1	Spasticity in children and
2	young people with non-
3	progressive brain
4	disorders:
5	management of spasticity
6	and co-existing motor
7	disorders and their early
8	musculoskeletal
9	complications
10	

- 11
- 12 National Collaborating Centre for
- 13 Women's and Children's Health
- 14
- 15 Commissioned by the National Institute for
- 16 Health and Clinical Excellence
- 17
- ¹⁸ Draft guideline for consultation October 2011
- 19

1 2	Published by the RCOG Press at the Royal College of Obstetricians and Gynaecologists, 27 Sussex Place, Regent's Park, London NW1 4RG
3	
4	www.rcog.org.uk
5	
6	Registered charity no. 213280
7	
8	First published XXXX
9	
10	© XXXX National Collaborating Centre for Women's and Children's Health
11	
12	
13	
14 15 16 17 18	No part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior written permission of the publisher or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK [www.cla.co.uk]. Enquiries concerning reproduction outside the terms stated here should be sent to the publisher at the UK address printed on this page.
19	
20 21 22	The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore for general use.
23	
24 25 26	While every effort has been made to ensure the accuracy of the information contained within this publication, the publisher can give no guarantee for information about drug dosage and application thereof, contained in this back. In every individual case, the respective user must check surrent

thereof contained in this book. In every individual case the respective user must check current indications and accuracy by consulting other pharmaceutical literature and following the guidelines laid down by the manufacturers of specific products and the relevant authorities in the country in which they are practising.

30

This guideline has been fully funded by NICE. Healthcare professionals are expected to take it fully into account when exercising their clinical judgement. However, the guidance does not override the individual responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient.

35

36 Implementation of this guidance is the responsibility of local commissioners and/or providers

- 37
- 38

Contents

1	Guideline summary4
2	Introduction27
3	Guideline development methodology32
4	Physical therapy (physiotherapy and occupational therapy)
5	Orthoses58
6	Oral drugs83
7	Botulinum toxin96
8	Intrathecal baclofen127
9	Orthopaedic surgery154
10	Selective dorsal rhizotomy167
11	Health economics192
12	References213
13	Abbreviations and glossary219

Appendices A–M are in a separate file.

1 Guideline summary

2 1.1 Guideline development group membership, NCC 3 WCH staff and acknowledgements

4 GDG members

Paul Eunson (Chair)	Consultant Paediatric Neurologist, Royal Hospital for Sick Children, Edinburgh
Gordon Allan	General Practitioner, Methil, Fife
Liz Barnes	Parent and carer member, Freelance Writer, Trustee of Hemihelp, London
Lucinda Carr	Consultant Paediatric Neurologist, Great Ormond Street Hospital for Children
Stephenie Cawker	Clinical Specialist Physiotherapist, Neurodisabilities, Great Ormond Street Hospital for Children
Elspeth Dixon	Parent and carer member, Senior Specialist Learning Disability Physiotherapist, Adult Learning Disability Team, Herefordshire
Christina Gericke	Specialist Paediatric Occupational Therapist (retired May 2011), Royal Hampshire Country Hospital, Winchester
Alec Musson	Superintendant Physiotherapist, Paediatric Physiotherapy Team, Leeds Teaching Hospitals NHS Trust
James Robb	Consultant Orthopaedic Surgeon, Royal Hospital for Sick Children, Edinburgh
Trudy Ward	Interim Head of Community Children's Nursing, (formerly Specialist Clinical Lead Nurse, Childhood Neuro-disability), Sussex Community NHS Trust.
Jane Williams	Consultant Community Paediatrician, Nottingham University Hospitals NHS Trust

5 National Collaborating Centre for Women's and Children's Health 6 (NCC-WCH)

Lauren Bardisa-Ezcurra	Research fellow (until April 2011)
Zosia Beckles	Information scientist
Shona Burman-Roy	Senior research fellow
Katherine Cullen	Health economist
Juliet Kenny	Project manager
Moira Mugglestone	Director of guideline development (from June 2011)
Stephen Murphy	Clinical co-director (children's health)

7 External advisers

Christopher Morris	Senior Research Fellow in Child Health, Peninsula Medical School, University of Exeter and Honorary Principal Orthotist, Nuffield
	Orthopaedic Centre, Oxford
Andrew Roberts	Consultant Orthopaedic Surgeon, The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry

8

9 Acknowledgements

10 Additional support was received from: Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 4 of 219 Julie Hodge Allen, Khalid Ashfaq, Wahab Bello, Hannah Rose Douglas, Rupert Franklin, Rosalind Lai,
 Emma Newbatt, Edmund Peston, Wendy Riches and Roz Ullman at the NCC-WCH

3 **1.2** Foreword (or executive summary)

4 The final published guideline will include a foreward or executive summary

5 **1.3 Care pathway**

6 The care pathways are presented in separate files for the stakeholder consultation

7 This guideline recommends some drugs for indications for which they do not have a UK marketing 8 authorisation at the date of publication, if there is good evidence to support that use. Where 9 recommendations have been made for the use of drugs outside their licensed indications ('off-label 10 use'), these drugs are marked with a footnote in the recommendations.

11 1.4 Key priorities for implementation

Number	Recommendation	See section
	Principles of care	4
1	Offer immediate referral to a local multidisciplinary child development team that can be accessed when needed and is linked to regional specialist centres.	4
4	Offer a management programme that is:	4
	 individualised goal focused developed and implemented in partnership with the child or young person and their family or carers. 	
5	Local multidisciplinary child development teams and regional specialist centres should enable children and young people (and when appropriate their parents or carers) to be partners in the development and implementation of management programmes by offering:	4
	 relevant information and educational materials regular opportunities for discussion and advice on the child or young person's developmental potential and how different treatment options may affect this potential. 	
9	Monitor the child or young person for:	4
	 progression of spasticity development of secondary consequences of spasticity response to treatments the need for changes to individualised goals and the need for timely referral to regional specialist centres. 	
11	Offer adjunctive physical therapy following treatments involving botulinum toxin type A, continuous pump-administered intrathecal baclofen, orthopaedic surgery or selective dorsal rhizotomy to ensure effectiveness of these treatments.	4

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 5 of 219

See

Number	Recommendation	See section
13	Before starting treatment, regional specialist centres should ensure that local multidisciplinary child development teams have allocated resources for locally provided post-treatment services.	4
	Physical therapy (physiotherapy and occupational therapy	4
14	Offer to refer children and young people to a physiotherapist who is a member of the local multidisciplinary child development team.	4
	Intrathecal baclofen	8
79	Consider treatment with continuous pump-administered intrathecal baclofen if, despite the use of non-invasive treatments, spasticity, with or without dystonia, is causing difficulties with any of the following:	8
	 pain or muscle spasms posture or function self-care (or ease of care in the case of parents or carers).ⁱ 	
	Orthopaedic surgery	9
103	Offer children and young people referral to an orthopaedic surgeon if there is clinical or radiological evidence of hip displacement or spinal deformity.	9
106	Monitor children and young people to identify displacement of the hip and spinal deformity.	9

1

2 **1.5 Recommendations**

Number Recommendation

		section
	Principles of care	4
1 (KPI)	Offer immediate referral to a local multidisciplinary child development team that can be accessed when needed and is linked to regional specialist centres.	4
2	The local multidisciplinary child development team should be experienced in the management of spasticity in children and young people and include a paediatrician, a paediatric physiotherapist and have access to a paediatric occupational therapist.	4
3	Access to a paediatric occupational therapist is needed for children and young people with spasticity that affects the upper limb.	4
4 (KPI)	Offer a management programme that is:individualised	4

ⁱ At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented. Spasticity in children and young people with non-progressive brain disorders: full guideline

 goal focused developed and implemented in partnership with the child or young person and their family or carers. Local multidisciplinary child development teams and regional specialist centres should enable children and young people (and when appropriate their parents or carers) to be partners in the development and implementation of management programmes by offering: relevant information and educational materials regular opportunities for discussion and advice on the child or young person's developmental potential and how different treatment options may affect this potential. 	4
 specialist centres should enable children and young people (and when appropriate their parents or carers) to be partners in the development and implementation of management programmes by offering: relevant information and educational materials regular opportunities for discussion and advice on the child or young person's developmental potential and how different treatment options may affect this 	4
 regular opportunities for discussion and advice on the child or young person's developmental potential and how different treatment options may affect this 	
When formulating a management programme take into account the impact of treatment schedules on family circumstances.	4
Identify and agree with children and young people (and where appropriate their parents or carers) goals and assessments that:	4
 are appropriate for their age and development will aim to improve their body function and structure and activity and participation in line with the domains of the World Health Organization's International Classification of Functioning, Disability and Health.ⁱⁱ 	
Record and communicate the child or young person's individualised goals within the local multidisciplinary child development team and with all healthcare professionals who care for them in different settings.	4
Monitor the child or young person for:	4
 progression of spasticity development of secondary consequences of spasticity response to treatments the need for changes to individualised goals and the need for timely referral to regional specialist centres. 	
Do not offer botulinum toxin type A, continuous pump-administered intrathecal baclofen, orthopaedic surgery or selective dorsal rhizotomy to children and young people unless they are participating actively in a programme of care and physical therapy.	4
Offer adjunctive physical therapy following treatments involving botulinum toxin type A, continuous pump-administered intrathecal baclofen, orthopaedic surgery or selective dorsal rhizotomy to ensure effectiveness of these treatments.	4
Healthcare professionals in regional specialist centres who assess children and young people's suitability for oral drugs, botulinum toxin type A, continuous pump-administered intrathecal baclofen, orthopaedic surgery or selective dorsal rhizotomy should communicate with the child or young person's local multidisciplinary child development team to ensure compatibility and continuity of local	4
	 When formulating a management programme take into account the mpact of treatment schedules on family circumstances. dentify and agree with children and young people (and where appropriate their parents or carers) goals and assessments that: are appropriate for their age and development will aim to improve their body function and structure and activity and participation in line with the domains of the World Health Organization's International Classification of Functioning, Disability and Health.ⁱⁱ Record and communicate the child or young person's individualised goals within the local multidisciplinary child development team and with all healthcare professionals who care for them in different settings. Monitor the child or young person for: progression of spasticity development of secondary consequences of spasticity response to treatments the need for changes to individualised goals and the need for timely referral to regional specialist centres. Do not offer botulinum toxin type A, continuous pump-administered ntrathecal baclofen, orthopaedic surgery or selective dorsal hizotomy to children and young people unless they are participating actively in a programme of care and physical therapy. Offer adjunctive physical therapy following treatments involving potchinum toxin type A, continuous pump-administered intrathecal baclofen, orthopaedic surgery or selective dorsal rhizotomy to ensure effectiveness of these treatments. Healthcare professionals in regional specialist centres who assess children and young people's suitability for oral drugs, botulinum toxin type A, continuous pump-administered intrathecal baclofen, orthopaedic surgery or selective dorsal rhizotomy to ensure effectiveness of these treatments.

ⁱⁱ World Health Organization International Classification of Functioning, Disability and Health (ICF), available from www.who.int/classifications/icf/en/

Number	Recommendation	See section
	and specialist services.	
13 (KPI)	Before starting treatment, regional specialist centres should ensure that local multidisciplinary child development teams have allocated resources for locally provided post-treatment services.	4
	Physical therapy (physiotherapy and occupational therapy)	4
14 (KPI)	Offer to refer children and young people to a physiotherapist who is a member of the local multidisciplinary child development team.	4
15	Offer children and young people a physical therapy programme tailored to their individual needs and aimed at specific goals, such as:	4
	 enhancing skill development and improving function enhancing the ability to participate in everyday activities preventing or delaying the onset of complications such as contractures. 	
16	When formulating physical therapy programmes for children and young people take account of:	4
	 the views of the child or young person and their parents or carers the likelihood of achieving the intended goals of treatment the implications for the child or young person and their family in implementing the plan, including the time and effort involved and potential barriers (for example, barriers associated with particular cultural practices). 	
17	Consider task-focused active-use therapies such as constraint- induced movement therapy followed by bimanual therapy to enhance manual skills.	4
18	Consider structuring task-focused active-use therapy as an intensive programme over a short time period (for example, 4–8 weeks).	4
19	Consider muscle-strengthening therapy where assessment suggests that muscle weakness is contributing to loss of function or joint deformity.	4
20	Direct muscle-strengthening therapies towards specific goals and incorporate progressive repetitive exercises performed against resistance.	4
21	Consider postural management strategies to:	4
	 prevent or slow the development of contractures in children and young people at risk of developing these enable the child or young person to take part in activities appropriate to the child or young person's stage of development. 	
22	As part of postural management consider an individualised physical therapy programme that includes:	4
	resting positions andlow-load active or passive stretching over 24 hours.	
23	Offer training to parents and carers involved in delivering postural	4

Number	Recommendation	See section
	management programmes.	
24	Assess whether any equipment or techniques used in the physical therapy plan is safe and appropriate, for example in children or young people with any of the following:	4
	 poorly controlled co-existing epilepsy respiratory compromise risk of aspiration risk of bone fracture due to osteoporosis (for example, children and young people who are non-ambulatory, malnourished or taking anticonvulsant therapy). 	
25	For children and young people who are at risk of bone fractures due to osteoporosis (for example, children and young people who are non-ambulatory, malnourished or taking anticonvulsant therapy), consider sustained low-load stretching to prevent or limit contractures and joint deformity. Depending on the individual child or young person's circumstances (for example recent history of fractures, bone pain, broken skin), consider low-load stretching and weight bearing including use of orthoses or serial casting.	4
26	Monitor children and young people at risk of developing functional difficulties related to their condition. Consider a programme of daily maintenance activities for children and young people with or at risk of developing functional difficulties.	4
27	Consider the use of serial casting after botulinum toxin type A treatment to improve passive range of movement if muscle tightness is identified alongside dynamic spasticity. To improve the cast's tolerability and allow better stretch of muscle, do not apply serial casts for 2-4 weeks after botulinum toxin type A treatment.	4
28	Offer children and young people and their parents or carers verbal and written information about physical therapy interventions needed to achieve intended goals. This information should emphasise possible advantages as well as difficulties and possible adverse effects (for example time commitment and discomfort) to enable them to participate in choosing a suitable physical therapy programme.	4
29	Reassess at regular intervals all children and young people receiving a programme of physical therapy to ensure that:	4
	 the intended goals are being achieved the therapy programme remains appropriate to the child or young person's individual needs. 	
30	account:	4
	 whether the child or young person and their parents or carers are able to deliver the specific therapy what training the child or young person or their parents or carers might need the wishes of the child or young person and their parents or carers. 	
31	Physical therapists should have a central role in preparing young people (and their parents or carers) for transition and transfer to adult	4

Number	Recommendation	See section
	physical therapy services (for example, helping them to take responsibility for their own physical therapy).	
	Orthoses	5
	General principles	5
32	Consider orthoses for children and young people with spasticity to:	5
	 improve posture facilitate upper limb function improve walking efficiency prevent or slow development of contractures prevent or slow hip migration. 	
33	Determine realistic goals for treatment with orthoses based on a careful individual assessment, and discuss the options, risks and benefits of wearing them with children and young people and their parents or carers.	5
34	Ensure that orthoses have been designed, sized and fitted correctly.	5
35	Inform children and young people with orthoses and their parents and carers:	5
	 how to apply them when to wear them and for how long when and where to seek further advice. 	
36	Ensure that an orthotist is involved when a custom-made orthosis is being used.	5
37	Minimise delays in the supply of orthoses after measurement and in the repair of orthoses.	5
38	Review orthotic use at every contact with the local multidisciplinary child development team to ensure that orthoses:	5
	 are still acceptable to the child or young person and their parents or carers remain in good repair remain appropriate to intended treatment goals remain well fitting are being used as advised are not causing discomfort or pain are not causing sleep disturbance. 	
	Cautions in the use of orthoses	5
39	Assess whether orthoses might:	5
	 cause difficulties with self-care or care by others cause difficulties in relation to hygiene be unacceptable to the child or young person because of their appearance. 	
40	Advise about the risk of pressure sores with orthoses.	5
41	Inform children and young people and their parents or carers to remove orthoses that are causing pain that cannot be relieved immediately through repositioning of the limb in the orthosis or	5
_		

Number	Recommendation	See section
	adjustment of the strapping.	
42	When deciding whether to offer an orthosis, balance the benefits against the risks and potential consequences of muscle wasting through lack of muscle use. Discuss these with the child or young person and their parents or carers.	5
43	Be cautious in offering rigid orthoses to children and young people with severe spasticity or dyskinesis because rigid orthoses are often poorly tolerated in this group.	5
	Botulinum toxin type A injection and orthoses	5
44	Consider an orthosis after treatment with botulinum toxin type A.	5
45	Consider treatment with botulinum toxin type A if this is likely to improve the tolerability of an orthosis. ⁱⁱⁱ	5
	Overnight use of orthoses	5
46	Consider overnight use of orthoses. If an orthosis is used overnight:	5
	 check that overnight use does not disturb sleep use night resting splints for muscles that control two joints (for example, the ankle and knee, in the case of the gastrocnemius muscle). 	
	Lower limb orthoses	5
47	When deciding whether to offer an ankle-foot orthosis, balance the benefits against the risk of worsened gait in children and young people with:	5
	hip or knee contracturesfemoral or tibial anteversion.	
	Discuss these with the child or young person and their parents and carers.	
48	Consider ground reaction ankle–foot orthoses to assist with walking if the child or young person has a crouch gait and good passive range of movement at the hip and knee.	5
49	For children and young people with equinus deformities that impair their gait consider:	5
	 a solid ankle–foot orthosis if they have good control of knee or hip extension a hinged ankle–foot orthosis if they have poor control of knee or hip extension. 	
50	In children whose motor development is between 8 months and 2 years consider offering supramalleolar orthoses or supportive orthotic footwear instead of ankle–foot orthoses.	5
51	Consider ankle-foot orthoses for children and young people with serious functional limitations (GMFCS levels 4 and 5) to improve foot	5

^{III} At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented. Spasticity in children and young people with non-progressive brain disorders: full guideline

DRAFT (October 2011)

Page 11 of 219

Number	Recommendation	See section
	position for sitting, transfers between sitting and standing, and assisted standing.	
52	Inform children and young people and their parents and carers that ankle–foot orthoses intended to stretch muscles (for example, rigid, hinged or ground-reaction force ankle–foot orthoses) should usually be worn for at least 6 hours each day.	5
53	Consider knee gaiters for children and young people with knee flexion deformities.	5
54	Consider hip orthoses:	5
	 to improve function if scissoring is causing difficulties with sitting, standing or walking to limit hip adduction and reduce the risk of hip migration. 	
	Upper limb and trunk orthoses	5
55	Consider the following for children and young people with upper limb spasticity:	5
	 elbow gaiters to maintain extension and improve function rigid wrist orthoses to prevent contractures and limit wrist and hand flexion deformity dynamic orthoses to improve hand function (for example, a thumb abduction splint if the child or young person has a 'thumb in palm' deformity). 	
56	Consider offering body trunk orthoses to children and young people for the management of spasticity with co-existing scoliosis or kyphosis if this will help with sitting.	5
	Oral drugs	6
57	Consider oral diazepam if spasticity is contributing to:	6
	 discomfort or pain muscle spasms (for example night-time muscle spasms) functional disability and a rapid effect is desirable (for example, in pain crisis). 	
58	Consider oral baclofen if spasticity is contributing to:	6
	 discomfort or pain muscle spasms functional disability and a sustained long-term effect is desired (for example, to relieve continuous discomfort or to improve motor function). 	
59	Start oral diazepam treatment with a single dose at bedtime. If the clinical response is unsatisfactory consider:	6
	increasing the dose oradding a daytime dose.	
60	Start oral baclofen treatment with a low dose and increase the dose stepwise over about 4 weeks to achieve the optimum therapeutic effect.	6
61	If oral diazepam is used because of its rapid onset of action, consider changing to oral baclofen if long-term treatment is indicated.	6

Number	Recommendation	See section
62	Continue using oral diazepam or oral baclofen if they have a clinical benefit and are well tolerated, but consider whether to stop treatment every time the child or young person's management programme is reviewed and at least every 6 months.	6
63	If adverse effects (such as drowsiness) occur with oral diazepam or or oral baclofen consider reducing the dose or stopping treatment.	6
64	If the clinical response to oral diazepam or oral baclofen used alone is unsatisfactory within 4–6 weeks, stop using the drug or consider a trial of combination treatment with both oral diazepam and oral baclofen.	6
	Botulinum toxin type A	7
	When to use botulinum toxin type A	7
65	Consider botulinum toxin type A where focal spasticity of the upper limb is:	7
	 impeding fine motor function compromising care and hygiene causing pain impeding tolerance of other treatments, such as orthoses causing concerns about appearance to the child or young person.^{iv} 	
66	Consider botulinum toxin type A where focal spasticity of the lower limb is:	7
	 impeding gross motor function compromising care and hygiene causing pain disturbing sleeping patterns impeding tolerance of other treatments, such as orthoses and use of equipment to support posture causing cosmetic concerns to the child or young person.^v 	
67	Do not offer botulinum toxin type A in children and young people:	7
	 with severe muscle weakness with a previous adverse reaction or allergy who are currently taking aminoglycosides. 	
68	Consider botulinum toxin type A with caution if:	7
	 the child or young person has any of the following a bleeding disorder or is receiving anti-coagulation therapy generalised spasticity fixed muscle contractures 	

¹^v At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented. ^v At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in

At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in tocal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented.

Number	Recommendation	See section
	 marked bony deformity or 	
	 where there are concerns about the child or young person engaging with post-treatment adjunctive therapy.^{vi} 	
69	Consider using botulinum toxin type A to treat rapid-onset spasticity causing abnormal postures and soft-tissue shortening after acquired brain injury. ^{vii}	7
	Assessment	7
70	Local multidisciplinary child development teams and regional specialist centres involved in the assessment and administration of botulinum toxin type A should have expertise in child neurology, child development and musculoskeletal assessment in order to decide on:	7
	 the need for botulinum toxin type A administration of botulinum toxin type A offering repeat injections. 	
71	Include movement and motor function in assessments for treatment with botulinum toxin type A and involve a paediatric physiotherapist or paediatric occupational therapist.	7
72	Ensure that children and young people who receive treatment with botulinum toxin type A are offered timely access to orthotic services (see recommendation 44).	7
	Treatment	7
73	Consider using ultrasound-guided injection or electrical muscular stimulation when injecting botulinum toxin type A into muscles. ^{viii}	7
74	Minimise distress to the child or young person undergoing treatment with botulinum toxin type A by considering the need for the:	7
	topical or systemic analgesia or anaesthesiasedation.	
75	Local multidisciplinary child development teams and regional specialist centres involved in the assessment and administration of botulinum toxin type A should:	7
	 monitor effectiveness of the first botulinum toxin type A injection by repeating pre-injection assessment 6-12 weeks after the injection (both assessments should preferably be performed by the same healthcare professionals) monitor effectiveness of subsequent botulinum toxin type A 	

• monitor effectiveness of subsequent botulinum toxin type A

The time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented.

^{vi} At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented.
^{vii} At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in

^{viii} At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented. ^{viii} At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 14 of 219

Number	Recommendation	See section
	injections and the need for further injections at 3-6 months.	
76	If the clinical response to treatment is satisfactory review the child or young person's goals and consider repeat injections if:	7
	 the problem that prompted initial treatment returns after treatment wears off new goals are identified.^{ix} 	
77	Inform children and young people and their parents and carers:	7
	 how to recognise serious but rare complications associated with botulinum toxin type A (swallowing difficulties and breathing difficulties) that these complications may arise during the first week after botulinum toxin type A treatment, and that the child or young person should return to hospital immediately if they occur. 	
78	Consider injecting botulinum toxin type A into more than one muscle, but ensure that:	7
	 maximum doses are not exceeded a clear functional goal is identified the child or young person and their parents or carers understand the possible side effects.^x 	
	Intrathecal baclofen	8
	When to consider intrathecal baclofen	8
79 (KPI)	Consider treatment with continuous pump-administered intrathecal baclofen if, despite the use of non-invasive treatments, spasticity, with or without dystonia, is causing difficulties with any of the following:	8
	 pain or muscle spasms posture or function self-care (or ease of care in the case of parents or carers).^{xi} 	
80	Be aware that children and young people who benefit from continuous pump-administered intrathecal baclofen typically have:	8
	 moderate to severe motor function problems (GMFCS level 3-5) bilateral spasticity affecting upper and lower limbs.^{xii} 	
81	When considering continuous pump-administered intrathecal	8

^{ix} At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented. ^x At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in

^{*} At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented.

^{xi} At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented.

xⁱⁱ At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 15 of 219

Number	Recommendation	See section
	baclofen, balance the benefits against the risk of reducing spasticity if that spasticity supports function (for example, by compensating for muscle weakness) which may have adverse consequences. Discuss this with the child or young person and their parents and carers. ^{xiii}	
	Intrathecal baclofen testing	8
82	In children and young people being considered for treatment with continuous pump-administered intrathecal baclofen perform intrathecal baclofen testing to assess therapeutic effect and to check for adverse effects. ^{xiv}	8
83	Before starting intrathecal baclofen testing inform children and young people and their parents or carers verbally and in writing about:	8
	 what the test will entail how the test might predict successful treatment with continuous pump-administered intrathecal baclofen and achievement of individualised goals adverse effects of continuous pump-administered intrathecal baclofen that might be predicted by testing adverse effects that might be associated with intrathecal baclofen testing.^{xv} 	
84	Inform children and young people and their parents or carers verbally and in writing about continuous pump-administered intrathecal baclofen. The information should include all of the following:	8
	 the surgical procedure used for implantation of the infusion pump the need for regular hospital follow-up visits requirements for pump maintenance risks associated with implantation of the pump, pump-related complications, and adverse effects that might be associated with continuous pump-administered intrathecal baclofen infusion. 	
85	Intrathecal baclofen testing should be:	8
	 performed by a regional specialist centre that is able to carry out the necessary assessments undertaken in an inpatient setting to ensure safety and to allow a thorough assessment of outcomes.^{xvi} 	
86	Before intrathecal baclofen testing, a pre-test assessment should be performed, including where necessary, an assessment of joint range of movement while the child or young person is under general anaesthesia.	8
87	The test dose or doses of intrathecal baclofen should be administered using a catheter inserted under general anaesthesia. ^{xvii}	8

xiii At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger

than 4 years. Informed consent should be obtained and documented. ^{xiv} At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented. ^{xiv} At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented. ^{xiv} At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger ^{xiv} At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger

than 4 years. Informed consent should be obtained and documented. ^{xvi} At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger

than 4 years. Informed consent should be obtained and documented.

Number	Recommendation	See section
88	Assess the response to intrathecal baclofen testing using standardised outcome measures within 3-5 hours of administration or later if the effects of the general anaesthetic have not worn off.	8
89	Take account of individualised goals and the following criteria for a satisfactory response to intrathecal baclofen:	8
	 reduction in spasticity or dystonia reduction in pain or muscle spasms improved posture and function, including head control improved self-care (or ease of care in the case of parents or carers). 	
90	Discuss with the child or young person and their parents or carers their subjective assessments of the response to intrathecal baclofen testing. Subjective assessments should include reports on self-care (or ease of care in the case of parents or carers). Consider using a standardised questionnaire to document their assessments.	8
91	Pre- and post-test assessments should be performed by the same healthcare professionals in the regional specialist centre.	8
	Continuous pump-administered intrathecal baclofen	8
92	Perform implantation of the infusion pump and start treatment with continuous pump-administered intrathecal baclofen within 3 months of a satisfactory response to intrathecal baclofen testing (see recommendation 89). ^{xviii}	8
93	Be aware of the following potential contraindications to treatment with continuous pump-administered intrathecal baclofen:	8
	 the child or young person is too small to accommodate an infusion pump co-existing medical conditions (for example, uncontrolled epilepsy and coagulation disorders) intercurrent infections (systemic or around operative sites) which can increase the risks associated with continuous pump-administered intrathecal baclofen temporarily spinal fusion malnutrition which increases the risk of post-surgical complications (including infection and delayed healing) some respiratory conditions. 	
94	Support children and young people receiving treatment with continuous pump-administered intrathecal baclofen and their parents or carers by offering regular follow-up and a consistent point of contact with the regional specialist centre.	8
95	Monitor the response to continuous pump-administered intrathecal baclofen. Take account of individualised goals and the criteria for a satisfactory response to intrathecal baclofen (see recommendation 89).	8
96	Inform children and young people and their parents or carers verbally	8

^{xvii} At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented.
^{xvii} At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger

At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 17 of 219

Number Recommendation

. .

....

See section

	and in writing:	
	 about safe and effective management of continuous pump-administered intrathecal baclofen about the effects of intrathecal baclofen, possible adverse effects, and symptoms and signs suggesting the dose is too low or too high about safe and effective management of the infusion pump, including correct pump settings and the potential for pump-related complications that it is dangerous to stop the continuous pump-administered intrathecal baclofen infusion suddenly that the child or young person will need to attend hospital for follow-up appointments, for example to refill and reprogram the infusion pump that continuous pump-administered intrathecal baclofen should not be stopped before seeking advice from a healthcare professional. 	
97	If the response to continuous pump-administered intrathecal baclofen is unsatisfactory (see recommendation 89) offer continued support from the local multidisciplinary care team and consider referral for specialist support.	8
98	 In children and young people with spasticity and co-existing scoliosis exercise caution and if the child or young person: has not yet undergone spinal fusion, implant the infusion pump before performing spinal fusion has undergone spinal fusion be aware that the operative procedure for implanting the pump will be more difficult technically and may not be possible.^{xix} 	8
99	Titrate the dose of intrathecal baclofen after continuous pump- administered intrathecal baclofen pump implantation to optimise effectiveness and reassess the child or young person's achievement of their individualised goals. ^{xx}	8
100	Repeat assessments after titration to determine the response to the new dose. The post-titration assessment should be performed by the same healthcare professionals in the regional specialist centre that performed the pre- and post-implantation assessments.	8
101	If treatment with continuous pump-administered intrathecal baclofen is judged to be unsatisfactory (see recommendation 89) and the infusion pump system has been confirmed to be working, consider reducing the dose gradually to determine whether spasticity and associated symptoms increase.	8
102	When the infusion pump is coming to the end of its lifespan, consider reducing the dose gradually to enable the child or young person to decide whether or not to have a new pump. ^{xxi}	8

 ^{xix} At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented.
 ^{xx} At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger

than 4 years. Informed consent should be obtained and documented. ^{xxi} At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger

than 4 years. Informed consent should be obtained and documented.

Number	Recommendation	See section
	Orthopaedic surgery	9
	Referral	9
103 (KPI)	Offer children and young people referral to an orthopaedic surgeon if there is clinical or radiological evidence of hip displacement or spinal deformity.	9
104	Consider referring a child or young person for an orthopaedic opinion if any of the following indications is present:	9
	 the posture of an upper limb is causing difficulties with putting on or taking off clothing hand or upper limb function is limited by functionally short muscles (where spasticity prevents muscles stretching to their full length during functional tasks), pain or an unfavourable limb posture a contracture of the shoulder, elbow, wrist or hand causes difficulty with skin crease hygiene lower limb function is limited by functionally short muscles or an unfavourable limb posture walking is limited by functionally short lower limb muscles, joint contracture, abnormal torsion of the femur or tibia, foot deformity, or lower limb pain the cosmetic appearance of the upper limb causes significant concern for the child or young person. 	
105	Consider orthopaedic surgery as an adjunct to other interventions because timely surgery can prevent deterioration and ameliorate function.	9
	Monitoring	9
106 (KPI)	Monitor children and young people to identify displacement of the hip and spinal deformity.	9
107	Clinically monitor all children and young people for signs of hip migration and recognise the following as evidence of hip displacement:	9
	 abnormal hip migration percentage (more than 30%) increasing hip migration percentage deterioration in hip abduction pain arising from the hip reduced range of hip movement increased hip muscle tone decreased ability or tolerance for sitting or standing because of worsening hip joint contracture or bony deformity clinically important leg length difference increasing difficulty of perineal care or hygiene. 	
108	Perform a hip X-ray to monitor hip migration:	9
	 by the age of 18 months in children with bilateral cerebral palsy in children with poor prognosis for walking (total body involved), delayed walking or who are using an external support for spastic diplegia in children or young people with signs of hip displacement 	

Number	Recommendation	See section
	(see recommendation 107).	
109	Repeat the hip X-ray every 6 months in children and young people with hip migration percentage greater than 15% or in whom hip migration percentage is increasing by more than 10% per year.	9
	Before undertaking orthopaedic surgery	9
110	Before undertaking orthopaedic surgery discuss and agree with the child or young person and their parents or carers a rehabilitation programme and how and where it will be delivered. The programme may include:	9
	 inpatient care and subsequent follow-up physical therapy orthoses other adjunctive treatments, such as oral drugs and botulinum toxin type A. 	
	Performing orthopaedic surgery	9
111	Orthopaedic surgery should:	9
	 be undertaken by surgeons experienced in the concepts and techniques of performing such surgery in this group of patients and take place in a paediatric setting. 	
112	Aim to perform single-event multilevel orthopaedic surgery to improve gait (rather than as staged surgical episodes) informed by a thorough preoperative functional assessment, preferably including a pre- operative gait analysis and interpretation of the results by a surgical team with experience in such analyses.	99
	Assessment	9
113	Assess outcomes of gait-improvement orthopaedic surgery 1–2 years after performing the surgery. Use the same criteria for pre- and post-operative assessments.	9
	Selective dorsal rhizotomy	10
114	Offer selective dorsal rhizotomy to improve walking ability only in the context of clinical research.	10

2 **1.6 Key research recommendations**

1

Number	Research recommendation	See section
	Selective dorsal rhizotomy	10
23	Does selective dorsal rhizotomy followed by intensive rehabilitation performed between the ages of 3 and 9 years in children who are in GMFCS level 2 or 3 result in good community mobility as a young adult?	10

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 20 of 219

Number Research recommendation

See section

Why this is important

The available evidence relating to selective dorsal rhizotomy suggests that the procedure results in some short- and medium-term improvements in motor function. The effects reported were not consistent across all studies nor sustained across all durations of follow-up investigated (6-24 months). The GDG considered that if the observed improvements could be maintained through to adult life then the outcomes of selective dorsal rhizotomy would be clinically important and this would be a cost-effective treatment option. Further research is urgently needed to evaluate long-term outcomes (including adverse effects) of selective dorsal rhizotomy followed by an intensive rehabilitation programme involving physical therapy (and prioritising targeted strength training) compared with physical therapy alone. The research could be conducted using a range of designs, including randomised controlled trials and audits of outcomes from procedures already performed. The research should focus on selective dorsal rhizotomy performed: between the ages of 3 and 9 years in children with spasticity who are in GMFCS level 2 or 3 (because these children are likely to benefit most from selective dorsal rhizotomy); and before the development of significant contractures at the ankles, knees and hips. The following criteria should help to identify children who could be included in the research: abnormal tone (pure spasticity), good leg muscle strength, straight legs and minimal muscle shortening, good selective motor control in the legs, good cognitive skills, and not being overweight. Abnormal tone that is predominantly dystonia, and severe scoliosis or hip dislocation, should form part of the exclusion criteria. The research should: be coordinated through a multicentre research programme; use nationally agreed outcome measures (such as incidence of neurological impairment and spinal deformity, the need for additional operations, and assessment of disability, social inclusion, and quality of life) and follow-up periods to facilitate national audit; include assessment of the child's clinical condition before and after selective dorsal rhizotomy using the same formally validated assessment techniques; consider the timing of selective dorsal rhizotomy in relation to orthopaedic surgery if the child has muscle shortening or torsional abnormalities; consider the involvement of the child, their parents, carers or other family members, and members of the local multidisciplinary child development team in the rehabilitation programme after discharge from hospital; monitor the child's clinical condition regularly until they are fully grown (to detect and manage weight gain and orthopaedic and spinal complications). The following information should be given to children and their parents or carers to facilitate informed decision making about participation in research: selective dorsal rhizotomy is irreversible; there is a risk of serious temporary or permanent postoperative complications (such as deterioration in walking ability or bladder function) and later complications such as spinal deformity; prolonged physiotherapy and aftercare will be needed; additional surgery may be needed; subsequent selective dorsal rhizotomy epidural anaesthesia will not be possible (for example, during additional surgery or childbirth); the evidence already available in relation to selective dorsal rhizotomy is based on studies involving small numbers of children, and there is

Number Research recommendation

currently no evidence from which to assess long-term outcomes (those experienced more than 24 months after performing selective dorsal rhizotomy, and preferably into adult life); confounding factors for long-term outcomes could include the natural history of the condition (for example, the child's condition might deteriorate over time regardless of whether or not selective dorsal rhizotomy is performed).

Inhibitors of functional ability

What are the greatest inhibitors of functional ability in children and 4 young people with upper motor neuron lesions?

Why this is important

Children and young people with upper motor neuron lesions may experience:

- reduced muscle strength
- selective muscle control
- spasticity.

The relationships between these factors, and the extent to which the child or young person can develop or maintain functional ability, remain unclear. Prospective cohort studies, or large cross-sectional studies, are needed to explore the relationships between positive and negative effects of upper motor neuron lesions and to determine which factor is the greatest inhibitor of functional ability. The studies should incorporate classification of functional ability based on validated scales, such as the gross motor functional classification system (GMFCS).

Postural management

What is the optimal postural management programme using a 4 standing frame in children aged 1–3 years?

Why this is important

Children who are in GMFCS level 4 or 5 may benefit from using a standing frame as part of a postural management programme. Clinical benefits might include improved weight bearing and walking and, as a result, reduced hip migration. Postural management programmes involving the use of standing frames are part of established clinical practice. However, the individual elements that optimise the effectiveness of such programmes merit further research. The research should compare the effectiveness of postural management programmes that incorporate different durations and timings of standing frame use. For example, what is the effectiveness of 1 hour per day in a single session compared with two sessions of 30 minutes per day? The research should be conducted in children and aged 1-3 years. These children are likely to benefit most from using standing frames (in terms of developing well-formed femoral heads and acetabulums) and they should find the use of standing frames acceptable (because they are lighter than older children, they

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 22 of 219

See section

4

Δ

1

Number Research recommendation

do not have severe contractures and they are usually easily occupied).

Botulinum toxin

What is the effectiveness of botulinum toxin type A when used 7 routinely or according to clinical need in children and young people who are in GMFCS levels 1 to 3?

Why this is important

The GDG's recommendation to consider offering botulinum toxin type A to children and young people with focal spasticity of an upper or lower limb reflected available evidence relating to the safety and effectiveness of botulinum toxin type A. In making their recommendations, the GDG emphasised the importance of establishing individualised functional goals that justify the use of this potentially harmful toxin to treat spasticity. The cost of the procedure combined with the risk of side effects means that clear treatment goals that will positively influence the child or young person's life should be identified before offering this treatment. The evidence reviewed for the guideline provided limited support for botulinum toxin type A in terms of improving function, and this discouraged the GDG from making a strong recommendation to offer treatment with botulinum toxin type A to all children and young people who are in GMFCS levels 1 to 3. Further research is needed to evaluate the effectiveness of botulinum toxin type A, particularly when used over long time periods (for example, 10 years) and involving repeat injections, in this population of children and young people. Outcomes relating to improvements in gross motor function and participation in activities, and the psychological impacts of these factors, should be evaluated as part of the research.

Intrathecal baclofen

What is the effectiveness of continuous pump-administered 8 intrathecal baclofen compared with usual care in children and young people who are in GMFCS level 4 or 5?

Why this is important

The GDG's recommendation to consider offering continuous pumpadministered intrathecal baclofen focused on children and young people in whom the use of appropriate non-invasive treatments did not relieve difficulties associated spasticity (specifically pain or muscle spasms, posture or function, or ease of care). Such children and young people will typically be in GMFCS level 4 or 5. Further research is needed to evaluate the clinical and cost effectiveness of continuous pump-administered intrathecal baclofen compared with usual care in these children and young people. Relevant research designs include randomised controlled trials, prospective cohort studies and qualitative studies. The outcomes to be investigated as part of the research include: quality of life; reduction of pain; reduction of tone; acceptability and tolerability; participation or inclusion; and adverse effects and their association with any potential predisposing

8

See section

14

See section

Number Research recommendation

factors.

1 **1.7 Research recommendations**

Number	Research recommendation	See section
	Physical therapy (physiotherapy and occupational therapy)	4
1 (KRR)	What are the greatest inhibitors of functional ability in children and young people with upper motor neuron lesions?	4
2 (KRR)	What is the optimal postural management programme using a standing frame in children aged 1–3 years?	4
3	What is the effectiveness of 24-hour postural management programmes in non-ambulatory children and young people with spastic quadriplegia?	4
4	What is the optimal duration for the passive stretch component of physical therapy?	4
5	What is the effectiveness of activity-based context-focused physical therapy compared with child-focused physical therapy in children and young people who are in GMFCS levels 1 to 3?	4
6	What is the effectiveness and optimal age for modified constraint- induced movement therapy (CIMT)?	4
	Orthoses	5
7	What is the effectiveness of a prolonged stretch of the calf muscles with a HAFO compared to an AFO worn for a shorter time in children and young people with spastic hemiplegia?	5
8	What of the effectiveness of wearing a HAFO to prevent an equinus foot posture compared to an AFO or SAFO?	5
9	What is the effectiveness of wearing an AFO after surgery compared to not wearing an AFO in children and young people with lower limb spasticity?	5
10	What is the effectiveness of dynamic thermoplastic orthoses compared to static orthoses in children and young people with spastic hemiplegia who have abnormal posturing?	5
11	What is the effectiveness of a spinal orthosis compared to no orthosis when not in a supportive chair in children and young people with low tone and peripheral spasticity?	5
	Oral drugs	6
12	What is the effectiveness of night-time oral baclofen or oral diazepam combined with physical therapy compared to physical therapy only in children and young people who are in GMFCS levels 1 to 5?	6
13	What is the effectiveness of night-time oral baclofen or oral diazepam combined with physical therapy and a night-time postural control	6

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 24 of 219

Number	Research recommendation	See section
	system compared to physical therapy and a night-time postural control system only in children and young people who are in GMFCS levels 1 to 5?	
	Botulinum toxin	7
14 (KRR)	What is the effectiveness of BoNT A when used routinely or according to clinical need in children and young people who are in GMFCS levels 1 to 3?	7
15	What is the effectiveness of treatment with BoNT A combined with a 6-week targeted strengthening programme compared to a 6-week targeted strength training programme only in school-aged children and young people with lower limb spasticity who are in GMFCS levels 1 to 3?	7
16	What is the effectiveness of BonT A for reducing muscle pain?	7
17	What is the effectiveness of BoNT A compared to BoNT B for reducing spasticity while minimising side effects?	7
	Intrathecal baclofen	8
18	What is the effectiveness of ITB testing in terms of improving functional outcomes in children and young people who are in GMFCS level 2?	8
19 (KRR)	What is the effectiveness of CITB compared to usual care in children and young people who are in GMFCS level 4 or 5?	8
20	What is the effectiveness of gait analysis as an assessment tool in studies to evaluate interventions such as CITB?	8
	Orthopaedic surgery	9
21	What is the effectiveness of soft tissue surgery in terms of preventing hip dislocation?	9
22	What is the effectiveness of SEMLS in terms of producing benefits that continue after skeletal maturity has been achieved?	9
	Selective dorsal rhizotomy	10
23 (KRR)	Does selective dorsal rhizotomy followed by intensive rehabilitation performed between the ages of 3 and 9 years in children who are in GMFCS level 2 or 3 result in good community mobility as a young adult?	10
24	What is the effectiveness of SDR compared to CITB in children and young people who are in GMFCS level 4 or 5?	10

1 **1.8 Other versions of the guideline**

2 The final published guideline will include access details of other versions of the guideline (the NICE 3 guideline, the understanding NICE Guidance, and the NICE pathway)

1 1.9 Schedule for updating the guideline

2 Clinical guidelines commissioned by NICE are published with a review date 3 years from the date of 3 publication. Reviewing may begin before 3 years have elapsed if significant evidence that affects

- 4 guideline recommendations is identified sooner.
- 5

2 Introduction

2 **2.1** Spasticity and co-existing motor disorders

3 This guideline covers the management of spasticity, co-existing motor disorders and their early 4 musculoskeletal complications in children and young people from birth up to 19 years who have non-5 progressive brain disorders.

6 What are spasticity and co-existing motor disorders?

Muscle spasticity is defined as an increase in resistance to muscle stretch proportional to the velocity at which the muscle is stretched. Spasticity is a component of the upper motor neurone lesion (UMNL) classically presumed to be caused by a lesion of the pyramidal tract between the motor cortex and the anterior horn cell in the spinal cord. Weakness, poor selective motor control, exaggerated deep tendon reflexes, and difficulties with motor planning are the other components of the UMNL.

Dystonia, chorea and athetosis are motor symptoms caused by lesions to the extra-pyramidal and other motor tracts. However, they can also be symptoms of progressive brain pathologies. In children with cerebral palsy, a broad diagnostic category of dyskinesia is used, and this is subdivided into children with dystonic cerebral palsy and choreo-athetoid cerebral palsy. Ataxia may be part of cerebral palsy; it is more common in children with hydrocephalus and can also be caused by progressive brain disorders.

It is now apparent that single lesions in a motor tract can cause a mixed pattern of motor symptoms and that many children and young people have a mixed pattern. Although the primary lesion may be in one tract, it will have secondary effects on the function of other parts of the motor pathways. Therefore, we the guideline considers all motor symptoms found in non-progressive brain disorders in children and young people as part of an extended UMNL. Children and young people with central disorders of motor function may present with different components of the extended UMNL, and this pattern may change over time.

26 Aetiology of cerebral palsy

Cerebral palsy (CP) is the most common condition responsible for an UMNL in children and young people. The incidence of CP is not known, but its prevalence is 186 per 100,000 population, such that a total of 110,000 people are affected in the United Kingdom (UK; Department of Health 2005).

30 In the definition of CP, the accompanying disturbances of sensation, perception, cognition, 31 communication, and behaviour, and the risks of epilepsy, and secondary musculoskeletal problems 32 are added to highlight that the condition is caused by a brain injury or maldevelopment. The disorder 33 of motor function may be a relatively mild part of the child or young person's presenting problems. 34 The presence of these other disorders may affect the child or young person's ability to respond to 35 therapy for the motor disorder, and may alter how that therapy is delivered. The accompanying 36 problems may also be the predominant sign or symptom for the child or young person with a UMNL 37 where the working diagnosis is not CP.

38 Prematurity is a strong risk factor for development of an UMNL and CP (Surman 2009). Forty percent 39 of antenatal or perinatal acquired CP occurs in children who are born prematurely and who may have 40 additional non-neurological complications of prematurity (for example, chronic gastrointestinal 41 disorders). Such disorders may worsen spasticity and dystonia (due to pain from gastro-oesophageal 42 reflux or constipation) and so it is important that the child or young person is assessed in a holistic 43 manner to detect and manage these exacerbating factors. The causes of preterm labour and the 44 complications of prematurity contribute to the brain damage experienced by children and young 1 people with CP. The common pathology in prematurity-related CP is abnormality on the white matter 2 around the lateral ventricles in the brain (known as periventricular leukomalacia).

3 Difficulties during labour that affect oxygen and blood supply to the fetal brain are a common cause of

4 brain damage leading to CP. The strongest risk factor is the development of severe neonatal

5 encephalopathy in the first few hours after birth. Different patterns of brain damage are recognised

- and these can help determine the type and severity of motor disorder and comorbidities that the child
- 7 will subsequently develop.

8 Spasticity, dystonia, chorea and athetosis are not present at birth. A child is not diagnosed with CP 9 until it is apparent that they have a disorder of motor development and are not meeting motor 10 milestones. A child who has a mild impairment of walking or hand function due to CP may not be

11 given a definite diagnosis until they are aged 2 years.

12 Between 10% and 20% of children with cerebral palsy have a postnatal acquired brain injury (ABI) as 13 the cause of their CP (ref needed).

14 What is acquired brain injury?

ABI, which refers to brain injury that occurs after the neonatal period, includes traumatic brain injury, (such as head injury from road traffic accidents) and non-accidental brain injury, as well as brain injury from illnesses such as meningitis, encephalitis and cerebrovascular accidents (arterial and venous stroke). As a child or young person begins to recover from a traumatic brain injury, there may be an initial difficult period of severe spasticity and dystonia requiring intensive management and the emotional impact of the skills they have lost will need careful management.

21 The management of spasticity and associated motor disorders acquired after birth or after head injury

follows the same principles as in children and young people with antenatal or perinatal causes of their

23 motor disorders.

24 Issues not covered by this guideline

25 The management of spasticity and associated motor disorders caused by intracranial tumours, inborn

errors of metabolism, and progressive degenerative diseases affecting the nervous system may have

features of the UMNL, as will those associated with spinal cord injury, diseases and malformations. Each of these conditions is rare individually and management of the UMNL in these children and

29 young people is excluded from this guideline. People aged over 19 years are also excluded from the 30 guideline.

31 The management of pure dystonia, chorea, and athetosis in children and young people is excluded

from the guideline. The GDG is aware that a child or young person with CP may have a pure dystonic syndrome, but the majority of children and young people with a pure dystonia have a genetic

34 syndrome of progressive disorder.

35 What are the approaches to characterising motor disorders?

Motor disorders caused by non-progressive pathology in children and young people are classified by the parts of the body that are affected predominantly (topography), by the predominant abnormality of tone or movement, by the severity of the functional impairment, and by aetiology.

39 Classification by topography has been used for many decades to describe motor impairment in CP.

40 There is no strong reason for not using the same system in children and young people who have a

41 motor impairment following ABI. The traditional system used the terms monoplegia, diplegia,

hemiplegia, and quadriplegia. Recently CP experts have proposed a simplification to symmetrical or
 asymmetrical involvement, with a description of the limbs most severely affected to distinguish
 between diplegia and guadriplegia (ref needed – SCPE).

45 Motor impairment can also be described in terms of the severity of functional motor impairment, which

46 can be graded with the Gross Motor Functional Classification System (GMFCS). This is a five-point

47 scale derived from a child or young person's gross motor abilities and measured by the Gross Motor

- 48 Function Measure (GMFM). The GMFM is an 88-item measure of skills in rolling, sitting, crawling,
- 49 standing, walking and running. The child or young person is scored on their ability to perform a

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 28 of 219 particular type of movement; the total score across all items is matched against the predicted score
 based on age and placed in one of five categories (levels 1 to 5).

3 In clinical practice, a simple grading system of community mobility, household mobility and wheel 4 chair user may be used because this does not require an understanding of the GMFCS.

5 It has been proposed that upper limb function be graded using the Manual Ability Classification 6 System (MACS), although this has not yet been validated to the same degree as the GMFM or 7 GMFCS.

8 Current concepts of disability

9 In 2001, the World Health Organization introduced the International Classification of Functioning, 10 Disability and Health (ICF Framework: http://www.who.int/classifications/icf/en/). This complements 11 the tenth revision of the International Classification of Diseases (ICD-10). The ICF Framework 12 provides a common language to describe how a person with a health condition functions in their daily 13 life, rather than focusing on a disease process. The framework takes into account the interaction 14 between a person's state of health, their environment and personal factors. The terms 'body functions 15 and structures' and 'activities and participations' have replaced the terms 'impairment', 'disability' and 16 'handicap'. As part of the evaluation of effectiveness of interventions, newer outcome measures are 17 based on this framework, allowing assessments over a broader area of the child or young person's 18 life and assessment of positive experiences as well as the problem areas.

19 Variability in condition in terms of the child or young person

20 The child or young person with a non-progressive brain disorder may present with different symptoms 21 depending on severity of motor impairment, developmental age, and the effects of therapy. There 22 may be a profound impairment of motor function, severely affecting ability to participate in society, or 23 there may be a mild impairment affecting sporting skills, for example, For some children and young 24 people, pain from muscle spasms may be a major difficulty, while for others motor developmental 25 delay may be the main concern. For the older or more severely affected child or young person, there 26 may be difficulties with daily care due to the onset of secondary complications of spasticity. Therapy 27 should be tailored to meet the problems faced by the individual child or young person, and this 28 requires a multidisciplinary approach.

In children and young people with non-progressive brain disorders, the insult to the brain and motor pathways often occurs before the brain has grown fully and matured. Young children still have skills to learn, and management needs to be adapted to the child's stage of development.

32 Variability in available treatments

No treatment will cure the underlying brain disorder, although with time less severely affected children and young people may adapt and learn motor skills sufficient to participate fully in everyday life. For the more severely affected child or young person, treatment is an ongoing process that should be designed to meet the individual's needs as they grow and mature.

There is considerable variation in practice in managing spasticity, including variation in availability of treatments and the intensity of their use.

Physical therapy (physiotherapy and occupational therapy) is considered to be the mainstay of treatment for children and young people with motor disorders. Many techniques and orthoses have been developed to manage spasticity and its complications and other co-existing motor disorders. Oral drugs have been available for a number of years, although there have been no clear guidelines on the use of these drugs. Newer drugs, licensed for use in adults, are used off-licence in children and young people in many areas.

Botulinum toxin type A (BoNT-A) has been used in the management of spasticity for many years, and it is licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, 2 years of age or older. It is frequently used off-license with regard to the muscle groups injected, the dose of toxin administered, and the frequency of administration. Techniques to improve the accuracy of injection

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 29 of 219 1 localisation such as ultrasound and the use of muscle stimulators are under development, and BoNT-2 A is not currently available throughout England and Wales.

3 Intrathecal baclofen therapy (ITB), which is available in regional paediatric centres in England and 4 Wales, is a complex therapy with ongoing costs, requiring a commitment from the child or young 5 person or their parents to ensure regular follow-up and significant possible complications. Timing of 6 referral for consideration of ITB is important to prevent or delay the onset of secondary complications.

7 Selective dorsal rhizotomy (SDR) is a complex neurosurgical procedure frequently employed in the 8 United States of America (USA) for management of spasticity. SDR, which has been the subject of a 9 NICE Interventional Procedure Guidance ('Selective dorsal rhizotomy for spasticity in cerebral palsy', 10 NICE Interventional procedure guidance 373), is currently available in only one centre in England and 11 Wales. The procedure requires prolonged post-operative rehabilitation, and there are concerns about

12 late-onset degenerative disorders of the spine as a complication.

13 For many years, orthopaedic surgeons led services for the management of motor disorders 14 particularly in CP. The role of surgery has changed, however. Soft-tissue surgery is performed less 15 frequently in the children, perhaps because of the use of BoNT-A alone or in combination with 16 orthoses. Surgery to correct bony deformity in ambulant and non-ambulant children and young people 17 is performed more frequently, often in the form of multi-level surgery rather than as staged 18 (sequential) surgery as happened in previous decades. Surgical treatments (orthopaedic and 19 neurosurgical surgery) are expensive and are associated with postoperative morbidity. Recovery and 20 rehabilitation following surgery may take up to 18 months.

