Colorectal cancer: colonoscopic surveillance for prevention of colorectal cancer in patients with ulcerative colitis, Crohn’s disease and polyps

APPENDICES

Part 1

Appendix 1 – Scope

Appendix 2 – Review questions and review protocol

Appendix 3 – Results of GDG short questionnaires

Appendix 4 – Lists of excluded studies

Appendix 5 – Search strategies and literature search

Appendix 6 – Evidence tables

In separate volume:

Part 2 Appendix 7 and 8 – Health economic evaluation
Appendix 1 – Scope

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE

SCOPE

1 Guideline title

Colorectal cancer: colonoscopic surveillance for prevention of colorectal cancer in patients with ulcerative colitis, Crohn’s disease and polyps.

1.1 Short title

Colonoscopic surveillance for colorectal cancer in high-risk groups: inflammatory bowel disease and polyps.

2 The remit

The Department of Health has asked NICE: ‘To produce a short clinical guideline on colonoscopic surveillance for patients with ulcerative colitis, Crohn’s disease and polyps to prevent colorectal cancer.’

3 Clinical need for the guideline

3.1 Epidemiology

a) Colorectal cancer is the third most common cancer in the UK, with approximately 32,300 new cases diagnosed and 14,000 deaths in England and Wales each year. Around half of people diagnosed with colorectal cancer survive for at least 5 years after diagnosis.

b) Adults with inflammatory bowel disease (IBD: ulcerative colitis or Crohn’s disease) or with polyps have a higher risk of developing colorectal cancer than the general population. Colonoscopic surveillance can be used for

Colonoscopic surveillance: full guideline DRAFT (May 2010)
people in these high-risk groups to detect any problems early and
potentially prevent progression to colorectal cancer.

c) Polyps can be either precancerous (neoplastic adenomas) or non-
precancerous (non-neoplastic, including hyperplastic polyps). Strong
evidence suggests that detecting and removing adenomas reduces the
risk of cancer. Small polyps are rarely malignant and are unlikely to
progress to invasive cancers.

d) The prevalence of ulcerative colitis is approximately 100 to 200 per
100,000 and the annual incidence is 10 to 20 per 100,000 respectively.
The risk of colorectal cancer for people with ulcerative colitis is estimated
as 2% after 10 years, 8% after 20 years and 18% after 30 years of
disease.

e) The prevalence of Crohn's disease is 50 to 100 per 100,000 and the
annual incidence is 5 to 10 per 100,000. The risk of developing colorectal
cancer for people with Crohn's disease is considered to be similar to that
for people with ulcerative colitis for the same extent of colonic
involvement.

3.2 Current practice

a) In 2002, the British Society of Gastroenterology (BSG) issued guidelines
for surveillance after removal of adenomatous polyps. These recommend
that the frequency of post-operative surveillance should depend on the
size and number of adenomas removed.

b) The 2002 BSG guidance recommended colonoscopic surveillance for IBD
should start 8 to 10 years after onset of extensive colitis. They
recommended surveillance every 3 years during the 2nd decade of
disease, every 2 years for the 3rd decade and annually from the 4th
decade onwards. For left-sided disease they recommended colonoscopy
should be started after 15 to 20 years of disease and repeated every 5
years, with flexible sigmoidoscopy in the interim years. The guidance
recommended annual surveillance in patients with primary sclerosing cholangitis (PSC) because of their higher risk for colorectal neoplasia.

c) Guidelines from the BSG in 2004 suggested that people with IBD should discuss with their clinical team whether colonoscopic surveillance is appropriate for them but should comply with the 2002 guidelines.

d) Updated BSG Guidelines for polyps and IBD are being developed at the moment but due to variations in current practice, there is a need for an evidence-based national clinical guideline on colonoscopic surveillance in these high-risk groups.

4 The guideline

The guideline development process is described in detail on the NICE website (see section 6, ‘Further information’).

This scope defines what the guideline will (and will not) examine, and what the guideline developers will consider. The scope is based on the referral from the Department of Health.

The areas that will be addressed by the guideline are described in the following sections.

4.1 Population

4.1.1 Groups that will be covered

a) Adults (18 years and older) with IBD (defined as ulcerative colitis or Crohn's disease involving the large bowel).

b) Adults with polyps (including adenomas) in the colon or rectum.

4.1.2 Groups that will not be covered

a) Children (younger than 18 years).
b) Adults with newly diagnosed or relapsed adenocarcinoma of the colon or rectum.

c) Adults with polyps that have previously been treated for colorectal cancer.

d) Adults with a genetic familial history of colorectal cancer: hereditary non-polyposis colorectal cancer.

e) Adults with a familial history of polyposis syndromes: familial adenomatous polyposis.

4.2 Healthcare setting

a) Primary care.

b) Secondary care.

4.3 Clinical management

4.3.1 Key clinical issues that will be covered

a) Colonoscopic surveillance (using conventional colonoscopy or chromoscopy) for prevention and early detection of colorectal cancer compared with:

- no surveillance
- surveillance using other methods, such as flexible sigmoidoscopy, double-contrast barium enema, computed tomographic colonography, and tri-modal imaging (high resolution white light endoscopy, narrow-band imaging and auto-fluorescence imaging).

b) Initiation of surveillance and the frequency of ongoing surveillance (considering factors including duration and extent of condition, number, size and location of polyps).

c) Information and support needs of people undergoing or considering undergoing colonoscopic surveillance.
4.3.2 Clinical issues that will not be covered

a) Diagnosis and assessment of IBD or polyps.

b) Diagnosis and management of colorectal cancer.

4.4 Main outcomes

a) Progression to colorectal cancer

b) Stage at presentation.

c) Progression or regression of dysplasia at most recent follow-up of IBD.

d) Overall mortality or survival.

e) Reported adverse effects of colonoscopic surveillance techniques.

f) Health-related quality of life (related to colonoscopic surveillance).

g) Resource use and costs.

4.5 Economic aspects

Developers will take into account both clinical and cost-effectiveness when making recommendations involving a choice between alternative interventions. A review of the economic evidence will be conducted and analyses will be carried out as appropriate. The preferred unit of effectiveness is the quality-adjusted life year (QALY), and the costs considered will usually be only from an NHS and personal social services (PSS) perspective. Further detail on the methods can be found in 'The guidelines manual' (see ‘Further information’).

4.6 Status

4.6.1 Scope

This is the consultation draft of the scope. The consultation dates are 28 October to 25 November 2009.

4.6.2 Timing

The development of the guideline recommendations will begin in January 2010.
5 Related NICE guidance

5.1 Published guidance

5.1.1 NICE guidance to be updated
None.

5.1.2 NICE guidance to be incorporated
This guideline will incorporate the following NICE guidance:

5.1.3 Other related NICE guidance

5.2 Guidance under development

NICE is currently developing the following related guidance (details available from the NICE website):

• Diagnosis and management of colorectal cancer. NICE clinical guideline.
 Publication expected July 2011.

• The management of Crohn's disease. NICE clinical guideline. Publication date to be confirmed.

6 Further information

Information on the guideline development process is provided in:

• ‘How NICE clinical guidelines are developed: an overview for stakeholders the public and the NHS’

• ‘The guidelines manual’.
These are available from the NICE website (www.nice.org.uk/guidelinesmanual).

Information on the progress of the guideline will also be available from the NICE website (www.nice.org.uk).

Appendix 2 –Review questions and review protocol

KEY CLINICAL QUESTIONS

Review question 1:
- Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with inflammatory bowel disease (IBD) or polyps clinically effective compared with no surveillance?

Review question 2:
- Which colonoscopic surveillance technique for prevention and/or early detection of colorectal cancer in adults with IBD or polyps is more clinically effective compared with other methods of surveillance?
 - Using conventional colonoscopy or chromoscopy?
 - Compared to other methods of surveillance (flexible sigmoidoscopy [FSIG], double-contrast barium enema [DCBE], computed tomographic colonography [CTC], tri-modal imaging [high-resolution white light endoscopy, narrow-band imaging and auto-fluorescence imaging])?
 - Is colonoscopic surveillance with a dye (chromoscopy) for prevention and/or early detection of colorectal cancer clinically effective compared with colonoscopic surveillance without a dye (conventional colonoscopy)?

Review question 3:
- When should colonoscopic surveillance be started and what should be the frequency of surveillance?

Review question 4:
- What are the information and support needs of people, or carers of people undergoing or considering undergoing colonoscopic surveillance?
Review protocol for colonoscopic surveillance for patients with ulcerative colitis, Crohn’s colitis or polyps in the prevention colorectal cancer.

KEY CLINICAL QUESTION 1

<table>
<thead>
<tr>
<th>Details</th>
<th>Notes and status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review question 1</td>
<td>Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with inflammatory bowel disease or polyps clinically effective compared with no surveillance?</td>
</tr>
<tr>
<td>Objective(s)</td>
<td>To determine the safety and effectiveness of colonoscopic surveillance in the prevention of colorectal cancer in high risk groups.</td>
</tr>
<tr>
<td>Criteria for considering studies</td>
<td>PICO</td>
</tr>
<tr>
<td>Population</td>
<td>Adults with ulcerative colitis, Crohn’s colitis/disease and polyps (including adenomas) in the colon or rectum.</td>
</tr>
<tr>
<td>Intervention(s)</td>
<td>Colonoscopic surveillance using:</td>
</tr>
<tr>
<td></td>
<td>• conventional colonoscopy or</td>
</tr>
<tr>
<td></td>
<td>• chromoscopy.</td>
</tr>
<tr>
<td>Comparator(s)</td>
<td>No surveillance</td>
</tr>
<tr>
<td>Outcome(s)</td>
<td>h) Progression to colorectal cancer and stage at presentation.</td>
</tr>
<tr>
<td></td>
<td>i) Progression or regression of dysplasia/polyps at most recent follow-up in IBD</td>
</tr>
<tr>
<td></td>
<td>j) Overall mortality and survival</td>
</tr>
<tr>
<td></td>
<td>k) Reported adverse effects of colonoscopic surveillance techniques.</td>
</tr>
<tr>
<td></td>
<td>l) Health related quality of life.</td>
</tr>
<tr>
<td></td>
<td>m) Resource use and costs.</td>
</tr>
</tbody>
</table>
How to be searched
As per the Guidelines Manual. No additional databases are required.
Date restriction: none.
Language restriction: English language.
Study design: systematic reviews, RCTs and observational studies.

Review strategy
GRADE profiles

KEY CLINICAL QUESTION 2A

<table>
<thead>
<tr>
<th>Details</th>
<th>Notes and status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review question 2</td>
<td></td>
</tr>
<tr>
<td>Which colonoscopic surveillance technique (using conventional colonoscopy) for prevention and/or early detection of colorectal cancer in adults with IBD or polyps is more clinically effective compared with other methods of surveillance (flexible sigmoidoscopy [FSIG], double-contrast barium enema [DCBE], computed tomographic colonography [CTC], tri-modal imaging [high-resolution white light endoscopy, narrow-band imaging [NBI] and auto-fluorescence imaging)?</td>
<td></td>
</tr>
<tr>
<td>Objective(s)</td>
<td></td>
</tr>
<tr>
<td>To determine the safety and effectiveness of colonoscopic surveillance compared with other surveillance techniques in the prevention of colorectal cancer in high-risk groups.</td>
<td></td>
</tr>
<tr>
<td>Criteria for considering studies</td>
<td></td>
</tr>
<tr>
<td>PICO</td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td></td>
</tr>
<tr>
<td>Adults with ulcerative colitis, Crohn’s colitis/disease and polyps (including adenomas) in the colon or rectum.</td>
<td></td>
</tr>
<tr>
<td>Intervention(s)</td>
<td></td>
</tr>
<tr>
<td>Colonoscopic surveillance using conventional colonoscopy</td>
<td></td>
</tr>
<tr>
<td>Comparator(s)</td>
<td></td>
</tr>
<tr>
<td>Surveillance using other methods (flexible sigmoidoscopy [FSIG], double-contrast barium enema [DCBE], computed tomographic colonography [CTC], tri-modal imaging: narrow-band imaging, high-resolution white light endoscopy and auto-fluorescence imaging)</td>
<td></td>
</tr>
<tr>
<td>Outcome(s)</td>
<td></td>
</tr>
<tr>
<td>n) Progression to colorectal cancer and stage at presentation.</td>
<td></td>
</tr>
<tr>
<td>o) Progression or regression of dysplasia/polyps at most recent follow up in IBD.</td>
<td></td>
</tr>
<tr>
<td>p) Overall mortality and survival.</td>
<td></td>
</tr>
<tr>
<td>q) Reported adverse effects of colonoscopic</td>
<td></td>
</tr>
</tbody>
</table>
surveillance techniques.

r) Health-related quality of life.

s) Resource use and costs.

How to be searched
As per the Guidelines Manual. No additional databases are required.
Date restriction: none.
Language restriction: English language.
Study design: systematic reviews, RCTs and back-to-back clinical trials.

Review strategy
GRADE profiles

KEY CLINICAL QUESTION 2B

Details

Review question 2
Is colonoscopic surveillance with a dye (chromoscopy) for prevention and/or early detection of colorectal cancer clinically effective compared with conventional colonoscopy?

Objective(s)
To determine the safety and effectiveness of colonoscopic surveillance compared with other surveillance techniques in the prevention of colorectal cancer in high-risk groups.

Criteria for considering studies
PICO

Population
Adults with ulcerative colitis, Crohn’s colitis/disease or polyps (including adenomas) in the colon or rectum.

Intervention(s)
Colonoscopic surveillance using chromoscopy

Comparator(s)
Conventional colonoscopy

Outcome(s)
t) Progression to colorectal cancer and stage at presentation.

u) Progression or regression of dysplasia/polyps at most recent follow-up in IBD.

v) Overall mortality and survival.

w) Reported adverse effects of colonoscopic surveillance techniques.

x) Health-related quality of life.
KEY CLINICAL QUESTION 3

<table>
<thead>
<tr>
<th>Details</th>
<th>Notes and status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review question 3</td>
<td>When should colonoscopic surveillance be started and what should be the frequency of surveillance?</td>
</tr>
<tr>
<td>Objective(s)</td>
<td>To determine when surveillance should be started and how frequently should it be done for the techniques.</td>
</tr>
<tr>
<td>Criteria for considering studies</td>
<td>PICO</td>
</tr>
<tr>
<td>Population</td>
<td>Adults with ulcerative colitis, Crohn’s colitis/disease and polyps (including adenomas) in the colon or rectum.</td>
</tr>
</tbody>
</table>
| **Intervention(s)** | Colonoscopic surveillance using:
- conventional colonoscopy or
- chromoscopy
To be modified during consultation – remove colonoscopic surveillance terms and insert prognostic studies filter. |
| **Comparator(s)** | No surveillance
Surveillance using other methods (flexible sigmoidoscopy [FSIG], double-contrast barium enema [DCBE], computed tomographic colonography [CTC], tri-modal imaging [high-resolution white-light endoscopy, narrow-band imaging, and auto-fluorescence imaging])
To be modified during consultation – remove colonoscopic surveillance terms and insert prognostic studies filter. |
| **Outcome(s)** | z) Factors including: extent and duration of disease, size, number, site and type of polyps/lesions.
aa) Progression to colorectal cancer and stage at presentation. |
bb) Overall mortality and survival.

| How to be searched | As per the Guidelines Manual. No additional databases are required.
| Date restriction: none.
| Language restriction: English language.
| Study design: no study filter. |

| Review strategy | GRADE profiles |

KEY CLINICAL QUESTION 4

<table>
<thead>
<tr>
<th>Details</th>
<th>Notes and status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review question 4</td>
<td>What are the information and support needs of people or the carers of people undergoing or considering undergoing colonoscopic surveillance?</td>
</tr>
<tr>
<td>Objective(s)</td>
<td>To determine information and support needs for patients and carers.</td>
</tr>
<tr>
<td>Criteria for considering studies</td>
<td>PICO</td>
</tr>
<tr>
<td>Population</td>
<td>Adults with ulcerative colitis, Crohn’s colitis/disease and polyps (including adenomas) in the colon or rectum.</td>
</tr>
</tbody>
</table>
| **Intervention(s)** | Colonoscopic surveillance using:
- conventional colonoscopy or
- chromoscopy |
| **Comparator(s)** | No surveillance
- Surveillance using other methods (flexible sigmoidoscopy [FSIG], double-contrast barium enema [DCBE], computed tomographic colonography [CTC], tri-modal imaging [high-resolution white light endoscopy, narrow band imaging and auto-fluorescence imaging]) |
| **Outcome(s)** | Patient satisfaction
- Patient experience
- Reported adverse effects of colonoscopic surveillance techniques |
| **How to be searched** | As per the Guidelines Manual. No additional databases are required.
| Date restriction: none.
| Language restriction: English language.
| Study design: all study types; especially qualitative studies. |
| **Review strategy** | Meta-thematic analysis |
Appendix 3 – Results of GDG short questionnaires

Short Questionnaire for GDG

Name: __

Position: _______________________________________

Affiliation: _____________________________________

SECTION A: CLINICAL MANAGEMENT

Question A1a: Is it appropriate to group ulcerative colitis and Crohn’s disease together as inflammatory bowel disease and consider one pathway for colonoscopic surveillance for them?

Question A1b: In addition to the specified subgroups, are there any additional subgroups that should be considered separately (if evidence is available)?

Question A2: Is it appropriate to consider all people with polyps and produce guidance for all sub-groups instead of just focusing on adenomas?

Question A3: The comparators that will be considered are flexible sigmoidoscopy (FSIG), double-contrast barium enema (DCBE), computed tomographic colonography (CTC), tri-modal imaging (high resolution white light endoscopy, narrow-band imaging and auto-fluorescence imaging). Are there any surveillance
techniques that are commonly used for these high-risk groups that have not been
covered as comparators?

END OF QUESTIONNAIRE

THANK YOU FOR YOUR TIME

Results

<table>
<thead>
<tr>
<th>Question A1a: Is it appropriate to group ulcerative colitis and Crohn’s disease together as inflammatory bowel disease and consider one pathway for colonoscopic surveillance for them?</th>
<th>Question A1b: In addition to the specified subgroups, are there any additional subgroups that should be considered separately (if evidence is available)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDG1 Yes</td>
<td>No</td>
</tr>
<tr>
<td>GDG2 The diseases behave differently but are both associated with an increased risk of cancer. Emphasis needs to be placed on Crohn’s colitis not Crohn’s elsewhere.</td>
<td>After surgery – surveillance of transitional zones and retained rectal stumps</td>
</tr>
<tr>
<td>GDG3 At the moment Crohn’s and colitis are put together and the treatment is similar i.e. same drugs used. Although some drugs help Crohn’s and not colitis at all. They could follow the same pathway to some extent but the Colonoscopic surveillance must be tailored to the severity not just the condition.</td>
<td>-</td>
</tr>
<tr>
<td>GDG4 Yes</td>
<td>No</td>
</tr>
<tr>
<td>GDG5 Yes, particularly as some cases remain IBD unclassified. Initially it will probably be best to consider IBD as a whole, but that does not mean that there may not be differences in the final recommendations for each disease.</td>
<td>-</td>
</tr>
<tr>
<td>GDG6 Yes (note that it’s only Crohn’s patients with Crohn’s colitis who are at risk though)</td>
<td>-</td>
</tr>
<tr>
<td>GDG7 My view would be that if the evidence suggests different outcomes for each condition then there ought to be separate pathways otherwise one pathway would be easier to follow.</td>
<td>-</td>
</tr>
<tr>
<td>GDG8 We should consider one pathway for colonoscopic surveillance for them. However, depending on the severity of Crohn’s disease it might be more appropriate for those with ulcerative colitis to have more frequent or intensive surveillance but still working towards the same pathway People on immunosuppression with a strong family history of cancer or those with large colorectal adenomas should also be dealt with centrally.</td>
<td>-</td>
</tr>
<tr>
<td>GDG9 Probably not.</td>
<td>-</td>
</tr>
</tbody>
</table>

SUMMARY: Most members are happy with considering one pathway for inflammatory bowel disease (IBD) combining ulcerative colitis and Crohn’s colitis. If evidence is available for post surgery (partial resection) for IBD, or for immunosuppressed individuals or those with a family history separately, the sub-group will be considered.
Question A2: Is it appropriate to consider all people with polyps and produce guidance for all sub-groups instead of just focusing on adenomas?

GDG1	This is the area of concern, there is great confusion between the different types of polyps and the individual follow-up requirements. As often the person receiving information will be frequently unaware of the difference between certain kinds of polyps the advice needs to be clear. Many of the polyps identified will be hyperplastic and usually require no further surveillance. The number, size and differentiation of the adenomas will determine the follow-up protocol. This is well described in the BSG guidelines.
GDG2	There is published guidance from BSG on polyp surveillance including familial risks and metaplastic polyps. It is my opinion that NICE should read this guidance and accept it as it stands and not reinvent the wheel.
GDG3	No – Some polyps which are very common in the bowel are not connected to IBD. Focusing on Adenomas and persons with multiple polyps should have definite guidelines of care. I.e. Colonoscopic surveillance every so many years etc.
GDG4	Yes
GDG5	Yes. I think that would clarify the situation and prepare for changes in the longterm as more data becomes available (e.g. hyperplastic/serrated polyps remain an important grey area at the moment and really need some management guidelines. Solitary Peutz-Jegher polyps and juvenile polyps may also be worth considering).
GDG6	Within polyps cohort, focus will be on adenomas, but comments on other polyp types would be worthwhile. Consider covering other surveillance cohorts too – post-colorectal cancer surgery (easy); family history of cancer/ polyposis (complex)
GDG7	-
GDG8	We should look at people with all polyps as adenomas or only a small fraction of polyps.
GDG9	I think guidance should be produced for all groups, but there is still very little data on the subject.

SUMMARY: Most members feel that the different sub-groups for polyps should be considered separately if possible and guidance given accordingly. We will consider all sub-groups but data may not be available for all.

Question A3: The comparators that will be considered are flexible sigmoidoscopy (FSIG), double-contrast barium enema (DCBE), computed tomographic colonography (CTC), tri-modal imaging (high resolution white light endoscopy, narrow-band imaging and auto-fluorescence imaging). Are there any surveillance techniques that are commonly used for these high-risk groups that have not been covered as comparators?

GDG1	Not within imaging.
GDG2	Rigid sigmoidoscopy may be appropriate for a select group.
GDG3	Colonoscopy
GDG4	Colonoscopy
GDG5	-
GDG6	Presumably the above are being compared against colonoscopy. Chromoendoscopy (pan-colonic dye-spraying) needs to be considered too. Other option is "no surveillance"
GDG7	-
GDG8	Flexible sigmoidoscopy, double contrast enema, colonoscopy, tri-modal imaging, narrow-band imaging, auto-fluorescence imaging, standard CT scan of abdomen should all be used
GDG9	No.

SUMMARY: As per the scope we will be considering colonoscopy and chromoendoscopy as interventions and comparing them to the above listed comparators. Rigid sigmoidoscopy has not been included in this guideline, but as the searches were wide enough to catch any relevant studies for this population using rigid sigmoidoscopy.
Appendix 4 – Lists of excluded studies

Databases covered for systematic searches
- MEDLINE/MEDLINE In-Process
- EMBASE
- CINAHL (Cumulative Index to Nursing and Allied Health Literature)
- Cochrane Database of Systematic Reviews – CDSR (Cochrane reviews)
- Database of Abstracts of Reviews of Effects – DARE (other reviews)
- Cochrane Central Register of Controlled Trials – CENTRAL (clinical trials)
- Health Technology Assessment (HTA) database (technology assessments)

6.1 Review question 1:
Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with inflammatory bowel disease (IBD) or polyps clinically effective compared with no surveillance?

6.1.1 Eligibility criteria

Inclusion criteria
- Population
 - Adults (18 years and older) with IBD (defined as ulcerative colitis or Crohn's disease involving the large bowel).
 - Adults with polyps (including adenomas) in the colon or rectum.
- Intervention
 - Colonoscopic surveillance for prevention and early detection of colorectal cancer.
- Comparators
 - No surveillance.
- Study Design
 - Systematic reviews, RCTs, observational studies.

Exclusion criteria
- Population
 - Children (younger than 18 years).
− Adults with newly diagnosed or relapsed adenocarcinoma of the colon or rectum.
− Adults with polyps that have previously been treated for colorectal cancer.
− Adults with a genetic familial history of colorectal cancer: hereditary non-polyposis colorectal cancer.
− Adults with a familial history of polyposis syndromes: familial adenomatous polyposis.

• Intervention
− Diagnosis and assessment of IBD or polyps.
− Diagnosis and management of colorectal cancer.

• Comparators
− Comparators other than no surveillance.

• Study Design
− Case series and any single arm uncontrolled studies.

6.1.2 Evidence review results

• Initial 9688 hits including duplicates
• Total of 6533 unique articles
• Additional articles found via daisy chaining: 2
• Excluded on the basis of title and abstract: 6198
• Articles ordered full text: 335

Articles selected for review based on inclusion and exclusion criteria were 2 primary studies for IBD and 2 primary studies for adenomatous polyps. The guideline development group (GDG) felt that the two papers selected for adenomatous polyps were incorrectly selected and were then removed from the review by the technical team. The Group also referred to a new article (Lutgens et al., 2009) that was published in December 2009, which met the inclusion criteria for IBD and was added to the analysis. As the literature searches were done in October 2009, this paper was not identified by the technical team.
6.1.3 Review flow chart

6.1.4 Included studies for people with IBD

6.1.5 Included studies for people with adenomatous polyps

None.

