Cannabidiol for treating seizures caused by tuberous sclerosis complex

For public, **no** academic or commercial in confidence information

Technology appraisal committee B [15th September 2022]

Chair: Charles Crawley

Lead team: Laura Bojke, Iolo Doull and Nigel Westwood.

Evidence assessment group: Kleijnen Systematic Reviews (KSR)

Technical team: Emma Douch, Richard Diaz

Company: GW Research

NICE National Institute for Health and Care Excellence

© NICE 2022. All rights reserved. Subject to Notice of rights.

Background, tuberous sclerosis complex

Multifaceted disease with no cure; seizures most common neurological symptom

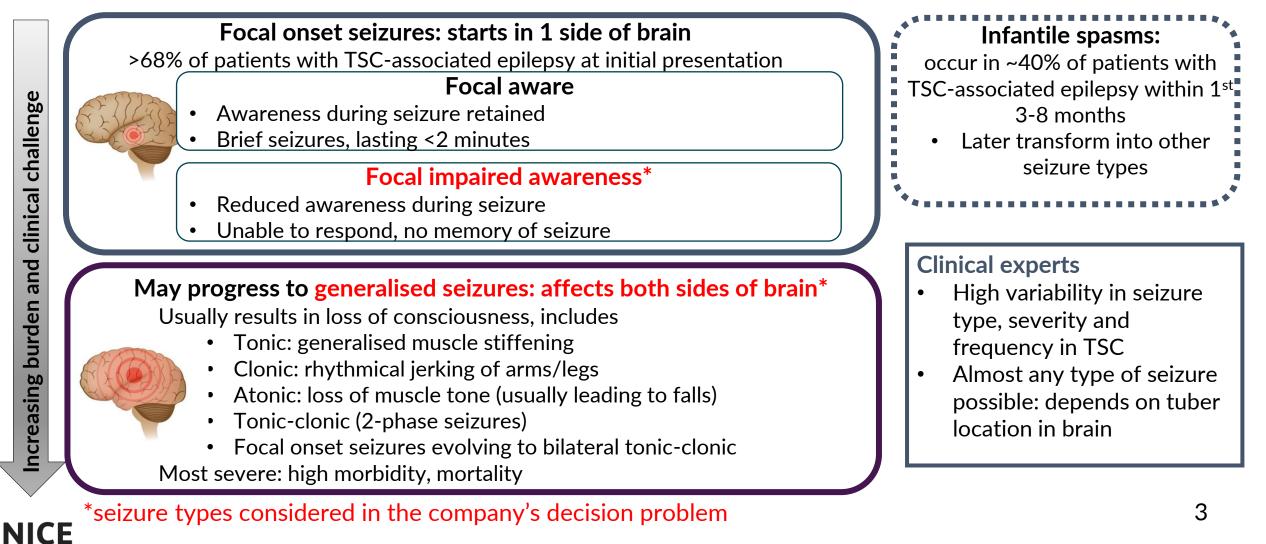
Definition: rare genetic disorder characterized by growth of numerous noncancerous tumours (tubers) in many parts of body

• Most commonly affects:

Caused by: Mutations in TSC1 / TSC2 gene involved in cell growth regulation

Symptoms: Condition present from birth but symptoms may not immediately appear.

- Heterogeneity in presentation dependant on organ affected
- Tumour formation in brain can disrupt neurological connections leading to seizures
 - Epilepsy most common neurological symptom up to 84% of people with TSC †
 - People with refractory epilepsy at high risk of TSC-associated neuropsychiatric disorders (TAND):
 - umbrella term for range of cognitive, behavioural, and psychiatric manifestations with significant QoL impact


Aim of treatment: No cure for TSC-associated epilepsy: treatments aim to manage symptoms but some limit tumour growth **Mortality:** Data limited, but reduced life expectancy linked to TSC-associated epilepsy due to status epilepticus (prolonged seizure or many in quick succession) or Sudden Unexpected Death in Epilepsy (SUDEP).

• Complications in kidneys, lung and brain can also be life threatening if untreated.

Prevalence: TSC estimated 1 in 18,861^{*}; estimated 1555 people have refractory TSC-associated epilepsy in England[†]

Seizures in TSC-associated epilepsy High variability of seizure type and burden depending on tuber location

80% of people with TSC-associated seizures diagnosed within their first 2 years: small proportion of people have seizure onset in adulthood

Patient perspectives: Tuberous Sclerosis Association

High quality of life impact for patients and families; unmet need for effective treatments

Impacts the whole family "both mentally and physically"

- Seizures can be traumatic and dangerous for patients
- 30% have severe intellectual disability requiring life-long "round-the-clock care" (carer or residential facility)
 - Challenging to manage TAND related symptoms: "anger and mood swings"; "no concept of danger"
 - Brain damage can cause mobility issues that limit daily activity
 - Financial implications for carers: many cannot work as some patients are "not able to live independently"
- Traumatic for siblings to observe seizures; normal family activities affected by behavioural issues

Unmet need for treatments to control seizures and behaviour problems

- Current options inadequate:
 - Not uncommon to try up to 20 drugs: short duration of seizure control
 - Often cause intolerable side effects (involuntary movements, aggression, drowsiness)
- TSC-associated epilepsy generally hard to control due to learning disabilities

Cannabidiol a welcome treatment option

• Reduced seizure severity and frequency (alone or with clobazam) can 'transform' patient QoL: improve mood & sleep

4

- Improved mental health of whole family: seizure freedom allows normal activities
- Non-toxic, temporary side effects: AEs can be controlled with dose reduction
- Tolerable to take orally
 - AE, adverse effect; ASM, anti-seizure medication; TAND, TSC-Associated Neuropsychiatric Disorders

Clinical perspectives: Association of British Neurologists

Pathway poorly defined; complex to define response to treatment

Multifactorial disease with significant QoL impact

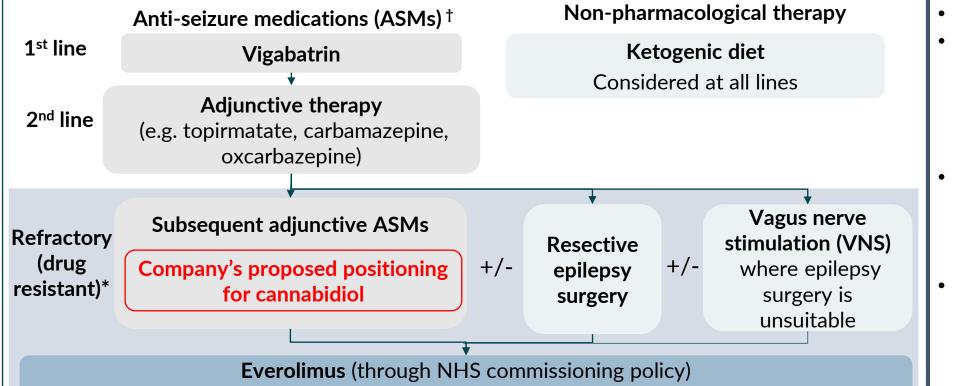
- TAND complications (cognitive impairment, behavioural difficulties) can be hard to manage
- Risk of injury from seizures and falls, increased risk of SUDEP
- Refractory TSC epilepsy should initially be managed at a tertiary centre by a MDT including renal and epilepsy input (potential follow up in secondary care)

Defining treatment response is complex

- Seizure freedom key outcome: rarely achieved in people with TSC
 - Defining response as 30% reduction in disabling seizures after 6 months at stable dose acceptable (as TA614 and TA615)
 - Reduction of tonic-clonic seizures can reduce SUDEP

Cannabidiol would provide an additional ASM to use adjunctively

- May need additional monitoring at initiation:
 - can increase exposure to current ASMs (requiring dose adjustment)
- Side effects: most commonly diarrhoea, vomiting, fatigue, pyrexia, somnolence, and abnormal liver-function tests
- Cannabidiol not tested against other individual ASMs in clinical trials


ASM, anti-seizure medication; QoL, quality of life; SUDEP, Sudden unexpected death in epilepsy; TA, technology appraisal; TAND, TSC-Associated Neuropsychiatric Disorders

Treatment pathway

Main refractory epilepsy treatment is combinations of ASMs +/- surgery and vagus nerve stimulation

 NICE Guideline 217 (epilepsy in children, young people and adults) has no specific recommendations for TSC-associated seizures. Clinical guidelines from the European Consensus Meeting recommend:

Figure 1 Treatment pathway for TSC

for focal onset seizures when surgery or VNS has failed or is unsuitable (adjunctive)

How would you define refractory TSC-associated epilepsy? Would cannabidiol ever be used in non-refractory epilepsy? Would cannabidiol be used before surgery and VNS? Where does everolimus sit in the pathway? *Defined by International League Against Epilepsy as "failure of adequate trials of two tolerated and appropriately chosen and used AED schedules (whether as monotherapies or in combination) to achieve sustained seizure freedom". [†] Previous appraisals refer to antiepileptic drugs (AEDs): ASMs used to align with terminology in updated clinical guideline. Source: adapted from company submission, Figure 3

• Pathway not well defined:

Clinical experts

- No specific guidelines for TSC-related seizures:
 - Clinicians try combinations of several common ASMs
- May use cannabidiol in people assessed for surgery; except in people with multifocal seizures
- Use with clobazam not mandated in licence but likely added if poor response to cannabidiol in clinical practice

Recent NICE appraisals for cannabidiol

Recommended with clobazam for treating seizures caused by Dravet and Lennox-Gastaut syndrome

No published NICE technology appraisals for TSC-related seizures, but cannabidiol recommended in 2 related indications

Table 1 Recent NICE appraisals

Technology appraisal	Intervention	Indication	Recommendation	Positioning
TA614 (published December 2019)	Cannabidiol with clobazam	Seizures associated with Dravet syndrome in people aged 2 years and older	 Recommended as an option only if: the frequency of convulsive seizures is checked every 6 months, and cannabidiol is stopped if the frequency has not fallen by at 	After 2 ASMs to align with clobazam use in UK clinical practice
TA615 (published December 2019)	Cannabidiol with clobazam	Seizures associated with Lennox–Gastaut syndrome	least 30% compared with the 6 months before starting treatment	

Cannabidiol (Epidyolex, GW Research Ltd)

