

Interventions to prevent obesity in children aged 2 to 4 years old (based on a Cochrane systematic review protocol)

Review team:

Sophie Phillips¹(Lead)

Theresa Moore², Sarah Dawson², and Carolyn Summerbell³

¹University of Western Ontario, Canada, ²University of Bristol, ³Durham University

Population	 Children with mean age of 2 years and above, but less than 4 years General population Excluded studies that were restricted to children with overweight or obesity
Intervention	 Main aim to help prevent obesity by changing at least one factor from: Diet Activity (physical activity, sedentary behaviour, sleep, play or structured exercise)
Comparators	No intervention OR usual care OR another eligible intervention
Outcomes	BMI or zBMI
Setting	Pre-school/Nursery/Childcare centre (including Head Start Centres in US) OR Home OR Primary Care OR Community

RCT or cRCT with at least 3 clusters in each arm

For meta-analysis presented here, only included studies in Pre-school setting reporting useable zBMI outcome data

Summary characteristics of <u>all</u> INCLUDED studies (n=71)

Study design

- 44% (31/71) Individual RCT
- 56% (40/71) Cluster RCT

Country

- 49% (35/71) USA
- 11% (8/71) Australia
- 7% (5/71) Canada
- 7% (5/71) UK (3 in Scotland)
- 6% (4/71) Germany
- 3% (2/71) Spain
- 3% (2/71) Sweden

And 1 each in: China, Denmark, France, Italy, Malaysia, Switzerland, Thailand, Turkey, UAE and one* in a multi-EU country study.

Intervention type

- 66% (47/71) Diet + Activity
- 21% (15/71) Activity
- 13% (9/71) Diet
- 1% (1/71) Digital/online

Setting/Target population

- 56% (40/71) Childcare/Preschool/Nursery
- 31% (22/71) Home
- 7% (5/71) Primary care
- 6% (4/71) Community

N of participants:

- Smallest n= 16
- Largest n= 7541*

Summary characteristics of <u>all</u> INCLUDED studies (n=71)

• 39% (28/71) of trials targeted disadvantaged (low income) participants and/or those living in disadvantaged communities

- 14% (10/71) of trials had an inclusion criteria where only those children deemed to be 'at risk' of developing obesity were allowed to participate.
- 11% (8/71) of trials had a inclusion criteria where only those children with a minimum BMI* were allowed to participate (French, Hammersley, Hawkins, Heerman, Morshed, Natale 2021, Slusser, Sun)
 - *this cut-off point was below that for overweight, e.g. 50%
- 3% (2/71) had a inclusion criteria where only those children who had a mother living with overweight or obesity were allowed to participate (Olsen, Ostbye)

Summary characteristics of <u>all</u> INCLUDED studies (n=71)

Outcome data

Studies in Pre-school setting n= 40

Studies in Pre-school setting reporting zBMI outcome data = 22 (including Lumeng & Stookey)

Studies in Preschool setting reporting zBMI outcome data that could be included in a Meta-analysis n=16

Of the 18 Studies in Pre-school setting that did not report zBMI, 9 reported BMI Of the 9 studies in Pre-school setting that did not report zBMI or BMI:

- 7 reported BMI percentile
- 2 reported weight for height or by weight category

Summary of studies in Preschool setting reporting zBMI outcome data that could be included in a Meta-analysis n=16 D: Diet; DPA: Diet and physical activity; PA: Physical activity