6.1.6 Excluded studies

- Ahmad, N. A. and Hoops, T. C. The role of colonoscopy for screening of colorectal cancer. [Review] [55 refs]. 20010208. Seminars in Roentgenology 35[4], 404-408. 2000. MEDLINE. EXC - Narrative review - references checked
- Ahn, D. J. Controlled clinical trials: The controls are the key. Gastroenterology 110[2], 628-630. 1996. EXC - Narrative review - references checked

Avidan, B., Sonnenberg, A., Schnell, T. G., Huang, C. S., and Farraye, F. A. What is the appropriate interval for repeat colonoscopy in patients with and without adenomatous polyps found on screening colonoscopy? Evidence-Based Gastroenterology 3[3], 90-91. 2002. EXC - To identify risk factors associated with recurrence of colorectal adenoma

Bader, J.-P. Screening of colorectal cancer. Digestive Diseases and Sciences 31[9 SUPPL.], 43S-56S. 1986. EXC - Discussion on screening of CRC: familial cases, FOBT, risk, cost effectiveness

Bauer, W. M. and Lashner, B. A. What is the optimal strategy for colon cancer surveillance in patients with ulcerative colitis?. [Review] [10 refs]. 19990601. Cleveland Clinic Journal of Medicine 66[5], 273. 19-6-0277. MEDLINE. EXC - optimal strategy for colon cancer surveillance in ulcerative colitis [Review] [10 refs]

Colonoscopic surveillance: full guideline DRAFT (May 2010)

Bernstein, C. N. Cancer surveillance in inflammatory bowel disease. [Review] [46 refs]. 20001101. Current Gastroenterology Reports 1[6], 496-504. 1999. MEDLINE. EXC - Narrative review and discussion on cancer surveillance for IBD. - references checked

Bernstein, C. N. Surveillance programmes for colorectal cancer in inflammatory bowel disease: have we got it right?[comment]. [Review] [30 refs]. 20080904. Gut 57[9], 1194-1196. 2008. MEDLINE. EXC - Narrative review - excluded at title and abstract

Bernstein, C. N. Ulcerative colitis with low-grade dysplasia. [Review] [59 refs]. 20041019. Gastroenterology 127[3], 950-956. 2004. MEDLINE. EXC - Discusses a single case report and then review clinical management

Bond, J. H. Colorectal cancer update. Prevention, screening, treatment, and surveillance for high-risk groups. [Review] [74 refs]. 20001101. Medical Clinics of North America 84[5], 1163-1182. 20-6-2000. MEDLINE. EXC - Narrative review - references checked

Colonoscopic surveillance: full guideline DRAFT (May 2010)

Bond, J. H. Managing colon polyps. [Review] [4 refs]. 19930405. Hospital Practice (Office Edition) 28[3], 149-152. 157. MEDLINE. EXC - Managing colon polyps

Borum, M. L. Colorectal cancer screening. [Review] [58 refs]. 20011025. Primary Care; Clinics in Office Practice 28[3], 661-674. 20-6-2001. MEDLINE. EXC - Colorectal cancer screening. [Review] [58 refs] CHECKED

Bresalier, R. S. Early detection of and screening for colorectal neoplasia. Gut and Liver 3[2], 69-80. 2009. EXC - Narrative review: ref. checked

Brian, Perry W., Opelka, F. G., Hicks, T. C., Timmcke, A. E., and Beck, D. E. Geriatric colonoscopy. Perspectives in Colon and Rectal Surgery 13[2], 93-100. 2000. EXC - survey of colonoscopic surveillance in the elderly

Brooker, J. C., Saunders, B. P., Shah, S. G., and Eisen, G. Total colonic dye spray increases the yield of colonoscopy. Evidence-Based Gastroenterology 4[1], 18-19. 2003. EXC - Total colonic dye spray increases the yield of colonoscopy

Brown, S. R., Baraza, W., and Hurlstone, P. Chromoscopy versus conventional endoscopy for the detection of polyps in the colon and rectum. [Review] [36 refs]. 20080117. Cochrane Database of Systematic Reviews [4], CD006439. 2007. MEDLINE. EXC - To be included for RQ2

Colonoscopic surveillance: full guideline DRAFT (May 2010)

Cappell, M. S. Screening for colon cancer. Hospital Medicine 31[3], 19. 1995. EXC - Discussion article on the different techniques of surveillance

Chao, D. Photo quiz. Air, air everywhere. Berger, M. S. American Family Physician 68[7], 1381-1383. 1-10-2003. EXC - Photo competition results - completely irrelevant

Croiset, O., Moreau, J., Arany, Y., Delvaux, M., Rumeau, J. L., and Escourrou, J. Follow-up of patients with hyperplastic polyps of the large bowel. 19971023. Gastrointestinal Endoscopy 46[2], 119-123. 1997. MEDLINE. EXC - Follow-up of patients with hyperplastic polyps

Declan Fleming, R. Y. Colorectal cancer screening and follow-up. Surgical Oncology 7[3-4], 125-137. 1998. EXC - Narrative review - references checked

Deenadayalu, V. P. and Rex, D. K. Colorectal cancer screening: A guide to the guidelines. Reviews in Gastroenterological Disorders 7[4], 204-213. 2007. EXC - Review of different guidelines on CRC screening

Early, D. S. Colorectal cancer screening: an overview of available methods and current recommendations. [Review] [34 refs]. 19990414. Southern Medical Journal 92[3], 258-265. 1999. MEDLINE. EXC - review on diff screening methods

Eastwood, G. L. Colon cancer: polyps, prevention, and politics. [Review] [129 refs]. 19980729. Transactions of the American Clinical & Climatological Association 109, 107-126. 126. MEDLINE. EXC - Polyps, prevention, and politics. [Review] [129 refs]

Eckardt, V. F., Fuchs, M., Kanzler, G., Remmele, W., and Stienen, U. Follow-up of patients with colonic polyps containing severe atypia and invasive carcinoma. Compliance, recurrence, and

Ekbom, A. Motion - Colonoscopic surveillance is more cost effective than colectomy in patients with ulcerative colitis: Arguments against the motion. Canadian Journal of Gastroenterology 17[2], 122-124. 2003. EXC - Comparing colonoscopic surveillance to colectomy

Ferrucci, J. T. Virtual colonoscopy for colon cancer screening: further reflections on polyps and politics. [Review] [31 refs], 20030924. AJR American[3], 795-797. 2003. MEDLINE. EXC - Virtual colonoscopy [Review] [31 refs]

Forgacs, I. Clinical gastroenterology. [Review] [52 refs]. 19950227. BMJ 310[6972], 113-116. 14-1-1995. MEDLINE. EXC - Discussion on diff GI diseases

Colonoscopic surveillance: full guideline DRAFT (May 2010)

Gruber, M. and Lance, P. Colorectal cancer detection and screening. [Review] [33 refs]. 19991104. Lippincott's Primary Care Practice 2[4], 369-376. 1998. MEDLINE. EXC - Narrative review with suggested surveillance - references checked

Gyde, S. Screening for colorectal cancer in ulcerative colitis: dubious benefits and high costs.[see comment]. [Review] [21 refs]. 199910516. Gut 31[10], 1089-1092. 1990. MEDLINE. EXC - Review ref checked

Summary of colorectal cancer surveillance techniques discussed at DDW 2007

Hardcastle, J. D. and Justin, T. A. Screening high-risk groups for colorectal neoplasia. [Review] [34 refs]. 1996. American Journal of Gastroenterology 91[5], 850-852. 1996. MEDLINE.

Huang, C. S., Lal, S. K., and Farraye, F. A. Colorectal cancer screening in average risk individuals. Cancer Causes and Control 16[2], 171-188. 2005. EXC - Narrative review on different screening techniques for CRC - but reported studies are on general population

screening and surveillance in inflammatory bowel disease. Inflammatory Bowel Diseases 11[3], 314-321. 2005. EXC - Consensus conference notes

Kiesslich, R., Galle, P. R., and Neurath, M. F. Endoscopic surveillance in ulcerative colitis: smart biopsies do it better. 20071023. Gastroenterology 133[3], 742-745. 2007. MEDLINE. EXC - Discussion paper on use of advanced colonoscopic techniques

Konda, A. and Duffy, M. C. Surveillance of Patients at Increased Risk of Colon Cancer: Inflammatory Bowel Disease and Other Conditions. Gastroenterology Clinics of North America 37[1], 191-213. 2008. EXC - Discussion on surveillance of Patients at Increased Risk of Colon Cancer

Colonoscopic surveillance: full guideline DRAFT (May 2010)
Colonoscopic surveillance: full guideline DRAFT (May 2010)

Lewis, B. The only good polyp... American Journal of Gastroenterology 90[1], 1-2. 1995. EXC - editorial on colonoscopy

Lieberman, D. Colonoscopy: as good as gold? Annals of Internal Medicine 141[5], 401-403. 7-9-2004. EXC - Discussion paper on colonoscopic surveillance

Lieberman, D. A. and Atkin, W. Review article: Balancing the ideal versus the practical - Considerations of colorectal cancer prevention and screening. Alimentary Pharmacology and Therapeutics, Supplement 19[1], 71-76. 2004. EXC - Discussion paper on colorectal cancer screening techniques

Little, R. Lifesaving scope. U.S.News & World Report 133[6], 42-43. 12-8-2002. EXC - Magazine article on technique of colorectal polyps

Loffeld, R. J. Are many colorectal cancers due to missed adenomas? 20090529. European Journal of Internal Medicine 20[1], 20-23. 2009. MEDLINE. EXC - CRC due to missed adenomas

Lytle, G. H. Screening for colorectal carcinoma. [Review] [56 refs]. 19890802. Seminars in Surgical Oncology 5[3], 194-200. 1989. MEDLINE. EXC - Screening for colorectal carcinoma. [Review] [56 refs]

Mak, T., Senevrayar, K., Laloo, F., Evans, D. G., and Hill, J. The impact of new screening protocol on individuals at increased risk of colorectal cancer. 20071121. Colorectal Disease 9[7], 635-640. 2007. MEDLINE. EXC - impact of new screening protocol on individuals at increased risk of CRC

Maltz, B. E. and Schwartz, D. A. To lap or not to lap, that is the question...no longer? 20081118. Inflammatory Bowel Diseases 14[8], 1161-1162. 2008. MEDLINE. EXC - On title

Matek, W., Guggenmoos-Holzmann, I., and Demling, L. Follow-up of patients with colorectal adenomas. 19851125. Endoscopy 17[5], 175-181. 1985. MEDLINE. EXC - RQ3

Mathew, J., Saklani, A. K., and Borghol, M. Surveillance colonoscopy in patients with colorectal cancer: how often should we be doing it?[see comment]. 20060228. Surgeon Journal of the Royal

Coloscopy surveillance: full guideline DRAFT (May 2010)
Colonoscopic surveillance: full guideline DRAFT (May 2010) Page 34 of 145

Colleges of Surgeons of Edinburgh & Ireland 4[1], 3-5. 20-2-2006. MEDLINE. EXC - colonoscopy in patients with colorectal cancer

Noguchi, T., Asao, T., Takenoshita, S. I., and Nagamachi, Y. Effective program designed for long-term surveillance following colonoscopic polypectomy of adenomas. 19980501. Oncology Reports 10[3], 517-519. 1998. MEDLINE. EXC - Single arm study of N=86 patients

Nugent, F. W., Haggitt, R. C., and Gilpin, P. A. Cancer surveillance in ulcerative colitis.[see comment]. 198910513. Gastroenterology 100[5:Pt 1], t-8. 1991. MEDLINE. EXC - Biopsy surveillance programme for dysplasia and carcinoma

Obrador, A., Ginard, D., and Barranco, L. Review article: Colorectal cancer surveillance in ulcerative colitis - What should we be doing? Alimentary Pharmacology and Therapeutics 24[SUPPL. 3], 56-63. 2006. EXC - Narrative review references checked

Oldenski, R. J. and Flareau, B. J. Colorectal cancer screening. [Review][61 refs]. 19921118. Primary Care; Clinics in Office Practice 19[3], 621-635. 1992. MEDLINE. EXC - Narative review: ref checked

Ottenjann, R. Inflammatory bowel disease. [Review] [18 refs]. 19940708. Endoscopy 26[1], 64-69. 1994. MEDLINE. EXC - Narative review on IBD

Pickard, M., Dewar, E. P., Kapadia, R. C., Khan, R. B., Hutchinson, I. F., and Nejim, A. Follow up of patients with colorectal polyps: are the BSG guidelines being adhered to? 20070420. Colorectal Disease 9[3], 203-206. 2007. MEDLINE. EXC - Adhering to BSG guidelines

Prager, E. D., Swinton, N. W., Young, J. L., Veidenheimer, M. C., and Corman, M. L. Follow-up study of patients with benign mucosal polyps discovered by proctosigmoidoscopy. 19740725. Diseases of the Colon & Rectum 17[3], 322-324. 1974. MEDLINE. EXC - patients with benign mucosal polyps discovered by proctosigmoidoscopy

Qasim, A., Muldoon, C., and McKiernan, S. Colonic adenoma patients have higher incidence of hyperplastic polyps on surveillance colonoscopy. European Journal of Gastroenterology and Hepatology 21[8], 877-881. 2009. EXC - incidence of hyperplastic polyps

Rennert, G. Prevention and early detection of colorectal cancer--new horizons. [Review] [51 refs]. 20070316. Recent Results in Cancer Research 174, 179-187. 2007. MEDLINE. EXC - Narrative review - references checked

Colonoscopic surveillance: full guideline DRAFT (May 2010)
Endoscopy 14[4], 124-127. 1982. MEDLINE. EXC - diagnosis and management of cancerous adenomas

Rozen, P., Baratz, M., Fefer, F., and Gilat, T. Low incidence of significant dysplasia in a successful endoscopic surveillance program of patients with ulcerative colitis. Gastroenterology 108[5], 1361-1370. 1995. EXC - endoscopic surveillance with low incidence of significant dysplasia

Rubin, P. H. Adenomas in ulcerative colitis: endoscopic polypectomy or colectomy?. [Review] [5 refs]. 19991221. Inflammatory Bowel Diseases 5[4], 304-305. 1999. MEDLINE. EXC - endoscopic polypectomy or colectomy?. [Review] [5 refs]

Sampliner, R. E. and Garewal, H. S. Endoscopic polypectomy reduces mortality from colorectal cancer. Archives of Internal Medicine 155[16], 1711-1712. 11-9-1995. EXC - Discussion paper on colorectal polypectomy

Schuman, B. M. Premalignant lesions of the gastrointestinal tract. Surveillance regimens for three treatable disorders. [Review] [13 refs]. 19920318. Postgraduate Medicine 91[2], 219-222. 19-6-2000. MEDLINE. EXC - Narrative review - excluded at title and abstract

Colonoscopic surveillance: full guideline DRAFT (May 2010)
Scotiniotis, I., Lewis, J. D., and Strom, B. L. Screening for colorectal cancer and other GI cancers. Current Opinion in Oncology 11[4], 305-311. 1999. EXC - FOBT, HNPCC, hepatocellular ca

Seow, C. H., Ee, H. C., Willson, A. B., and Yusoff, I. F. Repeat colonoscopy has a low yield even in symptomatic patients. Gastrointestinal Endoscopy 64[6], 941-947. 2006. EXC - To be used for RQ3

St. John, D. J. B. Screening for rectal cancer. Hepato-Gastroenterology 47[32], 305-309. 2000. EXC - Screening for rectal cancer

Stevenson, G. Screening for colorectal cancer and suspected lower gastrointestinal bleeding. Abdominal Imaging 20[4], 381-383. 1995. EXC - Discussion paper on colonoscopy

Thomas, T., Nair, P., Dronfield, M. W., and Mayberry, J. F. Management of low and high-grade dysplasia in inflammatory bowel disease: The gastroenterologists' perspective and current practice in

EXC - Management of low and high-grade dysplasia in IBD

Journal of Gastroenterology 44[8], 826-833. 2009. MEDLINE. EXC - To be used for RQ2

Tolliver, K. A. and Rex, D. K. Colonoscopic polypectomy. [Review] [60 refs]. 20080612.

Gastroenterology Clinics of North America 37[1], 229-251. 20-1-2008. MEDLINE. EXC - Narrative review

Acta Chirurgica Scandinavica 151[8], 669-673. 1985. MEDLINE. EXC - Case series with malignancies

Ullman, T., Odze, R., and Farraye, F. A. Diagnosis and management of dysplasia in patients with ulcerative colitis and Crohn's disease of the colon. Inflammatory Bowel Diseases 15[4], 630-638. 2009. EXC - Diagnosis and management of dysplasia in pts with UC and CD

Ullman, T. A. Preventing neoplastic progression in ulcerative colitis. [Review] [48 refs]. 20050711.

Van Dam, J. Prevention of colorectal cancer by endoscopic polypectomy. Annals of Internal Medicine 123[12], 949-950. 15-12-1995. EXC - Discussion paper on preventing colorectal cancer by endoscopic polypectomy

Wallace, M. B. Improving colorectal adenoma detection: technology or technique?. [Review] [14 refs]. 20070517. Gastroenterology 132[4], 1221-1223. 2007. MEDLINE. EXC - Discussing clinical techniques of surveillance

Waye, J. D. and Braunfeld, S. Surveillance intervals after colonoscopic polypectomy. 19820722.

Endoscopy 14[3], 79-81. 1982. MEDLINE. EXC - Risk of missing an adenoma

Colonic surveillance: full guideline DRAFT (May 2010)

Colonoscopic surveillance: full guideline DRAFT (May 2010)
6.2.1 Eligibility criteria

Inclusion criteria

- Population
 - Adults (18 years and older) with IBD (defined as ulcerative colitis or Crohn's disease involving the large bowel).
 - Adults with polyps (including adenomas) in the colon or rectum.
- Intervention

Colonoscopic surveillance: full guideline DRAFT (May 2010) Page 42 of 145
Other methods of surveillance (flexible sigmoidoscopy, double-contrast barium enema, computed tomographic colonography, tri-modal imaging, high-resolution white light endoscopy, narrow-band imaging and auto-fluorescence imaging)

- Comparators
 - Conventional colonoscopy

- Study Design
 - Systematic review, RCTs, controlled back to back clinical trials

Exclusion criteria

- Population
 - Children (younger than 18 years).
 - Adults with newly diagnosed or relapsed adenocarcinoma of the colon or rectum.
 - Adults with polyps that have previously been treated for colorectal cancer.
 - Adults with a genetic familial history of colorectal cancer: hereditary non-polyposis colorectal cancer.
 - Adults with a familial history of polyposis syndromes: familial adenomatous polyposis.

- Intervention
 - Interventions other than those listed above.

- Comparators
 - Comparators other than conventional colonoscopy.

- Study Design
 - Systematic review, RCTs, controlled back-to-back clinical trials.

6.2.2 Evidence review results

- Initial 14,701 hits including duplicates
- Total of 9544 unique articles
- Excluded on the basis of title and abstract: 9436
- Articles ordered full text: 108
Articles selected for review based on inclusion and exclusion were 5 studies, 1 primary study for people with IBD and 4 (2 primary studies, 2 systematic reviews) for people with adenomatous polyps.

6.2.3 Review flow chart

![Flowchart Diagram]

- Total Hits: 14701
- Unique articles: 9544
- Ordered full text: 108
- Included articles: 5

6.2.4 Included studies for people with IBD

6.2.5 Included studies for people with adenomatous polyps

6.2.6 Excluded studies

Weissfeld, J. L., Schoen, R. E., Pinsky, P. F., Bresalier, R. S., Church, T., Yurgalevitch, S., Austin, J. H., Prorok, P. C., Gohagan, J. K., and PLCO Project Team. Flexible sigmoidoscopy in the baseline screening examination of a randomized trial. 20050708. Journal of the National Cancer Institute 97[13], 989-997. 6-7-2005. MEDLINE. excluded - No comparative arm

Virtual colonoscopy. 20050310. Medical Letter on Drugs & Therapeutics 47[1202], 15-16. 14-2-2005. MEDLINE. excluded - Discussion on CTC. No comparative arm

Hoppe, H., Quattropani, C., Spreng, A., Mattich, J., Netzer, P., and Dinkel, H. P. Virtual colon dissection with CT colonography compared with axial interpretation and conventional colonoscopy: preliminary results. 20040629. AJR American[5], 1151-1158. 2004. MEDLINE. excluded - Comparing an older existing CTC tech. 2 a new one

Colonscopic surveillance: full guideline DRAFT (May 2010)

Andreoni, B., Crosta, C., Lotti, M., Carloni, M., Marzona, L., Biffi, R., Luca, F., Pozzi, S., Cenciarelli, S., and Senore, C. Flexible sigmoidoscopy as a colorectal cancer screening test in the general population: recruitment phase results of a randomized controlled trial in Lombardia, Italy. 20000919. Chirurgia Italiana 52[3], 257-262. 2000. MEDLINE. excluded: discussion on flexible sigmoidoscopy

Rex, D. K., Vining, D., and Kopecky, K. K. An initial experience with screening for colon polyps using spiral CT with and without CT colonography (virtual colonoscopy)[see comment]. 19991007. Gastrointestinal Endoscopy 50[3], 309-313. 1999. MEDLINE. excluded: spiral CT versus CTC - comment

Thiis-Evensen, E., Hoff, G. S., Sauar, J., Majak, B. M., and Vatn, M. H. Flexible sigmoidoscopy or colonoscopy as a screening modality for colorectal adenomas in older age groups? Findings in a cohort of the normal population aged 63-72 years. 20000119. Gut 45[6], 834-839. 1999. MEDLINE. excluded: indirect comparison made

Fichera, A. A prospective randomized study on narrow band imaging versus conventional colonoscopy for adenoma detection: Does narrow band imaging induce a learning effect? Commentary. Diseases of the Colon and Rectum 51[6], 993-994. 2008. excluded: not looking at the review question

polyps: A randomized, controlled trial. Journal of Gastroenterology 43[1], 45-50. 2008. excluded - used pooled result from systematic review

Colonoscopic surveillance: full guideline DRAFT (May 2010)
Lessons from a randomised trial. Gut 49[1], 91-96. 2002. excluded: discussion on Risks, costs, and compliance limit colorectal adenoma surveillance

Robinson, M. H. E. Should we be screening for colorectal cancer? British Medical Bulletin 54[4], 807-821. 1998. excluded: discussion on screening

Young, P. E., Gentry, A. B., and Cash, B. D. The utility of flexible sigmoidoscopy after a computerized tomographic colonography revealing only rectosigmoid lesions. 20080627. Alimentary Pharmacology & Therapeutics 27[6], 520-527. 15-3-2008. MEDLINE. excluded: FSIG after CTC

Mitchell, R. M., Byrne, M. F., and Baillie, J. Colonoscopy or barium enema for population colorectal cancer screening?: [Review] [41 refs]. 20030731. Digestive & Liver Disease 35[4], 207-211. 2003. MEDLINE. excluded: narrative review

Colonoscopic surveillance: full guideline DRAFT (May 2010)
Macari, M., Milano, A., Lavelle, M., Berman, P., and Megibow, A. J. Comparison of time-efficient CT colonography with two- and three-dimensional colonic evaluation for detecting colorectal polyps. 20000621. AJR American[6], 1543-1549. 2000. MEDLINE. excluded: not looking at the review question

Bhutani, M. S. and Pasricha, P. J. Review: computed tomographic colonography has high specificity but low-to-moderate sensitivity for detecting colorectal polyps. ACP Journal Club 143[3], 78. 2005. excluded: narrative review

Ransohoff, D. F. Computed tomographic colonography without cathartic preparation performed well in detecting colorectal polyps. ACP Journal Club 142[2], 49. 2005. excluded: not looking at the review question

Chambers, C. V. Clinical clips. CT Virtual colonoscopy is an accurate screening tool. Patient Care for the Nurse Practitioner , -2p. 2004. excluded: CT virtual colonoscopy alone

Fletcher, R. H. Virtual colonoscopy detected colorectal polyps in asymptomatic patients with average risk for colorectal neoplasia. ACP Journal Club 141[1], 22-23. 2004. excluded: discussion on virtual colonoscopy

Barry, H. How common are adenomas on initial screening sigmoidoscopies? Evidence-Based Practice 6[3], 11-2, 2p. 2003. EXC - Narrative review

Screening with colonoscopy or a sigmoidoscopy. HealthFacts 28[3], 4. 2003. excluded: review

Maltz, C. Ulcerative colitis. Emergency Medicine (00136654) 34[6], 43. 2002. excluded: discussion on ulcerative colitis

Colonoscopy or barium enema for surveillance? Emergency Medicine (00136654) 33[4], 70. 2001. excluded: narrative review

Ebell, M. Does colonoscopy detect more colorectal cancers and high-grade adenomas than flexible sigmoidoscopy? Evidence-Based Practice 3[10], -3, 2p. 2000. excluded: review

Ebell, M. Which is better at detecting polyps and adenomas in patients with a history of polyps: colonoscopy or double-contrast barium enema (DCBE)? Evidence-Based Practice 3[9], 11-2, 2p. 2000. excluded: narrative review

Adler, A., Papanikolaou, I., Setka, E., Pohl, H., Abou, H., Veltzke-Schlieker, W., Koch, M., Wiedemann, B., and Rosch, T. [A prospective, randomised study comparing Narrow Band Imaging (NBI) and conventional wide angle colonoscopy for identification of colorectal adenomas]. Zeitschrift fur Gastroenterologie. 44[8], 842. 2006. excluded: used sysyematic review

Blue Cross Blue Shield Association. CT colonography ('virtual colonoscopy') for colon cancer screening. Chicago IL: Blue Cross Blue Shield Association (BCBS) , 17. 2004. United States. excluded: discussion on CTC

Inger, D. B. Colorectal cancer screening. Primary Care - Clinics in Office Practice 26[1], 179-187. 1999. excluded: discussion on CRC screening

6.3 **Review question 2B:**

Is colonoscopic surveillance with a dye (chromoscopy) for prevention and/or early detection of colorectal cancer clinically effective compared with colonoscopic surveillance with conventional colonoscopy?

6.3.1 Eligibility criteria

Inclusion criteria

- **Population**
 - Adults (18 years and older) with IBD (defined as ulcerative colitis or Crohn's disease involving the large bowel).
 - Adults with polyps (including adenomas) in the colon or rectum.
- **Intervention**
 - Chromoscopy.
- **Comparators**
 - Conventional colonoscopy.
- **Study Design**
 - Systematic review, RCTs, controlled back-to-back clinical trials.