21 ITB, BoNT-A, SDR, orthopaedic surgery, and physical therapies involving a high input from healthcare 22 professionals potentially incur high costs to the National Health Service (NHS). The cost of treatments 23 considered in this guideline has to be added to the cost of equipment, house adaptations, and loss of 24 parental earnings to present the true cost to the NHS and other government departments.

25 The ultimate goal of treatment is to maximise the child or young person's potential and promote 26 independence and quality of life through to adult life. This may be achieved by improving motor 27 function, relief of pain, and prevention of secondary musculoskeletal complications. Current clinical 28 practice may take up a considerable amount of time from the child or young person, their family, and 29 healthcare professionals delivering therapy. Monitoring the effect of an intervention over the course of 30 several years is not easy, and for some of these approaches there is a limited theoretical framework. 31 It may be difficult, therefore, to plan a programme of therapy for the individual child or young person. 32 Parents and carers will need guidance on making appropriate therapeutic decisions, and information 33 about the time commitment needed.

34 Not all children with nonprogressive motor disorders who can stand and walk in the first decade of life 35 retain these abilities into adult life. It is important to give children and young people, and their parents. 36

clear advice on prognosis and what the likely effects of a particular therapy will be.

37 Planning therapy has become more complex following the increase in the range of treatments 38 available for managing motor disorders during the past two decades. There is now a choice of therapy 39 (for example, pain from muscle spasticity can be treated with oral drugs, BoNT-A, ITB, or postural 40 programmes). There is more to life than therapy, and the child or young person should have a 41 programme tailored for their current symptoms and their current and future needs.

42 This guideline will help healthcare professionals to select and use appropriate therapies for individual 43 children or young people. Parents and carers also need guidance on choosing the most appropriate 44 therapy, and to ensure that the time, effort and their own resources are used to the best to enhance

45 quality of life for the child or young person and their family.

48

49

50

For whom is this guideline intended? 2.2 46

47 This guideline is of relevance to those who work in or use the NHS in England and Wales:

primary, community and secondary care healthcare professionals involved in the care of children and young people with spasticity, co-existing motor disorders and their early musculoskeletal complications caused by non-progressive brain disorders

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 30 of 219

- those with responsibilities for commissioning and planning health services such as Primary
 Care Trust commissioners (UK), Welsh Assembly Government officers, public health and
 trust managers
 - professionals working with children and young people or their families and carers in education or social services
- children and young people with spasticity, co-existing motor disorders and their early musculoskeletal complications caused by non-progressive brain disorders and their families and other carers who are involved in making decisions about the most appropriate management choices.

10 2.3 Related NICE guidance

- Selective dorsal rhizotomy for spasticity in cerebral palsy' (NICE Interventional procedure guidance 373)
- 13

4

5

3 Guideline development 2 methodology

3 3.1 Methodology

4 This guidance was commissioned by NICE and developed in accordance with the guideline 5 development process outlined in the 2009 edition of The Guidelines Manual 6 (www.nice.org.uk/guidelinesmanual).

7 Information about the clinical areas covered by the guideline (and those that are excluded) is 8 available in the scope of the guideline (reproduced in Appendix A).

9 All GDG members' potential and actual conflicts of interest were recorded on declaration forms 10 provided by NICE (summarised in Appendix B). None of the interests declared by GDG members 11 constituted a material conflict of interest that would influence recommendations developed by the 12 GDG.

Organisations with interests in the management of spasticity, co-existing motor disorders and their early musculoskeletal complications in children and young people with non-progressive brain disorders were encouraged to register as stakeholders for the guideline. Registered stakeholders were consulted throughout the guideline development process. A list of registered stakeholder organisations for the guideline is presented in Appendix C.

In accordance with NICE's Equality Scheme, ethnic and cultural considerations and factors relating to disabilities have been considered by the GDG throughout the development process and specifically addressed in individual recommendations where relevant. Further information is available from www.nice.org.uk/aboutnice/howwework/NICEEqualityScheme.jsp.

22 Developing review questions and protocols and identifying evidence

23 The GDG formulated review questions based on the scope (see Appendix A) and prepared a protocol 24 for each review question (see Appendix D). These formed the starting point for systematic reviews of 25 relevant evidence. Specific outcomes considered during the evaluation of published evidence are 26 outlined in Appendix E. Published evidence was identified by applying systematic search strategies 27 (see Appendix F) to the following databases: Medline, Medline In-Process, Embase, Cumulative 28 Index to Nursing and Allied Health Literature (CINAHL), and three Cochrane databases (Cochrane 29 Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and the Database 30 of Abstracts of Reviews of Effects). Searches to identify economic studies were undertaken using 31 Medline, Embase, the Cochrane Central Register of Controlled Trials, the NHS Economic Evaluation 32 Database (NHS EED), and the Health Technology Assessment (HTA) database.

33 Dates of searching and database coverage are given with the details of the search strategies in 34 Appendix F. Where appropriate, review questions were grouped together for searching. The search 35 strategies from 'Selective dorsal rhizotomy for spasticity in cerebral palsy' (NICE Interventional 36 procedure guidance 373) were used for the SDR review. The search for the physiotherapy review was 37 limited by date (the search was limited to articles published after 1970), and the remaining searches 38 were not limited by date. Animal studies were excluded from Medline and both Medline and Embase 39 were limited to English-language studies only. Studies conducted in adult populations were not 40 excluded using search filters. Scottish Intercollegiate Guidelines Network (SIGN) search filters were 41 used to identify particular study designs, such as randomised controlled trials (RCTs). There was no 42 systematic attempt to search grey literature (conference abstracts, theses or unpublished trials), nor 43 was hand searching of journals not indexed on the databases undertaken.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 32 of 219 1 Towards the end of the guideline development process, the searches were updated and re-executed 2 to include evidence published and indexed in the databases before 8 August 2011.

3 **Reviewing and synthesising evidence**

Evidence relating to clinical effectiveness was reviewed and synthesised according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach (see http://www.gradeworkinggroup.org/index.htm). In the GRADE approach, the quality of the evidence identified for each outcome listed in the review protocol is assessed according to the factors listed below, and an overall quality rating (high, moderate, low, or very low) is assigned by combining ratings for the individual factors.

- Study design (as an indicator of intrinsic bias; this determines the initial quality rating)
- Limitations in the design or execution of the study (including concealment of allocation, blinding, loss to follow up; these and other sources of bias can reduce the quality rating)
- Inconsistency of effects across studies (this can reduce the quality rating where more than one study is considered)
- Indirectness (the extent to which the available evidence fails to address the specific review question; this can reduce the quality rating)
- Imprecision (the extent to which the point estimate or its confidence interval (CI) reflects a clinically important difference; this can reduce the quality rating)
- Other considerations (including large magnitude of effect, evidence of a dose-response relationship, or confounding variables likely to have reduced the magnitude of an effect; these can increase the quality rating in observational studie, provided no downgrading for other features has occurred)

23 The GDG considered that reduction of spasticity alone without concomitant clinically meaningful 24 improvement in other patient-centred outcomes would be insufficient to recommend an intervention. 25 At the start of the guideline development period, the GDG discussed, specified and prioritised units of 26 measurement for each main outcome detailed in the scope. As far as possible the GDG selected 27 similar units derived from validated and clinically used assessment techniques to be applied across 28 each review for consistency (see Appendix E). Where outcomes from validated assessment 29 techniques were not available in the literature, outcomes from non-validated tools were discussed 30 with GDG members and only included on their advice (see Appendix E).

The type of review question determines the highest level of evidence that may be sought. For issues of therapy or treatment, the highest possible evidence level is a well-conducted systematic review or meta-analysis of RCTs, or an individual RCT. In the GRADE approach, a body of evidence based entirely on such studies has an initial quality rating of high, and this may be downgraded to moderate, low, or very low if factors listed above are not addressed adequately.

36 Various approaches may be used to assess imprecision in the GRADE framework. One approach is 37 to downgrade for imprecision on the basis of inadequate event rates (fewer than 300 for dichotomous 38 outcomes) or inadequate study population size (less than 400 participants for continuous outcomes). 39 No outcomes in this guideline met these criteria; therefore whilst footnotes were made to this effect, 40 the outcomes were not downgraded. For dichotomous outcomes, where a 95% confidence interval for 41 a RR or OR crossed the line of no effect and either one or both of the GRADE default lower or upper 42 thresholds for downgrading (0.75 or 1.25), imprecision was rated as serious. Where 95% confidence 43 interval was entirely below 0.75 or entirely above 1.25 or entirely between 0.75 to 1.25, the outcome 44 was not downgraded for imprecision and the result could be interpreted as being clinically significant. 45 The results of many different assessment tools were examined as continuous outcomes in this 46 guideline. The GDG sought to identify clinically important differences for the outcomes of each assessment tool. Where possible, the GDG's definitions were applied to data extracted from 47 48 published articles to inform decisions about whether or not the quality of the evidence should be 49 downgraded for imprecision. Where the GDG was unable to specify a clinically important difference, 50 or the data were insufficient to permit extrapolation, the outcome was downgraded.

For each review question the highest available level of evidence was sought. Where appropriate, for example, if a systematic review, meta-analysis or RCT was identified to answer a question directly, studies of a weaker design were not considered. Where systematic reviews, meta-analyses and RCTs were not identified other appropriate experimental or observational studies included following discussion with the GDG.

6 The numbers of studies identified for each review question are summarised in Appendix G. Some 7 studies were excluded from the guideline reviews after obtaining copies of the corresponding 8 publications because they did not meet inclusion criteria specified by the GDG and recorded in the 9 review protocols (see Appendix H). The characteristics of each included study were summarised in 10 evidence tables for each review question (see Appendix I). Where possible, dichotomous outcomes 11 were presented as relative risks (RRs) or odds ratios (ORs) with 95% CIs, and continuous outcomes 12 were presented as mean differences with 95% CIs or standard deviations (SDs).

13 The body of evidence identified for each review question (or part of a review question) was presented 14 in the form of a GRADE evidence profile summarising the quality of the evidence and the findings 15 (pooled relative and absolute effect sizes and associated CIs). Where possible, the body of evidence 16 corresponding to each outcome specified in the review protocol was subjected to quantitative meta-17 analysis. In such cases, pooled effect sizes were presented as pooled risk ratios (RRs), pooled odds 18 ratios (ORs), or weighted mean differences (WMDs). Forest plots for all meta-analyses conducted for 19 the guideline are presented in Appendix J. GRADE findings are presented in full in Appendix K and 20 abbreviated versions (summary of findings without the individual components of the quality 21 assessment) are presented in this document. [These details will apply to the final published guideline; 22 for the stakeholder consultation GRADE findings are presented in full in this document]

23 Incorporating health economics

The aims of the health economic input to the guideline were to inform the GDG of potential economic issues relating to spasticity, and to ensure that recommendations represented cost effective use of healthcare resources. Health economic evaluations aim to integrate data on benefits (ideally in terms

27 of quality adjusted life years (QALYs)), harms and costs of different care options.

The GDG prioritised a number of review questions where it was thought that economic considerations would be particularly important in formulating recommendations. Systematic searches for published economic evidence were undertaken for these questions. For economic evaluations, no standard system of grading the quality of evidence exists and included papers were assessed using a quality assessment checklist based on good practice in economic evaluation. Reviews of the (very limited) relevant published health economic literature are presented alongside the clinical effectiveness reviews.

Health economic considerations were aided by original economic analysis undertaken as part of the development process. For this guideline the areas prioritised for economic analysis were as follows:

- physical therapy (physiotherapy and occupational therapy)
- orthoses
- botulinum toxin (BoNT) injections
- continuous (pump-administered) intrathecal baclofen (CITB)
- orthopaedic surgery
- selective dorsal rhizotomy (SDR).
- 43 Details of the health economic analyses conducted for the guideline are presented in Chapter 11.

The GDG considered using the EQ-5D, but had reservations about its application in children and young people. No studies were found that used EQ-5D for children, and there was insufficient clinical

46 evidence available for translation into the EQ-5D for children, or for subsequent health economic

47 interpretation or analysis.

1 Evidence to recommendations

For each review question recommendations for clinical care were derived using, and linked explicitly to, the evidence that supported them. In the first instance, short clinical and, where appropriate, cost effectiveness evidence statements were drafted by the technical team which were presented alongside the evidence profiles and agreed by the GDG. Statements summarising the GDG's interpretation of the evidence and any extrapolation from the evidence used to form recommendations were also prepared to ensure transparency in the decision-making process. The criteria used in moving from evidence to recommendations are summarised in Table 3.3.

In areas where no substantial clinical research evidence was identified, the GDG considered other evidence-based guidelines and consensus statements or used their collective experience to identify good practice. The health economics justification in areas of the guideline where the use of NHS resources (interventions) was considered was based on GDG consensus in relation to the likely cost effectiveness implications of the recommendations. The GDG also identified areas where evidence to answer their review questions was lacking and used this information to formulate recommendations for future research.

Towards the end of the guideline development process formal consensus methods incorporating anonymous voting were used to consider all the clinical care recommendations and research recommendations that had been drafted previously. The GDG identified ten key priorities for implementation (key recommendations) and five high-priority (key) research recommendations. The key priorities for implementation were those recommendations thought likely to have the biggest impact on clinical care and outcomes in the NHS as a whole. The key research recommendations were selected in a similar way.

23 **Table 3.3** Criteria considered in moving from evidence to recommendations

Criterion Relative value placed on the outcomes considered Consideration of clinical benefits and harms Consideration of net health benefits and resource use Quality of the evidence Other considerations (including equalities issues)

24

25 Stakeholder involvement

Registered stakeholder organisations were invited to comment on the draft scope and the draft guideline. Stakeholder organisations were also invited to undertake a prepublication check of the final guideline to identify factual inaccuracies. The GDG carefully considered and responded to all comments received from stakeholder organisations. The comments and responses, which were reviewed independently for NICE by a Guidelines Review Panel, are published on the NICE website. [These details will apply to the final published guideline]

32

4 Physical therapy (physiotherapy and occupational therapy)

4 Introduction

5 Children with developmental and physical problems due to upper motor neurone (UMN) damage 6 usually receive physiotherapy or occupational therapy. These two categories of physical therapy are 7 referred to collectively as therapy in this guideline, and physiotherapists and occupational therapists 8 are referred to collectively as therapists.

9 Therapy usually starts when developmental concerns first arise, or at the time of injury, and it 10 continues throughout throughout childhood and through to adult life. Therapists use a proactive and 11 preventative approach centred on understanding the causes of current functional problems and how 12 hese impact upon the child or young person's ability to develop and maintain skills and participate in 13 home and school-life, and in the wider community. As well as managing functional problems, 14 therapists have a large educational and advisory role helping children and young people, and their 15 families, understand their conditions and prognoses.

16 Spasticity is usually one physical feature of a more complex movement disorder caused as a result of 17 UMN damage. Advances in understanding of motor learning, neurodevelopment and how the child or 18 young person responds to different situations and environmental changes support a functional 19 approach to therapy, giving greater priority to maximising activity and participation in line with the 20 WHO's ICF domains (ref needed). The link between these domains is not clearly defined but it is 21 recognised that negative and compensatory phenomena resulting from UMN damage (such as 22 neurological weakness, poor movement control, abnormal sensation, health issues, and reduced 23 fitness and body condition) may have a more significant impact on a child or young person's ability to 24 participate in everyday life than spasticity alone.

25 A child or young person's therapy needs, which are usually assessed on an individual basis, may be 26 complex and multifaceted, changing throughout their lifetime as they develop physically and 27 cognitively. The severity of the neurological damage, age demands and resulting functional problems 28 determine therapy goals and interventions. Therapists recognise that a child's cognitive ability, 29 personality, health and fitness, family situation, comorbidities, environment and social context have a 30 significant impact on activity and participation. Many therapy interventions have a wider impact and 31 require shared responsibility between different types of healthcare professionals, the child or young 32 person's family, and social care and education services.

Therapists recognise that movement difficulties in children and young people are complicated by growth and the effects of gravity, which can cause increasing secondary compensation effects of muscle and bony deformity. These can result in pain and limitation of activity causing reduced quality of life, increased family stress, emotional difficulties and additional care needs. Therapists are vital in recognising and managing these limitations, referring on to colleagues for advice and further management where necessary. Therapy is used in conjunction with other interventions such as oral drugs, orthopaedic surgery and SDR to improve effectiveness and aid rehabilitation.

40 Therapists have a wide range of skills and treatment options, and while there are similarities between 41 approaches, clinical practice varies depending on a therapist's individual knowledge and skills, the 42 model of service delivery favoured, and the needs assessment. The amount and type of therapy

43 received can vary widely. The evidence for the effects of therapy interventions and benefits for Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 36 of 219 1 treating movement problems is considered in this chapter. The review conducted for the guideline 2 focused specifically on the following therapy interventions:

- strengthening interventions (progressive resistive exercise, rebound therapy, • and treadmill training)
 - stretching (casting, including serial casting, and passive stretching)
 - postural management (24-hour postural management, functional sitting • position (FSP), seating solutions including moulded seats, knee blocks, sleep systems, and standing frames)

9 10

3

4

5

6

7

8

- task- focused active use therapy (active use therapy or constraint-induced movement therapy (CIMT), and bimanual training).
- 11 No related NICE guidance was identified for this review question.

Review question 12

13 What is the effectiveness of physical therapy (physiotherapy and occupational therapy) interventions in children with spasticity with or without other motor disorders (dystonia, muscle weakness and

14 15 choreoathetosis) caused by a non progressive brain disorder?

Description of included studies 16

- 17 In total there were 10 studies in 12 publications addressing four comparisons as follows:
- 18 active use versus no active use (three RCTs reported in four publications; 19 Aarts 2010; Aarts 2011; Katz-Leurer 2009; Novak 2009) 20 strengthening vesus usual care not including strengthening (five RCTs 21 reported in six publications) 22 serial casting versus usual care not including serial casting (one RCT) 23
 - early casting after BoNT versus delayed casting after BoNT (one RCT).

Evidence profiles 24

25 Active use versus no active use

26

27 The three parallel RCTs reported in four publications were identified for inclusion compared active use 28 therapy versus no active use therapy (Aarts 2010; Aarts 2011; Katz-Leurer 2009; Novak 2009). Two 29 trials (Katz-Leurer 2009; Novak 2009) were conducted in populations of children who had unilateral 30 and bilateral spasticity and therapy was based on repitition of exercises to facilitate performance of 31 goals or daily activities. The Aarts trial (Aarts 2010; Aarts 2011) was conducted in population of 32 children with unilateral spasticity only. In this trial the intervention was described as constraint induced 33 movement therapy ie that children were encouraged to actively use their affected arm during 34 treatment and use of their unaffected arm was limited, in this occastion, by using a sling. The GDG 35 considered CIMT to be a form of active use therapy

- 36 None of the studies reported reduction of spasticity.
- 37 One study (Aarts 2011) reported range of movement in the upper limb.
- 38

Number of	Number of patients		Effect		Quality
studies Active use	Active use therapy	No active use therapy	Relative	Absolute	
	шегару	шегару	(95% CI)	(95% CI)	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 37 of 219

Active range of	motion wrist exter	nsion at week 9 (B	etter indicated by	higher values)	
1 study (Aarts 2011)	28	22	-	MD 4.5 higher (4.29 lower to 13.29 higher)*	MODERATE
Active range of	motion wrist exter	nsion at week 17 (Better indicated by	/ higher values)	
1 study (Aarts 2011)	28	22	-	MD 3.1 higher (10.68 lower to 16.88 higher)*	MODERATE
Passive range of	of motion wrist ext	ension at week 9 (Better indicated by	y higher values)	
1 study (Aarts 2011)	28	22	-	MD 3.6 higher (0.46 lower to 7.66 higher)*	MODERATE
Passive range of	of motion wrist ext	ension at week 17	(Better indicated I	by higher values)	
1 study (Aarts 2011)	28	22	-	MD 3.9 higher (0.57 lower to 8.37 higher)*	MODERATE
Active range of	motion elbow exte	ension at week 9 (Better indicated by	/ higher values)	
1 study (Aarts 2011)	28	22	-	MD 2.9 higher (2.72 lower to 8.52 higher)*	MODERATE
Active range of	motion elbow exte	ension at week 17	(Better indicated b	y higher values)	
1 study (Aarts 2011)	28	22	-	MD 5.2 higher (0.52 lower to 10.92 higher)*	MODERATE
Passive range of	of motion elbow ex	tension at week 9	(Better indicated b	by higher values)	
1 study (Aarts 2011)	28	22	-	MD 1.4 higher (1.76 lower to 4.56 higher)*	MODERATE
Passive range of	of motion elbow ex	tension at week 1	7 (Better indicated	by higher values)	
1 study (Aarts 2011)	28	22	-	MD 3.6 higher (0.76 to 6.44 higher)	HIGH

Three RCTs reported outcomes relevant to optimisation of function and movement (Aarts 2010; Katz Leurer 2009; Novak 2009).

Number of	Number of patier	nts	Effect		Quality	
studies	Active use therapy	No active use therapy	Relative (95% CI)	Absolute (95% CI)		
Assisting hand assessment at week 9 (range 0 to 100, change from baseline) (Better indicated by higher values)						
1 study (Aarts 2010)	28	22	-	MD 4.3 higher (0.28 to 8.32 higher)	MODERATE	
Assisting hand	assessment at we	ek 17 (range 0 to 1	100, change from b	oaseline) (Better in	dicated by	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 38 of 219

higher values)					
1 study (Aarts 2010)	28	22	-	MD 4.70 higher (1.58 to 7.82 higher)	MODERATE
Goal assessme baseline)	nt scale at week 9	(% children who s	howed an increase	e of 2 point or mor	e compared to
1 study (Aarts 2010)	23/28* (82%)	5/22* (23%)	RR 3.61 (1.64 to 7.96)*	59 more per 100 (from 15 more to 100 more)	HIGH
Goal assessme baseline)	nt scale at week 1	7 (% children who	showed an increa	se of 2 point or mo	ore compared to
1 study (Aarts 2010)	24/28* (86%)	8/22* (36%)	RR 2.36 (1.33 to 4.18)*	49 more per 100 (from 12 more to 100 more)	HIGH
Goal assessme indicated by high		8 - 4wk Occupatio	onal therapy home	programme (OTH	P) group (Better
1 study (Novak 2009)	11	12	-	-	HIGH
Goal assessme	nt T-score at week	8 - 8wk OTHP gro	oup (Better indicate	ed by higher value	s)
1 study (Novak 2009)	12	12	-	-	HIGH
Goal assessme	nt T-score at week	: 8 – 4wk vs. 8wk C	THP group (Bette	r indicated by high	ner values)
1 study (Novak 2009)	11	12	-	-	MODERATE
Canadian Occu indicated by hig		nce Measure - Per	formance at week	8 - 4wk OTHP grou	ıp (Better
1 study (Novak 2009)	11	12	-	-	HIGH
Canadian Occu indicated by hig	-	nce Measure - Per	formance at week	8 - 8wk OTHP grou	ıp (Better
1 study (Novak 2009)	12	12	-	-	HIGH
Canadian Occu indicated by hig	-	nce Measure - Per	formance at week	8 - 4wk vs. 8wk Ol	HP (Better
1 study (Novak 2009)	11	12	-	-	MODERATE
Canadian Occu by higher value		nce Measure - Per	formance at week	9 (range 0 to 10) (f	Better indicated
1 study (Aarts 2010)	28	22	-	-	HIGH
	pational Performa r indicated by higl		formance at week	17 (range 0 to 10, o	change from
1 study (Aarts 2010)	28	22	-	MD 2.00 higher (1.20 to 2.80 higher)*	НІĞН

Walking speed at 6 weeks (change from baseline, m/s) (10m walk test) (Better indicated by higher values)

1 study (Katz- Leurer 2009) 10	10	-	MD 0.03 higher (0.06 lower to 0.12 higher)	LOW
-----------------------------------	----	---	--	-----

- 1 * Calculated by the NCC-WCH
- 2 Two studies reported outcomes relevant to acceptability and tolerability (Aarts 2010; Novak 2009).

Number of	Number of patier	nts	Effect		Quality
studies	Active use therapy	No active use therapy	Relative (95% CI)	Absolute (95% CI)	
	-		isfaction (COPM-S 0 10, change from I	•	
1 study (Novak 2009)	11	12	-	-	HIGH
(COPM-S) at we higher values)	eek 8 - 8wk OTHP g	group (range 0 to 1	0, change from ba	seline) (Better ind	icated by
1 study (Novak 2009)	12	12	-	-	HIGH
(COPM-S) at we	ek 8 - 4wk OTHP v	/s. 8 wk OTHP (Be	tter indicated by h	igher values)	
1 study (Novak 2009)	12	12	-	-	MODERATE
(COPM-S) at we	eek 9 (range 0 to 10), change from bas	seline) (Better indi	cated by higher va	lues)
1 study (Aarts 2010)	28	22	-	-	HIGH
(COPM-S) at we	ek 17 (range 0 to 1	10, change from ba	aseline) (Better ind	licated by higher v	alues)
1 study (Aarts 2010)	28	22	-	MD 2.00 higher (1.20 to 2.80 higher)*	HIGH

3

* Calculated by the NCC-WCH

4 No studies reported outcomes relevant to pain (reduction of pain) or quality of life.

5 One study investigated adverse effects (Novak 2009). Parents were asked to report adverse events to 6 the therapist by telephone or in an interview if encountered. No adverse events were reported.

Number of studies	Number of patier	nts	Effect		Quality
	4 or 8 wks Occupational therapy (OT) home programme	No OT home programme	Relative (95% Cl)	Absolute (95% CI)	
Adverse events	;				
1 study (Novak	0/24	0/12	-	-	LOW
2009)	(0%)	(0%)			

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 40 of 219

1 Strengthening versus usual care not including strengthening

The five parallel RCTs identified for inclusion compared strengthening programmes (progressive resistive exercises) versus usual care (Dodd 2003; Dodd 2004; Fowler 2010; Lee 2008; Liao 2007; Unger 2006). The five trials were reported in six publications because Dodd 2004 was a follow-up study after Dodd 2003. No evidence was found for other strengthening interventions, such as treadmill training and rebound therapy.

7 None of the studies reported reduction of spasticity.

8 Five RCTs reported outcomes relevant to optimisation of function and movement (Dodd 2003; Fowler 9 2010; Lee 2008; Liao 2007; Unger 2006).

Number of	Number of patie	nts	Effect		Quality
studies	Strengthening	Usual care	Relative	Absolute	
			(95% CI)	(95% CI)	
	nction measure (G d by higher values	SMFM) 88-goal dim s)	ension score at 6	weeks (change fro	m baseline)
1 study (Liao 2007)	103	104	-	MD 8.6 higher*	LOW
GMFM D-standi	ng at 6 weeks (ch	ange from baseline	e) (Better indicated	by higher values	
1 study (Lee 2008)	9	8	-	MD 0.6 lower*	MODERATE
1 study (Dodd 2003)	11	10	-	MD 1 lower*	MODERATE
GMFM D-standi	ng at 18 weeks (cl	hange from baselin	ne) (Better indicate	ed by higher values	s)
1 study (Dodd 2003)	11	9	-	MD 0.9 lower*	MODERATE
GMFM E-walkin values)	g, running and jui	nping at 6 weeks (change from base	line) (Better indica	ted by higher
1 study (Lee 2008)	9	8	-	MD 1 higher*	MODERATE
1 study (Dodd 2003)	11	10	-	MD 3.2 higher*	MODERATE
GMFM E-walkin values)	g, running and jur	mping at 18 weeks	(change from bas	eline) (Better indic	ated by higher
1 study (Dodd 2003)	11	9	-	MD 5.9 higher*	MODERATE
GMFM-66 total	change from base	eline at 12 weeks)	Better indicated b	y higher values)	
1 study (Fowler 2010)	29	29	-	MD 0.7 higher*	MODERATE
GMFM total at 6	weeks (change fr	om baseline) (Bet	er indicated by high	gher values)	
1 study (Lee 2008)	9	8	-	MD 0 higher*	MODERATE
1 study (Dodd 2003)	11	10	-	MD 1.2 higher*	MODERATE
GMFM total at 1	8 weeks (change	from baseline) (Be	tter indicated by h	igher values)	
1 study (Dodd	11	9	-	MD 2 higher*	MODERATE

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 41 of 219

2003)									
Walking speed	Walking speed (m/min) at 6 weeks (change from baseline) (Better indicated by higher values)								
1 study (Liao 2007)	10	10	-	MD 9.2 higher*	LOW				
Walking speed	(cm/sec) at 6 weel	s (change from ba	aseline) (Better ind	licated by higher v	alues)				
1 study (Lee 2008)	9	8	-	MD 25.5 higher	MODERATE				
Walking speed values)	(m/min) at 6 weeks	s (10m walk test) (change from base	line) (Better indica	ted by higher				
1 study (Dodd 2003)	11	10	-	MD 0.4 lower*	MODERATE				
Walking speed	(mm/s) at 8 weeks	(change from bas	eline) (Better indic	cated by higher val	lues)				
1 study (Unger 2006)	24	13	-	MD 0.3 higher	LOW				
Walking speed values)	(30-second walk to	est) Change from I	baseline at 12 wee	ks (Better indicate	d by higher				
1 study (Fowler 2010)	27	28	-	MD 2.2 higher*	MODERATE				
Walking speed values)	(m/min) at 18 weel	ks (10m walk test)	(change from base	eline) (Better indic	ated by higher				
1 study (Dodd 2003)	11	9	-	MD 0.7 lower*	MODERATE				
Timed stair (s)	Timed stair (s) at 6 weeks (change from baseline) (Better indicated by lower values)								
1 study (Dodd 2003)	11	9	-	MD 5.6 lower*	MODERATE				
Timed stair (s)	at 18 weeks (chang	ge from baseline) (Better indicated b	y lower values)					
1 study (Dodd 2003)	11	9	-	MD 0.4 lower*	MODERATE				

1

* Calculated by the NCC-WCH

3 4

Two RCTs reported outcomes relevant to quality of life (Dodd 2004; Unger 2006).

5

Number of	Number of patients		Effect		Quality			
studies	Strengthening	Usual care	Relative	Absolute				
			(95% CI)	(95% CI)				
	Self-perception of functional competence at 8 weeks (composite score/25) (change from baseline) (Better indicated by higher values)							
1 study (Unger 2006)	24	13	-	MD 0.1 lower*	LOW			
	Self-perception of body image at 8 weeks (composite score/25) (change from baseline) (Better indicated by higher values)							

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 42 of 219

² None of the studies reported pain (reduction of pain).

DRAFT FOR CONSULTATION

1 study (Unger 2006)	24	13	-	MD 2.9 higher*	LOW		
Self-perception (Global self-worth) at 18 weeks (score 0 to 4) (Better indicated by lower values)							
1 study (Dodd 2004)	10	6	-	MD 0.02 higher*	LOW		

1 * Calculated by the NCC-WCH

2 Two RCTs investigated adverse effects (Dodd 2003; Fowler 2010).

Number of	Number of patie	nts	Effect		Quality
studies	Strengthening	Usual care	Relative	Absolute	
			(95% CI)	(95% CI)	
Adverse effects	: pressure on sho	oulder, mild foot	and ankle discor	nfort	
1 study (Dodd	3/11 3/11	0/9	-	-	LOW
2003)	3/11	(0%)			
	(27.3%)				
Adverse effects	: Mild pain, soren	ess or muscle c	ramping		I
1 study	17/29	0/29	-	-	LOW
(Fowler 2010)	(58.6%)	(0%)			
Adverse effects	: Observed falls				
1 study	6/29	0/29	-	-	LOW
(Fowler 2010)	(20.6%)	(0%)			
Adverse effects	: Skin rash	1	1	1	1
1 study	1/29	0/29	-	-	LOW
(Fowler 2010)	(3.4%)4	(0%)			

3 * Calculated by the NCC-WCH

4 None of the studies reported acceptability and tolerability.

5 Serial casting versus usual care not including serial casting

6 The cross-over RCT identified for inclusion compared serial casting versus usual care (McNee 2007).

7 The study did not report reduction of spasticity, but did report optimisation of movement at the ankle 8 joint (PROM).

9 Optimisation of movement:

Number of studies	Number of patients		Effect		Quality		
	Serial casting	Usual care	Relative (95% Cl)	Absolute (95% CI)			
Walking speed (m/s, tridimensional gait analysis) (Change from baseline at 12 weeks) (Better indicated by higher values)							
1 study (McNee 2007)	9	9	-	MD 0.030 lower (0.18 lower to 0.13 higher)	LOW		
Passive range of	Passive range of motion-ankle dorsiflexion (knee flexed) (change from baseline at 12 weeks) (Better						

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 43 of 219

indicated by higher values)							
1 study (McNee 2007)	9	9	-	MD 11.66 higher (4.17 to 19.15 higher)	MODERATE		
-	Passive range of motion-ankle dorsiflexion (knee extended) (change from baseline at 12 weeks) (Better indicated by higher values)						
1 study (McNee 2007)	9	9	-	MD 1.450 higher (2.84 lower to 5.75 higher)	LOW		

1 2

The study also reported optimisation of function in terms of walking speed. Number of Number of patients Effect Quality studies Serial casting **Usual care** Relative Absolute (95% CI) (95% CI) Walking speed (m/s, tridimensional gait analysis) (Change from baseline at 12 weeks) (Better indicated by higher values)

1 study	9	9	-	MD 0.03 lower	LOW
(McNee 2007)				(0.18 lower to	
				0.13 higher)	

3 4

The study did not report pain (reduction of pain), quality of life, adverse effects, or acceptability and 5 tolerability.

Early casting after botulinum toxin versus delayed casting 6

7 The study reported outcomes relevant to reduction of spasticity and optimisation of movement of the 8 joint (PROM).

Number of	Number of patier	nts	Effect		Quality		
studies	Early casting post botulinum neurotoxin (BoNT)	Delayed casting post BoNT	Relative (95% CI)	Absolute (95% Cl)			
Gastrosoleus s values)	pasticity (Modified	Tardieu) (degrees	s) 3 months after c	asting (Better indi	cated by lower		
1 study (Newman 2007)	6	6	-	MD 9.20 higher (1.37 to 17.03 higher)	LOW		
Passive range of	of motion 3 months	s after casting (Be	tter indicated by h	igher values)			
1 study (Newman 2007)	6	6	-	MD 2.00 higher (6.76 lower to 10.76 higher)	LOW		
Gastrosoleus s values)	Gastrosoleus spasticity (Modified Tardieu) (degrees) 6 months after casting (Better indicated by higher values)						
1 study (Newman 2007)	6	6	-	MD 15.00 higher (4.42 to 25.58 higher)	LOW		
Passive range of	Passive range of motion 6 months after casting (Better indicated by higher values)						

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 44 of 219

1 study	6	6	-	MD 0.40 lower	LOW
(Newman 2007)				(10.39 lower to 9.59 higher)	
2007)				s.ss nighter)	

- 1 2
- The study did not report optimisation of function, quality of life, or pain (reduction of pain).
- 3
- 4 The study reported adverse effects.

Number of studies	Number of patients		Effect		Quality
	Early casting post botulinum neurotoxin (BoNT)	Delayed casting post BoNT	Relative (95% Cl)	Absolute (95% Cl)	
Adverse effects	: Pain				
1 study (Newman 2007)	3/6 (50%)	0/6 (0%)	-	-	LOW

5

6 The study did not report acceptability and tolerability.

Evidence statement 7

8 Active use versus no active use

9 No evidence was identified in relation to reduction of spasticity.

10 With regard to optimisation of range of movement, one RCT provided evidence that there were no 11 statistically significant differences in active or passive ROM wrist extension at 9 or 17 weeks after 12 children received 6 weeks of modified CIMT and 2 weeks of bimanual training as compared to 13 children who received 8 weeks of usual care (MODERATE). The same study reported that there were 14 no statistically significant differences in active ROM elbow extension at 9 or 17 weeks, or in passive 15 ROM elbow extension at 9 weeks (MODERATE), although a statistically significant improvement was

16 found in passive ROM elbow extension at 17 weeks. (HIGH)

17 With regard to optimisation of function and movement, one RCT provided evidence of a statistically 18 significant improvement in hand function (AHA scores) at 9 weeks and 17 weeks after children 19 received 6 weeks of modified CIMT and 2 weeks of bimanual training as compared to children who 20 received 8 weeks of usual care. (HIGH) One RCT provided evidence of a statistically significant 21 improvement in goal attainment (GAS scores) at 9 weeks and 17 weeks after children received 6 22 weeks of modified CIMT and 2 weeks of bimanual training as compared to children who received 8 23 weeks of usual care. (HIGH) A further RCT provided evidence of a statistically significant 24 improvement in goal attainment (GAS T scores) and performance (COPM-P scores) at 8 weeks in 25 children who received a 4-week occupational therapy (OT) home programme and children who 26 received the same programme for 8 weeks as compared to children who did not receive the 27 programme. (HIGH) However, there were no statistically significant differences in goal attainment 28 (GAS T scores) or performance (COPM-P scores) between the children who received the 4-week 29 programme and those who received the 8-week programme. (MODERATE) One RCT provided 30 evidence of a statistically significant improvements in performance (COPM-P scores) at 9 weeks and 31 17 weeks after children received 6 weeks of modified CIMT and 2 weeks of bimanual training as 32 compared to children who received 8 weeks of usual care. (HIGH) One RCT reported no statistically 33 significant difference in walking speed (10-minute walk test) 6 weeks after children received a 6-week 34 home-based task-oriented exercise programme (including sit to stand and step up exercises) as 35 compared to children who did not receive the programme. (LOW)

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 45 of 219 1 With regard to acceptability and tolerability, one RCT provided evidence of statistically significant 2 improvements in satisfaction (COPM-S scores) at 8 weeks in children who received a 4-week 3 occupational therapy home programme and those who received the same programme for 8 weeks as 4 compared to children who did not receive the programme. (HIGH) However there were no statistically 5 significant differences between the children who received the 4-week programme and those who 6 received the 8-week programme. (MODERATE). A further RCT provided evidence of statistically 7 significant improvements in satisfaction (COPM-S scores) at 9 weeks and 17 weeks after children 8 received 6 weeks of modified CIMT and 2 weeks of bimanual training as compared to children who 9 received 8 weeks of usual care. (HIGH)

- 10 No evidence was identified in relation to pain (reduction of pain) or quality of life.
- 11 With regard to adverse effects, one RCT provided evidence that no adverse effects were observed in
- 12 children who received a 4-week or 8-week occupational therapy home programme or in children who
- 13 did not receive the programme. (LOW)

14 Strengthening versus usual care not including strengthening

15 No evidence was identified in relation to reduction of spasticity.

16 With regard to optimisation of function and movement, one RCT reported no statistically significant 17 difference in function (GMFM 88-goal dimension) at 6 weeks in children who received a strengthening 18 programme for 6 weeks as compared to children who received their regular therapy instead of the 19 programme. (LOW) A further RCT reported no statistically significant difference in function (GMFM D-20 standing) at 6 weeks in children who received a strengthening programme for 5 weeks as compared 21 to children who received conventional therapy for 5 weeks. (LOW) One RCT reported no statistically 22 significant difference in function (GMFM D-standing) at 18 weeks after children received a 6-week 23 strengthening programme as compared to children who received usual care instead of the 24 programme. (LOW) A further RCT reported no statistically significant difference in function (GMFM E-25 walking, running and jumping) at 6 weeks in children who received a strengthening programme for 5 26 weeks as compared to children who received conventional therapy for 5 weeks. (LOW) Another RCT 27 reported no statistically significant difference in function (GMFM E-walking, running and jumping) at 28 18 weeks after children received a 6-week strengthening programme as compared to children who 29 received usual care instead of the programme. (LOW) A further RCT reported no statistically 30 significant difference in function (GMFM-66 total) at 12 weeks after children received a 12-week 31 strengthening programme as compared to children who did not receive the programme. (LOW) 32 Another RCT reported no statistically significant difference in function (GMFM total) at 6 weeks in 33 children who received a strengthening programme for 5 weeks as compared to children who received 34 conventional therapy for 5 weeks. (LOW) One RCT reported no statistically significant difference in 35 function (GMFM total) at 18 weeks after children received a 6-week strengthening programme as 36 compared to children who received usual care instead of the programme. (LOW) One RCT reported 37 no statistically significant difference in the walking speed (10-minute walk test) at 6 weeks in children 38 who received a strengthening programme for 6 weeks as compared to children who received their 39 usual therapy only. (LOW) Another RCT provided evidence of a statistically significant improvement in 40 walking speed at 6 weeks (computerised gait analysis) in children who received a strengthening 41 programme for 5 weeks as compared to children who received conventional therapy for 5 weeks. 42 (MODERATE) A further RCT reported no statistically significant difference in walking speed (10-43 minute walk test) at 6 weeks after children received a 6-week strengthening programme as compared 44 to children who received usual care instead of the programme. (MODERATE) Another RCT reported 45 no statistically significant difference in walking speed (three-dimensional gait analysis) at 8 weeks in 46 children who received a strengthening programme for 8 weeks as compared to children who did not 47 receive the programme.(LOW) Another RCT reported no statistically significant difference in walking 48 speed (30-second walk test) at 12 weeks after children received a 12-week strengthening programme 49 as compared to children who did not receive the programme.(MODERATE) One RCT reported no 50 statistically significant difference in walking speed (10-minute walk test) at 18 weeks after children 51 received a 6-week strengthening programme as compared to children who received usual care 52 instead of the programme. (MODERATE) The same RCT found no statistically significant difference in 53 the timed stair test at 6 or 18 weeks after children started a 6-week strengthening programme as 54 compared to children who received usual care instead of the programme. (MODERATE)

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 46 of 219 1 No evidence was identified in relation to pain (reduction of pain).

With regard to quality of life, one RCT reported no statistically significant difference in self-perception of functional competence at 8 weeks in children who received a strengthening programme for 8 weeks as compared to children who did not receive the programme. (MODERATE) However, the same RCT reported a statistically significant improvement in self-perception of body image at 8 weeks in children who received the strengthening programme for 8 weeks as compared to children who did not receive the programme. (MODERATE) One RCT reported no statistically significant difference in

8 self-perception-Global Self Worth at 18 weeks after children received a 6-week strengthening
 9 programme as compared to children who received usual care instead of the programme. (LOW)

With regard to adverse effects, one RCT reported that 27.3% of children who received a 6-week strengthening programme complained of pressure on the shoulder, mild-foot discomfort or mild ankle discomfort. No episodes of these adverse events were reported in the control group who did not receive the intervention. (MODERATE) A further RCT reported that 58.6% of children who received a 12-week strengthening programme complained of mild pain, soreness, or muscle cramping and 3.4% of children in the strengthening programme experienced a skin rash related to the equipment used. No episodes of these adverse events were reported in the control group who did not receive the

17 intervention. (MODERATE)

18 No evidence was identified in relation to acceptability and tolerability.

19 Serial casting versus usual care not including serial casting

20 No evidence was identified in relation to reduction of spasticity.

With regard to optimisation of movement, one RCT provided evidence of a statistically significant improvement in passive range of motion-ankle dorsiflexion (knee flexed) at 12 weeks after children received serial casting as compared to when the same children did not receive casting (MODERATE). The RCT also reported no statistically significant difference in passive range of motion-ankle dorsiflexion (knee extended) at 12 weeks after children received serial casting as compared to when the same children did not receive casting. (LOW)

With regard to optimisation of function, one RCT reported no statistically significant difference in walking speed (tridimensional gait analysis) at 12 weeks after children received serial casting as compared to when the same children did not receive casting. (LOW) No evidence was identified in relation to pain (reduction of pain), quality of life, adverse effects, or acceptability and tolerability.

31 No evidence was identified in relation to optimisation of function, pain (reduction of pain), quality of 32 life, adverse effects, or acceptability and tolerability.

33 Early casting after botulinum toxin versus delayed casting

34 With regard to reduction of spasticity, one RCT provided evidence of a statistically significant 35 reduction in spasticity (modified Tardieu) at 3 and 6 months in children who received casting 36 immediately after botulinum toxin injection as compared to those children who received casting 4 37 weeks after botulinum toxin injection for the treatment of spastic equines. (LOW) The same RCT 38 reported no statistically significant difference after 3 months or 6 months in passive range of 39 movement at the ankle between children who received casting immediately after botulinum toxin 40 injection and those who received casting 4 weeks after botulinum toxin injection for the treatment of 41 spastic equinus. (LOW)

- 42 No evidence was identified in relation to optimisation of function, pain (reduction of pain), or quality of43 life.
- 44 With regard to adverse effects, one RCT provided evidence that 50% of children who received casting 45 immediately after botulinum toxin injection complained of pain whereas none of the children who 46 received casting 4 weeks after botulinum toxin injection for the treatment of spastic equinus
- 47 complained of pain. (LOW) the same RCT reported evidence that 50% of children who received 48 casting immediately after botulinum toxin injection required a change of cast within 48 hours of having
- 49 their first cast applied because of pain.
- 50 No evidence was identified in relation to acceptability and tolerability.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 47 of 219

Other comparisons of interest

2 The GDG also prioritised evaluation of the following interventions and comparators, but no studies 3 were identified for inclusion.

4 5

6

- casting plus botulinum toxin versus botulinum toxin only
- postural management versus usual care not including postural management
- passive stretching versus usual care not including passive stretching.

7 Health economics

8 There is very limited good quality evidence of effectiveness for therapy and those studies that were 9 identified showed equivocal results in the short term. A simple cost analysis showed 1 hour per week 10 of therapy would cost approximately £2,000 a year (see Chapter 11). The costs would need to be 11 considered alongside the benefits to determine value for money, and this would require comparative 12 long-term data which are not available currently.

13 Evidence to recommendations

14 Important research outcomes in therapy

15 Although therapy might not alter spasticity the GDG considered that this should be assessed and that 16 Ashworth, modified Ashworth, and Tardieu scales were appropriate measures as they are widely 17 used in research. Optimisation of movement was prioritised as it this is a prime aim in therapy. Active 18 range of movement was considered a useful indicator of selective muscle control and hence a 19 potentially important outcome. Passive range of movement was also considered important because 20 muscle tightness may be improved by therapy. Walking speed and distance (endurance) were also 21 considered to be clinically important measures because improvement would increase the ability to 22 participate in activities and join in with peers. Optimisation of function is often the cornerstone of 23 therapy programmes and was, therefore, considered to be an important outcome. The GDG 24 prioritised the assisted hand assessment (AHA), the SHUE, goal attainment scaling (GAS), the PEDI 25 and the GMFM (66- or 88-item versions) as commonly employed measures of function. The GDG 26 recognised, however, that some of these outcome measures may not be sensitive enough to detect 27 clinically important improvements in function. Measurements of quality of life (QoL) were also 28 considered important as outcomes of therapy, and the GDG chose the COPM satisfaction and 29 performance scales (both subjective scales), the child health questionnaire, PedsQL and CP Quad as 30 useful measures. Pain was regarded as an important outcome, in that the GDG consensus was that 31 therapy might have a role in the management of painful muscle spasms and chronic pain more 32 generally, and the GDG agreed that outcomes reported based on objective pain scales should be 33 included. Certain adverse effects might be anticipated with therapy, including pain and discomfort. 34 Injury might also be important, and such effects were included as important outcomes. Finally, 35 acceptability and tolerability of therapy interventions was considered by the GDG to be a key 36 outcome.

37 The evidence

38 The available evidence related to four key areas of therapy: task-focused active use therapy, muscle 39 strengthening, passive stretching, and postural management.

40 **Task-focused active-use therapy**

Task-focused active-use therapy programmes have been used widely with the intention of improving functional activities and enhancing participation in normal activities to the best of the individual's ability. These approaches have been recommended in part based on 'motor learning' principles. Therapy typically consists of functional activities carried out with instruction and demonstration

- 45 followed by feedback. Repetition and practice are considered to be critically important. Functional
- 46 activities include dialy maintainence activities such as standing to do something and brushing one's
- 47 teeth.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 48 of 219 Moderate- to high-quality evidence from RCTs supported the effectiveness of active use therapy consisting of constraint-induced movement therapy (CIMT) followed by bimanual training in improving upper limb function. There was evidence suggesting improved hand function and goal attainment scores, and of improved performance scores and reported satisfaction scores up to 17 weeks after 4-8 week blocks of such therapy. The GDG made a specific recommendation based on these studies.

6 The GDG considered that active-use therapy was likely to be particularly effective in young children. 7 Before 8 years of age, children with spasticity are still developing their mobility and their hand-skill 8 strategies. The GDG considered that active-use therapy provided in the context of the child's normal 9 activities, for instance at the nursery or at home, was more likely to prove effective than those 10 developed in a more abstract setting.

11 One RCT provided moderate- to high-quality evidence for significant improvements in goal attainment 12 using individualised home occupational therapy delivered over 4 or 8 weeks. The programme 13 interventions varied greatly depending on individual goals, and they included specific goal-directed 14 training, parent education, handwriting task training, recreation and sports therapy, play therapy and 15 CIMT. In addition to these active-use interventions, other therapy strategies employed included 16 positive behaviour support, the use of adaptive equipment, strength training and orthotics. Using 17 these diverse interventions there were improvements for both the 4- and 8-week groups in relation to 18 goal attainment (GAS), participation (COPM-P) and reported satisfaction (COPM-S). There was no 19 significant difference between the groups. The GDG considered that this study highlighted the 20 success that could be achieved with appropriately focused therapy strategies and especially active-21 use therapy in achieving specific treatment goals. The GDG considered that this study highlighted the 22 importance of individualised therapy and this was reflected in the recommendations.

Regarding active-use therapy, the GDG believed that it would be important to determine the optimal duration and frequency of therapy needed to acquire and maintain skills. One RCT examined the effect of a 6-week home-based course of active-use therapy including a programme of motor and balance tasks for children and young people with spasticity due to cerebral palsy or a traumatic brain injury. This did not provide evidence that this approach achieved the outcome of improved walking speed.

29 Muscle strengthening

30 The studies of therapy aimed at muscle strengthening all focused on progressive resistive training. 31 None of these found evidence of improved function. One reported evidence of improved self-32 perception (a measure of quality of life). The evidence was largely of poor quality for the outcomes 33 examined, and the sample sizes were often small. The descriptions of the 'usual therapy' with which 34 the strengthening programme was compared were unclear. Despite this relative lack of evidence for 35 clinically important outcomes, the GDG consensus, based on their recognition of the importance of 36 muscle weakness in some individuals and their experience with such therapy, was that muscle 37 strengthening could be a useful goal in appropriately selected individuals. In children and young 38 people with spasticity muscle weakness can be an important contributor to motor difficulties and 39 impaired function. It may be difficult to differentiate weakness of neurological origin from that due to 40 under-use, and in a given individual it may not always be clear at the outset to what degree 41 strengthening can be achieved through therapy. Nevertheless the GDG consensus was that improved 42 strength and the possibility of an associated overall improvement in physical fitness may be important 43 as goals for some individuals. This might be especially true for those who otherwise have a limited 44 opportunity to participate in exercise programmes.

The GDG therefore recommended that consideration should be given to the use of muscle strengthening therapy where, based on the assessment, it is thought likely that muscle weakness is contributing to loss of function or joint deformity. The GDG recommended that strengthening therapies should be directed towards specific goals, and should incorporate progressive repetitive exercises against resistance.

50 **Passive stretching**

51 Passive stretching, whether manually through the use of casts, or otherwise, has been a part of 52 physical therapy for many years. For example, serial casting is often used with the intention of 53 increasing the range of joint movement by lengthening soft tissues. Such therapy is often employed in

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 49 of 219 1 conjunction with other interventions (for example, to improve a child or young person's ability to 2 tolerate an orthotic device).

3 Current physical therapy programmes often include brief, manual passive stretching intended to help

4 maintain soft tissue length and hence prevent deformity. The GDG noted that no evidence was found 5 with regard to this approach to physical therapy. The GDG consensus was that any effect derived

6 from this approach might be expected to be short-lived, and so they did not recommend it.

7 One study reported that serial casting improved passive range of movement (ankle dorsiflexion). In 8 terms of movement and function outcomes the evidence did not show that serial casting improved 9 walking speed, or measures of function or quality of life. The GDG nevertheless considered that 10 sustained low-load stretching using serial casting or orthoses was more likely to be effective in 11 maintaining soft tissue length and preventing or limiting deformity.

12 Although there is a lack of comparative studies on serial casting is employed following botulinum toxin 13 injection treatment with and without subsequent serial casting, it is common practice to employ serial 14 casting in this setting with the aim of enhance range of movement following reduction in muscle tone. 15 The GDG agreed based on their experience and the underlying principles of this approach that this 16 was a worthwhile treatment strategy. There is variation in practice regarding the interval from 17 botulinum toxin treatment to the first cast application. The GDG considered this a significant issue, as 18 injection and casting require the expertise of different services and hence there could be resource 19 implications. The GDG noted the evidence that starting casting about 4 weeks after botulinum toxin 20 treatment did not alter the therapeutic effect, but was much better tolerated that immediate casting. 21 Problems of tolerance arose in 50% of those who began cast treatment immediately, and these 22 problems required removal and replacement of casts. While the study population in this trial was 23 small, the GDG was persuaded that delayed casting was preferable and made a recommendation 24 accordingly.

25 **Postural management**

26 Postural management is a widely accepted aspect of physical therapy employed to improve certain 27 functional abilities and to slow or prevent the development of musculo-skeletal deformity. Despite this, 28 the GDG noted that no studies were identified that examined the effectiveness of postural 29 management. Nevertheless, the GDG consensus was that postural management based on 30 appropriate individual goals has an important role in the management of spasticity and associated 31 motor disorders. It was considered likely to have an important role in children and young people with 32 functional limitations and in those at risk of deformity or with actual deformity arising due to limitation 33 of movement. The GDG consensus was that the movement and positional needs of the child or young 34 person over a 24-hour period should be considered. In assessing the postural management plan, 35 account should be taken of sleeping and resting positions, sitting and standing, of the individual's 36 opportunities for movement, and their recreational, play and leisure activities. Consideration should be 37 given to the full range of settings in which postural management might usefully apply. Postural 38 management might entail positioning to take account of the child or young person's tone and to 39 support them to facilitate participation in activities appropriate to their stage of development. The GDG 40 considered that training and support of family members or carers was key to successful postural 41 management. It was also essential that the person receiving this form of physical therapy was 42 regularly reviewed to assess their needs and progress, and to consider the use of appropriate forms 43 of equipment. It was important when assessing individual and family needs to consider the acceptability of the therapy programme to the child or young person and their family or carers. Only 44 45 through regular reassessment is it possible to determine whether a management programme is 46 achieving its intended goals. Over time, as the child grows and develops, the postural management 47 plan is likely to need to be modified. The GDG made recommendations with regard to these aspects 48 of postural management.