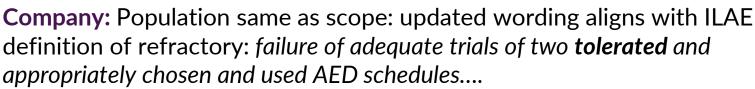
Twice daily dosing including dose titration to maximum dose based on response

Table 2 Technology details

Marketing authorisation	 MHRA approval received 5th August 2021 "for use as adjunctive therapy of seizures associated with tuberous sclerosis complex (TSC) for patients 2 years of age and older" Also licenced with clobazam as adjunctive therapy for seizures associated with Lennox-Gastaut or Dravet syndrome 				
Mechanism of action	 Exact mechanism unknown: may reduce seizure frequency by controlling excitability of nerve cells through modulation of: intracellular calcium via GPR55 and TRPV-1 channels adenosine-mediated signalling via the ENT-1 transporter. 				
Administration	Oral solution, twice of	daily admi	nistration		
		Week 1	Week 2+	Increase in dose for inadequate response (week 2 onwar	rds)
	Dose, mg/kg/day*	5	10	Weekly increments of 5mg/kg/day to max 25mg/kg/day	ý
	*cumulative dose fro	om twice da	aily administ	ation	
Price	 List price: £850.29 per 100 ml (100 mg/ml) bottle List price for 12 months of treatment (weighted by age): Year 1 £23,662, Year 2 £24,007* A confidential patient access scheme is in place for this technology. 				
	Y How would the maintenance dose be determined based on inucleoside transporter; GPR, G protein-coupled receptor				

Decision problem

Company excludes scoped comparator and includes additional population and outcomes


Table 3 Population, intervention, comparators and outcomes from the scope

	Final scope	Company	ERG comments
Population	People with tuberous sclerosis complex (TSC) whose seizures are inadequately controlled by established clinical management.	Includes people with TSC where usual-care is unsuitable or not tolerated to align with the ILAE definition of 'refractory' epilepsy*	Company's updated wording differs from scope but unlikely to bias modelling
Comparators	 Established clinical management without cannabidiol, such as: Anti-seizure medications (ASMs) Everolimus Vagus nerve stimulation Ketogenic diet Surgical resection 	Everolimus included as later line treatment but not comparator: in line with NHS England Clinical Commissioning Policy	Potential everolimus would form part of usual care in people where ASMs not tolerated
Outcomes	 Change in frequency of seizures Response to treatment Adverse effects of treatment Health-related quality of life 	 Includes seizure-free days as outcome: Important to patients Modelled for cannabidiol appraisals in Dravet and Lennox-Gastaut syndrome 	Cannot assume same outcomes relevant for different appraisals

*defined by the International League Against Epilepsy (ILAE) as "failure of adequate trials of two **tolerated** and appropriately chosen and used anti-epileptic drug (AED) schedules (whether as monotherapies or in combination) to achieve sustained seizure-freedom."

Key issue: Population and comparators

Company's population includes 'people with TSC where usual care is unsuitable or not tolerated': not in scope

• May 'fail' drug due to side effects: No standard care if disease refractory

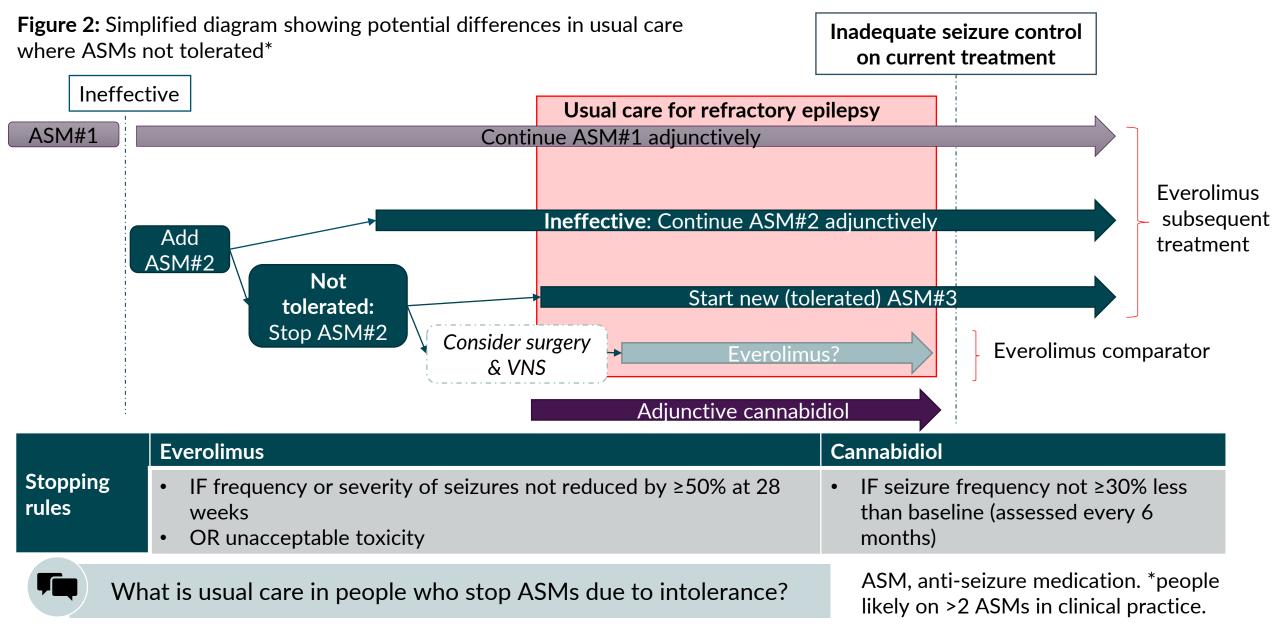
ERG comments

- Company misinterpreted ILAE definition: should be 'both tolerated *and* ineffective', not '*not* tolerated or ineffective'
- Usual care where ASMs not tolerated may differ from where ineffective: everolimus usual care in this population?

Clinical expert:

- Rare but may stop ASM due to side effects
- In clinical practice may try 5 or 6 different treatments before class refractory Everolimus:
- only used in small number: not responded to ASMs & not eligible for surgery
- likely used after cannabidiol: more side effects and monitoring
- can shrink tubers: treats other aspects of TSC (kidney tumours, facial rash, SEGA): people with these symptoms have everolimus instead of cannabidiol

	Is the distinction between not tolerated and not effe
F	made in NHS clinical practice? If yes, how?
	Are there defined therapeutic doses for ASMs?


en not tolerated and not effective hical practice? If yes, how? herapeutic doses for ASMs? AED, anti-epileptic drug; ASM, anti-seizure medication; ILAE, International League Against Epilepsy; SEGA, subependymal giant cell astrocytoma

RECAP: population in

- Scope: "People with tuberous sclerosis complex (TSC) whose seizures are inadequately controlled by established clinical management"
- Licence: "adjunctive therapy of seizures associated with tuberous sclerosis complex (TSC) for patients 2 years of age and older"

Key issue: Population and comparators

Different ASMs in usual care at same point in pathway if earlier ASM not tolerated: different comparators?

Key issues: clinical effectiveness

Including population and comparators in UK clinical practice and generalisability of company's pivotal trial

Table 4 Key issues (1)

Key issue	Resolved?	ICER impact		
Decision problem				
Population and relevant comparators	Partially – for discussion	Unknown impact		
Quality-of-life instrument	Yes	-		
GWPCARE6 trial				
Generalisability to NHS practice (usual care treatments, small UK population)	No – for discussion	Unknown impact		
Between arm variations in usual care treatments	No – for discussion	Unknown impact		
Systemic literature review				
Missing evidence from the SLR	Yes	-		
Methodological uncertainties	Yes	-		

NICE

12 SLR, systematic literature review; UK, United Kingdom

Key issues: cost effectiveness

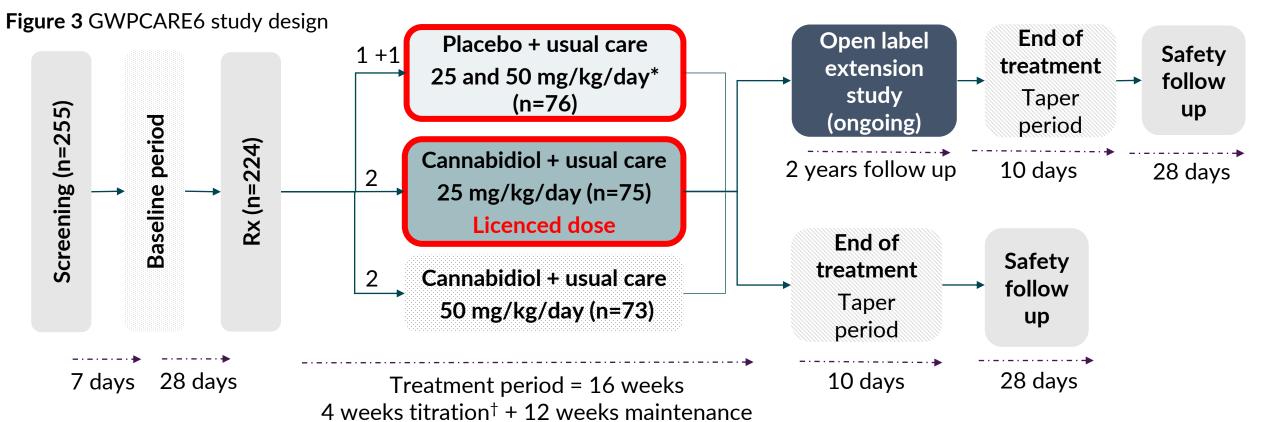
Uncertainty in many modelling inputs but many have limited effect on ICER; cannabidiol dose is model driver Table 5 Key issues (2)

Key issue	Resolved?	ICER impact
Modelling cost effectiveness		
Variation in patient characteristics between age categories and impact on treatment costs	No – for discussion	Small 🔍
Average dose of cannabidiol	No – for discussion	Large 🚺
Modelling of seizure-free days	No – for discussion	Medium 🗠
Modelling TSC-associated neuropsychiatric disorders (TAND)	No – for discussion	Small 🛛 🔍
Utilities		
Comparability of patient utilities with other cannabidiol appraisals	No – for discussion	Unknown 🛃
Seizure-free health state utility value for caregivers	Partially – for discussion	Small 💮
Application of caregiver disutilities	No – for discussion	Small 💮
Health care resource use		
Comparability of resource use with literature and other cannabidiol appraisals	No – for discussion	Medium 🗠
Key:Model driver: >£10,000 per QALYS gain change from base case;QALYS gain change from base case;Impact: <£5,000 per Q		•