Exclusion criteria

- **Population**
 - Children (younger than 18 years).
 - Adults with newly diagnosed or relapsed adenocarcinoma of the colon or rectum.
 - Adults with polyps that have previously been treated for colorectal cancer.
 - Adults with a genetic familial history of colorectal cancer: hereditary non-polyposis colorectal cancer.
 - Adults with a familial history of polyposis syndromes: familial adenomatous polyposis.
- **Intervention**
 - Interventions other than chromoscopy.
- **Comparators**
 - Comparators other than conventional colonoscopy.
- **Study Design**
 - Systematic review, RCTs, controlled back-to-back clinical trials.
6.3.2 Evidence review results

- Initial 14,701 hits including duplicates
- Total of 9544 unique articles
- Excluded on the basis of title and abstract: 9521
- Articles ordered full text: 23

Articles selected for review based on inclusion and exclusion were 10 studies, 5 for people with IBD and 5 for people with adenomatous polyps. One study for each population Hurlstone et al. (2004) and Hurlstone et al. (2005) that met the inclusion criteria but was excluded from the review after discussion with the GDG and advice from the editors of the journal because the author’s methods were discredited.

Therefore the relevant evidence was 4 primary studies for people with IBD and 1 systematic review and 3 primary studies for people with adenomatous polyps.
6.3.3 Review flow chart

6.3.4 Included studies for people with IBD

6.3.5 Included studies for people with adenomatous polyps

detection of polyps in the colon and rectum. [Review]. Cochrane Database of Systematic Reviews:
CD006439.

Lapalus M-G, Helbert T, Napoleon B et al. (2006) Does chromoendoscopy with structure
enhancement improve the colonoscopic adenoma detection rate? Endoscopy 38: 444–8.

Le RM, Coron E, Parlier D et al. (2006) High resolution colonoscopy with chromoscopy versus
standard colonoscopy for the detection of colonic neoplasia: A randomized study. Clinical
Gastroenterology and Hepatology 4: 349–54.

6.3.6 Excluded studies

aid adenoma detection during colonoscopy: a randomized controlled trial. Gut 46[Suppl 2]: A77. EXC
- used the later study with more recent results

from the fully published study

prospective comparative study of narrow-band imaging, chromoendoscopy, and conventional
colonoscopy in the diagnosis of colorectal neoplasia. Gut 56(3): 373–379. MEDLINE. EXC - To be
covered with the other comparators question

Conventional colonoscopy and magnified chromoendoscopy for the endoscopic histological prediction
2402–2405. MEDLINE. EXC - Single arm study

lesions at colonoscopy: A randomised controlled trial of pan-colonic versus targeted chromoscopy.
Gut 53(3): 376–380. EXC - excluded from review based on discussion with GDG

high-magnification chromoscopic colonoscopy for the detection and characterisation of intraepithelial
neoplasia in ulcerative colitis: A prospective evaluation. Endoscopy 37(12): 1186–1192. EXC -
excluded from review based on discussion with GDG

Ibarra-Palomino J, Barreto-Zúñiga R, Elizondo-Rivera J, Bobadilla-Díaz J and Villegas-Jiménez A
(2002). Application of chromoendoscopy to evaluate the severity and interobserver variation in
chronic non-specific ulcerative colitis. Revista de gastroenterología de México 67(4): 236–240. EXC -
In Spanish, only abstract in English

Kiesslich R, Jung M, DiSario JA, Galle PR and Neurath M. F (2004). Perspectives of Chromo and
Gastroenterology 38(1): 7-13. EXC - Narrative review - references checked

Le Rhun M, Coron E, Parlier D, Nguyen JM, Canard JM, Alamdari A, Sautereau D, Chaussade S and
pour la détection des polypes. Résultats d’une étude prospective randomisée en groupes paralleles
[abstract]. Endoscopy 37(3): 305, abstract. EXC - Abstract full study in 2006 included

Rutter M, Bernstein C, Matsumoto T, Kiesslich R and Neurath M (2004). Endoscopic appearance of
dysplasia in ulcerative colitis and the role of staining. [Review] [12 refs]. Endoscopy 36(12): 1109–
1114. MEDLINE. EXC - Narrative review, references checked

Colonskopic surveillance: full guideline DRAFT (May 2010) Page 56 of 145
6.4 Review question 3:

When should colonoscopic surveillance be started and what should be the frequency of surveillance?

6.4.1 Eligibility criteria

Inclusion criteria

- Population
 - Adults (18 years and older) with IBD (defined as ulcerative colitis or Crohn's disease involving the large bowel).
 - Adults with polyps (including adenomas) in the colon or rectum.

- Intervention
 - Chromoscopy or conventional colonoscopy.

- Factors
 - Looking at any prognostic factors or surveillance schemes for colorectal cancer.

- Study design
 - No study design filter.
Exclusion criteria

• Population
 – Children (younger than 18 years).
 – Adults with newly diagnosed or relapsed adenocarcinoma of the colon or rectum.
 – Adults with polyps that have previously been treated for colorectal cancer.
 – Adults with a genetic familial - history of colorectal cancer: hereditary non-polyposis colorectal cancer.
 – Adults with a familial history of polyposis syndromes: familial adenomatous polyposis.

• Intervention
 – Interventions other than chromoscopy or conventional colonoscopy.

6.4.2 Evidence review results

• initial 14,701 hits including duplicates
• Total of 9544 unique articles
• Excluded on the basis of title and abstract: 9478
• Articles ordered full text: 62
• Additional articles found via daisy chaining: 4 (for people with adenomatous polyps).

Articles selected for review based on inclusion and exclusion criteria were 6 for people with IBD and 6 for people with adenomatous polyps. Additionally 5 primary articles for people with IBD were given by the GDG that were not identified by the technical team. The technical team decided to broaden the search criteria and identify other similar relevant prognostic studies that may have been missed because of strict search strategies and/or strict inclusion or exclusion criteria. This work is currently ongoing and results of the broader review will be available after consultation.
6.4.3 Review flow chart

6.4.4 Included studies for people with IBD

6.4.5 Included studies for people with adenomatous polyps

6.4.6 Excluded studies

Baxter NN, Goldwasser MA, Paszat LF, Saskin R, Urbach DR and Rabeneck L (2009). Association of colonoscopy and death from colorectal cancer. Annals of Internal Medicine 150(1): 1–8. EXC - Case control study but the controls were not true controls (not individuals that had polypectomy without surveillance).

Ebell M (2002). Which patients with colorectal polyps are at greater risk of early recurrence? Evidence-Based Practice 5(12), 8–9, 2p. EXC - Conference abstract.

Schoen, R. E., Pinsky, P. F., Weissfeld, J. L., Bresalier, R. S., Church, T., Prorok, P., Gohagan, J. K., and Prostate, Lung Colorectal and Ovarian Cancer Screening Trial Group. Results of repeat sigmoidoscopy 3 years after a negative examination. [see comment]. 20030709. JAMA 290[1], 41-48. 2-7-2003. MEDLINE. EXC - Sigmoidoscopy results

Schoen, R. E., Gerber, L. D., and Margulies, C. The pathologic measurement of polyp size is preferable to the endoscopic estimate. Gastrointestinal Endoscopy 46[6], 492-496. 1-12-1997. EXC - Studying the methods of determining polyp size, comparing endoscopists estimates and pathologists measurements

Schuman, B. M. Premalignant lesions of the gastrointestinal tract. Surveillance regimens for three treatable disorders. [Review] [13 refs]. 19920318. Postgraduate Medicine 91[2], 219-222. 19-6-2000. MEDLINE. EXC - Discussion paper on Barrett's oesophagus, UC and adenomatous polyps surveillance

Seow, C. H., Ee, H. C., Willson, A. B., and Yusoff, I. F. Repeat colonoscopy has a low yield even in asymptomatic patients. Gastrointestinal Endoscopy 64[6], 941-947. 2006. EXC - Included people who previously had CRC

Shaughnessy, A. Is it necessary to perform a colonoscopy in patients found to have small adenomas on screening sigmoidoscopy? Evidence-Based Practice 1[11], -7, insert. 1998. EXC - Not available by british library

6.5 Review question 4:

What are the information and support needs of people, or carers of people undergoing or considering undergoing colonoscopic surveillance?

6.5.1 Eligibility criteria

Inclusion criteria

- Population
 - Adults (18 years and older) with IBD (defined as ulcerative colitis or Crohn's disease involving the large bowel) considering colonoscopy.
 - Adults with polyps (including adenomas) in the colon or rectum considering colonoscopy.

- Intervention
− Any discussion of patient preference or views on the procedure or the process of surveillance.

• Study design
 − No study design filter.

Exclusion criteria

• Population
 − Children (younger than 18 years).
 − Adults with newly diagnosed or relapsed adenocarcinoma of the colon or rectum.
 − Adults with polyps that have previously been treated for colorectal cancer.
 − Adults with a genetic familial history of colorectal cancer: hereditary non-polyposis colorectal cancer.
 − Adults with a familial history of polyposis syndromes: familial adenomatous polyposis.

• Intervention
 − Views or preferences on interventions other than chromoscopy or conventional colonoscopy or surveillance.

6.5.2 Evidence review results

• Initial 1910 hits including duplicates
• Excluded on the basis of title and abstract: 1882
• Articles ordered full text: 28

Articles selected for review based on the inclusion and exclusion criteria were seven primary studies. It was agreed not to split by the evidence by groups for this question.
6.5.3 Review flow chart

6.5.4 Included studies (both groups)

6.5.5 Excluded studies

Freedom from inflammatory bowel disease: Keys to personalized ulcerative colitis management. Gastroenterology and Hepatology 4[5 SUPPL. 13], 5-14. 2008. excluded: not looking at the clinical question of interest

Lydeard, S. Endoscopy: a patient's view. 19990206. Practitioner 233[1468], 696. 19-5-0099. MEDLINE. excluded: not looking at the clinical question

Miles, A., Wardle, J., and Atkin, W. Receiving a screen-detected diagnosis of cancer: The experience of participants in the UK flexible sigmoidoscopy trial. Psycho-Oncology 12[8], 784-802. 2003. excluded: not looking at the clinical question of interest

Schroy, P. C., Glick, J. T., Wilson, S., Robinson, P. A., and Heeren, T. C. An effective educational strategy for improving knowledge, risk perception, and risk communication among colorectal adenoma patients. Journal of Clinical Gastroenterology 42[6], 708-714. 2008. excluded: not looking at the clinical question of interest

Shen, B. Managing medical complications and recurrence after surgery for Crohn's disease. Current Gastroenterology Reports 10[6], 606-611. 2008. excluded: not looking at the clinical question of interest

Waye, J. D. The best way to painless colonoscopy. Endoscopy 34[6], 489-491. 2002. excluded: covered by included papers

Appendix 5 –Search strategies and literature search

Scoping searches

Scoping searches were undertaken in September 2009 using the following websites and databases (listed in alphabetical order); browsing or simple search strategies were employed. The search results were used to provide information for scope development and project planning.

<table>
<thead>
<tr>
<th>Guidance/guidelines</th>
<th>Systematic reviews/economic evaluations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Concern England</td>
<td>Clinical Evidence</td>
</tr>
<tr>
<td>American Gastroenterological Association</td>
<td>Cochrane Database of Systematic Reviews (CDSR)</td>
</tr>
<tr>
<td>American Society of Colon & Rectal Surgeons</td>
<td>Database of Abstracts of Reviews of Effects (DARE)</td>
</tr>
<tr>
<td>Association of Coloproctology of Great Britain and Ireland</td>
<td>Health Economics Evaluations Database (HEED)</td>
</tr>
<tr>
<td>Beating Bowel Cancer</td>
<td>Health Technology Assessment (HTA) Database</td>
</tr>
<tr>
<td>British Geriatric Society</td>
<td>NHS Economic Evaluation Database (NHS EED)</td>
</tr>
<tr>
<td>British Society of Gastroenterology</td>
<td>NHS R&D Service Delivery and Organisation (NHS SDO) Programme</td>
</tr>
<tr>
<td>Canadian Medical Association Infobase</td>
<td>National Institute for Health Research (NIHR) Health Technology Assessment Programme</td>
</tr>
<tr>
<td>Clinical Knowledge Summaries</td>
<td>TRIP Database</td>
</tr>
<tr>
<td>Core</td>
<td></td>
</tr>
<tr>
<td>Department of Health</td>
<td></td>
</tr>
<tr>
<td>Guidelines International Network (GIN)</td>
<td></td>
</tr>
<tr>
<td>Lynn’s Bowel Cancer Campaign</td>
<td></td>
</tr>
<tr>
<td>National Association for Crohn’s and Colitis (NACC)</td>
<td></td>
</tr>
<tr>
<td>National Health and Medical Research Council (Australia)</td>
<td></td>
</tr>
<tr>
<td>National Institute for Health and</td>
<td></td>
</tr>
</tbody>
</table>
Main searches

The following sources were searched for the topics presented in the sections below.

- Cochrane Database of Systematic Reviews – CDSR (Wiley)
- Cochrane Central Register of Controlled Trials – CENTRAL (Wiley)
- Database of Abstracts of Reviews of Effects – DARE (CRD Databases)
- Health Technology Assessment Database HTA (CRD Databases)
- CINAHL (EBSCO and NHS Evidence – Search 2.0)
- EMBASE (Ovid)
- MEDLINE (Ovid)
The searches were conducted in November 2009. The aim of the searches was to provide evidence on colonoscopic surveillance (using conventional colonoscopy or chromoscopy) for prevention and early detection of colorectal cancer compared with no surveillance. Search filters for systematic reviews, randomised controlled trials, and observational studies were appended to the search strategies to retrieve high quality papers (see Identification of systematic reviews, randomised controlled trials, and observational studies).

The MEDLINE search strategy is presented below. It was translated for use in all of the other databases.

Database: Ovid MEDLINE(R)<1950 to October Week 5 2009>
Date searched: 11th November 2009

Search strategy:

1. ulcerative colitis/
2. (ulcer$ adj4 colitis).tw.
3. (rectocolitis or colitide$).tw.
4. crohn disease/
5. crohn$.tw.
6. ((terminal or regional or granulomatous) adj3 (ileitis or colitis)).tw.
7. (ileocolitis or enteritis).tw.
8. inflammatory bowel disease/
9. (inflam$ adj3 bowel$ adj3 (disease$ or disorder$)).tw.
10. polyps/
11. intestinal polyps/
12. colonic polyps/
13. exp adenomatous polyps/
15. ((adenomatous or familia$ or hereditary or inherit$) adj3 polyposis).tw.
17. or/1-16
18. exp colonoscopy/
19. (colonoscopy$ or coloscop$ or sigmoidoscop$ or chromoscop$).tw.
20. mass screening/
21. population surveillance/
22. or/18-21

Colonoscopic surveillance: full guideline DRAFT (May 2010)
Identification of evidence on surveillance using other methods.

The searches were conducted in November 2009. The aim of the searches was to provide evidence on colonoscopic surveillance (using conventional colonoscopy or chromoscopy) for prevention and early detection of colorectal cancer compared with surveillance using other methods, such as flexible sigmoidoscopy, double-contrast barium enema, computed tomographic colonography, and tri-modal imaging (high resolution white light endoscopy, narrow-band imaging and auto-fluorescence imaging).

The MEDLINE search strategy is presented below. It was translated for use in all of the other databases.

Database: MEDLINE(R) <1950 to November Week 2 2009>
Date searched: 23rd November 2009

Search strategy:

1. ulcerative colitis/ use mesz
2. (ulcer$ adj4 colitis).tw. use mesz
3. (colitide$ or rectocolitis).tw. use mesz
4. crohn disease/ use mesz
5. crohn$.tw. use mesz
6. ((terminal or regional or granulomatous) adj3 (ileitis or colitis)).tw. use mesz
7. (ileocolitis or enteritis).tw. use mesz
8. inflammatory bowel disease/ use mesz
9. (inflam$ adj3 bowel$ adj3 (disease$ or disorder$)).tw. use mesz
10. polyps/ use mesz
11. intestinal polyps/ use mesz
12. colonic polyps/ use mesz
13. exp adenomatous polyps/ use mesz
14. (poly? or adenoma$).tw. use mesz
15. ((adenomatous or famil$ or hereditary or inherit$) adj3 polyposis).tw. use mesz
16. (gardner adj syndrom$).tw. use mesz
17. or/1-16
18. sigmoidoscopy/ use mesz
Identification of evidence on the information and support needs of people undergoing or considering undergoing colonoscopic surveillance.

The searches were conducted in December 2009. The aim of the searches was to provide evidence on the information and support needs of people undergoing or considering undergoing colonoscopic surveillance.
The MEDLINE search strategy is presented below. It was translated for use in all of the other databases.

Database: Ovid MEDLINE(R) <1950 to November Week 3 2009>

Date searched: 10th December 2009

Search strategy:

1. Colitis, Ulcerative/
2. (ulcer$ adj4 colitis).tw.
3. (rectocolitis or colitide$).tw.
4. crohn disease/
5. crohn$.tw.
6. ((terminal or regional or granulomatous) adj3 (ileitis or colitis)).tw.
7. (ileocolitis or enteritis).tw.
8. inflammatory bowel disease/
9. (inflam$ adj3 bowel$ adj3 (disease$ or disorder$)).tw
10. polyps/
11. intestinal polyps/
12. colonic polyps/
13. exp adenomatous polyps/
15. ((adenomatous or famil$ or hereditary or inherit$) adj3 polyposis).tw.
17. or/1-16
18. exp colonoscopy/
19. proctoscopy/
20. (colonoscop$ or coloscop$ or colonograp$ or chromoscop$ or sigmoid?oscop$ or proctosigmoid?scop$ or proctoscop$ or rectoscop$).tw.
21. fsig.tw.
22. barium sulfate/
23. enema/
24. 22 and 23
25. (barium adj3 (enema$ or exam$)).tw.
26. (double adj2 contrast$ adj2 (enema$ or exam$)).tw
27. (contrast$ adj2 enema$).tw.
28. (clyisma$ or clyster$ or enteroclysis$).tw.
29. dcbe.tw.
30. or/24-29

Colonscopic surveillance: full guideline DRAFT (May 2010)
31. colonography, computed tomographic/
32. (comput$ adj2 tomograp$ adj2 (colonograp$ or pneumocolon$)).tw.
33. (ct adj2 (colonograp$ or pneumocolon$)).tw.
34. (virtual adj2 (colonoscop$ or pneumocolon$)).tw.
35. (trimodal$ adj2 imag$).tw.
36. (tri adj2 modal$ adj2 imag$).tw.
37. (high adj2 resolution adj2 endoscop$).tw.
38. (white adj2 light adj2 endoscop$).tw.
39. wle.tw.
40. (narrow adj2 band adj2 imag$).tw.
41. (narrowband adj2 imag$).tw.
42. nbi.tw.
43. fluorescence/
44. microscopy, fluorescence/
45. (autofluorescence adj2 (imag$ or endoscop$)).tw.
46. (auto adj fluorescence adj2 (imag$ or endoscop$)).tw.
47. population surveillance/
48. mass screening/
49. or/18-21,30-48
50. 17 and 49
51. Qualitative research/
52. Nursing Methodology Research/
53. Interview/
54. Questionnaires/
55. Narration/
56. Health Care Surveys/
57. (qualitative$ or interview$ or focus group$ or questionnaire$ or narrative$ or narration$ or survey$).tw.
58. (ethno$ or emic or etic or phenomenolog$ or grounded theory or constant compar$ or (thematic$ adj3 analys$) or theoretical sampl$ or purposive sampl$).tw.
59. (hermeneutic$ or heidegger$ or husser$ or colaizzi$ or van kaam$ or van manen$ or giorgi$ or glasser$ or strauss$ or riceour$ or spiegelberg$ or merleau$).tw.
60. (metasynthes$ or meta-synthes$ or metasummar$ or meta-summar$ or metastud$ or meta-stud$).tw.
61. or/51-60
62. 50 and 61
63. Patients/
64. Family/
65. Spouses/
66. Caregivers/
67. or/63-66
68. Pamphlets/
69. Needs Assessment/
70. Information Centers/
71. Information Services/
72. Health Education/
73. Information Dissemination/
74. Counseling/
75. Social Support/
76. Self-Help Groups/
77. Self Care/
78. or/68-77
79. 67 and 78
80. Patient Education as Topic/
82. Consumer Health Information/
83. ((patient$ or famil$ or relative$ or carer$ or caregiver$ or care-giver$ or spouse$ or husband$ or wife$ or wive$ or partner$) adj5 (educat$ or informat$ or communicat$ or pamphlet$ or handout$ or hand out$ or booklet$ or leaflet$ or support$ or need$ or advice$ or advis$)).ti.
84. ((patient$ or famil$ or relative$ or carer$ or caregiver$ or care-giver$ or spouse$ or husband$ or wife$ or wive$ or partner$) adj5 (counsel$ or selfhelp$ or self-help$ or self help$ or selfcar$ or self-car$ or self car$)).ti.
85. or/80-84
86. 79 or 85
87. 50 and 86
88. exp patients/px
89. exp parents/px
90. exp family/px
91. caregivers/px
92. stress, psychological/
93. Emotions/
94. Anxiety/
95. Fear/
96. exp consumer satisfaction/
Identification of systematic reviews, randomised controlled trials, and observational studies

Search filters for systematic reviews, randomised controlled trials, and observational studies were appended to the search strategy on identification of evidence on colonoscopic surveillance (and evidence on surveillance using other methods) above to retrieve high quality evidence.

The MEDLINE search filters are presented below. They were translated for use in the MEDLINE and EMBASE searches.

Systematic Reviews

2. Meta-Analysis as Topic/
4. exp Review Literature as Topic/
5. (metaanaly$ or metanaly$ or (meta adj2 analy$)).tw.
6. (review$ or overview$).tw.
7. (systematic$ adj4 (review$ or overview$)).tw.
8. ((quantitative$ or qualitative$) adj4 (review$ or overview$)).tw.
9. ((studies or trial$) adj1 (review$ or overview$)).tw.
10. (integrat$ adj2 (research or review$ or literature)).tw.
11. (pool$ adj1 (analy$ or data)).tw.
12. (handsearch$ or (hand adj2 search$)).tw.
14. or/1-13
Randomised Controlled Trials

1. Randomized Controlled Trial.pt.
2. Controlled Clinical Trial.pt.
3. Clinical Trial.pt.
4. exp Clinical Trials as Topic/
5. placebos/
6. Random Allocation/
7. Double-blind Method/
8. Single-Blind Method/
9. Cross-Over Studies/
10. ((random$ or control$ or clinical$) adj2 (trial$ or stud$)).tw.
12. placebo$.tw.
13. ((singl$ or doubl$ or trebl$ or tripl$) adj (blind$ or mask$)).tw.
14. (crossover$ or (cross adj over$)).tw.
15. or/1-14

Observational Studies

1. Epidemiological studies/
2. exp case-control studies/
3. exp cohort studies/
4. Cross-Sectional Studies/
5. Comparative Study.pt.
6. case control$.tw.
7. case series.tw.
8. (cohort adj (study or studies)).tw.
9. cohort analy$.tw.
10. (follow up adj (study or studies)).tw.
11. (observational adj (study or studies)).tw.
12. longitudinal.tw.
13. prospective.tw.
14. retrospective.tw.
15. cross sectional.tw.
16. or/1-15
Health economics

Sources

The following sources were searched to identify economic evaluations and quality of life data relating to colonoscopic surveillance (using conventional colonoscopy or chromoscopy) for prevention and early detection of colorectal cancer compared with no surveillance

- Health Economic Evaluations Database – HEED (Wiley)
- NHS Economic Evaluation Database – NHS EED (Wiley and CRD website)
- EMBASE (Ovid)
- MEDLINE (Ovid)
- MEDLINE In-Process (Ovid)

Strategies

The searches were undertaken in November 2009. The MEDLINE search strategy presented in the sections RQ1 and RQ2 were used and translated for use in NHS EED and HEED. Filters to retrieve economic evaluations and quality of life papers were appended to the MEDLINE search strategy to identify relevant evidence.

The MEDLINE economic evaluations and quality of life search filters are presented below. They were translated for use in the MEDLINE In-Process and EMBASE databases.