49 **Considerations regarding risk and benefit**

50 The GDG considered that benefits derived from physical therapy would obviously need to be 51 balanced against any significant disadvantage. Adverse events associated with physical therapy were 52 likely to be relatively uncommon and often minor or manageable by modification of the physical 53 therapy programme (for example, minor injury, discomfort or pain). Intensive therapy could be

54 associated with significant disruption to the lives of children and young people and to their parents or Spasticity in children and young people with non-progressive brain disorders: full guideline

DRAFT (October 2011) Page 50 of 219

1 carers, and careful account needed to be taken of this. In this context the GDG made 2 recommendations to ensure that these individuals should be provided with adequate information to 3 allow them to make informed choices about the nature of the physical therapy programme being 4 undertaken.

5 Considerations regarding resource implications

6 Provision of therapy throughout childhood has significant resource implications. The GDG recognised 7 that based on the published literature the evidence of effectiveness for various commonly employed 8 physical therapy interventions, including regimens aimed at muscle strengthening, stretching and 9 postural management, was limited. Nevertheless, they believed, based on the rational principles 10 underlying these regimens and their experience of using these forms of physical therapy in practice, 11 that when employed in suitable selected individuals they were an essential component of management. The strongest evidence related to the use of task-focused active-use therapy. In 12 13 particular, there was some evidence that this approach could improve function and quality of life. 14 Although long-term benefit needed to be examined, the available evidence suggested that intensive 15 goal-directed active-use therapy showed functional improvement at least in the short term. Even in 16 those with an existing fixed deformity, therapy can be very effective in helping accommodate the 17 deformity so as to maintain function. The GDG also noted that the deformity and reduced participation 18 evident in children and young people who lack access to therapy suggested long-term benefits are to 19 be obtained,

20 The GDG also recognised that the remit of the physical therapist goes well beyond that of directly 21 providing the physical interventions of therapy. The therapist also has a key role in undertaking a 22 specialist assessment of the needs of the individual child, and in recommending and arranging 23 provision of specialist equipment intended to optimise function and to prevent slow progression of 24 deformity and disability. Such equipment may also have an important role in facilitating supportive 25 care for the child or young person. The GDG recognised that the cost of such equipment may be 26 substantial, especially in those with more severe motor dysfunction (for example, GMFCS levels 4 27 and 5).

28 The physical therapist is also involved in providing support, education and training for children and 29 young people and their families and carers. This is an essential component of the service currently 30 provided. There is little research evidence available on the impact that such measures have had on 31 improving the ability of children and young people and their families and carers to cope, or on quality 32 of life or their ability to participate in physical therapy regimens. While the GDG considered that 33 physical therapy has a central role in the management of spasticity and associated motor disorders, 34 there are many children and young people for whom it is insufficient. Other treatments, for example 35 management with orthoses, botulinum toxin injection treatment, intrathecal baclofen or orthopaedic 36 surgery may be necessary to improve function and prevent or ameliorate disability and deformity. 37 However, in children and youg people undergoing such interventions the GDG recognised that 38 physical therapy is essential to achieving a successful outcome. Also, for those children and young 39 people who might undergo SDR (currently offered only in a research context), post-operative 40 rehabilitation with appropriate therapy considered to be essential.

41 **Other considerations**

The GDG recognised the importance of co-morbidities when considering an appropriate programme of physical therapy. Potentially important examples were the use of postural equipment in those with poorly controlled epilepsy or respiratory compromise, the use of techniques such as passive stretching in those likely to have osteoporosis, and the use of certain types of postural therapy in those at risk of aspiration.

The GDG also emphasised in their recommendations the importance of taking account of the implications for the child or young person and their families in implementing a proposed physical therapy programme. Many forms of physical therapy require a sustained commitment and rely on participation of the child or young person and their family over long periods of time. The specific resources of the family and the environmental factors affecting the individual and family require careful consideration when considering the choice of physical therapy if a successful outcome is to be possible. Certain approaches and the use of certain equipment may be impractical in individual home

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 51 of 219 settings, or there may be a need to adapt the setting to enable the required physical therapy. Moreover, certain cultural practices might act as barriers to particular forms of physical therapy. For example, cultural norms might discourage activities such as swimming and hydrotherapy or group activities with members of opposite sex. In formulating plans for physical therapy healthcare professionals should, therefore, consider potential barriers to implementation and seek ways of overcoming such barriers to provide physical therapy plans that are acceptable to the individual child or young person in their family and cultural circumstances.

8 The GDG believes that appropriate information sharing and the use of written educational materials 9 may facilitate physical therapy. In particular, when children and young people and their families have 10 a proper understanding of the condition and its management, and of realistic goals of physical therapy 11 and are partners in the agreed programme of therapy a successful outcome is much more likely. The 12 GDG concluded that healthcare professionals considering who should deliver physical therapy should 13 take account of whether the child or young person and their parents or carers are able to deliver the 14 specific therapeutic intervention, what training might be needed for the child or young person or their 15 parents or carers, and the wishes of the child or young person and their parents or carers. The GDG 16 emphasised that who delivers physical therapy should be an area of negotiation for the child or young 17 person, their parents or carers, and healthcare professionals. Further, parents and carers who deliver 18 physical therapy, and especially those involved in delivering postural management programmes, 19 should be offered appropriate training and support.

The GDG considered that supporting therapy might be particularly difficulty during times of change, in particular when individuals are moving to a new supporting service or a new environment. Transition and transfer to adult services was recognised as a particular challenge. Therapists could have an important role in facilitating such processes, in preparing the way for such changes and, where appropriate, in helping individuals to participate more in the management of their own conditions.

25 As stated in the introduction to this chapter the GDG have considered physical therapy to mean either 26 physiotherapy or occupational therapy and as such 'physical therapy' has been used throughout the 27 recommendations to incorporate both. The GDG did acknowledge though that the first therapy 28 professional children and young people are referred to in clinical practice is a physiotherapist, rather 29 than an occupations therapist, and this is reflected in their recommendation to offer a referral to a 30 physiotherapist in the first instance. All children and young people should also have access to an 31 occupational therapist through the local multidisciplinary child development team (see section below 32 on principles of care for more details).

In formulating their recommendations the GDG considered that the word 'participation' that is used in the ICF was synonymous with taking part in daily activities and both phrases are used in the recommendations interchangeably.

36 Principles of care

The GDG's considerations in relation to the evidence identified for this review question and others identified some common themes, and the GDG concluded that these were best addressed through the development of recommendations defining overarching principles of care.

40 Patient-important outcomes were key to the GDG's considerations. It was agreed that the ultimate 41 goal of treatment is to maximise the child or young person's potential and to promote independence 42 and quality of life through to adult life. The management of spasticity, co-existing motor disorders and 43 their secondary complications involves a long-term commitment for the child or young person and 44 their family. The success of the clinical aspects of management should be viewed in the framework of 45 the the World Health Organization's (WHO's) International Classification of Functioning, Disability and 46 Health (ICF; http://www.who.int/classifications/icf/en/). Thus, the impact of treatment on clinical and 47 social aspects of the child or young person's disability, and the child or young person's value 48 judgements regarding their quality of life need to be considered throughout treatment. Attitudes among children and young people with regard to their disabilities may differ, as may the weight they 49 50 place on benefits of available treatment options. For example, walking ability might be improved with 51 an appropriate orthotic device, enabling a child to keep up with peers and participate more fully in life, 52 whereas for another child, the benefit of walking derived from an orthosis might not outweigh harm 53 from perceived social stigma of wearing the device. In all their discussions, the GDG emphasised the

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 52 of 219 need to take into account the thoughts, wishes, levels of attainment etc of each child or young person, and their parents or other carers, and to construct an individualised care plan to suit individual needs when considered in a holistic view.

4 The specific issues and associated actions that the GDG identified as important principles of care for 5 children and young people with nonprogressive motor disorders were as follows.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

- All children and young people with spasticity, co-existing disorders and early
 muscular-skeletal complications caused by nonprogressive motor disorders should
 be referred to a local multidisciplinary child development team without delay. The
 multidisciplinary team should be linked to a regional specialist centre because of the
 potential need for expertise and treatments available only through such centres.
- Although the GDG did not identify evidence regarding the specific composition of local multidisciplinary child development teams to ensure effectiveness, they recognised that a range of treatment options used alone, in combination, or sequentially should be offered and that this requires access to various types of healthcare professional, including physiotherapists, occupational therapists, paediatricians, and orthopaedic surgeons. The GDG considered that local multidisciplinary child development teams should be able to provide access to physical therapy, orthoses and oral drugs as a minimum and potentially treatment botulinum toxin type A. Regional specialist centres may provide access to the other interventions including: botulinum toxin type A, CITB, orthopaedic surgery. The GDG's view was that all healthcare professionals involved in care should have expertise specific to the management of spasticity, co-existing disorders and early muscular-skeletal complications in children and young people. The GDG's recommendation mirrors guidance contained in 'Selective dorsal rhizotomy for spasticity in cerebral palsy' (NICE interventional procedure guidance 373), which highlights the importance of care being delivered by a multidisciplinary team with specialist training and expertise in the care of spasticity and with access to the full range of treatment options. The SDR team would normally include a physiotherapist, a paediatrician and surgeons, all with specific training and expertise (see Chapter 10).
 - The GDG considered provision of individualised management programmes to be essential, and they agreed that such programmes should be goal-focused and developed in partnership with the child or young person and their parents or other carers. Such programmes should take a holistic view of the child or young person, be supported by opportunities for children and young people and their parents and carers to access information and education about treatments. Discussion of developmental potential, and how this might be influenced by different treatments, was also highlighted as an important element of care.
 - The GDG recognised the importance of communication between healthcare professionals of different types and those in different settings, again reflecting the importance of the range of treatment options available and how they may be used in combination or sequentially.
 - Monitoring for progression of spasticity, development of its secondary consequences, response to treatment, changes to goals and, where appropriate, timely referral to specialist centres, were also identified as important elements of care.
- Based on the guideline reviews for the effectiveness of botulinum toxin and orthopaedic surgery, the GDG concluded that active participation in a programme of care and therapy was an essential prerequisite of such treatments The GDG also highlighted the need for adjunctive therapy to be arranged before starting such treatments.

1 **Recommendations**

Number Recommendation **Principles of care** Offer immediate referral to a local multidisciplinary child development team that 1 (KPI) can be accessed when needed and is linked to regional specialist centres. 2 The local multidisciplinary child development team should be experienced in the management of spasticity in children and young people and include a paediatrician, a paediatric physiotherapist and have access to a paediatric occupational therapist. 3 Access to a paediatric occupational therapist is needed for children and young people with spasticity that affects the upper limb. 4 (KPI) Offer a management programme that is: individualised goal focused developed and implemented in partnership with the child or young person and their family or carers. 5 (KPI) Local multidisciplinary child development teams and regional specialist centres should enable children and young people (and when appropriate their parents or carers) to be partners in the development and implementation of management programmes by offering: relevant information and educational materials regular opportunities for discussion and advice on the child or young person's developmental potential and how different treatment options may affect this potential. When formulating a management programme take into account the impact of 6 treatment schedules on family circumstances. Identify and agree with children and young people (and where appropriate their 7 parents or carers) goals and assessments that: are appropriate for their age and development will aim to improve their body function and structure and activity and participation in line with the domains of the World Health Organization's International Classification of Functioning, Disability and Health. 8 Record and communicate the child or young person's individualised goals within the local multidisciplinary child development team and with all healthcare professionals who care for them in different settings. 9 (KPI) Monitor the child or young person for: progression of spasticity development of secondary consequences of spasticity response to treatments • the need for changes to individualised goals and • the need for timely referral to regional specialist centres. 10 Do not offer botulinum toxin type A, continuous pump-administered intrathecal baclofen, orthopaedic surgery or selective dorsal rhizotomy to children and young people unless they are participating actively in a programme of care and physical

²² World Health Organization International Classification of Functioning, Disability and Health (ICF), available from www.who.int/classifications/icf/en/

Number	Recommendation
	therapy.
11 (KPI)	Offer adjunctive physical therapy following treatments involving botulinum toxin type A, continuous pump-administered intrathecal baclofen, orthopaedic surgery or selective dorsal rhizotomy to ensure effectiveness of these treatments.
12	Healthcare professionals in regional specialist centres who assess children and young people's suitability for oral drugs, botulinum toxin type A, continuous pump- administered intrathecal baclofen, orthopaedic surgery or selective dorsal rhizotomy should communicate with the child or young person's local multidisciplinary child development team to ensure compatibility and continuity of local and specialist services.
13 (KPI)	Before starting treatment, regional specialist centres should ensure that local multidisciplinary child development teams have allocated resources for locally provided post-treatment services.
	Physical therapy (physiotherapy and occupational therapy)
14 (KPI)	Offer to refer children and young people to a physiotherapist who is a member of the local multidisciplinary child development team.
15	Offer children and young people a physical therapy programme tailored to their individual needs and aimed at specific goals, such as:
	 enhancing skill development and improving function enhancing the ability to participate in everyday activities preventing or delaying the onset of complications such as contractures.
16	When formulating physical therapy programmes for children and young people take account of:
	 the views of the child or young person and their parents or carers the likelihood of achieving the intended goals of treatment the implications for the child or young person and their family in implementing the plan, including the time and effort involved and potential barriers (for example, barriers associated with particular cultural practices).
17	Consider task-focused active-use therapies such as constraint-induced movement therapy followed by bimanual therapy to enhance manual skills.
18	Consider structuring task-focused active-use therapy as an intensive programme over a short time period (for example, 4–8 weeks).
19	Consider muscle-strengthening therapy where assessment suggests that muscle weakness is contributing to loss of function or joint deformity.
20	Direct muscle-strengthening therapies towards specific goals and incorporate progressive repetitive exercises performed against resistance.
21	Consider postural management strategies to:
	 prevent or slow the development of contractures in children and young people at risk of developing these enable the child or young person to take part in activities appropriate to the child or young person's stage of development.
22	As part of postural management consider an individualised physical therapy programme that includes:
	 resting positions and low-load active or passive stretching over 24 hours.

Number	Recommendation
23	Offer training to parents and carers involved in delivering postural management programmes.
24	Assess whether any equipment or techniques used in the physical therapy plan is safe and appropriate, for example in children or young people with any of the following:
	 poorly controlled co-existing epilepsy respiratory compromise risk of aspiration risk of bone fracture due to osteoporosis (for example, children and young people who are non-ambulatory, malnourished or taking anticonvulsant therapy).
25	For children and young people who are at risk of bone fractures due to osteoporosis (for example, children and young people who are non-ambulatory, malnourished or taking anticonvulsant therapy), consider sustained low-load stretching to prevent or limit contractures and joint deformity. Depending on the individual child or young person's circumstances (for example recent history of fractures, bone pain, broken skin), consider low-load stretching and weight bearing including use of orthoses or serial casting.
26	Monitor children and young people at risk of developing functional difficulties related to their condition. Consider a programme of daily maintenance activities for children and young people with or at risk of developing functional difficulties.
27	Consider the use of serial casting after botulinum toxin type A treatment to improve passive range of movement if muscle tightness is identified alongside dynamic spasticity. To improve the cast's tolerability and allow better stretch of muscle, do not apply serial casts for 2-4 weeks after botulinum toxin type A treatment.
28	Offer children and young people and their parents or carers verbal and written information about physical therapy interventions needed to achieve intended goals. This information should emphasise possible advantages as well as difficulties and possible adverse effects (for example time commitment and discomfort) to enable them to participate in choosing a suitable physical therapy programme.
29	Reassess at regular intervals all children and young people receiving a programme of physical therapy to ensure that:
	 the intended goals are being achieved the therapy programme remains appropriate to the child or young person's individual needs.
30	When considering who should deliver physical therapy, take into account:
	 whether the child or young person and their parents or carers are able to deliver the specific therapy what training the child or young person or their parents or carers might need the wishes of the child or young person and their parents or carers.
31	Physical therapists should have a central role in preparing young people (and their parents or carers) for transition and transfer to adult physical therapy services (for example, helping them to take responsibility for their own physical therapy).

1

Number Research recommendation

1 (KRR) What are the greatest inhibitors of functional ability in children and young people with upper motor neuron lesions?

Why this is important

Children and young people with upper motor neuron lesions may experience:

- reduced muscle strength
- selective muscle control
- spasticity.

The relationships between these factors, and the extent to which the child or young person can develop or maintain functional ability, remain unclear. Prospective cohort studies, or large cross-sectional studies, are needed to explore the relationships between positive and negative effects of upper motor neuron lesions and to determine which factor is the greatest inhibitor of functional ability. The studies should incorporate classification of functional ability based on validated scales, such as the gross motor functional classification system (GMFCS).

- 2 (KRR) What is the optimal postural management programme using a standing frame in children aged 1–3 years?
- 3 What is the effectiveness of 24-hour postural management programmes in nonambulatory children and young people with spastic quadriplegia?

Why this is important

Children who are in GMFCS level 4 or 5 may benefit from using a standing frame as part of a postural management programme. Clinical benefits might include improved weight bearing and walking and, as a result, reduced hip migration. Postural management programmes involving the use of standing frames are part of established clinical practice. However, the individual elements that optimise the effectiveness of such programmes merit further research. The research should compare the effectiveness of postural management programmes that incorporate different durations and timings of standing frame use. For example, what is the effectiveness of 1 hour per day in a single session compared with two sessions of 30 minutes per day? The research should be conducted in children and aged 1–3 years. These children are likely to benefit most from using standing frames (in terms of developing well-formed femoral heads and acetabulums) and they should find the use of standing frames acceptable (because they are lighter than older children, they do not have severe contractures and they are usually easily occupied).

- 4 What is the optimal duration for the passive stretch component of physical therapy?
- 5 What is the effectiveness of activity-based context-focused physical therapy compared with child-focused physical therapy in children and young people who are in GMFCS levels 1 to 3?
- 6 What is the effectiveness and optimal age for modified constraint-induced movement therapy (CIMT)?
- 1
- 2

5 Orthoses

2 Introduction

1

34

35

36

3 The term orthosis refers to an externally applied device intended to modify the structural and 4 functional characteristics of the neuromuscular and skeletal systems. An orthosis may be 5 recommended as one of a range of measures to manage the effects of altered muscle tone and 6 associated abnormal postures. The prevention of persistently abnormal postures reduces the risk of 7 musculoskeletal adaptations that lead to fixed structural deformities. Orthoses are often used in 8 conjunction with other interventions such as physiotherapy, occupational therapy or botulinum toxin 9 therapy. They may also be used following surgery. They may be used to facilitate function (for 10 example, improving hand use) or they may be used to prevent deformity (for example, by applying 11 sustained muscle stretch during the night).

There are many types of orthosis. This chapter focuses on orthoses used in the management of limb and trunk spasticity. The technology and materials used to construct orthoses is evolving constantly. Orthoses may be manufactured as standard devices for a particular purpose or be custom-made for an individual by an orthotist or other trained professional. Orthoses may be beneficial in terms of assisting enhanced function and posture, but they may have disadvantages too. They may be considered to be unsightly or cause discomfort and pressure injuries and, if used inappropriately, they may affect function adversely.

19 Orthoses may improve gait and facilitate walking. Key considerations when examining the use of 20 orthoses in this setting are the degree of ankle dorsiflexion at 'initial foot contact' (when the foot is first 21 placed on the ground), during 'terminal stance' (when the foot is pushing off the ground), and at floor 22 clearance during the swing phase of the step. Each of these aspects impacts on the individual's gait. 23 Spasticity often interferes with a child or young person's ability to achieve ankle dorsiflexion (resulting 24 in an equinus foot posture) and this impedes walking. Spasticity can also cause excessive knee or hip 25 flexion resulting in a 'crouched' posture, and this makes walking inefficient and tiring. Children and 26 young people often find that fatigue of this kind impairs their ability to participate in activities with 27 peers. Speed of walking may be used as an indication of gait efficiency, including the ability to keep 28 up with peers.

- 29 For this review question the following types of orthoses were considered.
- Solid ankle-foot othosis (SAFO): the 'solid' or 'rigid' AFO prevents dorsiflexion and plantar flexion. It is used to prevent excessive plantar flexion or knee hyperextension during walking or standing. Knee hyperextension is a common problem, and tends to induce foot plantar flexion automatically.
 - Posterior leaf spring AFO (PLSAFO): this supports the foot and ankle, preventing excessive plantar flexion and knee extension. It also provides some flexibility in the foot plate. This enables some passive dorsiflexion and, therefore, aids in the 'toe-off' phase of walking.
- Hinged AFO (HAFO): this has a 'block' incorporated that can prevent dorsiflexion or plantar flexion depending on individual need. For most children and young people the aim is prevention of plantar flexion, but those prone to a 'crouch' gait may benefit from control of dorsiflexion.
- Ground reaction AFO (GRAFO): this applies forces to the shin in the standing position, which
 helps to reduce knee flexion and the tendency to adopt a crouch position.
- Supramalleolar orthosis (SMO): this allows some ankle movement in the sagittal plane and has the potential to control foot inversion and eversion.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 58 of 219

- Prescribed footwear: the review question also considers the use of footwear that is often prescribed for children and young people with mild spasticity because it is thought to be useful in supporting the ankle and providing a stable base for weight bearing and movement.
- Knee orthoses: these are designed to prevent knee movement (static orthoses) and are
 intended to control crouching or provide sustained leg muscle stretch. One form of knee
 orthosis is a leg gaiter, which consists of a brace with vertical support ribs that is wrapped
 around the knee to prevent bending.
- Hip orthoses: these are functional orthoses that are intended to hold the hip in a neutral position throughout the gait cycle or when standing or sitting.
- Upper limb orthoses: these include prefabricated, neoprene and thermoplastic upper limb orthoses. They can be static orthoses designed to prevent abnormal postures or functional (dynamic) orthoses used to support the upper limb in an efficient posture to improve function.
 - Trunk orthoses: the trunk orthoses considered in this review question are classed as spinal braces or thoracolumbosacral orthoses (TLSOs). These are static orthoses used to prevent or reduce abnormal spinal postures, such as scoliosis or kyphosis.
- 16 No relevant NICE guidance was identified for this review question.

17 **Review question**

1

2

3

13

14

15

24

25

26

27

28

29

30

31

32

33

34

18 What is the effectiveness of orthotic interventions (for example, ankle-foot orthoses, knee splints, and

19 upper limb orthoses) as compared to no orthoses to optimise movement and function, to prevent or

20 treat contractures in children with spasticity and with or without other motor disorders caused by a

21 non-progressive brain disorder?

22 **Description of included studies**

23 In total six studies were included in this review and they addressed four comparisons as follows.

- SAFOs versus no treatment in children and young people with diplegia and hemiplegia (five randomised comparative studies; Buckon 2001; Buckon 2004a; Rethlefsen 1999; Sienko-Thomas 2002; Radtka 2005)
- HAFOs with plantarflexion stop versus SAFOs in children and young people with diplegia and hemiplegia (the same five randomised comparative studies; Buckon 2001; Buckon 2004a; Rethlefsen 1999; Sienko-Thomas 2002; Radtka 2005)
- PLSOs versus SAFOs in children and young people with diplegia and hemiplegia (three randomised comparative studies; Buckon 2001; Buckon 2004a; Sienko-Thomas 2002)
- SMOs versus SAFOs in children and young people with diplegia (one study; Carlson 1997).

35 **Evidence profiles**

Solid ankle foot orthosis versus no treatment (weight bearing or non weight bearing)

Five randomised comparative studies were identified for inclusion and these compared SAFOs to no treatment (Buckon 2001; Buckon 2004a; Rethlefsen 1999; Sienko-Thomas 2002; Radtka 2005). The data for this comparison were not presented adequately enough for extraction from a further study (Carlson 1997).

The five randomised comparative studies examined outcomes assessing optimisation of movement
 (Buckon 2001; Buckon 2004a; Rethlefsen 1999; Sienko-Thomas 2002; Radtka 2005)

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 59 of 219

1 Diplegia

Number of	Number of patier	nts	Effect		Quality
studies	Solid ankle- foot orthosis (SAFO) Mean	No SAFO Mean	Relative (95% CI)	Absolute (95% CI)	
Ankle dorsiflexi	on Initial contact	(diplegia) (Better i	ndicated by higher	values)	
1 study (Rethlefsen 1999)	42 limbs	42 limbs	-	MD = 3.6 higher (1.42 higher to 5.78 higher)*	LOW
Ankle dorsiflexi	on Initial contact	(diplegia) (Better in	ndicated by higher	values)	
1 study (Buckon 2004a)	16	16	-	MD = 12.20 higher (5.46 higher to 18.94 higher)*	MODERATE
Ankle dorsi/pla	ntarflexion at initia	al contact - post ho	oc analysis (Better	indicated by high	er values)
1 study (Radtka 2005)	12	12	-	MD = 15.23 higher (11.02 higher to 19.44)*	LOW
Ankle dorsiflexi	on, terminal stand	e (diplegia) (Bette	r indicated by high	ner values)	
1 study (Rethlefsen 1999)	42 limbs	42 limbs	-	MD = 0.00 higher (2.71 lower to 2.71 higher)*	LOW
Ankle dorsiflexi	on, terminal stand	e - post hoc analy	sis (Better indicate	ed by higher value	s)
1 study (Radtka 2005)	12	12	-	MD = 12.80 higher (8.35 higher to 17.25 higher)*	LOW
Peak dorsiflexic	on stance (diplegia	a) (Better indicated	l by higher values)		
1 study (Buckon 2004a)	16	16	-	MD = 6.80 higher (0.03 lower to 13.63 higher)*	LOW
Peak dorsiflexid	on time, % (Better	indicated by highe	er values) (diplegia	l)	
1 study (Buckon 2004a)	16	16	-	MD = 9.00 higher (0.36 lower to 18.36 higher)*	LOW
Peak dorsiflexic	on swing (Better ir	ndicated by higher	values) (diplegia)		
1 study (Buckon 2004a)	16	16	-	MD = 10.80 higher (3.46 higher to 18.14 higher)*	MODERATE
Range (Better in	ndicated by higher	r values) (diplegia)			

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 60 of 219

2004a)				lower to 11.61			
				lower)*			
Ankle range Dorsiflexion knee extension, degree (Better indicated by higher values) (diplegia)							
1 study	16	16	-	MD = 0.00	LOW		
(Buckon				higher (3.46			
2004a)				lower to 3.46			
				higher)*			
Dorsiflexion kn	ee flexion, degrees	s (Better indicated	by higher values)	(diplegia)			
1 study	16	16	-	MD = 2.00	LOW		
(Buckon				higher (7.30			
2004a)				lower to 3.30			
,				higher)*			
Knee, initial co	ntact (degrees) (Be	etter indicated by h	nigher values) (dip	legia)			
1 study	42 limbs	42 limbs	-	MD = 1.00 lower	LOW		
(Rethlefsen				(6.15 lower to			
1999)				4.15 higher)*			
Knee, terminal	stance (degrees) (Better indicated by	/ higher values) (d	iplegia)			
1 study	42 limbs	42 limbs		MD = 1.00 lower	LOW		
(Rethlefsen				(5.28 lower to			
1999)				3.28 higher)*			
Velocity, m/s (B	etter indicated by	higher values) (di	plegia)				
1 study	16	16	-	MD = 0.04 lower	LOW		
(Buckon				(0.18 lower to			
2004a)				0.10 higher)*			
Velocity (cm/se	c) (Better indicate	d by higher values)		<u> </u>		
1 study	40 limbs	40 limbs		MD = 0.40	LOW		
(Radtka 2005)				higher (-4.03			
. ,				lower to 4.83			
				higher)*			

2 Hemiplegia

Number of	Number of patients		Effect		Quality	
studies	Solid ankle- foot orthosis (SAFO) Mean	No SAFO Mean	Relative (95% CI)	Absolute (95% CI)		
Ankle dorsiflexion Initial contact (hemiplegia) (Better indicated by higher values)						
1 study (Buckon 2001)	29	29		MD = 13.00 higher (10.42 higher to 15.58 higher)*	MODERATE	
Peak dorsiflexid	on stance (hemiple	egia) (Better indica	ted by higher valu	es)		
1 study (Buckon 2001)	29	29		MD = 5.00 higher (2.47 higher to 7.53 higher)*	MODERATE	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 61 of 219

Ankle dorsiflex	Ankle dorsiflexion Dynamic Range (Better indicated by higher values) (hemiplegia)						
1 study (Buckon 2001)	29	29		MD = 15.00 lower (17.73 lower to 12.27 lower)*	MODERATE		
Ankle range Do	rsiflexion knee ex	tension, degree (B	etter indicated by	higher values) (he	miplegia)		
1 study (Buckon 2001)	29	29	-	MD = 1.00 higher (1.58 lower to 3.58 higher)* *	LOW		
Dorsiflexion kn	ee flexion, degrees	s (Better indicated	by higher values)	(hemiplegia)			
1 study (Buckon 2001)	29	29		MD = 1.00 higher (1.58 lower to 3.58 higher)*	LOW		
Velocity, m/s (B	etter indicated by	higher values) (he	miplegia)				
1 study (Buckon 2001)	29	29		MD = 0.04 higher (0.06 lower to 0.14 higher)*	LOW		
Velocity ascent	(time for distance	stair 1 to stair 3)					
1 study (Sienko- Thomas 2002)	19	19		MD = 0.01 lower (0.05 lower to 0.03 higher)*	LOW		
Velocity descer	nt (time for distanc	e stair 3 to stair 1)					
1 study (Sienko- Thomas 2002)	19	19		MD = 0.04 higher (0.02 lower to 0.09 higher)*	LOW		

Two randomised comparative studies examined outcomes assessing optimisation of function (Buckon
 2004a and Rethlefsen 1999)

4 Diplegia

Number of	Number of patier	nts	Effect		Quality			
studies	Solid ankle- foot orthosis (SAFO) Mean	No SAFO Mean	Relative (95% CI)	Absolute (95% CI)				
Gross motor fu	nction measure (G	MFM) Standing (B	etter indicated by	higher values) (dip	olegia)			
1 study (Buckon 2004a)	16	16	-	MD = 0.40 higher (1.51 lower to 2.31 higher)*	LOW			
GMFM Walking	GMFM Walking/Running/Jumping (Better indicated by higher values) (diplegia)							
1 study (Buckon	16	16	-	MD = 3.50 higher (4.31	LOW			

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 62 of 219

2004a)				lower to 11.31 higher)*	
Pediatric evalu values) (dipleg	•	nventory (PEDI) M	obility Functional	skills (Better indica	ated by higher
1 study (Buckon 2004a)	16	16	-	MD = 1.40 higher (0.65 lower to 3.45 higher)*	LOW
PEDI Mobility C	aregiver assistance	ce (Better indicated	d by higher values) (diplegia)	
1 study (Buckon 2004a)	16	16	-	MD = 0.30 higher (0.64 lower to 1.24 higher)*	LOW

2 Hemiplegia

Number of	Number of patier	nts	Effect		Quality
studies	Solid ankle- foot orthosis (SAFO) Mean	No SAFO Mean	Relative (95% CI)	Absolute (95% CI)	
Gross motor fu	nction measure (G	MFM) Standing (B	etter indicated by	higher values) (he	miplegia)
1 study (Buckon 2001)	29	29	-	MD = 0.40 higher (0.40 lower to 1.20 higher)*	LOW
GMFM Walking/	Running/Jumping	(Better indicated	by higher values)	(hemiplegia)	
1 study (Buckon 2001)	29	29	-	MD = 0.50 higher (1.79 lower to 2.79 higher)*	LOW
Pediatric evalua values) (hemiple	•	nventory (PEDI) M	obility Functional	skills (Better indic	ated by higher
1 study (Buckon 2001)	29	29	-	MD = 1.40 higher (0.39 higher to 2.41 higher)*	LOW
Ascent PEDI Ite values) (hemiple		of children who ke	ep up with peers)	(Better indicated b	y higher
1 study (Sienko- Thomas 2002)	9/19	6/19	1.50 (0.66 to 3.39)	RD = 0.16 (0.15 lower to 0.46 higher)*	LOW
Descent PEDI It values) (hemiple	•••••••	of children who k	eep up with peers)	(Better indicated	by higher
1 study (Sienko- Thomas 2002)	7/19	5/19	1.40 (0.54 to 3.64)	RD = 0.11 (0.19 lower to 0.40 higher)*	LOW

3 * Calculated by the NCC-WCH

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 63 of 219

1 No studies reported reduction of pain, quality of life, acceptability and tolerability or adverse effects.

2 **Comparisons to fixed or solid ankle foot orthoses**

Hinged ankle foot orthosis with plantarflexion stop versus solid ankle foot orthosis

- 5 Five studies examined the comparison of HAFO versus SAFO (Radtka 2005; Buckon 2001; Buckon
- 6 2004a; Sienko-Thomas 2002; Rethlefsen 1999).

Four randomised comparative studies assessed optimisation of movement (Buckon 2004a; Radtka
 2005; Sienko-Thomas 2002; Rethlefsen 1999).

9 Diplegia

Number of	Number of paties	nts	Effect		Quality
studies	Hinged ankle- foot orthosis (HAFO) Mean	Solid ankle- foot orthosis (SAFO) Mean	Relative (95% CI)	Absolute (95% CI)	
Ankle dorsiflexi	on Initial contact	(diplegia) (Better i	ndicated by higher	values)	
1 study (Rethlefsen 1999)	42 limbs	42 limbs	-	MD = 1.00 higher (0.94 lower to 2.94 higher)*	LOW
1 study (Buckon 2004a)	16	16	-	MD = 0.20 lower (3.03 lower to 2.63 higher)*	LOW
Ankle dorsi/plan	ntarflexion at initia	al contact - post ho	oc analysis (Better	indicated by high	er values)
1 study (Radtka 2002)	12	12	-	MD = 1.72 lower (6.61 lower to 3.17 higher)*	LOW
Ankle dorsiflexi	on, terminal stand	e (diplegia) (Bette	r indicated by high	ner values)	
1 study (Rethlefsen 1999)	42 limbs	42 limbs	-	MD = 5.00 higher (2.82 higher to 7.18 higher)*	LOW
1 study (Radtka 2002)	12	12	-	MD = 4.63 higher (0.38 higher to 8.88 higher)*	LOW
Peak dorsiflexic	on stance(diplegia) (Better indicated	by higher values)		
1 study (Buckon 2004a)	16	16	-	MD = 6.10 higher (1.27 higher to 10.93 higher)*	MODERATE
Peak dorsiflexic	on time, % (Better	indicated by highe	er values) (diplegia)	
1 study (Buckon 2004a)	16	16	-	MD = 10.00 higher (3.18 higher to 16.82 higher)*	MODERATE
Peak dorsiflexic	on swing (Better ir	ndicated by higher	values) (diplegia)		

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 64 of 219

2004a)Iower to4.95 higher,*Range (Better indicated by higher values) (diplegia)1study (Buckon 2004a)1616-MDs.00 higher,*MODERATE higher to9.26Ankle range Dorsiflexion knee extension, degree (Better indicated by higher values) (diplegia)1616-MD2.00 higher,*LOW1study (Buckon 2004a)1616-MD2.00 higher,*LOW2004a)1616-MD2.00 higher,*LOW1study (Buckon 2004a)1616-MD2.00 higher,*LOW1study (Buckon 2004a)1616-MD2.00 higher,*LOW1study (Buckon 2004a)42 limbs42 limbsMD=2.00 higher,*LOW1study (Rethelsen 1999)42 limbs42 limbsMD=2.00 higher,*LOW1study (Rethelsen 1999)42 limbs42 limbsMD=2.00 higher,*LOW1study (Rethelsen 1999)1616-MD=2.00 higher,*LOW1study (Rethelsen 1999)1616-MD=2.00 higher,*LOW1study (Rethelsen16-MD=2.00 higher,*LOW1study (Rethelsen16-MD=2.00 higher,*LOW<						
IStudy (Buckon 2004a)161616MD= 5.90 higher to pigher)*MODERATEAnkle range Dorsiflexion knee extension, degree (Better indicated by higher values) (diplegia)MD= 2.00 higher)*MDE1study (Buckon 2004a)161616MD= 2.00 higher)*LOW2004a)161616MD= 4.00 higher values) (diplegia)LOW1study (Buckon 2004a)1616-MD= 4.00 higher values)LOW2004a)161616-MD= 4.00 higher values)LOW1study (Buckon 2004a)1616-MD= 4.00 higher values)LOW2004a)1616-MD= 4.00 higher values)LOW1study (Rethiefsen 1999)42 limbs42 limbsMD= 2.00 higher values)LOW1study (Rethiefsen 1999)42 limbs42 limbsMD= 2.00 higher values)LOW1study (Rethiefsen 1999)1616-MD= 0.06 lower (0.20 lower to 0.08 higher)*LOW2004a)1616-MD= 0.06 lower (0.20 lower to 0.08 higher)*LOW1study (Radika 2002)1212MD= 4.93 higher)*LOW2004a1616-MD= 0.06 lower to 0.08 higher)*LOW2004a)161616M	1 study (Buckon 2004a)	16	16	-	higher (2.75 lower to 4.95	LOW
(Buckon 2004a)higher higher (2.54 higher)*higher higher (2.54 higher)*Ankle range Dorsiflexion knee extension, degree (Better indicated by higher values) (diplegia)IAnkle range Dorsiflexion knee extension, degree (Better indicated by higher values)ID2004a)1616-MD = 2.00 higher'LOWNover to 6.22 higher)*IDDorsiflexion kneeflexion, degrees (Better indicated by higher values) (diplegia)1study (Buckon 2004a)16116-MD = 2.00 	Range (Better in	ndicated by higher	values) (diplegia)			
1study (Buckon 2004a)161616-MD=2.00LOWBuckon 2004a)1616-MD=2.02LOWDorsiflexion knee (Buckon 2004a)1616-MD=4.00LOW1study (Buckon 2004a)1616-MD=4.00LOW1study (Rethlefsen 1999)1616-MD=2.00LOW1study (Rethlefsen 1999)42 limbs42 limbsMD=2.00LOW1study (Rethlefsen 1999)42 limbs42 limbsMD=2.00LOW1study (Rethlefsen 1999)42 limbs42 limbsMD=2.00LOW1study (Rethlefsen 1999)1616-MD=0.00LOW1study (Rether indicated by higher values) (diplegia)1LOW0.08LOW1study (Reduction (Buckon 2004a)1616-MD=0.00LOW1study (Reduction (Reduction (Reduction (Reduction (Rether indicated by higher values) (diplegia)ILOW10101010101study (Reduction (Rether indicated by higher values)1212MD=4.93LOW1study (Rether indicated by higher values)Idiplegia)ILOW1010101	1 study (Buckon 2004a)	16	16	-	higher (2.54 higher to 9.26	MODERATE
(Buckon 2004a)higher igher)*higher igher)*(2.22 lower to higher)*higher (2.22 lower to higher)*(Diver igher)*(Diver 	Ankle range Do	rsiflexion knee ext	tension, degree (B	etter indicated by	higher values) (dip	olegia)
Study (Buckon 2004a)161616.MD = 4.00 higher (0.90) lower to 8.90 higher)*LOWKnee, initial contact (degrees) (Better indicated by higher values) (diplegia)MD = 2.00 higher (2.92) lower to 6.92 higher)*LOW1study (Rethilefsen 1999)42 limbs42 limbsMD = 2.00 higher (2.92) lower to 6.92 higher)*LOWKnee, terminal stance (degrees) (Better indicated by higher values) (diplegia)MD = 2.00 higher (2.92) lower to 6.92 higher)*LOW1study (Rethilefsen 1999)42 limbs42 limbsMD = 2.00 higher values) (diplegia)LOW1study (Better indicated by higher values) (diplegia)MD = 2.00 higher (2.28) lower to 6.28 higher)*LOWVelocity, m/s (Better indicated by higher values) (diplegia)MD = 0.06 lower (0.20 lower to 0.08 higher)*LOW1study (Backon 2004a)1616-MD = 0.06 lower (0.20 lower to 0.08 higher)*LOW1study (Radtka 2002)1212MD = 4.93 higher (12.12) lower to 21.98 higher)*LOWVelocity, m/mitute (Better indicated by higher values) (diplegia)MD = 0.90 higher)*LOW1study (Rethilefsen 1999)40 limbs40 limbsMD = 0.90 higher (3.75) lower to 5.55LOW	1 study (Buckon 2004a)	16	16	-	higher (2.22 lower to 6.22	LOW
(Buckon 2004a)higher lower to higher)*higher lower to higher)higher lower to higher)Knee, initial co-tact (degrees) (Better indicated by higher values) (diplegia)MD higher (2.92 	Dorsiflexion kn	ee flexion, degrees	s (Better indicated	by higher values)	(diplegia)	
1study (Rethlefsen 1999)42 limbs42 limbsMD= 2.00 higher (2.92) lower to 6.92 higher)*LOWKnee, terminal stance (degrees) (Better indicated by higher values) (diplegia)MD= 2.00 higher)*LOW1study (Rethlefsen 1999)42 limbs42 limbsMD= 2.00 higher (2.28) lower to 6.28 higher)*LOWVelocity, m/s (Better indicated by higher values) (diplegia)MD= 0.06 lower 0.08 higher)*LOW1study (Buckon 2004a)1616-MD = 0.06 lower 0.08 higher)*LOW1study (Radtka 2002)1212MD = 4.93 higher (12.12) lower to 21.98 higher)*LOW1study (Radtka 2002)1212MD = 4.93 higher (3.75) lower to 21.98 higher (3.75) lower to 5.55LOW	1 study (Buckon 2004a)	16	16	-	higher (0.90 lower to 8.90	LOW
(Rethlefsen 1999)higher lower to 6.92 higher)*higher lower to 6.92 higher)*Knee, terminal stance (degrees) (Better indicated by higher values) (diplegia)1study (Rethlefsen 1999)42 limbs42 limbsMD = 2.00 	Knee, initial con	ntact (degrees) (Be	etter indicated by h	nigher values) (dip	legia)	
1study (Rethlefsen 1999)42 limbs42 limbsMD = 2.00 higher (2.28 lower to 6.28 higher)*LOWVelocity, m/s (Better indicated by higher values) (diplegia)MD = 0.06 lower (0.20 lower to 0.08 higher)*LOW1study (Buckon 2004a)1616-MD = 0.06 lower (0.20 lower to 0.08 higher)*LOWVelocity (cm/sec) (Better indicated by higher values)I1212LOW1study (Radtka 2002)121212MD = 4.93 higher (12.12 lower to 21.98 higher)*LOWVelocity, m/minute (Better indicated by higher values) (diplegia)MD = 0.90 higher (3.75 lower to 5.55LOW	(Rethlefsen	42 limbs	42 limbs		higher (2.92 lower to 6.92	LOW
(Rethlefsen 1999)higher higher(2.28 lower to 	Knee, terminal	stance (degrees) (Better indicated by	/ higher values) (d	iplegia)	
1study (Buckon 2004a)1616-MD = 0.06 lower (0.20 lower to 0.08 higher)*LOWVelocity (cm/sec) (Better indicated by higher values)MD = 4.93 higher (12.12 lower to 21.98 higher)*LOW1study (Radtka 2002)1212MD = 4.93 higher (12.12 lower to 21.98 higher)*LOWVelocity, m/minute (Better indicated by higher values) (diplegia)MD = 0.90 higher (3.75 lower to 5.55LOW	1 study (Rethlefsen 1999)	42 limbs	42 limbs		higher (2.28 lower to 6.28	LOW
(Buckon 2004a)(0.20 lower to 0.08 higher)*Velocity (cm/sec) (Better indicated by higher values)1 (Radtka 2002)1212MD = 4.93 higher (12.12 lower to 21.98 higher)*LOWVelocity, m/minute (Better indicated by higher values) (diplegia)MD = 0.90 higher (3.75 lower to 5.55LOW	Velocity, m/s (B	etter indicated by	higher values) (dij	plegia)		
1study (Radtka 2002)1212MD=4.93 higherLOWVelocity, m/minute (Better indicated by higher values) (diplegia)MD= 0.90 higherLOW1study (Rethlefsen 1999)40 limbs40 limbsMD= 0.90 higherLOW	1 study (Buckon 2004a)	16	16	-	(0.20 lower to	LOW
(Radtka 2002)higher(12.12 lower to 21.98 higher)*Velocity, m/minute (Better indicated by higher values) (diplegia)MD = 0.90 higher (3.75 lower to 5.55LOW	Velocity (cm/se	c) (Better indicate	d by higher values)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 study (Radtka 2002)	12	12		higher (12.12 lower to 21.98	LOW
(Rethlefsen 1999) higher (3.75 lower to 5.55	Velocity, m/min	ute (Better indicat	ed by higher value	es) (diplegia)		
	(Rethlefsen	40 limbs	40 limbs		higher (3.75 lower to 5.55	LOW

2 Hemiplegia

Number of Number of patients	Effect	Quality
------------------------------	--------	---------

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 65 of 219

studies	Hinged ankle-	Solid ankle-	Relative	Absolute	
	foot orthosis (HAFO) Mean	foot orthosis (SAFO) Mean	(95% CI)	(95% CI)	
Ankle dorsiflex	ion Initial contact (hemiplegia) (Bette	er indicated by hig	her values)	
1 study (Buckon 2001)	29	29	-	MD = 1.00 higher (1.02 lower to 3.02 higher)*	LOW
Peak dorsiflexid	on stance (hemiple	egia) (Better indica	ted by higher valu	es)	
1 study (Buckon 2001)	29	29	-	MD = 5.00 higher (2.21 higher to 7.79 higher)*	MODERATE
Ankle dorsiflex	ion Dynamic Rang	e (Better indicated	by higher values)	(hemiplegia)	
1 study (Buckon 2001)	29 ⁷	29 ⁸	-	MD = 5.00 higher (3.21 higher to 6.79 higher)*	MODERATE
Ankle range Do	rsiflexion knee ex	tension, degree (B	etter indicated by	higher values) (he	miplegia)
1 study (Buckon 2001)	29	29	-	MD = 1.00 higher (1.29 lower to 3.29 higher)*	LOW
Dorsiflexion kn	ee flexion, degrees	s (Better indicated	by higher values)	(hemiplegia)	
1 study (Buckon 2001)	29	29	-	MD = 1.00 higher (1.58 lower to 3.58 higher)*	LOW
Velocity, m/s (B	etter indicated by	higher values) (he	miplegia)		
1 study (Buckon 2001)	29	29	-	MD = 0.03 higher (0.05 lower to 0.11 higher)*	LOW
Velocity ascent	(time for distance	stair 1 to stair 3)			
1 study (Sienko- Thomas 2002)	19	19	-	MD = 0.01 higher (0.03 lower to 0.06 higher)*	LOW
Velocity descent	(time for distance s	tair 3 to stair 1)			
1 study (Sienko- Thomas 2002)	19	19	P = No significant difference (reported)	MD = 0.02 lower (0.07 lower to 0.04 higher)*	LOW

2 Three studies examined optimisation of function (Buckon 2001; Buckon 2004a; Sienko-Thomas3 2002).

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 66 of 219

1 Diplegia

Number of	Number of paties	nts	Effect		Quality
studies	Hinged ankle- foot orthosis (HAFO) Mean	Solid ankle- foot orthosis (SAFO) Mean	Relative (95% Cl)	Absolute (95% Cl)	
Gross motor fu	nction measure (G	MFM) Standing (B	etter indicated by	higher values) (di	olegia)
1 study (Buckon 2004a)	16	16	-	MD = 0.30 lower (2.31 lower to 1.71 higher)*	LOW
GMFM Walking	Running/Jumping	(Better indicated	by higher values)	(diplegia)	
1 study (Buckon 2004a)	16	16	-	MD = 0.40 higher (7.02 lower to 7.82 higher)*	LOW
Pediatric evalua values) (diplegi	•	nventory (PEDI) M	obility Functional	skills (Better indic	ated by higher
1 study (Buckon 2004a)	16	16	-	MD = 0.70 lower (2.78 lower to 1.38 higher)*	LOW
PEDI Mobility C	aregiver assistant	ce (Better indicate	d by higher values) (diplegia)	
1 study (Buckon 2004a)	16 ⁹	16 ¹⁰	-	MD = 0.10 higher (0.73 lower to 0.93 higher)*	LOW
Ascent PEDI Ite values) (hemip		of children who ke	ep up with peers)	(Better indicated b	y higher
1 study (Sienko- Thomas 2002)	12/19	9/19	1.33 (0.74 to 2.39)	RD=0.16higher(0.15fewer to0.47higher)*	LOW
Descent PEDI In values) (hemipl	••• •	of children who k	eep up with peers) (Better indicated	by higher
1 study (Sienko- Thomas 2002)	10/19	7/19	1.43 (0.69 to 2.96)	RD = 0.16 higher (0.15 fewer to 0.47 higher)*	LOW

2 * Calculated by the NCC-WCH

3 Hemiplegia

Number of	Number of patients		Effect		Quality					
studies	Hinged ankle- foot orthosis (HAFO) Mean	Solid ankle- foot orthosis (SAFO) Mean	Relative (95% CI)	Absolute (95% CI)						
Gross motor fu	Gross motor function measure (GMFM) Standing (Better indicated by higher values) (hemiplegia)									
1 study (Buckon 2001)	29	29	-	MD = 0.10 lower (0.61 lower to 0.41 higher)*	LOW					

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 67 of 219

GMFM Walking	GMFM Walking/Running/Jumping (Better indicated by higher values) (hemiplegia)								
1 study (Buckon 2001)	29	29	-	MD = 1.00 higher (0.79 lower to 2.79 higher)*	LOW				
Pediatric evalua values) (hemipl	-	nventory (PEDI) M	obility Functional	skills (Better indic	ated by higher				
1 study (Buckon 2001)	29	29	-	MD = 0.10 lower (1.11 lower to 0.91 higher)*	LOW				
Ascent PEDI Ite values) (hemipl		of children who ke	ep up with peers)	(Better indicated b	y higher				
1 study (Sienko- Thomas 2002)	12/19	9/19	1.33 (0.74 to 2.39)	RD = 0.16 higher (0.15 lower to 0.47 higher)*	LOW				
	Descent PEDI Item 59 (proportion of children who keep up with peers) (Better indicated by higher values) (hemiplegia)								
1 study (Sienko- Thomas 2002)	10/19	7/19	1.43 (0.69 to 2.96)	RD=0.16higher(0.15lowertohigher)*	LOW				

2 The studies did not report reduction of pain, quality of life, acceptability and tolerability or adverse 3 effects.

4 **Posterior leaf spring ankle foot orthosis versus solid ankle foot orthosis**

5 Three studies examined the comparison of posterior leaf spring AFO versus SAFO (Buckon 2001; 6 Buckon 2004a; Sienko-Thomas 2002).

All three studies examined outcomes for optimisation of movement (Buckon 2001; Buckon 2004a;
 Sienko-Thomas 2002).

9 Diplegia

Number of	Number of patie	nts	Effect		Quality
studies	Posterior leaf spring ankle- foot orthosis (PLSAFO) Mean	Solid ankle- foot orthosis (SAFO) Mean	Relative (95% CI)	Absolute (95% CI)	
Ankle dorsifle	xion Initial contact	(diplegia) (Better i	ndicated by higher	values)	
1 study (Buckon 2004a)	/ 16	16	-	MD = 0.20 lower (3.35 lower to 2.95 higher)*	LOW
Peak dorsifle	kion stance(diplegia) (Better indicated	by higher values)		
1 study (Buckon 2004a)	/ 16	16	-	MD = 2.30 higher (2.12 lower to 6.72 higher)*	LOW

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 68 of 219

Peak dors	siflexic	on time, % (Better	indicated by highe	er values) (diplegia)	
1 s (Buckon 2004a)	study	16	16	-	MD = 2.00 higher (7.01 lower to 11.01 higher)*	LOW
Peak dors	siflexic	on swing (Better in	dicated by higher	values) (diplegia)		
1 s (Buckon 2004a)	study	16	16	-	MD = 0.30 lower (3.85 lower to 3.25 higher)*	LOW
Range (Be	etter ir	ndicated by higher	values) (diplegia)			
1 s (Buckon 2004a)	study	16	16	-	MD = 4.00 higher (1.11 higher to 6.89 higher)*	MODERATE
Ankle ran	ge Do	rsiflexion knee ext	ension, degree (B	etter indicated by	higher values) (dip	olegia)
1 s (Buckon 2004a)	study	16	16	-	MD = 0.00 higher (3.83 lower to 3.83 higher)*	LOW
Dorsiflexi	ion kne	ee flexion, degrees	s (Better indicated	by higher values)	(diplegia)	
1 s (Buckon 2004a)	study	16	16	-	MD = 3.00 higher (2.30 lower to 8.30 higher)*	LOW
Velocity, r	m/s (B	etter indicated by	higher values) (dij	olegia)		
1 s (Buckon 2004a)	study	16	16	-	MD = 0.07 higher (0.06 lower to 0.20 higher)*	LOW

2 Hemiplegia

Number of studies	Number of patients		Effect		Quality		
	Posterior leaf spring ankle- foot orthosis (PLSAFO) Mean	Solid ankle- foot orthosis (SAFO) Mean	Relative (95% CI)	Absolute (95% CI)			
Ankle dorsiflex	Ankle dorsiflexion Initial contact (hemiplegia) (Better indicated by higher values)						
1 study (Buckon 2001)	29	29		MD = 2.20 lower (4.49 lower to 0.09 higher)*	LOW		
Peak dorsiflexion stance (hemiplegia) (Better indicated by higher values)							
1 study (Buckon 2001)	29	29		MD = 5.00 higher (2.21 higher to 7.79 higher)*	MODERATE		

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 69 of 219

Ankle dorsiflexion Dynamic Range (Better indicated by higher values) (hemiplegia)					
1 study (Buckon 2001)	29	29		MD = 4.00 higher (2.21 higher to 5.79 higher)*	MODERATE
Ankle range Do	rsiflexion knee ext	tension, degree (B	etter indicated by	higher values) (he	miplegia)
1 study (Buckon 2001)	29	29	-	MD = 1.00 higher (1.02 lower to 3.02 higher)*	LOW
Dorsiflexion kn	ee flexion, degrees	s (Better indicated	by higher values)	(hemiplegia)	
1 study (Buckon 2001)	29	29		MD = 1.00 higher (1.58 lower to 3.58 higher)*	LOW
Velocity, m/s (B	etter indicated by	higher values) (he	miplegia)		
1 study (Buckon 2001)	29	29		MD = 0.07 higher (0.02 lower to 0.16 higher)*	LOW
Velocity ascent	(time for distance	stair 1 to stair 3)			
1 study (Sienko- Thomas 2002)	19	19		MD = 0.03 higher (0.01 lower to 0.08 higher)*	LOW
Velocity descent (time for distance stair 3 to stair 1)					
1 study (Sienko- Thomas 2002)	19	19		MD = 0.03 higher (0.04 lower to 0.09 higher)*	LOW

2 All three studies examined optimisation of function (Buckon 2001; Buckon 2004a; Sienko-Thomas 3 2002).

4 Diplegia

Number of studies	Number of patients		Effect		Quality		
	Posterior leaf spring ankle- foot orthosis (PLSAFO) Mean	Solid ankle- foot orthosis (SAFO) Mean	Relative (95% CI)	Absolute (95% CI)			
Gross motor fu	Gross motor function measure (GMFM) Standing (Better indicated by higher values) (diplegia)						
1 study (Buckon 2004a)	16	16	-	MD = 0.20 lower (2.25 lower to 1.85 higher)*	LOW		
GMFM Walking/Running/Jumping (Better indicated by higher values) (diplegia)							

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 70 of 219

1 study (Buckon 2004a)	16	16	-	MD = 0.20 higher (7.01 lower to 7.41 higher)*	LOW		
	Pediatric evaluation of disability inventory (PEDI) Mobility Functional skills (Better indicated by higher values) (diplegia)						
1 study (Buckon 2004a)	16	16	-	MD = 0.30 higher (1.72 lower to 2.32 higher)*	LOW		
PEDI Mobility Caregiver assistance (Better indicated by higher values) (diplegia)							
1 study (Buckon 2004a)	16	16	-	MD = 0.10 lower (1.19 lower to 0.99 higher)*	LOW		

2 Hemiplegia

Number of	Number of patier	nts	Effect		Quality	
studies	Posterior leaf spring ankle- foot orthosis (PLSAFO) Mean	Solid ankle- foot orthosis (SAFO) Mean	Relative (95% CI)	Absolute (95% CI)		
Gross motor fu	nction measure (G	MFM) Standing (B	etter indicated by	higher values) (he	miplegia)	
1 study (Buckon 2001)	29	29	-	MD = 0.20 lower (0.71 lower to 0.31 higher)*	LOW	
GMFM Walking	Running/Jumping	(Better indicated	by higher values)	(hemiplegia)		
1 study (Buckon 2001)	29	29	-	MD = 0.50 higher (1.29 lower to 2.29 higher)*	LOW	
	Pediatric evaluation of disability inventory (PEDI) Mobility Functional skills (Better indicated by highe values) (hemiplegia)					
1 study (Buckon 2001)	29	29	-	MD = 0.20 lower (1.21 lower to 0.81 higher)*	LOW	
Ascent PEDI Item 54 (proportion of children who keep up with peers) (Better indicated by higher values) (hemiplegia)						
1 study (Sienko- Thomas 2002)	8/19	9/19	0.89 (0.44 to 1.81)	RD = 0.05 lower (0.37 lower to 0.26 higher) *	LOW	
	Descent PEDI Item 59 (proportion of children who keep up with peers) (Better indicated by higher values) (hemiplegia)					
1 study (Sienko- Thomas 2002)	6/19	7/19	0.86 (0.35 to 2.08)	RD = 0.05 lower (0.35 lower to 0.25 higher) *	LOW	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 71 of 219

2 The studies did not report reduction of pain, quality of life, acceptability and tolerability or adverse 3 effects.

4 Comparisons to no treatment or no orthosis

5 Supramalleolar foot orthosis versus solid ankle foot orthosis

6 One study was identified for inclusion and this compared SMO with (Carlson 1997). The study

7 examined outcomes assessing optimisation of movement.