Clinical effectiveness

NICE National Institute for Health and Care Excellence

Key clinical trials


Evidence for cannabidiol comes from RCT supported by ongoing observational data Table 6 Clinical trial designs and outcomes

	GWPCARE6	GWPCARE6 OLE (ongoing)	EAP (ongoing)
Design	Phase 3 double-blind, randomised controlled trial	Open label extension of GWPCARE6	Open label expanded access programme
Population	1 to 65 years [*] ; history of uncontrolled TSC- associated epilepsy with ASMs.	Completed GWPCARE6	US patients taking CBD for treatment-resistant epilepsy
Cannabidiol	25 mg/kg/day (n=75) and 50 mg/kg/day (n=73) with usual care	25mg/kg/day starting dose (n=199) with usual care	Individually optimised dose (max 25-50 mg/kg/day [‡] , n=34) with usual care
Comparator	Placebo with usual care (n=76)	None	None
Treatment	16 weeks	2 year follow up	Up to 4.5 years
1° outcome	% change in number of TSC-associated seizures during the treatment period	Incidence of adverse events	Unknown
Key 2° outcomes	 % 'responders'[†] ∆ in TSC-associated seizure-free days % with AEs, any / treatment related SAE ∆ in S/CGIC score (QoL) 	 ∆ in seizure frequency (total and number per 28 days) % 'responders'[†] ∆ in Overall condition and QoL 	 ∆ in seizure frequency AEs and SAEs
In model?	Yes –25mg/kg/day and pooled placebo data	No	No
*Approved indication for Epidyolex is in patients aged \geq 2 years. [†] Defined as \geq 50% reduction in TSC-associated seizure frequency; [‡]			

max dose dependant on study site. AE, adverse event; CBD, cannabidiol; EAP, expanded access program; N, number; OLE, open label extension; QoL, quality of life; SAE, serious adverse event; S/CGIC, subject/ caregiver global impression of change; US, United States.

GWPCARE6 study design

16 week RCT comparing 2 doses of cannabidiol with placebo; only 25mg/kg/day data used in model

Key inclusion criteria

- Stable on ≥1 ASM & other interventions (e.g. ketogenic diet and VNS) for 4 weeks
- ≥ 8 TSC-associated seizures in baseline period, with ≥ 1 seizure in ≥ 3 of 4 weeks
- No history of pseudo-seizures / illness in last 4 weeks that may affect seizure frequency
- No epilepsy surgery in prior 6 months / not being considered for surgery

ASM, anti-seizure medication; Rx, randomisation. Source: adapted from company submission, Figure 5

Red = used in company's model. *placebo doses pooled for analysis † Incremental increase from starting dose 5mg/kg/day every 2 days by:

- 5 mg (up to 25 mg/kg/day)
- 2.5 mg (up to 50 mg/kg/day)

GWPCARE6 baseline characteristics

ERG: several key issues with GWPCARE6 population affecting generalisability to UK clinical practice

Table 7 GWPCARE6 baseline characteristics

NICE

Characteristic	Placebo + usual care	CBD 25mg/kg/day + usual care	
n	76	75	Kovissue Small number of LIK
UK patients	3	2	Key issue: Small number of UK
Median age, year (minimum, maximum)	11 (1, 56)	12 (1, 57)	patients
Number of ASMs, median (minimum, r	maximum)		
Previous	4 (0, 15)	4 (0, 13)	
Current	3 (1, 5)	3 (0, 4)	
Current AEDs (>20%), n (%)			Key issue: Wide range of baseline
Valproic acid	35 (46)	29 (39)	ASMs
Vigabatrin	17 (22)	28 (37)	
Levetiracetam	24 (32)	19 (25)	
Clobazam	25 (33)	17 (23)	Key issue: Variation in vigabatrin
Concomitant non-pharmacological therapies, n (%)			use between arms
Vagus nerve stimulation	8 (11)	10 (13)	
Ketogenic diet	2 (3)	0 (0)	
TSC-associated seizures per 28 days, median (Q1, Q3)	54 (26, 102)	56 (21, 101)	Potential issue: Variation in clobazam use between arms?
Based on company submission, Table 6			

ASM, anti-seizure medications; CBD, cannabidiol

GWPCARE6 baseline characteristics

Patient characteristics and range of baseline ASMs in the study may not reflect UK clinical practice

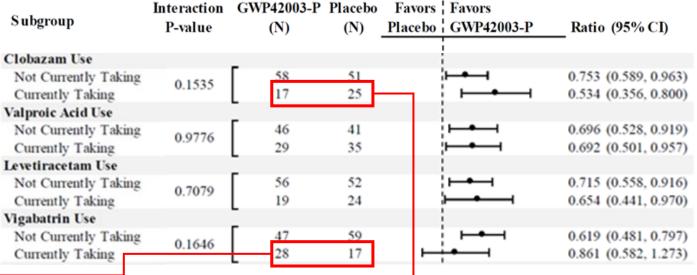
Key issue: Small number of UK patients	Key issue: Wide range of baseline ASMs
 Company: HTA advisory board: generalisable to UK setting TSC orphan disease: recruitment challenges Baseline characteristics similar across locations Inappropriate to compare UK trial patients to expected UK population /whole trial cohort: small sample size 	 Company: No standard care once patient refractory: cycle through many different ASMs Usual care at clinician discretion in trial Company experts: 'Basket' of usual care in GWPCARE6 aligned with clinical practice Huge number of potential combinations: inappropriate to adjust for differences in usual care from NHS setting
 ERG: UK baseline characteristics = only 3.3% total trial cohort Accept limitations of small population but: Company didn't support generalizability of UK patients with published data 	 ERG: Relative treatment effect for cannabidiol may differ if background therapies in trial better/worse than clinical practice More info on ASMs in trial useful
 Baseline characteristics outside pre-defined diagnostic criteria may differ from UK clinical practice 	 Clinical experts: Usual to cycle through ASMs: individualised regimes of several drugs to achieve seizure control

How does the trial population compare to the UK population with TSC? How comparable are the treatments forming usual care between GWPCARE6 and NHS clinical practice? 18 ASM, anti-seizure medications; CBD, cannabidiol

Differences in usual care treatments between arms

Between arm variability in the number of people taking vigabatrin and clobazam in GWPCARE6

Figure 4 GWPCARE6 subgroup analyses


Key issue: 1.7 x vigabatrin use in cannabidiol vs placebo arm

- Function of disease severity at diagnosis (more advanced disease already stopped vigabatrin)?
- More likely to respond to cannabidiol without vigabitrin

Company: >75% of GWPCARE6 prior vigabatrin (43% stopped before study) No statistically significant difference in treatment effect with/without vigabatrin

ERG comments: difference in baseline characteristics unlikely occurred by chance (vigabatrin = <1 in 40): flawed randomisation?

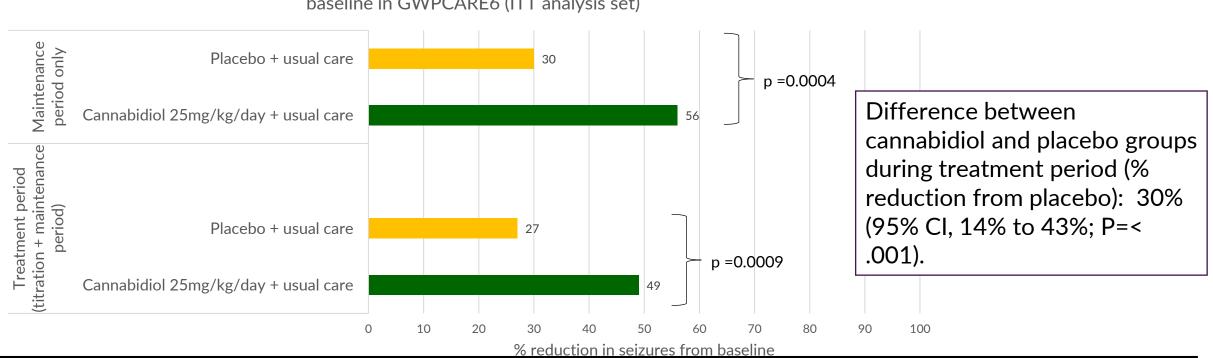
- Vigabatrin: may influence outcomes but direction of effect unclear
- Clobazam: may overestimates treatment effect if not used in UK practice

More people had clobazam in placebo vs cannabidiol arm

- Drug drug interaction increases clobazam and cannabidiol metabolite levels -> may increase pharmacological effects
- Cannabidiol for Lennox-Gastaut and Dravet Syndrome: MA includes clobazam

Clinical experts: literature suggests difference in effect for cannabidiol with clobazam.

Clobazam associated with side effects: risk benefit management


Patient experts: some patients report seizure control with clobazam + cannabidiol but lack of response to cannabidiol alone

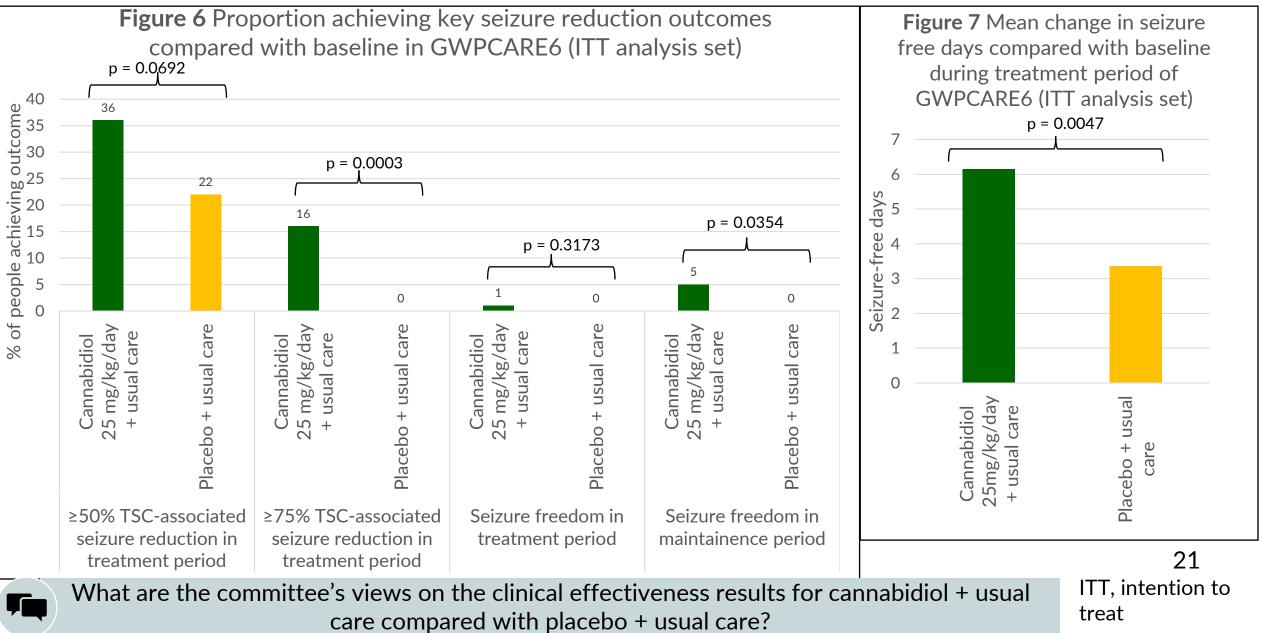
۲.

