Nintedanib for progressive fibrosing interstitial lung disease excluding idiopathic pulmonary fibrosis [ID1599]

Lead team presentation

Chair: Amanda Adler Technology Appraisal Committee B Lead team: Mark Glover (clinical), Nick Latimer (cost), Tony Wootton (lay) ERG: Kleijnen Systematic Reviews (KSR) Technical team: Aminata Thiam, Yelan Guo, Nicole Elliott Company: Boehringer Ingelheim 1st committee meeting 7 July 2021 virtual

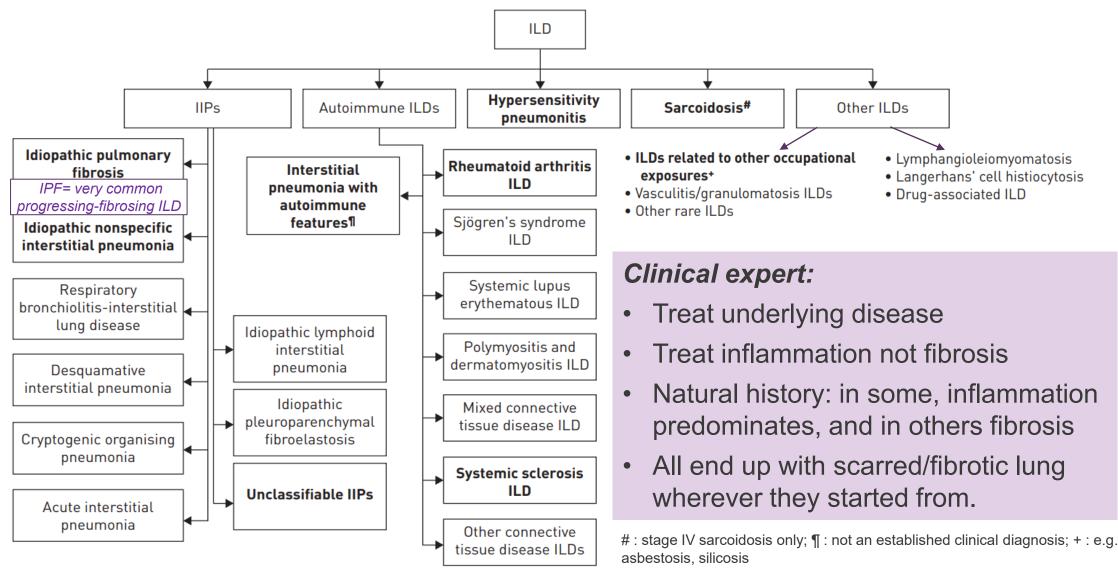
© NICE 2021. All rights reserved. Subject to notice of rights. The content in this publication is owned by multiple parties and may not be re-used without the permission of the relevant copyright owner.

Key issues: clinical

- Where in NHS treatment pathway would nintedanib fit, and what reflects standard care?
- In the trial, INBUILD:
 - Do the diagnostic criteria for progressive-fibrosing interstitial lung disease (PF-ILD) reflect NHS practice?
 - Do the "restricted" medications reflect NHS clinical practice?
 - Do protocol violations related to 'restricted medicines' bias results?
 - Is 'placebo' a relevant comparator to reflect practice?
 - Is nintedanib clinically more effective than placebo?
 - Does nintedanib prolong life?
- In NHS practice, would nintedanib be offered along with immunomodulatory therapies?

NICE

Key issues: cost effectiveness


- Does evidence from the trial suggest nintedanib improves survival? If not, is it reasonable to model a survival benefit?
- When extrapolating overall survival beyond end of the trial:
 - Appropriate to assume similar natural history between and progressive-fibrosing interstitial lung disease (PF-ILD) and idiopathic pulmonary fibrosis (IPF) including survival?
 - Which of the Bayesian and frequentist approaches is most appropriate?
 - Does heterogeneity between epidemiological data for IPF and INBUILD and IPF trials allow comparison?
- Is the model fit for purpose with respect to treatment discontinuation?

Ninteda	nib (OFEV, Boehringer Ingelheim)
Marketing authorisation	"indicated in adults for the treatment of idiopathic pulmonary fibrosis (IPF)." NICE TA379
	"also indicated in adults for the treatment of other chronic fibrosing interstitial lung diseases (ILDs) with a progressive phenotype" TODAY's indication
	 Other indications: systemic sclerosis associated interstitial lung disease – no NICE submission planned Locally advanced, metastatic or locally recurrent non-small cell adenocarcinoma of the lung after 1st-line chemotherapy, in combination with docetaxel (VARGATEF, Nov. 2014) – recommended by NICE (TA347)
Mechanism	Tyrosine kinase inhibitor which targets 3 growth factor receptors
Administration & dose	 Oral; 150 mg twice daily 100 mg twice daily for patients with mild hepatic impairment (Child Pugh A), and patients who do no tolerate recommended dose;
Treatment	Administered until disease progression or unacceptable toxicity
Price	List price: £2,150 per pack of 60 capsules tablets Patient access scheme (PAS) discount in place (confidential)

Background interstitial lung diseases - ILD

- Group of \sim 200 diseases characterised by inflammation + fibrosis
 - includes idiopathic pulmonary fibrosis (IPF), idiopathic interstitial pneumonias, autoimmune, hypersensitivity pneumonitis, sarcoidosis
- Some worsen despite treating underlying diseases so are 'progressive' and develop fibrotic/scarred lung, so 'progressive-fibrosing' ILD (PF-ILD)
- Diagnosis: history, serology, high resolution CT, sometimes biopsy
- Symptoms: dyspnoea, worse physical performance and quality of life
- Prevalence: Company ~ 876 patients in England;
- Cumulative incidence: Clinician 15% with ILD develop PF-ILD
- Mortality: Company similar to patients with idiopathic pulmonary fibrosis
- Care: Chest physicians and rheumatologists
- NICE guidelines for ILD but not progressive fibrosing phenotype
- Treatment : depends on underlying disease: corticosteroids for sarcoidosis; azathioprine; mycophenolate; cyclophosphamide, rituximab NICE 5

Interstitial lung disease most likely to have progressive fibrosing phenotype

NICE

Abbreviations: IIPs : idiopathic interstitial pneumonias; ILD: interstitial lung disease

Source: Cottin et al., 'Presentation, diagnosis and clinical course of the spectrum of progressive-fibrosing interstitial lung diseases'. Eur Respir Rev 2018; 27: 180076

6

Patient perspective: Living with condition

- "When you are diagnosed with PF-ILD, you are given a death sentence. You are told that disease is incurable, only going to get worse, you have, on average, only 3-4 years to live"
- "It feels like an open prison you can do almost everything you used to do. But, within a short time, you start to become more and more breathless"
- "At first, you find it difficult to walk up slopes/ climb stairs, without becoming severely breathless. In time, even walking on the flat becomes a challenge and you have to stop frequently to catch breath."
- 2/3 of patients suffer from debilitating cough, some patients are so embarrassed by it that they are reluctant to see friends or family"
- "Eventually ...you find yourself stuck at home and dependent on supplementary oxygen ... You need help from carer for taking a shower or getting dressed."
- As symptoms worsen, "..you just concentrate on managing ..on getting through the day. The strain is taken by your carer, if you have one, who has to both stay strong for you and manage the home and links with family and the health care system"
- "In time, you will sadly die from respiratory failure or a related illness, like pneumonia"

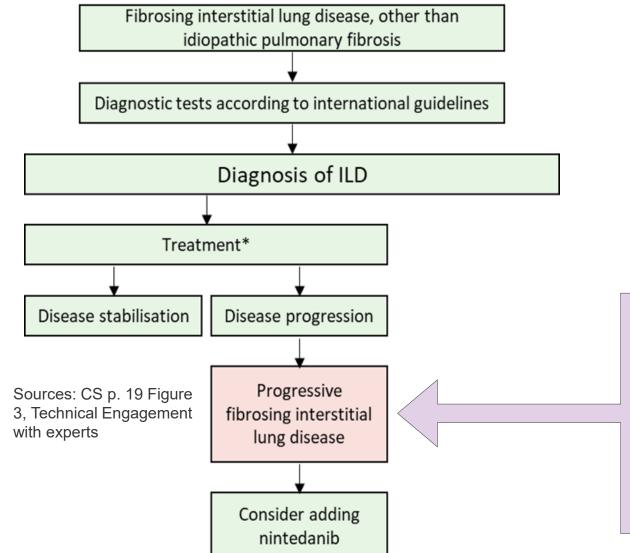
Sources: Patient expert submission from Action for Pulmonary Fibrosis

Patient perspective: Nintedanib

- New medications: Patients desperate for new medications like nintedanib which has been a 'game changer' for people with idiopathic pulmonary fibrosis (IPF). People with progressive fibrotic ILD envy access of IPF patients with IPF to anti-fibrotics: "Why them and not me?"
- Adverse effects: Patients aware of adverse effects, especially diarrhoea. But most IPF patients stay on drug. Potential benefits outweigh adverse effects
- Current standard of care:
 - Concerned about absence of clinical trials to prove safety and efficacy of current treatments
 - Treatment with corticosteroids and other immunosuppressants have adverse effects causing patients to swap treatments many times, or give up

Decision problem

	Final NICE scope	Company submission
Population	People with fibrosing interstitial lung disease excluding idiopathic pulmonary fibrosis that has progressed despite treatment	Same – adults only
Intervention	Nintedanib	Nintedanib
Comparators	Established clinical management without nintedanib including, but not limited to: • immunosuppressants ^{#,*} • corticosteroids* • infliximab* • rituximab* • best supportive care	Placebo: added to treatment patients received in INBUILD trial which restricted use for immunomodulatory treatments during 1 st 6 months of trial


#Immunosuppressants: such as azathioprine, cyclophosphamide, mycophenolate*Do not have currently have a marketing authorisation in the UK for this indication

Is nintedanib added to standard care or does it replace standard care? Would clinicians stop any drugs when starting nintedanib? Are the company's choice of comparators appropriate?