Economics evaluations

1. Economics/
2. exp "Costs and Cost Analysis"/
3. Economics, Dental/
4. exp Economics, Hospital/
5. exp Economics, Medical/
6. Economics, Nursing/
7. Economics, Pharmaceutical/
8. Budgets/
9. exp Models, Economic/
10. Markov Chains/
11. Monte Carlo Method/
12. Decision Trees/
13. econom$.tw.
14. cba.tw.
15. cea.tw.
16. cua.tw.
17. markov$.tw.
18. (monte adj carlo).tw.
19. (decision adj2 (tree$ or analys$)).tw.
20. (cost or costs or costing$ or costly or costed).tw.
21. (price$ or pricing$).tw.
22. budget$.tw.
23. expenditure$.tw.
24. (value adj2 (money or monetary)).tw.
25. (pharmacoeconomic$ or (pharmaco adj economic$)).tw.
26. or/1-25

Quality of life

1. "Quality of Life"/
2. quality of life.tw.
3. "Value of Life"/
4. Quality-Adjusted Life Years/
5. quality adjusted life.tw.
6. (qaly$ or qald$ or qale$ or qtime$).tw.
7. disability adjusted life.tw.
8. daly$.tw.
9. Health Status Indicators/
10. (sf36 or sf 36 or short form 36 or shortform 36 or sf thirtysix or sf thirty six or shortform thirtysix or shortform thirty six or short form thirtysix or short form thirty six).tw.
11. (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sfsix or shortform six or short form six).tw.
12. (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve or sftwelve or shortform twelve or short form twelve).tw.
13. (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sfsixteen or shortform sixteen or short form sixteen).tw.
14. (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty or sftwenty or shortform twenty or short form twenty).tw.
15. (euroqol or euro qol or eq5d or eq 5d).tw.
16. (qol or hql or hqol or hrqol).tw.
17. (hye or hyes).tw.
18. health$ year$ equivalent$.tw.
19. utilit$.tw.
20. (hui or hui1 or hui2 or hui3).tw.
21. disutili$.tw.
22. rosser.tw.
23. quality of wellbeing.tw.
24. quality of well-being.tw.
25. qwb.tw.
26. willingness to pay.tw.
27. standard gamble$.tw.
28. time trade off.tw.
29. time tradeoff.tw.
30. tto.tw.
31. or/1-30
Appendix 6 – Evidence tables

Review question 1: People with inflammatory bowel disease

Evidence table for review question 1: Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with inflammatory bowel disease clinically effective compared with no surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow-up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choi 1993</td>
<td>Prospective case control study. The authors compared the groups for: a) age at diagnosis of ulcerative colitis (UC) b) age at diagnosis of cancer c) duration of UC before cancer. No statistically significant difference was found by the Mann-Whitney test (P > 0.05)</td>
<td>The median follow-up after diagnosis of cancer until death or last visit was 4.9 years (range 0.4–11.4 years) for the surveillance group and 1.4 years (range 0.1–12.1 years) for the no surveillance group.</td>
<td>Patients with ulcerative colitis from the Lahey Clinic Medical Center in Seattle, USA (N = 50). Patients with duration of disease of 8 years or more and extension of disease proximal to the sigmoid colon were included. CRC incidence: 41 had colorectal carcinoma out of 2050 patients; 19 of those had surveillance and 22 did not have surveillance.</td>
<td>The patients on surveillance had biopsies every 2 years (every 3 years in the early years of the programme) after negative results on two consecutive annual examinations. Any specimens with suspicion of dysplasia were reviewed by two pathologists. In patients with biopsies indefinite dysplasia was investigated every 6–12 months, for low-grade dysplasia it was 3–6 months and for high-grade dysplasia or for a dysplasia-associated lesion or mass, colectomy was advised.</td>
<td>No surveillance</td>
<td>Survival analysis was done using the Kaplan-Meier product limit method. The statistical significance of differences was analysed by the Tarone-Ware method. Duke's Stage of carcinoma when detected: 15/19 were detected at Duke’s stage A or B for the surveillance group versus 9/22 for the no surveillance group (P = 0.039). The removal of two patients whose colorectal carcinoma was detected without surveillance still showed a statistically significant difference (P = 0.036). 5-year survival: 5-year overall survival rate was 77.2±10.1% for the surveillance group versus 36.3±12.7% for the no surveillance group (P = 0.026). Removing the patients whose colorectal carcinoma was detected without surveillance still showed a statistically significant difference (P = 0.037) and 5-year overall survival in the surveillance arm changed to 76.2±12.1%. The 5-year survival of the two groups by Dukes’ stage did not show a statistically significant difference (P > 0.05). Overall Mortality: 4 deaths occurred in the surveillance group versus 11 in the no surveillance group. The authors state that the big difference in the follow-up time between the two groups was the high early mortality rate for the no surveillance group. The study compared the two groups for three different criteria and found no statistical significance.</td>
<td></td>
</tr>
</tbody>
</table>
Evidence table for review question 1: Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with inflammatory bowel disease clinically effective compared with no surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow-up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lashner 1990</td>
<td>Historical cohort study</td>
<td>Eligible patients entered the registry on June 15, 1984, until death or the end of the study on November 15, 1986</td>
<td>Patients (N = 186) were taken from the Chicago inflammatory bowel disease registry. Eligible patients had extensive ulcerative colitis (defined as continued disease from any point proximal to the splenic flexure to the distal rectum) with at least 9 years of disease duration. Cohort 1: n = 91 had surveillance at least once during the study period. Cohort 2: n = 95 had no surveillance within the study (but could have it outside).</td>
<td>Colonoscopic surveillance at least once during the study period. Patients had 4.2± 3.0 (range 1–16) colonoscopies during the study period and at a mean of 17 years after symptom onset. Patients who were found to have cancer on referral or their first colonoscopy were excluded.</td>
<td>No surveillance within the programme</td>
<td>No statistically significant difference was seen between the two groups in sample size, sex, age at symptom onset and family history for colon cancer. There was no morbidity or mortality directly from colonoscopy. A total of 92% of people from the surveillance group and 94% from the control group had complete vital status information at the end of the study. Duration of disease at colectomy: 19±2.7 years in the surveillance group versus 14.3±11.8 years in the control group. Colectomy: 33 people in the surveillance group versus 51 in the control group. Colectomy was performed 4 years later in the surveillance group. Indication for colectomy: cancer – 3 people in the surveillance group versus 6 in the control group; dysplasia - 10 people in the surveillance group versus 3 in the control group; active disease: 20 people in the surveillance group versus 42 in the control group. Mortality: 6 people in the surveillance group versus 14 in the control group. However, the deaths caused by cancer were more frequent in the surveillance group than in the control group, where deaths were more frequent because of exacerbation. The survival curves showed a significant reduction in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crude survival analysis was done using Kaplan-Meier product limit survival curves and differences in the two groups were adjusted to remove confounding factors via Cox proportional hazards model.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The authors mention potential sources of bias for misclassification for both surveillance and cancer. As some patients had their dysplasia discovered in programmes outside the study surveillance and some patients not receiving surveillance could have had surveillance outside the surveillance programme within the study, further error could have been introduced. The sample size of the study was also small and this could potentially favour the null hypothesis. The study had an overall follow up of 93% of patients giving it a high validity. The authors also performed a Cox proportional hazards model to adjust for prognostic factors.</td>
</tr>
</tbody>
</table>
Evidence table for review question 1: Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with inflammatory bowel disease clinically effective compared with no surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow-up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutgens 2009</td>
<td>Retrospective case control study.</td>
<td>Data were taken from 1971 to 1 July 2006 (primary end point of the study) or the date of death. When a patient was lost to follow-up, the last visit to the hospital was recorded as end of follow-up.</td>
<td>Patients with IBD (N = 149; 89 with ulcerative colitis, 59 with Crohn’s disease and 1 with indeterminate colitis) with CRC were taken from a nationwide pathology database (PALGA) in the Netherlands. Overall 42 deaths occurred from 145 (29%) people and metastasised CRC was the direct colonoscopic surveillance (n = 23)</td>
<td>For the surveillance group patients had to have at least one or more surveillance colonoscopies at regular intervals (every 1–3 years). The surveillance had to be done with the intention of detecting neoplasia and by taking four random biopsies every 10 cm in addition to targeted biopsies of suspicious areas.</td>
<td>No surveillance (n = 126)</td>
<td>Survival analyses were calculated by Kaplan-Meier curves and Cox regression analyses were used for calculations and the Tarone-Ware method was used to compare the differences between the survival curves.</td>
<td>The study has both ulcerative colitis and Crohn’s disease patients within the analysis. There were no statistically significant differences seen between the two groups in patient characteristics. Cox regression analysis was used to see the effect of type of IBD, age at CRC diagnosis, comorbidity, presence of primary sclerosing cholangitis and surveillance on CRC-related mortality.</td>
</tr>
</tbody>
</table>

mortality in the surveillance group (p < 0.05).

Using the Cox proportional hazards model the surveillance group had 61% reduction in mortality compared with the control group. The relative risk for death was 0.39 (95% CI, 0.15–1.00).

Cancer detection rate: the surveillance group had 67% increased cancer detection rate compared with the control group. The relative risk for cancer detection was 1.67 (95% CI, 0.30–9.33).

Colectomy: the surveillance group had 47% reduction in colectomy rate compared with the control group. The relative risk for colectomy was 0.53 (95% CI, 0.34–0.83).
Evidence table for review question 1: Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with inflammatory bowel disease clinically effective compared with no surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow-up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBD diagnosis, median age at CRC diagnosis, presence of primary sclerosing colangitis, median interval between onset of IBD symptoms and diagnosis of CRC and mean follow-up time after CRC. No statistically significant difference was found between the groups.</td>
<td>21% (31 patients) were lost to follow-up. Four of these were immediately after diagnosis of CRC and were excluded from survival analysis.</td>
<td>cause of death for 30 of those (six patients died from metastasis of a different cancer, and another six died from complications from colectomy.</td>
<td>Surveillance started after a median of 14.3 (standard 8) years after diagnosis of IBD. CRC developed after a median of 6.4 years (range 1–21) after initiation of surveillance.</td>
<td>in the surveillance group and 26% in the non-surveillance group (P = 0.042). Cox regression analysis showed that colonoscopic surveillance improved survival and CRC-related mortality but this did not reach statistical significance (P = 0.10, and 0.08 when 11 patients that had simultaneous IBD and CRC diagnosis were excluded). When the 11 patients were excluded, the 5-year overall mortality changed to 0% in the surveillance group and 36% in the non-surveillance group (P = 0.02). The CRC-related mortality changed to 0% and 29% (P = 0.03).</td>
<td>Tumour Stage
Tumour classification was not available for 11 patients (93%). There were 12 (52%) patients in the surveillance group in whom tumours were detected at stage 0 or 1 (AJCC – American Joint Committee on Cancer, which is equivalent to T in situ and T1, T2, NO, MO) compared with 28 (24%) in the no surveillance group (P = 0.004). There were fewer people with advanced stage tumours, stage 3B–C and 4 tumours (AJCC, which is equivalent to T3, T4, N1, N2, MO, M1), in the surveillance group compared with 48 (42%) in the non-surveillance group (P = 0.049).</td>
<td>Ten patients (7%) did not have any information regarding the use of 5-ASA prescription. The authors tried to minimise selection bias by excluding patients that were diagnosed with IBD and CRC simultaneously. The authors stated that lack of randomisation may lead to volunteer bias, but felt that because the mean duration of disease was longer (22.7 years versus 19.3 years) this was not a major issue. Four cancers in the surveillance group were found to be interval cancers, but it was hard to determine if these were due to failure of detection during a previous colonoscopy.</td>
<td></td>
</tr>
</tbody>
</table>
Evidence table for review question 1: Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with inflammatory bowel disease clinically effective compared with no surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow-up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>prescription, so were excluded from the analysis. Out of the included 139 people, 119 (86%) had used 5-ASA during the course of their disease and 64 (54%) of those had 5-ASA medication for more than three-quarters of their disease duration and all developed CRC. In the surveillance group 20 (100%) and 96 (77%) in the no surveillance group had used 5-ASA preparations (P = 0.08). Using Cox regression, the effect of 5-ASA on survival and surveillance is not significant (P = 0.96 and P = 0.098 respectively).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1

2
Review question 2A: People with Inflammatory bowel disease

Colonoscopic surveillance for colorectal cancer in high-risk groups: polyps.

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow-up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Thiss-Evensen, 1999.</td>
<td>Prospective cohort study.</td>
<td>1983–1996</td>
<td>Screening (intervention group): 400 men and women in Oslo, Norway.</td>
<td>Screening intervention with FSIG and colonoscopy.</td>
<td>No screening.</td>
<td>Forty-eight of the controls (12% of the original group of 399) had a colonoscopic examination between 1983 and 1996. Ten of these people had a total of 18 adenomas removed, 8 of which measured 5–10 mm in diameter and the largest 10 mm; none showed more than moderate dysplasia.</td>
<td>324 (81%) people accepted FSIG screening at the initial stage (mean age 54.4 years). People in whom polyps were detected had a full colonoscopy with polypectomy and were offered follow up by colonoscopy with polypectomy. People in the control group were not informed about their status as enrolled control. The people in both groups matched for age, sex and body mass index.</td>
</tr>
<tr>
<td></td>
<td>Study represents 9600 person-years of follow up.</td>
<td></td>
<td>Control group: 399.</td>
<td></td>
<td></td>
<td>Incidence of CRC: 12 people had CRC diagnosed in the course of 13 years of observation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>324 (81%) out of the 400 enrolled attended the screening because of the presence of polyps in 1983, 277 (85%) were still alive in 1996. In the control group of 399, 358 (89%) were still alive. 210 (76%) from the screening group and 241 (68%) in the control group, altogether 451 people (71%) attended in 1996. Mean age of people attending was 67.4 years in the screening group and 67 years in the control group. Range: 63–72 years in both groups.</td>
<td></td>
<td></td>
<td></td>
<td>Overall mortality: overall accumulated death rate, from January 1983 to December 1994, showed 55 (14%) deaths in the screening group, compared with 35 (9%) in the</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colonoscopic surveillance: full guideline DRAFT (May 2010)
Evidence table for review question 1B: Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with polyps clinically effective compared with no surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow-up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.D. Jorgensen, 1993, 2007.</td>
<td>Prospective randomised study of patients with colorectal adenomas subject to different surveillance follow up. The group was compared with 0 controls from the normal Danish population, Eide (1986) and Stryker (1987), matched for age and sex.</td>
<td>Long term (1–24 years) colonoscopic surveillance.</td>
<td>Population of patients with all types of adenomas regardless of size and method of removal. 2041 patients were included from 1978 to 2002. Their ages were between 24 and 76 years old (average 60.8 years for men and 60.1 years for women). 497 men and 362 women had advanced adenoma that is, Adenomas > 10 mm A clean colon was achieved before patients were included in the study. No patient had a history of Familial adenomatous polyposis (FAP), Hereditary Nonpolyposis Colorectal</td>
<td>Surveillance intervention with colonoscopy supplemented with double contrast barium enema (DCBE). Colonoscopy was performed in all patients and complete in 1871; incomplete colonoscopy was supplemented by DCBE in 148 leaving 22</td>
<td>No surveillance.</td>
<td>control group (relative risk 1.57; 95% CI, 1.03–2.4, P = 0.02). The higher mortality in the screening group could be explained by a collectively higher frequency of deaths caused by coronary heart disease, cerebrovascular accidents, sudden death, chronic obstructive lung disease and alcohol abuse (P = 0.03). Adverse effects There were no complications from the endoscopic examinations and polypectomies.</td>
<td>115 of 2041 patients had reached 24 years after inclusion at November 2002. Colonoscopy had been performed 6289 times and DCBE 998 times during 13993 patient years of surveillance. Compliance: 72.9% in men and 76.3% in women. Colonoscopy was complete in 95% of the examinations for men and 92% for women. Incidence of CRC: CRC was found in 27 (23.48%) of the 115 that reached 24 years (relative risk 0.65; 95% CI, 0.43–0.95) of which fourteen were men (relative risk 0.54; 95% CI, 0.29–0.90) and 13 were women (relative risk 0.86; 95% CI 0.46–1.46). At the end of the study, three patients died from CRC (relative risk 0.12; 95% CI, 0.03–0.36). Risk of CRC relative to various reference populations: RR (95% CI)</td>
</tr>
</tbody>
</table>
Evidence table for review question 1B: Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with polyps clinically effective compared with no surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow-up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cancer (HNCC) or IBD. Patients participating in a chemoprevention trial were excluded.</td>
<td>who had documentation of a clean colon without neoplasia.</td>
<td>Large (≥ 10 mm) adenomas – 0.16 (0.08–0.30) Severe dysplastic adenomas – 0.09 (0.04–0.17) Villous adenomas – 0.96 (0.46–1.76) All with adenomas – 0.89 (0.43–1.64) Large (≥ 10 mm) adenomas – 0.57 (0.27–1.04)</td>
<td>Adverse effects: severe complications from surveillance examinations were seen in 20 patients and two died from these complications. One death was from diagnostic colonic perforation and the other from coronary occlusion after colonoscopy with polypectomy.</td>
<td></td>
</tr>
</tbody>
</table>
Review question 2A: People with adenomatous polyps

Evidence

Evidence table for review question 2A (a,b): Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with inflammatory bowel disease or polyps clinically effective compared with comparators?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow-up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van den Broek, 2009</td>
<td>Systematic review of three randomised control trials (RCT): Narrow band imaging (NBI) versus white light endoscopy (WLE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Rex and Helbig, 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Alder, 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Inoue, 2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percentage of patients with at least 1 adenoma and mean number of adenomas per examined patient for NBI versus WLE (RCTs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (RCT): NBI vs WLE</td>
<td>No. of NBI</td>
<td>No. of WLE</td>
<td>Patients with adenoma detected by NBI (%)</td>
<td>Patients with adenoma detected by WLE (%)</td>
<td>Odds ratio (95% CI) of NBI vs WLE</td>
<td>No. of adenomas detected by NBI (mean per patient)</td>
<td>No. of adenomas detected by WLE (mean per patient)</td>
</tr>
<tr>
<td>Rex and Helbig, 2007</td>
<td>217</td>
<td>217</td>
<td>140 (65%)</td>
<td>145 (67%)</td>
<td>0.90 (0.61-1.34)</td>
<td>403 (1.86)</td>
<td>395 (1.82)</td>
</tr>
<tr>
<td>Alder, 2007</td>
<td>198</td>
<td>198</td>
<td>45 (23%)</td>
<td>33 (17%)</td>
<td>1.47 (0.89-2.42)</td>
<td>65 (0.33)</td>
<td>51 (0.26)</td>
</tr>
<tr>
<td>Inoue, 2008</td>
<td>122</td>
<td>121</td>
<td>51 (42%)</td>
<td>41 (34%)</td>
<td>1.40 (0.83-2.36)</td>
<td>103 (0.84)*</td>
<td>66 (0.55)*</td>
</tr>
<tr>
<td>Pooled results</td>
<td>537</td>
<td>536</td>
<td>236 (44%)</td>
<td>219 (41%)</td>
<td>1.19 (0.86-1.64)</td>
<td>571 (1.06)</td>
<td>512 (0.96)</td>
</tr>
</tbody>
</table>

*Includes 2 invasive cancers

Rex and Helbig, 2007: Four hundred and thirty four patients were included aged 50 years or older with intact colon. There was no difference in the percent of patients with adenoma for the entire cohort in WLE (67%) vs NBI (65%) (p = 0.61). One highly experienced endoscopist performed all examinations. **No complication occurred.**

Alder, 2007: Four hundred and one patients were included (mean age 59.4 years, 52.6% men). Adenomas were detected more frequently in the NBI group (23%) than in the control (17%) with a number of 17

Inoue, 2008 demonstrated a significantly improved adenoma detection rate by NBI vs WLE (mean number of adenomas per evaluated patient, 0.84 vs 0.55; p = .046). No advantage for NBI could be demonstrated when the proportions of patients with at least 1 adenoma was compared between NBI and WLE. An insufficient allocation method caused inadequate distribution of NBI procedures among all participating endoscopists.

Rex and Helbig and Adler et al could not demonstrate an increased adenoma detection rate (both per lesion and per patient) by NBI in 2 large randomized studies.

Some differences existed among the 3 randomized studies:
- Rex and Helbig use high-definition monitors, which may improve
Evidence table for review question 2A (a,b): Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with inflammatory bowel disease or polyps clinically effective compared with comparators?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow-up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>colonoscopies needed to find one additional adenoma patient; however the difference was not statistically significant (p = 0.129). seven endoscopists without previous experience with NBI performed the examinations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoue, 2008: Two hundred and five polyps were removed from 109 (44.86%) patients; 127 (67%) were assigned to the NBI group and 78 (38%) to the control group (WLE). Of the 205 polyps detected, 169 (82.4%) were neoplastic, with 66 (39.1%) detected in the control group and 103 (60.1%) detected in the NBI group. Six endoscopists with unknown experience performed the examinations, of whom 1 performed >60% of the examinations. There were no immediate complications. All patients were contacted within 2 weeks after the procedure, and none of them reported any significant adverse effects from colonoscopy or polyp resection.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Dekker, 2007 | Prospective RCT: Cross-over study design | Forty-two patients with longstanding ulcerative colitis. The study group comprised 31 men and 11 women with a mean age (±SD) of 50 ± 11.2 years. The mean duration (±SD) of their ulcerative colitis was 21 ± 8.6 years. | Narrow-band imaging (NBI) | Conventional colonoscopy | **The number of patients with true positive findings (8 for NBI vs. 7 for WLE) and false-positive findings (9 for NBI vs. 6 for WLE) for the endoscopic procedures was not significantly different (p = 0.705 and p = 0.581, respectively)**. | All participants underwent NBI and conventional colonoscopy with at least 3 weeks between the 2 procedures to allow healing of any biopsy sites. All colonoscopies were performed by one of three experienced endoscopists, who were blinded with respect to the...
Evidence table for review question 2A (a,b): Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with inflammatory bowel disease or polyps clinically effective compared with comparators?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow-up</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rex, 1995</td>
<td>RCT</td>
<td></td>
<td>One hundred and forty-nine patients aged 40 years or more with symptoms suggestive of colonic disease were randomized. Mean age was 63 years.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCT</td>
<td>One hundred and forty-nine patients aged 40 years or more with symptoms suggestive of colonic disease were randomized. Mean age was 63 years.</td>
<td>Flexible sigmoidoscopy (FSIG) plus air-contrast barium enema (ACBE).</td>
<td>Colonoscopy</td>
<td>There was no significant difference in the number of detected neoplastic lesions between the 2 techniques (9 for NBI vs. 12 for WLE, p = 0.672). Only the number of false-positive lesions was significantly higher for NBI than it was for WLE (43 vs. 16, p = 0.015).</td>
<td>endoscopic and histopathological findings of the first procedure. The Narrow-binding imaging system used in this study was a first generation prototype, which might explain the low yield of NBI.</td>
</tr>
</tbody>
</table>

Rex, 1995

There was no significant difference in the number of detected neoplastic lesions between the 2 techniques (9 for NBI vs. 12 for WLE, p = 0.672). Only the number of false-positive lesions was significantly higher for NBI than it was for WLE (43 vs. 16, p = 0.015).

Patient with incomplete initial colonoscopy and patients with polyps seen on FSIG plus barium enema underwent alternative procedure (barium enema or colonoscopy).

No significant difference was noted in demographic, historical, clinical, or biochemical variables between the 2 groups. The strategy of initial FSIG plus ACBE detected more patient with diverticulosis than did initial colonoscopy, whereas the strategy of initial colonoscopy detected more patients with adenomas (p = 0.06).
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow-up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulhall, 2005</td>
<td>Systematic review and Meta-Analysis on CT colonography</td>
<td>Prospective studies of adults undergoing CT Colonography after full bowel preparation, with colonoscopy as the gold standard were selected. Data on sensitivity and specificity overall and for detection of polyps less than 6mm, 6 to 9mm, and greater than 9mm in size were abstracted. Thirty three studies provided data on 6393 patients. The overall pooled per patient sensitivity: for CT colonography was 70% (95% CI, 53% to 87%). Sensitivity increased progressively as polyp size increased: It was 48% (CI, 25% to 70%) (Range, 14% to 86%) for detection of polyps smaller than 6mm, 70% (CI, 55% to 84%) (Range, 30% to 95%) for polyps 6 to 9mm, and 85% (CI, 79% to 91%) (Range, 48% to 100%) for polyps larger than 9mm. Each of these analyses was statistically heterogeneous. Overall pooled per patient specificity: Specificity was more consistent across polyp sizes. Overall, CT colonography was 86% specific (CI, 84% to 88%) on the basis of data from 14 studies. Specificity improved as polyp size increased, and the results were homogeneous within each stratum. Four studies reported specificity for detection of polyps smaller than 6mm, and the pooled specificity from these studies was 91% (CI, 89% to 95%). For polyps 6 to 9mm in size (6 studies), specificity was 93% (CI, 91% to 95%) and to 97% (CI, 96% to 97%) for polyps larger than 9mm (15 studies). Characteristics of the CT colonography scanner, including width of collimation, type of detector, and mode of imaging, explained some of the heterogeneity. Limitations: the studies differed widely, and the extractable variables explained only a small amount of the heterogeneity. Only a few studies examined the newest CT colonography.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winawer, 2000</td>
<td>Controlled trial comparing colonoscopy and double-contrast barium enema (DCBE)</td>
<td>Nine hundred and seventy three patients underwent one or more colonoscopic examinations for surveillance. In 580 of these patients, 862 paired colonoscopic examinations and barium enema was performed.</td>
<td>Colonoscopic and barium enema examination.</td>
<td>Colonoscopic examination without barium enema.</td>
<td>Polyps were detected in 392 of the 862 colonoscopic examinations (45%); adenomas were detected in 242 colonoscopic examinations (28%). Findings on barium enema were positive in 222 of the 862 paired examinations (26%) and in 139 of the 392 colonoscopic examinations in which one or more polyps were detected (rate of 35%). The study design permitted a direct blinded comparison of colonoscopic examination with barium enema without interfering with complete colonoscopy in each patient. Colonoscopy was used as the reference measure with the knowledge that it is not perfect and does miss polyps. In this study, the rate of missed adenomas was 20% for</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence table for review question 2A (a,b): Is colonoscopic surveillance for prevention and/or early detection of colorectal cancer in adults with inflammatory bowel disease or polyps clinically effective compared with comparators?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow-up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Detection of polyps, 35%; CI, 31% - 40%). Half of these polyps were adenomas, and the remainder were primarily normal mucosal tags, with some hyperplastic polyps.
- Colonoscopic examination, and all missed polyps were ≤1.0cm.
Evidence Table for Review question 2B: Is colonoscopic surveillance with a dye (chromoscopy) for prevention and/or early detection of colorectal cancer in adults with Inflammatory Bowel Disease clinically effective compared to colonoscopic surveillance without dye (conventional colonoscopy)?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiesslich 2003</td>
<td>Prospective randomised trial. Randomised 1:1 into two groups A or B – chromoendoscopy (with the use of a dye) or with conventional endoscopy respectively. The randomisation was done using a computer aided system and the results were kept in a sealed envelope and opened only before the colonoscopy by an independent</td>
<td>None</td>
<td>Total (N=165): group A- chromoendoscopy (n=84) and group B- conventional endoscopy (n=81). 263 consecutive patients with clinically inactive, long standing ulcerative colitis (≥8 years) were recruited from an outpatient clinic in University of Mainz, Germany. The sample size was calculated to be 170 patients (85 in each group) using alpha as 0.05 and a power of 90%</td>
<td>Chromoscopy using 0.1% methylene blue (A, n=84). For group A the colon was stained in a segmented fashion, 30 cm at a time using a spraying catheter (Olympus PW-IL, Hamburg, Germany). After 1-minute excess dye was removed by suction and staining was considered complete when the tiny glandular duct openings of the mucosa were (pits) were clearly visible. Magnification</td>
<td>Conventional colonoscopy (B, n=81). In group B the colonoscopy was performed using conventional video colonoscopes</td>
<td>Targeted biopsies An average of 40.8 biopsies was taken per patient: 42.2 biopsies per patient in group A and 38.2 in group B. For A, 14.4/42.2 biopsies were targeted compared to 4.3/38.2 biopsies in group B (P=0.044). Colorectal neoplasia A total of 46 neoplastic lesions were seen in 19 patients. 42 of these lesions were intraepithelial neoplasia (32 LGD, 10 HGD and 4 invasive cancers). More dysplasia was detected in group A compared to B (32 versus 10; P = 0.003).</td>
<td>RCT with well reported blinding, concealment, inclusion and exclusion criteria with a consort chart explaining the same. Sample size calculated to be 85 required in each arm, 87 recruited but due to insufficient bowel preparation each arm had less than required participants. The two arms were compared for age, duration of UC, body mass index, stool frequency, rectal bleeding, temperature, haemoglobin, prevalence of</td>
</tr>
</tbody>
</table>