How are clobazam or vigabatrin likely interact with cannabidiol treatment? Is this likely to affect CI, confidence the generalisability of the GWPCARE6 results? How much is clobazam used in clinical practice? CI, confidence interval; N, number

GWPCARE6 results: Primary outcome

Results suggest reduction in seizure frequency with cannabidiol vs. placebo throughout the study

Figure 5 Change in TSC-associated seizures during the treatment period compared to baseline in GWPCARE6 (ITT analysis set)


ERG comments: Primary outcome appropriate

NICE

- 94% of seizures in GWPCARE6 classed as TSC-associated (excluded absence, myoclonic, focal sensory seizures and infantile/ epileptic spasms)
- Definition of primary outcome approved by regulatory bodies
- Baseline seizure frequency measurement (number of seizures in 28 day baseline period) appropriate

20

GWPCARE6 results: secondary outcomes Higher proportion achieve seizure reduction/seizure free days with cannabidiol vs. placebo

GWPCARE6 results: Quality of life

Company states issues with trial QoL measure; results vary depending on instrument used

Table 8 Quality of life measures and results in GWPCARE6

Questionnaire collected in GWPCARE6	Measures	Change from baseline, cannabidiol 25 mg/kg/day versus placebo
Quality of Life in Childhood Epilepsy [QOLCE]	0 (worst) to 100 (best) scale covering physical and cognitive function,	Overall QoL: mean treatment difference 1.5 (95% CI -3.3, 6.3, p= 0.5316)
Quality of Life in Epilepsy	emotional well-being, social function,	Overall QoL: mean treatment difference -4.2 (95%
[QOLIE]-31-P	behaviour, energy/fatigue, seizure worry	CI -25.1, 16.8 p= 0.6868)
Subject/Caregiver Global	7-point scale: 1 (very much improved) to	+69% cannabidiol arm, +39% placebo arm (odds
Impression of Change (S/CGIC)	7 (very much worse)	ratio 2.25 (95% Cl, 1.24-4.07, p=0.0074))

*Positive odds ratios favours cannabidiol. Source: company submission figure 8 and appendices, Figure 8 and 9

Company: discount QOLCE/QOLIE-31-P results because:

- No validated disease specific instruments or robust mapping algorithms to EQ-5D
- inappropriate for severe epilepsy (e.g. questions re school/work in people with physical/learning disabilities): high chance of missing data
- S/CGIC better represents QoL change: captures impact on overall condition based on entire seizure and comorbidity burden
 - Not preference based so can't be used to derive utilities.

ERG comments: QOLCE/QOLIE-31-P results not statistically significant but:

- validated for measuring seizures in children
- In pre-hoc study plan: company decided inappropriate post-hoc
- Not reported in main company submission: outcome reporting bias?

NICE

How does cannabidiol impact quality of life for people with TSC-related seizures? Are the QOLCE/QOLIE-31-P acceptable measures for TSC?

Abbreviations: CI, confidence interval; QoL, quality of life; SD, standard deviation

Adverse events

GWPCARE6 AEs mostly mild to moderate but potential for drug-drug interactions

Table 9 Adverse events in the GWPCARE6 trial

Event	Cannabidiol 25 mg/kg/day (n=75) N (%)	Placebo (n=76) N (%)
All-causality TEAEs	70 (93)	72 (95)
Treatment related TEAEs	52 (69)	40 (53)
Treatment-related TEAEs leading to discontinuation	8 (11)	2 (3)*
Treatment related serious TEAEs	8 (11)	0
AEs recorded by ≥10% of participants		
Diarrhoea	23 (31)	19 (25)
Decreased appetite	15 (20)	9 (12)
Somnolence	10 (13)	7 (9)
Vomiting	13 (17)	7 (9)
Pyrexia	14 (19)	6 (8)
Alanine aminotransferase increased	9 (12)	0
Upper respiratory tract infection	7 (9)	10 (13)
Aspartate aminotransferase increased	8 (11)	0
Gamma-glutamyl transferase increased	12 (16)	0
SAEs of special interest		
Status epilepticus	2 (3)	1 (1)
*INAD discontinued in the onen label extension C		

ERG comments

- Most AEs mild to moderate, within 1st 2-4 weeks and resolved by end of trial.
- Cannabis-based medicines may lead to drug-drug interactions (not proven in cannabidiol)
 - Effects likely avoided in trial by exclusion and dose modification of concurrent ASMs: less well managed in clinical practice?

Other considerations: Reported AEs based on 25 mg/kg/day dose: higher than expected in clinical practice

*IMP discontinued in the open-label extension. Source: adapted from company submission, tables 7 and 8

Have all the relevant safety issues been captured and taken into consideration? What adverse events are being avoided by using 12mg/kg/day instead of 25 mg/kg/day?

AE, adverse event; N, number; SAE, serious adverse event; TEAE, treatment emergent adverse event

Key issue: Indirect treatment comparison

ERG: systematic literature review did not present all relevant comparator evidence

Background

Company did not conduct an indirect treatment comparison with scoped comparators

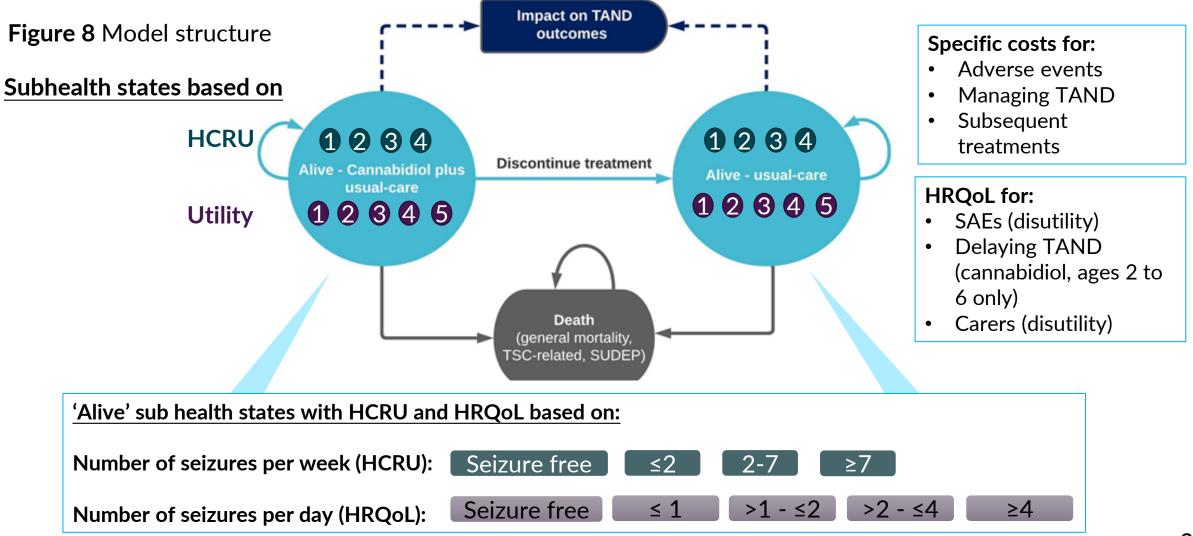
ERG comments:

- Insufficient detail to prove SLR limited bias and error: may not provide full picture of current evidence
 - No pre-published protocol
 - Data extraction methods unclear
 - Multiple RCTs with potential comparator evidence excluded:
 - Metformin: excluded for mode of action but could have been used in ITC
 - Everolimus: used at later line
- Concerned that no efficacy/safety studies on common ASMs identified so re-ran SLR with updated search terms
 - 41 new studies identified
- But, of identified trials, only GWPCARE6 reported correct combination of interventions, comparators and population: only study of relevance.

Company:

- Full SLR conducted for antiepileptics in TSC (N=79):
 - focused on studies relevant to decision problem (comparator = usual care with ASMs)
- ERG's SLR identified only 1 study of relevance published at time of initial search that met inclusion criteria:
 - for vagus nerve stimulation: not considered a comparator
- ITC not relevant to decision problem

Have all the relevant data for comparators been identified and taken into consideration? Is metformin a comparator for cannabidiol?


