CardioQ-ODM

8. Azevedo ZMA, Dutra MVP, Lima FC, Moliterno NV, Caixeta DML, Mota ICF, Rodrigues CS, Mafort KC. Transesophageal Doppler utilization in a pediatric intensive care unit in Brazil. 2007 Poster

22. Callow C. How to why to guide, Doppler Guided Intraoperative Fluid Management. NHS Technology Adoption Centre 2010; February

29. CEP Market Review. Haemodynamic Monitoring. CEP10016 2010: March

42. Conway D, Gold S. Targeted fluid administration for major surgery. *Current Anaesthesia & Critical Care* 2010; **21**:108-113

44. Crawford AM, Joshi GP. Perioperative Fluid Management: Minimization Versus Goal-Directed Therapy. *ASA Newsletter* 2000; Volume 72, Number 4

47. Devanand A. Clinical Trial: Continuous hemodynamic monitoring by esophageal Doppler in severe sepsis. 2005

55. Devanand A. Clinical Trial: Continuous hemodynamic monitoring by esophageal Doppler in severe sepsis. 2005

68. Drage S, Boyd O. Peri-operative goal-directed haemodynamic therapy - do it, bin it, or finally investigate it properly? *Crit Care* 2007; **11**(5):170

71. English JD, Moppett IK. Feasibility of performing transoesophageal Doppler measurements in awake, unpremeditated, healthy volunteers. University of Nottingham, Poster 2005

72. Esdaile BA, Raobaikady R. Survey of Cardiac Output Monitoring in Intensive Care Units in England and Wales. 2005

73. Esophageal Doppler Ultrasound-Based Cardiac Output Monitoring for Real-Time Therapeutic Management of Hospitalized Patients – A Review. *Agency For Health Research and Quality (AHRQ)* January 16, 2007

86. Gan TJ, Wakeling H, Hardman D, Booth JV, Chitester C, Ray J, Mythen M, Glass PSA. Intraoperative volume expansion guided by esophageal Doppler reduces the incidence of gastric mucosal hypoperfusion and may be associated with improved outcome following major surgery. Anesthesiology 1997 V87, 3A, Sep

94. Gresham T. Purchasing decisions to support a change in intraoperative haemodynamic monitoring are evidence-based and could save billions. *Hospital Decisions* 2004; **1**:184-185

95. Grocott MPW, Gan TJ. Hemodynamic "Optimization" Goal Is Improved Outcome. APSF Newsletter 2001; **16**(2):31-33

96. Grocott MPW, Hamilton MA, Bennett ED, Harrison D, Rowan K. Perioperative increase in global blood flow to explicit defined goals and outcomes following surgery (Protocol). *Cochrane Database of Systematic Reviews* 2009; Issue 4

100. Grover M. Enhanced recovery after colorectal surgery. *Current Anaesthesia & Critical Care* 2010; **21**:121-124

101. Gunn S, Harrigan P, Pinsky MR.. Ability of arterial pulse contour and esophageal pulsed Doppler measures to estimate rapid changes in left ventricular output. 2003

104. Hadian M, Angus DC. Protocolized resuscitation with esophageal Doppler monitoring may improve outcome in post-cardiac surgery patients. *Critical Care* 2005; **9**:E7

110. Hawkes N. Surgical breakthrough could save NHS up to £500m a year. The Times 2006 September

113. Horgan A. Safety First. Health Director 2006 December

115. Improving surgery outcomes. Clinical Services Journal 2007; 90-91

141. Laupland KB, Bands CJ. Utility of esophageal Doppler as a minimally invasive hemodynamic monitor: a review. *Can J Anesth* 2002; **49**(4):393-401

144. Lefrant JY, Aya G, de La Coussaye JE, Bassoul B, Auffray JP, Eledjam JJ. Training is required to improve the reliability of esophageal Doppler to measure cardiac output in critically ill patients. *Intensive Care Med* 1998; **24**:347-352