8 Diplegia

Number of studies	Number of patients		Effect		Quality		
	Supramalleolar orthosis (SMO) Mean	Solid ankle- foot orthosis (SAFO) Mean	Relative (95% CI)	Absolute (95% CI)			
Velocity (m/s) -	Velocity (m/s) - group mean (Better indicated by higher values)						
1 study (Carlson 1997)	11	11	-	MD = 0.00 (0.16 lower to 0.16 higher)*	LOW		
Ankle dorsiflexion angle at foot strike (degrees) - group mean (Better indicated by higher values)							
1 study (Carlson 1997)	11	11	-	MD = 6.70 lower (12.15 lower to 1.25 lower)*	MODERATE		

9 * Calculated by the NCC-WCH

10 No studies reported optimisation of function, reduction of pain quality of life, acceptability and 11 tolerability or adverse effects.

12 **Evidence statement**

Solid ankle foot orthosis versus no treatment (weight bearing or non weight bearing)

15 Five randomised comparative studies examined outcomes assessing optimisation of movement.

16 Three randomised studies of children and young people with diplegia reported significantly greater

17 mean ankle dorsiflexion at initial contact with a SAFO compared to no SAFO (LOW to MODERATE).

18 The mean differences ranged from 3.6 to 15.23 degrees higher. However, one study analysed results 19 by limb, and another reported a post hoc analysis of data.

Two randomised studies of children with diplegia compared the effects of a SAFO and no SAFO on mean ankle dorsiflexion at terminal stance. Whilst one study found no statistically significant differences in results (study analysed results by limb) (LOW), the other study found a mean increase in ankle dorsiflexion at terminal stance of 12.8 degrees favouring wearing a SAFO compared to no SAFO (post hoc analysis of data). (LOW)

One randomised study of children with diplegia found that although the percentage peak dorsiflexion time and peak dorsiflexion in stance was improved when a SAFO was worn compared to no SAFO, these differences were not statistically significant (LOW). The same study reported that use of a SAFO peak dorsiflexion swing was significantly higher compared to no SAFO (MODERATE), but that range of movement was significantly greater when no SAFO was worn compared to when one was not worn. (MODERATE)

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 72 of 219

- No significant differences were reported in degrees of ankle dorsiflexion range with knee extended or
 flexed in one randomised study of children with diplegia. (LOW)
- One study of children and young people with diplegia reported no significant differences between
 SAFO and no SAFO assessments of degrees for knee position at initial contact or at terminal stance.
 (LOW)
- 6 No statistically significant differences were reported in walking velocity achieved when wearing a 7 SAFO compared to no SAFO in three randomised studies involving children and young people with 8 diplegia. (LOW)
- 9 One randomised study of children and young people with hemiplegia reported that use of a SAFO
- 10 statistically significantly improved ankle dorsiflexion at initial contact and peak dorsiflexion in stance 11 compared to no SAFO. (MODERATE) However, the same study found that ankle dorsiflexion dynamic
- 11 compared to no SAFO. (MODERATE) However, the same study found that ankle dorsiflexion dynamic 12 range was significantly greater when no SAFO was worn compared to when a SAFO was worn.
- 13 (MODERATE)
- 14 One randomised study of children and young people with hemiplegia found no significant differences 15 in degrees of dynamic range of ankle dorsiflexion with knee extended or flexed in children with 16 hemiplegia. (LOW)
- 17 One randomised study of children and young people with hemiplegia found no significant differences 18 in walking velocity when SAFO use was compared to no SAFO use. (LOW) A subgroup analysis 19 based on 19 of the participants reported no significant differences in speed of going up and down 20 stairs when wearing a SAFO as compared to no SAFO. (LOW)
- Two randomised comparative studies assessed optimisation of function. No significant differences were identified in gross motor function measure (GMFM) standing scores or walking, running and jumping scores when SAFO use was compared to no SAFO in one study of children and young people with diplegia. (LOW)
- 24 people with diplegia. (LOW)
- One randomised study of children and young with diplegia found no significant differences in pediatric
 evaluation of disability inventory (PEDI) mobility functional skills or PEDI mobility caregiver assistance
 scores when SAFO use was compared to no SAFO use. (LOW)
- No significant differences were identified in GMFM standing scores or walking, running and jumping scores when SAFO use was compared to no SAFO use in one study of children and young people with hemiplegia. (LOW)
- 31 One randomised study of children and young people with hemiplegia reported a significant 32 improvement in PEDI mobility functional skills scores when wearing SAFOs compared to not wearing 33 SAFOs. (MODERATE) A subgroup analysis of 19 of the participants reported no significant differences 34 in the proportion of children and young people able to keep up with their peers in going up and down
- 35 stairs when wearing a SAFO compared to no SAFO. (LOW)
- 36 No evidence was identified relating to reduction of pain, quality of life, acceptability and tolerability or37 adverse effects.

Comparisons to fixed or solid ankle foot orthoses

Hinged ankle foot orthosis with plantarflexion stop versus solid ankle footorthosis

- 41 Five randomised comparative studies assessed optimisation of movement.
- 42 Three randomised studies in children and young people with diplegia reported no significant 43 differences in ankle dorsiflexion at initial contact when HAFO use was compared to SAFO use. (LOW)
- Two randomised studies in children and young people with diplegia found significant increases in ankle dorsiflexion at terminal stance when a HAFO was compared to a SAFO (one was a post hoc analysis and in the other 'number of limbs' was the unit of analysis). (LOW)
- 47 One randomised study in children and young people with diplegia found that peak dorsiflexion at 48 stance and peak dorsiflexion time percentage and peak dorsiflexion range were all significantly 49 improved, (MODERATE) when a HAFO was worn compared to a SAFO, but that there were no
 - Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 73 of 219

significant differences between the groups for peak dorsiflexion swing. (LOW) The term 'peak dorsiflexion time percentage' was not defined in the article. No significant differences were reported in degrees of ankle dorsiflexion range with knee extended or flexed in children and young people wearing a HAFO or a SAFO. (LOW)

- 5 One study of children and young people with diplegia reported no significant differences between 6 HAFO and SAFO assessments of degrees for knee position at initial contact or at terminal stance. 7 (LOW)
- 8 No significant differences were reported in velocity achieved when wearing a HAFO compared to a 9 SAFO in three randomised studies in children and young people with diplegia. (LOW)
- 10 No significant differences were reported in ankle dorsiflexion at initial contact when HAFO use was 11 compared to SAFO use in one study of children and young people with hemiplegia. (LOW)
- 12 One study of children and young people with hemiplegia reported significantly improved peak 13 dorsiflexion at stance and active range of ankle dorsiflexion when a HAFO was worn compared to 14 when a SAFO was used. (MODERATE)
- 15 No significant differences in degrees of ankle dorsiflexion dynamic range were found with knee
- 16 extended or flexed when wearing a HAFO or SAFO in one study involving children and young people 17 with hemiplegia. (LOW)
- 18 No significant differences were reported in velocity achieved when wearing a HAFO compared to a 19 SAFO in one study involving children and young people with hemiplegia. (LOW) A subgroup analysis 20 based on 19 of the participants reported no significant differences in velocity ascent or descent 21 achieved when wearing a HAFO compared to a SAFO. (LOW)
- Three studies examined optimisation of function. No significant differences were identified in GMFM standing scores or walking, running and jumping scores when HAFO use was compared to SAFO use in one randomised study of children and young people with diplegia. (LOW)
- One randomised study of children and young people with diplegia found no significant differences in PEDI mobility functional skills or PEDI mobility caregiver assistance scores when HAFO use was compared to SAFO use. (LOW) A subgroup analysis based on 19 of the participants reported no significant differences in the proportion of children and young people able to keep up with their peers in ascent or descent of stairs when wearing a HAFO compared to a SAFO. (LOW)
- 30 No significant differences were identified in GMFM standing scores or walking, running and jumping 31 scores when HAFO use was compared to SAFO use in one study of children and young people with 32 hemiplegia. (LOW)
- One randomised study of children and young people with hemiplegia found no significant differences in PEDI mobility functional skills scores when HAFO use was compared to SAFO use. (LOW) A subgroup analysis based on 19 of the participants reported no significant differences in the proportion of children and young people able to keep up with their peers in ascent or descent of stairs when wearing a HAFO compared to a SAFO. (LOW)

38 **Posterior leaf spring ankle foot orthosis versus solid ankle foot orthosis**

- Three studies examined outcomes for optimisation of movement. No significant differences were identified in ankle dorsiflexion at initial contact, peak dorsiflexion, percentage peak dorsiflexion time or peak dorsiflexion swing at stance when PLS AFO use was compared to SAFO use in children and young people with diplegia. (LOW)
- Range of ankle dorsiflexion was significantly improved when PLS AFO was used compared to SAFO
 use in one study of children and young people with diplegia. (LOW)
- 45 No significant differences were identified in degrees of ankle dorsiflexion range with knee extended or 46 flexed in children and young people with diplegia wearing a PLS AFO or a SAFO. (LOW)
- 47 No significant differences were identified in velocity achieved when wearing a PLS AFO compared to
- 48 a SAFO in one study of children and young people with diplegia. (LOW) A subgroup analysis based
- 49 on 19 of the participants reported no significant differences in velocity ascent or descent achieved
- 50 when wearing a PLS AFO compared to a SAFO. (LOW)

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 74 of 219

- 1 No significant differences were identified in ankle dorsiflexion at initial contact when PLS AFO use 2 was compared to SAFO use in one study of children and young people with hemiplegia. (LOW)
- 3 Use of a PLS AFO significantly improved peak dorsiflexion at stance and ankle dorsiflexion dynamic 4 range compared to when a SAFO was worn. (MODERATE)
- 5 No significant differences were reported in degrees of ankle dorsiflexion range with knee extended or 6 flexed in children and young people with hemiplegia wearing a PLS AFO or a SAFO. (LOW)
- 7 No significant differences were identified in velocity achieved when wearing a PLS AFO compared to 8 a SAFO in one study of children and young people with hemiplegia (LOW). A subgroup analysis 9 based on 19 of the participants reported no significant differences in velocity ascent or descent 10 achieved when wearing a HAFO compared to a SAFO. (LOW)
- 11 Three studies examined outcomes for optimisation of function. No significant differences were 12 identified in GMFM standing scores or walking, running and jumping scores when PLS AFO use was 13 compared to SAFO use in children and young people with diplegia. (LOW)
- 14 One randomised study of children and young people with diplegia found no significant differences in 15 PEDI mobility functional skills or PEDI mobility caregiver assistance scores when PLS AFO use was 16 compared to SAFO use. (LOW)
- 17 No significant differences were identified in GMFM standing scores or walking, running and jumping 18 scores when PLS AFO use was compared to SAFO use in one study of children and young people 19 with hemiplegia. (LOW)
- 20 One randomised study of children and young people with hemiplegia found no significant differences
- in PEDI mobility functional skills scores when PLS AFO use was compared to SAFO use. (LOW) A 21
- 22 subgroup analysis based on 19 of the participants reported no significant differences in the proportion
- 23 of children and young people able to keep up with their peers in ascent or descent of stairs when 24 wearing a PLS AFO compared to a SAFO. (LOW)

25 Comparisons to no treatment or no orthosis

26 Supramalleolar foot orthosis versus solid ankle foot orthosis

- 27 One randomised study examined outcomes assessing optimisation of movement. No significant 28 differences in velocity were reported when use of a SMO was compared to a SAFO. (LOW) In the 29 same study, ankle dorsiflexion angle at foot strike was significantly higher with SAFO use compared 30
- to SMO use. (MODERATE)

41

Other comparisons of interest 31

- 32 The GDG also prioritised evaluation of the following interventions and comparators, but no studies 33 were identified for inclusion.
- 34 wrist hand orthosis versus no treatment 35 thumb abduction orthosis versus no treatment 36 knee orthosis versus no treatment 37 hip abduction orthosis versus no treatment 38 prescribed footwear or orthopaedic boots versus no treatment • 39 anterior GRAFO versus AFO 40
- foot orthosis or heel cup versus AFO
 - any orthosis versus another treatment.

1 Health economics

2 The clinical evidence for this question was limited and the evidence that was identified was of low 3 guality. A simple cost analysis was conducted to understand the costs associated with having an

- 4 orthosis fitted.
- 5 The analysis assumed that a child or young person would be offered the following appointments:
- 6

• an assessment with a physiotherapist or occupational therapist and lasting 20-30 minutes (this includes taking measurements)

8

7

9

10

• a fitting lasting 20-30 minutes about 2 weeks after the assessment

 a follow-up to check to ensure that everything is satisfactory (usually only for a child or young person who has not had an orthosis previously).

Orthotists start at band 5 and can work up to band 7 as a senior orthotist. Only one-third of orthotists are employed by the NHS, with the rest working for private companies. Using the cost per hour of client contact with a physiotherapist²³ (band 5 median) to represent the cost of an orthotist the appointments would cost about £27 (for 40 minutes) to £62 (for 1.5 hours) to supply and fit an orthosis if the orthotist were employed by the NHS. Private companies may provide the orthotist's time as a loss leader and in this case there would be no cost associated with appointments.

17 The cost of a single AFO is about £120 to £300. Lower limb orthoses are usually custom made,18 whereas upper limb orthoses can be products supplied from stock.

19 The orthosis needs to be replaced every 10-12 months or sooner depending on the child or young 20 person's rate of growth. The straps on the orthosis usually wear out after about 12 months. If the 21 orthosis does not fit well and is uncomfortable then the child or young person will not wear it.

The minimum age at which a child can be fitted for an orthosis is 17-18 months and orthoses can be worn throughout the growing period.

An important consideration highlighted by the GDG related to the comfort and cosmesis of orthoses. If an orthosis is not comfortable or the child or young person does not like wearing it then they will not wear it and this will result in poor use of resources. If there is a significant delay between assessment for an orthosis and making and fitting it then the child or young person will be more likely to have

28 grown and the orthosis will no longer be suitable. This would also represent poor use of resources.

29 The costs for an orthosis are low, but there is considerable uncertainty surrounding benefits based on

30 the clinical evidence available. The GDG have commented on the need to monitor patients to assess 31 goals and also record tolerability and side effects. This information may be useful to assess the cost-

goals and also record tolerability and side effects. This informat
 effectiveness of orthoses when the guideline is updated.

33 Evidence to recommendations

34 **Relative value of outcomes**

35 Depending on an individual child or young person's needs and difficulties, orthoses may be employed 36 in order to achieve improved function and posture and to prevent contractures and deformity. The 37 outcomes of importance will vary depending on the specific goal. The GDG agreed the following 38 outcomes to be important: measures of optimisation of function, including gross motor function 39 measure (GMFM), paediatric evaluation of disability inventory (PEDI) and goal attainment scaling 40 (GAS); improving or maintaining range of movement, for example in the use of night-time resting 41 splints to improve posture and prevent deformity; active and passive range of movement, quality of 42 life, as measured by the child health questionnaire (CHQ). Based on their clinical experience, the GDG included muscle spasticity since orthoses may reduce muscle spasm and pain indirectly. 43 44 Possible harms include discomfort, inconvenience or cosmetic concerns, and pain and discomfort 45 associated with an ill-fitting orthosis.

²³ £42 per hour of client contact with a community physiotherapist, £40 with a hospital physiotherapist – the mean was used. Unit costs of health and social care 2010, PSSRU.

1 Studies have used foot and knee position as indicators of efficacy in relation to stance and gait 2 efficiency. Lower limb orthoses are frequently used to improve standing posture and especially to 3 improve walking, for example in gross motor function classification system (GMFCS) levels 1 to 3. 4 However, the GDG also considered that movement was an important indicator, assessed by 5 measuring speed of walking and walking distance. In the case of lower limb orthoses aimed at 6 correcting abnormal foot postures during walking, gait analysis is widely employed. Foot movement 7 as measured by improvement in dorsiflexion in the various gait phases was considered an important 8 outcome measure. In relation to those at GMFCS level 4 or 5 or MACS levels 4 or 5 there is a greater 9 risk of deformity. Here, the passive range of movement (ROM) is important as an indicator of 10 contractures and fixed deformity.

11 The GDG also considered that acceptability and tolerability and the occurrence of adverse effects 12 should be included as important outcomes

13 Trade off between clinical benefit and harms

14 The studies provided some evidence supporting a beneficial effect with the various forms of AFO 15 (SAFO, HAFO, PLSAFO) in relation to ankle dorsiflexion during the gait cycle in children with diplegia 16 or hemiplegia, but the findings were often inconsistent across studies. No improvement in walking 17 speed was identified. No improvement in function as measured by gross motor function measure 18 (GMFM) or PEDI was shown. Despite the lack of high-quality evidence, based on their understanding 19 of the underlying principles and the rationale for orthotic interventions, and based on their clinical 20 experience the GDG believed that the use of orthoses has a major and important role in the 21 management of spasticity in children and young people. The GDG considered that orthoses can have 22 an important role in improving posture, facilitating upper limb function, improving walking efficiency, 23 and preventing or slowing the development of contractures and hip migration. The GDG 24 recommended that these objectives be considered in relation to the individual child or young person, 25 through a careful assessment of the goals that may be realistic for that individual.

No adverse effects were identified in the evidence and there was no evidence regarding acceptability and tolerance of orthoses. Side effects may have a major impact on the child or young person's ability and willingness to accept or tolerate an orthosis. In the GDG's experience, discomfort, skin injury, sleep disturbance, etc. are more likely to occur if orthoses are badly designed, ill-fitting or worn. When custom-made orthoses are used the GDG recommended that an orthotist should be involved. Adverse effects should mainly be preventable with careful design and fitting of the devices.

32 Trade-off between net health benefits and resource use

33 Orthoses can be expensive. A single orthosis costs £200 to £300 on average, with the cost rising 34 considerably for some types of elasticated garments, and additional costs being associated with the 35 involvement of an orthotist or therapist in assessment, supply, fitting, and regular reviews. However, if 36 an orthosis meets the intended outcomes, is acceptable to the child or young person, and causes no 37 harm then it can be considered to be cost effective. Although the evidence did not identify significant 38 improvements in quality of life or function, the GDG considered that improved gait efficiency would 39 contribute to subtle improvements in energy expenditure, and in time these would impact on the child 40 or young person's activity levels and ability to participate in activities. Although the degree of participation may not equal that of the child or young person's peers in some instances, the net health 41 42 benefits of delayed soft tissue adaptation and contractures and improved gait represent clinically 43 important long-term outcomes. Delaying the often inevitable soft tissue surgery or bony surgery will 44 also have resource implications.

45 **Quality of the evidence**

The GDG recognised that there was a deficit in the evidence base underpinning the use of orthoses in the context of this guideline. A total of six prospective comparative studies were included in the guideline review. These studies examined the efficacy of various ankle foot orthoses in children with diplegia or hemiplegia. The children had randomised allocation of treatment sequences to allow comparison. For all of the outcomes studied the quality of the evidence was rated as low. The GDG considered that the findings from the studies should be treated with some caution.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 77 of 219 1 There was no evidence suitable for inclusion in relation to the use of wrist or hand orthoses, thumb 2 abduction orthoses, elbow orthoses, knee orthoses, spinal (thoracic lumbar sacral) orthoses, hip 3 abduction orthoses, or prescribed footwear.

4 **Other considerations**

5 Based on their expertise and experience, and taking account of the available evidence, the GDG 6 made recommendations for the use of orthoses in the following specific circumstances.

7 Lower limb orthoses

8 The GDG recommended that for children and young people in GMFCS 4 or 5 consideration be given 9 on an individual basis to the use of AFOs to achieve an improved foot position if this is likely to 10 facilitate sitting, transfers, or assisted standing.

11 In children in whom foot equinus deformity is impairing gait, the GDG recommended that the use of 12 AFOs be considered. There was some research evidence in support of the efficacy of AFOs in this 13 setting. Comparing the effect of the SAFO and the HAFO, the latter allows greater dorsiflexion but has 14 no greater impact on dorsiflexion swing during walking. The PLSAFO also increases the range of 15 ankle dorsiflexion compared with the SAFO but is used less commonly, especially in those with foot 16 eversion or inversion because such orthoses are less supportive. The GDG agreed that if the 17 individual had good control of knee and hip extension then a SAFO should be considered, but if not 18 then a HAFO might be preferred as this would be less likely to cause over-extension. The GDG also 19 agreed that AFOs can worsen gait in those with fixed lower limb deformities, such as hip or knee 20 contractures and femoral or tibial anteversion.

The GDG also considered that children and young people with serious functional limitations (GMFCS levels 4 and 5) should be offered AFOs to improve foot position for sitting, transfers and assisted standing.

Any child fitted for an AFO should be advised that it should be worn for at least 6 hours a day to maximise effectiveness.

Given their effect in restricting ankle movement, AFOs can potentially make it more difficult for an individual to stand up, and the GDG therefore advised that in young children who are in the process of learning to stand up consideration be given to the use of SMOs or supportive orthotic footwear.

29 It was believed that those individuals who have a 'crouch' posture due to flexion at the hips or knees

30 combined with good passive range of movement at the hips and kneees might benefit from the use of 31 GRAFOs to assist walking, provided the posture was due to muscle weakness rather than fixed

31 GRAFOs to assist walking, provided the posture was due to muscle weakness rather than fixed 32 deformities (contractures). The tibial pressure exerted by GRAFOs could encourage a more upright

33 posture.

34 Although there was no supportive evidence, the GDG believed that knee gaiters should be considered

- for those with knee flexion deformity because the support these provided would improve posture and
- 36 function and might assist in preventing the development of fixed contractures.

Again, although clinical trial evidence was lacking, the GDG believed that hip orthoses were helpful in some individuals. They recommended their use be considered in those with lower limb scissoring if this was causing functional difficulty in relation to sitting, standing or walking. They also recommended considering their use to limit hip adduction in order to reduce the risk of hip migration.

41 **Upper limb orthoses**

42 There was no published evidence on which to base recommendations on the use of orthoses for the 43 upper limb. Again, based on rational principles and on their clinical experience, the GDG 44 recommended that consideration be given to the use of upper limb orthoses in various situations.

45 In those with excessive elbow flexion the use of an elbow gaiter could help maintain an extended

46 posture and this could help with upper limb function. For example by holding the elbow in extension, 47 an individual might be able to support themselves whilst sitting or might be able to manage the

48 controls of a powered wheelchair.

Wrist and hand function can be affected by spasticity: the wrist may tend to ulnar deviation and it may be flexed; the thumb may be adducted or flex across the palm; and the fingers may take on abnormal

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 78 of 219 1 postures. Rigid wrist orthoses could be useful to prevent hand and finger flexion deformity and the 2 development of fixed contracture. However, a dynamic orthosis should be considered to help with

3 hand function. For example, a thumb abduction splint for those with a 'thumb in palm' deformity may

4 be helpful. Dynamic thermoplastic orthoses that allow limited flexion and extension at the wrist may

5 facilitate better function than a rigid wrist hand orthosis.

6 The GDG noted that it is a common view that AFOs should be worn for at least 6 hours each day to 7 provide sustained calf muscle stretch, and although they recognised there was no evidence on the 8 optimal duration they believed this to be a reasonable recommendation.

9 Body trunk orthoses

10 There was an absence of evidence regarding the use of body trunk orthoses. The GDG considered

11 that while thoracolumbosacral orthoses (TLSOs) are probably not sufficient to prevent progression of

12 scoliosis in children and young people with spasticity, they may slow the process. Based on their 13 clinical experience, the GDG agreed that TLSOs can be helpful in stabilising an individual's posture

14 and they may provide a useful level of support facilitating activities such as feeding or using a switch.

15 Orthoses in association with other treatment options

16 There was no evidence comparing the use of orthoses with other treatments. The GDG noted that 17 orthoses are usually used together with other interventions, such as physiotherapy or botulinum toxin 18 injection. The GDG recommended that consideration be given to the use of an orthosis after 19 botulinum toxin therapy because this might well increase the effectiveness of that treatment by 20 optimising joint position when spasticity is reduced.

21 Monitoring and assessment of orthoses

The GDG has made recommendations on the need for regular monitoring and on giving advice to the child or young person and their parents or carers regarding the correct use of the device, and when and how to seek advice if concerns arise. Recommendations were made in this regard to reduce the

risk and optimise efficacy and acceptability and tolerability.

The GDG view was that an orthotist should be involved when using a custom-made orthosis to ensure that it is designed, sized and fitted properly and its comfort and use monitored. Specialist orthotists can discuss with parents and carers how to apply orthoses, when to wear them and for how long, and when and from whom to seek further advice. This should include advice about the use of orthotics overnight. Parents and carers need to ensure that an orthotic is not disturbing the child's or young person's sleep, as well as the circumstances where resting splints should be used, for example for muscles controlling two joints.

33 The orthotist should minimise delays as this can be associated with reduced effectiveness and this 34 may result in complications. Once fitted, there should be regular reviews of the othosis to ensure 35 maximum efficiency in achieving individualised goals. The reviews need to cover all aspects of 36 orthotics use, including acceptability and appropriateness to the child or young person, checks of the 37 condition, fit and correct use of the othosis, and that it is not causing pain, discomfort, sleep 38 disturbance, or injury. A regular review should also cover any difficulties with self care or hygiene and 39 any cosmetic or other concerns that the child or young person might have that would affect the value 40 of the othosis to that individual. The health care professional undertaking the review should also look 41 for signs of muscle wastage or reduced sensation. They should also be aware that rigid orthoses for 42 children may not be well tolerated in children and young people with severe spasticity.

43 The GDG recommended that if an orthosis causes pain for which there is no immediate remedy it 44 should be removed without delay. The GDG also recommended that when prescribing an orthosis it 45 was important to consider whether the device might lead to difficulties with self-care or care by others, 46 including difficulties with maintaining hygiene. Most such difficulties are rapidly relieved by modifying, 47 changing or removing the orthosis. The GDG were aware, based on their experience, that children 48 and young people with severe spasticity or dyskinesis may tolerate solid orthoses poorly, and 49 recommended that caution be exercised in such cases. The GDG recommended that consideration 50 be given to whether the use of botulinum toxin injection therapy might in some cases improve 51 tolerance of orthoses. Reduction in spasticity would be expected to facilitate patient comfort and 52 optimal joint positioning with orthoses. A longer-term risk was that of muscle wasting and weakness 53 resulting from immobilisation. The GDG recommended that this possibility be kept in mind, and the

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 79 of 219 risk needed to be balanced against the potential benefit of the orthosis based on an individual assessment. Finally, the GDG recognised that it was very important to take into account the views of the child or young person and their parents or carers regarding any 'cosmetic' concerns.

4 Made-to-measure orthoses constructed from elasticated fabric (elastane) can be difficult to be made 5 to fit well and may impact adversely on ease of care. The GDG expressed concerns over their level of 6 comfort. Such orthoses are being used increasingly with children and young people with spasticity, 7 despite mixed evidence regarding their effectiveness. Further evaluation is needed as to their

8 effectiveness and for which children and young people.

9 **Recommendations**

Number	Recommendation
	Orthoses
	General principles
32	Consider orthoses for children and young people with spasticity to:
	 improve posture facilitate upper limb function improve walking efficiency prevent or slow development of contractures prevent or slow hip migration.
33	Determine realistic goals for treatment with orthoses based on a careful individua assessment, and discuss the options, risks and benefits of wearing them with children and young people and their parents or carers.
34	Ensure that orthoses have been designed, sized and fitted correctly.
35	Inform children and young people with orthoses and their parents and carers:
	 how to apply them when to wear them and for how long when and where to seek further advice.
36	Ensure that an orthotist is involved when a custom-made orthosis is being used.
37	Minimise delays in the supply of orthoses after measurement and in the repair o orthoses.
38	Review orthotic use at every contact with the local multidisciplinary child development team to ensure that orthoses:
	 are still acceptable to the child or young person and their parents or carers remain in good repair remain appropriate to intended treatment goals remain well fitting are being used as advised are not causing discomfort or pain are not causing sleep disturbance.
	Cautions in the use of orthoses
39	Assess whether orthoses might:
	 cause difficulties with self-care or care by others cause difficulties in relation to hygiene be unacceptable to the child or young person because of their appearance
40	Advise about the risk of pressure sores with orthoses.

Number	Recommendation
41	Inform children and young people and their parents or carers to remove orthoses that are causing pain that cannot be relieved immediately through repositioning of the limb in the orthosis or adjustment of the strapping.
42	When deciding whether to offer an orthosis, balance the benefits against the risks and potential consequences of muscle wasting through lack of muscle use. Discuss these with the child or young person and their parents or carers.
43	Be cautious in offering rigid orthoses to children and young people with severe spasticity or dyskinesis because rigid orthoses are often poorly tolerated in this group.
	Botulinum toxin type A injection and orthoses
44	Consider an orthosis after treatment with botulinum toxin type A.
45	Consider treatment with botulinum toxin type A if this is likely to improve the tolerability of an orthosis. ²⁴
	Overnight use of orthoses
46	Consider overnight use of orthoses. If an orthosis is used overnight:
	 check that overnight use does not disturb sleep use night resting splints for muscles that control two joints (for example, the ankle and knee, in the case of the gastrocnemius muscle).
	Lower limb orthoses
47	When deciding whether to offer an ankle–foot orthosis, balance the benefits against the risk of worsened gait in children and young people with:
	hip or knee contracturesfemoral or tibial anteversion.
	Discuss these with the child or young person and their parents and carers.
48	Consider ground reaction ankle-foot orthoses to assist with walking if the child or young person has a crouch gait and good passive range of movement at the hip and knee.
49	For children and young people with equinus deformities that impair their gait consider:
	 a solid ankle-foot orthosis if they have good control of knee or hip extension a hinged ankle-foot orthosis if they have poor control of knee or hip extension.
50	In children whose motor development is between 8 months and 2 years consider offering supramalleolar orthoses or supportive orthotic footwear instead of ankle– foot orthoses.
51	Consider ankle–foot orthoses for children and young people with serious functional limitations (GMFCS levels 4 and 5) to improve foot position for sitting, transfers between sitting and standing, and assisted standing.
52	Inform children and young people and their parents and carers that ankle-foot orthoses intended to stretch muscles (for example, rigid, hinged or ground-reaction

²⁴ At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 81 of 219

Number	Recommendation
	force ankle-foot orthoses) should usually be worn for at least 6 hours each day.
53	Consider knee gaiters for children and young people with knee flexion deformities.
54	Consider hip orthoses:
	 to improve function if scissoring is causing difficulties with sitting, standing or walking to limit hip adduction and reduce the risk of hip migration.
	Upper limb and trunk orthoses
55	Consider the following for children and young people with upper limb spasticity:
	 elbow gaiters to maintain extension and improve function rigid wrist orthoses to prevent contractures and limit wrist and hand flexion deformity dynamic orthoses to improve hand function (for example, a thumb abduction splint if the child or young person has a 'thumb in palm' deformity).
56	Consider offering body trunk orthoses to children and young people for the management of spasticity with co-existing scoliosis or kyphosis if this will help with sitting.

1 2

3

Number	Research recommendation
7	What is the effectiveness of a prolonged stretch of the calf muscles with a HAFO compared to an AFO worn for a shorter time in children and young people with spastic hemiplegia?
8	What of the effectiveness of wearing a HAFO to prevent an equinus foot posture compared to an AFO or SAFO?
9	What is the effectiveness of wearing an AFO after surgery compared to not wearing an AFO in children and young people with lower limb spasticity?
10	What is the effectiveness of dynamic thermoplastic orthoses compared to static orthoses in children and young people with spastic hemiplegia who have abnormal posturing?
11	What is the effectiveness of a spinal orthosis compared to no orthosis when not in a supportive chair in children and young people with low tone and peripheral spasticity?

¹ 6 Oral drugs

2 Introduction

Oral drugs are used frequently as an adjuvant treatment to alleviate symptoms associated with spasticity that are not amenable to physical therapy alone (for example, distress or restricted function). Oral drugs may reduce spasticity, muscle spasms, pain and discomfort, and perhaps improve function and quality of life. It was, therefore, important to examine the evidence regarding the effectiveness and safety of these therapies.

Biazepam is thought to directly augment GABA postsynaptic action increasing an inhibitory effect at
 the spinal cord reflex arc, as well as at the supraspinal level and reticular formation.

10 Baclofen acts at the level of the spinal cord binding to GABA-B receptor sites, agonising the site and

11 suppressing the release of excitatory neurotransmitters. Augmenting GABA-ergic activity reduces

12 spasticity. Baclofen is absorbed orally, metabolised by the liver, and secreted by the kidneys, with a

13 half-life of 2-4 hours.

14 Dantrolene has an action at the level of the muscle itself. It works by inhibiting the release of calcium

15 ions from the sarcoplasmic reticulum and therefore diminishing the force of the muscles contractions,

16 but it is not selective on the muscles it acts upon. It is metabolised in the liver and excreted by the 17 kidneys; it can be hepatotoxic.

18 Trihexyphenidyl has been used traditionally in the treatment of Parkinson's disease and reduction of

dystonia. It is an anticholinergic medication that acts on the central muscarinic receptors. It is thought

that in situations when the nervous system is damaged the injury leads to a decrease in the effect or numbers of neurones which are dopaminergic, resulting in an imbalance or preservation of the

numbers of neurones which are dopaminergic, resulting in an imbalance or preservation of the cholinergic interneurons. Treatment with trihexyphenidyl is thought to reduce cholinergic transmission

- 23 and redress the balance leading to a decrease in dystonia.
- Other drugs prioritised by the GDG for consideration included tizanidine, clonidine, tetrabenazine, andlevodopa.
- 26 No related NICE guidance was identified for this review question.

27 **Review question**

34

35

36

37

38

39

What is the effectiveness of oral medications including baclofen, benzodiazepines (diazepam, nitrazepam, clonazepam), tizanidine, dantrolene, clonidine, trihexyphenidyl, tetrabenazine and levodopa in the treatment of spasticity and other motor disorders (dystonia, muscle weakness and choreoathetosis) caused by a non-progressive brain disorder in children and young people?

32 **Description of included studies**

33 In total there were eight studies in nine publications addressing four comparisons as follows:

- diazepam versus placebo or no treatment (one RCT; Mathew 2005a; Mathew 2005b)
- baclofen versus placebo or no treatment (three RCTs; McKinlay 1980; Milla 1977; Scheinberg 2006)
- dantrolene versus placebo or no treatment (three RCTs; Denhoff 1975; Haslam 1974; Joynt 1980)
 - trihexyphenidyl versus placebo or no treatment (one RCT; Rice 2008).

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 83 of 219

1 Evidence profiles

2 Oral diazepam versus placebo or no treatment

3 Two reports of a parallel RCT conducted in India (Mathew 2005a; Mathew 2005b) compared the

- 4 effects of a single bedtime dose of diazepam to placebo in children with spasticity of varying
- 5 severities. Children who were in distress due to painful spasms were excluded from the study.
- 6 One report (Mathew 2005b) provided evidence on reduction of spasticity.

Number of	Number of patier	nts	Effect		Quality	
studies	Diazepam	Placebo	Relative	Absolute		
			(95% CI)	(95% CI)		
Mean reduction of muscle tone score (modified Ashworth scale) at 15 -20 days; bedtime half dose diazepam 0.5mg if <8.5kg, 1mg if >8.5kg bodyweight vs. placebo: (Better indicated by higher values)						
1 study (Mathew 2005b)	59	55	-	MD = 8.00	MODERATE	
Mean reduction of muscle tone score (modified Ashworth scale) at 15 - 20 days : bedtime full dose diazepam 1mg if <8.5kg, 2mg >8.5kg bodyweight vs. placebo: (Better indicated by higher values)						
1 study (Mathew 2005b)	59	55	-	MD = 12.79	MODERATE	

7

- 8 Neither report provided outcomes relevant to optimisation of movement or function, pain (reduction of 9 pain), or quality of life.
- 10 One report (Mathew 2005a) provided evidence on adverse effects.

Number of studies	Number of patier	nts	Effect		Quality
	Diazepam	Placebo	Relative	Absolute	
			(95% CI)	(95% CI)	
Daytime drowsi	iness assessed by	caregivers at 15 -	20 days: bedtime o	dose diazepam	
1 study	0/59	0/55	-	-	MODERATE
(Mathew 2005a)	(0%)	(0%)			

11

12 One report (Mathew 2005a) provided evidence on outcomes relevance to acceptability and 13 tolerability.

14

Number of studies	Number of patients		Effect		Quality	
	Diazepam	Placebo	Relative (95% CI)	Absolute (95% CI)		
-	Child's disposition during activities of daily living at 15 - 20 days: bedtime dose diazepam (Better indicated by higher values)					
1 study (Mathew 2005a)	59	55	-	MD 5.93 higher (5.41 to 6.45 higher)	MODERATE	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 84 of 219

Burden of caring for the child on the family at 15 - 20 days: bedtime dose diazepam (Better indicated by higher values)						
1 study (Mathew 2005a)	59	55	-	MD 7.31 higher (6.78 to 7.84 higher)	MODERATE	
Child's behavio	Child's behavioural profile at 15 - 20 days: bedtime dose diazepam (Better indicated by higher values)					
1 study (Mathew 2005a)	59	55	-	MD 7.35 higher (6.74 to 7.96 higher)	MODERATE	

2 Oral baclofen versus placebo or no treatment

- Three cross-over RCTs compared the effects of oral baclofen and placebo (McKinlay 1980; Milla
 1977; Scheinberg 2006).
- 5 All three RCTs reported reduction of spasticity.

Number of	Number of patier	nts	Effect		Quality			
studies	Baclofen	Placebo	Relative	Absolute				
			(95% CI)	(95% CI)				
Improvement of	Improvement of spasticity (by 1 level of Ashworth scale) at day 28 of treatment							
1 study (Milla 1977)	9/20	2/20	RR 4.50 (1.11 to 18.27)*	35 more per 100 (from 1 more to 173 more)*	LOW			
Improvement of	f spasticity (by mo	ore than 1 level of	Ashworth scale) a	t day 28 of treatme	ent			
1 study (Milla 1977)	5/20	0/20	RR 11 (0.65 to 186.62)*	-	LOW			
Reduced muscl	e tone (Ashworth	scale) reported by	investigators					
1 study (McKinlay 1980)	-	-	-	-	LOW			
Reduced muscl	e tone or better m	ovement reported	by physiotherapis	t				
1 study (McKinlay 1980)	14/209	5/20	RR 2.8 (1.26 to 6.22)*	45 more per 100 (from 6 more to 130 more)*	MODERATE			
Mean Tardieu s	core at wk12 of tre	eatment (Better ind	licated by lower va	lues)				
1 study (Scheinberg 2006)	15	15	-	4.4 lower	MODERATE			

6 * Calculated by the NCC-WCH

7 Two RCTs reported outcomes relevant to optimisation of function (Scheinberg 2006; McKinlay 1980).

Number of studies	Number of patients		Effect		Quality	
	Baclofen	Placebo	Relative	Absolute		
			(95% CI)	(95% CI)		
Mean Pediatric	Mean Pediatric evaluation of disability inventory (PEDI) self care score at wk12 of treatm					

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 85 of 219

indicated by hig	indicated by higher values)						
1 study (Scheinberg 2006)	15	15	-	1.5 lower	MODERATE		
Mean PEDI mot	Mean PEDI mobility at wk12 of treatment: (Better indicated by higher values)						
1 study (Scheinberg 2006)	15	15	-	1.5 lower	MODERATE		
Mean PEDI soci	al function at wk1	2 of treatment: (Be	etter indicated by h	nigher values)			
1 study (Scheinberg 2006)	15	15	-	0.2 lower	MODERATE		
Mean Goal asse	essment T score (C	GAS T) at wk12 of	treatment: (Better	indicated by highe	er values)		
1 study (Scheinberg 2006)	15	15	-	6.6 higher	MODERATE		
Gait assessmer walking)	Gait assessment performance improved (interstep distance and angle of the foot to the direction of walking)						
1 study (McKinlay 1980)	8/20	4/20	RR = 2.00 (0.72 to 5.59)*	20 more per 100 (from 6 fewer to 92 more)*	LOW		

- 2 No studies reported outcomes relevant to pain.
- 3 All three RCTs reported adverse effects (McKinlay 1980; Milla 1977; Scheinberg 2006).

Number of	Number of patients		Effect		Quality
studies	Baclofen	Placebo	Relative	Absolute	
			(95% CI)	(95% CI)	
Adverse effects	;				
1 study (Milla 1977)	5/20	0/20	RR = 11 (0.65 to 186.62)*	-	LOW
Adverse effects	(parental reports)				
1 study (McKinlay 1980)	8/20	1/20	RR = 8 (1.1 to 58.19)*	35 more per 100 (from 1 more to 100 more)*	LOW
Drowsiness (the	erapist and teache	r reports)			
1 study (McKinlay 1980)	6/15	4/15	RR = 1.5 (0.53 to 4.26)*	13 more per 100 (from 13 fewer to 87 more)*	MODERATE

4

* Calculated by the NCC-WCH

5 Two RCTs examined the acceptability of treatment to parents (Scheinberg 2006; McKinlay 1980).

Number of studies	Number of patients		Effect		Quality
studies	Baclofen	Placebo	Relative	Absolute	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 86 of 219

			(95% CI)	(95% CI)	
Wish to continu	ie child's treatmen	t (parental report)			
1 study (McKinlay 1980)	-	-	-	-	LOW
Willingness to o	Willingness to continue with the medication their child was on (parental report)				
1 study (Sheinberg 2006)	6/155	4/156	RR = 1.5 (0.53 to 4.26)*	13 more per 100 (from 13 fewer to 87 more)*	MODERATE
Positive effects (parental report)					
1 study (Scheinberg 2006)	6/157	7/158	RR = 0.86 (0.38 to 1.95)*	7 fewer per 100 (from 28 fewer to 44 more)*	MODERATE

2 No studies reported outcomes relevant to quality of life.

3 Oral dantrolene versus placebo

4 Three RCTs compared the effects of oral dantrolene and placebo (Denhoff 1975; Haslam 1974; Joynt

5 1980). Two were cross-over RCTs (Denhoff 1975; Haslam 1974), and one was a parallel RCT (Joynt

6 1980)́.

7 Two RCTs reported outcomes relevant to reduction of spasticity.

Number of	Number of patier	nts	Effect		Quality
studies	Dantrolene	Placebo	Relative	Absolute	
			(95% CI)	(95% CI)	
Motor tone ass	essment				
1 study (Haslam 1974)	59	55	-	0.609 higher	LOW
Scissoring					
1 study (Haslam 1974)	59	55	-	0.381 higher	LOW
Incidence of sp	asms (child and p	arental reports of i	mprovement)		
1 study (Joynt 1980)	3/11	0/9	*RR = 5.83 (0.34 to 100.03)	-	MODERATE
Passive range	of motion (PROM)				
1 study (Haslam 1974)	59	55	-	0.565 higher	LOW
Spontaneous ra	ange of motion (RC	OM)			L
1 study (Haslam 1974)	59	55	-	0.522 higher	LOW
Calculated by the				l	l

8 * Calculated by the NCC-WCH

9 Two RCTs reported outcomes relevant to optimisation of function.

Number of Number of patients	Effect	Quality
------------------------------	--------	---------

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 87 of 219

studies	Dantrolene	Placebo	Relative (95% CI)	Absolute (95% CI)	
Improvement in	motor functioning	9			
1 study (Denhoff 1975)	10/26	8/26	-	-	LOW
Improvement in	activities of daily	living and behavio	our – staff assessr	nent	
1 study (Denhoff 1975)	11/20	2/20	-	-	VERY LOW
Improvement in	activities of daily	living and behavio	our – parent's asse	essment	
1 study (Denhoff 1975)	12/28	2/28	-	-	LOW
Overall assess	ments (neurologica	al, orthopaedic, mo	otor, activities of d	aily living and beh	naviour)
1 study (Denhoff 1975)	28	28	-	-	LOW
Activities of daily living using multiple performance tests at 9 weeks (e.g. as time taken to screw and unscrew two halves of barrels of three sizes and time taken to button and unbutton buttons of three different sizes)					
1 study (Joynt 1980)	11	9	-	-	LOW

- 2 No studies reported outcomes relevant to pain (reduction in pain) or to quality of life.
- 3 One RCT reported outcomes relevant to adverse effects.

Number of Number of patients		nts	Effect		Quality
studies	Dantrolene	Placebo	Relative	Absolute	
			(95% CI)	(95% CI)	
Daytime drowsi	ness assessed by	caregivers at 15 -	20 days: bedtime	dose diazepam	
1 study (Denhoff 1975)	16/28	7/28	-	-	MODERATE

4

5 No studies reported outcomes relevant to acceptability and tolerability.

6 Oral trihexyphenidyl versus placebo

- 7 One cross-over RCT compared the effects of high-dose trihexyphenidyl and placebo. (Rice 2008)
- 8 One RCT reported outcomes relevant to reduction of dystonia.

Number of studies	Number of patients		Effect		Quality
Studies	Trihexyphenidyl (THP)	Placebo	Relative (95% Cl)	Absolute (95% Cl)	
Mean Barry-Albright Dystonia Scale (BAD) score: (Better indicated by lower values)					
1 study (Rice 2008)	16	16	-	-	LOW

9

1 One RCT reported outcomes relevant to optimisation of function.

Number of	Number of patients		Effect		Quality
studies	Trihexyphenidyl (THP)	Placebo	Relative (95% CI)	Absolute (95% CI)	
Mean Quality of upper extremity skills test (QUEST) score (Better indicated by highe			ated by higher val	ues)	
1 study (Rice 2008)	16	16	-	-	LOW
Mean Goal assessment scale (GAS) score (Better indicated by higher values)					
1 study (Rice 2008)	16	16	-	-	VERY LOW
Mean Canadian occupational performance measure (COPM) score (performance) (Better indicated by higher values)					
1 study (Rice 2008)	16	16	-	-	VERY LOW

2

- 3 No studies reported outcomes relevant to pain (reduction in pain) or to quality of life.
- 4 One RCT reported outcomes relevant to adverse effects.

Number of Number of pat		ts	Effect		Quality
studies	Trihexyphenidyl (THP)	Placebo	Relative (95% CI)	Absolute (95% CI)	
Adverse effects	;				
1 study (Rice 2008)	16/163	6/164	-	-	LOW

5

6 One RCT reported outcomes relevant to acceptability and tolerability

Number of Number of pa		ts	Effect		Quality
Studies	Trihexyphenidyl (THP)	Placebo	Relative (95% CI)	Absolute (95% CI)	
Mean Canadian higher values)	occupational perfe	ormance measure	(COPM) score (sat	isfaction) (Better i	ndicated by
1 study (Rice 2008)	16	16	-	-	LOW

7 Evidence statement

8 Oral diazepam versus placebo or no treatment

9 With regard to reduction of spasticity, one parallel RCT found that muscle tone (modified Ashworth 10 score) was statistically significantly reduced in children with spasticity of varying severities who were 11 given a single bedtime half or full dose of diazepam compared with placebo. (MODERATE)

12 No evidence was identified in relation to optimisation of movement or function, pain (reduction of pain) 13 or to quality of life

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 89 of 219 1 With regard to adverse effects, one parallel RCT reported that daytime drowsiness was not observed 2 over 15 to 20 days when children were given a bedtime dose of placebo or diazepam. (MODERATE)

3 With regard to acceptability and tolerability, one parallel RCT found that the child's disposition during 4 activities of daily living, the burden of caring for the child on the family and the child's behavioural

4 activities of daily living, the burden of caring for the child on the family and the child's behavioural 5 profile were statistically significantly improved in children with spasticity of varying severities who were

6 given a single bedtime half or full dose of diazepam compared with children who received placebo.

7 (MODERATE)

8 Oral baclofen versus placebo or no treatment

9 With regard to reduction of spasticity, one cross-over RCT reported a statistically significant 10 improvement in spasticity of one level on the Ashworth scale when children with diplegia, hemiplegia 11 and quadriplegia were given baclofen compared with placebo. (LOW) However there was no 12 statistically significant difference in improvement in spasticity of two or more levels on the Ashworth 13 scale between treatment periods. (LOW) One cross-over RCT reported that there was no statistically 14 significant difference in muscle tone observed by the study investigators when children with spasticity 15 were given baclofen compared with placebo. (LOW) One cross-over RCT found that statistically 16 significantly more children with spasticity had a reduction in muscle tone or better movement 17 (assessed by therapists) when they were given baclofen compared with placebo. (MODERATE) One 18 cross-over RCT found no statistically significant differences in mean Tardieu scores when children 19 with spastic or spastic dystonic quadriplegia were given baclofen compared with placebo. 20 (MODERATE)

21 With regard to optimisation of function, one cross-over RCT found that there were no statistically 22 significant differences in mean change scores in PEDI self care, mobility or social function 23 assessments when children with spastic or spastic dystonic quadriplegia were given baclofen 24 compared to placebo. (All MODERATE) One cross-over RCT provided evidence that mean GAS T 25 scores were statistically significantly improved when children with spastic or spastic dystonic 26 quadriplegia were given baclofen compared to placebo. (MODERATE). One cross-over RCT found 27 that there was no statistically significant difference in the number of children with spasticity achieving 28 improved gait performance when given baclofen compared to placebo. (LOW)

29 No evidence was identified in relation to pain (reduction of pain) or to quality of life

30 With regard to adverse effects, one cross-over RCT found that 25% of children experienced side 31 effects related to baclofen's therapeutic effect (4 sedation, 1 hypotonia) during treatment. There were 32 no side effects reported when placebo was given. (LOW) One cross-over RCT found that 89% of 33 parent-reported side effects were seen in children receiving baclofen and in half of these cases 34 reduction of dose of baclofen relieved side effects. (LOW). One cross-over RCT reported that 35 therapists and teachers reported that daytime drowsiness occurred statistically significantly more 36 frequently when children were taking baclofen compared to placebo. (LOW) One cross-over RCT, 37 which titrated the baclofen dose more slowly than the other two included RCTs, found that 40% of 38 parents reported adverse effects during the baclofen treatment period compared to 27% of parents 39 during the placebo period. (MODERATE)

40 With regard to acceptability and tolerability, one cross-over RCT found that one parent (5%) would 41 have continued with active treatment (should their guess about the active treatment period be 42 correct). (LOW) One cross-over RCT found that 40% of parents would have continued with baclofen 43 compared to 27% who would have continued with placebo. (MODERATE) and that positive findings 44 were reported by 40% of parents during the baclofen treatment period compared with 47% of parents 45 during the placebo period. (MODERATE)

46 **Oral dantrolene versus placebo**

With regard to reduction of spasticity, one cross-over RCT found no statistically significant differences in muscle tone when children with spasticity and learning disabilities were given dantrolene compared

49 with placebo. (LOW) However, scissoring was statistically significantly improved when dantrolene was

50 given compared with placebo. (LOW) One parallel RCT found no statistically significant difference in

51 incidence of spasms (as reported by the child or parent) when children with moderate to severe

52 spasticity were treated with dantrolene compared to placebo. (MODERATE)

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 90 of 219 1 With regard to optimisation of movement, one cross-over RCT found no statistically significant 2 difference in PROM or Spontaneous ROM when children with spasticity and learning disabilities were 3 given dantrolene compared with placebo. (Both LOW)

4 With regard to optimisation of functioning, one cross-over RCT found no statistically significant 5 difference in motor function when children with mild to severe spasticity were given dantrolene 6 compared with placebo. (LOW) However, statistically significantly more children with mild to severe 7 spasticity showed improvement in activities of daily living and behaviour assessed by staff and 8 parents when given dantrolene compared with placebo (VERY LOW and LOW). One cross-over RCT 9 found that for between 8 and 13 of 28 participants no discernable differences in function could be 10 found between the drug and placebo treatment periods. (LOW) One parallel RCT found no significant differences in multiple performance tests to assess activities of daily living when children with 11 12 moderate to severe spasticity were treated with dantrolene or placebo. (LOW)

- 13 No evidence was identified in relation to pain (reduction in pain) or quality of life
- 14 With regard to adverse effects, one cross-over RCT found that statistically significantly more children
- 15 with mild to severe spasticity experienced side effects when they were receiving dantrolene compared
- 16 with placebo although these were generally transient. (LOW)
- 17 No evidence was identified in relation to acceptability and tolerability.