Decision problem outcomes

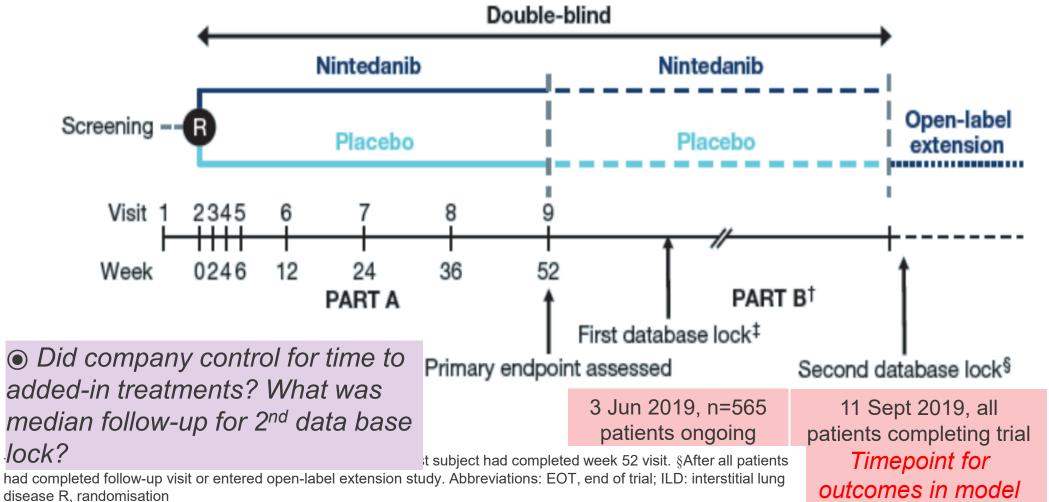
	Final NICE scope	Company submission
Outcomes	 lung function physical function exacerbation rate progression-free survival mortality adverse effects of treatment health-related quality of life 	 Forced vital capacity (FVC) at 52 weeks Absolute change from baseline in total score on K-BILD questionnaire at 52 weeks Time until acute exacerbation Death at 52 weeks Acute exacerbation of ILD or death up to database lock 2 Death up to database lock 2 Adverse events Not reported: physical function
Subgroups to be considered	If the evidence allows - ILD type	Baseline characteristics Underlying ILD disease

Company's positioning of nintedanib

 Nintedanib will be offered to patients that have progressed despite receiving conventional treatment.

Clinical expert:

• Company's choice of positioning clinically sensible and appropriate


*Conventional treatments based on the specific interstitial lung disease, including, but not limited to, corticosteroids, mycophenolate mofetil, azathioprine, cyclophosphamide, methotrexate, rituximab.

Where would nintedanib be used in NHS practice? What is standard care? Would drugs be stopped when adding nintedanib?

Clinical effectiveness

INBUILD trial multi-country

- P: 633 people with progressive fibrosing ILD
- I: nintedanib without azathioprine, cyclosporin, tacrolimus, rituximab, cyclophosphamide, mycophenolate mofetil and oral corticosteroids
- C: placebo without azathioprine, cyclosporin, tacrolimus, rituximab, cyclophosphamide, mycophenolate mofetil and oral corticosteroids
- Design: 52-week initial period (PART A) then (PART B), where patients continued PART A
- O: 1° endpoint FVC at 52 weeks at end of Part A FVC between groups at 52 weeks

INBUILD outcomes

Company used few outcomes from INBUILD in model

INBUILD, N=663 (nintedanib n=332; placebo n=331)	In model
l° outcome:	
Annual rate of decline in FVC	
2º outcomes [†] :	
Change from baseline K-BILD questionnaire total score = quality of life	
Time until 1st acute exacerbation or death	\checkmark
Time until death	X
Other 2° endpoints	
Time to death due to respiratory cause	
Time to progression (≥10% absolute decline in FVC % predicted) or death	
Proportion of patients with relative decline in FVC % predicted of >10% vs. baseline	
Proportion of patients with relative decline in FVC % predicted of >5% vs. baseline	×
Change from baseline symptoms, dyspnoea domain score	
Change from baseline symptoms, cough domain score	
Other model-relevant endpoints	
EQ-5D	
Safety	
Adverse events; physical examination; vital signs; bodyweight	

• Are these the relevant endpoints? If FVC a relevant endpoint? Are exacerbations relevant?

Abbreviations: FVC, forced vital capacity; HRQoL, health-related quality of life; ILD, interstitial lung disease; K-BILD, King's Brief Interstitial Lung Disease Questionnaire; L-PF, living with pulmonary fibrosis. † Main secondary endpoints were not powered to show statistical significance; Source: CS table 8 p. 28 14

INBUILD inclusion vs NHS diagnostic criteria

INBUILD inclusion criteria

Progressive disease defined as: \geq 1 following criteria within past 24 months

- a relative decline of ≥10% in forced vital capacity (FVC) % predicted;
- a relative decline of 5% to <10% in FVC% predicted, with worsening respiratory symptoms or, increasing fibrotic changes on chest imaging;
- worsening respiratory symptoms and increasing fibrotic changes on chest imaging

Clinical and patient experts: INBUILD criteria reasonable

NHS

- No defined criteria
- Clinical experts classify a patient if:
 - patient receive conventional treatment for underlying ILD
 - lung function worsen despite treatments
 - fibrosis on CT scans

 Are the diagnostic criteria for PF-ILD in INBUILD generalisable to NHS practice? Are the aetiologies in NHS practice reflected in this trial?
 If nintedanib were recommended, would clinicians expect these criteria to be specified in the guidance?

INBUILD trial: baseline characteristics

	Nintedanib (n=332)	Placebo (n=331)
Male – no. (%)	179 (54)	177 (54)
Age – years	65 ±10	66 ±10
Former or current smoker – no. (%)	169 (51)	169 (51)
Criteria for disease progression in 24 months be	efore screening (grou	uped) – no. (%)
Relative decline in FVC ≥10% predicted	160 (48)	172 (52)
Relative decline in FVC ≥5–<10% predicted combined with worsening of respiratory symptoms and/or increased extent of fibrosis on HRCT	110 (33)	97 (29)
Worsened respiratory symptoms and increased extent of fibrosis on HRCT only	62 (19)	61 (18)
FVC		
Mean value – mL	2,340±740	2,321±728
% of predicted value	68±16	69±15

NICE Abbreviations: FVC = forced vital capacity, K-BILD = King's Brief Interstitial Lung Disease, Plus–minus values are means ± SD. HRCT = high-resolution computed tomography;

16

INBUILD trial Part A: restricted medications

Company: Concomitant immunomodulatory treatments not allowed during first 6 months; but after 6 months, allowed for patients with worsening ILD and/or connective tissue disease

1st 6 months: *not* allowed, including: azathioprine, cyclosporin, tacrolimus, rituximab, other disease modifying drugs for RA, cyclophosphamide, mycophenolate mofetil and oral corticosteroids >20mg/day; small % of protocol violations (~17%) Placebo 6 months 52 weeks Baseline Nintedanib Baseline and 1st 6 months: medications for After 6 months: restricted medications OK – underlying rheumatoid arthritis and connective tissue disease allowed at stable doses not Over 52 weeks: 16% started them from "restricted medications" beginning of trial more in placebo group

Ooes this trial address the clinical decision problem? Would clinicians offer any of the 'restricted' medications along side nintedanib? Would clinicians stop treatments before starting nintedanib?

Abbreviations: CTD: connective tissue disease; ILD: interstitial lung disease; RA: rheumatoid arthritis;

Comparator in INBUILD – company and ERG

ERG doubts control arm reflects clinical care without nintedanib

Company:

- Population in scope progresses despite treatment so won't be benefiting from conventional therapies, and currently no other anti-fibrotic therapy licensed for progressive disease - justifies placebo
- Clinical experts consensus agreed immunomodulatory treatments may be used to treat inflammatory component, extrapulmonary aspects of underlying disease; immunomodulatory treatments may not treat fibrosis *per se*
- No randomised controlled trials suggest unlicensed treatments delay fibrosis
- Some immunosuppressants allowed in 1st 6 months of trial, provided stable doses

ERG:

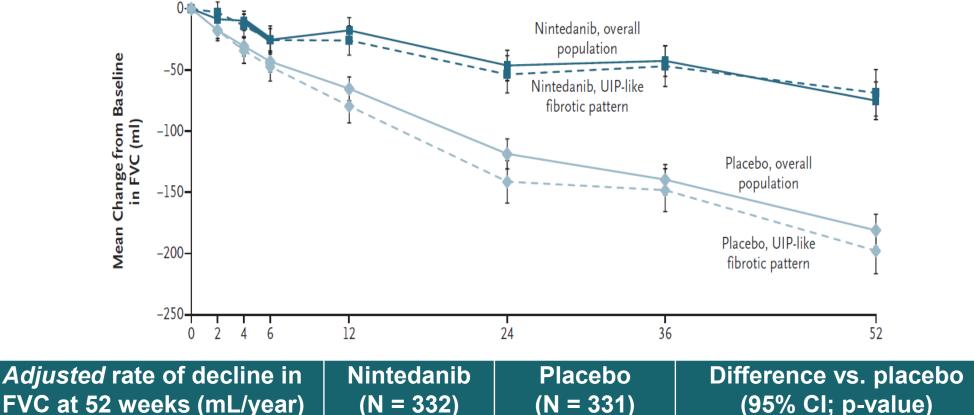
- Doubtful control arm represents current best practice or best supportive care
- Therapies restricted/not allowed during 1st 6 months actually used in NHS practice
- Company should have included other relevant comparators in scope
- Given lack of evidence for most comparators, ERG has no suggestions for an approach
- Effectiveness of current treatments in clinical practice might be underestimated

