 					
	 Are there any benefits of lorlatinib that are not captured in the QALY calculations? 					
	 Is there any uncertainty in the modelling that needs to be accounted for? 					
ICER threshold	What is the committee's preferred ICER threshold?					
Preferred ICER	What is the committee's preferred ICER?					
Managed	 Is the committee's preferred ICER below the threshold? 					
access	 If no, could key uncertainties be sufficiently resolved during a period of managed access? (see next slide) 					

NICE ICER, incremental cost-effectiveness ratio; PAS, patient access scheme; QALY, quality-adjusted life year.


Managed access

Criteria for a managed access recommendation


The committee can make a recommendation with managed access if:

- the technology cannot be recommended for use because the evidence is too uncertain
- the technology has the plausible potential to be cost effective at the currently agreed price
- new evidence that could sufficiently support the case for recommendation is expected from ongoing or planned clinical trials, or could be collected from people having the technology in clinical practice
- data could feasibly be collected within a reasonable timeframe (up to a maximum of 5 years) without undue burden

Thank you

Supplementary appendix

Patient perspectives

PFS improvement with Iorlatinib very important for patients

Submissions from ALK Positive UK and Roy Castle Lung Foundation

ALK rearrangement more likely to be never smokers and younger than the general lung cancer population

Symptoms are distressing for patients, who often have young families and are responsible for raising children

Lorlatinib data seem promising due to PFS gain and effect on brain metastases

Effective management of brain metastases is vital for a good QoL for people and the chance to be stable for as long as possible

Need for additional more effective treatments in this patient group

'Increase in PFS with Lorlatinib is seen as a gamechanger'

Clinical perspectives

Lorlatinib has impressive PFS results and manageable toxicities

Submission from British Thoracic Oncology Group

Main aim of treatment is to prolong survival

Clinically significant response:

- Reduction in tumour size
- Disease control

Control of CNS disease remains a key outcome for clinicians and patients

Different side effects with Iorlatinib but not more difficult to manage

'PFS benefit is one of the most pronounced and impressive data seen in solid tumours'

'Lorlatinib has a wellestablished toxicity profile with effective guidance on management'

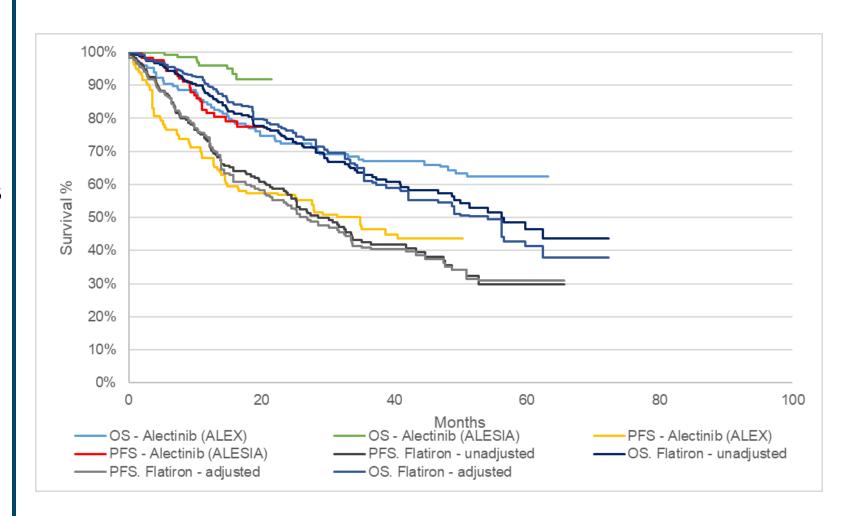
Treatments after progression in CROWN and comparator trials

Back to main deck

Company:

Higher 2nd line ALK inhibitor use in ALESIA and ALTA-1L compared to CROWN, similar use in ALEX

Treatments after progression


Study	Treatment	N	Lorlatinib	Alectinib	Brigatinib	Crizotinib	Ceritinib
CROWN -	Lorlatinib	149	3/46 (6.5%)	12/46 (26.1%)	1/46 (2.2%)	4/46 (8.7%)	3/46 (6.5%)
	Crizotinib	147	4/110 (3.6%)	68/110 (61.8%)	21/110 (19.1%)	5/110 (4.5%)	3/110 (2.7%)
ALEX	Alectinib	152	11/84 (13.1%)	2/84 (2.4%)	8/84 (9.5%)	11/84 (13.1%)	7/84 (8.3%)
ALEA	Crizotinib	151	10/114 (8.8%)	24/114 (21.1%)	11/114 (9.6%)	9/114 (7.9%)	24/114 (21.1%)
ALESIA	Alectinib	125	3/20 (15.0%)	1/20 (5.0%)	0/20 (0%)	4/20 (20%)	0/20 (0%)
ALESIA	Crizotinib	62	1/30 (3.3%)	4/30 (13.3%)	4/30 (13.3%)	1/30 (3.3%)	2/30 (6.7%)
ALTA-1L	Brigatinib	137	22/74 (29.7%)	16/74 (21.6%)	2/74 (2.7%)	11/74 (14.9%)	4/74 (5.4%)
	Crizotinib	138	21/101 (20.8%)	28/101 (27.7%)	80/101 (79.2%)	6/101 (5.9%)	5/101 (5.0%)