18 Oral trihexyphenidyl versus placebo

With regard to reduction of dystonia, one cross-over RCT reported that there was no statistically significant difference in BAD scores in children with dystonia (and spasticity) when they were given trihexyphenidol compared to placebo. (LOW)

- With regard to optimisation of functioning, one cross-over RCT found that there were no statistically significant differences in QUEST scores, GAS (Goal Attainment Scale) T scores and COPM performance (Canadian Occupational Performance Measure QUEST scores when children with dystonia (and spasticity) were given trihexyphenidol compared to placebo. (LOW; VERY LOW: VERY LOW)
- 27 No evidence was identified in relation to pain (reduction in pain) or quality of life.

With regard to adverse effects, one cross-over RCT found that sixteen children (100%) experienced side effects when they were given trihexyphenidol, with one child requiring brief hospitalisation for multiple side effects. By comparison, six (38%) of children experienced side effects during the placebo phase. (LOW)

- 32 With regard to acceptability and tolerability, one cross-over RCT found that there were no statistically
- 33 significant differences in COPM-satisfaction scores when in children with dystonia (and spasticity)
- 34 were given trihexyphenidol compared to placebo. (LOW)

35 Other comparisons of interest

- 36 The GDG also prioritised evaluation of the following interventions and comparators, but no studies 37 were identified for inclusion.
- nitrazepam versus placebo or no treatment
- description of the second secon
- 40 any benzodiazepine versus placebo or no treatment
- 41 tizanidine versus placebo

45

- 42 tetrabenazine versus placebo or no treatment
- 43
 levadopa versus placebo or no treatment
- 44 clonidine versus placebo or no treatment
 - baclofen versus any benzodiazepine

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 91 of 219 1 baclofen versus tizanidine 2 baclofen versus trihexyphenidyl 3 dantrolene plus baclofen versus baclofen 4 diazepam plus baclofen versus baclofen • 5 baclofen plus dantrolene versus tizanidine • 6 baclofen plus dantrolene plus diazepam versus baclofen 7 diazepam versus clonazepam • 8 nitrazepam versus clonazepam 9 • diazepam versus nitrazepam.

10 Evidence to recommendations

The GDG consensus was that reduction in spasticity, improvements in mobility and other physical outcomes were the most important outcomes for oral medication. The GDG also considered the evidence of the impact of any change in physical mobility on quality of life and participation in day-today living. Adverse side-effects affect long term acceptability and tolerability of drugs, both to the child themselves but also to the parents and carers who look after them. These outcomes were also reported in the review of the literature.

17 Evidence was identified for diazepam, baclofen and dantrolene only.

18 Oral diazepam

19 Evidence was only identified from one trial of bedtime administration of diazepam. There was no 20 evidence that it significantly reduced spasticity. The study reported a significant difference in muscle 21 tone but no evidence was identified of an improvement in movement or function, pain (reduction of 22 pain) or quality of life, or parental acceptability. The study did report that bedtime administration 23 improved the child's disposition, and improved the reported "burden of care" and child's behaviour. 24 Bedtime administration was not associated with daytime drowsiness. However, the GDG noted that 25 the dose of diazepam employed in this trial was less than that usually employed in UK practice 26 currently and compared with recommendations (BNF-c). The trials did not examine the potential 27 effectiveness of daytime treatment with diazepam. It was also observed that children with painful 28 muscle spasms were specifically excluded from the trial. The GDG considered that with higher doses 29 the outcomes might have been different, and the likelihood of sedation and increased oral secretions 30 (a recognized side effect of diazepam therapy in these children) might have been greater.

31 Baclofen

32 Three studies were identified in the review. Evidence from one study reported that patients taking 33 baclofen experienced a small reduction (one level improvement on the Ashworth scale) in level of 34 spasticity but this was not consistently observed in the other trials. It was not clear from the study 35 whether this benefit was more likely with mild or more severe spasticity. There was no evidence of 36 any larger benefit (more than one level improvement on the Ashworth scale). The evidence did not 37 demonstrate benefit in mobility and function, or an improvement in muscle tone. There was no 38 reported improvement in Tardieu scores or optimisation of function, in GAS-T scores, in gait, or in 39 pain reduction. No evidence was identified regarding the effectiveness of baclofen in reducing pain or 40 regarding the possible effects of oral baclofen on quality of life or "ease of care". Some adverse side-41 effects of treatment were reported in all studies. Drowsiness was reported as a specific side-effect, 42 and this appeared to be dose related. One trial reported that more parents of children who received 43 baclofen (versus placebo) would have chosen to continue the treatment.

44 Dantrolene

- 45 Three studies reported evidence of outcomes. One reported that scissoring was significantly reduced
- 46 but otherwise there was no evidence that spasticity was reduced by this agent. One study reported
- 47 improved performance with daily activities and behaviour but the others did not report this benefit. Its

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 92 of 219 1 use was associated with increase drowsiness, lethargy and malaise although these symptoms were 2 reportedly transient.

3 Baclofen, diazepam and dantrolene are inexpensive drugs, and if clinically effective the GDG 4 considered that they would be cost effective. Oral diazepam is inexpensive, (current cost of 28 5 diazepam tablets, 2mg tablets £0.98), 5 mg tablets £1.01, 10 mg tablets £1.02). The maximum daily 6 dose recommended (BNF-c) is 40mg daily £53.19 if given as tablets. As an oral solution diazepam 2 7 mg/5 ml costs £6.08/100 ml. A strong oral solution is also available, diazepam 5 mg/5 ml, net price 8 100-mL pack = £6.38. Oral baclofen is inexpensive treatment (current information (BNF=C) £0.02 per 9 tablet and between £8.95 and £10.00 for 300ml of oral solution (5 mg/5 ml). Given that the maximum 10 dose of baclofen recommended (BNF-C) is 100mg daily, this amounts to an annual cost of no more 11 than £69.09.

12 The GDG noted that evidence regarding the effectiveness of oral medications in managing spasticity 13 and associated motor problems was limited, inconsistent and often of low quality. The GDG noted that 14 there were no trials in which oral drugs were directly compared. The GDG therefore relied on the 15 group's expertise and on consensus in their deliberations on the choice of oral drugs. The reported 16 trials did not provide evidence to guide optimal dosage. The reported trials were of short duration, and 17 the GDG considered that with time, increased tolerance might have developed. Despite the 18 deficiencies and inconsistencies in the evidence the GDG believed that oral medications do have a 19 potentially important role in the care of some children with spasticity. First, despite the limited trial 20 evidence, based on the mechanisms of action of these drugs it is plausible to expect that they might 21 be beneficial. Second, oral diazepam and baclofen are currently widely used in the UK to alleviate 22 pain, distress and spasticity and, based on the clinical expertise of GDG members, benefit was 23 regularly observed or reported by individual patients and carers.

24 The GDG recognized that oral medication as a non-invasive form of therapy would be of great value if 25 successful in alleviating spasticity and relieving associated conditions such as pain, muscle spasms 26 and functional disability. The GDG believed that the individual response to oral medication was 27 unpredictable and that the benefits achieved and the adverse effects experienced might vary from 28 one person to the next. Any likely side effects would usually be reversible either by dosage alteration 29 or discontinuation if necessary. Daytime drowsiness might be a significant problem and might disturb 30 a child's sleeping pattern. On the other hand, a mild nocturnal sedative effect might sometimes be 31 beneficial. The GDG considered that the balance of benefit versus adverse effects should be judged 32 on an individual basis through a judicious trial of therapy in selected children.

The GDG noted that oral benzodiazepines especially diazepam are frequently used in the management of children with spasticity. Given that the available trial evidence was in relation to diazepam the GDG believed that this should be the benzodiazepine of choice.

The GDG considered that diazepam should be the first choice of oral medication if the goal was to alleviate troublesome night-time muscle spasms or if there was a severe pain crisis. This was because diazepam was likely to have a more rapid onset of action than baclofen. However, if the goal was to achieve a sustained long-term effect from oral therapy oral baclofen was to be preferred. This was because the GDG was concerned about the possibility of adverse consequences from long-term administration of a benzodiazepine drug.

42 The GDG consensus is that a rational approach to the use of oral medications is to introduce them 43 gradually with a stepwise increase in dosage aimed at optimising therapeutic benefit while minimising 44 the risk of adverse effects such as excessive sedation. The trial evidence relating to baclofen reported 45 benefit associated with this approach. The GDG view is that if oral diazepam is offered as treatment, 46 this should begin as a single bed-time dose. If necessary the dose may be increased stepwise and/or 47 a daytime dose added. When using oral baclofen, again it was advisable to begin with a low dose and 48 increased stepwise over 4 weeks. The GDG view was that this was the appropriate time period to 49 achieve the intended therapeutic goal with minimal side-effects.

50 If oral diazepam is chosen at the outset because of its expected rapid onset of action, the GDG view

51 is that consideration be given to changing to oral baclofen as this may have a more satisfactory long-52 term outcome.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 93 of 219 The GDG view is that if oral medication is found to have a useful affect in an individual child, that is it achieves the desired goal and is well tolerated, it should be continued as medium-term or long-term maintenance therapy. However, unnecessary and possibly ineffective prescribing in the longer term should be avoided. Therefore the GDG advised that consideration should be given as to whether medication is still necessary on each occasion when a child is reviewed. Such a review of treatment should take place at least six-monthly.

In the event that oral medication leads to side-effects such as drowsiness, consideration should be given either to reducing the dose or discontinuing treatment. Likewise, if there was no worthwhile effect with diazepam and baclofen individually within a period of 4 to 6 weeks consideration should be given to a trial of combined therapy with both diazepam and baclofen together. Although no evidence was identified to support the efficacy of such combined treatment, the GDG considered that this was a rational approach given the different mechanisms of action with the two drugs.

13 The GDG considered that there were potential adverse effects associated with withdrawal of these 14 medications after a long period of therapy. They therefore recommended that discontinuation after a 15 long period of usage should be gradual with stepwise dose reduction.

16 The GDG noted that a proportion of children with spasticity receive anti-convulsant medication for 17 epilepsy, and the possibility of interactions needed to be borne in mind.

18 The GDG considered that neither the evidence of the efficacy of dantrolene nor their clinical 19 experience of its use was sufficient to allow them to make a recommendation on its use for reduction 20 of spasticity.

Given the absence of clinical trial evidence on tizanidine and trihexylphenidyl and the limited experience in their usage the GDG made no recommendation regarding these drugs.

23 **Recommendations**

Number	Recommendation
57	Oral drugs Consider oral diazepam if spasticity is contributing to:
	 discomfort or pain muscle spasms (for example night-time muscle spasms) functional disability and a rapid effect is desirable (for example, in pain crisis).
58	Consider oral baclofen if spasticity is contributing to:
	 discomfort or pain muscle spasms functional disability and a sustained long-term effect is desired (for example, to relieve continuous discomfort or to improve motor function).
59	Start oral diazepam treatment with a single dose at bedtime. If the clinical response is unsatisfactory consider:
	increasing the dose oradding a daytime dose.
60	Start oral baclofen treatment with a low dose and increase the dose stepwise over about 4 weeks to achieve the optimum therapeutic effect.
61	If oral diazepam is used because of its rapid onset of action, consider changing to oral baclofen if long-term treatment is indicated.
62	Continue using oral diazepam or oral baclofen if they have a clinical benefit and are well tolerated, but consider whether to stop treatment every time the child or

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 94 of 219

Number Recommendation

young person's management programme is reviewed and at least every 6 months.

- 63 If adverse effects (such as drowsiness) occur with oral diazepam or oral baclofen consider reducing the dose or stopping treatment.
- 64 If the clinical response to oral diazepam or oral baclofen used alone is unsatisfactory within 4–6 weeks, stop using the drug or consider a trial of combination treatment with both oral diazepam and oral baclofen.

1

- What is the effectiveness of night-time oral baclofen or oral diazepam combined with physical therapy compared to physical therapy only in children and young people who are in GMFCS levels 1 to 5?
 What is the effectiveness of night-time oral baclofen or oral diazepam combined
- with physical therapy and a night-time postural control system compared to physical therapy and a night-time postural control system only in children and young people who are in GMFCS levels 1 to 5?

7 Botulinum toxin

2 Introduction

3 Botulinum toxin (BoNT) is a neurotoxic protein produced by the bacterium Clostridium botulinum. 4 There are seven serologically distinct toxin types but only toxins A and B are used to treat spasticity in 5 the UK. When injected intramuscularly BoNT attaches rapidly to receptors in the presynaptic nerve 6 membrane where it binds irreversibly and blocks the release of the neurotransmitter achetylcholine. 7 Without achetylcholine the muscle can not be triggered to contract and flaccid paralysis is produced. 8 In spastic muscles this relaxation is the desired effect and can help alleviate some of the problems 9 associated with upper motor neurone (UMN) disorders such as cerebral palsy. The blockage of the 10 neuromuscular junction triggers neuronal sprouting which re-establishes impulse transmission and 11 therefore muscle activity and spasticity return at around three months.

BoNT A is licensed in the UK for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, 2 years of age or older. However, it is frequently used 'off licence' by many practitioners. There is variation in its use across the UK from assessment of patients, administration and follow up pathways. For this reason the GDG wanted to review available evidence and formulate a consensus of recommendations to help inform practice.

BoNT is one of a number of strategies available for the management of spasticity in children and young people with a non-progressive brain disorder and is not usually used in isolation. It is believed that the temporary reduction in spasticity offers clinicians a window of opportunity to address issues of weakness and functional difficulties brought about by the abnormal muscle tone. It may also 'unmask' weak muscles and cause a temporary deterioration in function.

This along with the possible side effects of the toxin makes careful assessment very important. Good patient selection criteria and individualised patient goals are essential when planning a course of treatment with BoNT.

- BoNT A is the primary toxin that is used across the UK although some centres are turning to type B when response to A is inadequate.
- 28 The review for this guideline considers the following aspects of treatment with BoNT.
- The effectiveness of a single dose of BoNT A given in combination with a program of therapy appropriate to the child's or young person's needs compared to:
- 31 o therapy alone

32

- oral antispasmodic medication and therapy.
- The effectiveness of BoNT A treatment repeated every four months compared to every 12 months.
- The comparative effectiveness of BoNT A treatment when administered using the following
 location techniques to identify muscle injection sites:
- 37 o palpation of the spastic muscle
- 38 o electrical stimulation guided-injection
- 39 o ultrasound guided-injection.
- The comparative effectiveness of BoNT A and BoNT B.
- 41 No related NICE guidance was identified for this review question.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 96 of 219

1 Review question

2 What is the effectiveness of the long-term use of intramuscular BoNT A or B in combination with other 3 interventions (physiotherapy, occupational therapy or orthoses) as compared to other interventions at

4 reducing spasticity, maintaining motor function and preventing secondary complications in children 5 with spasticity and with or without other motor disorders (dystonia, muscle weakness and

6 choreoathetosis) caused by a non-progressive brain disorder?

7 Description of included studies

8 In total there were eight publications addressing four comparisons as follows:

- BoNT A and physical therapy versus physical therapy alone (one Cochrane systematic review (Hoare 2010; data from several of the trials included in the systematic review are presented in the evidence profiles below), one RCT for upper limb (Olesch 2010), and three RCTs for lower limb (Ackman 2005; Kay 2004; Reddishough 2002))
- BoNT A every 4 months versus BoNT A every 12 months (one RCT; Kanovsky 2009)
 - electrical stimulation versus palpation (one RCT; Xu 2009)
- ultrasound versus electrical stimulation (one RCT; Kwon 2010).

17 Evidence profiles

15

Botulinum toxin type A and physical therapy versus physical therapy alone

The eight RCTs identified for inclusion compared BoNT A and occupational therapy to occupationaltherapy alone.

22 One systematic review and one RCT reported outcomes relevant to reduction of spasticity and 23 optimisation of movement in the upper limb (Hoare 2010; Olesch 2010).

Number of	Number of patier	nts	Effect		Quality			
studies	Botulinum neurotoxin A (BoNT A)/ Occupational therapy (OT)	OT only all outcomes	Relative (95% CI)	Absolute (95% CI)				
Modified Ashwo	orth scale - should	ler adductors - 4 m	onths					
1 study (Greaves 2004)	9	9	OR 0.20 (0.03, 1.15)†	-	LOW			
Modified Ashwo	orth scale - elbow	flexors - 3 months						
2 studies (Russo 2007; Wallen 2007)	41	39	OR 0.16 (0.06 to 0.43) †	-	MODERATE			
Modified Ashwo	Modified Ashworth scale - elbow flexors - 6 months							
2 studies (Russo 2007; Wallen 2007)	41	39	OR 0.33 (0.13 to 0.86) †	-	LOW			
Modified Tardie	u scale - elbow fle	exors (change from	baseline R2-R1) -	4 months (Better	indicated by			

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 97 of 219

lower values)	lower values)							
1 study (Greaves 2004)	9	9	-	MD 43.89 lower (92.99 lower to 5.21 higher) †	LOW			
Modified Tardieu scale - elbow flexors - Four months (cycle 1) final score (Better indicated by lower values)								
1 study (Olesch 2010)	11	11	-	MD 34.3 lower (70.67 lower to 2.07 higher)*	MODERATE			
Modified Tardie	eu elbow flexors cy	cle 2 final score (I	Better indicated by	lower values)				
1 study (Olesch 2010)	11	11	-	MD 36 lower (71.3 to 0.7 lower)*	MODERATE			
Modified Tardie	eu elbow flexors cy	cle 3 final score (I	Better indicated by	lower values)				
1 study (Olesch 2010)	11	11	-	MD 42.8 lower (86.48 lower to 0.88 higher)*	MODERATE			
Elbow extensio by higher value	n passive range of s)	f motion (PROM) (change from basel	ine) - 3 months (B	etter indicated			
2 studies (Fehlings 2000; Wallen 2007)	34	31	-	MD 0.11 higher (2.96 lower to 3.19 higher) †	LOW			
Elbow extension PROM (change from baseline) - 6 months (Better indicated by higher values)								
Elbow extensio	n PROM (change f	rom baseline) - 6 r	nonths (Better ind	icated by higher v	alues)			
Elbow extensio 2 studies (Fehlings 2000; Wallen 2007)	n PROM (change f 34	rom baseline) - 6 r 32	nonths (Better ind -	icated by higher v MD 0.15 lower (3.38 lower to 3.07 higher †)	alues) LOW			
2 studies (Fehlings 2000; Wallen 2007)		32	nonths (Better ind	MD 0.15 lower (3.38 lower to	-			
2 studies (Fehlings 2000; Wallen 2007)	34	32	OR 1.58 (0.45 to 5.52) †	MD 0.15 lower (3.38 lower to	-			
2 studies (Fehlings 2000; Wallen 2007) Modified Ashwo 1 study (Wallen 2007)	34 orth scale - pronat	32 ors - 3 Months 17	- OR 1.58 (0.45	MD 0.15 lower (3.38 lower to	LOW			
2 studies (Fehlings 2000; Wallen 2007) Modified Ashwo 1 study (Wallen 2007)	34 orth scale - pronat	32 ors - 3 Months 17	- OR 1.58 (0.45	MD 0.15 lower (3.38 lower to	LOW			
2 studies (Fehlings 2000; Wallen 2007) Modified Ashwo 1 study (Wallen 2007) Modified Ashwo 1 study (Greaves 2004)	34 orth scale - pronat 20 orth scale - pronat	32 ors - 3 Months 17 ors - 4 Months 9	- OR 1.58 (0.45 to 5.52) † OR 0.13 (0.02	MD 0.15 lower (3.38 lower to 3.07 higher †)	LOW			
2 studies (Fehlings 2000; Wallen 2007) Modified Ashwo 1 study (Wallen 2007) Modified Ashwo 1 study (Greaves 2004)	34 orth scale - pronat 20 orth scale - pronat 9	32 ors - 3 Months 17 ors - 4 Months 9	- OR 1.58 (0.45 to 5.52) † OR 0.13 (0.02	MD 0.15 lower (3.38 lower to 3.07 higher †)	LOW			
2 studies (Fehlings 2000; Wallen 2007) Modified Ashwa 1 study (Wallen 2007) Modified Ashwa 1 study (Greaves 2004) Modified Ashwa 1 study (Wallen 2007)	34 orth scale - pronat 20 orth scale - pronat 9 orth scale - pronat	32 ors - 3 Months 17 ors - 4 Months 9 ors - 6 Months 17	- OR 1.58 (0.45 to 5.52) † OR 0.13 (0.02 to 0.97) † OR 1.5 (0.22 to 10.16) †	MD 0.15 lower (3.38 lower to 3.07 higher †) -	LOW			
2 studies (Fehlings 2000; Wallen 2007) Wodified Ashwa 1 study (Wallen 2007) Modified Ashwa 1 study (Greaves 2004) Modified Ashwa 1 1 study (Wallen 2007) Modified Ashwa 1 study (Wallen 2007) Modified Ashwa 1 study (Wallen 2007) Modified Tardie	34 orth scale - pronat 20 orth scale - pronat 9 orth scale - pronat 20	32 ors - 3 Months 17 ors - 4 Months 9 ors - 6 Months 17	- OR 1.58 (0.45 to 5.52) † OR 0.13 (0.02 to 0.97) † OR 1.5 (0.22 to 10.16) †	MD 0.15 lower (3.38 lower to 3.07 higher †) -	LOW			
2 studies (Fehlings 2000; Wallen 2007) Modified Ashway 1 study (Wallen 2007) Modified Ashway 1 study (Greaves 2004) Modified Ashway 1 1 study (Wallen 2007) Modified Ashway 1 study (Wallen 2007) Modified Tardie 1 study (Wallen 2007) Modified Tardie values) 1 1 study (Olesch 2010) 1	34 orth scale - pronate 20 orth scale - pronate 9 orth scale - pronate 20 orth scale - pronate 9 orth scale - pronate 20 orth scale - pronate 9 orth scale - pronate 20 orth scale - pronate orth scale - pronate orth scale - pronate orth scale - pronate	32 ors - 3 Months 17 ors - 4 Months 9 ors - 6 Months 17 pronators - 4 mont 11	- OR 1.58 (0.45 to 5.52) † OR 0.13 (0.02 to 0.97) † OR 1.5 (0.22 to 10.16) † chs (cycle 1) mean -	MD 0.15 lower (3.38 lower to 3.07 higher †) - - - change (Better ind MD 4 higher*	LOW LOW LOW LOW			

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 98 of 219

Modified Tardie	Modified Tardieu Forearm pronators cycle 3 mean change (Better indicated by lower values)						
1 study (Olesch 2010)	11	11	-	MD 18.5 lower*	LOW		
Supination activities higher values)	ve range of motior	n (AROM) (change	from baseline) - 3	months (Better ind	dicated by		
1 study (Speth 2005)	10	10	-	MD 16.3 lower (33.01 lower to 0.41 higher) †	MODERATE		
Supination ARC	OM (change from b	aseline) - 6 month	s (Better indicated	by higher values)			
1 study (Speth 2005)	10	10	-	MD 8.4 lower (36.74 lower to 19.94 higher) †	MODERATE		
Forearm supina	tion PROM (chang	ge from baseline) -	3 months (Better	indicated by highe	er values)		
2 studies (Fehlings 2000, Wallen 2007)	34	31	-	MD 3.64 higher (0.92 lower to 8.2 higher) †	LOW		
Forearm supina	tion PROM (chang	ge from baseline) -	6 months (Better	indicated by highe	er values)		
2 studies (Fehlings 2000, Wallen 2007)	34	32	-	MD 0.97 higher (4.45 lower to 6.39 higher) †	LOW		
Modified Ashwo	orth scale - wrist fl	exors - 3 Months		L			
2 studies (Russo 2007, Wallen 2007)	0/0 (0%)	0/0 (0%)	OR 0.1 (0.03 to 0.29) †	-	MODERATE		
Modified Ashwo	orth scale - wrist fl	exors - 4 Months	I	I			
1 study (Greaves 2004)	0/0 (0%)	0/0 (0%)	OR 0.36 (0.07 to 1.87) †	-	LOW		
Modified Ashwo	orth scale - wrist fl	exors - 6 Months					
2 studies (Russo 2007, Wallen 2007)	0/0 (0%)	0/0 (0%)	OR 0.2 (0.08 to 0.51) †	-	LOW		
Modified Tardie lower values)	u scale - wrist flex	ors (change from	baseline R2-R1) - I	Four months (Bett	er indicated by		
1 study (Greaves 2004)	10	10	-	MD 10.56 lower (30.83 lower to 9.71 higher) †	LOW		
Modified Tardie	u scale - wrist flex	ors - 4 months (cy	cle 1) final score (Better indicated b	y lower values)		
1 study (Olesch 2010)	11	11	-	MD 18.5 lower (37.78 lower to 0.78 higher)*	MODERATE		
Modified Tardie	u (final score com	parison) Wrist flex	cors Cycle 2 (Bette	r indicated by low	er values)		
1 study	11	11	-	MD 18.5 lower (37.78 lower to	MODERATE		

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 99 of 219

(Olesch 2010)				0.78 higher)*	
				.	
Modified Tardie	u(final score com	parison) wrist flex	ors Cycle 3 (Better	indicated by lowe	er values)
1 study (Olesch 2010)	1129	1130	-	MD 20.9 lower (38.27 to 3.53 lower)*	HIGH
Wrist extension	AROM (change fr	om baseline) - 3 m	onths (Better indi	cated by higher va	lues)
1 study (Speth 2005)	10	10	-	MD 14.7 higher (7.92 lower to 37.32 higher) †	MODERATE
Wrist extension	AROM (change fr	om baseline) - 6 m	onths (Better indi	cated by higher va	lues)
1 study (Speth 2005)	10	10	-	MD 15.6 higher (6.36 lower to 37.56 higher) †	MODERATE
Wrist extension	PROM (change fr	om baseline) - 3 m	onths (Better indi	cated by higher va	lues)
1 study (Fehlgins 2000)	14	15	-	MD 3.31 higher (4.7 lower to 11.32 higher †)	LOW
Wrist extension	PROM (change fr	om baseline) - 6 m	onths (Better indi	cated by higher va	lues)
1 study (Fehlings 2000)	14	15	-	MD 0.07 lower (9.85 lower to 9.71 higher) †	LOW
Palmar thumb a	bduction PROM (change from basel	ine) - 3 months (B	etter indicated by	higher values)
1 study (Fehlings 2000)	14	15	-	MD 2.06 higher (4.69 lower to 8.81 higher) †	LOW
Palmar thumb a	bduction PROM (change from basel	ine) - 6 months (B	etter indicated by	higher values)
1 study (Fehlings 2000)	14	15	-	MD 1.56 higher (3.96 lower to 7.08 higher) †	LOW

1

* Calculated by the NCC-WCH

2 † Data from Hoare 2010 Cochrane systematic review

3 Three RCTs reported outcomes relevant to reduction of spasticity and optimisation of movement in 4 the lower limb (Ackman 2005, Kay 2004, Reddishough 2002).

Number of studies	Number of patier	nts	Effect		Quality
	Botulinum neurotoxin (BoNT) + physical therapy	Physical therapy only	Relative (95% CI)	Absolute (95% CI)	
	orth score (MAS) P ndicated by highe	-	ticity (reduction in	spasticity) mean o	change 3
1 study (Kay 2004)	16 limbs	20 limbs	-	MD 0.2 higher (0.52 lower to 0.92 higher)*	LOW
MAS Plantar fle	xor spasticity (red	uction in spasticit	y)mean change 6 ı	nonths (Better ind	licated by

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 100 of 219

higher values)									
1 study (Kay 2004)	16 limbs	20 limbs	-	MD 0.94 higher (0.14 to 1.74 higher)*	LOW				
Ashworth score values)	Ashworth score at ankle (reduction in spasticity) – mean change 3 months (Better indicated by higher values)								
1 study (Ackman 2005)	12	13	-	MD 0.3 higher	LOW				
Ashworth score values)	at ankle (reduction	on in spasticity) –	mean change 6 mc	onths (Better indic	ated by higher				
1 study (Ackman 2005)	12	13	-	MD 0.0 lower/higher	LOW				
Active dorsiflex	tion at ankle – mea	an change at 3 mo	nths (Better indica	ted by higher valu	es)				
1 study (Ackman 2005)	12	13	-	MD 2 more	LOW				
Active dorsiflex by higher value		an change at 6 mo	nths (as reported,	read from graph) (Better indicated				
1 study (Ackman 2005)	12	13	-	MD 3 higher	LOW				
	ion (knee flexion) er indicated by hig		notion (PROM) at 3	months (mean ch	ange from				
1 study (Ackman 2005)	12	13	-	MD 0.5 lower	LOW				
Ankle dorsiflex higher values)	ion (knee flexion)	PROM at 6 months	s (mean change fro	om baseline) (Bette	er indicated by				
1 study (Ackman 2005)	12	13	-	MD 1.5 higher	LOW				
Ankle dorsiflex by higher value		n) PROM at 3 mon	ths (mean change	from baseline) (B	etter indicated				
1 study (Ackman 2005)	12	13	-	MD 1 higher	LOW				
Ankle dorsiflex by higher value	-	n) PROM at 6 mon	ths (mean change	from baseline) (B	etter indicated				
1 study (Ackman 2005)	12	13	-	MD 1.5 higher*	LOW				
Ankle dorsiflex	ion PROM at 3 mo	nths (mean chang	e from baseline) (B	Better indicated by	higher values)				
1 study (Kay 2004)	16	20	-	MD 4.5 higher (3.22 lower to 12.22 higher)*	LOW				
	1	1	1	1	1				

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 101 of 219

Ankle dorsiflex by higher value		nths (mean chang	e from baseline) re	ead from graph (Be	etter indicated
1 study (Kay 2004)	16	20	-	MD 1.5 lower	LOW
Right ankle dor indicated by high	•	tension) PROM at 3	3 months (mean cl	hange from baselii	ne) (Better
1 study Reddishough 2002)	11	11	-	MD 8.63 higher (2.23 to 15.03 higher)*	LOW
Right ankle dor indicated by high		xion) PROM at 6 m	onths (mean chan	ge from baseline)	(Better
1 study Reddishough 2002)	34	34	-	MD 8.53 higher (0.27 lower to 17.33 higher)*	VERY LOW
MAS Left calf m	nean change 6 mo	nths (Better indica	ted by lower value	s)	
1 study Reddishough 2002)	35	35	-	0.52 lower (0.89 to 0.15 lower)*	VERY LOW
MAS Left adduc	ctor mean change	6 months (Better i	ndicated by highe	r values)	<u> </u>
1 study Reddishough 2002)	8	8	-	1.63 lower (2.53 to 0.71 lower)*	VERY LOW
MAS Right add	uctor mean chang	e 6 months (Better	indicated by lowe	r values)	
1 study Reddishough 2002)	N=?44	N=?45	-	-	MODERATE
MAS Total scor	e mean change 3	months (Better ind	licated by higher v	alues)	
1 study Reddishough 2002)	18	18	-	2.51 lower (3.22 to 1.8 lower)	MODERATE

2 One systematic review and one RCT reported outcomes relevant to optimisation of function in the 3 upper limb (Hoare 2010; Olesch 2010).

Number of	Number of patients		Effect		Quality
studies	Botulinum neurotoxin A (BoNT A)/ Occupational therapy (OT)	OT only all outcomes	Relative (95% CI)	Absolute (95% CI)	
Goal Attainmen higher values)	t Scaling (GAS) (c	hange from baseli	ne) - Parent - Thre	e months (Better i	ndicated by
4 studies (Boyd 2004; Lowe 2006; Russo 2007; Wallen 2007)	77	75	-	MD 8.52 higher (4.42 to 12.62 higher)†	HIGH

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 102 of 219

GAS (change from baseline) - Parent - Four months (Better indicated by higher values)								
1 study (Greaves 2004)	10	10	-	MD 9.21 higher (1.06 to 17.36 higher) †	LOW			
GAS (change fr	om baseline) - Par	ent - Six months (Better indicated by	/ higher values)				
3 studies (Lowe 2006; Russo 2007; Wallen 2007)	62	60	-	MD 5.04 higher (0.75 lower to 10.83 higher) †	MODERATE			
GAS-T score (fi	nal score compari	son) Cycle 1 (Bette	er indicated by hig	her values)				
1 study (Olesch 2010)	11	11	-	MD 6.0 higher (2.32 lower to 14.32 higher)*	MODERATE			
GAS-T score (fi	nal score compari	son) Cycle 2 (Bette	er indicated by hig	her values)				
1 study (Olesch 2010)	11	11	-	MD 7.7 higher (1.16 lower to 16.56 higher)*	MODERATE			
GAS - T score(f	inal score compar	ison) Cycle 3 (Bett	ter indicated by high	gher values)				
1 study (Olesch 2010)	11	11	-	MD 4.9 higher (2.11 lower to 11.91 higher) *	MODERATE			
GAS-T score ov	ver whole year (Be	tter indicated by h	igher values)					
1 study (Olesch 2010)	11	11	-	MD 7 higher (0.59 to 13.41 higher)*	MODERATE			
	bational performar indicated by highe		M) performance (c	hange from basel	ine) - Three			
3 studies (Boyd 2004; Lowe 2006; Wallen 2007)	56	53	-	MD 0.77 higher (0.23 to 1.31 higher) †	MODERATE			
COPM Performa	ance (change from	baseline) - Four r	nonths (Better ind	icated by higher va	alues)			
1 study (Greaves 2004)	10	10	-	MD 0.6 higher (0.68 lower to 1.88 higher) †	LOW			
COPM Performa higher values)	ance (change from	baseline) - Four r	nonths (cycle 1) cl	nange score (Bette	er indicated by			
1 study (Olesch 2010)	11	11	-	MD 0.7 higher (0.32 lower to 1.72 higher) *	MODERATE			
COPM Performa	COPM Performance(change from baseline) Cycle 2 (Better indicated by higher values)							
1 study (Olesch 2010)	11	11	-	MD 0.9 higher (0.1 to 1.7 higher)*	MODERATE			
COPM Performa	ance (change from	baseline) Cycle 3	(Better indicated	by higher values)				

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 103 of 219

			[
1 study (Olesch 2010)	11	11	-	MD 1.4 higher (0.35 to 2.45 higher)*	MODERATE
COPM Performa	ance(change from	baseline) over wh	ole year (Better ind	dicated by higher	values)
1 study	11	11		MD 0.9 higher	MODERATE
1 study (Olesch 2010)		11	-	MD 0.8 higher (0.04 lower to	MODERATE
(01000112010)				1.64 higher)*	
COPM Performation	ance (change from	baseline) - Six mo	onths (Better indic	ated by higher val	ues)
2 studies	41	38	-	MD 0.4 higher	MODERATE
(Lowe 2006;				(0.3 lower to	
Wallen 2007)				1.09 higher) †	
	uation of disability e months (Better i		scaled score - Fun r values)	ctional Skills (cha	nge from
3 studies Boyd	49	47	-	MD 0.6 higher	LOW
2004; Fehlings				(1.44 lower to	
2000; Wallen 2007)				2.63 higher) †	
	uation of disability	inventory (PEDI)	scaled score - Fun	ctional Skills (cha	nge from
	e months (Better i				ngenom
3 studies Boyd	49	47	-	MD 0.6 higher	LOW
2004;				(1.44 lower to	
Fehlings; Wallen 2007)				2.63 higher) †	
PEDI scaled sco values)	ore - Functional SI	kills (change from	baseline) - Six mo	nths (Better indica	ted by higher
2 studies	34	32	-	MD 1.09 higher	LOW
(Fehlings 200; Wallen 2007)				(1.7 lower to 3.88 higher) †	
PEDI scaled sco higher values)	ore - Caregiver ass	sistance (change f	rom baseline) - Th	ree months (Bette	r indicated by
1 study	20	17	-	MD 6.3 lower	MODERATE
(Wallen 2007)	-			(14.68 lower to	-
				2.08 higher) †	
PEDI scaled sco higher values)	ore - Caregiver ass	sistance (change f	rom baseline) - Six	months (Better in	dicated by
1 study	20	17	-	MD 4.4 lower	MODERATE
(Wallen 2007)				(13.38 lower to	
. ,				4.58 higher) †	
Quality of Uppe indicated by hig	-	Test (QUEST) (cha	inge from baseline) - Parent - Three I	months (Better
3 studies	42	42	-	MD 9.19 higher	MODERATE
(Fehlings				(4.84 to 13.54	
2000; Lowe				higher) †	
2006; Wallen 2007)					
·	from haseline) - I	Parent - Four mont	hs (Better indicate	d by higher value	s)
	-				
1 study (Greaves	10	10	-	MD 4,42 lower (9.98 lower to	LOW
,	ildron and your		l	· ·	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 104 of 219

2004)				1.14 higher) †					
QUEST (change	QUEST (change from baseline) - Parent - Six months (Better indicated by higher values)								
3 studies (Fehlings 2000; Lowe 2006; Wallen 2007)	42	42	-	MD 2.93 higher (1.58 lower to 7.45 higher) †	LOW				
QUEST Total so	core (final score co	omparison) Cycle	I (Better indicated	by higher values)					
1 study (Olesch 2010)	11	11	-	MD 5.50 higher (5.37 lower to 16.37 higher)*	MODERATE				
QUEST Total so	core (final score co	omparison) Cycle 2	2 (Better indicated	by higher values)					
1 study (Olesch 2010)	11	11	-	MD 7.60 higher (2.42 lower to 17.62 higher)*	MODERATE				
QUEST Total so	QUEST Total score (final score comparison) Cycle 3 (Better indicated by higher values)								
1 study (Olesch 2010)	11	11	-	MD 6.70 higher (1.58 lower to 14.98 higher) *	MODERATE				

2 † Data from Hoare 2010 Cochrane systematic review

3 Two studies reported outcomes relevant to optimisation of function in the lower limb (Kay 2004, 4 Reddishough 2002).

Number of	Number of patients		Effect		Quality			
studies	Botulinum neurotoxin (BoNT) + physical therapy	Physical therapy only	Relative (95% CI)	Absolute (95% CI)				
Gross Motor Fu indicated by hig	•	GMFM) –C, D, E. Pe	ercent score mean	change 3 months	(Better			
1 study (Kay 2004)	16 limbs	20 limbs		MD 3.8 higher (0.5 lower to 8.1 higher)*	LOW			
GMFM –C, D, E.	Percent score me	an change 6 mont	hs (Better indicate	ed by higher value	s)			
1 study (Kay 2004)	16 limbs	20 limbs		MD 1.01 higher (1.13 lower to 3.15 higher)*	LOW			
GMFM Total sco	ore mean change 3	3 months (Better in	ndicated by higher	values)				
1 study (Reddishough 2002)	19	19		MD 1.33 lower (5.12 lower to 2.46 higher)*	LOW			
GMFM Total sco	GMFM Total score mean change 6 months (Better indicated by higher values)							
1 study (Reddishough 2002	19	19		MD 0.16 higher (4.37 lower to 4.69 higher)*	LOW			

GMFM Total sco	GMFM Total score with aids mean change 3 months (Better indicated by higher values)					
1 study (Reddishough 2002)	7	7	MD 3.72 h (7.56 lowe 15 higher)	•		
GMFM Total sco	ore with aids mear	change 6 months	(Better indicated by higher va	llues)		
1 study (Reddishough 2002)	24	24	MD 7.19 I (13.64 to lower)			
Velocity (m/s) n	nean change 3 mo	nths (as reported,	read from graph) (Better indica	ated by higher values)		
1 study (Ackman 2005)	12	13	MD 0.2 high	ner* LOW		
Velocity (m/s) n	Velocity (m/s) mean change 6 months (as reported, read from graph) (Better indicated by higher values)					
1 study (Ackman 2005)	12	13	MD 0.05 hig	gher* LOW		

2 One systematic review reported outcomes relevant to quality of life pertaining to the upper limb 3 (Hoare 2010).

Number of	Number of patier	nts	Effect		Quality	
studies	Botulinum neurotoxin A (BoNT A)/ Occupational therapy (OT)	OT only all outcomes	Relative (95% CI)	Absolute (95% CI)		
Child health que	estionnaire (CHQ)	- physical function	ning - 3 months (B	etter indicated by	higher values)	
3 studies (Boyd 2004; Russo 2007; Wallen 2007)	56	54	-	MD 3.88 lower (15.48 lower to 7.72 higher)*	MODERATE	
CHQ - physical	functioning - 6 mc	onths (Better indic	ated by higher valu	ues)		
2 studies (Russo 2007; Wallen 2007)	41	39	-	MD 0.28 higher (12.2 lower to 12.75 higher)*	MODERATE	
CHQ - role emo	tional - 3 months (Better indicated b	y higher values)			
3 studies (Boyd 2004; Russo 2007; Wallen 2007)	56	54	-	MD 12.98 higher (1.37 to 24.60 higher)*	MODERATE	
CHQ - role emo	tional - 6 months (Better indicated b	y higher values)			
2 studies (Russo 2007; Wallen 2007)	41	39	-	MD 7.28 higher (7.73 lower to 22.29 higher)	MODERATE	
CHQ - role phys	CHQ - role physical - 3 months (Better indicated by higher values)					
3 studies (Boyd 2004;	56	54	-	MD 8.76 higher (3.08 lower to	MODERATE	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 106 of 219

DRAFT FOR CONSULTATION

Russo 2007; Wallen 2007)				20.61 higher)	
CHQ - role phys	sical - 6 months (B	etter indicated by	higher values)		
2 studies (Russo 2007; Wallen 2007)	41	39	-	MD 2.02 higher (13.98 lower to 18.02 higher)	MODERATE

- 1 * Calculated by the NCC-WCH from data in Hoare 2010 Cochrane systematic review
- 2 None of the included studies reported outcomes relevant to quality of life pertaining to the lower limb.
- 3 One RCT reported outcomes relevant to acceptability and tolerability pertaining to the upper limb
- 4 (Olesch 2010).

Number of	Number of patients		Effect		Quality	
studies	Botulinum neurotoxin A (BoNT A)/ Occupational therapy (OT)	OT only all outcomes	Relative (95% CI)	Absolute (95% Cl)		
	pational performar indicated by highe		M)Satisfaction (ch	ange from baselin	e) Three	
3 studies (Boyd 2004; Lowe 2006; Wallen 2007)	56	63	-	MD 0.81 higher (0.17 to 1.46 higher) †	MODERATE	
COPM Satisfact	tion (change from	baseline) Four mo	nths (Better indica	ated by higher valu	ies)	
1 study (Greaves 2004)	10	10	-	MD 0.76 higher (0.92 lower to 2.44 higher) †	MODERATE	
COPM Satisfact	tion (change from	baseline) Six mon	ths (Better indicate	ed by higher value	s)	
2 studies (Lowe 2006; Wallen 2007)	41	38	-	MD 0.35 higher (0.39 lower to 1.08 higher) †	MODERATE	
COPM Satisfact	tion (change from	baseline) Cycle 1 (Better indicated b	y higher values)		
1 study (Olesch 2010)	11	11	-	MD 1.2 higher (0.15 to 2.25 higher)*	MODERATE	
COPM Satisfact	tion (change from	baseline) Cycle 2 (Better indicated b	y higher values)		
1 study (Olesch 2010)	11	11	-	MD 1.2 higher (0.15 to 2.25 higher)*	MODERATE	
COPM Satisfact	COPM Satisfaction (change from baseline) Cycle 3 (Better indicated by higher values)					
1 study (Olesch 2010)	11	11	-	MD 1.4 higher (0.35 to 2.45 higher)*	MODERATE	
COPM Satisfact	COPM Satisfaction(change from baseline) over whole year (Better indicated by higher values)					
1 study (Olesch 2010)	11	11	-	MD 0.8 higher (0.11 to 1.49	MODERATE	

		higher)*	
--	--	----------	--

- 1 * Calculated by the NCC-WCH
- 2 † Data from Hoare 2010 Cochrane systematic review

3 One study reported outcomes relevant to acceptability and tolerability pertaining to the lower limb 4 (Reddishough 2002).

Number of studies	Number of patients		Effect		Quality	
	Botulinum neurotoxin A (BoNT A)/ Occupational therapy (OT)	OT only all outcomes	Relative (95% Cl)	Absolute (95% CI)		
Parental percep months	Parental perception "did the parent feel that the BoNT injection had been of benefit to the child?" Three months					
1 study (Reddishough 2002)	-	-	-	-	LOW	
Parental percep months	Parental perception "did the parent feel that the BoNT injection had been of benefit to the child?" Six months					
1 study (Reddishough 2002)	-	-	-	-	LOW	

5

6 None of the included studies reported outcomes relevant to adverse effects pertaining to the upper 7 limb.

8 One systematic review and one RCT reported outcomes relevant to quality of life pertaining to the 9 upper limb (Hoare 2010; Olesch 2010)

Number of studies	Number of patients		Effect		Quality		
	Botulinum neurotoxin A (BoNT A)/ Occupational therapy (OT)	OT only all outcomes	Relative (95% Cl)	Absolute (95% CI)			
Adverse effects	Adverse effects						
1 study (Hoare 2010)	-	-	-	-	LOW		
1 study (Olesch 2010)	11	11	-	-	LOW		

10

11 Two studies reported outcomes relevant to adverse effects pertaining to the lower limb (Reddishough2002; Ackman 2005)

Number of	Number of patients		Effect		Quality
studies	Botulinum neurotoxin A (BoNT A)/ Occupational therapy (OT)	OT only all outcomes	Relative (95% Cl)	Absolute (95% CI)	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 108 of 219

Parental respor Three months	nse "did the child e	experience some f	orm of complication	on or side effect fro	om the BoNT?"
1 study (Reddishough 2002)	-	-	-	-	LOW
Parental respor Six months	nse "did the child e	experience some f	orm of complication	on or side effect fr	om the BoNT?"
1 study (Reddishough 2002)	-	-	-	-	LOW
Parental respon	nse "did the child e	experience any pai	in in their legs foll	owing injection?"	Three months
1 study (Reddishough 2002)	-	-	-	-	LOW
Adverse effects: reported by parent					
1 study (Ackman 2005)	1/12	0/13	-	-	LOW

2 None of the studies reported outcomes relevant to reduction of pain in the upper or lower limb.

Botulinum toxin type A every 4 months versus botulinum toxin type A every 12 months

5 The RCT identified for inclusion compared BoNT A injected into the gastrocnemius muscles every 4 6 months to BoNT A every 12 months to treat lower limb spasticity (Kanovsky 2009).

- 7 The study did not report any relevant outcomes pertaining to the upper limb.
- 8 Reduction of spasticity and optimisation of movement in the lower limb

Number of studies	Number of patier	nts	Effect		Quality	
	Botulinum neurotoxin (BoNT) / Occupational therapy (OT) every 4 months	BoNT /OT every 12 months	Relative (95% CI)	Absolute (95% CI)		
Worse leg ankle dorsiflexion (knee extension) PROM at 12 months (mean change from baseline) (Better indicated by lower values)						
1 study (Kanovsky 2009)	110	104	-	MD 2 higher*	LOW	
Worse leg ankle dorsiflexion (knee extension) PROM at 28 months (mean change from baseline) (Better indicated by lower values)						
1 study (Kanovsky 2009)	110	104	-	MD 2.5 higher*	LOW	

9 * Calculated by the NCC-WCH

10 Optimisation of function in the lower limb

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 109 of 219

Number of	Number of patients		Effect	Effect		
studies	Botulinum neurotoxin (BoNT) 4 months	BoNT yearly	Relative (95% CI)	Absolute (95% CI)		
	nction measure (d by higher scor	. ,	ore - Median cha	nge from baseline	at month 28	
1 study (Kanovsky 2009)	110	104		2.7 higher	LOW	
GMFM Goal tot	GMFM Goal total score - Median change from baseline at month 28 (Better indicated by higher score)					
1 study (Kanovsky 2009)	11	104		2.4 higher	LOW	

- 2 The study did not report any relevant outcomes for quality of life or acceptability and tolerability3 pertaining to the lower limb.
- 4 Adverse events relating to the lower limb

Number of	Number of patier	nts	Effect	Quality	
studies	Botulinum neurotoxin (BoNT) 4 months	BoNT yearly	Relative (95% Cl)	Absolute (95% Cl)	
Proportion of c	hildren experienci	ng adverse effects	at month 28		L
1 study (Kanovsky 2009)	89/110 (81%)	88/104 (85%)	-	3 fewer per 100 (from 14 fewer to 6 more)*	LOW
Proportion of c	hildren experienci	ng infection at mo	nth 28		
1 study (Kanovsky 2009)	17/110 (15%)	18/104 (17%)	-	2 fewer per 100 (from 12 fewer to 8 more)*	LOW
Proportion of c	hildren experienci	ng weakness at m	onth 28	•	L
1 study (Kanovsky 2009)	15/110 (14%)	15/104 (14%)	-	1 fewer per 100 (from 10 fewer to 9 more)*	LOW
Proportion of c	hildren experienci	ng increased coug	gh at month 28	I	
1 study (Kanovsky 2009)	15/110 (14%)	11/104 (11%)	-	3 more per 100 (from 6 fewer to 12 more) *	LOW
Proportion of c	hildren experienci	ng convulsions at	month 28		
1 study (Kanovsky 2009)	6/110 (5%)	14/104 (13%)	-	8 fewer per 100 (from 16 fewer to 0 more)*	MODERATE
Proportion of c	hildren developing	neutralising antil	oodies at month 28	3	
1 study (Kanovsky	4/109 (3.7%	1/103 (1%)	-	3 more per 100*	LOW

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 110 of 219

2009)					
Proportion of children experiencing pain at month 28					
1 study (Kanovsky 2009)	19/110 (17%)	22/104 (21%)	-	4 fewer per 100*	LOW

1 * Calculated by the NCC-WCH

2 The study did not report any relevant outcomes for reduction of pain in the lower limb.

3 Electrical stimulation versus palpation

4 One RCT (Xu 2009) that included 65 children aged 2-10 years compared the efficacy of BoNT A

5 treatment of ankle plantar flexor spasticity administered using electrical stimulation-guided injection

6 compared to injection guided by palpation of the spastic muscle group.

7 Reduction of spasticity and optimisation of movement

Number of	Number of patients		Effect		Quality		
studies	Electrical stimulation (ES) and physiotherapy	Palpation and physiotherapy	Relative (95% CI)	Absolute (95% CI)			
Change in Mod	Change in Modified Ashworth Scale at 3 months from baseline (Better indicated by lower values)						
1 study (Xu 2009)	23	22	-	MD = 0.5 (0.74 to 0.26) lower*	MODERATE		
Change in passive range of movement at 3 months from baseline, degrees (Better indicated by higher values)							
1 study (Xu 2009)	23	22	-	MD = 3.8 (0.79 to 6.81) higher*	MODERATE		

- 8 * Calculated by the NCC-WCH
- 9 Optimisation of movement and function

Number of	Number of patients		Effect		Quality	
studies	Electrical stimulation (ES) and physiotherapy	Palpation and physiotherapy	Relative (95% Cl)	Absolute (95% CI)		
Change in Gross Motor Function Measure (D and E) at 3 months from baseline (Better indicated by higher values)						
1 study (Xu 2009)	23	22	-	MD = 7.3 (5.5 to 9.10) higher*	HIGH	
Change in walking velocity at 3 months from baseline, m/s (Better indicated by higher values)						
1 study (Xu 2009)	23	22	-	MD = 0.07 (0.04 to 0.10) higher*	HIGH	

10 * Calculated by the NCC-WCH

11 The study did not report quality of life, acceptability and tolerability, adverse effect or reduction of 12 pain.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 111 of 219

Ultrasound versus electrical stimulation 1

2 One guasi-randomised controlled trial (Kwon 2010) conducted among 30 children with cerebral palsy 3 compared the efficacy of BoNT A treatment into calf muscles administered using ultrasound-guided 4 injection compared to electrical stimulation-guided injection.