Comparator in INBUILD – clinicians

Stakeholders agree placebo arm represents standard care

Clinical experts

- No evidence immunosuppressants play significant role once disease develops
- In practice, if patients progress on immunosuppressant treatments they may be stopped

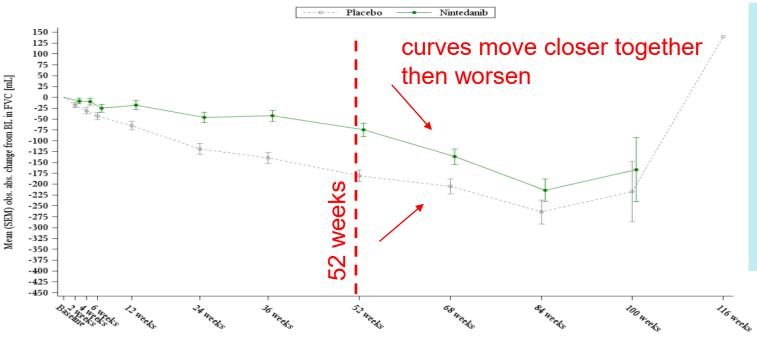

British Thoracic Society

- Common to reduce or stop immunosuppression because lack of effectiveness considered treatment failure
- Acceptable that for 1st 6 months of trial, patients not on 2nd line immunosuppressants
- Conventional therapy includes non-evidence-based therapies, such as:
 - best supportive care when immunosuppression not suitable because of risk of infections, consistent with placebo arm in INBUILD
 - glucocorticoid only, consistent with placebo arm 69% of patients had glucocorticoids at baseline or over 52-weeks
 - combination therapy with glucocorticoid & 2nd line immunosuppression with mycophenolate or azathioprine (n.b. 'restricted'), consistent with placebo arm -40% of patients had non steroid anti-rheumatic or anti-inflammatory therapies at baseline or over 52 weeks

Does placebo arm of INBUILD represent best supportive care of NHS practice?

Results INBUILD 1° outcome rate of decline in forced vital capacity (FVC) at 52 weeks

Solid line relevant population


Overall population	-80.8±15.1	-187.8±14.8	107.0 (65.4, 148.5; p<0.001)

• What is declined 'adjusted' for? Do units in figure reflect units in analysis?

Abbreviations: FVC, forced vital capacity; ILD, interstitial lung disease; UIP, usual interstitial pneumonia; Source: CS Figure 6 p 41, table 15 p.40.

INBUILD 1° outcome to 24 months end Part B

Curves start converging and worsen after 52 weeks

Company: "over whole trial analysis should be interpreted with caution. Trial design allowed variable duration in Part B, many had missing FVC assessment values after week 52"

Adjusted annual rate of decline in FVC (mL/ year) up 2 nd data base lock (rounded)	Nintedanib (N = 332)	Placebo (N = 331)	Difference vs. placebo (95% Cl)
Overall population	-118 ±11	-176±11	58 (26-89)

Abbreviations: DBL2, database lock 2 occurred approximately 3 months after the 52 weeks; FVC, forced vital capacity; UIP, usual interstitial pneumonia Source: Response to Clarification, Question A5, Figure 2, page 12; CS table 15 p.40

Object the evidence suggest nintedanib has a long-term effect or wanes? Company encourages 'caution' but uses whole trial analysis for modelling?

INBUILD 2º main outcomes

Nintedanib associated with lower risk of 1st acute exacerbation or death at end of Part B

Timepoint	Nintedanib	Placebo	Difference vs. placebo			
	(N = 332)	(N = 331)	(95% Cl; p-value)			
Time to 1st acute exacerbation or death (no. with event/total no. [%])						
52 weeks	26/332	32/331	Hazard ratio= 0.80			
	(7.8)	(9.7)	(0.48, 1.34; p=0.3948) [‡]			
up to 2 nd data base lock	46/332	65/331	Hazard ratio = 0.67			
	(13.9)	(19.6)	(0.46 to 0.98)			
Absolute change from baseline in total score on K-BILD						
52 weeks§	0.55±0.60	-0.79±0.59	Mean difference = 1.34 (-0.31, 2.98; p=0.1115) [‡]			

§ For analysis of scores on K-BILD questionnaire, 332 patients were included in nintedanib group and 330 in placebo group in overall population ‡ Widths of confidence intervals have not been adjusted for multiple comparisons, so intervals should not be used to infer definitive treatment effect

Abbreviations: DBL2, database lock 2 occurred approximately 3 months after the 52 weeks; FVC, forced vital capacity; ILD, interstitial lung disease; K-BILD, King's Brief Interstitial Lung Disease Questionnaire; NR, not reported; UIP, usual interstitial pneumonia. Source: CS Figure 6 p 41

NICE • How did the company model exacerbations?

INBUILD 2° outcome death

Timepoint	Nintedanib (N = 332)	Placebo (N = 331)	Hazard ratio (95% Cl; p-value)
Time to death (no. with e	event/total no.	[%])	
52 wooko	16/332	17/331	0.94
52 weeks	(4.8)	(5.1)	(0.47, 1.86; p=0.85) [‡]
up to 2 nd data base	36/332	45/331	0.78
lock	(10.8)	(13.6)	(0.50 to 1.21)

‡ The widths of the confidence intervals have not been adjusted for multiple comparisons, so the intervals should not be used to infer definitive treatment effects

Is nintedanib clinically more effective than placebo? Does the evidence suggest nintedanib reduces death?

Abbreviations: DBL2, database lock 2 occurred approximately 3 months after the 52 weeks; FVC, forced vital capacity; UIP, usual interstitial pneumonia Source: CS Figure 6 p 41

Subgroup analyses

Treatment effect not driven by a type of disease

	N analysed Placebo Nir		Estimate [95% CI]	Treatment-by- subgroup-by-time interaction p-value		
Gender				0.0553		
Male	177	179	145.20 [88.47; 201.93]	0.0333		
Female	154	153	64.21 [3.87; 124.55]			
A.s				0.5123		
Age group <65 years	121	139	86.87 [21.53; 152.21]	0.5125		
>=65 years	210	193	115.13 [61.41; 168.84]			
Race				0.7736		
White	246	242	110.59 [61.97; 159.20]	0.7750		
Asian	80	84	92.98 [9.30; 176.67]			
Black or African American	5	5	222.48 [-143.09; 588.05]			
Baseline FVC % predicted				0.3695		
<=70%	193	196	91.68 [37.36; 145.99]			
>70%	138	136	129.98 [66.22; 193.73]			ERG: Very similar
Underlying ILD Diagnosis in Groups				0.4139		point estimates
Hypersensitivity pneumonitis	89	84	73.12 [-8.57; 154.81]		•	and confidence
Idiopathic nonspecific interstitial pneumonia	61	64	141.61 [46.04; 237.17]			
Unclassifiable idiopathic interstitial pneumonia	50	64	68.33 [-31.43; 168.10]			intervals
Autoimmune ILDs	88	82	104.02 [21.11; 186.92]		1	
Other ILDs	43	38	197.13 [77.57; 316.70]			+
ALL	331	332	106.96 [65.42; 148.50]			
 Statistical te 	st for int	erac	tion?		**** * * * * * * *	3 \$ \$ \$ \$ \$ \$ \$ \$ \$
Abbreviations: ILD: interstitial lung disease					Favours Placebo Favours Nintedanib Nintedanib – Placebo difference in adjus	

[mL] over 52 weeks and 95% confidence interval

Source: CS, Appendix E

INBUILD safety profile at 52 weeks

Gastrointestinal adverse effects more common with nintedanib

AE	Nintedanib	Placebo
Any (n [%])	317 (95.5)	296 (89.4)
Any except for progression of ILD	317 (95.5)	295 (89.1)
Most frequent AEs		
Diarrhoea	222 (66.9)	79 (23.9)
Nausea	96 (28.9)	31 (9.4)
Bronchitis	41 (12.3)	47 (14.2)
Nasopharyngitis	44 (13.3)	40 (12.1)
Dyspnoea	36 (10.8)	44 (13.3)
Vomiting	61 (18.4)	17 (5.1)
Cough	33 (9.9)	44 (13.3)
Decreased appetite	48 (14.5)	17 (5.1)
Headache	35 (10.5)	23 (6.9)
ALAT increased	43 (13.0)	12 (3.6)
Progression of ILD	16 (4.8)	39 (11.8)
Weight loss	41 (12.3)	11 (3.3)
ASAT increased	38 (11.4)	12 (3.6)
Abdominal pain	34 (10.2)	8 (2.4)
Severe AEs	60 (18.1)	73 (22.1)
Serious AEs	107 (32.2)	110 (33.2)
Fatal AE		
Any	11 (3.3)	17 (5.1)
Any except progression of ILD	10 (3.0)	14 (4.2)
AE leading to discontinuation	65 (19.6)	34 (10.3)
AE leading to permanent dose reduction	110 (33.1)	14 (4.2)

- Diarrhoea most common adverse event on nintedanib
- Increased frequency of indicators of hepatic injury
- Clinical experts:
 - ~25 -30% of patients may not tolerate nintedanib in longer term.
 - No risk of infection compared with immunosuppressants.