ASM, anti-seizure medications; ITC, indirect treatment comparison; RCT, randomised controlled trial; SLR, systematic literature review

Cost effectiveness

NICE National Institute for Health and Care Excellence

Company's model overview

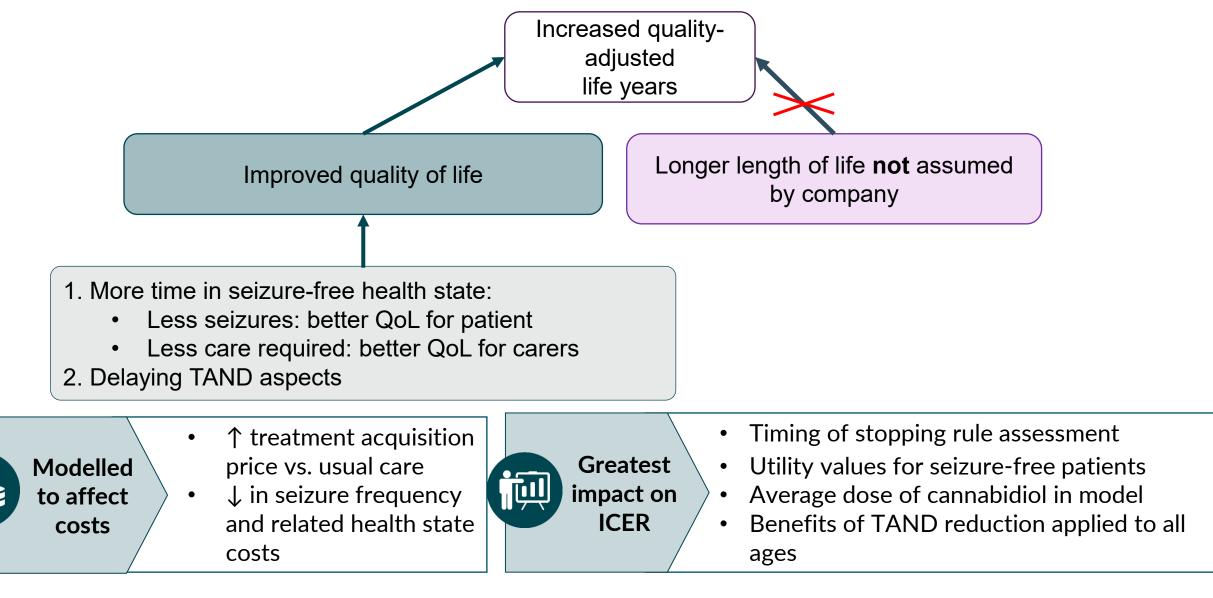
3 state cohort-based model considering seizure frequency and seizure-free days

Source: Based on Figure 12 of the company submission SUDEP = sudden unexpected death in epilepsy; TSC = tuberous sclerosis complex; TAND = tuberous sclerosis complex-associated neuropsychiatric disorders

Assumptions of the company's model

No mortality benefit for cannabidiol; efficacy determined by improvement in seizure frequency & seizure-free days

 Table 10 Assumptions in the company's model


Input	Assumption
Population	People with TSC-associated epilepsy ≥2 years with inadequately controlled seizures on established clinical management
Clinical efficacy	 ∆ in TSC-associated seizure frequency and seizure-free days Only generalised and focal with impaired awareness seizures considered Effect on seizures maintained whilst on cannabidiol
Utilities	Estimated for every sub-health state based on seizure frequency and type
Resource use	 People transition from children to adults at age 17 31% require support (e.g. assisted living or live-in residential units) and transition to these services at 27 years
Mortality	 No mortality benefit for cannabidiol but increased risk of SUDEP vs. general population for both arms
TAND	 Applies only to 2 -6 year olds as: 'Non-responders'* and usual care: cost for managing TAND aspects 'Responders'* to cannabidiol: reduced cost + utility benefit for delaying TAND aspects

*'responders' to treatment = people with \geq 50% seizure frequency reduction over 6 months

How quality-adjusted life years accrue in company's model

Improved quality of life from reduced seizures and delaying TAND; no mortality benefit assumed for cannabidiol

Figure 9 How quality-adjusted life years accrue in company's model

How the company incorporated evidence into model

Table 11 Input and evidence sources

Input	Assumption and evidence source		
Population	GWPCARE6 baseline data, split into 4 age categories		
Baseline seizures	 Seizure frequency: GWPCARE6 baseline period % seizure type (generalised, focal with impairment, combined): week 16 GWPCARE6 data assumed constant over time 		
Intervention	Cannabidiol + usual care		
Comparator	Usual care alone		
Efficacy estimates (both arms)	 GWPCARE6, week 16 data used in regression models to predict change in seizure free days and seizure frequency. Assumed maintained over time. 		
Mortality	• Age-adjusted background TSC mortality: Zöllner et al. (2020) . Risk of SUDEP: Amin et al. (2017)		
Adverse events	GWPCARE6, week 16 data for severe TEAEs		
TAND	 Prevalence of TAND aspects: Vries et al. (2015) (TOSCA registry) % aged 2 -6 with reduction in TAND (≥50% seizure frequency reduction): GWPCARE6 ITT cohort 		
Stopping treatment rates	Discontinuation rate: ≥week 16: GWPCARE6; Week 17- 88: OLE; Long term: TA615 (LGS) Stopping rule if seizure frequency not ≥30% less than baseline: 6 & 12 months: OLE data; 18 & 24 months: 12 month OLE rate		
Subsequent treatment	7.7% start everolimus at 2 years (usual care) or on discontinuation of cannabidiol: TOSCA registry		
Utilities	 Seizures (patient & carer): company vignette weighted by seizure type in GWPCARE6, week 16 Seizure free days (patient): Lo et al., (2021) Disutility for SAEs: Kinderen et al. (2016).; Increments for delaying TAND: Vries et al. (2015) 		

Health care resource use and costs into model

Table 12 Input and evidence sources HCRU and costs

Input	Assumption and evidence source	ERG comments
Resource use	Delphi panel consensus validated by Shepherd et al	All HCRU data from Delphi panel (not real world
Costs	ASMs and everolimus: MIMS and EMIT Monitoring costs: assumed LFT tests 4 x in 1 st year only, NHS Reference costs 2019 to 2020 TAND: Gustavsson et al. 2011	evidence). HCRU in Shephard et al and Dephi panel not comparable. <i>Scenarios</i> : a) use TA614 and TA615 hospital costs; b) ↓ hospital admissions by 50%

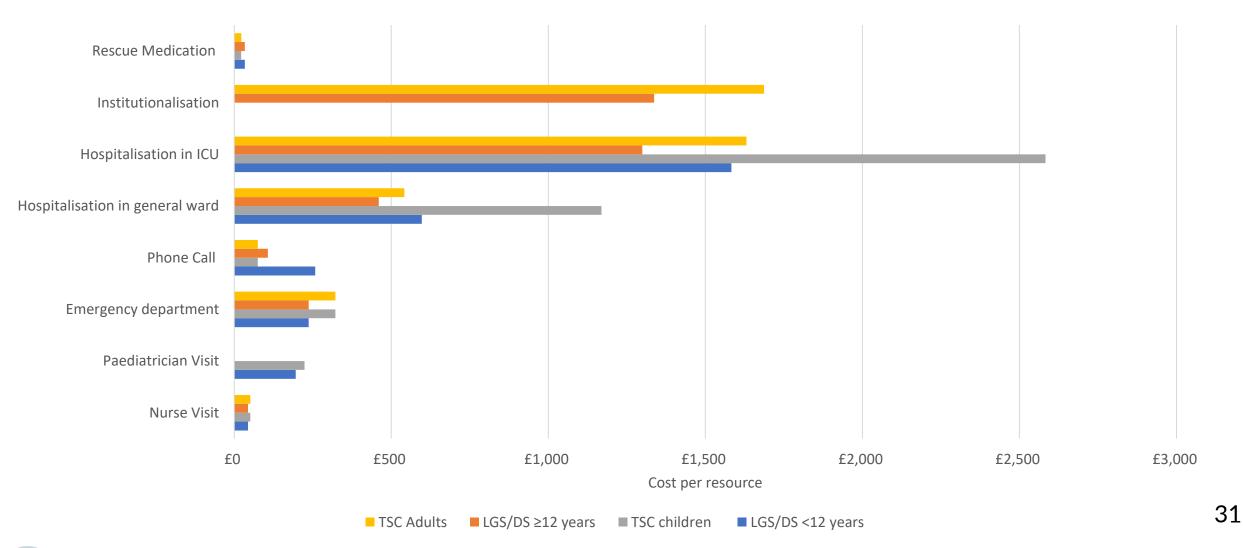
Table 13: Health care resource use costs by seizurefrequency category in the company's model

HCRU per week (per	Generalized seizures (£)		Focal with impairme seizures (£)	
cycle)	Paediatric	Adult	Paediatric	Adult
Seizure-free	53	541	40	533
≤ 2 seizures	143	594	99	569
> 2 - ≤ 7	289	716	195	631
seizures				
> 7 seizures	700	994	428	768
Source: company submission, table 26. HCRU, health care resource use				

Table 14: Comparison with Shepherd et al & other cannabidiol TAs for 1st 3 years (GP visits, hospitalisation, other drugs, outpatient visits)

	Company submission, ID1416	Shepherd et al	TA614 (Dravet)	TA615 (Lennox- Gastaut)
Absolute costs, usual care	£55,578	£44,259	£43,867	£14,875
Δ in costs with cannabidiol	-£13,638	-	-£7,520	-£3,401
% change	25%	-	17%	23%

Source: company submissions for cannabidiol in TSC, Dravet Syndrome and Lennox-Gastaut syndrome, Shepherd et al.



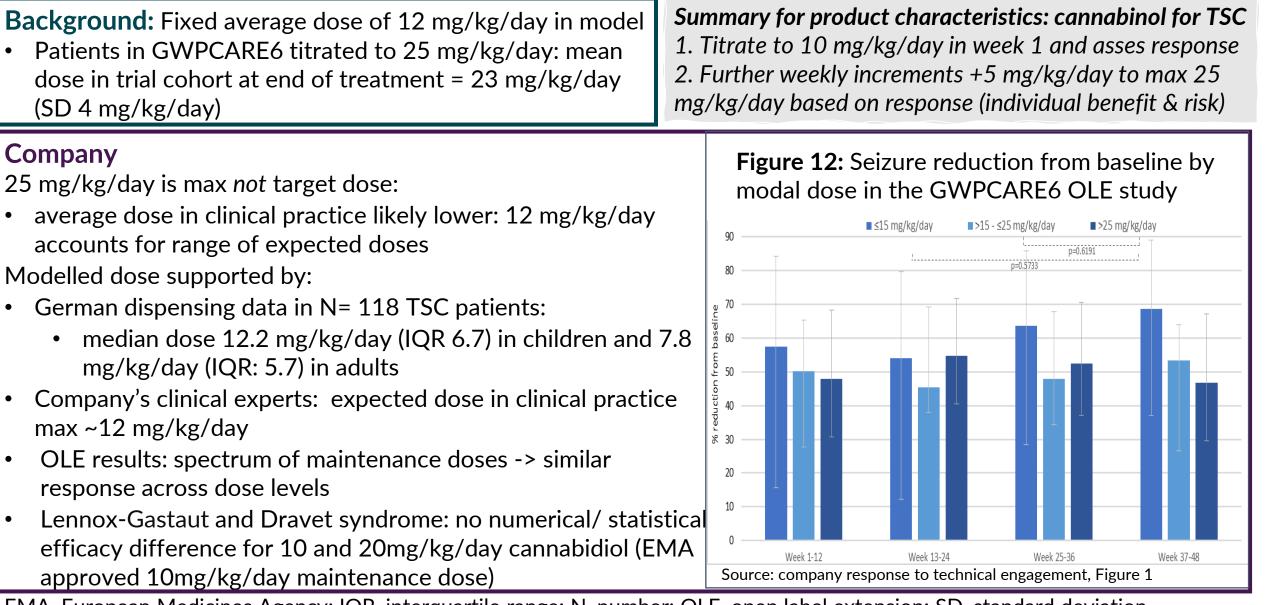
What are the committee's views on the cost and resource use in the model? How comparable are the HCRU estimates from the company's model and Shepherd et al?