Study	Setting	Population	Intervention	Comparator	Outcomes
Alkon 2014 cRCT	Childcare centres USA	Children aged 3-5 (N not reported)	DPA : Nutrition And Physical Activity Self Assessment for Child Care intervention	No intervention	BMIz 7m follow up
Barber 2016 cRCT	Preschools UK	164 children	PA : Physical activity intervention for preschool children	No intervention	BMIz 12m follow up
Davis 2016 cRCT	Head start centres USA	1816 children (2-5 years)	DPA : Child Health Initiative for Lifelong Eating and Exercise	Standard curriculum	BMIz 7, 12 and 19 months follow up
Dennison 2004 cRCT	Preschools USA	176 children (2.6- 5.5g years)	PA : 'Brocodile the Crocodile' health promotion programme	Safety and injury prevention program	BMI/BMIz 6m follow up
Fitzgibbon 2005 cRCT	Preschools USA	409 children	DPA : Hip Hop to Health Junior	General health concepts	BMI/BMIz 14 weeks, 12m & 24m follow up
Fitzgibbon 2006 cRCT	Head start centres USA	401 children	DPA : Hip Hop to Health Junior	General health concepts	BMI/BMIz 14 weeks, 12m & 24m follow up
Fitzgibbon 2011/Kong 2016 cRCT	Head start centres USA	729 children (3-5 years)	DPA : Hip Hop to Health Junior	General health session	BMI/BMIz 14 weeks, 16m follow up
Goldfield 2016 cRCT	Childcare centres Canada	83 children (3-5 years)	PA : Healthy Opportunities for Preschoolers.	No intervention	BMI/BMIz 6m follow up

Study	Setting	Population	Intervention	Comparator	Outcomes
laia 2017 cRCT	Childcare centres Italy	425 children (3 year olds)	DPA : Motivational interviews with parents	Usual care	BMI/BMIz 12m & 24m follow up
Malden 2019 cRCT	Preschools Scotland, UK	42 children (3-5 years)	DPA : ToyBox-Scotland	Usual care: standard curriculum	BMIz 15-17 weeks follow up
Reilly 2006 cRCT	Nursery and home Scotland, UK	545 children	PA : Movement and Activity in Glasgow intervention in children	Usual curriculum	BMI/BMIz 6m & 12m months follow up
Slusser 2012 RCT	Clinics, pre- schools, Head Start centres. USA	160 children (2-4 years). Only include child if >50th percentile	DPA : Paediatrics Overweight Prevention through Parent Training Programme	Waitlist, no intervention	BMI/BMIz 12m follow up
Vaughn 2021 cRCT	Nursery/childcare and home USA	853 children (3-4 years)	DPA : HMHW Healthy Me, Healthy We	Usual care	BMI/BMIz 8m follow up
Yoong 2020 cRCT	Nursery/childcare Australia	522 children (2-6 years)	D: dietary guideline implementation	Usual care	BMIz 12m follow up
Zask 2012 cRCT	Preschools Australia	498 children (29- 73 months)	DPA : Tooty Fruity Vegie	Usual care	BMIz 10m follow up
Hodgkinson 2019 cRCT	Childcare centres UK	81 children (2 year olds)	DPA : Be Active, Eat Healthy resources.	No intervention	BMIz 24m follow up

Overview of forest plots / meta-analyses

- By outcome:
 - z-BMI (BMI-z) only
- By setting:
 - Childcare/Pre-school/Nursery only (includes Head Start sites in USA)
- By follow up time where data reported:
 - Short term: 3 to 9 months (within school year)
 - Mid term: 9 to 15 months (approx. one year)
 - Long term: over 15 months (more than a year)
 - By longest study timepoint
- By comparison
 - Dietary and Activity interventions vs Control (n=11; S, M, L, Longest)
 - Physical Activity interventions vs Control (n=4; S, M, Longest)
 - Dietary interventions vs Control (n=1; M)