Company did not include other comparators

Company: indirect treatment comparison not feasible:

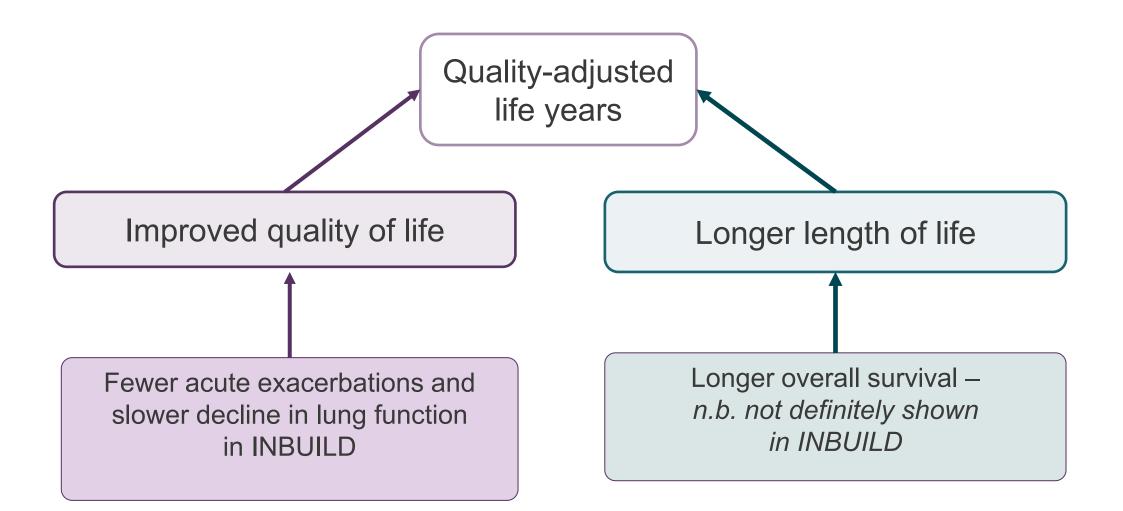
- Only 1 study including pirfenidone suitable but 24 weeks follow-up
- Comparison immature as PF-ILD chronic condition

ERG: agreed no identified studies suitable for indirect comparison

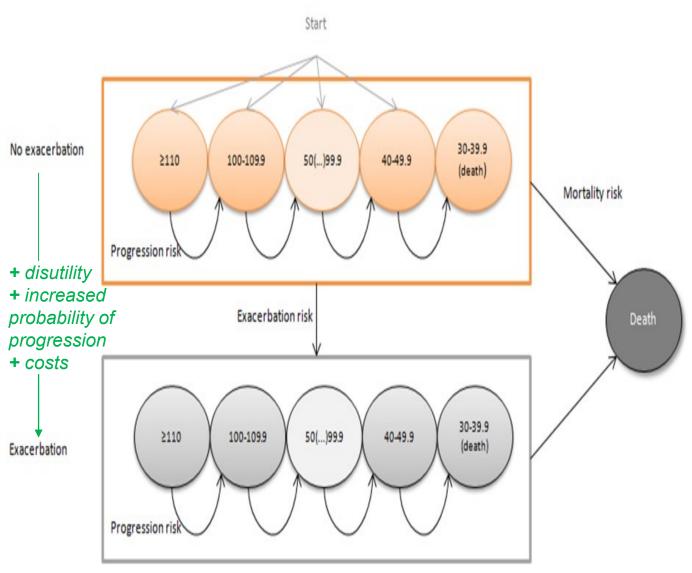
- Pirfenidone not a relevant comparator in scope
- Company has not included any comparators from scope

Has the company addressed the decision problem?

NICE


Cost effectiveness

Key issues: cost effectiveness


- Extrapolating overall survival :
 - Appropriate to assume same natural history between idiopathic pulmonary fibrosis (IPF) and progressive-fibrosing ILD including for survival?
 - If so, how to extrapolate? Bayesian or frequentist? Of the 2 Weibull curves selected by clinicians which, if either, does committee prefer?
 - Do differences between epidemiological/trial data for IPF and trial data INBUILD for progressive fibrosing ILD allow a meaningful comparison?
 - Does evidence from the trial suggest nintedanib has a long-term survival benefit?
 - Is company's modelling of stopping treatment appropriate?

How company accrues quality-adjusted life years

Treatment with nintedanib instead of without

Company model to estimate cost effectiveness

- Markov model same as nintedanib for IPF in TA379; numbers refer to FVC percentage predicted (FVC%pred)
- Efficacy informed by decline in lung function and acute exacerbation from INBUILD
- Efficacy data based on 2nd database lock of INBUILD
- Mortality risk informed by parametric extrapolation of overall survival, applied irrespective of health state
- Cycle length: 3 months
- 3.5% discounting
- Lifetime horizon
- NHS and Personal Social Services (PSS) perspective

Does the company provide sufficient evidence to estimate transition probabilities ?

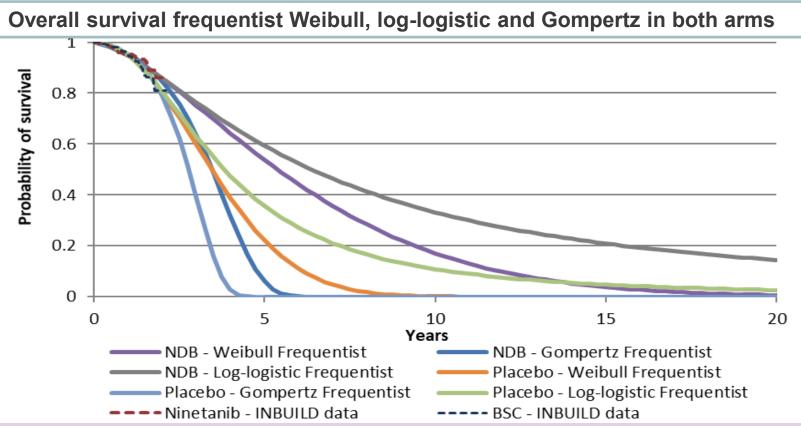
Abbreviations: FVC%Pred : FVC percentage predicted; ILD: interstitial lung disease; IPF: idiopathic pulmonary fibrosis; OS: overall survival

30

Extrapolating overall survival is key driver

FVC over time - 1° trial outcome and health states based on this - may also impact cost effectiveness

Model inputs	Impact on ICER	ERG and company assumptions
Overall survival		 Company: Bayesian Weibull distribution ERG: frequentist Weibull distribution
Time to 1st acute exacerbation		Company & ERG: exponential distribution
Recurrent exacerbation		Company & ERG: included recurrent exacerbation
Loss of lung function		Company & ERG: estimated from odds ratio
Health related quality of life		 Company: lower utility for 80-89 ERG: adjusted utility assuming linear decline



Extrapolating overall survival beyond trial 2 approaches: frequentist + Bayesian

Company's frequentist approach – large differences in survival

- Frequentist based only on progressive fibrosis ILD data from trial: standard parametric overall survival distributions fitted independently to each arm
- Company assessed goodness of fit using AIC/BIC; it considered models OK if within 3 points of parametric model with lowest AIC or BIC; included loglogistic, Gompertz and Weibull

Are the modelled results plausible, given trial results? Can committee choose a 'best' curve with information presented?

Abbreviations: AIC: Akaike information criterion; BIC: Bayesian information criterion; FVC%Pred: forced vital capacity % predicted; OS: overall survival Source: Figure 1 from ERG Response to additional questions

Extrapolating overall survival beyond trial

Company's Bayesian approach

Company's assumptions and methods:

- Company assumes IPF and progressive fibrosing ILD have same natural history including survival
 - Brown et al 2020 showed PF-ILD and IPF patients who don't receive antifibrotic treatment have similar disease trajectories
- Company used IPF trial data to generate 'informative prior' for progressive fibrosing ILD by:
 - Obtaining data: from RCTs of IPF and from extensions of trials, including: TOMORROW (phase II); INPULSIS I and II (phase III); and INPULSIS ON (long-term extension all together)
 - Propensity score weighting: matching patients with IPF and progressive fibrosing ILD for characteristics including age, sex, race (Asian versus other), disease duration;
 % predicted diffusing capacity for carbon monoxide (DLCO) corrected for haemoglobin;
 % predicted forced vital capacity at baseline; smoking
 - **Generating survival curves**: for matched and weighted IPF patients, and parametric models were fitted
 - Generating informative priors: from those IPF parametric models, the shape parameters were retained for nintedanib and placebo
 - OS curves generated for progressive fibrosing ILD: parametric models were fit to the INBUILD data, using the shape parameters from the IPF models as informative priors

Is company's approach methodologically sound? Is it appropriate to assume similar natural history between IPF and PF-ILD including survival? Has committee been presented with evidence? What other evidence from other treatments for IPF could inform modelling?

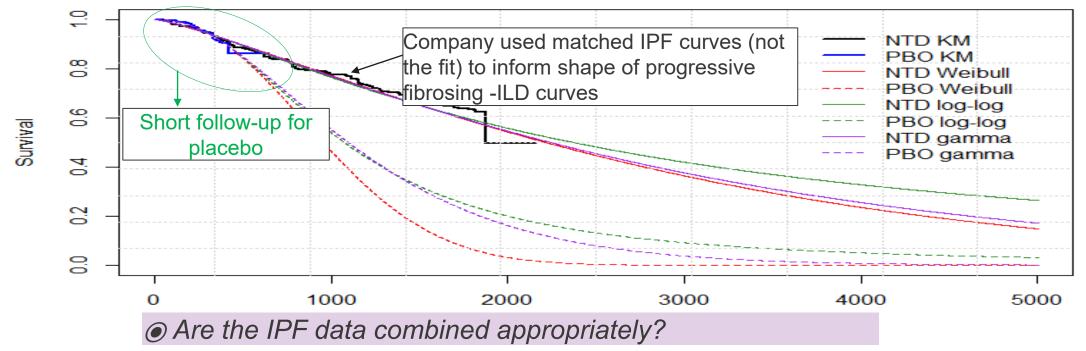
Brown et al. 2020 suggests lower not equal death rates for placebo groups in PF-ILD (INBUILD) vs. IPF (INPULSIS)

TABLE 2 Proportion of subjects who died over 52 weeks in the placebo groups of the INBUILD and INPULSIS trials

	INBUILD trial			INPULSIS trials (n=423)
	Overall population (n=331)	UIP-like fibrotic pattern on HRCT (n=206)	Other fibrotic patterns on HRCT (n=125)	
Deaths over 52 weeks Hazard ratio <i>versus</i> INPULSIS trials [#]	17 (5.1) 0.63 (0.35–1.13)	16 (7.8) 0.97 (0.53–1.76)	1 (0.8) 0.10 <mark>(</mark> 0.01–0.70)	33 (7.8)
Nominal p-value [¶]	0.12	0.92	0.004	

fibrosis (IPF) versus non-IPF); [¶]: based on a log-rank test.