Adapted from Table 5 in Kiesslich 2003

Extent of disease/inflammation - not relevant for guideline

There was a significantly better correlation between the...
Evidence Table for Review question 2B: Is colonoscopic surveillance with a dye (chromoscopy) for prevention and/or early detection of colorectal cancer in adults with Inflammatory Bowel Disease clinically effective compared to colonoscopic surveillance without dye (conventional colonoscopy)?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiesslich 2007</td>
<td>Prospective randomised trial. Randomised 1:1 into two groups A or B - chromoscopy with endomicroscopy (with the use of a dye) or with confocal laser</td>
<td>None</td>
<td>Total (N=161): group A - chromoscopy (n=80) and group B - conventional endoscopy (n=80).</td>
<td>Chromoscopy using 0.1% methylene blue with endomicroscopy (A, n=80). The confocal laser endoscope was advanced into the ileum of caecum and 5ml of fluorescein was injected at conventional colonoscopy (B, n=73).</td>
<td>endoscopic assessment of degree (P = 0.0002) and extent (89% vs. 52%; P < 0.0001) of colonic inflammation and the histopathologic findings compared with the conventional colonoscopy group.</td>
<td>Diagnostic Accuracy The use of dye allowed for differentiation of neoplastic lesions with a sensitivity of 93%, specificity of 93%, positive predictive value of 83% and negative predictive value of 98%.</td>
<td>primary sclerosing cholangitis, family history of colorectal cancer, maintenance mesalamine therapy and no statistically significant difference was seen</td>
</tr>
</tbody>
</table>

Study

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiesslich 2007</td>
<td>Prospective randomised trial. Randomised 1:1 into two groups A or B - chromoscopy with endomicroscopy (with the use of a dye) or with confocal laser</td>
<td>None</td>
<td>Total (N=161): group A - chromoscopy (n=80) and group B - conventional endoscopy (n=80).</td>
<td>Chromoscopy using 0.1% methylene blue with endomicroscopy (A, n=80). The confocal laser endoscope was advanced into the ileum of caecum and 5ml of fluorescein was injected at conventional colonoscopy (B, n=73).</td>
<td>endoscopic assessment of degree (P = 0.0002) and extent (89% vs. 52%; P < 0.0001) of colonic inflammation and the histopathologic findings compared with the conventional colonoscopy group.</td>
<td>Diagnostic Accuracy The use of dye allowed for differentiation of neoplastic lesions with a sensitivity of 93%, specificity of 93%, positive predictive value of 83% and negative predictive value of 98%.</td>
<td>primary sclerosing cholangitis, family history of colorectal cancer, maintenance mesalamine therapy and no statistically significant difference was seen</td>
</tr>
</tbody>
</table>

Study

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiesslich 2007</td>
<td>Prospective randomised trial. Randomised 1:1 into two groups A or B - chromoscopy with endomicroscopy (with the use of a dye) or with confocal laser</td>
<td>None</td>
<td>Total (N=161): group A - chromoscopy (n=80) and group B - conventional endoscopy (n=80).</td>
<td>Chromoscopy using 0.1% methylene blue with endomicroscopy (A, n=80). The confocal laser endoscope was advanced into the ileum of caecum and 5ml of fluorescein was injected at conventional colonoscopy (B, n=73).</td>
<td>endoscopic assessment of degree (P = 0.0002) and extent (89% vs. 52%; P < 0.0001) of colonic inflammation and the histopathologic findings compared with the conventional colonoscopy group.</td>
<td>Diagnostic Accuracy The use of dye allowed for differentiation of neoplastic lesions with a sensitivity of 93%, specificity of 93%, positive predictive value of 83% and negative predictive value of 98%.</td>
<td>primary sclerosing cholangitis, family history of colorectal cancer, maintenance mesalamine therapy and no statistically significant difference was seen</td>
</tr>
</tbody>
</table>
Evidence Table for Review question 2B: Is colonoscopic surveillance with a dye (chromoscopy) for prevention and/or early detection of colorectal cancer in adults with Inflammatory Bowel Disease clinically effective compared to colonoscopic surveillance without dye (conventional colonoscopy)?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marion 2008</td>
<td>Prospective, single blinded trial</td>
<td>None</td>
<td>People with ulcerative or Crohn's colitis</td>
<td>Chromoscopy with 0.1% methylene</td>
<td>intraepithelial neoplasia was 57 in group A compared to 13 in group B (P<0.0001).</td>
<td>recruited in the two arms. The two arms were compared for age, duration of UC, body mass index, stool frequency, rectal bleeding, temperature, haemoglobin, prevalence of primary sclerosing cholangitis, family history of colorectal cancer, maintenance mesalamine therapy and no statistically significant difference was seen. However, inspite of clinical inactive UC in all patients, on average there was more extended colonic inflammation in group B compared to A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>endoscopy respectively.</td>
<td>The randomization was done using a computer aided system and the results were kept in a sealed envelope and opened only before the colonoscopy by an independent person who was blinded to the study question.</td>
<td>remission were recruited from an outpatient clinic in University of Mainz, Germany.</td>
<td>a final concentration of 10%. 0.1% of methylene blue was then used for in a segmented fashion, 30 cm at a time using a spraying catheter (Olympus PW-IL, Hamburg, Germany) and excess dye was removed by suction. staining was considered complete when the tiny glandular duct openings of the mucosa were (pits) were clearly visible. Random (10-15 cm) and targeted biopsies were taken – taking 42 minutes (range 29-64).</td>
<td>were taken every 10 cm for random biopsies and targeted biopsies were also taken whenever possible. The average duration for the procedure was 31 minutes (range 18-48 minutes).</td>
<td>intraepithelial neoplasia was 57 in group A compared to 13 in group B (P<0.0001). Colorectal neoplasia A total of 23 neoplastic lesions were seen in 15 patients. All of these lesions were intraepithelial neoplasia (15 LGD, 8HGD). Group A detected 4.75 fold more neoplasia compared to B (19 versus 4; P = 0.005). Group A detected significantly more flat neoplasia compared to B (16 versus 2; P = 0.002).</td>
<td>Adapted from Table 6 in Kiesslich 2007 Diagnostic Accuracy The presence of neoplastic changes could be predicted by endomicroscopy with a sensitivity of 94.7%, specificity of 98.3%, accuracy 97.8%.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Random non-targeted conventional</td>
<td>The number of positive finding of LGD and HGD was compared among the different methods using exact two-tailed McNemar's test.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colonoscopic surveillance: full guideline DRAFT (May 2010) Page 97 of 145
Evidence Table for Review question 2B: Is colonoscopic surveillance with a dye (chromoscopy) for prevention and/or early detection of colorectal cancer in adults with Inflammatory Bowel Disease clinically effective compared to colonoscopic surveillance without dye (conventional colonoscopy)?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>with three methods within the same patient population.</td>
<td>(N=102, 64 male and 34 female) were included for the study at Mount Sinai Medical Centre, New York, USA</td>
<td>People more than 18 years of age with a confirmed diagnosis of extensive ulcerative colitis defined as at least left sided (n=79) or Crohn's colitis involving at least one-third of the colon (n=23). The median age of onset was 27 years (range 3-65) and the median duration of disease was 21.5 years (range 5-75) and all had enrolled in a surveillance programme at time of study. 39% had previous blue dye. A dye sprayer was used to spray 0.1% methylene blue dye during reintubation to the caecum. After reinsertion to the caecum, the scope was withdrawn slowly and the mucosa examined after dye spray and any visible lesions were biopsied or removed by endoscopic resection. The method took 15 minutes and 12 seconds (range 5:09 - 28:35). The authors report that the only significant equipment colonoscopy - the colon was examined and four quadrant random biopsies were taken from segments defined by the endoscopist using multitite forceps.</td>
<td>Dysplasia yield by method (per patient) The combination of targeted colonoscopy and chromoscopy was significantly more effective than random biopsies, 20 people with dysplasia were found compared to 3 (P<0.0002), but two patients were found to have dysplasia only by random biopsy and not by any of the two targeted methods. Chromoscopy was significantly more effective than random biopsies, 17 people with dysplasia were found compared to 3 (P<0.001). Chromoscopy showed a higher yield of dysplasia then targeted conventional colonoscopy, 17 people with dysplasia were found compared to 9 but it did not reach statistical significance (P=0.057). Dysplasia yield by method (per biopsy) With random conventional colonoscopy 3264 biopsies were obtained and 3245 (98.8%) were negative for dysplasia, 16 (0.4%) were indefinite for dysplasia and 3 (0.09%) showed LGD, therefore 19 were definite or indefinite for dysplasia (0.58%). With the targeted conventional colonoscopy 50 biopsies were done, of which 35 (70%) were negative for dysplasia, 2 (4%) were indefinite for dysplasia, 12 (24%) showed LGD and 1 (2%) showed HGD, therefore there were 15 definite or indefinite for dysplasia (30%). The mean size of dysplastic lesions detected was 0.49cm². With chromoscopy a total of 82 additional biopsies were taken, of which 47 (57%) were negative, 13 (16%) were indefinite for dysplasia, 21 (26%) had LGD and 1 (1%) had HGD; therefore there were 35 definite or indefinite for dysplasia (43%). The mean size of dysplastic lesions detected was 1.3cm².</td>
<td>patients back to back and the pathology specimens were analysed by an expert gastrointestinal pathologist who was blinded to the method of collection. There is no long-term follow up and the authors state that methylene blue may cause DNA damage with white light exposure and therefore long-term implications of single stranded DNA breaks and oxidative changes in patients with colitis are unknown.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Dysplasia yield by method per patient

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colonoscopic surveillance: full guideline DRAFT (May 2010)
Evidence Table for Review question 2B: Is colonoscopic surveillance with a dye (chromoscopy) for prevention and/or early detection of colorectal cancer in adults with Inflammatory Bowel Disease clinically effective compared to colonoscopic surveillance without dye (conventional colonoscopy)?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>documented dysplasia (38 LGD, 2 HGD, 10 indefinite for dysplasia). Four had polypoid lesions, others had uncharacterised or not visible (detected using random biopsy). All patients received standard bowel preparation (Fleets Phosphoda, Miralax, or Citrate of Magnesia-based preps) and each patient acted as his or her own control.</td>
<td>expense is the dye spray catheter ($185) and can be sterilised and used up to 20 times and the study used the cheaper methylene blue dye over the indigo carmine dye.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Random non-targeted</td>
<td>Dysplasia (D) 1 19 20 No Dysplasia (ND) 2 83 85 Total 3 99</td>
<td>P<0.0002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chromoscopy Random non-targeted</td>
<td>Dysplasia 1 16 17 No Dysplasia 2 83 85 Total 3 99</td>
<td>P<0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chromoscopy Targeted conventional colonoscopy</td>
<td>Dysplasia 6 11 17 No Dysplasia 3 82 85 Total 9 93</td>
<td>P=0.057 NS</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Tables 2 and 3 from Marion 2008

Agreement between chromoscopy findings and colectomy for the 4 patients that had colectomy: 3 with dysplasia and 1 without (though 1/3 was HGD not all LGD as detected by chromoscopy).

Rutter 2004

Prospective, single blinded trial with three methods within the same patient population. Each patient underwent

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
</table>
| | | None | Patients (N=100) with longstanding extensive ulcerative colitis [UC] attending Routine colonoscopic surveillance for ulcerative colitis at St Mark’s | Chromoscopy with 0.1% indigo carmine
The indigo carmine dye was delivered via a specially designed dye spray catheter (Olympus PW-1) Non-targeted quadrantic - on initial intubation, inspection of the entire colonic mucosa was done on withdrawal. At | Dysplasia yield by method (per biopsy)
Non-targeted quadrantic biopsies
A total of 2904 non-targeted biopsies were taken, a mean of 29 per patient. No dysplasia was detected in any of these biopsies.

Targeted biopsies Overall, 157 suspicious mucosal areas were detected in 61 patients. 43 abnormalities (from 20 patients) were detected during the pre-dye spray colonoscopy, and following

The different techniques were performed on the patients back to back and all biopsy specimens were analysed by one of two experienced gastrointestinal

Colonoscopic surveillance: full guideline DRAFT (May 2010)
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>back to back colonoscopic examination s: first with random colonoscopic surveillance examination, followed by colonoscopic surveillance targeted and then using pancolonic indigo carmine dye spray.</td>
<td>Hospital, UK. There were 61 male and 39 female patients. With a median age of 53 years (range 33–79); median age at onset of UC was 27 years (range 7–67); and the median duration of colitis was 24 years (range 8–52). For 11 patients this was their index screening and 89 patients had undergone surveillance previously. The documented proximal extent of macroscopic inflammation was the transverse colon in 12 patients, hepatic flexure in four patients, ascending colon in one patient, and pancolonic in 83 patients. The study size was calculated</td>
<td>5V1). After allowing a few seconds for the dye to settle onto the mucosal surface, excess pools of indigo carmine were sucked. The mucosa was then scrutinised, and any abnormalities not identified on the initial examination were biopsied or removed.</td>
<td>10 cm intervals, the mucosa was photographed and quadrantic non-targeted colonic biopsies taken as per the ASG guidelines (about 2-40 per colon).</td>
<td>indigo carmine dye spraying 114 additional abnormalities (in 55 patients) were detected. Median size was 4 mm (range 1–40). Six of the abnormalities were pedunculated, 69 were sessile, 75 were flat topped elevated abnormalities, and seven abnormalities were described as irregular appearing mucosa.</td>
<td>histopathologists, who were blinded to the protocol used. Any specimen showing dysplasia was independently reported by both, and in the event of interobserver variation a consensus opinion was reached. According to the authors despite being back to back colonoscopies, the lesions viewed by the dye were not missed lesions as that would give a missed rate of 350% and felt they minimised this by doing a meticulous examination.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table for Review question 2B: Is colonoscopic surveillance with a dye (chromoscopy) for prevention and/or early detection of colorectal cancer in adults with Inflammatory Bowel Disease clinically effective compared to colonoscopic surveillance without dye (conventional colonoscopy)?

Pre-dye spray targeted biopsies

Of the 43 abnormalities detected during the pre-dye spray colonoscopy, nine lesions were hyperplastic polyps and 32 were inflammatory or post-inflammatory polyps. Two patients had dysplastic lesions (a 20 mm sessile lesion on quiescent mucosa at the hepatic flexure in a 71 year old male with no previous dysplasia and a 15 mm sessile lesion on mildly inflamed mucosa in the sigmoid colon in an 80 year old female with previous dysplasia, who has repeatedly declined surgery unless cancer was detected). Targeted biopsies showed low grade dysplasia, confirming the endoscopist’s impression that these were dysplasia associated lesions/masses [DALMs].

Dye spray targeted biopsies

Both DALM lesions were visible after indigo carmine dye spraying. Of the 114 additional abnormalities detected following dye spraying, seven were dysplastic (from five patients). Five of these were tubular adenomas with LGD, and two were serrated adenomas with LGD. Three of the lesions were described as flat lesions and four were sessile. The size of these well circumscribed adenomas ranged from 2 to 6 mm. Two adenomas were found in the caecum, two at the hepatic flexure, two in the transverse colon, and one in the descending colon. Two of the adenomas occurred proximal to the extent of colitis and five were within the UC extent (four in well healed disease, one in an area of mild inflammation). Of the other 107 abnormalities detected following dye spraying, 41 were hyperplastic polyps, 65 post-inflammatory and inflammatory polyps, and one was described as villiform mucosa but without dysplasia.

Colonoscopic surveillance: full guideline DRAFT (May 2010)
Evidence Table for Review question 2B: Is colonoscopic surveillance with a dye (chromoscopy) for prevention and/or early detection of colorectal cancer in adults with Inflammatory Bowel Disease clinically effective compared to colonoscopic surveillance without dye (conventional colonoscopy)?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>to be 100 based on a pre-dye spray dysplasia detection rate of 8% and an assumption of using dye doubling the rate (power of 90% and alpha of 0.05). 108 consecutive people were invited and 101 consented but one case was abandoned at the patient’s request.</td>
<td>regardless of whether or not it was felt to be dysplastic. The median time for the procedure was 11 minutes (range 4-18).</td>
<td>Dysplasia detection summary
With regard to dysplasia detection, the non-targeted biopsy protocol (2904 biopsies) detected no dysplasia from 100 patients, the pre-dye spray targeted biopsy protocol (43 biopsies) detected two dysplastic lesions in two of the 100 patients, and the dye spray targeted biopsy protocol (114 biopsies) detected these two dysplastic lesions plus seven additional dysplastic lesions in five more of the 100 patients. Thus overall, dysplasia was detected in 7% of patients. There was a strong statistical trend towards an increase in dysplasia detection with dye spraying (7/100 patients v 2/100 patients; p=0.06, paired exact test). Compared with the non-targeted biopsy protocol, the targeted biopsies detected dysplasia in significantly more patients (7/100 patients v 0/100 patients; p=0.02, paired exact test).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **Forest Plots: People with Inflammatory bowel disease**

2. **Outcome 1: Mean number of patients detected with intraepithelial neoplasia**

 ![Forest Plot](chart1.png)

 - **Chromoscopy**
 - Kesslich 2003: 13 events, 84 total
 - Kesslich 2007: 11 events, 80 total
 - Malin 2008: 17 events, 102 total
 - Rutten 2004: 7 events, 100 total
 - Total: 48 events, 356 total
 - **Conventional colonoscopy**
 - Kesslich 2003: 8 events, 8 total
 - Kesslich 2007: 4 events, 7 total
 - Malin 2008: 11 events, 10 total
 - Rutten 2004: 2 events, 10 total
 - Total: 23 events, 356 total
 - **Odds Ratio**
 - M-H Fixed, 95% CI
 - Mean number of patients detected with intraepithelial neoplasia: 2.21 [1.31, 3.74]

3. **Outcome 2: Mean number of intraepithelial neoplastic lesions detected per biopsy**

 ![Forest Plot](chart2.png)

 - **Random and targeted chromoscopy**
 - Kesslich 2007: 19 events, 1688 total
 - Total: 19 events, 1688 total
 - **Targeted chromoscopy**
 - Malin 2008: 22 events, 82 total
 - Rutten 2004: 9 events, 114 total
 - Total: 31 events, 186 total
 - **Odds Ratio**
 - M-H Fixed, 95% CI
 - Mean number of intraepithelial neoplastic lesions detected per biopsy: 8.76 [2.97, 25.78]
Outcome 3: Mean number of intraepithelial neoplastic lesions detected per patient

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy</th>
<th>Conventional colonoscopy</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events Total</td>
<td>Events Total</td>
<td>Weight</td>
</tr>
<tr>
<td>Klissich 2003</td>
<td>32 84</td>
<td>10 81</td>
<td>26.4%</td>
</tr>
<tr>
<td>Klissich 2007</td>
<td>10 80</td>
<td>4 73</td>
<td>13.4%</td>
</tr>
<tr>
<td>Marion 2008</td>
<td>22 102</td>
<td>16 102</td>
<td>52.6%</td>
</tr>
<tr>
<td>Rutter 2004</td>
<td>9 100</td>
<td>2 100</td>
<td>7.6%</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>366</td>
<td>356 100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 82 32
Heterogeneity: CH² = 6.04, df = 3 (P = 0.11); I² = 50%
Test for overall effect: Z = 4.85 (P < 0.00001)

Outcome 4: Mean number of LGD lesions detected per biopsy

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy</th>
<th>Conventional colonoscopy</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events Total</td>
<td>Events Total</td>
<td>Weight</td>
</tr>
<tr>
<td>2.5.1 Random and targeted chromoscopy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klissich 2007</td>
<td>12 1688</td>
<td>3 3081</td>
<td>75.7%</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1688</td>
<td>3081</td>
<td>75.7%</td>
</tr>
<tr>
<td>Total events</td>
<td>12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Not applicable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 3.09 (P = 0.002)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy</th>
<th>Conventional colonoscopy</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.2 Targeted chromoscopy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marion 2008</td>
<td>21 82</td>
<td>15 3314</td>
<td>19.4%</td>
</tr>
<tr>
<td>Rutter 2004</td>
<td>9 114</td>
<td>2 2947</td>
<td>4.9%</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>196</td>
<td>6261</td>
<td>24.3%</td>
</tr>
<tr>
<td>Total events</td>
<td>30</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: CH² = 0.30, df = 1 (P = 0.55); I² = 0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 13.49 (P < 0.00001)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy</th>
<th>Conventional colonoscopy</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events Total</td>
<td>Events Total</td>
<td>Weight</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1884</td>
<td>9342 100.0%</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>42</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
| Heterogeneity: CH² = 16.32, df = 2 (P = 0.0003); I² = 88%
| Test for overall effect: Z = 8.34 (P < 0.00001) |
| Test for subgroup differences: Not applicable |
Outcome 5: Mean number of LGD lesions detected per patient

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy Events</th>
<th>Conventional colonoscopy Events</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klossich 2003</td>
<td>24</td>
<td>8</td>
<td>26.2% 3.65 (1.53, 8.71)</td>
</tr>
<tr>
<td>Klossich 2007</td>
<td>12</td>
<td>8</td>
<td>12.0% 4.12 (1.11, 15.24)</td>
</tr>
<tr>
<td>Marion 2008</td>
<td>21</td>
<td>102</td>
<td>53.6% 1.59 (0.73, 3.12)</td>
</tr>
<tr>
<td>Rutter 2004</td>
<td>9</td>
<td>100</td>
<td>8.2% 4.85 (1.02, 23.03)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>366</td>
<td>356</td>
<td>100.0% 2.65 (1.65, 4.27)</td>
</tr>
</tbody>
</table>

Total events: 66

Heterogeneity: Chi² = 3.86, df = 3 (P = 0.28); I² = 22%

Test for overall effect: Z = 4.01 (P < 0.0001)

Outcome 6: Mean number of HGD lesions detected per biopsy

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy Events</th>
<th>Conventional colonoscopy Events</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marion 2008</td>
<td>1</td>
<td>82</td>
<td>6.3% 40.90 (2.54, 659.66)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>82</td>
<td>82</td>
<td>6.3% 40.90 (2.54, 659.66)</td>
</tr>
<tr>
<td>Total events: 1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Not applicable

Test for overall effect: Z = 2.62 (P = 0.009)

2.7.1 Targeted chromoscopy

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy Events</th>
<th>Conventional colonoscopy Events</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klossich 2007</td>
<td>7</td>
<td>1688</td>
<td>93.7% 12.83 (1.58, 104.33)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1688</td>
<td>1688</td>
<td>93.7% 12.83 (1.58, 104.33)</td>
</tr>
<tr>
<td>Total events: 7</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Not applicable

Test for overall effect: Z = 2.33 (P = 0.02)

2.7.2 Random and targeted chromoscopy

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy Events</th>
<th>Conventional colonoscopy Events</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klossich 2007</td>
<td>7</td>
<td>1688</td>
<td>93.7% 12.83 (1.58, 104.33)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1688</td>
<td>1688</td>
<td>93.7% 12.83 (1.58, 104.33)</td>
</tr>
<tr>
<td>Total events: 8</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 0.54, df = 1 (P = 0.46); I² = 0%

Test for overall effect: Z = 2.74 (P = 0.006)

Test for subgroup differences: Not applicable
Outcome 7: Mean number of HGD lesions detected per patient

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy</th>
<th>Conventional colonoscopy</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total Events</td>
<td>Weight</td>
</tr>
<tr>
<td>Klesslich 2003</td>
<td>8</td>
<td>84</td>
<td>2</td>
</tr>
<tr>
<td>Klesslich 2007</td>
<td>7</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>Martin 2008</td>
<td>1</td>
<td>102</td>
<td>1</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>266</td>
<td>256</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Total events: 16. 4

Heterogeneity: $\chi^2 = 1.21$, df = 2 ($P = 0.55$); $I^2 = 0$

Test for overall effect: $Z = 2.45$ ($P = 0.01$)
Review question 2B: People with adenomatous polyps

Evidence Table for Review question 2B (b): Is colonoscopic surveillance with a dye (chromoscopy) for prevention and/or early detection of colorectal cancer in adults with adenomatous polyps clinically effective compared to colonoscopic surveillance without dye (conventional colonoscopy)?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown, 2007</td>
<td>Systematic review of RCTs</td>
<td>Databases searched from 1966-October 2006</td>
<td>Included: participants undergoing chromoscopic or conventional colonoscopy for investigation of gastrointestinal symptoms or as apart of a screening programme</td>
<td>Chromoscopy</td>
<td>Conventional colonoscopy</td>
<td>Detection outcomes based on number of polyps and neoplastic lesions detected. All significantly in favour of chromoscopy</td>
<td>Good Cochrane review - 2 of studies in UK were single pass chromoscopy and the 2 French were 'back-back' - which is known to increase polyp yield as shown by other studies (Hixson, 1990; Rex, 1997). They also miscalculated the number of neoplastic lesions detected in the control group for the power calculation. After their removal (due to heterogeneity) - Chromoscopy is still favoured. This heterogeneity was not there when pooled for patient with at least 1 polyp or 1 neoplastic lesion, rather than just number of polyps/ neoplastic.</td>
</tr>
<tr>
<td></td>
<td>Cochrane review – included four</td>
<td></td>
<td>Excluded: Patients undergoing surveillance for IBD or Patients undergoing surveillance for known polyposis syndromes (FAP) or (HNPCC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RCTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary outcomes

The number of polyps (neoplastic and non-neoplastic) detected was significantly greater for all studies and highly significantly greater when the studies were combined (WMD fixed 0.77 (95% CI 0.52, 1.01). This enhanced yield was maintained even if neoplastic lesions only were considered (WMD fixed 0.35 (95% CI 0.23, 0.47). However, tests for heterogeneity were significant in this analysis group. This may be indicative of the yield of neoplastic lesions which varied significantly between studies.