DPA vs control

Low/Moderate confidence

NICE

Test for subgroup differences: $Chi^2 = 8.47$, df = 2 (P = 0.01), $I^2 = 76.4\%$

Sensitivity analysis - DPA vs control

Low confidence

ICC 0 0ICC 0 04Mean Difference Mean Difference Study or Subgroup Mean Difference SE Weight IV, Random, 95% CI IV, Random, 95% CI 6.1.1 Short-term (12 weeks to 9 months) Alkon 2014 0.06 -0.14 [-0.26, -0.02] -0.14 8.7% Davis 2016 0.01 0.0204 46.2% 0.01 [-0.03, 0.05] Fitzgibbon 2005 -0.03 0.0561 9.8% -0.03 [-0.14, 0.08] Fitzgibbon 2006 0.01 0.102 3.2% 0.01 [-0.19, 0.21] Fitzgibbon 2011 -0.05 0.0459 14.0% -0.05 [-0.14, 0.04] Malden 2019 (1) -0.04 0.2587 -0.04 [-0.55, 0.47] 0.5% Vaughn 2021 0.04 17.7% 0.01 [-0.07, 0.09] Subtotal (95% CI) 100.0% -0.02 [-0.05, 0.02] Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 6.84$, df = 6 (P = 0.34); $I^2 = 12\%$ Test for overall effect: Z = 0.84 (P = 0.40) 6.1.2 Medium-term (9 to 15 months) Davis 2016 -0.07 0.0357 35.2% -0.07 [-0.14, -0.00] Fitzgibbon 2005 -0.23 0.0765 16.9% -0.23 [-0.38, -0.08] Fitzgibbon 2006 -0.11 [-0.34, 0.12] laia 2017 (2) 0.05 0.1075 10.2% 0.05 [-0.16, 0.26] Slusser 2012 9.9% -0.24 [-0.46, -0.02] -0.24Zask 2012 -0.15 0.07 18.9% -0.15 [-0.29, -0.01] Subtotal (95% CI) 100.0% -0.12 [-0.20, -0.04] Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 7.63$, df = 5 (P = 0.18); $I^2 = 34\%$ Test for overall effect: Z = 3.12 (P = 0.002) 6.1.3 Long-term (15 months +) Davis 2016 (3) -0.02 0.0408 26.0% -0.02 [-0.10, 0.06] Fitzgibbon 2005 -0.18 0.0663 20.5% -0.18 [-0.31, -0.05] Fitzgibbon 2006 -0.15 0.1173 11.8% -0.15 [-0.38, 0.08] Fitzgibbon 2011 0.06 21.8% -0.01 [-0.13, 0.11] -0.49 [-0.80, -0.18] Hodgkinson 2019 0.16 7.7% laia 2017 (4) -0.06 0.1145 12.2% -0.06 (-0.28, 0.16) Subtotal (95% CI) 100.0% -0.11 [-0.21, -0.01] Heterogeneity: $Tau^2 = 0.01$; $Chi^2 = 12.62$, df = 5 (P = 0.03); $I^2 = 60\%$ Test for overall effect: Z = 2.09 (P = 0.04) -0.5 0.5 Favours DPA Favours control

Low confidence

				Mean Difference	Mean Difference
Study or Subgroup	Mean Difference	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
10.1.1 Short-term (1)	2 weeks to 9 month	s)			
Alkon 2014	-0.14	0.06	8.7%	-0.14 [-0.26, -0.02]	
Davis 2016	0.01	0.0204	46.2%	0.01 [-0.03, 0.05]	•
Fitzgibbon 2005	-0.03	0.0561	9.8%	-0.03 [-0.14, 0.08]	
Fitzgibbon 2006	0.01	0.102	3.2%	0.01 [-0.19, 0.21]	
Fitzgibbon 2011	-0.05	0.0459	14.0%	-0.05 [-0.14, 0.04]	-• +
Malden 2019 (1)	-0.04	0.2798	0.4%	-0.04 [-0.59, 0.51]	
Vaughn 2021	0.01	0.04	17.7%	0.01 [-0.07, 0.09]	+
Subtotal (95% CI)			100.0%	-0.02 [-0.05, 0.02]	•
Heterogeneity: Tau ^z =	= 0.00; Chi ^z = 6.84, d	f= 6 (P =	0.34); l²:	= 12%	
Test for overall effect:	Z = 0.84 (P = 0.40)				
10.1.2 Medium-term	(9 to 15 months)				
Davis 2016	-0.07	0.0357	40.9%	-0.07 [-0.14, -0.00]	-
Fitzgibbon 2005	-0.23	0.0765	16.8%	-0.23 [-0.38, -0.08]	
Fitzgibbon 2006	-0.11	0.1173	8.3%	-0.11 [-0.34, 0.12]	
laia 2017 (2)	0.05	0.147	5.5%	0.05 [-0.24, 0.34]	
Slusser 2012	-0.24	0.11	9.3%	-0.24 [-0.46, -0.02]	
Zask 2012	-0.15	0.07	19.1%	-0.15 [-0.29, -0.01]	
Subtotal (95% CI)			100.0%	-0.12 [-0.20, -0.05]	◆
Heterogeneity: Tau² =	= 0.00; Chi ^z = 6.62, d	f= 5 (P =	0.25); [*:	= 25%	
Test for overall effect:					
10.1.3 Long-term (15	months +)				
Davis 2016 (3)	-0.02	0.0408	26.8%	-0.02 [-0.10, 0.06]	-+
Fitzgibbon 2005	-0.18	0.0663	21.3%	-0.18 [-0.31, -0.05]	
Fitzgibbon 2006	-0.15	0.1173	12.4%	-0.15 [-0.38, 0.08]	
Fitzgibbon 2011	-0.01	0.06	22.6%	-0.01 [-0.13, 0.11]	-
Hodgkinson 2019	-0.49	0.16	8.2%	-0.49 [-0.80, -0.18]	
laia 2017 (4)	-0.06	0.154	8.6%	-0.06 [-0.36, 0.24]	
Subtotal (95% CI)			100.0%	-0.11 [-0.21, -0.01]	•
Heterogeneity: Tau² = Test for overall effect:		df= 5 (P	= 0.03); P	²= 60%	
					-1 -0.5 0 0.5
					-1 -0.5 U 0.5 Favours DPA Favours control
Test for subgroup diff	ferences: Chi ^z = 8 91	1 df = 27	P = 0.01)	P = 77.6%	FAVOUIS DEA FAVOUIS CONTION