5 Reduction of spasticity

Number of studies	Number of patients		Effect		Quality		
	Ultrasound (US) group	Electrical simulation (ES) group	Relative (95% CI)	Absolute (95% CI)			
	Change in Modified Ashworth Scale (with knee extended) at 3 months from baseline (Better indicated by lower values)						
1 study (Kwon 2010)	14	16	-	-	LOW		
1 study (Kwon 2010)	14	16	-	-	LOW		

6

7 Optimisation of movement and function

Number of studies	Number of patients		Effect		Quality	
	Ultrasound (US) group	Electrical simulation (ES) group	Relative (95% CI)	Absolute (95% Cl)		
Change in physician's rating scale (speed of gait) at 3 months from baseline, m/s (Better indicated by higher values)						
1 study (Kwon 2010)	14	16	-	-	LOW	

8

9 The study did not report quality of life, acceptability and tolerability, adverse effect or reduction of 10 pain.

Evidence statement 11

12 Botulinum toxin type A and therapy versus therapy alone

13 Regarding reduction of spasticity and optimisation of movement, one RCT found no significant 14 difference between children who received treatment with BoNT A and therapy as compared to 15 children who received therapy alone regarding reduction of spasticity in shoulder adductor muscles 16 (modified Ashworth) at four months. (LOW) Pooled results of two RCTs found a statistically significant 17 improvement between the children who received treatment with BoNT A and therapy as compared to 18 children who received therapy alone regarding reduction in spasticity in the elbow flexor muscles 19 (modified Ashworth) at 3 months (MODERATE) and 6 months (LOW). A third RCT reported no 20 statistically significant difference in elbow flexor muscle tone (modified Tardieu) when groups were 21 compared at 4 months. (LOW) Another RCT reported that there was no significant difference in elbow 22 flexor tone at 4 and 12 months (after 1 and 3 cycles of treatment) although a statistically significant 23 greater reduction was found at 9 months (after 2 cycles of treatment) in the group receiving BoNT A 24 and therapy as compared to children who received therapy alone. (MODERATE) Pooled results of 25 two RCTs found no statistically significant improvement between the children who received treatment 26 with BoNT A and therapy as compared to children who received therapy alone regarding elbow 27 extension PROM at 3 or 6 months. (LOW) Three RCTs reported outcomes for forearm pronator tone. Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011)

Page 112 of 219

1 No significant differences between children who received treatment with BoNT A and therapy as 2 compared to children who received therapy alone were reported at 3 months (one RCT; MODERATE) 3 or 6 months. (one RCT; LOW). Although statistically significant greater reduction in pronator tone at 4 4 months was reported in the third RCT in children who received treatment with BoNT A and therapy as 5 compared to children who received therapy alone. (LOW) Another RCT reported that there was a 6 increase in elbow flexor tone (modified Tardieu) at 4 months (after 1 cycle of treatment) and a 7 reduction of tone 8 months and 12 months (after 2 and 3 cycles of treatment) in the group receiving 8 BoNT A and therapy as compared to children who received therapy alone, although the statistical 9 significance of these findings is not clear. (LOW) One RCT found no significant difference between 10 children who received treatment with BoNT A and therapy as compared to children who received therapy alone regarding improvement in supination active range of movement in the forearm 11 12 pronators at three or six months.(MODERATE) Pooled results from two RCTs found no significant 13 difference between children who received treatment with BoNT A and therapy as compared to 14 children who received therapy alone regarding improvement in forearm supination passive range of 15 movement at three or six months. (LOW) Pooled results from two RCTs found a significant difference between children who received treatment with BoNT A and therapy as compared to children who 16 17 received therapy alone regarding reduction of spasticity in the wrist flexor muscle (modified Ashworth) 18 at 3 months (MODERATE) and 6 months (LOW) favouring the group receiving BoNT A and 19 occupational therapy. However another RCT found no significant difference between children who 20 received treatment with BoNT A and therapy as compared to children who received therapy alone regarding reduction of spasticity in the wrist flexor muscle (modified Ashworth) at 4 months. (LOW) 21 22 Two RCTs assessed wrist flexor tone using the modified Tardieu scale. Both studies found no 23 significant differences in effect at 4 months. (LOW to MODERATE) One of the RCTs found no 24 significant differences in wrist flexor tone at 8 months (after 2 cycles of treatment). (MODERATE) 25 However, at 12 months (after 3 cycles of treatment) tone in wrist flexors was statistically significantly 26 reduced in the children who received treatment with BoNT A and therapy as compared to children 27 who received therapy alone (HIGH) One RCT found no significant difference between children who 28 received treatment with BoNT A and therapy as compared to children who received occupational 29 therapy alone regarding improvement in wrist extension active range of movement at either three or 30 six months. (MODERATE) One RCT found no significant difference between children who received 31 treatment with BoNT A and occupational therapy as compared to children who received occupational 32 therapy alone regarding improvement in wrist extension passive range of movement at either three or 33 six months. (LOW) One RCT found no significant difference between children who received treatment 34 with BoNT A and occupational therapy as compared to children who received occupational therapy 35 alone regarding improvement in palmar thumb abduction passive range of movement at three or six 36 months. (LOW)

37 One RCT found there was no significant difference at 3 months in plantar flexor spasticity (mean 38 modified Ashworth) between children who received treatment with BoNT A and serial casting as 39 compared to children who received serial casting alone, (LOW) although a statistically significant 40 reduction in plantar flexor spasticity was reported at 6 months in children who received serial casting 41 alone compared to children who received treatment with BoNT A and serial casting. (LOW) One RCT 42 did not provide sufficient information to determine whether there was a statistically significant 43 difference at 3 or 6 months in tone at the ankle (modified Ashworth score) between children who 44 received placebo with physical therapy and to children who received treatment with BoNT A and 45 therapy. The same RCT did not provide sufficient information to determine whether there were 46 statistically significant differences between children who received treatment with BoNT A and therapy 47 as compared to children who received placebo and therapy in active ankle dorsiflexion, or in passive 48 ankle dorsiflexion with knee extended or flexed at 3 or 6 months. (LOW)

One RCT found a significant improvement in right ankle dorsiflexion (knee extension) passive range of movement at 3 months (LOW) and right ankle dorsiflexion (knee flexion) passive range of movement at 6 months (VERY LOW) favouring children who received BoNT A and therapy as compared to children who received therapy alone. The same RCT reported a statistically significant reduction in tone in the left calf (modified Ashworth) and in adductors in both legs at six months favouring the children who received treatment with BoNT A and therapy as compared to children who received therapy alone. (VERY LOW) There were no significant differences in total reduction of

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 113 of 219 spasticity (modified Ashworth) at three months between children who received treatment with BoNT A
 and therapy as compared to children who received therapy alone. (MODERATE)

3 Regarding optimisation of function, pooled data from four RCTs found a statistically significant 4 improvement in upper limb function (Goal Attainment Scaling-parent) in children who received BoNT 5 A and therapy as compared to the therapy group only at 3 months. (HIGH) A statistically significant 6 improvement in upper limb function (Goal Attainment Scaling-parent) at 4 months was also reported 7 in one RCT in children who received BoNT A and therapy compared to the therapy group only. (LOW) 8 Pooled data from three RCTs found no significant difference in upper limb function (Goal Attainment 9 Scaling-parent) at 6 months between children who received BoNT A and therapy as compared to the 10 therapy group only. (MODERATE) One further RCT reported no significant differences between 11 treatment groups in upper limb functioning (GAS-T scores) at 4, 8 or 12 months (after 1, 2 or 3 12 treatment cycles). A further analysis of GAS-T scores made over the whole study period of 1 year 13 found a statistically significant improvement in children receiving BoNT and therapy compared to 14 those receiving therapy alone. Pooled data from three RCTs found a statistically significant benefit in 15 upper limb function (COPM Performance) at 3 months in children who received BoNT A and therapy 16 as compared to the therapy group only. However, no significant differences in upper limb function 17 (COPM Performance) were found between treatment groups at 4 months (one RCT; LOW) or at 6 18 months (pooled data from two RCTs; MODERATE). One further RCT reported a statistically 19 significant improvement in COPM Performance scores at 8 and 12 months (after two and three 20 treatment cycles) favouring the BoNT and therapy group compared to the therapy only group, but no 21 significant differences between treatment groups were reported at 4 months or over the entire year-22 long study period (after 1 and 3 treatment cycles). (MODERATE) No significant differences were 23 found between the BoNT and therapy group compared to the therapy only group in functional skills 24 (PEDI scaled scores) at 3 months (three RCTs; MODERATE) or at 6 months (two RCTS). One RCT 25 reported no significant differences in caregiver assistance (PEDI scaled score) at 3 and 6 months. 26 (MODERATE)

27 One RCT found no significant differences in lower limb function (GMFM C, D, E percentage score) in 28 children who received BoNT A and serial casting compared to children who received serial casting 29 alone at 3 months (LOW) or at 6 months (LOW). One RCT found no significant differences in lower 30 limb function (GMFM Total Score at 3 or 6 months when children who received treatment with BoNT A 31 and therapy were compared to children who received therapy alone. Although GMFM Total Score 32 (with aids) at 3 months was not significantly different between the treatment groups, there was a 33 statistically significant improvement in the therapy only group comared to the children who also 34 received BoNT. (LOW) One RCT provided insufficient data to establish whether then were any 35 significant differences in walking velocity in children who received treatment with BoNT A and therapy 36 and those who received placebo and therapy at 3 or 6 months. (LOW)

37 Outcomes were available for CHQ (physical, functioning and emotional roles) at 3 months (three 38 studies; pooled data) and 6 months (two studies; pooled data). No significant differences in treatment 39 effect were noted in any study (or for pooled results) at either time period, except in the CHQ 40 emotional role estimation at 3 months.

41 Acceptability and tolerability

42 Upper limb

Pooled data from three RCTs found a statistically significant benefit in COPM Satisfaction scores at 3 months in children who received BoNT A and therapy as compared to the therapy group only. However, no significant differences in COPM Satisfaction scores were found between treatment groups at 4 months (one RCT; MODERATE) or at 6 months (pooled data from two RCTs; MODERATE). One further RCT reported statistically significant improvements in COPM Performance scores at 4, 8, 12 months and a full year (after one, two and three treatment cycles) favouring the BoNT and therapy group compared to the therapy only group. (MODERATE)

50 Lower limb

- 51 In one cross-over RCT a significant number of parents reported benefit of BoNT at both 3 and 6
- 52 months post-injection. 75.6% of parents at 3 months and 81.4% of parents at 6 months rated the
- 53 benefit as good, very good or excellent (LOW). 78.8% of parents at 3 months and 65.7% of parents at

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 114 of 219 1 6 months estimated the maximum effect of the BoNT injection had occurred within 6 weeks of the 2 injection or within 1-2 months of the injection at 3 and 6 months respectively. (LOW)

3 Adverse effects

4 Upper limb

5 Four children were reported to have experienced a serious adverse event requiring hospitalisation 6 (Russo 2007). Three children with a history of epilepsy were admitted to hospital for seizure 7 management shortly after injection. Grip weakness was reported in four studies (Boyd 2004; Fehlings 2000; Olesch 2010; Russo 2007). Other reports included nausea, vomiting, influenza symptoms, 9 coughing, soreness at injection site, respiratory infections, headache, fainting episodes (on a hot day), 9 anxiety depression (part history), alepseig and fatigues (LOW)

 $10\,$ $\,$ anxiety, depression (past history), alopecia and fatigue. (LOW) $\,$

11 Lower limb

In one cross-over RCT there were 10 reports of adverse affects in total over the 6 month periods which occurred following BoNT treatment. These included a degree of incontinence, short term muscle weakness and less specific complaints. In one RCT there was one report of a child in the BoNT and casting group falling more often immediately after treatment and no reports of adverse effects associated with casts. In one cross-over RCT there were 11 reports of leg pain following BoNT injection in total over the 6 month treatment periods. (LOW)

18 No evidence was identified for reduction of pain.

Botulinum toxin type A every 4 months versus botulinum toxin type A every 12 months

Regarding reduction of spasticity and optimisation of movement, one RCT found no statistically significant differences in ankle dorsiflexion (knee extension) PROM at 12 or 28 months when four monthly BoNT A treatment was compared to annual BoNT A treatment (LOW)

Regarding optimisation of function, one RCT found no statistically significant differences in GMFM overall scores or GMFM goal total scores when four monthly BoNT treatment was compared to annual BoNT treatment (LOW)

27 No evidence was found for quality of life or acceptability and tolerability.

28 Adverse events were reported in 81% of the four monthly treatment group and in 85% of the yearly 29 group (LOW). There were no significant differences for any adverse event occurrences when the 30 groups were compared (LOW) except for convulsions (LOW) where significantly more convulsions 31 were experienced in the annually treated group than the 4 monthly treated group. However, this was 32 not considered to be relevant to treatment by the authors. Neutralising antibodies were present in two 33 patients at baseline and developed in a further five patients by the end of the 28month follow up. Four 34 of these patients were in the 4 monthly treatment group (not statistically significant). (LOW) There 35 were no significant differences in the number of children reporting pain as an adverse effect when 4 36 monthly treatments were compared to annual treatment. (LOW)

37 No evidence was found for reduction of pain.

DRAFT (October 2011)

38 Electrical stimulation versus palpation

39 Regarding reduction of spasticity, there was evidence from one randomised controlled trial of a 40 statistically significant reduction in spasticity (modified Ashworth scale) in children who received BoNT 41 A administered using electrical stimulation-guided injection and physical therapy as compared to 42 children who received BoNT A administered using injection guided by palpation of the spastic muscle 43 group and physical therapy (MODERATE) There was also a statistically significant improvement in 44 passive range of movement in children who received BoNT A administered using electrical 45 stimulation-guided injection and physical therapy as compared to children who received BoNT A 46 administered using injection guided by palpation of the spastic muscle group and physical therapy. 47 (MODERATE)

- 48 Regarding optimisation of movement and function, there was evidence from one randomised 49 controlled trial of a statistically significant increase in, gross motor function and walking velocity in
- 50 children who received BoNT A administered using electrical stimulation-guided injection and physical Spasticity in children and young people with non-progressive brain disorders: full guideline

1 therapy as compared to children who received BoNT A administered using injection guided by 2 palpation of the spastic muscle group and physical therapy. (HIGH)

No evidence was found for quality of life, acceptability and tolerability, adverse events or reduction of
 pain.

5 Ultrasound versus electrical stimulation

6 Regarding reduction of spasticity, there was evidence from one quasi-randomised controlled trial of 7 no significant difference reduction in spasticity with knee flexed or extended (modified Ashworth 8 scale) in children who received BoNT A administered using ultrasound-guided injection and physical 9 therapy as compared to children who received BoNT A administered using electrical stimulation-10 guided injection and physical therapy. (LOW)

Regarding optimisation of movement and function, there was evidence from one quasi-randomised controlled trial of significant improvement in gait speed (m/s) in children who received BoNT A administered using ultrasound-guided injection and physical therapy as compared to children who received BoNT A administered using electrical stimulation-guided injection and physical therapy. (LOW)

16 No evidence was found for quality of life, acceptability and tolerability, adverse events or reduction of 17 pain.

18 Other comparisons of interest

19 The GDG also prioritised evaluation of the following interventions and comparators, but no studies 20 were identified for inclusion.

- BoNT A and physical therapy versus oral antispasmodic medication and physical therapy
- BoNT A versus BoNT B.

24 Health economics

21

22

23

25 A cost analysis was carried out based on descriptions of the BoNT services at Leeds and GOSH (see 26 appendix). The initial analysis showed assessment of the patient by a multidisciplinary team, after 27 presentation to the GDG they agreed this would not happen and assessment would be carried out by 28 a consultant. An NHS reference cost was used for the actual injection as BoNT is a high cost drug. 29 The reference cost for 2008-9 was £417. There is also a specialist uplift to tariffs for children of 78%, 30 if this is applied then the cost increases to £742. This reference cost will include all costs related to 31 the procedure, the day case admission, drug costs, and staff. It was assumed that the assessment 32 and follow-up would be an additional cost.

33 The analysis presented a baseline cost for a patient having two sets of injections in a year with only 34 one follow-up assessment, £1,860 per patient. The costs would increase if more repeat injections 35 were given in a year, and with the increased likelihood of adverse events.

36 Of course it is important to consider the costs alongside the benefits of treatment. The evidence for 37 this question was limited and there was no conclusive evidence to show BoNT would increase 38 function or reduce pain which would be the most useful outcomes for developing an economic 39 analysis. Therefore the analysis was presented by using the NICE cost-effectiveness threshold to 40 show what levels of effectiveness a group of patients would need to see in terms of pain or 41 discomfort, improvements with self care, improvements performing their usual activities, or conversely 42 prevention of deterioration with self care or usual activities. Although no cost-effectiveness results 43 could be reported for this question the analysis presented a framework to allow the GDG to make 44 decisions on when they should consider BoNT injections were beneficial enough to recommend.

45 Casting after BoNT injections

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 116 of 219 The GDG commented on casting after BoNT injections, which was reviewed as part of the therapy question (question 1). There was limited evidence of low quality which reported a statistically significant reduction in spasticity in children who received casting immediately after BoNT injections as opposed to those who received casting 4 weeks after BoNT injection. Although, 50% of children who had the cast immediately after injection complained of pain and required a change of cast within 48 hours.

7 The evidence for casting compared to no casting reported no statistically significant difference in 8 walking speed between groups. A statistically significant improvement in passive range of motion for 9 ankle dorsiflexion (knee flexed) was reported, but the difference was not significant for ankle 10 dorsiflexion (knee extended).

It is difficult to consider the cost-effectiveness of casting based on the evidence available. There is considerable uncertainty around its effectiveness compared to no casting. If casting is found to be effective, then timing of casting is another question which has resource implications. If an additional appointment is needed for a cast done at a later date than the injections, but also if casts done immediately after injection frequently need to be replaced due to pain. Further research on these questions is needed which also consider resource use.

17 **Evidence to recommendations**

18 Relative value placed on the outcomes considered

19 The GDG believed that the pharmacological activity of botulinum toxin was unlikely to extend beyond

20 4 months, and for that reason they were primarily interested in examining outcomes measured within

21 that time interval. Outcomes beyond this time were also investigated however, to examine any

22 potential carryover effect.

It was also felt that AROM was more informative than PROM as AROM can be a reflection of muscle strength (an outcome not described in the literature) and functional ability. A small (5 -10 degrees) measurable improvement in AROM may have an effect on a child's ability to control their upper limb movement and function. The GDG believed that PROM may have some part to play in the ability of a child to reach for objects effectively and better lower limb posture when standing and walking. However, strength remains the key to improved functional ability.

29 Patient important outcomes including estimates of acceptability/tolerability and pain reduction were

30 prioritised as the invasive nature of BoNT treatment may not be acceptable for all CYP if functional 31 gains are not significant. This in turn can lead to lack of motivation to participate in treatment and

31 gains are in 32 therapy.

33 Goal attainment scales which are individual to the circumstance of individual child are more likely to 34 detect a significant effect than other scores and thus were prioritized by the GDG.

35 There are some adverse effects that particularly pertain to BoNT treatment and a few deaths after 36 treatment have been reported. Therefore the GDG were particularly interested in breathing and 37 swallowing difficulties when injections are given in the shoulder or neck. Despite these being rare, 38 with none reported in the evidence reviewed, the GDG felt it important to highlight these potentially 39 life-threatening adverse effects in the recommendations. Great care needs to be taken with any 40 treatment in a child where that child needs some spasticity to function as too much weakness can 41 result (too big an effect) leading to loss of function. Weakness as an adverse event was thus also 42 prioritised by the GDG.

43 Trade-off between clinical benefits and harms

The GDG considered that the potential positive benefits of a reduction of spasticity, optimisation of movement and function, improved ease of care, reduction in pain and improvement in quality of life would only render treatment appropriate if side effects were not serious and rarely encountered, and if treatment was acceptable to the child and caregivers.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 117 of 219 1 BoNT should not be given in isolation but should be given along with either physical or occupational

- 2 therapy as it has been demonstrated that it can reduce spasticity and therefore physical therapy may
- 3 be facilitated

The GDG took account of the complexities of evidence and interpretation when considering the clinical significance of trial results. It was noted that no significant benefit was observed in relation to various outcomes in many of the studies. Nevertheless, there were several reports of potential significance supporting the efficacy of BoNT A in reducing spasticity and achieving patient important outcomes.

9 Muscle tone and range of movement

10 Upper limb

Although results often varied between studies, there was evidence that in the upper limb botulinum toxin can reduce spasticity in the elbow and wrist flexor muscles, and in the forearm pronators. Most of the trials excluded children with significant contractures. That is, they still had a full range of passive movement and correspondingly there was no evidence that PROM improved significantly more when BoNT was administered in addition to therapy alone. One of the RCTs included in the Hoare 2010 review did examine supination and wrist AROM but there were no significant differences between the treatment groups at either 3 or 6 months.

18 Lower limb

Regarding the trials of, The quality of the evidence from the three trials examining botulinum toxin for the lower limb was low or very low. One trial reported an greater improvement in plantar flexor tone at months with serial casting when compared to the combination of serial casting and BoNT. One small crossover study reported improvements in tone in the calf and adductors at 6 months and at 3 months when an total Ashworth score was used, however, there is likely to be selective reporting of outcomes with these results. The available trials did not therefore provide compelling evidence for a reduction in muscle tone with BoNT.

26 **Optimisation of function**

27 Upper Limb

28 There was evidence of functional benefit associated with botulinum toxin treatment for the upper limb. 29 from a meta-analysis of four trials and from 2 separate trials reporting statistically significant 30 improvement in Goal Assessment Scaling at 3 and 4 months (following one BoNT treatment), as 31 expected, but no carryover effect was seen at 6 months when the pharmacological effect of the toxin 32 has ceased. Improvement with addition of BoNT was also seen in one RCT at one year (following 3 33 cycles of treatment with BoNT) compared to therapy alone. A meta-analysis of three trials reported 34 significant improvement (compared to therapy alone) in COPM Performance at 3 months and one trial 35 reported this benefit at 8 and 12 months (following 2 and 3 cycles of treatment). However, there were 36 no significant differences between the treatment groups in meta-analysis and single trial analysis of 37 PEDI scores, although a meta analysis of QUEST scores showed significant improvement with BoNT 38 treatment at 3 months only.

39 Lower limb

Evidence in the lower limb is of low quality and is based on GMFM scores and walking speed. There was little evidence from 2 trials of improved functioning (higher GMFM score) when BoNT was administered in addition to therapy or serial casting. The GDG believe that the varied approaches adopted to reporting of the GMFM (for example varied subscore,) and the sensitivity of this assessment tool may account for the lack of positive benefit identified. It was unclear from another RCT if the reported improvement in walking speed amounted to a clinically important significant difference to the child

47 Quality of Life

48 There is little evidence that injections have a significant effect on QoL. In the upper limb, there was

- 49 evidence for a possible improvement in the CHQ emotional role but no improvements were seen for 50 the other dimensions of the assessment tool that were examined. The only supportive evidence for
- 50 the other dimensions of the assessment tool that were examined. The only supportive evidence for 51 benefit from botulinum toxin therapy in the lower limb comes from a single cross-over randomised
- 51 benefit from bottlinum toxin therapy in the lower limb comes from a single cross-over randomis 52 control trial, in which parental perception of benefit was reported

52 control that, in which parental perception of benefit was reported

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 118 of 219

1 Acceptability and tolerability

2 Upper limb

3 There was moderate quality evidence of improved acceptability and tolerability associated with 4 botulinum toxin treatment for the upper limb measured using the COPM Satisfaction assessment tool, 5 This was from a meta-analysis of 3 trials (at 3 months, although no carryover effect was seen at 4 or 6 6 months when the pharmacological effect of the toxin has ceased) and from another trial that reported 7 statistically significant improvement in Goal Assessment Scaling at 4, 8 and 12 months and one year 8 (following 1,2 and 3 cycles of BoNT treatment), These findings were the most consistent evidence of benefit of additional BoNT use of all the outcomes examined in this review and may suggest that 9 10 sustained improvement requires a repeated cycles of a programme of combining toxin and therapy

11 Lower limb

In one RCT examining the lower limb, parents felt that botulinum toxin was of benefit 3 and 6 monthsafter injection therapy. No other evidence was available

14 Adverse effects

15 There were 4 serious adverse events (requiring hospitalisation) reported in one upper limb RCT within 16 the Hoare 2010 meta-analysis. These were all in children who were known to have other co-existing 17 medical conditions. Severe adverse events of concern, but not reported in the evidence reviewed. include swallowing and breathing difficulties following injection around the shoulder, neck and thorax. 18 19 The GDG considered that children and young people and their parents and carers should be informed 20 of these serious side-effects, how to recognise them, and what action to take should complications 21 occur. Other reported adverse effects included short term muscle weakness and less specific 22 complaints.

In the lower limb, adverse events were reported in 2 studies These included pain post injection, increased frequency of falls, incontinence, short term muscle weakness and less specific complaints.

The GDG felt that these side effects are important to note when taking consent for the procedure, but
 are infrequently reported and usually short lived.

27 On balance, the GDG believed that the positive effects of BoNT A do outweigh the possible side 28 effects as long as careful multidisciplinary individualised assessment is carried out and close 29 monitoring of outcomes is maintained. The GDG felt that it was important for careful assessment of 30 the effects of injections to be performed, especially into new muscle groups, which would be best 31 carried out during the peak pharmacological effect at six to 12 weeks post injection. In light of the 32 variable assessment techniques and their interpretations the GDG felt that reassessment should be 33 carried out by the same clinician who initially assessed the individual. However, the group appreciated 34 that this is not always possible due to service constraints but advocated careful documentation of 35 assessment findings to allow comparison where possible. It is at this point that a decision on 36 effectiveness may be made and future management plans formulated. For repeat injections it may be 37 more practical to reassess at the point of reinjection providing subjective reports from parents are 38 deemed reliable and the subjective and objective opinion of the child's lead therapist is provided.

39 From their experience the GDG considered that BoNT A was more likely to be beneficial if there was 40 careful consideration given to patient selection. They believed that its use should be considered in 41 children and young people in whom spasticity was causing a particular problem in relation to fine 42 motor function in the upper limb or was impeding gross motor function in the lower limb. It was felt 43 that alleviation of spasticity could potentially assist in the application of other treatments, including 44 physiotherapy, occupational therapy and the use of orthoses. The GDG was aware that none of the 45 available trials had found evidence that BoNT A therapy could alleviate the pain associated with 46 spasticity. Nevertheless, the GDG believed that a trial of BoNT A should be considered where focal 47 spasticity was associated with significant pain, discomfort or abnormal postures. In some children the 48 restrictions of movement and abnormal postures associated with spasticity can compromise care and 49 lead to difficulties with skin hygiene. In selected cases BoNT A might potentially alleviate these 50 difficulties. Postural difficulties associated with spasticity are sometimes a source of upset and 51 embarrassment to children and young people, and in such cases alleviation of these cosmetic concerns could be an indication for BoNT A therapy. 52

Due to the invasive nature of treatment and the potential side effects it is important that the assessment, decision to treat and the administration of the BoNT A should be performed by a team with experience in child neurology, development and musculoskeletal assessment. The key components of a successful BoNT A programme are choosing the right child, choosing the right muscle, accurate placement of injection, and choosing the right concomitant therapy. The line between positive and negative effects with treatment is very fine and careful consideration of all influencing variables is essential.

8 Frequency of injections

9 With regard to frequency of injections, the evidence was limited to two studies and demonstrated a 10 significant improvement in upper limb tone after four monthly injections with OT compared to OT alone 11 but this did not continue after the next treatment cycle at 12 months. The six monthly injection cycles 12 showed a significant improvement across a number of measures at both six months and 12 months. 13 Neither group reported serious side effects related to treatment. In the lower limb studies neither four 14 monthly or 12 monthly treatment cycles resulted in significant improvement in the outcome measures 15 used and side effect frequency was similar for both groups. However, the identification of neutralising 16 antibodies in four children in the four monthly injection cycle group may be worth consideration when 17 planning treatment cycles and care pathways for BoNT services.

- In the GDG's experience, careful reassessment after injections is essential regarding decision-making for ongoing BoNT therapy. It is the GDG's opinion that children should be reassessed and reinjected if possible at the same visit to hospital to reduce the frequency of hospital visits. The evidence does not give strong recommendations on whether to reinject at four, six, or 12 months. However, the risk of developing neutralising antibodies is likely to be higher with early and frequent injections. Conversely, if the gap between reassessment and injections is 12 months, the opportunity for maintaining ROM
- 24 and improving function may be diminished or lost.

25 Once reassessment has taken place a decision must be made as to the effect of injections. If the 26 response was good and continues to provide benefit for the child it is the GDG's opinion that repeat 27 injections should not be given thus reducing the risk of side effects. If the response was poor more 28 careful consideration must be given to the reasons for this. An unsatisfactory response may be due to 29 poor muscle identification, insufficient dose, misinterpretation of assessment at initial visit, or poor 30 adherence to adjunctive therapies. Careful reassessment and identification of the root cause is 31 important and careful goal planning for future BoNT is essential to ensure any repeat injections are 32 likely to help.

33 Botulinum toxin type A versus botulinum toxin type B

No evidence was found in the literature to support or refute the use of BoNT A against BoNT B. With no evidence to consider the GDG felt unable to make recommendations regarding the use of BoNT B.

36 Location of injection site

37 There was evidence from one small RCT of a small reduction in spasticity and an improvement in 38 gross motor function in children who received BoNT A administered using electrical muscular 39 stimulation-guided injection as compared to children who received BoNT A administered using 40 injection guided by palpation of the spastic muscle group. The GDG noted, however, that there was 41 no evidence reported regarding acceptability and tolerability of the procedure. In addition, there was 42 evidence from one guasi-randomised controlled trial of a significant improvement in walking speed in 43 children who received BoNT A administered using ultrasound-guided injection as compared to 44 children who received BoNT A administered using electrical muscular stimulation-guided injection. 45 Again no evidence was reported for acceptability and tolerability of the procedure. In addition to the 46 modest benefits reported, the GDG felt that improvements in injection site identification with use of 47 ultrasound guidance and electrical muscular stimulation guidance may help reduce the possible 48 systemic effects of BoNT and therefore reduce adverse effects.

49 Trade-off between net health benefits and resource use

50 Upper limb

51 The alternatives to BoNT A in children and young people with upper arm spasticity are continuation of 52 therapy and intermittent use of casting and splinting. The cost-effectiveness of this will be reviewed

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 120 of 219 elsewhere in this guideline. The use of BoNT A does not necessarily diminish the need for therapy. The studies do provide an accompanying programme of tailored therapy which may be more than what the child received pre-study. The ideal situation is where the child or young person received

4 significant long term functional benefit to diminish the need for therapy or assistance with task of daily

5 life i.e. independence.

6 Net health benefits were identified in only two areas, reducing spasticity for elbow and wrist flexors 7 and improving function as measured by GAS. The reduction in spasticity for elbow and wrist flexors 8 lasted beyond the pharmacological activity for BoNT when combined with therapy however this 9 combined approach has significant resource implications. The reported functional improvements were 10 only noted at the 3 month stage and did not continue to 6 months. it may be interpreted that regular 11 reinjection with BoNT, every 3-4 months combined with therapy would be beneficial, however the 12 incidence of adverse effects must be carefully considered as grip weakness was often reported and

13 may play a significant role in causing an increase in disability.

14 Lower limb

15 Net health benefits were identified in only two areas, acceptability and tolerability as reported by 16 parents and spasticity reduction in the left calf and adductors. Both these areas were significantly 17 improved at the six month period, which is beyond the pharmacological activity for BoNT A. Both 18 BoNT A combined with PT and PT alone demonstrated significant improvements in function at a six 19 month period, which may indicate the value of targeted PT with or without BoNT to improve a child's 20 function. The GDG felt that the reduced spasticity reported and observed in clinical practice may have 21 an impact on improving a child's activity levels and participation which is not picked up on in the 22 available literature. When the cost analysis is taken into consideration it is felt that the use of BoNT in 23 line with our recommendations would be cost effective and help improve a child's life significantly 24 enough to warrant its use.

25 **Quality of evidence**

The GDG recognised that the available evidence regarding the use of BoNT A in children with spasticity was of moderate or low quality and, in many respects, complex to interpret from a clinical perspective. There was much variation in the patients studied, the goals of therapy, the mode of botulinum toxin administration and especially in the wide range of specific outcomes reported. Inevitably the outcomes between trials varied considerably.

- Assessors (and in one lower limb placebo controlled study, parents) were blinded to the treatment allocation for some but not always all outcomes reported. Absence of blinding introduced a significant possibility of bias, particularly in those outcomes with a strong subjective component.
- 34 Eight trials were available to inform the review on upper limb injection. However, two trials were small 35 including 20 children or fewer, three trials included 22 - 30 children and only three trials included over 36 40 children. The studies of botulinum toxin for upper limb spasticity included children with hemiplegia 37 predominantly, although other distributions were sometimes included. For use of BoNT A in lower limb 38 spasticity five trials were available to inform the review, all of which had limitations. Two trials were 39 small, including fewer than 40 children; two included fewer than 60 children and one included 214 40 children. The predominant characteristic of all the study participants was diplegia (approximately 88%) 41 although two also included hemiplegia (8%) and two included guadriplegia (<1%). The GDG was 42 aware that variation in response might well be observed in such diverse groups. The effectiveness of 43 botulinum toxin might well vary in different muscle groups, and depending on the intended goal of 44 therapy. Such individual variation might not be recognized in groups of patients with differing degrees 45 of spasticity and patterns of involvement.

In each of the trials of treatment for the upper limb botulinum toxin was administered by multilevel injections into various muscle groups during a single therapeutic session. The GDG was concerned that if botulinum toxin was administered into relatively mildly affected muscle groups it might not be possible to detect a measurable reduction in spasticity, but this might not reflect any inherent lack of effectiveness for that muscle group. It was therefore important to be cautious in interpreting negative results for specific treatment sites. The GDG recognised the potential benefits of injection into more than one muscle but felt this was only appropriate where a clear functional goal has been identified. It 1 was also highlighted that it is important that maximum doses are not exceeded and that the child, 2 young person, parent or carer understand the possible side-effects of the treatment.

The GDG noted that there was variation between trials in the dilution of botulinum toxin and in the maximum dose administered. In some trials the site of administration into the muscle was chosen based on clinical judgement, whereas in others electrical stimulation or electromyography was additionally employed. There was variation with regard to nature, intensity and duration of physiotherapy and/or occupational therapy provided in both the treatment and comparison groups.

8 The included trials reported a very varied range of outcome measures – including measures of 9 spasticity, passive and active range of movement, and a range of measures of function. The 10 sensitivity of the various outcome measures in detecting a clinically important response might vary, 11 and their relevance to individual therapeutic goals would differ. The GDG considered that this also 12 rendered interpretation of the trial results somewhat complex.

Evidence for repeated doses of BoNT A was of low quality. One RCT compared injection frequency of 4 monthly with annually for 2 years. The main outcome prioritised for this area was adverse effects, which were reported in 81% and 85% of participants respectively. These figures were felt to be very high by the GDG when compared to clinical experience in the UK and thus were not felt to represent a

reason for not recommending repeated injections where clinical circumstances indicated these may

18 be appropriate. For example if the problem that prompted original treatment returns after the original

19 effect of therapy has worn off, or where new treatment goals are identified.

20 Other considerations

21 Epilepsy

Many children with cerebral palsy and acquired brain injuries have co-existing epilepsy which may vary in severity. Although the evidence does not suggest an adverse effect on epilepsy control with BoNT A, care should be taken, particularly if general anaesthesia or sedation is used as part of the injection process.

26 **Disorders of nutrition and growth**

Doses of BoNT A should be calculated on the child's body weight to prevent overdosage.
 Undernourished children may have thin muscles and so localisation techniques should be used.

29 **Pressure sores**

30 Skin integrity of injection sites must be assessed prior to injection and injection in close proximity to 31 pressure sores should be avoided.

Respiratory disorders (including apnoea, airway obstruction and chronic aspiration)

BoNT A will adversely affect breathing, swallowing and speech if it spread to the muscles of the neck and diaphragm. Good injection technique is paramount particularly the closer the injection site is to

36 the neck. Careful explanation of BoNT side effects in particular respiratory compromise must be given

prior to gaining consent for the procedure. Instruction on management should such an event occurshould also be given.

39 Feeding difficulties (including enteral tube feeding)

40 Careful consideration of adverse effects of shoulder muscle injections should be given to patients with 41 swallowing difficulties.

42 Gastrointestinal disorders (including gastro-oesophageal reflux and constipation)

43 BoNT A can affect smooth muscle of the GI tract and adversely affect gut motility

44 **Obesity**

There may be difficulties in correctly injecting muscles in children and young people who are significantly overweight.

47 Cognitive and learning ability

48 Consideration should be given to administration techniques used for children with impaired cognition 49 or those of a young age and learning ability. Methods to reduce stress and improve tolerance should

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 122 of 219 1 always be used. These may include the use of topical anaesthesia in most cases with additional 2 sedation, systemic analgesia or anaesthesia for children unable or unlikely to cooperate.

3 Visual, hearing and speech impairments or other communication disability

4 Clear concise discussions utilising appropriate communication aids, regarding the purpose of 5 treatment and expectations of the child (where applicable) should be made.

6 Alleraies

7 An allergic response may cause serious harm to the individual and repeated injections should not be 8 given when allergies to BoNT are reported.

9 Aminoglycosides

10 Aminoglycoside antibiotics may affect the function of the neuromuscular junction and the effect of 11 BoNT may be enhanced causing greater risk of weakness of muscles involved in breathing and 12 swallowing

13 Bleeding disorder or anti-coagulation

14 Due to the invasive nature of injections, great care must be taken if a child is known to suffer from a 15 bleeding disorder.

16 Generalised spasticity

17 As BoNT injections are considered to be a focal treatment for spasticity, children with generalised

18 spasticity may not benefit from its use. Care should be taken when injecting single over active muscle 19 groups as the antagonist muscle group may be allowed to dominate and cause further abnormal 20 posturing.

21 **Fixed muscle contractures**

22 BoNT does not directly affect the length of soft tissues. If contractures are present relaxation of a 23 spastic muscle may allow adjunctive therapies to better effect muscle length i.e. serial casting and 24 tolerance of orthoses.

25 Marked bony deformity

26 Bony deformity, especially of the lower limbs, is not directly affected by BoNT. If established, that 27 bony deformity is negatively affecting gait and posture this is unlikely to improve with BoNT injections. 28 Careful assessment of a child's musculoskeletal system as well as their gait is essential in 29 determining the degree of bony deformity.

30 Weakness

31 Caution should be considered when injecting more than one muscle group for the first time in children 32 and young people as underlying weakness may be unmasked. Careful assessment of selective 33 muscle control and strength should be made to establish if a child is able to maintain antigravity 34 postures once spasticity has been eliminated.

35 Acquired brain injury

36 The GDG from their own experience recognised the early onset of spasticity and dystonia following an 37 acute head injury which often causes discomfort, abnormal postures, and difficulty with positioning 38 and rehabilitation. The GDG believes that BoNT used early in this situation can assist in the 39 rehabilitation process.

Recommendations 40

Number Recommendation **Botulinum toxin type A** When to use botulinum toxin type A 65

Consider botulinum toxin type A where focal spasticity of the upper limb is:

impeding fine motor function

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 123 of 219

Number	Recommendation
	 compromising care and hygiene causing pain impeding tolerance of other treatments, such as orthoses causing concerns about appearance to the child or young person.²⁵
66	Consider botulinum toxin type A where focal spasticity of the lower limb is:
	 impeding gross motor function compromising care and hygiene causing pain disturbing sleeping patterns impeding tolerance of other treatments, such as orthoses and use of equipment to support posture causing cosmetic concerns to the child or young person.²⁶
67	Do not offer botulinum toxin type A in children and young people:
	 with severe muscle weakness with a previous adverse reaction or allergy who are currently taking aminoglycosides.
68	Consider botulinum toxin type A with caution if:
	 the child or young person has any of the following a bleeding disorder or is receiving anti-coagulation therapy generalised spasticity fixed muscle contractures marked bony deformity or
	 where there are concerns about the child or young person engaging with post-treatment adjunctive therapy.²⁷
69	Consider using botulinum toxin type A to treat rapid-onset spasticity causing abnormal postures and soft-tissue shortening after acquired brain injury. ²⁸
	Assessment
70	Local multidisciplinary child development teams and regional specialist centres involved in the assessment and administration of botulinum toxin type A should have expertise in child neurology, child development and musculoskeletal assessment in order to decide on:
	 the need for botulinum toxin type A administration of botulinum toxin type A

administration of botulinum toxin type A

²⁵ At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented.
²⁶ At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or other and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or spasticity of the upper limb in adults.

offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented. ²⁷ At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral

palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented. ²⁸ At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in

²⁰ At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 124 of 219

Number	Recommendation
	offering repeat injections.
71	Include movement and motor function in assessments for treatment with botulinum toxin type A and involve a paediatric physiotherapist or paediatric occupational therapist.
72	Ensure that children and young people who receive treatment with botulinum toxin type A are offered timely access to orthotic services (see recommendation 44).
	Treatment
73	Consider using ultrasound-guided injection or electrical muscular stimulation when injecting botulinum toxin type A into muscles. ²⁹
74	Minimise distress to the child or young person undergoing treatment with botulinum toxin type A by considering the need for the:
	topical or systemic analgesia or anaesthesiasedation.
75	Local multidisciplinary child development teams and regional specialist centres involved in the assessment and administration of botulinum toxin type A should:
	 monitor effectiveness of the first botulinum toxin type A injection by repeating pre-injection assessment 6-12 weeks after the injection (both assessments should preferably be performed by the same healthcare professionals) monitor effectiveness of subsequent botulinum toxin type A injections and the need for further injections at 3–6 months.
76	If the clinical response to treatment is satisfactory review the child or young person's goals and consider repeat injections if:
	 the problem that prompted initial treatment returns after treatment wears off new goals are identified.³⁰
77	Inform children and young people and their parents and carers:
	 how to recognise serious but rare complications associated with botulinum toxin type A (swallowing difficulties and breathing difficulties) that these complications may arise during the first week after botulinum toxin type A treatment, and that the child or young person should return to hospital immediately if they occur.
78	Consider injecting botulinum toxin type A into more than one muscle, but ensure that:
	 maximum doses are not exceeded a clear functional goal is identified the child or young person and their parents or carers understand the

²⁹ At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented.
³⁰ At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in

children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented.

Number Recommendation

possible side effects.³¹

1

Number Research recommendation

14 (KRR) What is the effectiveness of botulinum toxic type A when used routinely or according to clinical need in children and young people who are in GMFCS levels 1 to 3?

Why this is important

The GDG's recommendation to consider offering botulinum toxin type A to children and young people with focal spasticity of an upper or lower limb reflected available evidence relating to the safety and effectiveness of botulinum toxin type A. In making their recommendations, the GDG emphasised the importance of establishing individualised functional goals that justify the use of this potentially harmful toxin to treat spasticity. The cost of the procedure combined with the risk of side effects means that clear treatment goals that will positively influence the child or young person's life should be identified before offering this treatment. The evidence reviewed for the guideline provided limited support for botulinum toxin type A in terms of improving function, and this discouraged the GDG from making a strong recommendation to offer treatment with botulinum toxin type A to all children and young people who are in GMFCS levels 1 to 3. Further research is needed to evaluate the effectiveness of botulinum toxin type A, particularly when used over long time periods (for example, 10 years) and involving repeat injections, in this population of children and young people. Outcomes relating to improvements in gross motor function and participation in activities, and the psychological impacts of these factors, should be evaluated as part of the research.

- 15 What is the effectiveness of treatment with BoNT A combined with a 6-week targeted strengthening programme compared to a 6-week targeted strength training programme only in school-aged children and young people with lower limb spasticity who are in GMFCS levels 1 to 3?
- 16 What is the effectiveness of BonT A for reducing muscle pain?
- 17 What is the effectiveness of BoNT A compared to BoNT B for reducing spasticity while minimising side effects?

2

³¹ At the time of publication (October 2011), some botulinum toxin type A products were licensed for use in focal spasticity in children and adults, including the treatment of dynamic equinus foot deformity due to spasticity in ambulant paediatric cerebral palsy patients, two years of age or older. Other products were licensed only for use on the face in adults or for post-stroke spasticity of the upper limb in adults. Prescribers should refer to the summaries of product characteristics when considering or offering botulinum toxin type A and, where appropriate, informed consent should be obtained and documented.

¹ 8 Intrathecal baclofen

2 Introduction

For many children and young people with severe spasticity, measures such as physiotherapy and oral medications may not prove adequate to alleviate their difficulties. In such circumstances treatment using a continuous infusion of intrathecal baclofen (ITB) may be a useful treatment strategy.

6 A natural inhibitory neurotransmitter known as gamma-aminobutyric acid (GABA) is present in the 7 nervous system, primarily in laminae 1 to 3 of the spinal cord dorsal horn. Baclofen is a GABA 8 agonist. Because baclofen crosses the blood-brain barrier poorly oral administration cannot readily 9 achieve therapeutic concentration in the cerebrospinal fluid. However, administration of intrathecal 10 baclofen using doses in the order of one-hundredth of those required by the oral route may reduce 11 spasticity while reducing the risk of dose related side effects. ITB is infused continuously using a 12 programmable pump implanted in a subcutaneous or subfascial pocket in the abdominal wall. The 13 pump delivers the baclofen via a catheter inserted into the intrathecal space. Before proceeding with 14 pump implantation it is common practice to carry out an ITB test administration to assess the short 15 term response to ITB administration.

16 No related NICE guidance was identified for this review question.

17 Review question

18 In children and young people with spasticity due to a non-progressive brain disorder does an 19 intrathecal baclofen test (ITB-T) help to identify those likely to benefit from continuous pump-20 administered intrathecal baclofen (CITB)?

21 In children and young people with spasticity due to a non-progressive brain disorder what are the 22 benefits and risks of CITB?

23 **Description of included studies**

- 24 In total there were 9 publications addressing one or both of the questions:
 - ITB-T (two RCTs: Hoving 2007; Gilmartin 2000; two case series: Awaad 2003; Hoving 2009b)
 - CITB (eight publications: Hoving 2009a, Hoving 2009b, Gilmartin 2000, Awaad 2003, Krach 2004, Motta 2008, Shilt 2008, Senaran 2007)

29 **Evidence profiles**

25

26

27

28

30 Intrathecal baclofen testing

31 Two cross-over RCTs were identified that compared Intrathecal baclofen testing (ITB-T) with placebo

- (Hoving 2007; Gilmartin 2000) and two case series reports were identified that reported outcomes for
 children who had received ITB-T (Hoving 2009b; Awaad 2003)
- Three studies (Gilmartin 2000; Hoving 2007; Hoving 2009b) evaluated reduction of spasticity in thelower limb.

Number of Number of patients	Effect	Quality
------------------------------	--------	---------

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 127 of 219

DRAFT FOR CONSULTATION

studies	Intrathecal baclofen testing (ITB-T)	Placebo	Relative (95% Cl)	Absolute (95% Cl)					
Ashworth score	Ashworth scores 2, 4, and 6 hours after start of test treatment (Better indicated by lower values)								
1 study (Hoving 2007)	17	17	-	-	VERY LOW				
	es 12 months after etter indicated by		-administered intr	athecal baclofen (CITB) pump				
1 study (Hoving 2009b)	17	0	-	-	VERY LOW				
Ashworth score values)	es when receiving	test treatment witl	n baclofen 50 μg d	ose (Better indicat	ed by lower				
1 study (Gilmartin 2000)	5	5	-	-	LOW				
Ashworth score	es when receiving	test treatment with	n baclofen 75 µg d	ose	L				
1 study (Gilmartin 2000)	10	0	-	-	VERY LOW				
Ashworth score	es 6 months after (CITB pump implan	tation	I					
1 study (Gilmartin 2000)	42	0	-	-	VERY LOW				
Ashworth score	es 12 months after	CITB pump impla	ntation						
1 study (Gilmartin 2000)	40	0	-	-	VERY LOW				
Ashworth score	es 24 months after	CITB pump impla	ntation						
1 study (Gilmartin 2000)	33	0	-	-	VERY LOW				

1

2 One study (Gilmartin 2000) evaluated reduction of spasticity in the upper limb.

Number of	Number of patier	nts	Effect		Quality		
studies	Intrathecal baclofen testing (ITB-T)	Placebo	Relative (95% CI)	Absolute (95% CI)			
Ashworth score values)	Ashworth scores when receiving test treatment with baclofen 50 μg dose (Better indicated by lower values)						
1 study (Gilmartin 2000)	5	0	-	-	VERY LOW		
Ashworth score implantation	Ashworth scores 6 months after continuous pump-administered intrathecal baclofen CITB pump implantation						

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 128 of 219

1 study (Gilmartin 2000)	42	0	-	-	VERY LOW
Ashworth score	es 12 months after	CITB pump impla	ntation		
1 study (Gilmartin 2000)	40	0	-	-	VERY LOW
Ashworth score	es 24 months after	CITB pump impla	ntation		
1 study (Gilmartin 2000)	33	0	-	-	VERY LOW

2 One study (Awaad 2003) evaluated reduction of spasticity in the upper and lower limbs combined.

Number of	Number of patients		Effect		Quality		
studies	Intrathecal baclofen testing (ITB-T)	Placebo	Relative (95% CI)	Absolute (95% CI)			
Ashworth score values)	Ashworth scores when receiving test treatment with baclofen 50 µg dose (Better indicated by lower values)						
1 study (Awaad 2003)	28	0	-5	-	VERY LOW		
Ashworth score	Ashworth scores 12 months after CITB pump implantation						
1 study (Awaad 2003)	7	0	-	-	VERY LOW		

3

4 Two studies (Hoving 2007; Hoving 2009b) reported ease of care as a component of optimisation of 5 movement and functioning.

Number of	Number of patier	nts	Effect		Quality	
studies	Intrathecal baclofen testing (ITB-T)	Placebo	Relative (95% CI)	Absolute (95% CI)		
	_	ue Scale (VAS) rates the second se	ted once before the higher values)	e test treatment st	arted (baseline)	
1 study (Hoving 2007)	14	13	-	MD 4.20 (2.68 higher to 5.72 higher)*	HIGH	
Ease of care: M by higher value	-	ue Scale (VAS) at	6 months after pu	mp implantation (b	better indicated	
1 study (Hoving 2009b)	17	0	-	-	VERY LOW	
Ease of care: Mean Visual Analogue Scale (VAS) at 12 months after pump implantation (better indicated by higher values)						
1 study (Hoving	17	0	-	-	VERY LOW	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 129 of 219

2009b)	_				
		2009b)			

1 * Calculated by the NCC-WCH

2 One study (Hoving 2009b) reported individually formulated problems as a component of optimisation 3 of movement and functioning.

Number studies	of	Number of patier	nts	Effect		Quality		
Suules		Intrathecal baclofen testing (ITB-T)	Placebo	Relative (95% CI)	Absolute (95% CI)			
Mean Vis values)	Mean Visual Analogue Scale (VAS) at 6 months after pump implantation (better indicated by higher values)							
1 (Hoving 2009b)	study	17	0	-	-	VERY LOW		
Mean Vis values)	Mean Visual Analogue Scale (VAS) at 12 months after pump implantation (better indicated by higher values)							
1 (Hoving 2009b)	study	17	0	-	-	VERY LOW		

4

5 Two studies (Hoving 2007; Hoving 2009b) reported outcomes relevant to pain.

Number of	Number of patier	nts	Effect		Quality	
studies	Intrathecal baclofen testing (ITB-T)	Placebo	Relative (95% CI)	Absolute (95% Cl)		
	nalogue Scale (VAS st day (better indica	•		ent started (baselin	e) and at the	
1 study (Hoving 2007)	11	10	-	MD 2.2 (0.72 lower to 5.12 higher)*	LOW	
Mean Visual A values)	nalogue Scale (VAS	S) at 6 months afte	er pump implanta	tion (better indicate	d by higher	
1 study (Hoving 2009b)	17	0	-	-	VERY LOW	
Mean Visual Analogue Scale (VAS) at 12 months after pump implantation (better indicated by higher values)						
1 study (Hoving 2009b)	17	0	-	-	VERY LOW	

6 * Calculated by the NCC-WCH

- 7 Three studies (Hoving 2007; Gilmartin 2000; Awaad 2003) reported outcomes related to adverse
- 8 effects and complications.

Number of studies	Number of patients		Effect		Quality
studies	Intrathecal baclofen	Placebo	Relative	Absolute	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 130 of 219

	testing (ITB-T)		(95% CI)	(95% CI)				
Drug related ad	Drug related adverse effects during ITB-T							
1 study (Hoving 2007)	8/17	0/17	-	-	MODERATE			
Procedure relat	ed adverse effects	during ITB-T						
1 study (Hoving 2007)	-	-	-	-	LOW			
Adverse events	during ITB-T							
1 study (Gilmartin 2000)	-	-	-	-	VERY LOW			
1 study (Awaad 2003)	-	-	-	-	VERY LOW			

2 Continuous pump-administered intrathecal baclofen

Only one RCT (parallel) was identified that addressed the comparison of continuous pumpadministered intrathecal baclofen (CITB) therapy versus conventional care (Hoving 2009a). For this reason the GDG decided to expand their inclusion criteria to include prospective non-comparative studies for data on effectiveness on selected outcomes (ease of care, reduction of pain, need for further orthopaedic surgery, QoL and acceptability and tolerability) where little or no other evidence was available.

In total, seven studies reported in nine articles were included (one RCT (Hoving 2009a), two case control studies (Senaran 2007; Shilt 2008) and six prospective case series (Awaad 2003; Gilmartin
 2000; Hoving 2009b; Krach 2004; Motta 2008; Ramstad 2010)).

12 Three studies (Gilmartin 2000; Hoving 2009a; Hoving 2009b) evaluated reduction of spasticity in the13 lower limb.

Number of studies	Number of patier	nts	Effect		Quality		
	Continuous pump- adminstered intrathecal baclofen therapy (CITB) and standard treatment	Standard treatment	Relative (95% CI)	Absolute (95% CI)			
Ashworth score	es 6 months after (CITB pump implan	tation (better indic	ated by lower valu	ies)		
1 study (Hoving 2009a)	9	8	-	-	LOW		
Ashworth score	es 12 months after	CITB pump impla	ntation (better ind	icated by lower val	lues)		
1 study (Hoving 2009b)	17	0	-	-	VERY LOW		
Ashworth score	Ashworth scores 6 months after CITB pump implantation						
1 study (Gilmartin	42	0	-	-	VERY LOW		

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 131 of 219

2000)								
Ashworth score	Ashworth scores 12 months after CITB pump implantation							
1 study (Gilmartin 2000)	40	0	-	-	VERY LOW			
Ashworth score	es 24 months after	CITB pump impla	ntation					
1 study (Gilmartin 2000)	33	0	-	-	VERY LOW			

3

Three studies (Gilmartin 2000; Hoving 2009a; (Hoving 2009b) evaluated reduction of spasticity in the upper limb.

Number of	Number of patier	nts	Effect		Quality
studies	Continuous pump- adminstered intrathecal baclofen therapy (CITB)	Placebo	Relative (95% CI)	Absolute (95% CI)	
Ashworth score	es 6 months after (CITB pump implan	tation (Better indic	cated by lower valu	les)
1 study (Hoving 2009a)	9	8	-	-	VERY LOW
1 study (Hoving 2009b)	17	0	-	-	VERY LOW
1 study (Gilmartin 2000)	41	0	-	-	VERY LOW
1 study (Gilmartin 2000)	40	0	-	-	VERY LOW
1 study (Gilmartin 2000)	32	0	-	-	VERY LOW

4 5

One study (Awaad 2003) evaluated reduction of spasticity in the upper and lower limbs combined.

Number of studies	Number of patients		Effect		Quality
studies	Intrathecal baclofen therapy (CITB)	Placebo	Relative (95% CI)	Absolute (95% CI)	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 132 of 219

DRAFT FOR CONSULTATION

Ashworth scores 12 months after CITB pump implantation								
1 study	-	0	-	-	VERY LOW			
(Awaad 2003)								

1 2

One study reported outcomes relevant to reduction of dystonia and spasms.

					Quality			
Number of studies	Number of patier	Number of patients		Effect				
	Continuous pump- adminstered intrathecal baclofen therapy (CITB)	Placebo	Relative (95% CI)	Absolute (95% CI)				
Overall Barry-A indicated by lov		cale (BAD) scores	12 months after C	ITB pump implanta	ation (Better			
1 study (Motta 2008)	19		-	-	VERY LOW			
Overall Burke-Fahn-Marsden scores 12 months after CITB pump implantation (Better indicated by lower values)								
1 study (Motta 2008)	19	0	-	-	VERY LOW			

3

4 Two studies (Hoving 2009a; Hoving 2009b) reported individually formulated problems as a component of optimisation of movement and functioning.

Number of studies	Number of patie	Number of patients		Effect						
	Continuous pump- adminstered intrathecal baclofen therapy (CITB)	Usual care	Relative (95% CI)	Absolute (95% Cl)						
Mean Visual A values)	nalogue Scale (VA	S) at 6 months a	fter pump implan	tation (better indic	ated by higher					
1 study Hoving 2009a)	9	8	-	-	MODERATE					
Mean Visual A values)	Mean Visual Analogue Scale (VAS) at 12 months after pump implantation (better indicated by higher values)									
1 study (Hoving 2009b)	17	0	-	-	VERY LOW					

6

Four studies (Hoving 2009a; Hoving 2009b; Awaad 2003; Ramstad 2010) reported outcomes relevant
 to optimisation of function.