)

Comparison of health care resource use and costs across TAs

Figure 10: Comparison of cost per resource across cannabidiol indications

How would resource use differ between TSC, Dravet Syndrome (DS) and Lennox-Gastaut Syndrome (LGS) in clinical practice? Are company's estimates plausible?


Key issues: Population in the model

Data from1 year olds used in model (excluded from licence); varying % of females across age groups

Key issue: Population includes 1 year olds Modelled efficacy outputs, response rates, discontinuation rates & baseline characteristics informed by GWPCARE6 ITT population	catego • Mo	 Key issue: % female in GWPCARE6 varies across age categories : impacts weight and BSA used for drug costs Modelled weight & BSA maintained >18 years old 				
 Includes N=9 >1 year old (cannabidiol N=3, placebo N=6): not i licence 	Comp	 Company: Discrepancy is non-significant (p =0.453) Varied characteristics expected in orphan disease 				
 Company: All >2 years old at end of trial: Inappropriate to excluyear olds due to small trial population (orphan disease) Conservative: Results excluding 1 year olds similar to ITT population (slightly less favourable to cannabidiol) 	le <1 • % • At ye	 % female has minimal impact on ICER At 10 years in model < % on cannabidiol (average age 24 years): general population weight & BSA for 24 year olds (average 73kg, BSA 1.85) comparable to GWPCARE6 				
 Drug costs excluded 1 year olds ERG: ITT not reflective of clinical practice: likely conservative b hard to predict impact on ICER 	t costs:	 ERG: may overestimate mean weight & BSA used for drug costs: impact uncertain but unlikely model driver Weight & BSA may not be maintained in adults 				
Table 15: Negative Binomial Regression Analysis of TSC-associ	IMNIC	Table 16: Baseline characteristics in the company model				
Seizure Count During Baseline & Treatment Periods (ITT Analysis Set)		Age, years				
N (CBD/ % reduction from Treatment ratio placebo) baseline (CBD / % reduction 95% (placebo)	% fema		2 - 6 <mark>38 (7)</mark>	7 – 11 <mark>42 (7)</mark>	12 - 17 <u>53 (9)</u>	≥18 35 (6)
ITT75 / 7647% / 27%0.699 [30%]0.567 2+ years 72 / 7050% /28%0.695 [31%]0.560Note: Treatment period is defined as Day 1 to Day 113. Source: company response to	0.861 0.862 TF.	body weight, kg (SD) 3SA, m ² (SD) ort, table 4.3	0.77 (0.17)	1.09 (0.18)	1.51 (0.24)	1.84 (0.31)
Table B ERG report, table 4.3 What impact does including 1 year olds have on the cannabidiol's effect? BSA, body surface area; ITT, intention to treat; m, meter; N, number; SD, standard deviation Should they be excluded from the company's model? BSA, body surface area; ITT, intention to treat; m, meter; N, number; SD, standard deviation						

Key issue: Modelled dose of cannabidiol (1)

Company models lower dose than licenced, states better reflects clinical practice

33

EMA, European Medicines Agency; IQR, interquartile range; N, number; OLE, open label extension; SD, standard deviation

Key issue: Modelled dose of cannabidiol (2)

ERG: little data supports company's modelled dose; model driver

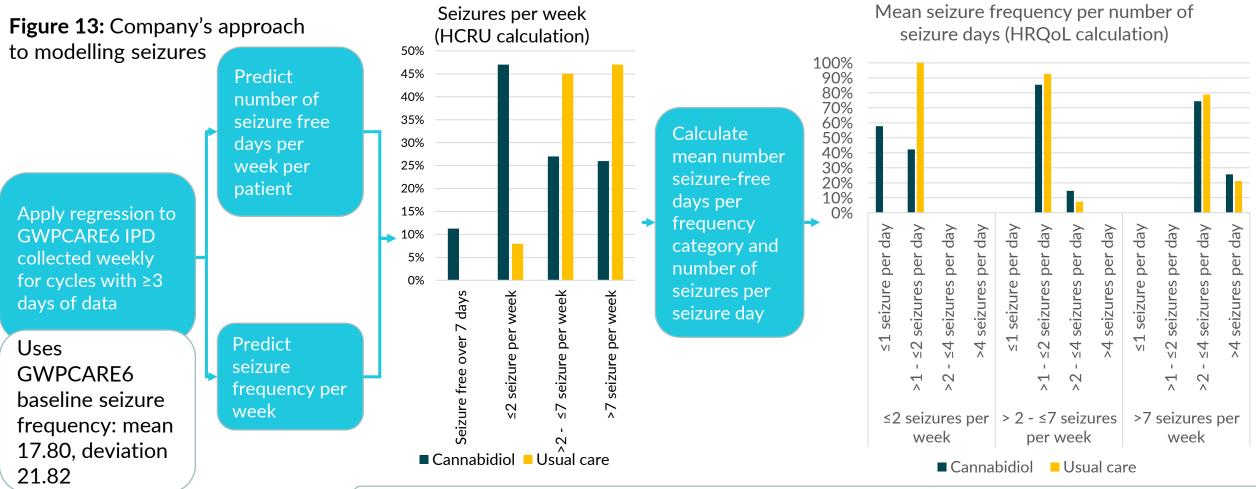
ERG comments: unclear if modelled dose reflects UK clinical practice

- Plausible that average dose ~12 mg/kg/day but company did not provide data on individual doses in the trial to verify: may be higher in clinical practice
- Limited evidence to support 12 mg/kg/day average dose:
 - 1. OLE data not convincing as:
 - Does not specify patients numbers in each category
 - Absence of dose response on average doesn't mean that some patients will not need a higher dose to obtain response
 - 2. German data may not be representative of UK population
- Unclear why maintenance dose not 10mg/kg/day: mandated by EMA for Dravet and Lennox-Gasteut
- ERG scenarios exploring alternative dosing (10, 15 and 25mg/kg/day) significantly impact ICER

Clinician expert comments

- Dosing used in clinical trials somewhat arbitrary
- Dose response not linear: limited further benefits after a certain dose
 - Many patients will need lower dose than the licenced 25mg/kg/day

Previous assumptions: 12 mg/kg/day preferred by committee for Dravet and Lennox-Gasteut syndrome


- Experts: increase above maintenance dose if large drop in seizure frequency to aim for seizure freedom
- 20% modelled to have max dose (20 mg/kg/day) = average 12 mg/kg/day

NICE

What are the committee's views on the company's modelling of the dose of cannabidiol? What dose of cannabidiol is most plausible in clinical practice?

Background: Company's modelling of seizures

GWPCARE6 data used to predict seizure free days and seizure frequency

Adjusted for distribution of generalised, focal impaired awareness and combined seizures in GWPCARE6 at week 16. **Company assumes relative effectiveness at 16 weeks maintained for modelled time horizon.**

How plausible are the companies modelled seizure frequency calculations for people with

TSC?

HCRU, health care resource use; HRQoL, health related quality of life

Background: Company's linear regression model results

Non-significant trend for \uparrow seizure frequency and \downarrow odds of seizure free days with placebo vs. cannabidiol

Company

- Non-significance of relative effect due to low power from dual model approach and using weeks instead of full trial period (16 weeks)
 - Single negative binomial model for seizure frequency on all days (sensitivity analyses) showed statistically significant effect v placebo

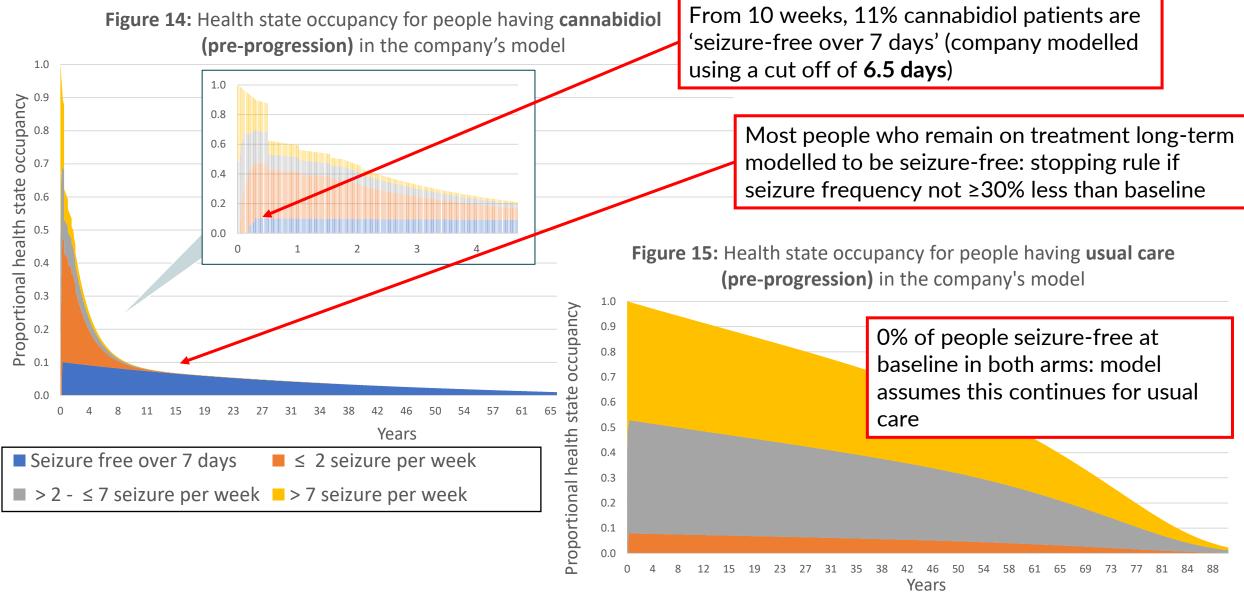
ERG comments

NICE

- Baseline seizure rate important predictor of seizure severity: not a treatment modifier in subgroup analyses
- Justification for treatment*time weak and not supported by expert opinion
- Limitations to analyses, but may predict seizure-free days and seizure frequency sufficiently accurately
- OLE seizure frequency data aligns with estimated values but no OLE data on seizure-free days