DPA vs control

analysis of longest study timepoint

Low/Moderate confidence

Sensitivity analysis - DPA vs control analysis of longest study timepoint

ICC 0.04 Low confidence

				Mean Difference	Mean Difference		
Study or Subgroup	Mean Difference	SE We	ight	IV, Random, 95% CI	IV, Random, 95% CI		
7.1.3 Longest timepo	oint in study						
Alkon 2014	-0.14	0.06 12	.1%	-0.14 [-0.26, -0.02]			
Davis 2016 (1)	-0.02 0.0	0408 15	.4%	-0.02 [-0.10, 0.06]	+		
Fitzgibbon 2005	-0.18 0.0	0663 11	.2%	-0.18 [-0.31, -0.05]			
Fitzgibbon 2006	-0.15 0.1	1173 5	.8%	-0.15 [-0.38, 0.08]			
Fitzgibbon 2011	-0.01	0.06 12	.1%	-0.01 [-0.13, 0.11]	+		
Hodgkinson 2019	-0.49	0.16 3	.6%	-0.49 [-0.80, -0.18]			
laia 2017 (2)	-0.06 0.1	1145 8	.0%	-0.06 [-0.28, 0.16]			
Malden 2019 (3)	-0.04 0.2	2587 1	.5%	-0.04 [-0.55, 0.47]			
Slusser 2012	-0.24	0.11 8	.3%	-0.24 [-0.46, -0.02]			
Vaughn 2021	0.01	0.04 15	.5%	0.01 [-0.07, 0.09]	+		
Zask 2012	-0.15	0.07 10	.6%	-0.15 [-0.29, -0.01]			
Subtotal (95% CI)		100	0.0%	-0.10 [-0.17, -0.04]	◆		
Heterogeneity: Tau ^z = 0.01; Chi ^z = 21.69, df = 10 (P = 0.02); i ^z = 54%							
Test for overall effect:	Z = 3.03 (P = 0.002)						
					-1 -0.5 0 0.5 1		
					Favours DPA Favours control		
Test for subgroup dif	ferences: Not applicable	е					