147. Lowe GC, Chamberlain BM, Philpot EJ, Willshire RJ. Oesophageal Doppler Monitor (ODM) guided individualised goal directed fluid management (iGDFM) in surgery - a technical review. 2009; 1-8

153. Marik PE. Pulmonary Artery Catheterization and esophageal Doppler monitoring in the ICU. *Chest* 1999; **116**:1085-1091

155. Marshall A, Ellis L. Unique nurse service monitors patients through the nose; The UK's first nurse-led nasal Doppler service has been set up in Essex by two nurse specialists in critical care. *Nursing Times* 2008; September 22

156. Matthews PC. Cardiac output measurement using the TECO 1 oesophageal Doppler monitor. A comparison with thermodilution. *International Journal of Intensive Care* 1998 Autumn

158. McDonald S, Fernando R, Ashpole K, Columb M. Maternal cardiac output changes after crystalloid or colloid cohydration following spinal anaesthesia for elective caesarean section. *International Journal of Obstetric Anesthesia* 2007; Pages S1-S54: 008

164. Moppett IK, Malik M, Baxendale BR. Trans-esophageal Doppler measurements are tolerable and reproducible in awake, ambulatory volunteers. *State of the Art Meeting* 2001

170. Mythen MG. Postoperative gastrointestinal tract dysfunction: An overview of causes and management strategies. *Cleveland Clinic Journal of Medicine* 2009; **76(4)**:S66-S71

172. NHS Enhanced Recovery Partnership Programme. Delivering enhanced recovery Helping patients to get better soon after surgery. 2010: 300977; March

181. Parker M. Recovery times slashed by three weeks. *Health Director* 2008:February

183. Patel M, Singer M. The optimal time for measuring the cardiorespiratory effects of positive end-expiratory pressure. *Chest* 1993; **104**:139-141

189. Pinsky M. Haemodynamic monitoring in shock and implications for management. 2006

199. Roche AM, Gan TJ. Peri-operative goal-directed fluid therapy - perceived or real benefit? US Surgery 2007; 10-12

201. Roche AM, Miller TE. Goal-directed or goal-misdirected - how should we interpret the literature? Crit Care 2010; 14(2):129

204. Rowlands H, Bagshaw O, Duncan H. Can clinicians estimate cardiac output and systemic vascular resistance compared to trans-oesophageal Doppler in Ventilated Children? Poster, Birmingham Children’s Hospital, UK 2007

205. Rowlands H, Bagshaw O, Duncan H. Does trans-oesophageal Doppler cardiac output measurement change clinical management strategy? 2007 Poster Birmingham Children’s Hospital, UK

226. Singer M. Better monitoring = better management: Improved monitoring leads to more appropriate interventions. *International Journal of Intensive Care* 1996:1

229. Singer M. The FTc is not an accurate marker of left ventricular preload. *Intensive Care Med* 2006; 32(9):1456-1457

233. Spahn DR, Chassot PG. Fluid restriction for cardiac patients during major noncardiac surgery should be replaced by goal-directed intravascular fluid administration. Anesth & Analg 2006; 102:344-346

237. Stuart-Smith K. Modern haemodynamic monitoring: out with the old. Anaesthesia Product News 2006 Winter

251. van den Elsen MJLJ, Leenen LPH, Kesecioglu J. Hemodynamic support of the trauma patient. *Curr Opin Anaesthesiol* 2010; **23**:269-275

257. Wakeling HG. Perioperative haemodynamic optimisation. *HHE* 2002; T37-T38

260. Webb, A. Efficiency - The long goodbye, the NHS could save up to £400m a year with some simple measures to cut length of stay. *HSJ* 2008; January: 26-27

262. Williams AB. Enhanced recovery programs for colorectal surgery. 2005

263. Windsor A. Improving surgical outcomes, reducing length of stay. *Health Director* 2007; October