Number of	Number of patients		Effect		Quality
studies	Continuous	Usual care	Relative	Absolute	
	pump- adminstered		(95% CI)	(95% CI)	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 133 of 219

	intrathecal baclofen therapy (CITB)				
Gross motor fu	unction measure (G	MFM)-66 overall a	t 6 months (better	indicated by highe	er values)
1 study (Hoving 2009a)	7	5	-	-	MODERATE
GMFM-66 total	score at 6 months	(Ramstad 2010) (b	etter indicated by	higher values)	L
1 study (Ramstad 2010)	32	0	-	-	VERY LOW
GMFM-66 gene	eral score at 12 mo	nths after pump im	plantation (better	indicated by highe	er values)
1 study (Hoving 2009b)	12	0	-	-	VERY LOW
GMFM-66 total	score at 18 month	s (better indicated	by higher values)		L
1 study (Ramstad 2010)	31	0	-	-	VERY LOW
GMFM-88 (lyin	g and rolling) at 6 r	nonths (better indi	cated by higher va	alues)	L
1 study (Hoving 2009a)	7	5	-	-	MODERATE
GMFM 88 (lying	g and rolling) at 12	months after pum	p implantation (be	tter indicated by h	igher values)
1 study (Hoving 2009b)	12	0	-	-4	VERY LOW
GMFM-88 (sitti	ng) at 6 months (be	etter indicated by h	nigher values)	I	
1 study (Hoving 2009a)	7	5	-	-	MODERATE
GMFM 88 (sitti	ng) at 12 months at	fter pump implanta	ation (better indica	ted by higher valu	es)
1 study (Hoving 2009b)	12	0	-	-	VERY LOW
GMFM-88 (goa	I dimension) at 6 m	onths (better indic	ated by higher va	lues)	
1 study (Hoving 2009a)	5	4	-	-	MODERATE
GMFM 88 (goa	I dimension) at 12 i	months after pump	implantation (bet	ter indicated by hi	gher values)
1 study (Hoving 2009b)	9	0	-	-	VERY LOW
Paediatric eval indicated by hi	uation of disability gher values)	inventory (PEDI) f	unctional skills (o	verall score) at 6 n	nonths (better

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 134 of 219

r					
1 study (Hoving 2009a)		8	-	-	MODERATE
PEDI functional values)	skills (overall sco	re) at 12 months a	fter pump implant	ation (better indica	ated by higher
1 study (Hoving 2009b)	17	0	-	-	VERY LOW
PEDI Functiona	l Skills (self care s	core) at 6 months	(better indicated b	oy higher values)	
1 study (Ramstad 2010)	28	0	-	-	VERY LOW
PEDI Functional higher values)	l Skills (self care s	core) at 12 month	s after pump impla	antation (better ind	licated by
1 study (Awaad 2003)	28	0	-	-	VERY LOW
PEDI Functiona	l Skills (self care s	core) at 18 month	s (better indicated	by higher values)	
1 study (Ramstad 2010)	27	0	-	-	VERY LOW
PEDI Functiona	l Skills (mobility) a	at 6 months (better	r indicated by high	er values)	
1 study (Ramstad 2010)	27	0	-	-	VERY LOW
PEDI Functional values)	l Skills (mobility) a	at 12 months after	pump implantation	n (better indicated	by higher
1 study (Awaad 2003)	28	0	-	-	VERY LOW
PEDI Functional	l Skills (mobility) a	at 18 months (bette	er indicated by hig	her values)	
1 study (Ramstad 2010)	27	0	-	-	VERY LOW
PEDI Functiona	I Skills (social fun	ction) at 6 months	(better indicated I	oy higher values)	
1 study (Ramstad 2010)	27	0	-	-	VERY LOW
PEDI Functional higher values	l Skills (social fun	ction) at 12 month	s after pump impla	antation (better inc	licated by
1 study (Awaad 2003)	28	0	-	-	VERY LOW
PEDI Functional	l Skills (social fun	ction) at 18 month	s (better indicated	by higher values)	
1 study (Ramstad 2010)	27	0	-	-	VERY LOW
PEDI caregiver a	assistance (overal	I score) at 6 mont	hs (better indicate	d by higher values)

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 135 of 219

	1	Г	Г		
1 study (Hoving 2009a)	9	8	-	-	MODERATE
PEDI caregiver higher values)	assistance (overa	Il score) at 12 mon	ths after pump im	plantation (better i	ndicated by
1 study (Hoving 2009b)	17	0	-	-	VERY LOW
PEDI Caregiver	assistance (self-c	are score) at 6 mo	nths (better indica	ted by higher valu	es)
1 study (Ramstad 2010)	28	0	-	-	VERY LOW
PEDI (caregiver higher values)	r assistance (self c	are score) at 12 m	onths after pump	implantation (bette	er indicated by
1 study (Awaad 2003)	28	0	-	-	VERY LOW
PEDI Caregiver	assistance (self-c	are score) at 18 m	onths (better indic	ated by higher val	ues)
1 study (Ramstad 2010)	27	0	-	-	VERY LOW
PEDI Caregiver	assistance (mobil	ity score) at 6 mor	ths (better indicat	ed by higher value	es)
1 study (Ramstad 2010)	28	0	-	-	VERY LOW
PEDI caregiver higher values)	assistance (mobil	ity score) at 12 mo	nths after pump ir	nplantation (better	indicated by
1 study (Awaad 2003)	28	0	-	-	VERY LOW
PEDI Caregiver	assistance (mobil	ity score) at 18 mo	onths (better indica	ated by higher valu	ies)
1 study (Ramstad 2010)	27	0	-	-	VERY LOW
PEDI Caregiver	assistance (socia	I function score) a	t 6 months (better	indicated by highe	er values)
1 study (Ramstad 2010)	28	0	-	-	VERY LOW
PEDI caregiver indicated by high	assistance (social gher values)	function score) at	t 12 months after p	oump implantation	(better
1 study (Awaad 2003)	28	0	-	-	VERY LOW
PEDI Caregiver	assistance (socia	I function score) a	t 18 months (bette	r indicated by high	ner values)
1 study (Ramstad 2010)	26	0	-	-	VERY LOW
	1	1	1	1	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 136 of 219

- 1 2 Two studies (Hoving 2009a; Hoving 2009b) reported ease of care as a component of optimisation of
- functioning.

Number of	Number of patier	nts	Effect		Quality			
studies	Continuous pump- adminstered intrathecal baclofen therapy (CITB)	Usual care	Relative (95% CI)	Absolute (95% CI)				
Ease of care Me	ean Visual Analog	ue Scale (VAS) at 6	6 months (better in	dicated by higher	values)			
1 study (Hoving 2009a)	9	7	-	-	MODERATE			
Ease of care Me by higher value	-	ue Scale (VAS) at 6	months after pur	p implantation (be	etter indicated			
1 study (Hoving 2009b)	16	0	-	-	VERY LOW			
Mean Visual Analogue Scale (VAS) at 12 months after pump implantation (better indicated by higher values)								
1 study (Hoving 2009b)	16	0	-	-	VERY LOW			

4 Four studies (Hoving 2009a; Hoving 2009b; Motta 2008; Ramstad 2010) reported outcomes relevant 5 to pain.

Number of studies	Number of patier	nts	Effect		Quality		
	Continuous pump- adminstered intrathecal baclofen therapy (CITB)	Usual care	Relative (95% Cl)	Absolute (95% Cl)			
Pain Mean Visu	al Analogue Scale	(VAS) at 6 months	s (better indicated	by higher values)			
1 study (Hoving 2009a)	6	6	-	-	LOW		
Pain Mean Visu higher values)	al Analogue Scale	(VAS) at 12 mont	hs after pump imp	lantation (better in	dicated by		
1 study (Hoving 2009b)	12	0	-	-	VERY LOW		
Sleeping asses	sed using a non-v	alidated questionr	aire	I			
1 study (Motta 2008)	19	0	-	-	VERY LOW		
Pain assessed using a non-validated questionnaire							

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 137 of 219

1 study (Motta 2008)	19	0	-	-	VERY LOW				
Average frequency of awakenings during night in previous 4wks at 6 months after pump implantation (better indicated by lower values)									
1 study (Ramstad 2010)	29	0	-	-	VERY LOW				
	ncy of awakenings d by lower values)		revious 4wks at 12	months after pur	p implantation				
1 study (Ramstad 2010)	30	0	-	-	VERY LOW				
Pain frequency indicated by low		g in previous 4wks	at 6 months after	pump implantation	n (better				
1 study (Ramstad 2010)	31	0	-	-	VERY LOW				
Pain frequency indicated by low		g in previous 4wks	at 12 months afte	r pump implantatio	on (better				
1 study (Ramstad 2010)	31	0	-	-	VERY LOW				
Pain severity (u by lower values		n previous 4wks a	t 6 months after pu	Imp implantation (better indicated				
1 study (Ramstad 2010)	31	0	-	-	VERY LOW				
	Pain severity (using a scale 0-4) in previous 4wks at 12 months after pump implantation (better indicated by lower values)								
1 study (Ramstad 2010)	31	0	-	-	VERY LOW				

Two studies (Motta 2008 and Hoving 2009b) examined outcomes of relevance to acceptability andtolerability.

Number of studies	Number of patients		Effect		Quality	
	Continuous pump- adminstered intrathecal baclofen therapy (CITB)	Placebo	Relative (95% Cl)	Absolute (95% Cl)		
Satisfaction with treatment assessed using a non-validated questionnaire						
1 study (Motta 2008)	19	0	-	-	LOW	
Acceptability and tolerability assessed at least 12 months post implantation						

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 138 of 219

DRAFT FOR CONSULTATION

1	study	17	0	-	-	LOW
(Hoving 2009b)						
20090)						

1

2 Two studies (Hoving 2009a; Hoving 2009b) reported outcomes relevant to quality of life.

Number of	Number of patier	nts	Effect		Quality	
studies	Continuous pump- adminstered intrathecal baclofen therapy (CITB)	Usual care	Relative (95% CI)	Absolute (95% CI)		
Child-Health Qu by higher value	uestionnaire-Paren es)	t Form (CHQ-PF50), physical summa	ry) at 6 months (be	etter indicated	
1 study (Hoving 2009a)	8	8	-	-	MODERATE	
Child-Health Questionnaire-Parent Form (CHQ-PF50, psychosocial summary) at 6 months (better indicated by higher values)						
1 study (Hoving 2009a)	8	8	-	-	MODERATE	
Child-Health Questionnaire-Parent Form (CHQ-PF50, physical summary) at 12 months after pump implantation (better indicated by higher values)						
1 study (Hoving 2009b)	16	0	-	-	VERY LOW	
Child-health questionnaire-parent form (CHQ-PF50, psychosocial summary) at 12 months after pump implantation (better indicated by higher values)						
1 study (Hoving 2009b)	16	0	-	-	VERY LOW	

3

4 One study (Krach 2004) reported outcomes relevant to need for further orthopaedic surgery.

Number of studies	Number of patients		Effect		Quality		
	Continuous pump- adminstered intrathecal baclofen therapy (CITB)	Usual care	Relative (95% CI)	Absolute (95% CI)			
Absolute migration percentage at 12 months in children under 8 years old (better indicated by lower values)							
1 study (Krach 2004)	11 (22 hips)	0	-	-	VERY LOW		
Absolute migration percentage at 12 months in children 8 to 18 years old (better indicated by lower values)							

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 139 of 219

DRAFT FOR CONSULTATION

1 study (Krach	17 (34 hips)	0	-	-	VERY LOW
2004)					

1 2

3

Two studies (Senaran 2007; Shilt 2008) reported outcomes relevant to adverse effects and complications (scoliosis).

Number of studies	Number of patients		Effect		Quality		
	Continuous pump- adminstered intrathecal baclofen therapy (CITB)	Usual care	Relative (95% CI)	Absolute (95% CI)			
Final Cobb ang values)	Final Cobb angles (degrees) at approximately 3 years after pump insertion (better indicated by lower values)						
1 study (Shilt 2008)	50	50	-	-	VERY LOW		
Final Cobb angles (degrees) at approximately 3 years after pump insertion (better indicated by lower values)							
1 study (Senaran 2007)	26	25	-	-	VERY LOW		
Mean annual progression of Cobb angles (degrees) (better indicated by lower values)							
1 study (Shilt 2008)	50	50	-	-	VERY LOW		

4 **Evidence statement**

5 Intrathecal baclofen testing

- 6 Value of intrathecal baclofen testing in predicting the response to subsequent
 7 continuous pump-administered intrathecal baclofen
- 8 No RCTs were identified that compared the outcome with CITB in patients undergoing or not 9 undergoing ITB-T.
- 10 No clinical studies were identified that determined the accuracy of ITB-T in predicting the outcome 11 with CITB.

12 Effects of bolus intrathecal baclofen given in the setting of intrathecal baclofen 13 testing

- With regards to reduction of spasticity in the lower limb, two placebo-controlled cross-over RCTs and one prospective case series provided evidence that ITB testing can induce a statistically significant reduction in spasticity (VERY LOW and LOW).
- With regards to reduction of spasticity in the upper limb, one placebo-controlled cross-over RCT
 provided evidence that ITB testing can induce a statistically significant reduction in spasticity (VERY
 LOW).
- 20 With regards to reduction of spasticity in the upper and lower limbs combined, one prospective case
- series provided evidence that ITB testing can induce a statistically significant reduction in spasticity
- 22 when compared to baseline (VERY LOW).

1 With regards to ease of care, one placebo-controlled cross-over RCT and one prospective case 2 series provided evidence that ITB testing can lead to a statistically significant improvement (HIGH and

- 3 VERY LOW).
- 4 With regards to individually formulated problems, one prospective case series provided evidence that
- 5 ITB testing can lead to a statistically significant improvement when compared to baseline (VERY 6 LOW).
- With regards to pain, one placebo-controlled cross-over RCT reported no statistically significant difference in pain (measured using visual analogue score) in children receiving ITB-T as compared to children receiving a placebo. (LOW) One prospective case series provided evidence of a statistically significant reduction in pain at 6 and 12 months after pump implantation, when compared to baseline
- 11 (VERY LOW).
- 12 With regards to complications and adverse effects, two placebo-controlled cross-over RCTs and one
- 13 prospective case series provided evidence that approximately 15% of patients receiving ITB-T 14 experienced complications, and 18% experienced adverse effects presumed to be related to baclofen,
- 15 particularly lethargy (MOD to VERY LOW).
- 16 No evidence was identified in relation to the acceptability and tolerability of ITB-T for children and their 17 families.
- 18 No evidence was identified in relation to dystonia,
- 19 No evidence was identified in relation to children with special concerns such as hydrocephalus, 20 ventriculoperitoneal shunt or those needing medical devices such as cardiac pacemakers.

Outcome with continuous pump-administered intrathecal baclofen in patients who had a positive response to intrathecal baclofen testing

- With regards to reduction in spasticity, one RCT and two prospective case series provided evidence of a statistically significant reduction in spasticity in the upper and lower limbs at 12 months following CITB implantation, when compared to baseline. (all VERY LOW) One RCT reported that there was a reduction in spasticity at 6, 12 and 24 months compared to baseline, although statistical significance was not reported. (LOW)
- With regards to ease of care, individually formulated problems and pain, one prospective case series provided evidence that CITB implantation can lead to a statistically significant improvement at 6 and 12 months compared to baseline (all VERY LOW).
- 31 No evidence was identified in relation to acceptability and tolerability of CITB.

32 **Continuous pump-administered intrathecal baclofen**

- 33 With regards to reduction of spasticity in the lower extremities, one RCT provided evidence of a 34 statistically significant improvement in the change in Ashworth score at 6 months for the left hip 35 adductors and both hip flexors, in children who received a continuous infusion of intrathecal baclofen 36 and standard treatment, as compared to children who received standard treatment alone. The same 37 RCT reported no statistically significant difference in the change in Ashworth score for other lower 38 extremity muscle groups between children who received a continuous infusion of intrathecal baclofen 39 and children who received standard treatment. (LOW) One prospective case series (follow-up to 40 previous RCT) provided evidence of a statistically significant decrease in bilaterally assessed 41 Ashworth scores in 9 out of 14 lower-extremity muscle groups at 12 months after commencing CITB. 42 (VERY LOW) One other prospective case series provided evidence that, in children and adults with 43 spasticity, average Ashworth scores in lower extremity muscle groups improved over time at 6,12 and 44 24 months after CITB, when compared to baseline. (VERY LOW)
- With regards to reduction of spasticity in the upper extremities, one RCT provided evidence of a statistically significant improvement in the change in Ashworth score at 6 months for the right wrist flexors, in children who received a continuous infusion of intrathecal baclofen and standard treatment, compared with children who received standard treatment. The same RCT reported no statistically significant difference in the change in Ashworth score for other upper extremity muscle groups between children who received a continuous infusion of intrathecal baclofen and children who received standard treatment. (VERY LOW) One prospective case series (follow-up to previous RCT)
 - Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 141 of 219

provided evidence of a statistically significant decrease in bilaterally assessed Ashworth scores in 5 out of 8 upper-extremity muscle groups at 12 months after commencing CITB. (VERY LOW) One other prospective case series provided evidence that average Ashworth scores in upper extremity muscles groups improved over time at 6, 12 and 24 months after CITB, when compared to baseline (VERY LOW).

6 With regards to reduction of spasticity in lower and upper extremities combined (average combined 7 score), one prospective cases series provided evidence of a statistically significance decrease in 8 Ashworth score at 12 months after commencing CITB, when compared to baseline. (VERY LOW)

9 With regards to reduction of dystonia, one prospective case series provided evidence of a positive 10 effect on generalised dystonia in children with cerebral palsy and a severe degree of impairment. The 11 study provided evidence of a statistically significant improvement in overall BAD scores at 12 months 12 post CITB when compared to baseline. (VERY LOW) There was a statistically significant improvement 13 in dystonia in all body regions assessed at 12 months post CITB when compared to baseline. (VERY 14 LOW) The study also provided evidence of a significant improvement in overall BFM scores-15 movement at 12 months when compared to baseline. There was a statistically significant 16 improvement in dystonia in all body regions assessed except for the eyes and language swallowing 17 area at 12 months when compared to baseline. The study reported no statistically significant 18 difference in dystonia in the eyes and language swallowing area. The study also reported that no 19 patients showed a statistically significant in BFM scores regarding everyday activities. (VERY LOW)

With regards to optimisation of movement and functioning measured by individually formulated problems, one RCT provided evidence of a statistically significant improvement in individually formulated problems in children treated with a CITB pump and standard treatment, as compared to children treated with standard treatment alone. (MODERATE) One prospective case series (follow-up to previous RCT) provided evidence of a statistically significant decrease in VAS scores for both assessment points at 12 months after the start of CITB, when compared to baseline (VERY LOW).

26 With regards to optimisation of movement and functioning measured by GMFM, one RCT provided 27 evidence of a statistically significant improvement in overall function in children treated with CITB 28 pump and standard treatment, as compared to children treated with standard treatment alone. 29 (MODERATE) However, the same study found no statistically significant difference in specific GMFM 30 measurements such as lying and rolling, sitting and goal dimension between children treated with 31 CITB pump and usual care, as compared to children treated with usual care alone. (MODERATE) 32 One prospective case series (follow-up to previous RCT) found no statistically significant difference in 33 overall function or in lying and rolling at 12 months, when compared to baseline. (VERY LOW) 34 However, the same study found a statistically significant improvement in sitting and in goal dimension 35 at 12 months, when compared to baseline. (VERY LOW) Another prospective case series reported a 36 statistically significant improvement in GMFM overall function in children treated with CITB at 6 and 18 37 months compared to baseline. (VERY LOW)

38 With regards to optimisation of movement and functioning measured by PEDI functional skills scores, 39 one RCT found no statistically significant difference in functional skills between children treated with 40 CITB and standard treatment, as compared to children treated with standard treatment alone. 41 (MODERATE) One prospective case series (follow-up to previous RCT) found no statistically 42 significant difference in functional skills at 12 months, when compared to baseline. (VERY LOW) 43 Another prospective case series found no statistically significant difference in the mobility and social 44 function dimensions of functional skills at 12 months, when compared to baseline. (VERY LOW) 45 However, the same study provided evidence of a statistically significant improvement in the self care 46 dimension of functional skills at 12 months, when compared to baseline. (VERY LOW) One further 47 prospective case series reported no statistically significant difference in the self-care and mobility 48 dimensions of functional skills PEDI at 6 months compared to baseline, although statistically 49 significant improvements were found at 18 months for these dimensions and for the social function 50 dimension at both 6 and 18 months compared to baseline. (VERY LOW)

51 With regards to optimisation of movement and functioning measured by PEDI caregiver assistance

52 scores, one RCT found no statistically significant difference in caregiver assistance between children

53 treated with CITB and standard treatment, as compared to children treated with standard treatment

54 alone. (MODERATE) One prospective case series (follow-up to previous RCT) found no statistically

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 142 of 219 1 significant difference in caregiver assistance at 12 months, when compared to baseline. (VERY LOW) 2 Another prospective case series found no statistically significant difference in the self care and social 3 function dimensions of caregiver assistance at 12 months, when compared to baseline. (VERY LOW) 4 However, the same study provided evidence of a statistically significant improvement in the mobility 5 dimension of caregiver assistance at 12 months, when compared to baseline. (VERY LOW) One 6 further prospective case series reported no statistically significant differences in the self care (at 6 and 7 18 months) and mobility (at 6 months) dimensions compared to baseline, although statistically 8 significant improvements were found at 18 months for the mobility dimension and for the social 9 function dimension at both 6 and 20 months compared to baseline. (VERY LOW)

With regards to optimisation of movement and functioning measured by the ease of care, one RCT provided evidence of a statistically significant increase in the improvement in ease of care in children treated with CITB and standard treatment, as compared to children treated with standard treatment alone. (MODERATE) One prospective case series (follow-up to previous RCT) provided evidence of a statistically significant decrease in VAS score at 6 and 12 months, when compared to baseline, indicating improvement in ease of care. (VERY LOW)

16 With regards to reduction of pain, one RCT provided evidence of a statistically higher decrease in VAS 17 score at 6 months in children treated with CITB and standard treatment, as compared to children 18 treated with standard treatment alone. (LOW) One prospective case series (follow-up to previous 19 RCT) provided evidence of a statistically significant decrease in VAS score at 12 months, when 20 compared to baseline, indicating a reduction in pain. (VERY LOW) Another prospective case series of 21 children affected by cerebral palsy and with a severe degree of impairment reported that 53% of 22 patients/caregivers indicated both decreased pain and improved sleep at follow-up during CITB. 23 (VERY LOW) One further prospective case series provided evidence of statistically significant 24 decreases in the number of night awakenings, frequency of pain and severity of pain at both 6 and 18 25 months. (VERY LOW)

With regards to acceptability and tolerability, one prospective case series of children receiving CITB reported that 88% of children and/or their parents said that they would participate in the test treatment and implantation procedures again. (VERY LOW) One further prospective case series of children with a severe degree of impairment receiving CITB for generalised dystonia reported that 79% of parents/caregivers were satisfied with the implant and 68% said that they would have the procedure performed again. (VERY LOW)

With regards to quality of life, one RCT provided evidence of a statistically significant improvement in both the physical and psychosocial dimensions of quality of life at 6 months in children receiving CITB and standard treatment, as compared to children receiving standard treatment alone. (MODERATE) One prospective case series (follow-up to previous RCT) reported no statistically significant difference in either the physical or psychosocial dimensions of quality of life at 12 months after the start of CITB, when compared to baseline. (VERY LOW)

With regards to the need for further orthopaedic surgery, one prospective case series reported a significant difference in hip migration percentage after 12 months of CITB, when compared to baseline, in both children younger than 8 years old and in children 8 to 18 years old. (VERY LOW) 1 With regards to adverse events and complications, two case-control studies did not find a statistically

2 significant effect of using a CITB pump, compared to not using a CITB pump, on the progression of

3 scoliosis in children with spasticity. (VERY LOW) Three prospective case series reported that for a

4 total of 101 pumps, there were 87 complications, of which 70% were surgical complications, 30%

5 were mechanical complications, and none were related to pump/operator failure (See Appendix M,

6 Table M.2).

21

22

23

24

25

26

Evidence to recommendations 7

Intrathecal baclofen testing 8

9 **Relative value of outcomes**

10 In examining the evidence regarding ITB the GDG considered the outcomes that would be most 11 clinically meaningful. The GDG wished to examine evidence that ITB can reduce spasticity. To this 12 end they prioritised papers using Ashworth and modified Ashworth scores as these were more often 13 used in clinical practice. However, if available, they regarded functional benefit as being of greater 14 importance. They considered certain outcomes were likely to be particularly important. These 15 included:

- 16 Alleviation of pain and discomfort - some children with spasticity are prone to muscle 17 spasms that may be distressing or painful.
- 18 Improved mobility and motor function (optimisation of movement and function). This • 19 would also include improvement in sitting, range of movement and ease of care. In the 20 UK, ITB is generally offered to children with severe spasticity (GMFCS IV and V) so specific outcomes in this category were prioritised by the GDG.
 - Reduction of dystonia was also prioritised, as children with severe spasticity and/or dystonia have been treated with ITB
 - Frequency and nature of adverse events were an important consideration both in the cost benefit analysis of the procedure and in obtaining informed consent
 - Acceptability and tolerability of ITB testing also needed to be considered.

27 Trade-off between clinical benefits and harms

DRAFT (October 2011)

28 The evidence for ITB is very sparse. There is evidence from observational studies that ITB testing 29 administered as one or more boluses can reduce spasticity. In this setting there is also evidence that 30 test doses can reduce pain and possibly improve 'ease of care'. There was no convincing evidence 31 from these studies of function, or change in dystonia. Nevertheless the GDG believed that it would be 32 important to consider these outcomes when relevant to the individual patient undergoing ITB-T.

33 The GDG also recognised that on occasion, where there is a high risk of adverse events, ITB-T is 34 contraindicated, including children who have previously undergone spinal infusion although no 35 evidence identified. The evidence from case series of children with a positive ITB-T receiving CITB 36 indicated that sustained reductions in spasticity and in pain could be demonstrated 12 months later 37 and improvements in "ease of care" and in "individually formulated problems" 6-12 months later. While 38 this is not conclusive evidence for the value of ITB-T it supports the assumption that an initial 39 response to ITB-T can be sustained over a long period.

40 There was no evidence from RCTs evaluating the accuracy of ITB or assessing the effectiveness of 41 ITB-T in predicting response to CITB. However, the GDG view is that it is reasonable, based on 42 physiological principles, to accept that this was likely to be the case. If a child either did not respond to 43 test doses in the intended way (for example, relieving their pain) a response to CITB would be 44 unlikely. Members of the GDG observed that seeing an immediate beneficial response to ITB-T was 45 often helpful to parents in their decision to proceed with pump implantation for CITB. On the other hand some children might not merely fail to respond to IBT but might actually find its effects 46 47 disadvantageous, and if this occurred with ITB-T it would suggest that CITB would be contra-48 indicated. The GDG noted that there may be specific circumstances where ITB-T was inappropriate, 49 such as in a child who had undergone spinal fusion or who was allergic to baclofen. They considered Spasticity in children and young people with non-progressive brain disorders: full guideline

- 1 that on occasions ITB-T should be deferred, such as during intercurrent localised or systemic infection 2 or if clotting is deranged.
- 3 The ideal study to determine the value of ITB-T in predicting a beneficial outcome with CITB would be
- 4 a RCT in which subjects would assigned to ITB-T or no testing prior and the decision regarding CITB
- 5 taken accordingly. No such studies were found on review of the literature. The GDG noted that based
- 6 on physiological considerations it is believed that failure to respond to ITB-T or experiencing an
- 7 adverse response would be a contraindication to CITB. Nevertheless, it was considered important to
- 8 consider the available evidence in relation to ITB-T, in order to determine whether testing can actually
- 9 provide evidence of responsiveness to ITB, and also to examine the outcomes reported in those
- 10 receiving CITB following a positive ITB-T. Weighing up the evidence and their own clinical view, the 11 GDG consensus was that there was benefit in children and young people being considered for
- 11 GDG consensus was that there was benefit in children and young people being considered for 12 treatment undergoing ITB to determine therapeutic goals and assess adverse events. However in
- 13 children with allergies to baclofen, ITB is contraindicated.

14 Trade-off between net health benefits and resource use

- 15 The GDG suggested that provisional funding for the ITB pump should be secured before a test dose 16 is carried out. Delays or refusal of funding for pump insertion after a positive ITB test is likely to result 17 in further deterioration and be distressing for the child and their carers.
- 18 The GDG observed that in the studies examined, the majority of children showed a reduction in 19 spasticity with ITB testing but despite this, a small number declined subsequent pump insertion. The 20 group considered that ITB testing may serve a wider purpose than simply confirming responsiveness
- to baclofen and allows fully informed consent on the part of the child or young person and their carers.

22 **Quality of the evidence**

- The reported studies frequently did use the Ashworth score as a measure of spasticity. Being an ordinal scale, averaging of scores is not methodologically correct but it was frequently done in the studies examined. Two of the three studies reviewed included adults as well as children and subgroup analysis and group demographics were often not reported. In addition, the GDG noted that studies reported varied outcomes with ITB-T so that synthesis of data was often difficult. It was common to all three studies that all patient groups comprised those with moderate to severe bilateral involvement (GMFCS level 3, 4 or 5).
- 30 The GDG noted that in the UK oral medications including baclofen are generally continued during 31 ITB-T. One of the studies from USA reported that the investigators aimed to discontinue oral 32 medications as part of the trial protocol - a potential source of bias in that study.

33 Other considerations

- The GDG considered that when performing ITB-T the assessments used to measure the response need to be individualised, based on the therapeutic goals. Aims in a severely affected child (GMFCS IV and V) will usually differ from those in a more functional child When performing ITB-T formal assessment of function as well as muscle tone was considered important not only to help assess the efficacy of ITB but also to reveal evidence for any loss of function.
- The GDG considered that ITB testing should include an expert pre-test assessment including where necessary an assessment of joint range of movement while the child or young person is under general anaesthetic. This is to ensure the patient's comfort and experiences minimal discomfort/distress whilst a thorough assessment of joint range is performed.
- The ITB test involves performing a lumbar puncture under general anaesthesia. Patients require a brief inpatient admission to administer test boluses and to assess the response. In general the GDG believed that adverse effects associated with ITB-T would be occasional and usually minor, but nevertheless ITB-T should only be undertaken in those in whom prior assessment identified them as likely candidates to proceed on to CITB. It should first be clarified that the child is a suitable candidate for pump placement, that there is there is a real potential for that individual to benefit from ITB, and that the child, parents and carers are in principle willing to proceed with CITB subject to the ITB-T
- 50 being positive.

1 The GDG considered the type of information that should be offered to families when considering ITB 2 testing. Up to date information should be offered on what testing involves, its value in predicting 3 outcomes (positive and adverse), and possible adverse effects of testing. This information should be 4 provided verbally and in writing. Once it has been decided to proceed with CITB, additional 5 information needs to be given to families, providing detailed information on what is involved, the need 6 for follow-up care, pump maintenance and risks associated with the procedure. The GDG considered, 7 given the complexity of the issues and the fact that CITB is an invasive procedure with potential 8 benefits but also significant risks that the information should be provided in written form as well as 9 being discussed verbally.

10 The GDG view was that assessment of response to testing should be based on standardised 11 outcomes as well as individual goals. Specific observations of changes in muscle tone, muscle pain, 12 posture and function are required, as well as assessment of pain, self care and ease of care from the 13 child and families' point of view. The use of standardised questionnaires and self-assessments can be 14 useful in obtaining responses from families and the children and young people themselves. 15 Specifically the GDG recommended that the response to ITB testing be undertaken using 16 standardised outcome measures and taking account of individualised goals and that the assessment 17 should examine changes in muscle tone (for example, using the Ashworth scale), pain or muscle 18 spasms, posture and function, including head control and the effect on ease of care

19

20 The GDG consensus was that ITB testing (including pre-test and post-test assessment) needs to be 21 carried out by an experienced multidisciplinary team in an in-patient setting given the complexity of 22 the decision-making and assessment, and to meet safety requirements. The test itself includes a pre-23 test assessment which needs to be carried out by a member of the multidisciplinary team. This 24 assessment includes an assessment of joint range movement which needs to be undertaken under 25 general anaesthesia. The test doses of intrathecal baclofen also need to be administered under 26 general anaesthesia. More than one bolus of baclofen can be administered, determined by expert 27 clinical opinion.

28 Continuous pump-administered intrathecal baclofen

29 Relative value placed on the outcomes considered

The GDG prioritised those studies that used Ashworth and modified Ashworth scores to assess muscle tone. The following clinical outcomes were considered important: alleviation of pain and discomfort; improved mobility and motor function, including improved sitting, range of movement and ease of care; reduction of dystonia; frequency and nature of adverse events; acceptability and tolerability of CITB. Finally, the GDG wished to consider evidence on the possible effects of CITB on the risk of orthopaedic complications such as hip dislocation, scoliosis and the need for orthopaedic surgery.

37 Trade-off between clinical benefits and harms

38 One prospective case series indicated that compared with baseline the hip migration index was 39 improved after 12 months of CIBT.

40 The GDG noted that there was just one RCT that examined the efficacy of CITB in children and young 41 people with spasticity. This was a small study with just 17 participants with diplegia or tetraplegia. 42 Following ITB-T 8 commenced CITB and they were compared with the remaining 9 who began CITB 43 5 months later. This RCT reported a wide range of outcomes with regard to the muscle tone. 44 Ashworth scores were reported separately for numerous muscle groups and for each separate limb. 45 The GDG noted that 6 months after commencing CITB, reduced muscle tone was documented in 46 muscles affecting hip and wrist but other muscle groups were not significantly altered. The CITB 47 group were followed up and assessed at 12 months with no control group comparison and muscle 48 tone was compared with baseline. There was a reduction in muscle tone in a wider spectrum of 49 muscle groups in both upper and lower limbs. The RCT found evidence of better outcomes with 50 'individually formulated problems', total GMFM scores, pain relief, reported 'ease of care' and quality 51 of life. It did not show evidence of better functional outcomes based on total PEDI score.

1 Although this RCT reported various clinically important benefits with CIBT, the GDG noted that the 2 number of subjects in this trial was very small (n=17), the study was inevitably an open-label design 3 (the study investigators and participants were not blinded to which children were in each treatment 4 arm), and the GDG viewed it important to consider outcomes beyond the 6 month time point in the 5 trial. Moreover, they wished to look for evidence regarding the risk of adverse outcomes - particularly 6 given the potential risks associated with pump placement and maintenance. For those reasons they 7 chose to also consider the reports from non-controlled studies. There were 8 prospective studies, 8 (generally with fewer than 50 subjects) in which change from baseline were reported.

9 The GDG noted that several prospective case series reported improved muscle tone in the upper and 10 lower limbs at 12 and/or 24 months after commencing CIBT. One of these case series showed that 11 CITB also had a positive effect on generalized dystonia in children with CP. Some prospective case 12 series also found improvement in 'individually formulated problems', GMFM score (overall or in 13 relation to specific motor skills), and reported 'ease of care'. Two reported that at 12 months there 14 was a reduction of pain or discomfort compared with baseline. Almost 90 percent of parents in one 15 series stated that they would have been prepared to agree to the procedure again indicating a high 16 level of satisfaction.

17 The GDG noted that neither of two case-control studies showed an effect of CITB on the rate of 18 scoliosis progression following CITB pump insertion. They further noted that in one small prospective 19 case study of hip migration post CITB pump insertion, there was only a 12 month follow up period. 20 Furthermore a 5% alteration in migration index was reported as significant, which the GDG 21 questioned as clinically meaningful given the method of measurement. The GDG view was that 22 caution should be used when considering CITB in children and young people with scoliosis.

Together the case series described a high incidence of complications associated with the infusion pump for CITB, including surgical complications in 59%, mechanical complications in 39% and pump failure in 2%. The GDG noted that since the introduction of CITB there have been technical advances and refinements in surgical techniques and in pump and catheter design, so that the risks described in past series are unlikely to reflect the current experience. They also noted the high level of satisfaction reported by parents even in past studies.

While recognising the limitations of the available evidence, the GDG concluded that CITB had potential to alleviate spasticity and to produce clinically important change. Evidence from the RCT supported by the reports from case series, indicated that CITB could reduce muscle tone and produce clinical benefits with respect to various clinical problems and goals. Members of the GDG with experience of using ITB were also persuaded that in properly selected patients, it could produce important benefits.

The GDG recognised that there were potential risks associated with the ITB pump but that with proper patient selection these risks would be acceptable. They therefore recommended that consideration be given to using CITB if despite the use of appropriate non-invasive treatment, a child or young person had unacceptable difficulties associated with spasticity. In particular it was appropriate to consider CITB in those with pain and/or severe muscle spasms due to spasticity and in those in whom relief of spasticity was expected to significantly improve posture or function including 'ease of care'.

The GDG noted the strongest evidence for improvement in quality of life was in severely limited children (GMFCSV). This observation, in the opinion of the GDG, does not preclude more functional children (GMFCS levels 3, 4 or or 5) from insertion of pump if they have a positive response to an ITB test dose, where benefits should outweigh possible harm.

45 Trade-off between net health benefits and resource use

46 No evidence was identified to support an economic analysis of CITB. The GDG concluded that cost-

- 47 effectiveness evidence is uncertain due to limited evidence of effectiveness and improved quality of
- 48 life. They questioned whether this may largely be a reflection of the difficulties in capturing meaningful
- 49 change in this group of children who have not responded to other therapeutic interventions and have
- 50 moderate to severe symptoms of spasticity. They noted the high degree of child/ caregiver
- 51 satisfaction with the procedure and evidence of reduced pain, following pump implantation.
- 52 The GDG considered whether there successful CITB would lead to a reduction in orthopaedic 53 interventions. Orthopaedic intervention is expensive and any reduction in its use should be taken into

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 147 of 219 account when considering the cost-effectiveness of CITB overall. Need for orthopaedic intervention
 could also be an indirect measure of improved quality of life.

3 Other considerations

4 The GDG considered that CITB was a major intervention that would not be justified in the absence of 5 significant clinical difficulties. Based on the knowledge and experience of GDG members and on the 6 evidence available, the GDG considered that those in whom CITB might be considered would be 7 children with bilateral spasticity, typically affecting both upper and lower limbs and moderate to severe 8 motor functional problems (GMFCS level 3 to 5). Children and young people with moderate to severe 9 motor may also benefit from CITB. They were aware that reducing spasticity could have adverse 10 consequences, in that in some individuals spasticity actually supports function. This needed to be born in mind, and is an important reason for performing ITB-T before proceeding with pump 11 placement. 12

The GDG considered that it was essential that CITB be commenced only after determining the specific goals of treatment. They recommended that when considering CITB therapy, the intended goals of therapy also be agreed with parents or carers and where appropriate with children and young people. The opinion of the GDG is that treatment should commence within 3 months of satisfactory ITB testing. This should be measured by reduction in spasticity, dystonia, pain, muscle spasms and improved ease of care.

19 The GDG considered that it would be essential when considering the possibility of CITB, to take 20 account of various factors. The child would need to be large enough so that the CITB pump could be 21 comfortably accommodated. The age at which a pump could be implanted would vary and so the 22 recommendation simply states that the child should not be too small. Intrathecal baclofen does not 23 currently have marketing authorisation for children younger than 4 years of age. Careful consideration 24 should be given to any medical co-existing conditions that might be relative or absolute 25 contraindications to treatment or which might require treatment before proceeding with CITB. For example CITB would generally be contraindicated in children and young people who had undergone a 26 27 spinal fusion procedure where it is considered that the technical challenges of pump implantation 28 predispose the child to greater postoperative morbidity including infection and cerebrospinal fluid leak. 29 The GDG believed that in addition to spasticity other relevant co-existing functional and medical 30 conditions may influence outcome when CITB insertion is considered. These particularly include 31 epilepsy, malnutrition, impaired bone mineralisation, pressure sores, respiratory disorders, 32 gastrointestinal disorders (including gastro-oesophageal reflux), obesity and coagulation disorders.

The GDG view was that caution should be exercised when considering CITB in children and young people with scoliosis if the child has not yet undergone spinal infusion. In this case, the consensus view of the GDG was that the infusion pump should be inserted before performing spinal infusion. Also, if the child has undergone spinal fusion, the CITB procedure will be more difficult and may not be possible at all.

The risk of infection and delayed wound healing is increased when surgery is carried out in poorly nourished patients and so the GDG considered that where possible, pump insertion should be deferred until nutrition is improved. The GDG considered that patients with severe, chronic respiratory disorders, such as apnoea, airway obstruction and chronic aspiration with reduced lung function, might be at increased risk with CITB and considered these to be possible contra-indications.

43 When it has been decided to commence treatment, intrathecal baclofen should be titrated to optimise 44 effectiveness. Assessments (both of physical outcomes and self-reported outcomes) should be 45 repeated after changes in titration, preferably by a member of the same team that performed the ITB 46 testing. If treatment is not judged to be working, the team caring for the child or young person should 47 consider a gradual reduction in dose to determine whether spasticity and other symptoms change. 48 Once the lifespan of the pump is complete, a gradual reduction of dose should be considered to allow 49 the child or young person to decide whether to continue based on their own goals and perceived 50 quality of life.

51 The GDG recognised that successful CITB was dependent on the support of parents or carers. When

52 considering CITB it was essential that careful consideration be give to the family resources in safely

- 53 supporting a child or young person on CITB. They would need to receive information and support and 54 continuity of care provided by an experienced multi-disciplinary paediatric specialist team. The GDG
 - Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 148 of 219

considered that support could be provided using both remote contacts (e.g. telephone contact) and
 face-to-face meetings and assessments.

3 Follow-up of those on CITB may include both remote and face-to-face meetings and assessments. 4 Parents and carers should have opportunities for direct discussion about CITB supported by written 5 information. They should be given appropriate information about CITB and its safe and effective 6 management tailored to individual needs. The information should state clearly that it is dangerous to 7 stop CITB suddenly and should not be discontinued without seeking advice from a health care 8 professional. They should understand the intended effects of the medication, the important potential 9 adverse effects, and the need to return to hospital for follow-up appointments. They should be made 10 aware of the symptoms and signs to be expected if the dose of baclofen was either inadequate or 11 excessive. They should be understand the proper management of the pump, the pump settings and 12 the signs and symptoms that might suggest pump related complications or pump failure. They should 13 understand that there are risks associated with sudden discontinuation of CITB. They should be 14 aware that following CITB pump implantation, regular clinic visits will be necessary for pump 15 maintenance and refills as agreed with their specialist team.

16 The GDG view was that both objective validated assessment out outcome and assessment against 17 individual goals should be undertaken for all children and young people undertaking this procedure.

Finally, the GDG believed that given the risks associated with CITB and the resource implications, the response to CITB should be assessed taking account of the intended goals and that the response should be monitored regularly to ensure that there was sustained benefit to the child. Where possible it was recommended that validated scores and questionnaires be employed to monitor goal attainment – for example regarding assessment of muscle tone, pain and/or muscle spasms, posture and/or function, and 'ease of care'.

Children and young people receiving CITB should have a consistent point of contact within a specialist paediatric multidisciplinary team undertaking the procedure. Where treatment is unsatisfactory, continued support should be offered from the local multidisciplinary team and referral for specialist support considered.

Number	Recommendation
	Intrathecal baclofen
	When to consider intrathecal baclofen
79 (KPI)	Consider treatment with continuous pump-administered intrathecal baclofen i despite the use of non-invasive treatments, spasticity, with or without dystonia, i causing difficulties with any of the following:
	 pain or muscle spasms posture or function self-care (or ease of care in the case of parents or carers).³²
80	Be aware that children and young people who benefit from continuous pump administered intrathecal baclofen typically have:
	 moderate to severe motor function problems (GMFCS level 3-5) bilateral spasticity affecting upper and lower limbs.³³
81	When considering continuous pump-administered intrathecal baclofen, balance th benefits against the risk of reducing spasticity if that spasticity supports functio (for example, by compensating for muscle weakness) which may have advers

28 **Recommendations**

³² At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented.

³³ At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 149 of 219

Number	Recommendation
	consequences. Discuss this with the child or young person and their parents and carers. ³⁴
	Intrathecal baclofen testing
82	In children and young people being considered for treatment with continuous pump-administered intrathecal baclofen perform intrathecal baclofen testing to assess therapeutic effect and to check for adverse effects. ³⁵
83	Before starting intrathecal baclofen testing inform children and young people and their parents or carers verbally and in writing about:
	 what the test will entail how the test might predict successful treatment with continuous pump- administered intrathecal baclofen and achievement of individualised goals adverse effects of continuous pump-administered intrathecal baclofen that might be predicted by testing adverse effects that might be associated with intrathecal baclofen testing.³⁶
84	Inform children and young people and their parents or carers verbally and in writing about continuous pump-administered intrathecal baclofen. The information should include all of the following:
	 the surgical procedure used for implantation of the infusion pump the need for regular hospital follow-up visits requirements for pump maintenance risks associated with implantation of the pump, pump-related complications, and adverse effects that might be associated with continuous pump-administered intrathecal baclofen infusion.
85	Intrathecal baclofen testing should be:
	 performed by a regional specialist centre that is able to carry out the necessary assessments undertaken in an inpatient setting to ensure safety and to allow a thorough assessment of outcomes.³⁷
86	Before intrathecal baclofen testing, a pre-test assessment should be performed, including where necessary, an assessment of joint range of movement while the child or young person is under general anaesthesia.
87	The test dose or doses of intrathecal baclofen should be administered using a catheter inserted under general anaesthesia. ³⁸
88	Assess the response to intrathecal baclofen testing using standardised outcome measures within 3-5 hours of administration or later if the effects of the general anaesthetic have not worn off.
89	Take account of individualised goals and the following criteria for a satisfactory response to intrathecal baclofen:
	reduction in spasticity or dystonia

³⁴ At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented. ³⁵ At the time of publication (October 2014) interthe

At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger

than 4 years. Informed consent should be obtained and documented. ³⁶ At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented. ³⁷ At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented.

At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented. ³⁸ At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger

than 4 years. Informed consent should be obtained and documented.

Number	Recommendation
	 reduction in pain or muscle spasms improved posture and function, including head control improved self-care (or ease of care in the case of parents or carers).
90	Discuss with the child or young person and their parents or carers their subjective assessments of the response to intrathecal baclofen testing. Subjective assessments should include reports on self-care (or ease of care in the case of parents or carers). Consider using a standardised questionnaire to document their assessments.
91	Pre- and post-test assessments should be performed by the same healthcare professionals in the regional specialist centre.
	Continuous pump-administered intrathecal baclofen
92	Perform implantation of the infusion pump and start treatment with continuous pump-administered intrathecal baclofen within 3 months of a satisfactory response to intrathecal baclofen testing (see recommendation 89). ³⁹
93	Be aware of the following potential contraindications to treatment with continuous pump-administered intrathecal baclofen:
	 the child or young person is too small to accommodate an infusion pump co-existing medical conditions (for example, uncontrolled epilepsy and coagulation disorders) intercurrent infections (systemic or around operative sites) which can increase the risks associated with continuous pump-administered intrathecal baclofen temporarily spinal fusion malnutrition which increases the risk of post-surgical complications (including infection and delayed healing) some respiratory conditions.
94	Support children and young people receiving treatment with continuous pump- administered intrathecal baclofen and their parents or carers by offering regular follow-up and a consistent point of contact with the regional specialist centre.
95	Monitor the response to continuous pump-administered intrathecal baclofen. Take account of individualised goals and the criteria for a satisfactory response to intrathecal baclofen (see recommendation 89).
96	Inform children and young people and their parents or carers verbally and in writing:
	 about safe and effective management of continuous pump-administered intrathecal baclofen about the effects of intrathecal baclofen, possible adverse effects, and symptoms and signs suggesting the dose is too low or too high about safe and effective management of the infusion pump, including correct pump settings and the potential for pump-related complications that it is dangerous to stop the continuous pump-administered intrathecal baclofen infusion suddenly that the child or young person will need to attend hospital for follow-up appointments, for example to refill and reprogram the infusion pump that continuous pump-administered intrathecal baclofen should not be stopped before seeking advice from a healthcare professional.

³⁹ At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented.

Number	Recommendation
97	If the response to continuous pump-administered intrathecal baclofen is unsatisfactory (see recommendation 89) offer continued support from the local multidisciplinary care team and consider referral for specialist support.
98	In children and young people with spasticity and co-existing scoliosis exercise caution and if the child or young person:
	 has not yet undergone spinal fusion, implant the infusion pump before performing spinal fusion has undergone spinal fusion be aware that the operative procedure for implantingthe pump will be more difficult technically and may not be possible.⁴⁰
99	Titrate the dose of intrathecal baclofen after continuous pump-administered intrathecal baclofen pump implantation to optimise effectiveness and reassess the child or young person's achievement of their individualised goals. ⁴¹
100	Repeat assessments after titration to determine the response to the new dose. The post-titration assessment should be performed by the same healthcare professionals in the regional specialist centre that performed the pre- and post-implantation assessments.
101	If treatment with continuous pump-administered intrathecal baclofen is judged to be unsatisfactory (see recommendation 89) and the infusion pump system has been confirmed to be working, consider reducing the dose gradually to determine whether spasticity and associated symptoms increase.
102	When the infusion pump is coming to the end of its lifespan, consider reducing the dose gradually to enable the child or young person to decide whether or not to have a new pump. ⁴²

1

Number Research recommendation

- 18 What is the effectiveness of ITB testing in terms of improving functional outcomes in children and young people who are in GMFCS level 2?
- 19 (KRR) What is the effectiveness of contimuours pump-administered intrathecal baclofen compared to usual care in children and young people who are in GMFCS level 4 or 5?

Why this is important

The GDG's recommendation to consider offering continuous pump-administered intrathecal baclofen focused on children and young people in whom the use of appropriate non-invasive treatments did not relieve difficulties associated spasticity (specifically pain or muscle spasms, posture or function, or ease of care). Such children and young people will typically be in GMFCS level 4 or 5. Further research is needed to evaluate the clinical and cost effectiveness of continuous pump-administered intrathecal baclofen compared with usual care in these children and young people. Relevant research designs include randomised controlled trials,

⁴⁰ At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented.

⁴¹ At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented.

⁴² At the time of publication (October 2011), intrathecal baclofen did not have UK marketing authorisation for children younger than 4 years. Informed consent should be obtained and documented.

DRAFT FOR CONSULTATION

prospective cohort studies and qualitative studies. The outcomes to be investigated as part of the research include: quality of life; reduction of pain; reduction of tone; acceptability and tolerability; participation or inclusion; and adverse effects and their association with any potential predisposing factors.

	20	What is the effectiveness of gait analysis as an assessment tool in studies to evaluate interventions such as CITB?
1		
2		

9 Orthopaedic surgery

2 Introduction

1

3 The clinical manifestations of non-progressive brain disorders that cause spasticity may change over 4 time and result in deformities of the limbs or spine. These effects may be due to a combination of 5 abnormal muscle tone resulting in muscle imbalance, joint contractures or bony deformity. 6 Management options include non-operative and operative treatments. Examples of non-operative 7 management include tone reduction with botulinum toxin and lengthening of muscles by applying a 8 plaster cast. The musculotendinous unit can also be lengthened surgically, bony torsions can be 9 treated by osteotomy (bone division), joints can be stabilised by fusion (arthrodesis), displaced hips 10 can be relocated surgically, and spinal deformity can be corrected surgically and stabilised.

11 Appropriate surgical management procedures will vary between patients. Functional goals for the 12 marginal walker (gross motor function classification system [GMFCS] level 3 or 4) will include 13 maintaining existing mobility skills, possibly obtaining independent transfer skills, ensuring 14 comfortable, stable sitting and lying down, and optimising upper and lower limb posture and function. 15 In the non-walker functional aims will include stable, pain-free sitting and lying down, and optimisation 16 of upper and lower limb posture and function. For patients in GMFCS level 5 there is a high risk of 17 developing a spinal deformity and a 90% risk of hip displacement defined by a migration percentage 18 of > 30%. Spinal deformity and hip displacement are potentially amenable to orthopaedic surgery. A 19 patient in GMFCS level 5 may have a 20-degree knee contracture that does not require surgery, but 20 correction of the same knee deformity in a GMFCS level 2 patient may be a key factor in improving 21 that patient's gait pattern.

Functional goals involving the upper limb will include optimisation of upper limb posture and function, but cosmetic aspects are also important. The hand is the most publicly visible part of the human body after the face. Surgery to the upper limb may also benefit function and daily care (for example, lengthening the elbow flexors in a GMFCS level 5 patient may improve hygiene in the elbow crease and a wrist fusion in a patient with hemiplegia may improve hand function). Improvement in hand and wrist posture may permit a patient to use a powered wheelchair or communication device.

28 Children and young people with spasticity caused by non-progressive brain disorders who are able to 29 walk may receive surgery to improve their walking efficiency and also to relieve pain. Historically such 30 gait improvement surgery occurred as a series of operations over succeeding years (the so-called 31 'birthday syndrome'). Currently there is a trend to deliver surgery in one procedure, or 'event'. This 32 requires a thorough preoperative assessment that is often informed by gait analysis to ensure that the 33 optimal combination of surgical procedures is chosen. The surgery is performed on one or both lower 34 limbs and often at different anatomical levels (for example, the hip, thigh, knee, leg or foot). The 35 procedures may include osteotomy of the femur or tibia, bony stabilisation of the foot, and surgery to 36 lengthen or transfer muscles and tendons. Single-event multilevel surgery (SEMLS) is the term used 37 to denote different operations at different anatomical levels performed in one procedure. 38 Rehabilitation after SEMLS may be prolonged and it can take up to 24 months to gain the maximum 39 benefit from this type of surgery. Patients evaluated pre-operatively by gait analysis will usually have 40 a similar post-operative evaluation.

The impact of major orthopaedic surgery or SEMLS on the patient and their family should not be underestimated. It may take up to 1 year (or more than 1 year) for a patient to gain the maximum benefit from the procedure.

- A key question is whether or not this approach is advantageous for the child or young person when compared with staged surgery.
- 46 One difficulty in evaluating surgical results in children and young people who have non-progressive 47 brain disorders causing spasticity is being able to distinguish between the post-surgical effects on
 - Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 154 of 219

1 function and the natural history of the condition and concomitant changes in stature as the child or 2 young person grows. The indication for surgery may coincide with a time in the child or young

- 3 person's development when function is deteriorating.
- 4 No related NICE guidance was identified for the review questions considered in this chapter.

5 **Review questions**

- 6 What is the effectiveness of orthopaedic surgery in preventing or treating musculoskeletal deformity in 7 children with spasticity caused by a non-progressive brain disorder?
- 8 What is the effectiveness of SEMLS in managing musculoskeletal deformity in children with spasticity
- 9 caused by a non-progressive brain disorder?