NICE


Abbreviations: IPF: idiopathic pulmonary fibrosis, PF-ILD: progressive-fibrosing ILD;

Extrapolating overall survival beyond trial

Company's Bayesian approach: IPF survival models used to generate prior

- Weibull, log-logistic and gamma distributions of IPF survival models produced lowest overall AICs/BICs across nintedanib and placebo
- Small differences in fit between models, therefore company used all of them to inform *shape* parameter prior of progressive fibrosing ILD for both nintedanib and placebo.
- For each IPF model, company used same survival model applied to progressive fibrosing ILD

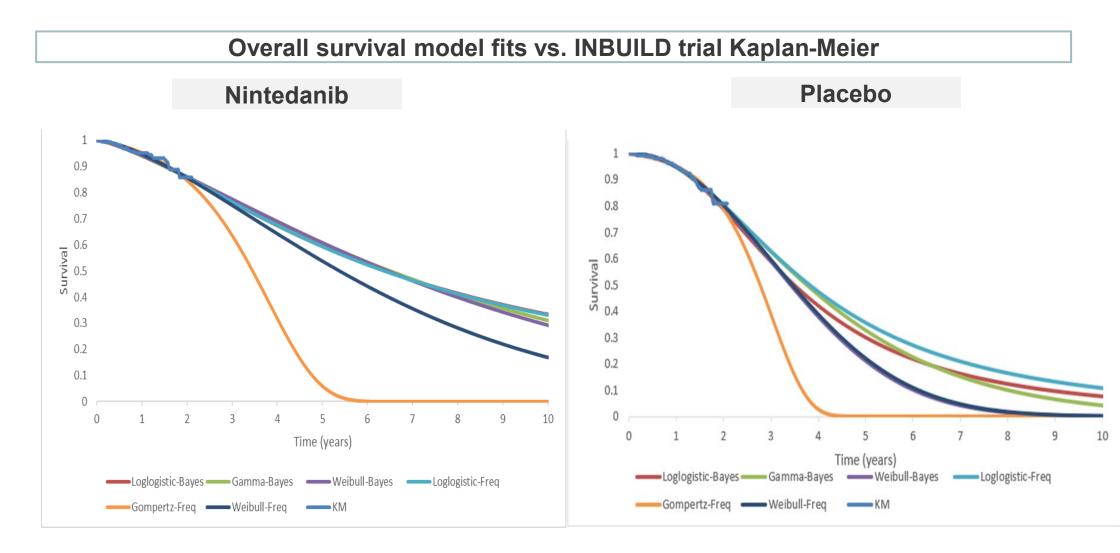
Matched Kaplan-Meier curves for IPF placebo and nintedanib for 3 'best' survival models

Source: Figure 12 of CS. Abbrev: IPF = idiopathic pulmonary fibrosis; KM = Kaplan-Meier; log-log = log-logistic; NTD = nintedanib; PBO = placebo.

Extrapolating overall survival beyond trial

Company's Bayesian approach results in differences between models, and predicts large differences in life expectancy between nintedanib treatment and placebo

Overall survival estimates produced by Bayesian survival models: curves fitted to ILD data with informative priors


	Median OS (years)		5-year survival (%)	
Distribution	Nintedanib	Placebo	Nintedanib	Placebo
Log-logistic	6.39	3.51	59	30
Gamma	6.50	3.76	60	32
Weibull	6.45	3.42	60	21

Are the modelled results plausible, given trial results?

Source: Table 29, CS. Abbreviation: OS = overall survival.

Extrapolating overall survival beyond trial

Summary: 6 distributions considered, 3 frequentist (based on PF-ILD data alone) and 3 Bayesian survival models (PF-ILD informed by IPF)

NICE

Source: Figures 16 and 17 of CS; Bayes = Bayesian; Freq = frequentist; KM = Kaplan-Meier; OS = overall survival.

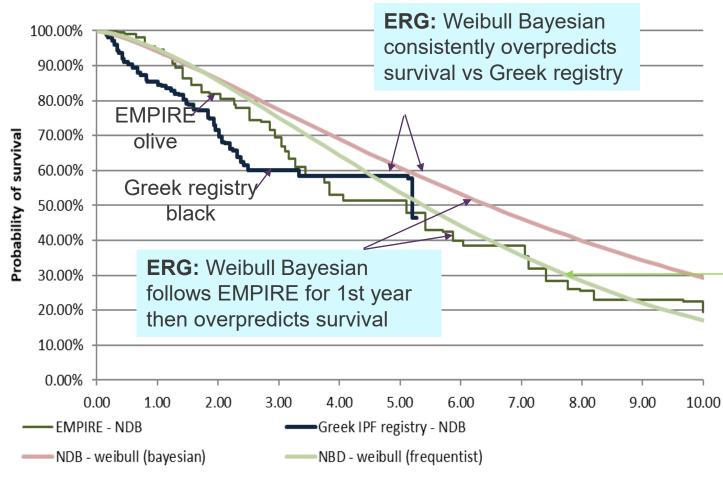
Validating extrapolation of overall survival

Company's 'external validation' (1/2): Company consulted clinicians who consider Weibull curve frequentist or Bayesian plausible for standard care without nintedanib

Company hired 5-member advisory board Nov 2020:

- Curves for standard care without nintedanib:
 - Weibull (frequentist or Bayesian) curves plausible
 - Excluded
 - frequentist Gompertz curve, likely underestimates survival
 - log logistic curves frequentist or Bayesian, likely overestimates survival
- Nintedanib curves:

NICF


• 'Limited knowledge' on long-term impact of nintedanib

Company used Weibull Bayesian for both arms in its base case— it considered Bayesian analysis 'more robust' estimates of long-term survival because the analysis include 'longer-term' data from IPF to support use of immature data for current indication – progressive fibrosing ILD

What is the committee's view on this validation?

Validating extrapolation of overall survival - nintedanib

Company's 'external validation' (2/2): used 2 sources of registry data for nintedanib-treated IPF to validate Weibull Bayesian curve for **nintedanib** in progressive-fibrosing ILD

- EMPIRE study: 10 years follow-up in 637 IPF patients taking nintedanib
- Antoniou et al, 2020: 5 years follow-up in 244 Greek IPF patients taking nintedanib

Company: frequentist curve is pessimistic, not in line with IPF trials

ERG: data from IPF population so cannot be sure it is pessimistic; long term effect might differ for IPF and PF-ILD

ERG:

- Weibull frequentist provides a better fit to registry data; included Weibull frequentist curves for best supportive care and nintedanib in base case
- Estimating survival using PF-ILD data available better than using survival data of another population viz. IPF

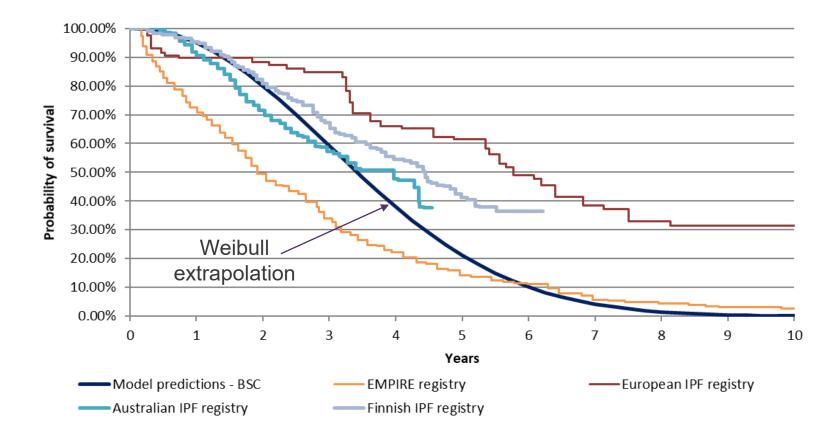
Abbreviations: IPF: idiopathic pulmonary fibrosis; PF-ILD: progressive-fibrosing ILD; Source: Figure 11 of the Clarification Response

Validating extrapolation of overall survival - nintedanib

Differences in risk factors for death between IPF registry and trials

Company: acknowledges differences between registries and clinical trials

- EMPIRE IPF Registry vs clinical trial:
 - Different time when clock starts ticking to death from diagnosis vs time from treatment
 - Included countries have very different standard care compared with UK Austria, Bulgaria, Croatia, Czech Republic, Hungary, Israel, North Macedonia, Poland, Serbia, Slovakia, Turkey
 - Treat severe disease unlike UK where antifibrotic allowed to start is moderate disease
- Greek registry IPF vs clinical trial:
 - Differences in time on treatment: patients spent less time on nintedanib than unmatched IPF long-term clinical trial patients (mean 23.6±15.0 vs 27.7 months; SD: 20.5)
 - Differences in baseline characteristics: patients older compared with INBUILD (mean age: 72 vs. 66 years), and smokers (78% vs. 51%)
 - Differences could lead to decreased survival Greek registry patients vs. INBUILD (PF-ILD)/IPF trial


ERG: Company considers registry a poor source of external validation but had no problem using them to validate Weibull Bayesian.