Almost all patients had either no polyps or 1 polyp. It was therefore estimated that over 95% of patients would have 0, 1 or 2 polyps and that a standard deviation of 2.00 for polyps and 1.00 for neoplastic lesions was reasonable and in agreement with the data from the 1 study that gave that data.

Again there was a significant difference in favour of the chromoscopy group (OR (fixed) 2.13 (95% CI 1.47, 3.10) which was maintained when considering neoplastic lesions only (OR (fixed) 1.61 (95% CI 1.24, 2.09).

Secondary outcomes

With regard to secondary outcomes the number of diminutive neoplastic lesions and the number of patients with at least 1 diminutive neoplastic lesion were all increased in favour of chromoscopy compared with conventional colonoscopy (WMD fixed 0.27 (95% CI 0.14, 0.40) and OR (fixed) 1.71 (95% CI 1.23, 2.37) respectively. In addition, the number of
Evidence Table for Review question 2B (b): Is colonoscopic surveillance with a dye (chromoscopy) for prevention and/or early detection of colorectal cancer in adults with adenomatous polyps clinically effective compared to colonoscopic surveillance without dye (conventional colonoscopy)?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>patients with 3 or more neoplastic lesions was more than twice as likely to be detected using chromoscopy (OR (fixed) 2.55 (CI 1.49-4.36).</td>
<td>Chromoscopy favoured in all studied outcomes, with more than twice as much detection for patients with 3 or more polyps and maintained for both distal and proximal colon. They conclude that chromoscopy should be gold standard test for polyp detection till further research is done on the newer techniques. Data from the Hurlstone et al. (2004) study was not included for this guideline.</td>
</tr>
</tbody>
</table>

1

2
Forest Plots: People with adenomatous polyps

Outcome 1: Total number of Polyps detected

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy</th>
<th>Conventional colonoscopy</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooker 2002</td>
<td>2.06</td>
<td>2.124</td>
<td>0.81</td>
<td>1.23 (0.76, 1.74)</td>
</tr>
<tr>
<td>Lapalus 2006</td>
<td>1.54</td>
<td>2.146</td>
<td>1.05</td>
<td>0.49 (0.03, 0.95)</td>
</tr>
<tr>
<td>Le Rhun 2004</td>
<td>1.74</td>
<td>2.99</td>
<td>1.05</td>
<td>0.69 (0.16, 1.22)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>369</td>
<td>380</td>
<td>100.0%</td>
<td>0.81 [0.33, 1.26]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.10; Chi² = 5.19, df = 2 (P = 0.07); I² = 61%
Test for overall effect: Z = 3.46 (P = 0.0005)

Outcome 2: Mean number of polyps detected by each method per total polyps detected

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy Events</th>
<th>Conventional colonoscopy Events</th>
<th>Total Events</th>
<th>Weight</th>
<th>Odds Ratio M–H, Random, 95% CI</th>
<th>Odds Ratio M–H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooker 2002</td>
<td>256</td>
<td>365</td>
<td>621</td>
<td>33.3%</td>
<td>5.52 (4.02, 7.57)</td>
<td></td>
</tr>
<tr>
<td>Lapalus 2006</td>
<td>228</td>
<td>385</td>
<td>613</td>
<td>34.0%</td>
<td>2.18 (1.03, 2.91)</td>
<td></td>
</tr>
<tr>
<td>Le Rhun 2004</td>
<td>172</td>
<td>276</td>
<td>448</td>
<td>32.7%</td>
<td>2.74 (1.94, 3.86)</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1026</td>
<td>1026</td>
<td>2052</td>
<td>100.0%</td>
<td>3.20 [1.83, 5.61]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.22; Chi² = 18.05, df = 2 (P < 0.0001); I² = 89%
Test for overall effect: Z = 4.06 (P < 0.0001)
Outcome 3: Total number of Polyps detected in the proximal colon

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Conventional colonoscopy</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooker 2002</td>
<td>1.21</td>
<td>124</td>
<td>0.41</td>
<td>1</td>
<td>135</td>
<td>49.6%</td>
<td>0.80</td>
<td>0.56, 1.04</td>
<td>0.31 [0.08, 0.54]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lapalus 2006</td>
<td>0.58</td>
<td>146</td>
<td>0.27</td>
<td>1</td>
<td>146</td>
<td>50.4%</td>
<td>0.31</td>
<td>0.08, 0.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>270</td>
<td>281</td>
<td>100.0%</td>
<td>0.55 [0.07, 1.03]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.11; \chi^2 = 8.23; df = 1 (P = 0.004); I^2 = 88\%$

Test for overall effect: $Z = 2.26 (P = 0.02)$

Outcome 4: Total number of polyps detected in the distal colon

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Conventional colonoscopy</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Weight</th>
<th>Mean Difference IV, Fixed, 95% CI</th>
<th>Mean Difference IV, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooker 2002</td>
<td>0.85</td>
<td>124</td>
<td>0.39</td>
<td>1</td>
<td>135</td>
<td>47.0%</td>
<td>0.46</td>
<td>0.22, 0.70</td>
<td>0.29 [0.06, 0.52]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lapalus 2006</td>
<td>0.96</td>
<td>146</td>
<td>0.67</td>
<td>1</td>
<td>146</td>
<td>53.0%</td>
<td>0.29</td>
<td>0.06, 0.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>270</td>
<td>281</td>
<td>100.0%</td>
<td>0.37 [0.20, 0.54]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\chi^2 = 0.99; df = 1 (P = 0.32); I^2 = 0\%$

Test for overall effect: $Z = 4.34 (P < 0.0001)$
1 **Outcome 5: Total number of neoplastic lesions detected**

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooker 2002</td>
<td>1.01</td>
<td>1</td>
<td>124</td>
<td>0.3</td>
<td>1</td>
<td>135</td>
<td>33.4%</td>
<td>0.71 [0.47, 0.95]</td>
<td></td>
</tr>
<tr>
<td>Lapalus 2006</td>
<td>0.79</td>
<td>1</td>
<td>146</td>
<td>0.6</td>
<td>1</td>
<td>146</td>
<td>34.0%</td>
<td>0.19 [-0.04, 0.42]</td>
<td></td>
</tr>
<tr>
<td>Le Rhun 2004</td>
<td>0.61</td>
<td>1</td>
<td>99</td>
<td>0.5</td>
<td>0.9</td>
<td>99</td>
<td>32.6%</td>
<td>0.10 [-0.17, 0.37]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>369</td>
<td></td>
<td>380</td>
<td>100.0%</td>
<td></td>
<td>0.33 [-0.04, 0.71]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 0.09$, $Chi^2 = 13.84$, df = 2 ($P = 0.001$); $I^2 = 85$

Test for overall effect: $Z = 1.77$ ($P = 0.08$)

2

3 **Outcome 6: Mean number of neoplastic lesions detected by each method per total biopsies**

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy Events</th>
<th>Total</th>
<th>Conventional colonoscopy Events</th>
<th>Total</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
<th>Odd Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooker 2002</td>
<td>125</td>
<td>365</td>
<td>49</td>
<td>365</td>
<td>49.4%</td>
<td>3.36 [2.32, 4.87]</td>
</tr>
<tr>
<td>Lapalus 2006</td>
<td>115</td>
<td>385</td>
<td>87</td>
<td>385</td>
<td>50.8%</td>
<td>1.46 [1.06, 2.02]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>750</td>
<td>750</td>
<td>100.0%</td>
<td>750</td>
<td>2.20 [0.97, 4.99]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 240

Heterogeneity: $I^2 = 0.32$, $Chi^2 = 11.05$, df = 1 ($P = 0.0009$); $I^2 = 91$

Test for overall effect: $Z = 1.89$ ($P = 0.06$)
Outcome 7: Total number of neoplastic lesions detected in the proximal colon

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy Mean</th>
<th>SD</th>
<th>Total</th>
<th>Conventional colonoscopy Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooker 2002</td>
<td>0.79</td>
<td>1</td>
<td>124</td>
<td>0.26</td>
<td>1</td>
<td>135</td>
<td>49.4%</td>
<td>0.53 [0.29, 0.77]</td>
</tr>
<tr>
<td>Lapalus 2006</td>
<td>0.43</td>
<td>1</td>
<td>146</td>
<td>0.29</td>
<td>1</td>
<td>146</td>
<td>50.6%</td>
<td>0.14 [-0.09, 0.37]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>270</td>
<td></td>
<td></td>
<td>281</td>
<td></td>
<td>100.0%</td>
<td>0.33 [-0.05, 0.71]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.06; Chi² = 5.21, df = 1 (P = 0.02); I² = 81%
Test for overall effect: Z = 1.71 (P = 0.09)

Outcome 8: Total number of neoplastic lesions detected in the distal colon

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy Mean</th>
<th>SD</th>
<th>Total</th>
<th>Conventional colonoscopy Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference IV, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooker 2002</td>
<td>0.22</td>
<td>1</td>
<td>124</td>
<td>0.1</td>
<td>1</td>
<td>135</td>
<td>47.0%</td>
<td>0.12 [-0.12, 0.36]</td>
</tr>
<tr>
<td>Lapalus 2006</td>
<td>0.36</td>
<td>1</td>
<td>146</td>
<td>0.3</td>
<td>1</td>
<td>146</td>
<td>53.0%</td>
<td>0.06 [-0.17, 0.29]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>270</td>
<td></td>
<td></td>
<td>281</td>
<td></td>
<td>100.0%</td>
<td>0.09 [-0.08, 0.26]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 0.12, df = 1 (P = 0.73); I² = 0%
Test for overall effect: Z = 1.03 (P = 0.30)
Outcome 9: Total number of diminutive adenomas detected

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy Mean</th>
<th>SD</th>
<th>Total</th>
<th>Conventional colonoscopy Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooker 2002</td>
<td>0.72</td>
<td>1</td>
<td>1</td>
<td>0.27</td>
<td>1</td>
<td>135</td>
<td>31.8% 0.45 (0.21, 0.69)</td>
</tr>
<tr>
<td>Lapalus 2006</td>
<td>0.61</td>
<td>1</td>
<td>146</td>
<td>0.22</td>
<td>1</td>
<td>146</td>
<td>33.7% 0.29 (0.06, 0.52)</td>
</tr>
<tr>
<td>Le Rhun 2004</td>
<td>0.4</td>
<td>0.8</td>
<td>99</td>
<td>0.3</td>
<td>0.8</td>
<td>99</td>
<td>34.5% 0.19 (-0.12, 0.32)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>369</td>
<td></td>
<td></td>
<td>380</td>
<td></td>
<td>100.0%</td>
<td>0.28 (0.08, 0.47)</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.02; Chi² = 4.36, df = 2 (P = 0.11); I² = 54%
Test for overall effect: Z = 2.73 (P = 0.006)

Outcome 10: Mean number of diminutive adenomas detected by each method per total number of lesions

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Chromoscopy Events</th>
<th>Conventional colonoscopy Events</th>
<th>Odds Ratio M-H Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooker 2002</td>
<td>89</td>
<td>365</td>
<td>43.6% 2.86 (1.89, 4.33)</td>
</tr>
<tr>
<td>Lapalus 2006</td>
<td>89</td>
<td>385</td>
<td>47</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>178</td>
<td>84</td>
<td>100.0% 2.47 (1.86, 3.27)</td>
</tr>
</tbody>
</table>

Total events 178 84
Heterogeneity: Chi² = 0.93, df = 1 (P = 0.33); I² = 0%
Test for overall effect: Z = 6.26 (P < 0.00001)

Favours colonoscopy Favours chromoscopy
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Askling 2001</td>
<td>Population-based cohort study</td>
<td>For individuals in the regional cohorts, start of follow-up was from last of: January 1, 1958, and date of diagnosis of IBD. For individuals only identified in the inpatient register, start of follow-up was from last of: January 1, 1987, and date of first discharge with IBD from 1964 to 1995. End of follow-up was set to</td>
<td>19,876 people with ulcerative colitis (UC) or Crohn’s disease (CD) born between 1941 and 1995. Individuals with UC or CD were identified in 4 population-based cohorts, and in an population-based inpatient register. This register contains individual-based information on Swedish inpatient care since 1964, nationwide since 1987. First-degree relatives were identified through linkage to the nationwide generation register, which holds</td>
<td>Relation of family history with colorectal cancer. The authors assessed the relative risk (RR) for CRC compared with the general population using standardized incidence ratios (SIRs), and the RR for CRC within the cohort using Poisson regression. SIRs were calculated by dividing the observed number of cancers with that expected, based on sex-, age-, and calendar period–specific incidence rates. 95% confidence intervals (CIs) were calculated assuming a Poisson distribution for the observed number of cases. Patients with UC and CD were analyzed separately and in the same model, after testing for interaction between type of IBD and extent of disease. Regression models were adjusted for attained age, sex, extent of inflammation (UC: proctitis, left-sided colitis, pancolitis, or unspecified; CD: ileal, ileocolonic, colorectal, or unspecified), cohort of origin (regional vs. inpatient cohort),</td>
<td>In total, 35,710 parents, 35,137 siblings, and 27,027 offspring were identified. To identify first-degree relatives with CRC or IBD, the cohort of relatives was linked to the cancer register from 1958 to 1995, to the inpatient register from 1964 to 1995, and also to the cohort of patients. Participants Family history of CRC RR [95%CI] All (UC+CD) No 1.0 (reference) Yes 2.5 [1.4 to 4.4] Relative aged <50 at CRC 9.2 [3.7 to 23] Relative aged ≥50 at CRC 1.7 [0.8 to 3.4]</td>
<td>The study was a single arm cohort and the determination of relatives with history of colorectal cancer was retrospective. The statistical analyses were done by comparing the risk of colorectal cancer with the general population.</td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>first of: date of death, date of emigration, resection of the colon (analysis of colon cancer) or rectum (analysis of rectal cancer), or December 31, 1995.</td>
<td>information on all first-degree relatives to Swedish residents born in 1941 or later. First-degree relatives who emigrated or died before 1960, who both immigrated and emigrated before 1992, or who immigrated after 1992 could not be identified. Relations registered as adoptions were excluded.</td>
<td>family history of CRC or IBD, and type of IBD. Models also including age at diagnosis/first discharge with IBD, time since diagnosis/first discharge with IBD, and calendar period were considered, but yielded similar risk estimates. Family history of CRC was treated as a binary variable (yes vs. no), but also according to the age at diagnosis of CRC of the relative (no, <50 years, ≥50 years).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study ID</td>
<td>Study Design</td>
<td>Follow up</td>
<td>Population</td>
<td>Prognostic factors or surveillance</td>
<td>Outcomes</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Eaden 2001</td>
<td>Meta-analysis of 116 studies.</td>
<td>A literature search using Medline with the explosion of references identified 194 studies. Of these, 116 met the inclusion criteria from which the number of patients and cancers detected could be extracted.</td>
<td>All published reports citing the risk of CRC in UC were collected by conducting a literature search on Medline. A comprehensive search of reference lists of all review articles and of the retrieved original studies was performed to find studies not identified by the Medline search. This identified 194 independs.</td>
<td>The meta-analysis was conducted according to the guidelines produced by the NHS Centre for Reviews and Dissemination at York University. Patients with ulcerative colitis only. Studies that obviously combined patients with UC and Crohn's disease were excluded. Risk of colorectal cancer for patients with: 1) Overall all ulcerative colitis 2) Total colitis 3) By the duration of colitis 4) Variation based on geographical location 5) Depending on colectomy 6) Risk based on 10-year intervals 7) For children (not relevant for this guideline)</td>
<td>Review results: Overall 54478 patients were studied and a total of 1698 CRCs were detected: 9846 patients had total colitis, among which 700 cancers were found. Fifty four studies (with 22730 patients and 844 cancers) included data on age at cancer diagnosis with a mean of 43.2 years (95% CI 40.5 to 45.9) and 61 studies reported the duration of colitis at cancer diagnosis with a mean of 16.3 years (95% CI 15.0 to 17.6). Prevalence of CRC: Overall the overall prevalence of CRC in any patient with UC, a random effects model produced an overall pooled estimate of the prevalence to be 3.7% (95% CI 3.2 to 4.2). Total colitis: Patients with total colitis: 35 studies there were 8351 patients with pancolitis and 451 cases of cancer. The random effects model produced an overall pooled estimate of the prevalence to be 5.4% (95% CI 4.4 to 6.5). Duration of colitis, 10-year intervals: Of the 116 studies, 41 reported duration of colitis, from these studies the overall incidence rate of CRC for any patient with colitis was 3 per 1000 patient years duration (pyd) (95% CI 2/1000 to 4/1000). The corresponding annual incidence rate of CRC in the general population given by the Office of National Statistics is 0.6 per 1000 population. Of the 41 studies, 19 reported results stratified into 10 year intervals of disease duration. For the first 10 years the incidence rate was 2/1000 patient years duration [pyd] (95% CI 1/1000 to 2/1000), for the second decade the incidence rate was estimated to be 7/1000 pyd (95% CI 4/1000 to 12/1000), and in the third decade the incidence rate was 12/1000 pyd (95% CI 7/1000 to 19/1000). These incidence rates corresponded to cumulative probabilities of 2% by 10 years, 8% by 20 years, and 18% by 30 years. Total colitis: Six reported data for patients with total colitis. The cumulative risk of CRC was 2.1% (95% CI 1.0 to 3.2%) at 10 years, 8.5 % (95% CI 3.8 to 13.3%) at 20 years, and 17.8% (95% CI 8.3 to 27.4%) at 30 years. Geographical location</td>
<td>Meta-analysis pooled study of individual epidemiological studies. Simply pooled results from single arm studies, weighted by sample size.</td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>nt studies dating back to 1925.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK:</td>
<td>In the UK, 4/1000 pyd (95% CI 3/1000 to 5/1000).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colectomy</td>
<td>The panproctocolectomy rate alone did not exert a statistically significant effect on the CRC risk (z=0.4, p=0.7). When all forms of surgery were considered (panproctocolectomy + resections of varying degree), the reported CRC incidence rate increased with higher rates of surgical intervention.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gupta 2006</td>
<td>A single cohort of patients with UC undergoing regular endoscopic surveillance for dysplasia was studied.</td>
<td>Records of patients</td>
<td>All patients in the Mount Sinai Hospital gastrointestinal pathology and surgical pathology registries who had undergone at least 1 surveillance colonoscopy between January 1996 and December 1997, a period chosen to allow for long-term follow-up. A total of 543 UC patients were identified that underwent surveillance colonoscopy between January 1996 and December 1997, but 125 were excluded for having dysplasia at index colonoscopy. Study population was N=418</td>
<td>Degree of inflammation at each biopsy site was graded using a histologic activity index. Progression to neoplasia was analyzed in proportional hazards models with inflammation summarized in 3 different ways and each included as a time-changing covariate: (1) mean inflammatory score (IS-mean), (2) binary inflammatory score (IS-bin), and (3) maximum inflammatory score (IS-max). The degree of inflammation for each biopsy site was scored as follows: 0, inactive/absent; 1, mild; 2, moderate; or 3, severe. Potential confounders (including disease extent, duration, age at diagnosis, or presence of primary sclerosing cholangitis or the use of aminosalicylates, purine analogue immunomodulators, corticosteroids, or folic acid) were analyzed in univariate testing and, when significant, in a multivariable model. Covariates were added, 1 at a time, to a multivariable model with IS-mean if they had a P value < .20 in either the any or advanced neoplasia univariate analyses.</td>
<td>Univariate analysis
On univariate analysis, a significant relationship was found between inflammation and progression to advanced neoplasia (defined as LGd, HGD or CRC). Measuring inflammation as the mean over the length of surveillance (IS-mean), a 3-fold increased risk for advanced neoplasia was observed (HR=3.0; 95% CI: 1.4 to 6.3).

Multivariate analysis
Mesalamine was included in the multivariable model, but it was neither independently significant (P=0.12 for any neoplasia and P=0.60 for advanced neoplasia) nor did it alter the relationship between inflammation and either any neoplasia or advanced neoplasia. There was a significant relationship between exposure to surveillance colonoscopy and the subsequent detection of advanced neoplasia. IS-mean and frequency of colonoscopy were therefore considered together in multivariable analyses.</td>
<td>Single arm retrospective cohort. The authors assume a detection bias that showed an increased risk for advanced neoplasia with the increased surveillance.</td>
</tr>
<tr>
<td>Karlén</td>
<td>Retrospective</td>
<td>The patients with Conventional colonoscopic surveillance</td>
<td>All participants were diagnosed as having total or extensive disease</td>
<td>HR [95% CI]
Any neoplasia (n=65) 1.4 [0.9 to 2.3] NS
Advanced neoplasia (n=15) 1.7 [0.9 to 3.1] NS
IS-mean: inflammation score mean; HR: hazard ratio; 95% CI: 95% confidence interval</td>
<td>Multivariate analysis, adapted from table 5.</td>
<td>The authors</td>
</tr>
</tbody>
</table>

Colonooscopic surveillance: full guideline DRAFT (May 2010)
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>nested case control study.</td>
<td>presence/absence of surveillance in colorectal cancer deaths for cases was taken from a Swedish National register from 1975 till the end point of the study (31 Dec. 1988).</td>
<td>ulcerative colitis were taken from Stockholm County and Uppsala Health Care region in Sweden (N=4664). Total study population was 142 patients with at least 5 years of ulcerative colitis. Cases: 40: All patients in the study that had died from colorectal cancer after 1975 and had not been diagnosed with colorectal cancer at the time of diagnosis with ulcerative colitis. Controls: 102: Matched analyses were performed using conditional logistic regression analyses.</td>
<td>Surveillance (only those with intention of cancer surveillance included, along with index colonoscopy)</td>
<td>(inflammation reaching at least proximal to the hepatic flexure) colitis. The relative risks for colorectal cancer mortality were calculated using odds ratios obtained. Ten of the 102 controls (9.8%) underwent colectomy within five years, prior to diagnosis of cancer of the patient.</td>
<td>matched the controls to the cases, and the controls had to be alive at the time of death of the case. The controls also had to have some part of the colon intact five years prior to the diagnosis of cancer of the case though 10% underwent colectomy. As there were only 40 deaths the power of the study was low. Some confounders were controlled for by matching but a main one of pharmacological treatment was not studied (sulphasalazine). Both these limitations were identified by the authors</td>
</tr>
<tr>
<td>Manning</td>
<td>Prospective study of surveillance for</td>
<td>Information on all patients was taken</td>
<td>189 patients with colitis who had undergone Colonoscopy.</td>
<td>DET group with and without routine colonoscopic surveillance in patients with long standing colitis.</td>
<td>The patient characteristics compared for the two groups:</td>
<td>A single pathologist sought the dysplasia and the UC population</td>
</tr>
</tbody>
</table>

Surveillance colonoscopies adapted from table 2

<table>
<thead>
<tr>
<th>Surveillance colonoscopy</th>
<th>No. of cases</th>
<th>No. of controls</th>
<th>RR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
<td>38</td>
<td>84</td>
<td>1.0</td>
<td>Ref.</td>
</tr>
<tr>
<td>Ever</td>
<td>2</td>
<td>18</td>
<td>0.29</td>
<td>0.06, 1.31 NS</td>
</tr>
<tr>
<td>Never</td>
<td>38</td>
<td>84</td>
<td>1.0</td>
<td>Ref.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>0.43</td>
<td>0.05, 3.76 NS</td>
</tr>
<tr>
<td>2+</td>
<td>1</td>
<td>12</td>
<td>0.22</td>
<td>0.03, 1.74 NS</td>
</tr>
</tbody>
</table>

At least one surveillance colonoscopy was seen in 2/40 cases and 8/102 controls: Relative risk (RR) =0.29, 95% CI (0.06 to 1.31).