Low confidence

### 11.3 Longest timepoint in study Alkon 2014	CI
Davis 2016 (1) -0.02 0.0408 15.7% -0.02 [-0.10, 0.06]	
Fitzgibbon 2005	
Gitzgibbon 2006 -0.15	
6itzgibbon 2011 -0.01 0.06 12.4% -0.01 [-0.13, 0.11]	
Hodgkinson 2019 -0.49 0.16 3.7% -0.49 [-0.80, -0.18] -0.49 [-0.80, -0.18] -0.49 [-0.80, -0.18] -0.49 [-0.80, -0.18] -0.49 [-0.80, 0.24] -0.49 [-0.80, 0.24] -0.49 [-0.80, 0.24] -0.49 [-0.80, 0.24] -0.49 [-0.80, 0.24] -0.49 [-0.80, 0.24] -0.49 [-0.80, 0.24] -0.49 [-0.80, 0.24] -0.24 [-0.40, -0.02] -0.24 [-0.40, -0.02] -0.24 [-0.40, -0.02] -0.24 [-0.40, -0.02] -0.24 [-0.40, -0.02] -0.24 [-0.40, -0.02] -0.24 [-0.40, -0.02] -0.25 [-0.20, -0.01] -0.25 [-0.20, -0.20] -0.25 [-0.20, -0.20] -0.25 [-0.20, -0.20] -0.25 [-0.20, -0.20] -0.25 [-0.20, -0.20] -0.25 [-0.20, -0.20] -0.25 [-0.20, -0.20] -0.25 [-0.20, -0.20] -0.25 [-0.20, -0.20] -0.25	
aia 2017 (2)	
Malden 2019 (3) -0.04 0.2798 1.4% -0.04 [-0.59, 0.51] Blusser 2012 -0.24 0.11 6.5% -0.24 [-0.46, -0.02] /aughn 2021 0.01 0.04 15.8% 0.01 [-0.07, 0.09] Zask 2012 -0.15 0.07 10.9% -0.15 [-0.29, -0.01]	
Slusser 2012 -0.24 0.11 6.5% -0.24 [-0.46, -0.02]	
/aughn 2021 0.01 0.04 15.8% 0.01 [-0.07, 0.09]	
Task 2012 -0.15 0.07 10.9% -0.15 [-0.29, -0.01]	
,	
Heterogeneity: Tau ² = 0.01; Chi ² = 21.68, df = 10 (P = 0.02); I ² = 54%	
est for overall effect: Z = 3.02 (P = 0.003)	

Test for subgroup differences: Not applicable

NICE

PA vs control

Moderate confidence

Sensitivity analysis - PA vs control

ICC 0.04

Moderate confidence

Moderate confidence

NICE

PA vs control - analysis of longest study timepoint

Moderate confidence

Sensitivity analysis - PA vs control analysis of longest study timepoint

ICC 0.04

Moderate confidence

Moderate confidence

- (1) Adjusted using an ICC of 0.04
- (2) Adjusted using an ICC of 0.04

NICE

(1) Unadjusted for clustering

(2) Unadjusted for clustering

D vs control

Low/Moderate confidence

				Mean Difference	Mean Difference
Study or Subgroup	Mean Difference	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
5.1.1 Medium-term (9	9 to 15 months)				
Yoong 2020	-0.17	0.1429	100.0%	-0.17 [-0.45, 0.11]	-
Subtotal (95% CI)			100.0%	-0.17 [-0.45, 0.11]	◆
Heterogeneity: Not ap	plicable				
Test for overall effect:	Z=1.19 (P=0.23)				
Total (95% CI)			100.0%	-0.17 [-0.45, 0.11]	•
Heterogeneity: Not ap	plicable				
Test for overall effect:	•				-2 -1 0 1 2
Test for subgroup diff	, ,	able			Favours diet Favours control

Serious adverse events

- No serious adverse events were reported in the 16 studies included in the meta-analysis
- One of the 71 studies (Barkins 2018, not included in the meta-analysis) reported "One
 parent fractured an ankle while roller-skating during an event at a local community center".

Funding

- All 16 studies included in the meta-analysis reported the source of their funding. 15 received no funding from industry, and one (laia) received Euros10,000 from a leading frozen veg company in Italy (a Co-operative)
- Of the other 55 studies, 4 did not report their source of funding (one was a PhD), one reported simply 'no external funding, one (Walton) was funded by Danone, and one received some funding from the Safeway Foundation.

Closing remarks

- Interventions in childcare settings which aim to improve <u>diet and</u> <u>physical activity</u> behaviours appear to be effective for zBMI in the medium and long term (6 studies each; Low/moderate confidence), but not in the short-term (7 studies). Sensitivity analysis did not change this overall result.
- Interventions in childcare settings which aim to improve <u>physical activity</u> behaviours appear to be ineffective for zBMI in the short (3 studies) and medium term (2 studies) (moderate confidence). Sensitivity analysis did not change this overall result.
- An intervention in a childcare setting which aimed to improve <u>diet</u> behaviours appears to be ineffective for zBMI in the medium term (Low/moderate confidence).