Flatiron real-world database alectinib results

Back to main deck

Company:

- Flatiron database contained people who had alectinib 1st line
- 2nd line treatments more reflective of NHS: ~2/3rds lorlatinib
- Population adjustment performed to match
 Flatiron population to CROWN
- Similar PFS/OS outcomes between Flatiron population and ALEX/ALESIA

PFS survival curve fit statistics

INV assessed PFS extrapolation – Iorlatinib 36 months piecewise

		AIC		BIC
Distribution	AIC	rank	BIC	rank
Exponential	83.86	1	86.26	1
Gen. gamma	84.78	5	89.57	5
Gompertz	85.61	7	92.79	7
Log-logistic	84.72	3	89.51	3
Log-normal	84.74	4	89.53	4
Weibull	84.42	2	89.21	2
Gamma	85.31	6	90.10	6

INV assessed PFS extrapolation – crizotinib

		AIC		BIC
Distribution	AIC	rank	BIC	rank
Exponential	862.19	6	865.18	5
Gen. gamma	829.27	2	838.24	3
Gompertz	855.00	4	860.98	4
Log-logistic	825.80	1	831.78	1
Log-normal	830.74	3	836.72	2
Weibull	863.98	7	869.96	7
Gamma	860.96	5	866.94	6

Lorlatinib PFS landmark estimations without waning

Back to main deck

Dietribution	Lorlatinib PFS landmarks (36 months piecewise)					
Distribution	1 year	5 years	10 years	15 years	20 years	30 years
Exponential	80.2%	60.2%	50.4%	42.2%	35.3%	24.7%
Gen. gamma	80.2%	59.3%	54.8%	53.0%	51.9%	50.5%
Gompertz	80.2%	60.5%	27.9%	0.1%	0.0%	0.0%
EAG base case						
Log-logistic	80.2%	60.5%	43.0%	29.6%	21.2%	12.3%
Log-normal	80.2%	60.4%	47.1%	38.0%	31.6%	23.3%
Weibull	80.2%	60.5%	40.9%	22.5%	10.6%	1.6%
Company base case						
Gamma	80.2%	60.5%	42.2%	26.4%	15.7%	5.1%

NICE PFS, progression-free survival.

Lorlatinib PFS landmarks with different crizotinib extrapolations

- In company base case, at 10 years, Iorlatinib PFS hazard waned to crizotinib
- So, crizotinib distribution affects Iorlatinib modelled PFS after 10 years

Lorlatinib PFS landmarks								
Crizotinib distribution	10 years	15 years	20 years	30 years				
No waning	40.9%	22.5%	10.6%	1.6%				
Exponential	40.9%	0.9%	0.0%	0.0%				
Generalised gamma	40.9%	18.6%	10.4%	4.4%				
Gompertz	40.9%	33.3%	31.6%	31.0%				
Log-logistic	40.9%	19.4%	11.3%	5.3%				
Log-normal	40.9%	11.3%	4.1%	0.8%				
Weibull – company base case	40.9%	0.6%	0.0%	0.0%				
Gamma	40.9%	0.4%	0.0%	0.0%				

Utility values

Health state	Treatment	TA909 value	Company value	EAG value
Progression-free	Lorlatinib	0.793	0.845	0.793
(on treatment)	Brigatinib	0.793	0.793	0.793
	Alectinib	0.793	0.814	0.793
Progression-free	Lorlatinib	0.793	0.768	0.793
(off treatment)	Brigatinib	0.793	0.793	0.793
·	Alectinib	0.793	0.814	0.793
Progressed	Lorlatinib	0.624	0.624	0.725
(on treatment)	Brigatinib	0.624	0.624	0.725
	Alectinib	0.624	0.624	0.725
Progressed	Lorlatinib	0.624	0.624	0.624
(off treatment)	Brigatinib	0.624	0.624	0.624
	Alectinib	0.624	0.624	0.624
One-off utility for CNS	Lorlatinib	N/A	0.416	0.391
progression	Brigatinib	N/A	0.401	0.391
(24 months duration)	Alectinib	N/A	0.391	0.391

QALY weightings for severity

Background

- Expected total QALYs for the general population based on the ONS 2019-20 National life tables for England and Wales
- Population EQ-5D-3L data adjusted by age and sex derived from the Health Survey from England (HSE) 2014

	QALYs of people without condition	QALYs with the condition on current treatment	Absolute QALY shortfall (has to be >12)	Proportional QALY shortfall (has to be >0.85)
Company base case				
Alectinib	13.58			
Brigatinib	13.58			
EAG base case				
Alectinib	13.58			
Brigatinib	13.58			

Both company and EAG agree that a QALY weighting does not apply