Two or more surveillance colonoscopies was seen in 1/40 cases and 12/102 controls: Relative risk (RR) =0.22, 95% CI (0.03 to 1.74). 10/102 controls underwent colectomy within five years prior to diagnosis of cancer of the case.
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population Summary</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>colorectal epithelial dysplasia by regular colonoscopy in patients with longstanding extensive colitis – DET group with all other patients with colitis who have undergone colonoscopy - non-DET group.</td>
<td>from 1978 up to the end of 1984</td>
<td>DET group: 112 patients, 366 colonoscopies had their disease for eight years or longer in Duration, which was Extensive or Total by at least one of (a) barium enema (b) colonoscopic appearances (c) colonic histology; non-DET group: 77 had colitis of less than eight years' Duration and/or disease that was not Extensive or Total by any criterion.
 The characteristics of the two groups were compared for gender, age at onset, and colitis diagnosis.</td>
<td>The 112 patients in the DET group had undergone 366 colonoscopies, nine having had a further 13 examinations before the duration of their disease had reached eight years.</td>
<td>Age at onset in yrs Mean ±SD 29.3±11.2 38.1±16.7
 Diagnosis:</td>
<td>Dysplasia and Cancer
 Of the 189 patients, 42 had dysplasia on at least one Occasion, 36 being in the DET group and six in the non-DET group ((x^2 = 14.5; p=0.01)).
 Cancer and HGD were only seen in DET group patients but LGD was observed in both groups.
 DET Group</td>
<td>was significantly more than CD/ indeterminate idiopathic IBD.
 The study compared patient characteristics for the two groups for gender, age at onset, and colitis diagnosis and no significant difference was found.
 The study did not find a significant difference in increased dysplasia risk with the increased duration of disease but the authors' note that this can be due to the small numbers in the groups with longer duration of disease.
 The authors note that in a highly select group with extensive colitis, HGD was detected in only one of 354</td>
</tr>
<tr>
<td>Information was taken from departmental records and case note review.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>after a single non-dysplastic colonoscopy and LGD was seen. Only three surveillance group patients had surgical resection during surveillance, in one case this being for HGD with carcinoma being found in the resected specimen (patient 2). Non-DET group Colectomy findings: In the non-DET group, six patients of 77 showed dysplasia, all LGD. Three of these (patients 38, 40, and 42) had surgery subsequently for failed medical management with no dysplasia noted in the resected specimens.</td>
<td></td>
<td>Colonoscopies on 100 patients, this in association with a Dukes’ A. While there are difficulties in the recognition of LGD, it was found more commonly in people with extensive ulcerative colitis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surveillance group In the surveillance group, a total of 354 examinations had been carried out, 33 patients in the surveillance group had dysplasia on at least one occasion, in 59 out of 152 colonoscopies. 58 were LGD and at 1 (patient 2) was HGD. The 67 surveillance group patients without dysplasia had undergone 202 colonoscopies. The extent of their disease had been determined by radiology in 40.</td>
<td></td>
<td>Incidence of dysplasia adapted from table 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Decade of disease*</td>
<td>+ (%)</td>
<td>0 (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1st</td>
<td>7 (10.3)</td>
<td>61 (89.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2nd</td>
<td>28 (17.5)</td>
<td>132 (82.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3rd</td>
<td>19 (19.6)</td>
<td>78 (80.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4th</td>
<td>4 (33.3)</td>
<td>8 (66.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5th</td>
<td>1 (25)</td>
<td>3 (75)</td>
</tr>
<tr>
<td>Odze, 2004</td>
<td>Retrospective comparative study</td>
<td>The mean length of follow-up evaluation averaged 82.1 months and 71.8 months for the 2 UC</td>
<td>Patients were chosen by a retrospective search through the pathology files of the Brigham and Women’s Hospital and Beth Israel</td>
<td>UC patients with adenoma-like DALMs, compared to UC patients with sporadic DALMs and non-UC patients with adenomas as controls. At each endoscopy, UC patients were subjected to a standardized biopsy protocol that consisted of 4-quadrant</td>
<td>Of the 28 UC patients who were followed-up by endoscopic surveillance (i.e., 6 patients had a colectomy), 39% underwent at least one endoscopic surveillance procedure per year, 43% had one procedure every second year, and 18% had 1 procedure every 3 years during the course of follow-up evaluation (mean number of endoscopies, 4.4; range, 1 -1 3). There were no differences in the frequency of follow-up surveillance endoscopies between the 2 UC subgroups. The extent of colitis was categorised as total (involvement of Small comparative study with three arms. The patient characteristics for the three arms were compared. There is no mention of blinding of the</td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rectum to caecum, subtotal (involvement of rectum to ascending colon or proximal or distal transverse colon), or left-sided only (rectum or rectum and sigmoid colon).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Of the 34 UC patients, 12 (35%), 14 (41%), and 8 (24%) had microscopically confirmed pancolitis, subtotal colitis, or limited left-sided colitis, respectively, at the time of initial polypectomy. The mean duration of disease was 9.2 years (±8.4 yr). Twenty-four patients had an adenoma-like DALM (26 polyps in total) present within an area of previously microscopically confirmed colitis, whereas 10 had polyps (12 polyps in total) located proximal to an area of colitis and, therefore, were considered sporadic adenomas. 3 of the 24 UC patients with an adenoma-like DALM were under the age of 40, however, their outcome was similar to that of patients greater than 40 years of age.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The other 18 patients had an initial polypectomy followed by endoscopic surveillance, with a mean follow-up period of 82.1 months (range, 17-156 months). These patients had a mean of 4.4 colonoscopies per patient (range, 1-13 colonoscopies). Of these 18 patients under surveillance, 10 (56%) were followed-up for more than 7 years (84 mo), of which 7 (39%) were followed-up for more than 8 years.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UC patients with adenoma-like DALM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Of the 24 patients, 6 had a total colectomy within 6 months of their initial endoscopic polypectomy procedure because of their DALM. Of the 6 patients, 1 patient had an isolated focus of low-grade dysplasia present in their resection specimen, but none of the other resected patients had evidence of either flat dysplasia or adenocarcinoma. Three patients did not have any other polyps present in their colectomy specimen; whereas 2 patients had 1 adenoma-like DALM and 1 patient had 2 adenoma-like lesions present in their resection specimens.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The other 18 patients had an initial polypectomy followed by endoscopic surveillance, with a mean follow-up period of 82.1 months (range, 17-156 months). These patients had a mean of 4.4 pathologists to the biopsy specimens but all specimens were independently analysed by two pathologists and no inter-observer variability was seen.</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics.

Overall, the 34 UC patients and the 49 non-UC control patients showed a statistically similar distribution of polyps, mean polyp size, prevalence of high-grade dysplasia, and prevalence of a villous, or tubulovillous growth pattern.

The length of follow-up evaluation was recorded from the date of the patients' initial polypectomy to either the most recent endoscopic procedure or colonic resection.

The there were no significant differences with regard to biopsies every 10 cm, in addition to sampling of all elevated, nodular, or mass-like areas.

Non-UC control patients underwent less frequent endoscopies (mean 1.6; range, 1-4), according to the American College of Gastroenterology guidelines for surveillance of patients with colonic adenomas.

Deaconess Medical Center, Boston, MA, between 1990 and 1995.

These patients were stratified into 2 subgroups: one group consisted of 24 patients who had an adenoma-like DALM located within an area of histologically confirmed chronic, or chronic active, colitis and the other group consisted of 10 UC patients who had an adenoma-like DALM located outside of the most proximal extent of chronic, or chronic active, colitis. In this latter group, the DALMs were considered unrelated to the patient's UC.

The length of follow-up evaluation was recorded from the date of the patients' initial polypectomy to either the most recent endoscopic procedure or colonic resection.

The there were no significant differences with regard to biopsies every 10 cm, in addition to sampling of all elevated, nodular, or mass-like areas.

Non-UC control patients underwent less frequent endoscopies (mean 1.6; range, 1-4), according to the American College of Gastroenterology guidelines for surveillance of patients with colonic adenomas.
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rutter, 2004b</td>
<td>Case control study</td>
<td>Between 1 January 1998 and 1 January 2002 for determining the cases of colorectal neoplasia</td>
<td>St Mark’s Hospital (London, U.K.) established a surveillance program for patients with long-standing extensive UC in 1971. Between 1</td>
<td>The surveillance cohort was studied for the prognostic factors based on colonoscopic features: backwash ileitis, shortened colon, tubular colon, featureless colon, scarring, segment of severe inflammation, normal colonic appearance, post-inflammatory polyps and colonic stricture.</td>
<td>Colonoscopies per patient (range, 1-13 colonoscopies). Of these 18 patients under surveillance, 10 (56%) were followed-up for more than 7 years (84 mo), of which 7 (39%) were followed-up for more than 8 years.</td>
<td>Follow-up results of polyps, adapted from Table 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and, therefore represented a sporadic adenoma. They were compared with the outcome of 49 non-UC patients who were treated similarly for a sporadic adenoma as controls.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Study Group

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>UC patients groups</th>
<th>Non-UC patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number (Colectomy/ Surveillance)</td>
<td>adenoma like DALM</td>
<td>sporadic adenoma</td>
</tr>
<tr>
<td>Mean follow-up (months)</td>
<td>82.1</td>
<td>71.8</td>
</tr>
<tr>
<td>Patients with new polyps</td>
<td>15 (63%)</td>
<td>5 (50%)</td>
</tr>
<tr>
<td>Mean polyp size (cm)</td>
<td>0.73</td>
<td>0.43</td>
</tr>
<tr>
<td>Dysplasia LGD (%)</td>
<td>25 (89%)</td>
<td>4 (67%)</td>
</tr>
<tr>
<td>Dysplasia HGD (%)</td>
<td>3 (11%)</td>
<td>2 (33%)</td>
</tr>
<tr>
<td>Patients with flat dysplasia(a) (%)</td>
<td>1 (4%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>No. of patients who had or developed cancer</td>
<td>1 (4%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

\(a\): One patient had dysplasia in the colectomy specimen; none developed dysplasia on endoscopic surveillance. NA: not applicable
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 1988 and 1 January 2002, 525 patients with longstanding extensive UC underwent 1217 surveillance colonoscopies, from whom 68 patients developed colorectal neoplasia while on surveillance. They were matched with 136 controls.</td>
<td>The controls were patients with longstanding extensive UC but without neoplasia (controls, n=136), derived from the prospective UC surveillance database.</td>
<td>sigmoid colon.</td>
<td>Colorectal neoplasia</td>
<td>The univariate analyses looked at the prognostic factors: backwash ileitis, shortened colon, tubular colon, featureless colon, scarring, segment of severe inflammation, normal colonic appearance, post-inflammatory polyps and colonic stricture and in the multivariate analyses only normal colonic appearance, post-inflammatory polyps and colonic stricture showed independently significant risk for colorectal neoplasia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutter, 2004c</td>
<td>Case control study</td>
<td>From January 1, 1988, up till January 1, 2002</td>
<td>All cases of colorectal neoplasia detected from our surveillance program between January 1, 1988, and January 1, 2002, were studied (n=68). Each patient was</td>
<td>Segmental colonoscopic and histological inflammation was recorded by using a simple score (0, normal; 1, quiescent/chronic inflammation; and 2, 3, and 4, mild, moderate, and severe active inflammation, respectively). Other data studied included history of primary sclerosing cholangitis, family history of colorectal cancer.</td>
<td></td>
<td>Multivariate analysis on the full cohort, adapted from table 3.</td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>which does not account for changes in inflammation over the course of the disease and there was no validation of the scoring system.</td>
</tr>
<tr>
<td>Rutter, 2006</td>
<td>Data was obtained from the prospective surveillance database, medical records, colonoscopy, and histology reports at St Mark’s hospital.</td>
<td>The policy for dysplasia management has changed through the years but at the time of the study it was that</td>
<td>St Mark’s Hospital (London, U.K.) established a surveillance program for patients with long-standing extensive UC in 1971.</td>
<td>and smoking and drug history (mesalamine 5-aminosalicylic acid, azathioprine, and folate).</td>
<td>Overall colonoscopy data 2627 colonoscopies were performed (600 index procedures and 2027 surveillance colonoscopies). The median number of colonoscopies per patient was 3 (range, 1–17). The cecal intubation rate was 98.7%. A median of 8 biopsy specimens was taken per colonoscopy.</td>
<td>Study path long-term (30 years) follow-up but was a single arm prospective cohort.</td>
</tr>
<tr>
<td></td>
<td>The policy for dysplasia management has changed through the years but at the time of the study it was that</td>
<td>The total was 5932 patient-years (mean, 8.5 years) of follow-up.</td>
<td>The primary endpoint was defined as follows: (1) death, (2) colectomy, (3) withdrawal from the surveillance program, or (4) the census date (January 1, 2001), which ever event</td>
<td>1) The incidence of neoplasia and/or cancer by disease duration. 2) Progression to cancer by stage of dysplasia. Patients with histologically proven UC and macroscopic inflammation proximal to the splenic flexure (judged initially by barium enema but since the mid-1970s by colonoscopy) were offered 1 to 2 yearly surveillance colonoscopies from 8 years after symptom onset. Segmental nontargeted mucosal biopsy specimens were taken, along with biopsy specimens, from any suspicious areas of mucosa. In the year between surveillance colonoscopies a rectal mucosal biopsy examination was performed. Patients advised for</td>
<td>Incidence of Neoplasia Overall, 111 patients had 215 episodes of neoplasia (ie, dysplasia or CRC). After excluding sporadic adenomas, there were 163 episodes of neoplasia in 91 patients. The maximal grade of preoperative neoplasia per patient was CRC in 17, HGD in 18, and LGD in 37 patients. Using Kaplan-Meier curves, the actuarial cumulative incidence of neoplasia by disease duration was 1.5% at 10 years, 7.7% at 20 years, 15.8% at 30 years, 22.7% at 40 years, and 27.5% at 45 years. Progression to cancer by dysplasia Indefinite for dysplasia - 32 patients developed 36 episodes of indefinite dysplasia (5.3%). Over 217 patient-years of follow-up evaluation (median, 9.0 years), 17 patients developed no further dysplasia, 5 developed LGD (mean interval, 5.1 years; 2 of whom later developed HGD), and 1 patient developed CRC that was diagnosed 0.7 years later. LGD- 47 patients (7.8%) developed 78 episodes of LGD. One patient had prior HGD. Of the other 46 patients, 10 were referred for colectomy, and 36 had surveillance. 20% of those that had colectomy (2 of 10) had cancer in the colectomy specimen and 19.4% (7 of 36) developed CRC who had surveillance. In total, 19.6% (9 of 46) of patients with LGD developed CRC, and 39.1% (18 of 46) of patients with LGD developed either HGD or CRC.</td>
<td>Validated dysplasia classification was used (Inflammatory Bowel Disease Dysplasia Morphology Study Group classification) and was reported by two experienced pathologists separately. Any discrepancies in dysplasia grading found were reviewed in a blinded fashion by an experienced histopathologist.</td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>colectomy that declined surgery underwent more intensive surveillance programme.</td>
<td>HGD- 19 patients developed 30 episodes of HGD (3.2%). 11 were referred for immediate colectomy. Eight patients declined surgery and continued on surveillance: over a total of 19 years follow-up evaluation (median, 1.9 years). For those undergoing immediate colectomy, 45.5% (5 of 11) had cancer in the specimen; for those continuing on surveillance, 25% (2 of 8) developed CRC. In total, 36.8% (7 of 19) of patients with HGD developed CRC. DALMs - 20 patients developed 28 lesions considered to be DALMs. Nineteen (15 patients) contained LGD, and 9 (7 patients) contained HGD. A total of 21.4% of patients with low-grade DALMs developed CRC. Of those undergoing immediate colectomy, 30% had cancer in the colectomy specimen. A total of 28.6% of patients with high-grade DALMs developed CRC. Of those undergoing immediate colectomy, 33.3% had cancer in the colectomy specimen. None of the 5 patients who continued surveillance after endoscopic resection of a DALM developed CRC. Sporadic Adenomas - Sporadic adenomas were detected at 52 colonoscopies in 32 patients. During more than 207 patient-years of follow-up evaluation (median, 4.7 y), 8 patients developed recurrent adenomas. Two patients developed CRC (within 5 years after having an adenoma resected from the same colonic segment, and the other 2.5 years after having an adenoma resected from a different colonic segment). In total 6.2% (2 of 32) of patients with adenomas developed CRC. This risk was not significantly higher than that of the whole study population (p=0.67). Overall incidence of cancer CRC was detected in 30 patients on surveillance (5% of the study population), and in an additional 8 patients after leaving surveillance (6.3% in total). Twenty-one patients were male, 17 were female. The median age at onset of colitic symptoms was 30 years (range, 12–32 years), compared with 28 years (range, 1–64 years) for the 562 patients who did not develop cancer (p=0.8). The median age at diagnosis of cancer was 55.5 years (range, 31–87 years). The median duration of UC at cancer diagnosis was 23.5 years (range, 11–48 years). Within surveillance, then actuarial cumulative incidence of CRC by</td>
<td>Survival analyses were done using Kaplan-Meier curves.</td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soetikno et al. 2002</td>
<td>Meta-analysis of 11 studies. Searches done in MEDLINE from January 1985 to December 2001. In addition, a manual search was performed</td>
<td>Review from January 1985 to December 2001.</td>
<td>To be included in the meta-analysis, each study had to contain information on the size of the population at risk, that is, the number of patients with UC and PSC and the observed number of patients with colorectal CR</td>
<td>Risk for colorectal dysplasia and carcinoma in patients with primary sclerosing cholangitis (PSC) and ulcerative colitis (UC).</td>
<td>Risk of colorectal dysplasia Patients with ulcerative colitis and primary sclerosing cholangitis are at increased risk of colorectal dysplasia and carcinoma compared with patients with ulcerative colitis alone; OR = 4.79, 95% CI [3.58 to 6.41] with the Mantel-Haenszel method, and OR = 5.11, 95% CI [3.15 to 8.29] with the Der Simonian and Laird method. Risk of colorectal cancer This increased risk is present even when the risk of colorectal carcinoma alone is considered; OR = 4.09, 95% CI [2.89 to 5.76] and OR = 4.26, 95% CI [2.60 to 6.48] by using, respectively, the Mantel-Haenszel and the Der Simonian and Laird methods.</td>
<td>Three reviewers independently searched MEDLINE, but only a limited key words used: inflammatory bowel disease, ulcerative colitis, and sclerosing cholangitis. Manual searches and relevant abstracts from conferences were</td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>for relevant articles and the proceedings from meetings of the American Gastroenterological Association, the American College of Gastroenterology, and the American Association for the Study of Liver Diseases (between 1992 and 2001). Studies published in full, those performed prospectively, and those that used strict criteria for the</td>
<td>neoplasia. In addition, the study had to contain information concerning the prevalence of CR neoplasia in a control population, patients with UC who did not have PSC. Both populations had to be followed for the detection of CR neoplasia by using similar methods. Case control studies were excluded because these mandate by design non-random selection of case and control patients.</td>
<td>also searched. Additional information needed to reconstruct a two-by-two table was requested from the authors. The methodological quality of the relevant studies was assessed. Quantitative data was abstracted on the number of patients with UC with and without PSC and the number with CR neoplasia and CR carcinoma. Quality assessment and quantitative abstraction were performed by 3 investigators who also resolved disagreements. The investigators also contacted authors of studies.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velayos 2006</td>
<td>Retrospective case control study</td>
<td>All patients with chronic ulcerative colitis (CUC) evaluated at the Mayo Clinic Rochester between January 1, 1976, and December 31, 2002</td>
<td>Mayo Clinic centralised diagnostic index, utilizing inpatient and outpatient discharge diagnoses, pathology reports, and endoscopic reports, identified all patients with CUC during study period. Cases of colorectal</td>
<td>The patient, clinical, endoscopic, and therapeutic factors identified in literature as associated or potentially associated with CRC risk among patients with CUC were recorded. Additionally demographic information and data on all potential confounders was also collected. All data was then registered on a standardized form using pre-specified definitions of variables. Demographic information abstracted includes the following: gender; ethnicity;</td>
<td>Conditional logistic regression, adjusted for age at colitis diagnosis and colitis duration, identified a final set of variables independently associated with colorectal cancer. The majority of the study population was male and white. Most patients had extensive colitis; only 2 cases and 2 controls (1%) had proctitis. Univariate analysis A diagnosis of CRC in a first-degree relative was the only patient factor significantly associated with CRC. A prior diagnosis of pseudopolyps was significantly associated with CRC. No treatment variables were found to be significantly associated with CRC, although a trend between immunosuppressive therapy for >1 year and CRC was observed. Multivariate analysis The backward elimination conditional logistic analysis, adjusted for age at CUC diagnosis and the duration of CUC, identified the most influential variables independently associated with CRC in the study population.</td>
<td>At least 1 study author confirmed the diagnosis of CUC for all cases and controls, assessing study eligibility without knowledge of risk variable data. The study also considered treatments having a protective effect on IBD, but treatment for IBD is outside the scope for this</td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3: When should colonoscopic surveillance for adults with IBD be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>cancer (n=188) were matched with controls (n=188). The distribution of geographic residence was approximately equal among cases and controls and evenly spread across the 3 categories.</td>
<td>age at CUC diagnosis; age at CRC diagnosis (cases) or equivalent follow-up (controls); and geographic residence, categorized as either Minnesota, 5-state region (Iowa, Illinois, North Dakota, South Dakota, and Wisconsin), or elsewhere.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Patient variables collected included the following: diagnosis of CRC in a first-degree relative; tobacco use at CUC diagnosis (current smoker, exsmoker, or never smoker); continuous tobacco use for more than 1 year and treatments used.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Family history CRC</td>
<td>OR=3.7 [1.0 to 13.2]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smoking status after diagnosis of CUC</td>
<td>OR=0.5 [0.2 to 0.9]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Primary sclerosing cholangitis</td>
<td>OR=1.1 [0.5 to 2.3]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pseudopapys</td>
<td>OR=2.5 [1.4 to 4.6]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1 surveillance colonoscopy</td>
<td>OR=1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 or 2 surveillance colonoscopies</td>
<td>OR=0.4 [0.2 to 0.7]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>2 surveillance colonoscopies</td>
<td>OR=0.3 [0.1 to 0.8]</td>
</tr>
</tbody>
</table>

OR: Odds ratio; 95%CI: 95%CI confidence interval

Selected outcomes from multivariate analyses, Adapted from table 5.
Review question 3: People with adenomatous polyps

Evidence Table for Review question 3A: When should colonoscopic surveillance for adults with adenomatous polyps be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance programmes</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kronborg 2006</td>
<td>Randomised surveillance study.</td>
<td>10 years</td>
<td>Between 1981 and 1991 a total of 673 patients (382 men, 291 women; age, 28-77 years) with newly diagnosed adenomas were allocated at random to either 2 years (group A) or 4 years (group B) between surveillance examinations.</td>
<td>Colonoscopic surveillance: group A = 2 years, group B = 4 years, group C = 6 months, group D = 12 months, E= 12 months and F= 24 months, between surveillance examinations. Different surveillance intervals, 6 12, 24 months. Double-contrast barium enema (DCBE) was added if colonoscopy was incomplete. In patients with multiple polyps or unsatisfactory bowel preparation, colonoscopy was repeated within 3 months. Surveillance examinations were done mainly by colonoscopy, but DCBE was used if colorectal neoplasia and adenoma detection.</td>
<td>B versus A After the first follow-up period (24 months in A and 48 months in B) fewer patients had adenomas detected in group A than in group B but it was not statistically significant (58 of 292 versus 64 of 232; RR = 0.7, 95% CI 0.5 to 1.0), and the number of patients with significant neoplasia did not differ (10 of 292 versus 13 of 232; RR=-0.6, 95% CI 0.3 to 1.4). Overall, adenomas were detected in a smaller proportion of surveillance examinations in group A than in group B (123 of 684 versus 83 of 300; RR = 0.7, 95% CI 0.5 to 0.8). The same was true of significant new neoplasia (18 of 684 versus 17 of 300; RR = 0.5, 95% CI 0.2 to -0.9). In group A the total number of patients having new adenomas and new significant neoplasia was 95 and 16, respectively. In group B the figures were 77 and 17, respectively. New adenomas tended to be detected more often in the A group, but advanced new adenomas appeared equally as frequent in groups A and B. Advanced adenomas were defined as those with severe dysplasia or being at least 10 mm in diameter or villous.</td>
<td>The age, sex, and polyp characteristics of the patients were distributed evenly in the two groups. The study was randomised by random numbers but no details of concealment or blinding of pathologists is mentioned. Advanced adenomas were defined as those with severe dysplasia or being at least 10 mm in diameter or villous.</td>
</tr>
<tr>
<td>Kronborg 2006</td>
<td>Randomised surveillance study.</td>
<td>10 years</td>
<td>From 1981 to 1987, 73 patients with flat and sessile adenomas (more than 5 mm in diameter) and villous adenomas were randomly allocated to either intervals of 6 months (group C) or 12 months (group D) between examinations.</td>
<td></td>
<td>D versus C The number of patients was limited, but the cumulative number of surveillance years was 10 years on average in both groups. Advanced new adenomas tended to be more frequent in the D group (p=0.08), but the one case of cancer was detected in group C at a planned examination 6 months after a "clean colon". The cancer was in early stage and the patient developed another early CRC more than 5 years later. Nearly all new adenomas were in advanced stage because of large size alone.</td>
<td>F versus E The two groups were similar initially and the average time of surveillance was 5 years. The number of colonoscopies was nearly</td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3A: When should colonoscopic surveillance for adults with adenomatous polyps be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance programmes</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>twice as high in group E, but the number of new adenomas regardless</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>of state was similar. There was no significant difference in risk of CRC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>but the two cancers in group E were both early stage, one being</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>detected 12 months after a "clean colon" (a mucinous tumour), the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>other, 57 months after a "clean colon" and the patient's refusal to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>undergo further examinations. In group F the cancers were more</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>advanced. Three of the four patients had a "clean colon" 24 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>before the CRC was detected during a planned examination, but one</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>had many recurrences at the site of the original large sessile adenoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>in the rectum, before the cancer was detected (Dukes' B).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Patients without complete colonoscopy and less than optimal compliance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>were kept in the study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative risks of new adenomas and carcinomas during surveillance with 95% CI

<table>
<thead>
<tr>
<th></th>
<th>B versus A</th>
<th>D versus C</th>
<th>F versus E</th>
</tr>
</thead>
<tbody>
<tr>
<td>New adenomas</td>
<td>0.88 (0.69-1.12)</td>
<td>0.82 (0.43-1.52)</td>
<td>0.88 (0.57-1.34)</td>
</tr>
<tr>
<td>Advanced new adenomas</td>
<td>1.15 (0.61-2.15)</td>
<td>3.12 (0.87-14.50)</td>
<td>0.97 (0.40-2.35)</td>
</tr>
<tr>
<td>Colorectal carcinomas</td>
<td>6.22 (1.06-117.48)**</td>
<td>1.93 (0.38-13.94)</td>
<td></td>
</tr>
</tbody>
</table>

*p = 0.08; **p = 0.04.

Adapted from Table V Kronborg 2006

Adverse events

B versus A

Seven complications to colonoscopy were minor and treated without surgery, six during surveillance. The perforations occurred during surveillance in each of the two groups were treated successfully with suture alone. A perforation during initial colonoscopy in group A proved fatal, the patient dying of septicemia after inadequate closure of a temporary colostomy. A: two diagnostic perforations and two therapeutic perforations and B: one diagnostic perforation and one polypectomy syndrome.

D versus C

Two severe complications (1 diagnostic perforation and 1 polypectomy syndrome).