What are the committee's view on using observational data unadjusted for differences in risk factors for death from one disease to 'validate' data from trials for another disease?

Abbreviations: FVC%: forced vital capacity %; IPF: idiopathic pulmonary fibrosis, PF-ILD: progressive-fibrosing ILD Sources: Company Technical Engagement response, ERG critique to TE response

Validating extrapolation of overall survival - placebo

Company's 'external validation' (3/3): used several IPF registry data for no-anti fibrotic treatment to validate Weibull distribution for best supportive care

Company: lack of consistency in survival between these registries Clinicians considered the Australian registry most appropriate due to similarities between UK

and Australian clinical practice

NICE

Abbreviations: IPF: idiopathic pulmonary fibrosis; PF-ILD: progressive-fibrosing ILD; Source: Figure 21 of company submission

Extrapolating overall survival beyond trial

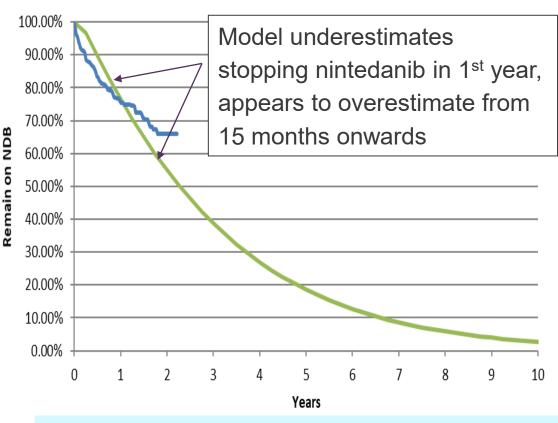
Company chose Bayesian Weibull; ERG believes Bayesian uncertain

ERG:

- Bayesian analysis may provide more precise estimates, but in this case data that drives them from a different disease (IPF); not necessarily accurate for population of interest
- Unclear if benefits of having longer-term data from IPF outweigh additional uncertainty when using Bayesian methods
- If company values clinical plausibility and fit to long-term data, it should have chosen frequentist Weibull for both arms because it provided better fit to long-term data

Company:

- Lack long term progressive fibrosing-ILD data; using long-term IPF data best alternative; evidence supported equivalent survival between IPF and PF-ILD patients:
 - Simpson et al 2020 (showed consistent survival for IPF and PF-ILD patients in the UK (hazard ratio= 1.06; 95% confidence interval, 0.84 –1.35; p = 0.6; measured up to approximately 2.5 years)


Which, if either, of the Bayesian and frequentist approach is most appropriate?
 Which curve, if any, does committee prefer?

NICE

Stopping treatment beyond end of trial 1/3

Company says exponential model may underestimate true discontinuation

 Company extrapolating time to discontinuation using an exponential model (constant hazard so fixed ate of stopping) as in TA379 - for nintedanib = 6% per month

Company:

- Because exponential model did not fit KM data well, company validated with external data Lancaster et al. 2019 but from IPF population:
 - median exposure to nintedanib: 22.5 months (Lancaster) vs 27-28 months (INBUILD);
 - maximum: 93.1 months (Lancaster) vs > 96 months (INBUILD)
- Exponential model may underestimate true rate of stopping nintedanib
- Applied higher rates in scenario analyses

ERG : requested a model which better represents data from INBUILD trial

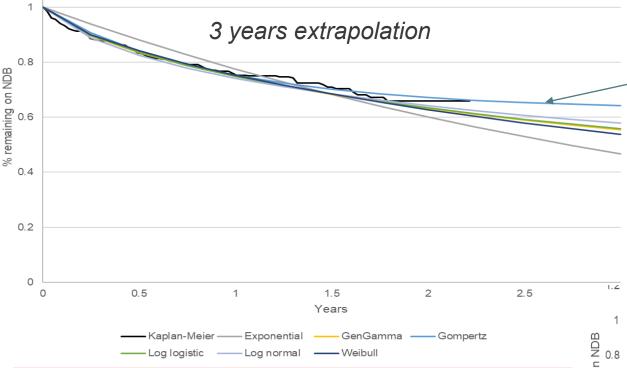
Why did company choose a model it acknowledges doesn't fit data? Is it appropriate to generalise from one disease to a different disease?

Abbreviations: KM: Kaplan-Meier. Source: CS figure 27 p.100

Stopping treatment beyond end of trial 2/3

ERG notes implausible results with company's modelling of discontinuation

- **Company** modelled overall survival independently from lung function decline and acute exacerbations, a major cause of mortality, to avoid double counting of death
- **ERG:** model generated implausible results: increasing discontinuation rate has zero impact on life years and minimal impact on QALYs. This may be because of 2 modelling aspects:
- High number (34% at 2nd data base lock) of patients who stopped nintedanib continued to be represented by survival analysis post-discontinuation, as most discontinued patients included in trial survival analysis
- Company does not link rate of exacerbation to mortality; so, increased risk of exacerbations after stopping treatment does not translate into any difference in life years; this results in a lifetime treatment effect on OS in the model


- ERG:
 - OS likely reflect weighted efficacy on and off-treatment over observed period;
 - However, long-term impact on efficacy uncertain as unclear whether trial follow-up sufficiently long to fully capture the impact of discontinuation on OS
 - Impossible to assess impact of changes in discontinuation rate on ICER given how discontinuation is incorporated into survival analysis, as a new OS curve would be needed.

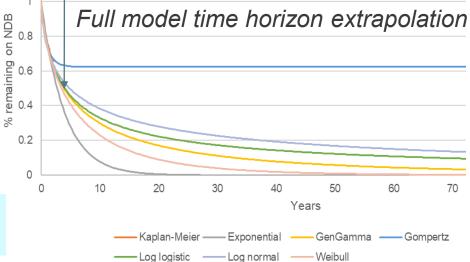
Obes evidence from trial suggest nintedanib has a long-term treatment effect on OS? Is it plausible that frequency of exacerbation not a risk factor for death? Does committee consider company's modelling of discontinuation appropriate?

Abbreviations: DBL2, database lock 2; ICER: incremental cost effectiveness ratio; ILD: interstitial lung disease; OS: overall survival; QALY: quality adjusted life year. Source: ERG report section 4.2.6.5

Stopping treatment beyond end of trial 3/3

Company instead provided alternative extrapolations for discontinuation: 3 years vs full time horizon (base case: exponential) – no impact on QALYs

Company: choice of distribution does not impact QALYs; once a patient stops treatment they revert to transition probabilities for best supportive care and transition faster through FVC states. Transition probabilities for lung function decline not key driver


ERG: exploratory analyses do not provide correct ICERs but give an idea of impact of changing the curve

• Do these results have face validity? What is the best way to model how many people stop nintedanib and when for progressive fibrosing ILD rather than for IPF?

Company: Gompertz curve closest to INBUILD data over 3 years but, over long term, produces unrealistically optimistic rates of stopping nintedanib; generalised gamma, log logistic, log normal or Weibull curves give more realistic estimates of discontinuation.

ERG: Weibull model probably more realistic INBUILD mean age of 65years and likely most patients do **not** remain on treatment for 35 years

45

Exacerbations

In company's model, little impact on cost effectiveness

Input	Company's model	ERG critique	Impact on ICER	
Time to 1st acute exacerbation	Company extrapolated beyond trial using exponential curve base case)	 ERG - overpredicts risk Small impact on ICER is likely due to mortality not directly linked to the occurrence of acute exacerbation in the model ERG explores impact of overprediction in both arms and potential overestimation of the difference between arms 	Company scenario analyses indicate that varying from 1.12% to 20% per cycle only resulted in increase of 3,000 per QALY	
Recurrent exacerbations	Assumed patients could experience recurrent exacerbations based on INBUILD data	In company's model, impact of recurrent exacerbations is limited to utility and costs; does not further increase the probability of loss of lung function beyond 1 st exacerbation.	Limited impact of <£100 on ICER for recurrent exacerbations of 1.5% and 1.2% for placebo and nintedanib, converted to 3- month probabilities	

O these results have face validity? Is it plausible that these would have little impact on cost effectiveness?

Abbreviations: ICER: incremental cost effectiveness ratio; QALY: quality adjusted life year

Losing lung function

In company's model, little impact on cost effectiveness

Input	Company	ERG critique	Impact on ICER
Losing lung function	 Used 2 different methods to calculate losing lung function on standard care (multivariate logistic regression) and on nintedanib (odds ratio applied to baseline placebo risk). ERG asked company to use regression analysis for both treatments which company did 	 Very different probabilities between original and new regression models after 1st exacerbations, Small impact on results likely because relative differences between pre- and post-exacerbation and between nintedanib and placebo do not differ much between old and new models, while absolute values differ substantially. In both models, the coefficient for treatment not statistically significant, and confidence intervals crossing 1 ERG would have preferred that impact of treatment on probability of progression was included in full model, but given minimal impact on ICER, no change was made. Both models assume lifetime treatment effect while on nintedanib 	Minimal (<£20)

O these results have face validity? Is it plausible that these would have little impact on cost effectiveness? How should company amend model, if at all? Has the committee seen evidence of a 'lifetime treatment' effect?