OLE, open label extension

Table 17: Results of the linear regression model


	Seizure-free days	Seizure		
	(SE)	frequency (SE)		
	+ve = favourable	-ve = favourable		
	outcome	outcome		
Log (cycle)	0.536* (0.116,	-0.062 (0.025,		
Effect of cannabidiol over time	p=<0.001)	p=0.012)		
Baseline seizure rate (scaled)	-2.803* (0.248, p=	0.494*(0.029,		
Effect of high baseline seizure	<0.001)	p=<0.001)		
rate on outcome				
Placebo vs. cannabidiol	-ve favours	+ve favours		
	cannabidiol	cannabidiol		
Treatment = Placebo (Ref =	-0.518 (0.328, p=	-0.011 (0.069,		
Cannabidiol 25 mg/kg/day)	0.114)	p=0.877)		
Relative effect over 1 cycle		[,		
Treatment (Placebo) * log	-0.241 (0.161,	0.052 (0.032,		
(cycle)	p=0.135)	p=0.107)		
Relative effect over time		• •		
Source: Table 13 of company submission: SF = standard error: Ref = reference				

Source: Table 13 of company submission; SE = standard error; Ref = reference treatment; Orange* = statistically significant result

What are the committee's views on the company's regression analyses?

Background: Seizure health state occupancy in the model

NICE

37

Key issue: Application of seizure free days in the model

38

ERG: company's application of seizure freedom may overestimate cannabidiol's treatment effect

ERG comments: 6.5 day cut-off for 'seizure-free over 7 days' overestimates % seizure-free in cannabidiol arm

- Scenario: cut-off of 7 days: no patients in either arm are seizure-free:
 - Predicted seizure-free days per week with binomial regression model = 6.62 cannabidiol, 5.89 placebo
 - Impacts HCRU and discontinuation rates: large impact as 16 week effect maintained for full time-horizon
- Some having usual care may be seizure-free over 7 days in clinical practice:
 - median 4 ASMs in GWPCARE6 -> some had less: benefit from further options?
- Company assumes patients refractory over lifetime: unlikely as would try subsequent treatments

Company

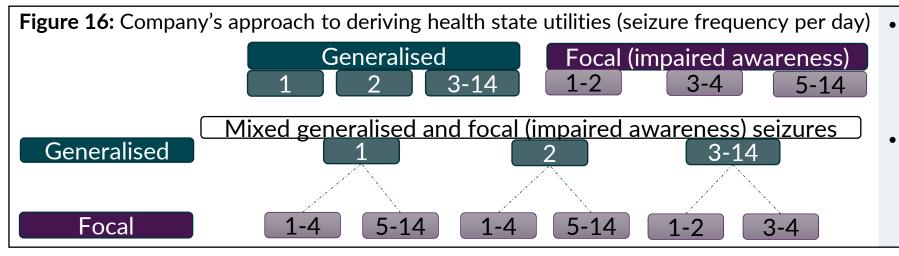
- Binomial logistic regression cant predict 0 or 7 days:
 - 6.5 days closest rounding cut-off point
- Experts: unlikely seizure-free with usual care
- ERG's scenario doesn't reflect OLE: 19% seizure free at 72 weeks with cannabidiol
- Scenario: cut-off of 6.61 days for 'seizure-free for 7 days'

Clinical expert: Seizure freedom key outcome:

- Rarely achieved in people with TSC
- Partial seizure reduction may not reduce risk and improve QoL

ASM, anti-seizure medication; HCRU, health care resource use; OLE, open label extension, QoL, quality of life **Table 18:** Potential cut-offs for modelling'seizure free over 7 days'

Cut-off for 'seizure free for 7 days'	Company/ERG
6.5 days	Company & ERG base case
6.61 days	Company scenario
7 days	ERG scenario



How should seizure freedom be modelled? Which cut-off for 'seizure-free for 7 days' best reflects clinical practice?

Would cannabidiol's effect on seizures be maintained?

Background: Modelling utilities

Time trade off values for seizure type and frequency weighted by prevalence in the GWPCARE6 trial

- Time trade off values collected in vignette for each combination of seizure type and frequency for both patients and carers
- Utilities in the model: weighted by % seizure type and seizure frequency combinations in week 16 of GWPCARE6

Table 18: Health state utilities applied in the company's model (capture impact of seizures only)

Health state, seizures per day	Patient utility	Carer disutility*	Reference	ERG comments: seizure-free utility
Seizure-free			Lo et al., (2021)	value for carers uncertain
<u>≤1</u>			Company vignette,	Company:
>1 - ≤2			adjusted to account	1) Assumes all caregivers mothers
>2 - ≤4			for seizure type	 Doesn't capture other TSC-
>4			distribution	related symptoms requiring care
Source: table 4,12, ERG report. *calcula	ated using baseline	utility of 0.881: a	average adult aged 45	3) Didn't correct for caregiver aging
<mark>years</mark> (ONS data: average age o	f a mother of a 13-	year-old child).		Scenarios: vary utility value for
NB: utility values taken from	the company's mo	del: seizures per	day differ from those	seizure-free health
reported in the company submi	ssion			39
NICE	t _			

CONFIDENTIAL

Utilities across health states

Variation in patient and carer utility values across cannabidiol indications

Background

NICE

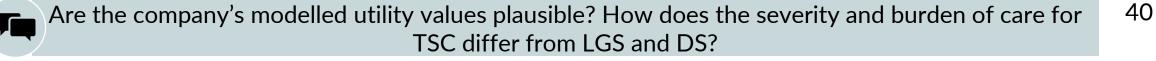

• Published data available for Lennox-Gastaut and Dravet Syndrome from vignettes in general public (conducted after publication of TA614 and 615 based on committee feedback)

Table 19: Comparison of patient and carer utility values across cannabidiol indications

Company subr TSC	nission IC)1416,	Lo et al. 2021,	LGS			Lo et al. 2021, DS			
	Patient	Carer	Drop seizures	Seizure	Patient	Carer	Convulsive	Seizure	Patient	Carer
day (any type)	utility	utility [†]	per day	free days	utility*	utility*	seizures per day	free days	utility*	utility*
Seizure-free			Seizure-free	>15	0.722	0.790	Seizure-free	>24	0.781	0.874
≤1			≤45	>3 - ≤15	0.282	0.506	≤8	>18- ≤24	0.652	0.762
>1 - ≤2			>45 - ≤110	>15	0.152	0.364	>8 - ≤25	>24	0.620	0.752
>2 -≤4			>45 - ≤110	≤3	-0.065	0.120	>8 - ≤25	≤18	0.407	0.564
>4			>110	>15	-0.055	0.209	>25	>18- ≤24	0.380	0.613
-	-	-	>110	≤3	-0.282	-0.098	>25	≤18	0.168	0.465

Source: table 4,12, ERG report, Lo et al, supplemental table IV and V. [†] caregiver utility calculated by applying disutility to baseline utility of 0.881: average age of a mother of a 13-year-old child)

* based on UK mean from vignettes in general public, not utilities accepted in the LGS and DS appraisals

DS, Dravet Syndrome; LGS, Lennox-Gastaut Syndrome; TA, technology appraisal

Key issue: Number of carers

ERG: company's modelling of 2 carers additively does not account for 'sharing' of care burden

Company: Applies vignette carer disutilities additively for 2 x carers. Justified by:

- Risk of injury/death from seizures, multiple co-morbidities; may need lifelong 24hr care
- Approach conservative:
 - captures cumulative QoL impact of many carers
- Updated paper by Lagae et al (2019) (DISCUSS study for Dravet syndrome, N=584) suggests total 2.06 carers
 - 84% of total care by 1° carer
 - 122% by partners, family members, friends etc
- Vignette adjusted for carer being 1 of 2
- Carer disutility applied additively in HST3

hr, hour; N, number; TA, technology appraisal; HST3: Ataluren for treating Duchenne muscular dystrophy with a nonsense mutation in the dystrophin gene

Previous assumptions: committee agreed additive approach may not capture
'sharing' of care burden for Dravet (DS, TA614) & Lennox-Gasteut (LGS,
TA615) syndrome

• Preferred scenario: 1.8 x carers informed by Lagae et al 2017

ERG comments: Unlikely both carers provide equal care: disutilities may differ (not specified in vignette)

- Vyas et al: total TSC seizure specific hours spent caring = 11; 7 hrs were 1° carer
- N° carers over time & effect on other family members uncertain
 ERG base case: 1.8 x carers as per TA614, TA615 and TA808 (fenfluramine)

Clinical expert

- Heterogeneity in seizure severity and frequency in refractory TSC-associated epilepsy: spectrum of care burden
- Additional disorders (including TAND) also affect care needs
- Differences between TSC and DS/LGS may affect comparability across diseases:
 - Seizure type: DS mostly myoclonic seizures, TSC and LGS multiple
 - Severity: LGS generally refractory but DS hugely variable
 - Associated learning disabilities: characteristic of DS but not for TSC

How plausible are the company and ERG's assumptions on the number of carers for a TSC patient? How does the care burden for people with TSC compare to those with Dravet Syndrome?