DRAFT FOR CONSULTATION
Evidence Table for Review question 3A: When should colonoscopic surveillance for adults with adenomatous polyps be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance programmes</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lieberman 2007</td>
<td>Patients with cancer or adenomas with high-grade dysplasia had follow-up based on physician decisions. Five hundred one participants with no neoplasia at baseline were matched by age to patients with adenomas ≥10 mm and assigned to surveillance at 5 years.</td>
<td>5.5 years</td>
<td>Participants were enrolled in 13 Veterans Affairs Medical Centres between February 1994 and January 1997. 24 Centres were selected to achieve geographic and racial diversity. Among patients who met the eligibility criteria, 1453 (31.4%) declined to participate, 3196 eligible patients were enrolled, and 3121 had complete colonoscopy examinations to the caecum.</td>
<td>Surveillance intervals of 2 or 5 years and adenoma detection in groups based on index colonoscopy results: according to the following hierarchy: no neoplasia, hyperplastic polyp, 1 or 2 tubular adenomas <10 mm, 3 or more tubular adenomas <10 mm, tubular adenoma ≥10 mm, adenoma with villous histology (25% or more), adenoma with high-grade dysplasia, invasive cancer.</td>
<td>One thousand one hundred seventy-one patients with neoplasia and 501 subjects with no neoplasia at baseline were scheduled to have at least 1 follow-up colonoscopy within 5.5 years. Neoplasia detection The relative risk in patients with baseline neoplasia was 1.92 (95% CI 0.83 to 4.42) with 1 or 2 tubular adenomas <10 mm, 5.01 (95% CI 2.10 to 11.96) with 3 or more tubular adenomas <10 mm, 6.40 (95% CI 2.74 to 14.94) with tubular adenoma >10 mm, 6.05 (95% CI 2.48 to 14.71) for villous adenoma, and 6.87 (95% CI 2.61 to 18.07) for adenoma with high-grade dysplasia. The most serious outcome was the finding of invasive cancer or high-grade dysplasia. The rates of interval high-grade dysplasia or cancer per 1000 person-years of follow-up. The risk of high-grade dysplasia or cancer per 1000 person-years of follow-up was 0.7 with no neoplasia at baseline, 1.5 with tubular adenomas <10 mm, 6.4 with large tubular adenomas (>10 mm), 6.2 villous adenomas, 26.0 with high-grade dysplasia.</td>
<td>All pathology was reviewed locally and sent for blinded central pathology review. When there was a discrepancy, a third referee pathologist reviewed the material. The authors compared demographic factors (age, race) and possible risk factors for advanced neoplasia (family history, smoking, use of non-steroidal anti-inflammatory drugs) to determine whether the surveillance cohort was similar to patients who did not receive surveillance. In the neoplasia group, the rate of active smoking was higher in patients who had no surveillance compared with those with...</td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3A: When should colonoscopic surveillance for adults with adenomatous polyps be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance programmes</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lieberman 2008</td>
<td>During the study period, the Clinical Outcomes Research Initiative repository (CORI) consortium included 65 practice sites in 25 states. Ten sites contributed more than 500 reports, 6 sites contributed 100-500 reports, and 1 site contributed less than 100 reports.</td>
<td>Retrospective, registry</td>
<td>Patients were asymptomatic adults receiving colonoscopy for screening during 2005 from 17 practice sites, which provide both colonoscopy and pathology reports to the Clinical Outcomes Research Initiative repository.</td>
<td>Colonoscopic surveillance for polyps less than 10 mm. Size of polyp and location of polyp’s association with advanced histology.</td>
<td>Three asymptomatic groups were included: average risk, family history of CRC or adenoma, and patients receiving colonoscopy for a positive faecal occult blood test or polyp found at screening sigmoidoscopy. Patients were stratified by indication group. Among 13,992 asymptomatic patients who had screening colonoscopy, 6360 patients (45%) had polyps, with complete histology available in 5977 (94%) patients. Advanced histology The proportion with advanced histology (defined as an adenoma with villous or serrated histology, high-grade dysplasia, or an invasive cancer) was 1.7% in the 1 to 5mm group, 6.6% in the 6 to 9 mm group, 30.6% in the greater than 10mm group. Distal location Distal location was associated with advanced histology in the 6 to 9 mm group (P = 0.04) and in the greater than 10-mm group (P = 0.002).</td>
<td>Sensitivity analysis was done to determine how misclassification of polyp size would impact the outcome. The analysis assumed that polyps were either overestimated in size by 1 mm (for example, a 10-mm polyp is reclassified as 9 mm) or underestimated (a 9-mm polyp is reclassified as 10 mm). Advanced histology was defined as an adenoma with villous or serrated histology, high-grade dysplasia, or an invasive cancer. The risk factors compared were age, sex, race, indication for colonoscopy (that were similar) and location of largest polyp</td>
</tr>
<tr>
<td>Martinez 2009</td>
<td>Pooled analysis of Median follow-up Individual patients:</td>
<td>Determining the actual risk of</td>
<td>Advanced colorectal neoplasia was diagnosed in 1082 (11.8%) of the patients, 58 of whom (0.6%) had invasive cancer.</td>
<td>Patient level data was used from the included</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3A: When should colonoscopic surveillance for adults with adenomatous polyps be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance programmes</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>eight North American studies (six were randomized controlled trials). Schatzkin A et al. (2000); Baron et al. (1999 and 2003); Winawer et al. (1993); Alberts et al. (2000 and 2005); Greenberg et al. (1994); Lieberman et al. (2000)</td>
<td>period of 47.2 months</td>
<td>included average-risk individuals with a first-time diagnosis of adenomatous polyps. Study inclusion studies (1) 800 or more study participants; (2) complete baseline colonoscopy with removal of one or more adenomas and removal of all visualized lesions; (3) a specified schedule of surveillance follow-up (4) end point data regarding the number, size, and histopathology of adenomas and colorectal cancers detected.</td>
<td>developing advanced adenomas and cancer after polypectomy or the factors that determine risk.</td>
<td>Definitions
Definitions for adenomas were as follows: tubular ≤25% villous component), tubulovillous (25%-75% villous component), or villous (>75% villous component). They considered advanced adenomas to be those that had one or more of the following features: 10 mm in diameter or larger, presence of high-grade dysplasia, or greater than 25% villous features (also classified as tubulovillous or villous histology). They then combined advanced adenomas and invasive cancer into an end point of advanced colorectal neoplasia or metachronous advanced neoplasia.</td>
<td>Risk factors for advanced metachronous adenomas
Risk of a metachronous advanced adenoma was higher among patients with 5 or more baseline adenomas (24.1%; standard error, 2.2) and those with an adenoma 20 mm in size or greater (19.3%; standard error, 1.5). Risk factor patterns were similar for advanced adenomas and invasive cancer.</td>
</tr>
<tr>
<td></td>
<td>Nusko 2002</td>
<td>Follow up records of 1159</td>
<td>A total of 3134 patients undergoing</td>
<td>Identifying risk factors determining surveillance</td>
<td>A total of 3134 patients undergoing endoscopic removal of colorectal adenomas between 1978 and 1996. Single adenomas were found in 1052 patients (53.6%) and 797 (46.4%) had multiple initial lesions.</td>
<td>Large registry data, studying risk factors. All patients were offered a</td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3A: When should colonoscopic surveillance for adults with adenomatous polyps be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance programmes</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>patients undergoing surveillance examination.</td>
<td>1996</td>
<td>endoscopic removal of colorectal adenomas were prospectively recorded on the Erlangen Registry of Colorectal Polyps between 1978 and 1996. The patients had no previous history of colorectal adenomas or carcinomas. Patients with a familial history of adenomatous polyposis or hereditary non-polyposis colon cancer syndrome, or inflammatory bowel disease were excluded.</td>
<td>intervals for patients with metachronous adenomas of advanced pathology</td>
<td>Mean age at the initial clearing examination for patients who were followed up was 57.08 years (SD 11.25) compared with 59.74 (SD 11.61) for those who were not followed up. A total of 1159 patients underwent regular follow up examinations: 747 (64%) of these patients were males and 412 (36%) were females. One hundred patients (8.6%) had a parental history of colorectal carcinoma while in 24 patients (2.1%) the relevant data were not available. Risk factors for advanced metachronous adenomas Considering only patients with tubular adenomas at the initial clearing procedure, a multivariate model for related observations revealed that adenoma size (p<0.0001), multiplicity (p=0.021), parental history of colorectal carcinoma (p=0.0168), and an interactive effect between size and sex (p=0.00392) were significant predictive variables. Male patients with large adenomas had a significantly higher risk of developing advanced metachronous adenomas than other patients. Stratification: Low-risk group: containing patients with no parental history of colorectal carcinoma and with only small (<10 mm) tubular adenomas at the initial clearing examination. 12.2 (95% CI 10.1 to 15.2) years were needed for advanced adenomas to develop in more than 10% of patients. The estimate for the 5% was 10.4 years (95% CI 4.1–13.2) and for 20% was16.2 years (95% CI 10.5–19.2). High-risk group: containing all other patients: those with multiple or large adenomas, tubulovillous or villous adenomas, or a parental history of colorectal carcinoma. 6.1 (95% CI 3.2 to 11.5) years were needed for advanced adenomas to develop in more than 10% of patients. The estimate for the 5% was 0.5 years (95% CI 0.1–1.6) and for 20% was15.6 years (95% CI 11.5–18.2).</td>
<td>chance to participate in a scheduled follow up programme, however 1849 patients either refused follow up or underwent examinations at other endoscopy departments. There were no statistically significant differences in baseline patient or adenoma characteristics between patients who underwent surveillance and those who did not. Bivariate analyses done apart from univariate analyses to adjust for confounding covariates. Sensitivity analyses done using bootstrapping. Kept despite Saini 2006 as the outcomes used there did not include the ones extracted from this primary paper.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance programmes</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saini 2006</td>
<td>Systematic review and meta analysis</td>
<td>Three electronic databases (MEDLIN,</td>
<td>Included: study population was patients with a personal history</td>
<td>Nine hundred seventy-one references were identified but fifteen</td>
<td>Bonithon-Kopp et al (2000) showed that the only RR that was statistically significant for number of adenomas only: RR 3.26 (95% CI 1.81 to 5.89).</td>
<td>All Mesh and free key words used for the searches were given in the paper. The</td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3A: When should colonoscopic surveillance for adults with adenomatous polyps be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance programmes</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study included: Baron et al. (1999), Bonithon-Kopp et al (2000), Cordero el al (1999), Fornasarig et al (1998), Fossi el al (2001), Hixson el al (1994), Jørgensen el al (1995), Lund el al (2001), Martinez el al (2001), Noshirwani el al (2000), Nusko el al (2002), Paspatis el al (1995), Schatzkin el al (2000), Van Stolk el al (1998), Winawer el al (1993)</td>
<td>PREMEDLINE, and EMBASE were searched from January 1980 to January 2003</td>
<td>of adenomas. Studies enrolling patients with a personal history of hereditary nonpolyposis colorectal cancer (HNPCC), familial adenomatous polyposis (FAP), CRC, or inflammatory bowel disease (IBD) were excluded.</td>
<td>primary studies were included. Identifying risk factors associated with advanced adenomas.</td>
<td>Martinez et al (2001) showed that the only RR that was statistically significant for size only: RR 1.77 (95% CI 1.30 to 2.41)</td>
<td>Van Stolk et al (1998) did not find any statistical significant RR for any factors. Winawer et al (1993) the incidence of advanced adenomas at 3-year surveillance colonoscopy was 1.4% in the low-risk patients versus 5-4% in the high-risk patients: RR 3.87 (95% CI 1.09 to13.66). Advanced adenoma defined as adenomas ≥ 1 cm, villous histological features, or with cancer. Number and size Four trials: Bonithon-Kopp et al (2000), Martinez el al (2001), Van Stolk el al (1998), Winawer et al (1993): provided adequate data to determine the incidence of recurrent advanced adenomas at surveillance colonoscopy on the basis of (1) number of adenomas at index colonoscopy (>3 vs. 1-2) the pooled RR was 2.52 (95% CI 1.07-5.97), and the pooled absolute risk difference was 5% (95% CI 1%-10%) and (2) size of the largest adenoma at index colonoscopy (≥1 cm [large] vs. <1 cm [small]) the pooled RR was 1.39 (95% CI 0.86-2.26), and the pooled absolute risk difference was 2% (95% CI -2% to 6%) The heterogeneity was significant for both cases p<0.001 and p<0.05. Histological diagnosis Three trials: Bonithon-Kopp et al (2000), Martinez el al (2001), Van Stolk el al (1998): provided adequate data to determine the incidence of adenoma histologic features (tubulovillous/ villous vs. tubular). The pooled RR was 1.26 (95% CI 0.95-1.66), and the pooled absolute risk difference was 2% (95% CI -1% to 4%). The test of heterogeneity for the pooled RR was not significant (p>0.2), indicating that the individual studies did not demonstrate significant differences in the RR of recurrent advanced adenomas. Dysplasia Two studies: Bonithon-Kopp et al (2000) and Van Stolk et al (1998) provided adequate data to determine the incidence of recurrent adenomas.</td>
<td>PRISMA chart was available.</td>
</tr>
</tbody>
</table>
Evidence Table for Review question 3A: When should colonoscopic surveillance for adults with adenomatous polyps be started and what should be the frequency of surveillance?

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Follow up</th>
<th>Population</th>
<th>Prognostic factors or surveillance programmes</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>advanced adenomas on the basis of the degree of dysplasia at index colonoscopy (high grade vs. no high grade dysplasia). The pooled RR was 1.84 (95% CI 1.06-3.19), and the pooled absolute risk difference was 4% (95%CI 0-8%). The test of heterogeneity for the pooled RR was not significant (p>0.2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk factors for advanced adenomas at surveillance

Nine studies identified a total of 5 risk factors that were associated with advanced adenomas at surveillance colonoscopy: (1) number of adenomas, (2) size of largest adenoma, (3) incomplete index colonoscopy, (4) concurrent proximal and distal adenomas, and (5) parental history of CRC.

Risk factors for recurrence of adenomas

14 studies, reported a total of 6 risk factors: (1) number of adenomas, (2) size of largest adenoma, (3) patient age, (4) tubulovillous/villous features or severe dysplasia, (5) advanced adenoma, and (6) adenoma in the proximal colon.
Review question 4: People with Inflammatory bowel disease adenomatous polyps

Table 1 - Information and support needs for people/carers of patients undergoing or considering undergoing colonoscopic surveillance: Evidence table for IBD and polyps

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Population</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequist et al, 2009'</td>
<td>A randomized control trial (RCT) to promote colorectal cancer (CRC) screening.</td>
<td>Participants included 21860 patients aged 50 to 80 years who were overdue for CRC screening. Allocated to patient intervention group: 10930 patients (all received allocation intervention). Allocated to patient control group: 10930.</td>
<td>Patients overdue for CRC screening received a mailing, which included the following: (1) an educational pamphlet detailing screening options, (2) a dedicated telephone number to schedule FSIG or colonoscopy. The initial mailing occurred during the first month of the intervention and a second mailing was sent to patients still overdue for screening 6 months later.</td>
<td>The primary study outcome was completion of one of the following 3 options during the 15-month study period: FOBT, FSIG, or colonoscopy. The secondary outcome was detection of colorectal adenomas. Screening rates: Patients who received the mailing were significantly more likely to complete colorectal cancer screening than those who did not (44.0% versus 38.1%; p<.001). The impact of the mailing did not differ between women and men. Detection of adenomas: Detection of adenomas tended to be greater among patients who received mailings compared with the control group (5.7% vs. 5.2%; p=.10).</td>
<td>All data were collected from the electronic record, and study outcomes were assessed 15 months following the start of the intervention for all randomized patients.</td>
</tr>
<tr>
<td>Rutter et al, 2006</td>
<td>A 58-question self-administered postal</td>
<td>Two hundred and eighty one of 329 patients (85.4%)</td>
<td>Colonoscopy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study ID</td>
<td>Study Design</td>
<td>Population</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| | questionnaire design looking at: | responded. Median age was 55 (range, 26-84) years. One hundred sixty-seven patients were male and 114 female (no significant difference from nonrespondents: *P* = 0.88). Median duration of colitis was 25 (range, 10-53) years. Patients had undergone a median of six surveillance colonoscopies (range, 1-15; total number, 1777). | • *convenience*. 39% respondents found the bowel preparation difficult to take.
• *Experience of colonoscopy*. 60.2% respondents found their last colonoscopy comfortable or very comfortable, 30.1% found it uncomfortable, and 9.7% found it very uncomfortable. Patients expressed less discomfort with more experienced colonoscopists (*r*=0.20, *p*=0.0007). There was a correlation between comfort and pethidine dose (*r*=0.16, *p*=0.007, i.e., those with more discomfort were given more pethidine)
• *Complication*. 16.4% respondents experienced abdominal pain (attributed to the procedure) in the week following their last colonoscopy of which 3.7% stated that the pain interfered with everyday activities. Post-procedural pain was strongly related to the Hospital Anxiety and Depression Scale (HADS) anxiety score (*p*<0.0001) but not with the drug doses used during the procedure. Five patients (1.7%) reported complications following previous colonoscopies. | | |
| | | | | | |

Colonoscopic surveillance: full guideline DRAFT (May 2010) Page 139 of 145
programme made them more anxious. When asked about the effect of the surveillance programme on reducing risk of colorectal, 1.8% patients believed it completely removed the risk, 67.9% believed it greatly reduced the risk, 24.4% believed it moderately reduced the risk, and 5.9% believed it slightly reduced the risk.
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Population</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makoul et al, 2009<sup>1</sup></td>
<td>A pretest – posttest design to assess a multimedia patient Education Program (PEP) that provides information about CRC and CRC screening, and encourages people to talk with their physicians about getting screened.</td>
<td>A total of 270 adults, age 50-80 years, participated in Spanish for all phases of the pretest – posttest design.</td>
<td>Patients were randomly assigned to a version of the multimedia program that opened with either a positive or a negative introductory appeal. Structured interviews assessed screening behaviour, willingness to consider screening options, intention to discuss CRC screening with the doctor. Two versions of a 5-minute PEP in both Spanish and English (using information gained through a series of structured interviews and focus groups in a primarily Spanish-speaking community) was developed.</td>
<td>Screening relevant knowledge<sup>iii</sup></td>
<td>The paper refers to patient/community education. The program involved the patients/community on how to make screening information and options easier. Information was tailored to the community/patient needs. Overall, there was no difference in participant response to both positive and negative appeals.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Willingness to consider CRC screening<sup>iv</sup></td>
<td>Limitations: Focus was on Spanish-speaking adults in a Hispanic/latino community which precludes generalization to a broader audience.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Item</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pretest (%)</td>
<td>Posttest (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Screening options:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FSIG</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Colonoscopy</td>
<td>23.3</td>
</tr>
</tbody>
</table>

The tables above show increase in the participants’ knowledge of the primary screening options and willingness to consider CRC screening following exposure to the patient education program. The program made more than 90% of patients want to discuss CRC with their doctors. There was no significant difference between response to the positive and negative introductory appeals in terms of this intention (90.4% and 94.5% respectively).
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Population</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheikh et al., 2004</td>
<td>A questionnaire design study to determine patients screening preferences.</td>
<td>Adult patients attending the internal medicine and family practice clinics were chosen on the basis of availability and ease of collecting data. One hundred and ninety three patients responded to the questionnaire.</td>
<td>A description of screening procedures given in a packet</td>
<td>One hundred and fifty four (79.8%) of the 193 preferred some sort of screening. Of those who had had a previous colonoscopy, 55% preferred a repeat screening, compared with only 30% of those who had never had a colonoscopy (p = 0.017). Of those who had had a previous sigmoidoscopy, 53% preferred a repeat screening, compared with only 33% of those who had never had a sigmoidoscopy, although the differences were not statistically significant.</td>
<td>The study demonstrates diversity in patient choices for CRC screening.</td>
</tr>
<tr>
<td>Brotherstone et al, 2006</td>
<td>Randomly allocating people to study the effectiveness of visual illustrations in improving people's understanding of the preventive aim of Flexible Sigmoidoscopy (FSIG) screening</td>
<td>318 people aged 60-64 were sent a timed, dated appointment to attend FSIG screening. They were randomized either to be sent a written leaflet alone (n=151) or a written leaflet along with a set of illustrations showing the development of cancer from polyps and removal of polyps during FSIG (n=167). A sample of 123 (39%) of the 318 people to whom the information was sent were selected at random for a telephone interview within two to four weeks of the information materials being sent out. The interviews were recorded and transcribed, and coded by two</td>
<td>The primary outcome was awareness of the preventive aim of FSIG screening. Of the 123 randomly selected for interview, 25 could not be contacted, 16 telephone numbers were incorrect, 2 respondents had communication difficulties, 4 were on holiday during the interview period, and 3 of the interviews were terminated prematurely. 8 people declined to be interviewed. 65 (53%) interviews were completed and recorded, 35 (54%) with participants who were sent the written information only and 30 (46%) with those who had been sent illustrations as well. No significant difference in age, gender or socioeconomic status between people who were interviewed (n=65) and those who were not (n=58). In the written information group, 57% had</td>
<td>The leaflet was based on materials that had been piloted and were used in the UK FSIG Trial. The leaflet contained comprehensive information about FSIG screening, risk factors for colorectal cancer, how screening works, what the test involves, what happens if pre-cancers are found, whether there are risks associated with having the test, and the reliability of the</td>
<td></td>
</tr>
<tr>
<td>Study ID</td>
<td>Study Design</td>
<td>Population</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Thiis- Evensen et al, 1999.</td>
<td>Postal questionnaire design aimed to study the psychologic effect of attending a screening program.</td>
<td>Four hundred and fifty-one individuals invited for a colonoscopic examination to detect and remove colorectal polyps. Mean age was 67.2 years (range, 63-72 years), and 48% were women. As controls for those subjected to endoscopy, a group of 447 matched for age and sex were randomly drawn from the population registry.</td>
<td>Fourteen days and 3 and 17 months after the examination, the attendees received by mail a questionnaire composed of Goldberg’s General Health Questionnaire (GHQ-28), the Hospital Anxiety and Depression Scale (HADS) and questions designed to evaluate how the attendees had experienced the colonoscopic screening examination and to register whether polyps had been detected. Questionnaires were sent to a total of 429 individuals. The same questionnaire was also mailed to the control group (matched for age and sex) that did not enrol in the endoscopic screening.</td>
<td>Good understanding of the aims of the test, whilst in the group who were sent written information and illustrations, 84% had good understanding. The addition of the illustrations resulted in significantly better understanding (OR = 3.75; CI: 1.16-12.09; p = 0.027) which remained significant after controlling for age, gender and socioeconomic status (OR = 10.85; CI: 1.72-68.43; p = 0.011).</td>
<td>Test. Wide CI that was not accounted for in the study.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Questions</th>
<th>Replies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Were polyps found at the examination?</td>
<td>294 (72)</td>
</tr>
<tr>
<td>Yes</td>
<td>96 (24)</td>
</tr>
<tr>
<td>No</td>
<td>16 (4)</td>
</tr>
<tr>
<td>Did you find the examination uncomfortable?</td>
<td>21 (5)</td>
</tr>
<tr>
<td>Yes, very</td>
<td>184 (45)</td>
</tr>
<tr>
<td>Moderately</td>
<td>204 (50)</td>
</tr>
<tr>
<td>Would you attend a repeat examination in 5 years time?</td>
<td>368 (90)</td>
</tr>
<tr>
<td>Yes</td>
<td>9 (2)</td>
</tr>
<tr>
<td>No</td>
<td>31 (7.6)</td>
</tr>
<tr>
<td>Are you content to have attended this endoscopic examination?</td>
<td>405 (99.3)</td>
</tr>
<tr>
<td>Yes</td>
<td>2 (0.5)</td>
</tr>
<tr>
<td>No</td>
<td>1 (0.2)</td>
</tr>
</tbody>
</table>

The lower and more favourable scores for GHQ-28 and HADS in the screened group compared with controls may be due to a sense of relief lasting for several months after successful participation with no serious findings.
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Population</th>
<th>Intervention</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles et al, 2009</td>
<td>Postal survey examining the psychological impact of being assigned to colonoscopic surveillance following detection of adenomatous polyps at FSIG screening.</td>
<td>Participants were men and women aged 55-64, at average risk of getting CRC. People with no polyp = 26,573, lower risk polyps removed at flexible sigmoidoscopy = 7401 and higher risk polyps who underwent colonoscopy and were either assigned to CS = 1543 or discharged = 183 (n = 35,700). A sub-sample (n = 6389) had also completed a detailed questionnaire prior to screening attendance making it possible to compare pre and post screening results in this group.</td>
<td>Participants were sent a detailed questionnaire 3 – 6 months after screening, by which time they had been told whether or not they needed colonoscopic surveillance. The response rate to the questionnaire was 90%.</td>
<td>The scores for both GHQ-28 and HADS were lower, indicating a lower level of psychiatric morbidity among those attending the examination than the controls. There was a trend towards higher scores with increasing time after the examination in the screened group.</td>
</tr>
</tbody>
</table>

Comments:

The scores for both GHQ-28 and HADS were lower, indicating a lower level of psychiatric morbidity among those attending the examination than the controls. There was a trend towards higher scores with increasing time after the examination in the screened group.

Primary outcome variables:

- **Bowel cancer worry** was assessed before and after screening with the question: ‘How worried are you about getting bowel cancer’ (response options on a 4-point Likert scale: ‘not worried at all, a bit worried, quite worried, very worried’)
- **Psychological distress** was measured post screening using the 12-item version of the General Health Questionnaire (GHQ-12)
- **Positive psychological consequences of screening** were assessed post screening using three items from the positive emotional subscale of the Psychological Consequences of screening Questionnaire (PCQ)

Secondary outcome variables:

- **Reassurance** was assessed post screening using a single item on reassurance from the PCQ.
- **Bowel symptoms** were assessed before and after screening with questions related to bowel movement.
- **GP attendance** was measured before and after screening using one question: ‘About how many times have you been to see your GP in the last 3months. It was scored so that high scores
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study Design</th>
<th>Population</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>indicated more visits.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results</td>
<td>People offered surveillance reported lower psychological distress and anxiety than those with either no polyp (p<0.05) or lower risk polyps (p<0.01). The surveillance group also reported more positive emotional benefits of screening than the other outcome groups. Post screening bowel cancer worry and bowel symptoms were higher in people assigned to surveillance, but both declined over time, reaching levels observed in either one or both of the other two groups found to have polyps, suggesting these results were a consequence of polyp detection rather than surveillance</td>
</tr>
</tbody>
</table>

1

2

3

1 The screening options in this study also looked at FOBT and the result reported included of FOBT screening.

2 The screening options in this study also looked at FOBT

3 Results report the % of participants at pretest and posttest who provided correct answers. Pretest – posttest differences were evaluated with McNemar’s test.

4 Results report the % of participants at pretest and posttest indicating willingness to consider primary screening options. Pretest – posttest differences were evaluated with McNemar’s test.