Health-related quality of life for health states and adverse events

In company's model, little impact on cost effectiveness

- INBUILD collect EQ-5D-5L; mean utilities for different lung function states i.e., FVC%Pred Health state
 - ERG: implausible that patients with lower FVC%Pred have higher utility in the 80-89 FVC%Pred category, ERG applied a utility of 0.7265 for this category in its base case (instead of 0.7333), which equates to a linear decline in utility from 90-99 and 70-79 health states
 - **Company**: change of utility little impact on cost effectiveness
- **Company** assumed disutility for **all** gastrointestinal events estimated as 50% of value of **serious** gastrointestinal events in TA379 (-0.068)
- **ERG**: unclear why company chose 50% but not a key issue driver of cost effectiveness; company base case disutility for acute exacerbation: -0.167, identified 2 other sources disutility from TA379

FVC%Pred Health state	Mean EQ-5D utility	SD	Number patients
≥110	0.7521	NA.	NA
100-109.9	0.7521	0.2570	30
90-99.9	0.7287	0.2278	76
80-89.9	0.7333	0.2051	148
70-79.9	0.7242	0.2113	214
60-69.9	0.6750	0.2349	271
50-59.9	0.6453	0.2240	256
40-49.9	0.6045	0.2457	137

48

O these results have face validity? Is it plausible that these would have little impact on cost effectiveness?

Source: Table 46 of the CS; Abbrev: EQ-5D: European Quality of Life-5 Dimensions; FVC%Pred: forced vital capacity % predicted; NA: not applicable; SD: standard deviation; TA: technology appraisal

Cost effectiveness results

- Include confidential patient access scheme for nintedanib
- Discussed in PART 2

End of life

- NICE 'end of life' criteria is satisfied when
 - treatment is indicated for patients with a short life expectancy, normally less than 24 months
 - treatment offers an extension to life, normally of at least an additional 3 months, compared to current NHS treatment
- Company: nintedanib not expected to meet end-of-life criteria
 - "it is expected that patients with PF-ILD who are not receiving an anti-fibrotic therapy would have a median post-diagnosis survival of 2 to 5 years". Therefore, treatment is not indicated for patients with a short life expectancy (normally less than 24 months)

Innovation

- Company: until the recent approval of nintedanib for SSc-ILD and PF-ILD, there were no licensed treatments for patients with PF-ILD other than IPF. Nintedanib is the first pharmacological treatment to show clinical evidence of slowing disease progression in patients with PF-ILD
- Clinical expert: nintedanib will make a significant impact in PF-ILD care; PF-ILD patients currently have no disease modifying therapies on offer to them to treat the fibrotic component of their disease

● Is nintedanib a step-change and does it offer benefits not captured in modelling for PF-ILD?

Equalities issues

Patient expert:

- Inequality because IPF patients can access nintedanib
- Patients with progressive fibrosing ILD are generally younger than patients with IPF and more ethnically diverse (i.e., include more people of south Asian and Afro-Caribbean heritage)
- Inequality because most cancer patients have a life expectancy better than PF-ILD patients

Is it an equalities issues as defined that a treatment would be available to one disease but not another? What is the committee's consideration on other equality issues raised by stakeholders?

NICE

Back-up slides

INBUILD trial: underlying clinical ILD diagnosis

Table 10: Underlying clinical ILD diagnosis

	Pla	cebo	Nintedanib 150 mg bid		Total	
Number of patients (N, %)	331	100.0	332	100.0	663	100.0
Time since first diagnosis of ILD based on imaging [years] (mean, SD)	3.90	3.69	3.65	3.80	3.77	3.75
Time since ILD diagnosis based on imaging in categories [years] (N, %)						
≤1	67	20.2	67	20.2	134	20.2
>1 to ≤3	112	33.8	115	34.6	227	34.2
>3 to ≤5	57	17.2	74	22.3	131	19.8
>5	95	28.7	75	22.6	170	25.6
Missing	0	0	1	0.3	1	0.2
Diagnosis of ILD confirmed by surgical						
biopsy (N, %)						
Yes	102	30.8	87	26.2	189	28.5
No	222	67.1	234	70.5	456	68.8
Missing	7	2.1	11	3.3	18	2.7
Diagnosis of ILD confirmed by transbronchial biopsy (N, %)						
Yes	55	16.6	48	14.5	103	15.5
No	263	79.5	265	79.8	528	79.6
Missing	13	3.9	19	5.7	32	4.8
Underlying clinical ILD diagnosis, eCRF categories (N, %)						
Idiopathic non-specific interstitial pneumonia	61	18.4	64	19.3	125	18.9
Unclassifiable idiopathic interstitial pneumonia	50	15.1	64	19.3	114	17.2
Hypersensitivity pneumonitis	89	26.9	84	25.3	173	26.1
Rheumatoid Arthritis-associated ILD	47	14.2	42	12.7	89	13.4
Mixed connective tissue disease	12	3.6	7	2.1	19	2.9
Systemic sclerosis-associated ILD	16	4.8	23	6.9	39	5.9
Exposure-related ILD	18	5.4	21	6.3	39	5.9
Sarcoidosis	8	2.4	4	1.2	12	1.8
Other fibrosing ILD	30	9.1	23	6.9	53	8.0
Underlying ILD diagnosis in groups (N, %)						
Hypersensitivity pneumonitis	89	26.9	84	25.3	173	26.1
Idiopathic non-specific interstitial pneumonia	61	18.4	64	19.3	125	18.9
Unclassifiable idiopathic interstitial pneumonia	50	15.1	64	19.3	114	17.2
Autoimmune ILDs ¹	88	26.6	82	24.7	170	25.6
Other ILDs ³	43	13.0	38	11.4	81	12.2

- About 16% of enrolled patients with underlying RA (13.4%)/CTD (2.9) at baseline
- Eligibility for CTD: "stable" CTD defined as no initiation or withdrawal of therapy for CTD within 6 weeks prior to screen
- All approved RA/CTD medications allowed at stable doses at baseline and during trial, except those less frequently used:
 - azathioprine, cyclosporin, tacrolimus, high dose steroids, rituximab;
 - cyclophosphamide, mycophenolate not allowed in study

All on-treatment restricted concomitant therapies up to DBL2

ATC3 category Placebo Nintedanib		Тс	otal		Placebo		Nintedanib		Total				
	Ν	%	Ν	%	Ν	%	Corticosteroids for	248	74.9	236	71.1	484	73.0
Number of patients	331	100.0	332	100.0	663	100.0	systemic use, plain						
Number of patients with	329	99.4	330	99.4	659	99.4	Corticosteroids, plain	191	57.7	175	52.7	366	55.2
≥1 therapy							Cough suppressants, excl.	85	25.7	81	24.4	166	25.0
							combinations with expectorants						
Adrenergics for systemic	80	24.2	58	17.5	138	20.8	Decongestants and other nasal	201	60.7	192	57.8	393	59.3
use	00		00		100	20.0	preparations for topical use						
Adrenergics, inhalants	115	34.7	89	26.8	204	30.8	Drugs for constipation	86	26.0	69	20.8	155	23.4
Agents for treatment of	150	45.3	155	46.7	305	46.0	Drugs for peptic ulcer and	216	65.3	251	75.6	467	70.4
haemorrhoids and anal	150	40.0	100	40.7	505	40.0	gastrooesophageal reflux disease (GORD)						
fissures for topical use							Expectorants, excl.	113	34.1	110	33.1	223	33.6
-	440	24.4	104	24.2	047	20.7	combinations with cough	110	01.1	110	00.1	220	00.0
All other therapeutic	113	34.1	104	31.3	217	32.7	suppressants						
products	00	40.0	70	00.5	4 4 4	04.0	IV solution additives	74	22.4	60	18.1	134	20.2
Angiotensin II receptor	63	19.0	78	23.5	141	21.3	IV solutions	77	23.3	59	17.8	136	20.5
blockers (ARBS), plain							Immunosuppressants	78	23.6	52	15.7	130	19.6
Anti-acne preparations for	122	36.9	103	31.0	225	33.9	Intestinal anti-inflammatory	212	64.0	206	62.0	418	63.0
topical use							agents	407	00.4	400	40.4	000	00.0
Antibiotics for topical use	71	21.5	69	20.8	140	21.1	Lipid modifying agents, plain	127	38.4	133	40.1	260	39.2
Antihistamines for	87	26.3	72	21.7	159	24.0	Macrolides, lincosamides and	70	21.1	84	25.3	154	23.2
systemic use							streptogramins						
Anti-infectives	144	43.5	130	39.2	274	41.3	Opioids	105	31.7	91	27.4	196	29.6
Anti-infectives and	72	21.8	60	18.1	132	19.9	Other analgesics and	203	61.3	182	54.8	385	58.1
antiseptics, excl.							antipyretics	00	00 5	70	00 5	4.40	00.0
combinations with							Other beta-lactam antibacterials Other cardiac preparations	68 61	20.5 18.4	78 79	23.5 23.8	146 140	22.0 21.1
corticosteroids							Other dermatological	134	40.5	108	32.5	242	36.5
Anti inflommatory agonta	248	74.9	243	73.2	491	74.1	preparations	104	40.0	100	02.0	272	00.0
Anti-inflammatory agents							Other drugs for obstructive	126	38.1	102	30.7	228	34.4
Anti-inflammatory and anti-rheumatic	143	43.2	146	44.0	289	43.6	airway diseases, inhalants						• • • •
							Other gynecologicals	97	29.3	94	28.3	191	28.8
products, non-steroids	40	10.1	455	10.7	105	00.4	Other ophthalmologicals	143	43.2	121	36.4	264	39.8
Anti-propulsives	40	12.1	155	46.7	195	29.4	Other respiratory system	71	21.5	75	22.6	146	22.0
Antithrombotic agents	128	38.7	120	36.1	248	37.4	products	0.0	00.0	<u> </u>	20.0	457	00.7
Anxiolytics	92	27.8	66	19.9	158	23.8	Quinolone antibacterials Selective calcium channel	88 51	26.6 15.4	69 71	20.8 21.4	157 122	23.7 18.4
Beta blocking agents	66	19.9	71	21.4	137	20.7	blockers with mainly vascular	51	13.4	11	21.4	122	10.4
Beta-lactam	89	26.9	89	26.8	178	26.8	effects						
antibacterials, penicillins							Stomatological preparations	217	65.6	219	66.0	436	65.8
Blood glucose lowering	63	19.0	69	20.8	132	19.9	Throat preparations	116	35.0	114	34.3	230	34.7
drugs, excl. insulins							Topical products for joint and muscular pain	177	53.5	174	52.4	351	52.9
Calcium	79	23.9	78	23.5	157	23.7	Vitamin A and D, incl.	102	30.8	81	24.4	183	27.6
Corticosteroids	110	33.2	108	32.5	218	32.9	combinations of the two						55