Key issue: Modelling care for institutionalised patients

ERG base case includes reduced carer disutility for patients who are institutionalised

Background:

- Delphi panel consensus: 31% TSC patients institutionalised at average age of 27 years
 - Company assumes no reduction in burden of care when patients institutionalised (still 2 carers in model)
- Same proportion of patients institutionalised regardless of seizure frequency

ERG comments:

NICE

- 1. Institutionalisation costs in company's base case: utility values not adjusted for care reduction
 - Base case: assumes 50% reduction in carer disutility for 31% of adults
- 2. Potential that seizure-freedom linked to reduced institutionalisation
 - Scenario: a) 0% institutionalisation in seizurefree health state; b) as above + 10% ↓ institutionalisation for other health states

Company: ERG's approach inappropriate:

- Although carers QoL may improve with patient being institutionalised, still have:
 - Concerns: risk of injury from seizures or worsening of seizures and TAND aspects in new environment
 - Every day life centred around visiting patient and accompanying them to healthcare visits
 - Guilt about separating patient from family
- Scenarios: 50% ↑ in caregiver utility for 31% adults

Clinical expert: Carers remain involved when patients institutionalised:

• attend hospital appointments for ongoing surveillance, visit regularly

How would carers quality of life be affected by patient institutionalisation? What is the most plausible approach to modelling this?

QoL, quality of life; TAND, TSC associated neuropsychiatric disorders

Background: Company's modelling of TAND

Impact on TAND applied as reduced costs and utility benefit for 'responders' to cannabidiol

Figure 17: Company's approach to modelling TAND aspects

'Non-responders'[†]
 Costs for TAND aspects applied for
 5 years, weighted by prevalence
 reported in TOSCA registry

Patient's aged 2-6 years in model*

'Responders'[†] Cannabidiol's benefit on TAND aspects applied for 5 years

*Delphi panel suggested treatment with cannabidiol most beneficial at an early age.

[†] Responders = 50% seizure frequency reduction over 6 months (Delphi panel 'near consensus' that 47.5% seizure frequency reduction would reduce progression of TAND aspects)

ADHD, attention deficit hyperactivity disorder; TAND, TSC-related neuropsychiatric disorders; TE, technical engagement

Key aspects of TAND identified by Delphi panel.

Table 20: Prevalence data for 2-6 year olds (Vries et al)				
Age bands used by de Vries et al	≤2 & >2 to ≤5			
Ν	584			
Prevalence of TAND aspects from Vries et al				
Delayed development	8.4%			
Behavioural issues	54.8%			
Intellectual disability	5.5%			
Autism Spectrum Disorder	11.5%			
ADHD	10.4%			
Anxiety disorders	1.5%			
Source: ERG report, Table 4.6				

Table 21: Costs and utilities associated with TAND in2-6 year olds in company's model (after TE)

	'Non-responders' and usual care arm	'Responders'			
Weighted	£50.47	£25.24			
average cost of					
TAND per cycle					
Utility benefit for	-	0.09			
delaying TAND					
Source: adapted from company submission, Table 24 and 29					

Key issue: TAND

ERG: Many uncertain assumptions inform modelling of TAND

Company: TAND important to include: large impact on the lives of patients and caregivers

- Updated modelling of TAND at TE to include more conservative assumptions
- Scenario: TAND benefit applied to all age groups.

ERG comments: uncertainty in modelling of TAND:

Potential double counting of treatment effect on TAND: may also be captured in seizure frequency vignettes

Uncertainties include:

- No data on TAND from clinical trials in model: resource use based on external data
- Near (not full) consensus of the Delphi panel as to % seizure reduction for benefit in TAND aspects
- All ages included in responder calculations, but only applied to 2 to 6 year olds
- **ERG base case:** excludes TAND aspects

 Patient expert Behavioural issues related to TAND extremely challenging for patients and their families: large QoL impact Some carers report improvements in sleep and behaviour with cannabidiol 	 Clinical expert TAND complications (cognitive impairment, behavioural difficulties) may improve with reduced seizure frequency Spectrum of severity with TAND: ranges from fairly independent to requiring care with all aspects of daily living Early seizure control key to improving TAND aspects
related neuropsychiatric disorders; 🔎 and carers? T	is TAND in people with TSC? What is the impact on patients o what extent is TAND preventable by controlling seizures? AND aspects, and cannabinol's effect on them, be modelled?

How should TAND aspects, and cannabinol's effect on them, be modelled?

Summary of company and ERG base case assumptions

Assumptions on TAND and carer disutility differ between base cases

Table 22: Assumptions in company and ERG base case

NICE

Assumption	Company base case	ERG base case			
Effect of TAND	 Conservative TAND mitigation benefit applied to patients aged (2-6 years) with a 50% response rate at 6 months: for 5 years only Using lowest reported utility (0.09) 				
Application of carers disutility	2 carers applied additively	1.8 caregivers applied additively			
Adjustment of carer utility for institutionalisation	No adjustment	0.5 caregivers assumed for 31% of patients aged ≥ 18 years			
Assumptions updated at TE	(in both the ERG and company base case)				
Carer utility for seizure free health state (used to calculate disutility for non-seizure free states) from general utility for a 43 year old woman (0.897)					
Inclusion of age related utility cap for patients					
Correction of general popul	Correction of general population mortality from age 97 4				

QoL, quality of life; TAND, TSC-related neuropsychiatric disorders; TE, technical engagement

Summary of key company and ERG scenarios

Key scenarios vary the population, dose of cannabidiol and application of carer utility in the model **Table 23:** Key scenarios provided by the company and ERG

Uncertainty	Company scenarios	ERG scenarios
Population	 Varying baseline % female (applies to all ages): 42% (average in GWPCARE6) 35% (min in GWPCARE6 age categories) 53% (max in GWPCARE6 age categories) 	 Varying weight and BSA in model: Increase of 5% Decrease of 5%
Average dose cannabidiol	-	15 mg/kg/day20 mg/kg/day
Average dose everolimus	-	 Based on TOSCA registry (Reduced 9% for 2-6 year olds and 34% for >6 year olds)
Cut-off 'seizure- free at 7 days'	6.61 days (regression model predicted max threshold of seizure-free days = 6.62)	7 days
Health care resource use	-	 Hospitalisation costs and admissions from TA614 & 615 0% institutionalisation for seizure-free health state 0% institutionalisation for seizure-free health state, 10% for other health states
Carer utility seizure-free health state	-	 0.85 0.80 0.75
Carers disutility	 1.8 x carers 50% increase in carer utility for 31% of patients to reflect institutionalised patients 	- 46 BSA, body surface area;

Comparison of assumptions: NICE appraisals for cannabidiol

Company considered committee preferences for previous appraisals in the modelling

 Table 24 Assumptions in the cannabidiol appraisals for Dravet syndrome (TA614) & Lennox-Gastaut syndrome

Assumption	Dravet syndrome (TA614) & Lenno	TSC (ID1416)	
	Company assumptions	Committee preferred	Company assumptions
Long-term relative efficacy	Maintained over time (while on treatment)	Likely to diminish over time	Maintained over time (while on treatment): supported by OLE and EAPs data
Maintenance dose of cannabidiol	10 mg/kg/day	12 mg/kg/day	12 mg/kg/day
Stopping rule	Stopping rule if seizure frequency not ≥30% less than baseline assessed every 6 months	Appropriate	 Stopping rule per TA614 and TA615 Additional discontinuation rate based on GWPCARE6, OLE and TA615
Mortality benefit for cannabidiol	Included	Insufficient evidence to prove benefit	Excluded
Source of health state utilities	Vignette in patients and caregivers	Vignettes in general population as per NICE reference case	Vignette in general population
Number of caregivers	2	1.8	2
assumed			47

Cost-effectiveness results

All ICERs are reported in PART 2 slides because they include confidential comparator PAS discounts

Other considerations: Equality and Innovation

Equalities considerations identified; cannabidiol offers more tolerated treatment option

Equality considerations

Patient organisation

• Half of people with TSC have learning disabilities (e.g. intellectual impairment, memory/attention issues).

Committee should also note that cannabidiol is indicated for use in children (2 years and over) and adults

Innovation

Company: Step change in TSC-associated epilepsy treatment because:

- Orphan disease with high unmet need: life-long treatment resistant form of epilepsy
- Inadequate control with current range of ASMs
- High patient and carer burden
- Favourable safety profile

Professional organisation:

• Reduces seizure burden and associated risk but not a step change in treatment as other ASMs available to manage the condition

NICE

Are there any equalities issues that should be considered for cannabidiol? Does cannabidiol represent a step change in treatment for TSC-associated epilepsy? ASM, anti-seizure medications

Other considerations: Uncaptured benefits

Company and clinical experts: some benefits of cannabidiol may not be captured in modelling

Uncaptured benefits

Company:

- Benefit on mortality risk from SUDEP
- Improving the quality of life of the wider family, including siblings
- Increasing carer productivity and associated societal benefits of carers being able to work
- Reducing duration/severity of seizures
- Long-term impact of improved seizure control on comorbidities and injuries

Clinical experts: Safety concern if cannabidiol is not recommended as people may obtain cannabidiol commercially: lack of regulation

NICE

Are there any uncaptured benefits that should be considered for cannabidiol? SUDEP, sudden unexpected death in epilepsy

Key issues: unresolved after technical engagement

 Table 25
 Key issues

	Key issue	Resolved?	ICER impact
Decision problem	Population and relevant comparators	Partially	Unknown 🗸
GWPCARE6 trial	Generalisability to NHS practice (usual care treatments, small UK population)	No	Unknown 📲
	Between arm variations in usual care treatments	No	Unknown 🚽
Modelling	Variation in patient characteristics between age categories: impacts treatment costs	No	Small 🔍
cost	Average dose of cannabidiol	No	Large 🚺
effectiveness	Modelling of seizure-free days	No	Medium 🗾 📈
	Modelling TSC-associated neuropsychiatric disorders (TAND)	No	Small 🛛 🔍
	Comparability of patient utilities with other cannabidiol appraisals	No	Unknown 📲
Utilities	Seizure-free health state utility value for caregivers	Partially	Small 🔍
	Application of caregiver disutilities	No	Small 🔍
Resource use	Comparability with literature and other cannabidiol appraisals	No	Medium 🛛 🗠

Key:Discussion;Model driver: >£10,000 per QALYS gain change from base case;Medium impact: £5,000 -£10,000 per QALYS gain change from base case;Small impact: <£5,000 per QALY gained change from base case;</td>Medium impact: £5,000 per QALY gained change from base case;

NICE National Institute for Health and Care Excellence

Thank you.

© NICE 2022. All rights reserved. Subject to Notice of rights.