All on-treatment restricted concomitant therapies up to DBL2 by customised drug grouping (CDG)

ATC3 category	Pla	cebo	Ninte	danib	Тс	otal	Immunomodulatory	35	10.6	15	4.5	50	7.5
	N	%	N	%	N	%	medications for ILD						
Number of patients	331	100.0	332	100.0	663	100.0	Mycophenolate mofetil	12	3.6	5	1.5	17	2.6
Number of patients with ≥1	329	99.4	330	99.4	659	99.4							
restricted therapy							Azathioprine	9	2.7	1	0.3	10	1.5
Biologic DMARDs	2	0.6	3	0.9	5	0.8	Tacrolimus	7	2.1	3	0.9	10	1.5
Rituximab	2	0.6	3	0.9	5	0.8				-		_	
Corticosteroids ¹	90	27.2	55	16.6	145	21.9	Cyclophosphamide	4	1.2	3	0.9	7	1.1
Prednisone	36	10.9	30	9.0	66	10.0	Ciclosporin	5	1.5	0	0	5	0.8
Prednisolone	27	8.2	13	3.9	40	6.0							
Methylprednisolone sodium	27	8.2	9	2.7	36	5.4	Rituximab	2	0.6	3	0.9	5	0.8
succinate							Non-biologic DMARDs	33	10.0	12	3.6	45	6.8
Methylprenisolone	13	3.9	10	3.0	23	3.5							
Hydrocortisone	5	1.5	2	0.6	7	1.1	Mycophenolate mofetil	12	3.6	5	1.5	17	2.6
Steroids	2	0.6	3	0.9	5	0.8							
Dexamethasone sodium	2	0.6	1	0.3	3	0.5	Azathioprine	9	2.7	1	0.3	10	1.5
phosphate							Tacrolimus	7	2.1	3	0.9	10	1.5
Dexamethasone	1	0.3	1	0.3	2	0.3		'	2.1	5	0.5	10	1.5
Meprednisone	1	0.3	1	0.3	2	0.3	Cyclophosphamide	4	1.2	3	0.9	7	1.1
Betamethasone sodium	0	0	1	0.3	1	0.2							
phiosphate							Ciclosporin	5	1.5	0	0	5	0.8
Carisoprodol;	1	0.3	0	0	1	0.2							
dexamethasone;hydroxocobala													
min; piroxicam; pyridoxine													
hydrochloride													
Deflazacort	0	0	1	0.3	1	0.2							
Methylprednisolone; succinate	1	0.3	0	0	1	0.2							
sodium													56
Prednisolone sodium	0	0	1	0.3	1	0.2						;	56
mhaanhata													

phosphate

Company Bayesian approach (1)

- Study linking and data cleaning: assumed equivalent survival trajectory between IPF and PF-ILD patients. Long-term IPF data were merged to support use of immature PF-ILD data from INUILD(n=663 patients with PF-ILD; 332 patients treated with nintedanib and 331 with placebo)
 - TOMORROW (phase II) : included IPF patients on nintedanib, excluded patients on placebo
 - INPULSIS 1 and 2 (phase III): included nintedanib and placebo patients with IPF
 - INPULSIS-ON (open-label extension [OLE] from phase II and III): included IFP patients previously on nintedanib who continue treatment; patients on placebo who received nintedanib in the OLE were censored on initiation of nintedanib. N=1,239 IPF patients included in global dataset; 726 patients treated with nintedanib and 513 with placebo.
- Propensity score matching: IPF patients (in trials listed above) were matched to PF-ILD patients (INBUILD), baseline characteristics used for matching included: age, gender, race, time since IPF or PF-ILD diagnosis, FVC % pred at baseline, smoking status
- **3.** <u>**Generating survival data**</u>: analysis only included IPF patients who received nintedanib in both trials and (optionally) an open-label extension (see trials listed above)

Company Bayesian approach (2)

4. Generating informative priors from matched IPF data:

Standard frequentist survival models fitted to the matched, weighted IPF data, models with lowest AIC/BIC (loglogistic, Gompertz and Weibull) used to generate informative priors ('IPF-informed prior') for shape parameter of the Bayesian PF-ILD model and followed a gamma (α,β) distribution (Soikkeli et al. 2019 method)

5. OS estimates informing Bayesian priors/Generating the PF-ILD parameter estimate:

• Weibull, log-logistic and gamma distributions of IPF survival models produced lowest overall AICs/BICs across nintedanib and placebo cohorts. Given small differences in fit between models, all were used to inform the shape parameter prior in the Bayesian analysis of PF-ILD data for both nintedanib and placebo . For each IPF model, the same survival model was fit to the PF-ILD data.

Extrapolating overall survival beyond trial

Bayesian approach – method

- Alternative approach to standard parametric models
- Allows to flexibly model evidence from a variety of data sources, to formally incorporate expert/clinical subjective prior beliefs, and to capture all forms of uncertainty (
 shape parameter & model/structural)
- Limited practical application, little use in previous HTA
- Company used Bayesian approach "to improve accuracy and precision of extrapolated estimates"

Utility values from patients with IPF in INPULSIS, used in company scenario analysis

FVC%Pred	Utility value	SD
≥110	0.8380	0.1782
100-109.9	0.8380	0.1782
90-99.9	0.8380	0.1782
80-89.9	0.8105	0.2051
70-79.9	0.7800	0.2244
60-69.9	0.7657	0.2380
50-59.9	0.7387	0.2317
40-49.9	0.6634	0.2552

Abbreviations: FVC%Pred = forced vital capacity percentage predicted; SD = standard deviation. Source: Table 64 in the CS.

NICE

Info: comparison with TA379

	TA379: trial, committee conclusion/ consideration	ID1599 company submission + Technical engagement
Trial	INPULSIS 1 and INPULSIS 2 (phase III RCTs):TOMORROW (phase IIb dose-ranging RCT); Nintedanib vs. placebo for treating IPF Follow-up: 52 weeks	 INBUILD: phase III RCT; Nintedanib vs. placebo for treating PF-ILD Follow-up: Part A: 52 weeks Part B: variable treatment periods
Network meta- analysis (NMA)	NMA of nintedanib, pirfenidone and best supportive care (BSC)	No NMA performed
Comparator in model	 people with %predFVC of 50–80%: pirfenidone or BSC people with %predFVC > 80%: BSC 	placebo
Model structure	 Markov model with health states describing patient condition as a combination of both lung function (FVC%Pred) and exacerbation 3-month cycle length OS modelled independently from lung function decline & acute exacerbations: Committee concerned results not sensitive to changes in rate of exacerbations 	Same as TA379

61

Info: comparison with TA379

	TA379 committee conclusion/ consideration	ID1599 company submission + Technical engagement
OS extrapolation	Log logistic although uncertain, but little impact on ICER because company assumed equal survival between nintedanib and pirfenidone	Bayesian Weibull curve
Estimate probability of exacerbation	Exponential model	Same as TA379
Predict loss of function	Loglogistic	Same as TA379
Quality of life	 EQ-5D collected from INPULSIS + disutilities for exacerbations and treatment-related adverse event: Committee concern no inclusion disutility for diarrhoea, a common adverse event with nintedanib considered would worsen quality of life 	EQ-5D collected from INBUILD + disutilities for exacerbations and treatment-related adverse event, including gastrointestinal event disutilities from TA379 (assume half of -0.068= -0.034; validated against disutility for diarrhoea (-0.042) in recurrent non-small cell lung cancer

CONFIDENTIAL

Info: comparison with TA379

	TA379 committee conclusion/ consideration	ID1599 company submission
Discontinuation risk	Exponential model assumes a constant hazard therefore a fixed discontinuation rate	Same as TA379; discontinuation based on rates observed within investigation trials (5.97%/month). Company explored 2 other sources in scenario analyses (Lancaster 7.67% and INBUILD 3.97%)
ICER	 people with %predFVC of 50– 80%: Nintedanib dominates pirfenidone people with %predFVC > 80%: ICER (vs BSC) substantially higher than threshold 	Nintedanib vs placebo: £ <mark>XXXX</mark>

Extrapolating overall survival beyond trial using 2 approaches: Frequentist and Bayesian

Frequentist approach

- Frequentist approach (based on PF-ILD data alone): standard parametric overall survival (OS) distributions fitted independently to each arm
- Goodness of fit was assessed using AIC/BIC; models considered suitable if within 3 points of parametric model with lowest AIC or BIC
- Non-excluded models (loglogistic, Gompertz and Weibull) adopted for frequentist approach

FVC%Pred Health state	Distribution	AIC	BIC	Decision
	Exponential	842.1154	845.9175	Excluded
	Weibull	822.3554	829.9597	Non-excluded
	Lognormal	825.7844	833.3886	Excluded
Placebo	Loglogistic	822.5821	830.1864	Non-excluded
	Gompertz	823.3835	830.9878	Non-excluded
	Generalised gamma	824.2238	835.6302	Excluded
	Exponential	690.9068	694.712	Excluded
	Weibull	687.0584	694.6687	Non-excluded
	Lognormal	690.5765	698.1868	Excluded
Nintedanib	Loglogistic	687.4335	695.0438	Non-excluded
	Gompertz	685.4074	693.0177	Non-excluded
	Generalised gamma	688.7022	700.1176	Excluded