Description of included studies

- 11 In total four studies were included in this review and they addressed five comparisons as follows:
- hip adductor lengthening surgery versus no intervention in children under 6 years of age
 with bilateral spastic cerebral palsy followed for at least 18 months (one retrospective
 review of case notes; Yang 2008)
 - hip adductor lengthening surgery versus injection of botulinum toxin type A (BoNT-A) in children under 6 years of age with bilateral spastic cerebral palsy followed for at least 18 months (one retrospective review of case notes; Yang 2008)
 - lower extremity bony or soft tissue surgery versus standard care (no surgery) in ambulatory children (mean age 11.3 years) with hemiplegia, diplegia and quadriplegia (one prospective cohort study; Gorton 2009)
 - lower extremity SEMLS and intensive therapy versus multilevel BoNT injections and casting in children and young people aged 4 to 21 years with hemiplegia or diplegia with generalised joint impairments (one retrospective comparative study; Molenaers 2001)
- SEMLS and physical therapy versus physical therapy alone in 19 children aged 6-12 years with cerebral palsy and who were in GMFCS level 2 or 3 (one RCT; Thomason 2011).

27 Evidence profiles

15

16

17

18

19

20

21

22

23

28 Orthopaedic surgery

29 Tendon lengthening versus no intervention

30 One retrospective study that examined case notes was identified for inclusion (Yang 2008). The study 31 did not report optimisation of movement and function. The study evaluated prevention of deterioration.

32 Hip Migration Percentage

Number of studies	Number of patients		Effect		Quality		
	Soft tissue surgery	No intervention	Relative	Absolute			
	J		(95% CI)	(95% CI)			
Mean change h	ip migration perce	ntage over at leas	t 18months (Better	r indicated by lowe	er values)		
1 study (Yang	60	69	-	MD 8.00 lower	LOW		
2008)				(10.88 lower to			
				5.12 lower) 4*			
Mean change h	Mean change hip migration percentage per year (Better indicated by lower values)						

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 155 of 219

1 study (Yang	60	69	-	MD 6 lower	LOW
2008)				(8.89 to 3.11	
				lower) 4*	

1 Hip Migration Percentage per year – all children and by functional ability

Number of	Number of patie	Number of patients		Effect	
studies	Soft tissue surgery – gross motor function classification system (GMFCS) I and II	Soft tissue surgery – (GMFCS) III and IV	Relative (95% CI)	Absolute (95% CI)	
Mean change by functional	hip migration perce	entage per year (Better indicated	by lower values) –	sub group analysis

 1
 study (Yang 28 legs 2008)
 72 legs MD 2.4 lower
 VERY LOW

2

The study did not report reduction of pain, quality of life, acceptability and tolerability or adverseeffects.

5 Early bony and soft tissue versus no intervention

6 One prospective study was included (Gorton 2009). The study evaluated optimisation of movement 7 and function.

8 Optimisation of movement and function

Number of	Number of patie	nts	Effect		Quality
studies	Bony and/or soft tissue	Standard care	Relative (95% Cl)	Absolute (95% Cl)	
Velocity m/s at	1 year (indicated I	by higher values)			•
1 study (Gorton 2009)	75	75	-	MD 1. 6 higher*	VERY LOW
Gross motor fu	nction measure (C	GMFM) - D at 1 year	(Better indicated	by higher values)	
1 study (Gorton 2009)	75	75	-	MD 2.4 lower*	VERY LOW
GMFM - E at 1	ear (Better indica	ted by higher value	es)	1	
1 study (Gorton 2009)	75	75	-	MD 2.8 lower*	VERY LOW
	voar (Bottor indic	ated by higher val	ues)	•	
GMFM – 66 at 1	year (Detter mult		•		

9 * Calculated by the NCC-WCH

10 The study did not report prevention of deterioration.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 156 of 219

1 Quality of life

Number of	Number of patients		Effect		Quality		
studies	Early bony and/or soft tissue	No intervention	Relative (95% Cl)	Absolute (95% CI)			
Pediatric quality	y of life inventory	(Peds QL) Physica	I Functioning at 1	year (indicated by	higher values)		
1 study (Gorton 2009)	75	75	-	MD 9 higher*	VERY LOW		
Peds QL Emotio	onal Functioning a	t 1 year (indicated	by higher values)				
1 study (Gorton 2009)	75	75	-	MD 3.4 higher*	VERY LOW		
Peds QL Social	Functioning at 1	ear (indicated by	higher values)				
1 study (Gorton 2009)	75	75	-	MD 5.4 higher*	VERY LOW		
Peds QL Schoo	Peds QL School Functioning at 1 year (indicated by higher values)						
1 study (Gorton 2009)	75	75	-	MD 0.6 lower*	VERY LOW		

2

3 The study did not report acceptability and tolerability or adverse effects.

4 Orthopaedic surgery (any procedure) versus botulinum toxin

5 One retrospective study was included (Yang 2008). The study did not report optimisation of 6 movement and function. The study evaluated prevention of deterioration.

7 Hip migration percentage

Number of	Number of patier	nts	Effect		Quality
studies	Soft tissue surgery	Botulinum neurotoxin (BoNT)	Relative (95% CI)	Absolute (95% CI)	
Mean change h	ip migration perce	ntage at least at 1	8 months (Better i	ndicated by lower	values)
1 study (Yang 2008)	60	65	-	MD 1.7 lower (4.26 lower to 0.86 higher)*	VERY LOW
Mean change h	ip migration perce	ntage per year - al	I children (Better i	ndicated by lower	values)
1 study (Yang 2008)	60	65	-	MD 0.9 lower (2.83 lower to 1.03 higher)*	VERY LOW
-			igh functioning ch r indicated by low	-	r function
1 study (Yang 2008)	28 legs	40 legs	-	MD 1 lower (3.4 lower to 1.4 higher)*	VERY LOW
-	ip migration perce d by lower values)		ow functioning chi	Idren GMFCS leve	Is 3 and 4
1 study (Yang	72 legs	90 legs	-	MD 1 lower (2.71 lower to	VERY LOW

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 157 of 219

2	2008)		0.71 higher)*	

1 * Calculated by the NCC-WCH

2 Single-event multilevel surgery

3 Single-event multilevel surgery versus physical therapy

One RCT was included (Thomason 2011). The study evaluated range of motion, optimisation of function and quality of life outcomes. SEMLS was defined as at least one surgical procedure performed at two different anatomical levels (the hip, knee or ankle) on both sides of the body and was tailored to the child's needs (mean 8 interventions, SD 4 interventions).

Number of	Number of patier	nts	ts Effect		Quality
studies	Single event multi-level surgery (SEMLS) and therapy	Therapy alone	Relative (95% CI)	Absolute (95% CI)	
Gross motor fu	nction measure (G	MFM)-66 at 12 mo	nths(Better indicat	ted by higher value	es)
1 study (Thomason 2011)	1	8	-	MD 1.3 higher*	LOW
GMFM-66 at 24	months(Better ind	licated by higher v	alues)		
1 study (Thomason 2011)	11	0	-	MD 4.9 (0.98 higher to 8.7 higher)*	VERY LOW
Gillette Gait Ind	ex at 12 months (I	Better indicated by	lower values)		
1 study (Thomason 2011)	11	8	-	MD 211 lower*	LOW
Gillette Gait Index at 24 months (Better indicated by lower values)					
1 study (Thomason 2011)	11	0	-	MD 213 lower (327 lower to 100 lower)*	LOW

8 * Calculated by the NCC-WCH

9 Quality of life

Number of	Number of patients		Effect		Quality	
Studies	Single event multi-level surgery (SEMLS) and therapy	Therapy alone	Relative (95% CI)	Absolute (95% CI)		
values)	estionnaire (CHQ)	PF50 physical fun	ction at 12 months	s(Better Indicated	by nigner	
1 study (Thomason 2011)	11	8	-	MD 3 lower	LOW	
CHQ-PF50 physical function at 24 months(Better indicated by higher values)						

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 158 of 219

1 study (Thomason 2011)	11	0	-	MD 22 (from 4 higher to 39 higher)	VERY LOW			
CHQ-PF50 soci	CHQ-PF50 social/emotional function at 12 months (Better indicated by higher values)							
1 study (Thomason 2011)	11	8	-	MD 12 lower	LOW			
CHQ-PF50 family cohesion at 12 months (Better indicated by higher values)								
1 study (Thomason 2011)	11	8	-	MD 11 higher	LOW			

1 * Calculated by the NCC-WCH

2 Single-event multilevel surgery versus botulinum toxin

- 3 One retrospective study was included (Molenaers 2001). The study evaluated optimisation of
- 4 movement and function.
- 5 Optimisation of movement and function

Number of	Number of patients		Effect		Quality
studies	Single event multi-level surgery (SEMLS)	Botulinum neurotoxin (BoNT)	Relative (95% CI)	Absolute (95% CI)	
Walking velocit	y (m/s) (Better ind	icated by lower va	lues)		
1 study (Molenaers 2001)	43 limbs	43 limbs	-	MD 0.07 lower*	VERY LOW

6 * Calculated by the NCC-WCH

7 The study did not report prevention of deterioration, reduction of pain, quality of life, acceptability and 8 tolerability or adverse effects

9 **Evidence statement**

10 Orthopaedic surgery

11 Tendon lengthening versus no intervention

12 No evidence was identified relating to optimisation of movement and function.

13 With relation to prevention of deterioration, one retrospective review of case notes reported that hip adductor lengthening surgery in children with diplegia and quadriplegia statistically significantly 14 15 decreased hip migration percentage and hip migration percentage per year compared to no 16 treatment. (LOW) Comparing the results of high- and low-functioning children with diplegia and 17 quadriplegia (high = GMFCS level 1 or 2; low = GMFCS level 3 or 4) within the group receiving hip 18 adductor lengthening surgery, there was a greater reduction in hip migration percentage per year in 19 high functioning children although it is not clear if this was a statistically significant difference. (VERY 20 LOW)

21 No evidence was identified relating to reduction of pain, quality of life, acceptability and tolerability or 22 adverse effects.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 159 of 219

1 Early bony and soft tissue versus no intervention

- 2 With relation to optimisation of movement and function, one prospective cohort study of ambulatory
- 3 children with hemiplegia, diplegia and quadriplegia found no statistically significant differences in
- 4 velocity, GMFM-D, GMFM-E or GMFM-66 at 12 months after lower extremity orthopaedic surgery was
- 5 performed compared to standard non-surgical care (VERY LOW).
- 6 No evidence was identified relating to prevention of deterioration.
- 7 With relation to quality of life, one prospective cohort study of ambulatory children with hemiplegia,
- 8 diplegia and quadriplegia reported a statistically significant increase in PedsQL Physical Functioning 9
- score at 1 year after lower extremity orthopaedic surgery compared to standard non-surgical care 10
- (LOW). There were no statistically significant differences in the Peds QL Emotional, Social or School
- 11 Functioning scores (VERY LOW).
- 12 No evidence was identified relating to acceptability and tolerability or adverse effects.

13 Orthopaedic surgery (any procedure) versus botulinum toxin

- 14 No evidence was identified relating to optimisation of movement and function.
- 15 With relation to prevention of deterioration, one retrospective review of case notes of children with
- 16 diplegia and quadriplegia reported no statistically significant difference in hip migration percentage per
- 17 year when hip adductor lengthening surgery was compared to BoNT treatment. (VERY LOW)
- 18 No statistically significant differences in hip migration percentage per year were found in a subgroup 19 analyses of these results by the child's functioning ability (high = GMFCS level1 and 2 and low = 20 GMFCS level 3 and 4). (VERY LOW).
- 21 No evidence was identified relating to reduction of pain, quality of life, acceptability and tolerability or 22 adverse effects.

23 Single-event multilevel surgery

24 Single-event multilevel surgery versus physical therapy

- 25 With regard to optimisation of function, one RCT of children with cerebral palsy and who were in 26 GMFCS level 2 or 3 reported a greater increase in GMFM-66 scores at 12 months in children who 27 received SEMLS and physical therapy compared to children who received physical therapy alone, 28 although whether or not this difference was statistically significant was not reported clearly. (LOW) At 29 24 months, there was a statistically significant increase in GMFM-66 scores compared to baseline in 30 the group who received SEMLS and physical therapy. The same RCT reported a statistically 31 significant improvement in Gillette gait index scores at 12 months in children who received SEMLS 32 and physical therapy compared to children who received physical therapy alone. (LOW) At 24 months, there was a significant increase in Gillette gait index scores compared to baseline in the 33 34 group who received SEMLS and physical therapy.
- 35 With regard to quality of life, one RCT of children with cerebral palsy who were in GMFCS level 2 or 3 36 reported no statistically significant differences in CHQ-PF50 physical function at 12 months in children 37 who received SEMLS and physical therapy compared to children who received physical therapy 38 alone. (LOW) At 24 months, there was a significant increase in CHQ-PF50 physical function 39 compared to baseline in the group who received SEMLS and physical therapy.(VERY LOW) The 40 same RCT reported that at 12 months, CHQ-PF50 social and emotional function scores were lower 41 and CHQ-PF50 family cohesion scores higher in children who received SEMLS and physical therapy 42 compared to those who received physical therapy alone, although whether or not the difference was
- 43 statistically significant was not reported clearly. (LOW)

44 Single-event multilevel surgery versus botulinum toxin

- 45 One retrospective study of children with hemiplegia or diplegia with generalised joint impairments (this
- 46 term was not defined in the article) reported no statistically significant differences in pre- and post-
- 47 treatment walking velocity at 12 months after treatment with multilevel BoNT injections and casting or
- 48 surgery and intensive rehabilitation therapy. (VERY LOW)

Other comparisons of interest

2 The GDG also prioritised evaluation of the following interventions and comparators, but no studies3 were identified for inclusion.

4	 tendon transfer versus no intervention
5	 osteotomy versus no intervention
6	 joint fusion or arthrodesis versus no intervention.
7	 early bony and soft tissue surgery versus soft tissue surgery alone
8	 orthopaedic surgery (any procedure) versus physiotherapy
9	 orthopaedic surgery (any procedure) versus orthoses.
10	 early orthopaedic surgery versus delayed orthopaedic surgery
11	SEMLS versus interval surgery
12	SEMLS versus orthoses.

13 Health economics

There was limited evidence available to answer the review questions and the evidence identified was of poor quality and involved short-term follow-up. The GDG's experience is that surgery can be beneficial in improving function, including mobility, reducing pain and increasing comfort, cosmetic improvements, and preventing deterioration. Improvements in these areas can have a significant impact on a child or young person's health related quality of life.

Surgery is an expensive treatment option requiring time in hospital and rehabilitation afterwards.
 Surgery is also an invasive treatment option; there are risks associated with any surgery, and there
 can be adverse events related specifically to the types of surgery considered here.

There was not enough evidence available from the literature to develop a health economic analysis that could aid the GDG's decision making. Since a number of different surgical procedures were considered here, using the NICE threshold for cost effectiveness to determine the level of effectiveness needed did not seem suitable for these review questions. Further research is needed to investigate effectiveness of surgery in terms of function, pain reduction, and impact of quality of life. Long-term outcomes should be recorded to understand fully how surgery affects different groups of children and young people according to limb involvement and severity.

29 Evidence to recommendations

30 Relative value placed on the outcomes considered

31 The aims of orthopaedic surgery include improving function, correcting deformity and alleviating pain, 32 as well as ease of care and cosmetic aims. The outcomes concerning optimisation of movement and 33 function selected by the GDG included domains likely to be relevant to outcomes of orthopaedic 34 surgery. The GDG recognised that more complex studies of gait are often undertaken, for example, in 35 the setting of a 'gait laboratory'; such approaches can assess a range of potentially informative 36 measures that may be useful in determining an appropriate treatment plan for individual patients. 37 Many research studies present detailed and varied outcomes based on these sophisticated 38 approaches to assessing gait, but the GDG did not choose to include all of these in their examination 39 of the evidence, preferring to restrict their search to studies reporting velocity and distance because 40 these outcomes are important to patients.

41 The hip migration percentage (MP) is the orthopaedic standard used to evaluate hip displacement in

- 42 children and young people with non-progressive brain disorders causing spasticity. The reduction or
- relief of pain is also a relevant surgical outcome measure. Quality of life, acceptability and tolerability and complications are also key surgical outcome measures. Long-term follow-up is desirable, but

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 161 of 219 1 there is a difficulty in separating the effects of an intervention from those relating to the natural 2 progression of the condition over time.

3 Trade-off between clinical benefits and harms

The evidence identified in the review was very limited. It showed that there may be some benefit to some children of specific orthopaedic procedures (for example, hip abductor lengthening surgery) but the evidence was not sufficiently robust for the GDG to reach any meaningful conclusions (see 'Quality of the evidence' below). The GDG therefore used their own judgement and clinical experience to consider the likely benefits and harms of orthopaedic interventions.

9 Despite the lack of research evidence the GDG considered that orthopaedic surgery can be effective 10 in correcting deformity and improving function in children and young people who have spasticity 11 caused by non-progressive brain disorders. Orthopaedic surgery is based on rational principles of 12 altering structure of muscles and bones to alleviate deformity, and pain and to improve function. The 13 use of surgery is based on extensive experience gained over many years and the GDG is aware that 14 expert surgical intervention in appropriately selected patients will lead to worthwhile clinical 15 improvements.

16 It is well recognised that the likelihood of hip displacement increases with the GMFCS level and 17 children and young people in levels 4 and 5 are at particular risk (Soo 2006; Hägglund 2007). Hip 18 displacement can cause pain, decreased ability to tolerate sitting or standing, and increased difficulty 19 with perineal care and hygiene. It may also cause shortening of the thigh on the affected side and 20 increased tone in the hip musculature and possible muscle shortening as a result of the displacement. 21 These problems can have a significant adverse effect on a child or young person's comfort for sitting 22 and daily activities. The GDG agreed that surgery can benefit patients who have a symptomatic hip 23 displacement by reducing pain and improving of ease of care. Monitoring of the hip using the hip 24 migration percentage is therefore recommended to inform clinical management of the child at risk of 25 hip displacement. The GDG drew up a consensus list of nine indications of hip displacement, based 26 on their clinical experience and expertise.

Clearly, the risks of surgery include the general risks of any surgical procedure. Many patients in GMFCS levels 4 and 5 have significant co-morbidities, including nutritional and respiratory problems. Those undergoing surgery to relocate the hip or for scoliosis are at risk of post-operative chest infection and weight loss. Many patients are below the 25th centile for weight and poor pre-operative nutritional status is a risk factor for wound infection after scoliosis surgery (Jevsevar 1993); such effects may occur in up to 10% of patients (Szoke 1998; Sponseller 2000).

It may take 12-24 months for patients to recover fully and gain the full benefit from SEMLS. Even if surgery might be beneficial in principle, the tendency for spasticity and its complications to progress over time might hide such benefits. It is, therefore, important to select patients who are likely to benefit from surgery (for example, those who are at high risk of hip dislocation and who might benefit from surgery to prevent such an outcome) carefully. To assist with the assessment, it may be important to have expert input from various members of the multidisciplinary team, including particularly the surgeon, the paediatrician or paediatric neurologist, and the physiotherapist or occupational therapist.

Fixed bony deformity is not amenable to non-surgical correction. There are also limits to nonoperative improvement or correction of fixed shortening of a musculotendinous unit or a joint contracture. The choice for children and young people and their families and carers may be between accepting a fixed deformity and its disadvantages or the child or young person undergoing an orthopaedic procedure to improve or correct the deformity.

Orthopaedic surgery for the complications of spasticity may be a major procedure with attendant risks of pain, haemorrhage and infection. Immediate post-operative pain after surgery in the lower limbs can be managed effectively with epidural analgesia. The risks of haemorrhage requiring blood transfusion vary and will be higher with more extensive surgery. For example, a mean blood loss of 15.4 ml/kg for a hip reconstruction has been reported (McNerney 2000), as has an average blood loss of 2.8 I during posterior spinal surgery for scoliosis surgery (Tsirikos 2008).

51 There is a risk of non-union of bone in operations that require division and stabilisation of bone with 52 metallic internal fixation devices. This is unlikely after limb or pelvic surgery, but it is seen after

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 162 of 219 surgery to correct or improve a spinal deformity. For example, in 5% (5/93) of patients in a case series
 required further surgery to repair a pseudarthosis (non-union) of the spine (Lonstein 2011).

The GDG considered that the potential benefits to the child or young person from judicious surgery would outweigh potential adverse effects. Children and young people and their parents or carers

5 should, therefore, be given appropriate information about potential side effects.

6 Trade-off between net health benefits and resource use

Surgery is an expensive treatment option requiring time in hospital and rehabilitation afterwards. The GDG's experience is that surgery can be beneficial in improving function including mobility, reducing pain and increasing comfort, improving cosmesis, and also preventing deterioration. The GDG considered that surgery is likely to be a good use of resources for appropriately selected children and young people.

Appropriate monitoring of a child or young person with a non-progressive neurological condition causing spasticity will result in better outcomes of future surgery because this will enable timely identification of any problems.

15 Quality of evidence

16 One study suggested a clinical benefit from orthopaedic surgery in the prevention of hip migration 17 (Yang 2008). It showed that hip adductor lengthening surgery significantly decreased hip migration 18 compared with no treatment. This was based on evidence of low quality. The same study found a 19 greater reduction in hip migration percentage per year in high-functioning children but the statistical 20 significance of this finding was unclear.

Another low quality study reported a statistically significant increase in functioning one year after lower extremity orthopaedic surgery compared to standard non-surgical care. However, this was based on evidence of very low quality.

No studies were identified comparing SEMLS with staged surgery. One RCT was identified that compared SEMLS to physical therapy alone (Thomason 2011) and reported a statistically significant improvement in the Gillette gait index at 12 months in children undergoing additional surgery. One study comparing SEMLS and rehabilitation of children with hemiplegia or diplegia was identified, but no statistically significant difference outcome was reported (Molenaers 2001).

29 All of the available studies had important limitations. Two studies (Yang 2008; Gorton 2009) included 30 patients with hemiplegia, diplegia and guadriplegia and reported results from all patients together. It 31 would have been more informative to have reported results for each of these very different clinical 32 subgroups separately. One study (Yang 2008) was a retrospective cohort study based on review of 33 case notes and radiological records children in South Korea. There might have been important 34 differences compared to clinical practice in the UK. Two further studies (Gorton 2009; Molenaers 35 2001) had follow-up of only 12 months and the RCT (Thomason 2011) only provided pre-post 36 treatment data for the children who had received SEMLS to 24 months. The GDG's experience was 37 that it may take longer for patients to gain the maximum benefit from orthopaedic surgery. Only a 38 limited number of the outcomes identified as important by the GDG were reported in the literature.

39 Other considerations

40 Spinal deformity can affect a child or young person's ability to sit and, in some, can limit use of their 41 upper limbs; when severe it can also have an adverse effect on cardio-pulmonary function. The spinal 42 deformity can have a significant impact on comfort of the child or young person and their ability to 43 function. In severe instances, impingement of the ribs against the pelvis may be painful. Clinical 44 recognition of the deformity before it becomes very severe should prompt an orthopaedic referral 45 because scoliosis surgery can improve the spinal deformity and provide the secondary benefits of 46 stable and comfortable seating and potential improvement in upper limb function. The GDG agreed 47 that scoliosis surgery should be considered as part of the management of spinal deformity in children 48 and young people who have who have spasticity caused by non-progressive brain disorders. There 49 should be clinical or radiological evidence of hip displacement or spinal deformity before referral is 50 considered.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 163 of 219 Problems with the posture of the shoulder girdle and upper limb can limit function and reduce a child or young person's independence and ability to participate in activities. Additionally, upper limb joint contractures can cause difficulties with skin hygiene, particularly in the axilla, wrist creases and hand. The GDG view was that surgery should be considered if adverse posture, loss of range of motion, fixed muscle shortening and skeletal deformities impair upper limb function.

6 Adverse posture, loss of range of motion, fixed muscle shortening and skeletal deformities of the 7 lower limbs can often affect walking adversely. This may result in pain, loss of walking efficiency and 8 can, for some patients, eventually threaten independent walking. There are limits to non-operative 9 management and orthopaedic surgery may be indicated to correct fixed deformities and improve 10 walking efficiency. The GDG therefore agreed a list of the indications for referral for an orthopaedic 11 opinion. Also the cosmetic appearance of the upper limb should be an indication where it causes 12 significant concern for the child or young person.

13 The GDG considered the role of clinical monitoring and surveillance for hip problems. Based on 14 current practice (Horstmann 2007) and the GDG's clinical experience the following criteria were 15 agreed for identifying children and young people in whom a hip X-ray should be performed:

16 17

18

- by the age of 18 months in children and young people with bilateral cerebral palsy
- in children and young people with poor prognosis for walking (total body involved) or delayed walking or using an external support for spastic diplegia.

19 The GDG also considered that a repeat hip X-ray should be performed every 6 months in children and 20 young people with hip migration percentage greater than 15% or in whom hip migration percentage is 21 increasing by more than 10% per year.

Surgery should be considered as part of a wider management programme for the child or young person. The GDG view was that before undertaking orthopaedic surgery, the risks, harms and benefits should be discussed and agreed, and that the treatment plan should include a rehabilitation programme including, physical therapy (physiotherapy and occupational therapy), orthoses, other adjunctive treatments, such as oral drugs and BonT A, inpatient care and follow-up.

Management of the displaced hip is outside the scope of this guideline, but the GDG recognised that in every child with spasticity consideration should be given to the possibility of hip displacement. The GDG recognised that this was a complication of major importance, being common and having a major impact on the child or young person and forming a significant workload for orthopaedic surgeons.

31 The GDG considered that delaying surgery until function has deteriorated could reduce the 32 effectiveness of surgery. The GDG considered, therefore, that access to an orthopaedic opinion (as 33 part of the multidisciplinary team, rather than requiring a further referral) and possible treatment 34 should be available to children and young people who have spasticity caused by non-progressive 35 brain disorders. Surgery should not be considered a last resort but an adjunct to other management 36 techniques. Early involvement in the multidisciplinary team of an orthopaedic surgeon with an 37 expertise and interest in the management of spasticity is considered important, but does not 38 necessarily commit a child or young person to a surgical procedure.

39 Orthopaedic surgery should be undertaken by a team with experience of cerebral palsy and non-40 progressive brain injury to allow the use of appropriate perioperative pain relief, paediatric 41 anaesthesia, access to paediatric nursing skills and therapies. Many of the children and young people 42 will have co-morbidities (for example, feeding difficulties, epilepsy, and communication or learning 43 difficulties). Surgery in a child or young person with potentially complex needs carries a higher risk of 44 perioperative complications than usual. Decisions should be made in conjunction with members of the 45 multidisciplinary team to ensure that planning for post-operative rehabilitation is undertaken. This 46 should include how and where rehabilitation will take place, and the likely requirement for additional 47 equipment and orthoses. These decisions should be made before surgery is planned.

The GDG considered that SEMLS offers potential advantages over interval surgery for children and young people undergoing gait improvement surgery because, typically, the surgery would require one hospital admission and one period of rehabilitation. Patients require a thorough preoperative assessment. Gait analysis is considered to be the pre-operative 'gold standard' when evaluating patients with complex motor disorders who are likely to benefit from multilevel lower limb surgery to

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 164 of 219 improve their gait and function (Thomason 2011). Identifying gait pathologies preoperatively informs the surgical team of procedures such as tendon and muscle surgery, osteotomies and foot stabilisation that are likely to benefit the patient. A thorough pre-operative assessment will also help to identify likely requirements for post-operative rehabilitation and orthoses. Optimal recovery from gait improvement surgery may take 12-24 months and so it is important to have in place an agreed programme of rehabilitation.

7 **Recommendations**

Number	Recommendation
	Orthopaedic surgery
	Referral
103 (KPI)	Offer children and young people referral to an orthopaedic surgeon if there is clinical or radiological evidence of hip displacement or spinal deformity.
104	Consider referring a child or young person for an orthopaedic opinion if any of the following indications is present:
	 the posture of an upper limb is causing difficulties with putting on or taking off clothing hand or upper limb function is limited by functionally short muscles (where spasticity prevents muscles stretching to their full length during functional tasks), pain or an unfavourable limb posture a contracture of the shoulder, elbow, wrist or hand causes difficulty with skin crease hygiene lower limb function is limited by functionally short muscles or an unfavourable limb posture walking is limited by functionally short lower limb muscles, joint contracture, abnormal torsion of the femur or tibia, foot deformity, or lower limb pain the cosmetic appearance of the upper limb causes significant concern for the child or young person.
105	Consider orthopaedic surgery as an adjunct to other interventions because timely surgery can prevent deterioration and ameliorate function.
	Monitoring
106 (KPI)	Monitor children and young people to identify displacement of the hip and spinal deformity.
107	Clinically monitor all children and young people for signs of hip migration and recognise the following as evidence of hip displacement:
	 abnormal hip migration percentage (more than 30%) increasing hip migration percentage deterioration in hip abduction pain arising from the hip reduced range of hip movement increased hip muscle tone decreased ability or tolerance for sitting or standing because of worsening hip joint contracture or bony deformity clinically important leg length difference increasing difficulty of perineal care or hygiene.
108	Perform a hip X-ray to monitor hip migration:
	 by the age of 18 months in children with bilateral cerebral palsy in children with poor prognosis for walking (total body involved), delayed

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 165 of 219

Number	Recommendation
	 walking or who are using an external support for spastic diplegia in children or young people with signs of hip displacement (see recommendation 107).
109	Repeat the hip X-ray every 6 months in children and young people with hip migration percentage greater than 15% or in whom hip migration percentage is increasing by more than 10% per year.
	Before undertaking orthopaedic surgery
110	Before undertaking orthopaedic surgery discuss and agree with the child or young person and their parents or carers a rehabilitation programme and how and where it will be delivered. The programme may include:
	 inpatient care and subsequent follow-up physical therapy orthoses other adjunctive treatments, such as oral drugs and botulinum toxin type A.
	Performing orthopaedic surgery
111	Orthopaedic surgery should:
	 be undertaken by surgeons experienced in the concepts and techniques of performing such surgery in this group of patients and take place in a paediatric setting.
112	Aim to perform single-event multilevel orthopaedic surgery to improve gait (rather than as staged surgical episodes) informed by a thorough preoperative functional assessment, preferably including a pre-operative gait analysis and interpretation of the results by a surgical team with experience in such analyses.
	Assessment
113	Assess outcomes of gait-improvement orthopaedic surgery 1–2 years after performing the surgery. Use the same criteria for pre- and post-operative assessments.
Number	Decearch recommendation

Research recommendation			
What is the effectiveness of soft tissue surgery in terms of preventing hip dislocation?			
What is the effectiveness of SEMLS in terms of producing benefits that continue after skeletal maturity has been achieved?			

1

2 3

10 Selective dorsal 2 rhizotomy

3 Introduction

Selective dorsal rhizotomy (SDR) is a neurosurgical operation on nerves entering the spinal cord. The aim of SDR is to improve gross motor function, particularly the ability to walk, by reducing muscle spasticity. The operation was first performed in 1908 and developed further in the 1980s by Peacock who was responsible for introducing SDR into the USA. SDR is currently available in a number of centres in the USA and Canada, but only one centre in England and Wales has performed the operation on a regular basis and published results.

10 SDR involves identifying nerve roots coming into the spinal cord from leg muscles and severing some 11 of them. One of two approaches may be used to access the nerve roots: the first involves removing 12 six to eight lamina (multilevel approach); the second (less invasive) approach is to remove and 13 replace just one or two lamina (single level approach). Resection of the nerve roots interrupts the 14 abnormal circuit of nerve impulses that keeps muscle tone high. The nerve roots must be identified 15 correctly during the operation using electrical stimulation. If nerve roots coming into the spinal cord 16 from the skin, bladder or bowel are cut then the patient may develop numbress or bladder or bowel 17 incontinence.

- SDR is irreversible and selecting appropriate patients is very important. The surgical technique requires good exposure of nerve roots and meticulous attention to identification of roots that will be cut. In the literature, the percentage of nerve roots cut varies from 14-50% (ref needed). Nerve roots to be cut are from lumbar 2 (L2) level to sacral 2 (S2) level, although some surgeons avoid cutting S2 roots to reduce the risk of incontinence.
- Potential complications of SDR may be temporary or permanent, and kyphoscoliosis (curvature of the spine) or spondylolisthesis (slipped vertebrae) may occur afterwards. As with any other irreversible operation, the benefits should outweigh the potential complications before proceeding with SDR.
- Most children and young people who have undergone SDR have had spastic diplegic cerebral palsy and, since the aim of the operation is to improve the child or young person's ability to walk, most were in Gross Motor Functional Classification System (GMFCS) level 2 or 3.
- After SDR, most children and young people are weak, and they may initially lose motor ability. An intensive period of rehabilitation is required after the surgery, and the setting (inpatient or outpatient care during the rehabilitation period) will be a consideration. The full benefits of SDR might not be realised for up to 1 year after the surgery, and the ongoing need for physical therapy is a major commitment for the child or young person and their family.
- 34 'Selective dorsal rhizotomy for spasticity in cerebral palsy' (NICE interventional procedure guidance35 373) contains the following recommendations.
- Evidence relating to SDR for spasticity in cerebral palsy highlights a risk of serious but
 well-recognised complications. The evidence on efficacy is adequate and the procedure
 may be used provided that normal arrangements for clinical governance and audit are in
 place.
- As part of the consent process parents and carers should be informed that the procedure is irreversible, and that SDR sometimes leads to deterioration in walking ability or bladder function, or later complications including spinal deformity. Parents and

carers should understand that prolonged physiotherapy and aftercare will be required and that additional surgery may be required.

- Selection of patients and their treatment should be carried out by a multidisciplinary team with specialist training and expertise in the care of spasticity in patients with cerebral palsy, and with access to the full range of treatment options. The team would normally include a physiotherapist, a paediatrician and surgeons, all with specific training and expertise.
- NICE encourages further research into SDR, especially in relation to long-term outcomes. Outcome measures should include the incidence of neurological impairment and spinal deformity, the need for additional operations, and assessment of disability, social inclusion, and quality of life.

Although 'Selective dorsal rhizotomy for spasticity in cerebral palsy' (NICE interventional procedure guidance (IPG) 373) makes recommendations on the safety and efficacy of SDR, it does not address whether or not the NHS in England and Wales should fund SDR. The remit of this clinical guideline includes evaluation of the clinical and cost effectiveness of SDR. The GDG prioritised consideration of SDR combined with physical therapy as compared to physical therapy and no SDR (with or without other interventions) in children and young people with spasticity, with or without other motor disorders (dystonia, muscle weakness or choreoathetosis) caused by non-progressive brain disorders.

19 The search strategy used for this question was the same as the search strategy used during 20 development of 'Selective dorsal rhizotomy for spasticity in cerebral palsy' (NICE IPG 373). Thus, the 21 GDG considered all the evidence identified for inclusion in 'Selective dorsal rhizotomy for spasticity in 22 cerebral palsy' (NICE IPG 373), and evidence published more recently. In accordance with the NICE 23 guideline development process, a specific review protocol was developed for the guideline. The 24 guideline review protocol identified specific populations, interventions (combinations of SDR with 25 other interventions such as physiotherapy), comparators, and outcomes on which to base decisions 26 regarding clinical and cost effectiveness of SDR. The guideline review process differed further from 27 the process used in 'Selective dorsal rhizotomy for spasticity in cerebral palsy' (NICE IPG 373) in that 28 the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach was 29 used to grade the guality of the evidence included in the guideline review, and the GDG's 30 interpretation of the evidence and formulation of recommendations was explicitly linked to the graded 31 evidence. In particular, the guideline review focused on the best guality evidence, and so it included 32 only prospective comparative studies and case series involving more than 200 children or young 33 people. 'Selective dorsal rhizotomy for spasticity in cerebral palsy' (NICE IPG 373), in contrast, 34 included evidence from small noncomparative studies and retrospective comparative studies. 35 Compared to 'Selective dorsal rhizotomy for spasticity in cerebral palsy' (NICE IPG 373), the GDG 36 prioritised additional outcomes for consideration, including active range of motion. The GDG also 37 considered outcomes measured at different follow-up points (for example, 6 months, 9 months, 12 38 months and 24 months) separately, rather than pooled outcomes over all time points. This approach 39 has the potential to distinguish between temporary and sustained (or immediate and delayed) 40 outcomes.

41 **Review question**

1

2

3

4

5

6

7

42 What is the clinical effectiveness of SDR in children and young people with spasticity caused by a 43 non-progressive brain disorder?

44 **Description of included studies**

45 Three parallel randomised controlled trials (RCTs; McLaughlin 1998; Steinbok 1997; Wright 1998),

46 two non-randomised prospective comparative studies (Buckon 2004b; Engsberg 2006) and two case 47 series were identified for inclusion (Abbott 1992; Kim 2001).

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 168 of 219

1 The three RCTs compared SDR plus physical therapy to therapy alone (McLaughlin 1998; Steinbok 2 1997; Wright 1998). A total of 90 children and young people, all of whom had diplegia, were included in the three trials. One RCT included children aged 3-7 years (Steinbok 1997), another included 3 4 children and young people aged 3-18 years (McLaughlin 1998), and the remaining study did not 5 specify the age range of the participants (although the mean age was 4 years 10 months; Wright 6 1998). One non-randomised prospective study also compared SDR plus physical therapy to therapy 7 alone (Engsberg 2006). Outcomes were presented for 84% (65/77) of the children with spastic 8 diplegic cerebral palsy (GMFCS levels 1 to 3) and 40 children with no disability included in the study, 9 The mean ages (SDs) of the children were 9.0 (5.3) years in the SDR plus physical therapy group and 10 9.7(4.5) years in the therapy alone group.

Two of the RCTs reported that all SDR operations were performed by the same surgeon (McLaughlin 12 1998; Wright 1998). Two trials conducted rhizotomies from L2 to S2 (Steinbok 1997; Wright 1998), 13 and the other trial conducted rhizotomies from L1 to S2 (McLaughlin 1998). The percentages of dorsal 14 roots transected were 58% for L2 to S1 and 40% for S2 (Steinbok 1997), 50% on average of each 15 dorsal root (Wright 1998), and 26% (range 14% to 50%) from L1 to S2 (McLaughlin 1998). The non-16 randomised prospective study conducted rhizotomies from L1 to S2 transecting approximately 65% of 17 rootlets (Engsberg 2006).

18 Similar quantities and types of physiotherapy were received by both groups in one RCT (Steinbok 19 1997). The techniques used included passive movements, strengthening and neurodevelopmental 20 treatment (NDT). Weight-bearing exercises were emphasised in both groups. Measures were taken to 21 maintain blinding of physiotherapists. In another RCT (Wright 1998) all children received similar types 22 of therapy, but those who underwent SDR plus physical therapy had higher treatment intensity during 23 their 6-week postoperative stay to improve strength in the trunk and lower extremities. The physical 24 therapy techniques used in both groups in this RCT included range of movement (ROM), 25 strengthening through functional activities, facilitation of normal movement patterns and postural 26 control, standing and gait-related activities, and work on fine motor skills and functional abilities. In the 27 third RCT (McLaughlin 1998), the techniques used were described in less detail, but they were 28 reported to be tailored to the individual child's needs. The emphasis and techniques used were 29 reported to be appropriate for children undergoing SDR, and 20 different categories of treatment were 30 documented by the treating community therapists. In the non-randomised prospective study, the SDR 31 plus physical therapy group received therapy sessions in their home towns four times per week for 8 32 months after discharge. Treatments were then reduced to three times per week for an additional 12 33 months. The therapy alone group received the same number of therapy sessions. Treatment in both 34 groups concentrated on the trunk and lower extremities, on strengthening, and on functional activities. 35 Billing data were used to confirm that both groups received similar amounts of therapy (Engsberg 36 2006).

37 Caregivers were masked to treatment allocation in two RCTs (Steinbok 1997; Wright 1998), but not in 38 the other (McLaughlin 1998). Outcome assessors were masked to treatment allocation in all three 39 studies. One RCT (Wright 1998) reported that assessors were able to distinguish between treatment 40 groups, but they were not involved in providing care for the children. Children in both groups in the 41 non-randomised prospective study were similar at baseline for age, sex, weight, GMFCS level and 42 gait status, and all were judged to be suitable candidates for SDR. Details of the recruitment process, 43 inclusion and exclusion criteria and baseline clinical assessments were reported in the article 44 (Engsberg 2006).

45 Outcomes were reported at 6 months in one RCT, 9 months in one RCT, 12 months in two RCTs, and 46 24 months in one RCT. All three RCTs used the modified Ashworth scale to assess tone and reported 47 the Gross Motor Function Measure (GMFM). One RCT reported ROM, and one reported walking. No 48 evidence was identified for goal attainment scale (GAS), PEDI (pediatric evaluation of disability 49 inventory; a physical but not global scale), acceptability and tolerability (as reported by the child or 50 young person or their parent or carer) or the Child Health Questionnaire (CHQ) for quality of life. None 51 of the RCTs reported mortality rates. In one RCT (McLaughlin 1998), back and lower extremity pain 52 and urinary problems were reported via an adverse effects questionnaire administered by the 53 investigators every 3 months over the 24-month follow-up period. Outcomes were reported at 8 54 months and 20 months in the non-randomised prospective study (Engsberg 2006).

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 169 of 219

1 Another non-randomised prospective study (Buckon 2004b) compared SDR plus physical therapy to 2 orthopaedic (soft tissue) surgery plus physical therapy. Twenty-five children with spastic diplegia (age 3 range 4-10 years; mean age 71.3 months) and their parents were invited to choose between SDR and 4 soft tissue surgery after receiving information about both procedures. The orthopaedic surgeon and 5 6 neurosurgeon who performed the procedures were reported to be in equipoise in relation to their judgements about the effectiveness of the treatments. The selection criteria for SDR were: age 4-10 7 years; predominantly spastic disorder; good trunk control; lower extremity contractures < 10 degrees; 8 able to isolate lower-extremity movements; follow-up physical therapy available (3 or 4 times per 9 week); history of prematurity; no significant ataxia, athetosis or scoliosis; good lower-extremity 10 antigravity strength; ambulatory with or without assistive devices; and cooperative. The inclusion 11 criteria for soft tissue surgery were kinematic dysfunction and evidence of dynamic limitation of motion 12 and spasticity on static examination that would benefit from muscle and tendon lengthening, release 13 or transfer. Parents were given a booklet, counselling from both surgeons, the opportunity to talk to 14 therapists and other physicians, and were assisted in finding published articles to inform their 15 decisions. Parents returned 1 month after the initial assessment to have any remaining questions 16 answered, and to inform the clinical staff of the family's decision.

17 Eighteen families chose SDR, and the other seven chose soft tissue surgery. The children in the SDR 18 group had a mean age of 71.3 months; 17 were community ambulators (11 without and six with 19 assistive devices), and one was a household ambulator (GMFCS level 1, n = 3; level 2, n = 8; level 3, 20 n = 7). The children in the soft tissue surgery group had a mean age of 78.6 months; six were 21 community ambulators (three without and three with assistive devices), and one was a household 22 ambulator (GMFCS level 1, n = 2; level 2, n = 2; level 3, n = 4). The majority of orthopaedic 23 procedures performed were releases and lengthenings, although two children also had osteotomies. 24 Patients received post-surgical therapy that was standard for intervention that they received. 25 Functional outcomes were assessed using the Gross Motor Performance Measure (GMPM), GMFM 26 and PEDI at baseline and at 6 months, 12 months and 24 months after surgery.

27 The case series (Abbott 1992; Kim 2001) reported non-comparative evidence on post-operative and 28 long-term urinary problems, post-operative ileus, scoliosis and hip subluxation in children and young 29 people who underwent SDR. One case series included children and young people aged 2-13 years 30 (Kim 2001), and the other did report not the age range of the participants (Abbott 1992).

Evidence profiles 31

Selective dorsal rhizotomy plus physical therapy versus physical 32 therapy alone 33

34 Reduction of spasticity and optimisation of movement

35 The three RCTs identified for inclusion used the modified Ashworth scale to assess tone at the elbow, 36 hip, knee, ankle, and overall tone. Outcomes were assessed at 6 and 12 months (Wright 1998), at 9 37 months (Steinbok 1997), and at 12 and 24 months (McLaughlin 1998). ROM was measured at 9 38 months (Steinbok 1997), while active and passive ROM were measured at 6 months and 12 months 39 (Wright 1998) and active ROM was measured at 8 months and 20 months in a non-randomised

40	prospective study (Engsberg 2006).
----	------------------------------------

Number of	Number of patients		Effect		Quality			
studies	Selective dorsal rhizotomy (SDR) and Therapy	Therapy only	Relative (95% Cl)	Absolute (95% CI)				
Mean change ir	Mean change in active range of motion trunk rotation at 8m (Better indicated by higher values)							
1 study (Engsberg 2006)	29	36	-	MD = 4 lower*	VERY LOW			

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 170 of 219

1 study (Engsberg 2006) 29 36 - MD = 3 lower* VERY LOW Mean change in active range of motion pelvis rotation at 8m (Better indicated by higher values) 1 study (Engsberg 2006) 29 36 - MD = 1 lower* VERY LOW Mean change in active range of motion pelvis rotation at 20m (Better indicated by higher values) 1 study (Engsberg 2006) 29 36 - MD = 2 lower* VERY LOW Mean change in active range of motion pelvis rotation at 20m (Better indicated by higher values) 1 study (Engsberg 2006) 29 36 - MD = 2 lower* VERY LOW Mean change in active range of motion pelvic tilt at 8m (Better indicated by higher values) 1 study (Engsberg 2006) 29 36 - MD = 2 lower* VERY LOW Mean change in active range of motion pelvic tilt at 20m (Better indicated by higher values) 1 study (Engsberg 2006) 1 1.1 lower (1.54 to 0.66 (lower)* VERY LOW 1 study (Steinbok 1997) 1 12 - MD = 1.1 lower* MODERATE (1.54 to 2.62 (lower)* MODERATE (1.54 to 2.62 (lower)* MODERATE (1.54 to 2.62 (lower)* MODERATE (1.54 to 2.62 (lower)* MD = 3 higher* VERY LOW Mean chang	Mean change in	active range of m	otion trunk rotatio	on at 20m (Better ir	ndicated by higher	values)				
1 study (Engsberg 2006) 29 36 - MD = 1 lower* VERY LOW Mean change in active range of motion pelvis rotation at 20m (Better indicated by higher values) MD = 2 lower* VERY LOW Mean change in active range of motion pelvic tilt at 8m (Better indicated by higher values) MD = 2 lower* VERY LOW Mean change in active range of motion pelvic tilt at 8m (Better indicated by higher values) MD = 2 lower* VERY LOW 1 study (Engsberg 2006) 29 36 - MD = 2 lower* VERY LOW 1 study (Engsberg 2006) 29 36 - MD = 2 lower* VERY LOW 1 study (Engsberg 2006) 29 36 - MD = 2 lower* VERY LOW 1 study (Engsberg 29 36 - MD = 2 lower* VERY LOW 1 study (Engsberg 29 36 - MD = 1.1 lower (1.54 to 0.66 lower)* MODERATE 1 study (Wright 12 12 12 - MD = 1.9.6 lower* MODERATE 1 study (Steinbok 29 36 - MD = 3 higher* VERY LOW 1 study (Steinbok <th>(Engsberg</th> <th>29</th> <th>36</th> <th>-</th> <th>MD = 3 lower*</th> <th>VERY LOW</th>	(Engsberg	29	36	-	MD = 3 lower*	VERY LOW				
(Engsberg 2006)active range of motion pelvis rotation at 20m (Better indicated by higher values)1study (Engsberg 2006)2936-MD = 2 lower*VERY LOWMean change in active range of motion pelvic tilt at 3m (Better indicated by higher values)MD = 2 lower*VERY LOW1study (Engsberg 2006)2936-MD = 2 lower*VERY LOW1study (Engsberg 2006)1414-MD = 1 lower*VERY LOW1study (Steinbok1414-MD = 1 lower*MODERATE (I.54 to 0.66 lower)*1study (Wright 1997)1212-MD = 1 lower*VERY LOW1study (Steinbok2936-MD = 3 higher*VERY LOW1study (Steinbok1414-MD = 3 higher*VERY LOW1study (Steinbok1414-MD = 3 higher*VERY LOW1study (Steinbok1414-MD = 3 higher*VERY LOW1study (Steinbok1414-MD = 3.7 lower*VERY LOW </td <td>Mean change in</td> <td>active range of m</td> <td>otion pelvis rotati</td> <td>on at 8m (Better in</td> <td>dicated by higher</td> <td>values)</td>	Mean change in	active range of m	otion pelvis rotati	on at 8m (Better in	dicated by higher	values)				
1 study (Engsberg 2006) 29 36 - MD = 2 lower* VERY LOW Mean change in active range of motion pelvic tilt at 8m (Better indicated by higher values) 29 36 - MD = 2 lower* VERY LOW Mean change in active range of motion pelvic tilt at 20m (Better indicated by higher values) VERY LOW VERY LOW 1 study (Engsberg 2006) 29 36 - MD = 2 lower* VERY LOW 1 study (Engsberg 2006) 29 36 - MD = 2 lower* VERY LOW 1 study (Engsberg 2006) 29 36 - MD = 2 lower* VERY LOW 1 study (Engsberg 2006) 29 36 - MD = 1.1 lower (1.54 to 0.66 lower)* MODERATE 1 study (Steinbok 1997) 14 14 - MD = 9.1 micrated by higher values) 1 study (Engsberg 2006) 29 36 - MD = 3 higher* VERY LOW Mean change in active range of motion hip flexion/extension at 8m (Better indicated by higher values) MD = 3 higher* VERY LOW (Steinbok 1997) 14 14 - MD = 3 higher* VERY LOW <	(Engsberg	29	36	-	MD = 1 lower*	VERY LOW				
(Engsberg 2006)(Engsberg 2006)(Engsberg 2006)(VEry LOW)1study (Engsberg 2006)2936-MD = 2 lower*VERY LOW1study (Engsberg 2006)2936-MD = 2 lower*VERY LOW1study (Engsberg 2006)2936-MD = 2 lower*VERY LOW1study (Engsberg 2006)2936-MD = 2 lower*VERY LOW1study (Engsberg 2006)2936-MD = 100000000000000000000000000000000000	Mean change in	Mean change in active range of motion pelvis rotation at 20m (Better indicated by higher values)								
1 study (Engsberg 2006) 29 36 - MD = 2 lower* VERY LOW Mean change in active range of motion pelvic tilt at 20m (Better indicated by higher values) 1 study (Engsberg 2006) 29 36 - MD = 2 lower* VERY LOW Mean change modified Ashworth hip adductors at 9m (Better indicated by lower values) MD = 2 lower* VERY LOW 1 study (Steinbok 1997) 14 14 - MD 1.1 lower (1.54 to 0.66 lower)* MODERATE 1 study (Steinbok 1997) 12 12 - MD = 19.6 lower* MODERATE 1 study (Steinbok 1997) 12 12 - MD = 19.6 lower* MODERATE 1 study (Engsberg 2006) 29 36 - MD = 3 higher* VERY LOW 1 study (Engsberg 2006) 29 36 - MD = 3 higher* VERY LOW 1 study (Steinbok 14 14 - MD = 3 higher* VERY LOW 1 study (Steinbok 14 14 - MD = 3 higher HIGH 1 study (Steinbok 14 12 - MD = 3.7	(Engsberg	29	36	-	MD = 2 lower*	VERY LOW				
(Engsberg 2006)Image: Constraint of the set of t	Mean change in	active range of m	otion pelvic tilt at	8m (Better indicat	ed by higher value	s)				
1 study (Engsberg 2006) 29 36 - MD = 2 lower* VERY LOW Mean change modified Ashworth hip adductors at 9m (Better indicated by lower values) 1 study (Steinbok 1997) 14 14 - MD 1.1 lower MODERATE (1.54 to 0.66 lower)* MODERATE 1 study (Steinbok 1997) 14 14 - MD = 19.6 lower)* MODERATE 1 study (Wright 1998) 12 12 - MD = 19.6 lower* MODERATE 1 study (Wright 1998) 29 36 - MD = 19.6 lower* MODERATE 1 study (Engsberg 2006) 29 36 - MD = 3 higher* VERY LOW 1 study (Engsberg 2006) 29 36 - MD = 3 higher values) HIGH 1 study (Steinbok 1997) 14 14 - MD 19.1 higher (11.95 to 26.25 higher)* HIGH 1 study (Wright 1998) 12 12 - MD = 3.7 lower* MODERATE 1 study (Wright 1998) 12 12 - MD = 3.7 lower* MODERATE 1 study (Wright 1998) 12 12 - MD = 3.7 lower* MODERATE <tr< td=""><td>(Engsberg</td><td>29</td><td>36</td><td>-</td><td>MD = 2 lower*</td><td>VERY LOW</td></tr<>	(Engsberg	29	36	-	MD = 2 lower*	VERY LOW				
(Engsberg 2006)Image: Constraint of the sector of the sec	Mean change in	active range of m	otion pelvic tilt at	20m (Better indica	ted by higher valu	es)				
1 study (Steinbok 1997) 14 14 - MD 1.1 lower (1.54 to 0.66 lower)* MODERATE (1.54 to 0.66 lower)* Mean change in active range of motion (ROM) hip extension at 6m (Better indicated by higher values) 1 12 12 - MD = 19.6 lower* MODERATE 1 study (Wright 1998) 12 12 - MD = 19.6 lower* MODERATE Mean change in active range of motion hip flexion/extension at 8m (Better indicated by higher values) NODERATE 1 study (Engsberg 2006) 29 36 - MD = 3 higher* VERY LOW 1 study (Engsberg 2006) 14 14 - MD 19.1 higher (11.95 to 26.25 higher)* HIGH 1 study (Steinbok 1997) 14 14 - MD = 3.7 lower* MODERATE 1 study (Wright 1998) 12 12 - MD = 3.7 lower* MODERATE 1 study (Wright 1998) 12 12 - MD = 3 higher* VERY LOW 1 study (Engsberg 2006) 29 36 - MD = 3.7 lower* MODERATE 1 study (Engsberg 2006) 12 12 12 - MD = 3 higher* VERY LOW 1 study (Engsbe	(Engsberg	29	36	-	MD = 2 lower*	VERY LOW				
(Steinbok 1997)(1.54 to 0.66 lower)*(1.54 to 0.66 lower)*(1.54 to 0.66 lower)*Mean change in active range of motion (ROM) hip extension at 6m (Better indicated by higher values)MD = 19.6 lower*MODERATE lower*Mean change in active range of motion hip flexion/extension at 8m (Better indicated by higher values)MD = 19.6 lower*MODERATE lower*Mean change in active range of motion hip flexion/extension at 8m (Better indicated by higher values)MD = 3 higher*VERY LOW1 study (Engsberg 2006)2936-MD 19.1 higher (11.95 to 26.25 higher)*HIGH1 study (Steinbok 1997)1414-MD 19.1 higher (11.95 to 26.25 higher)*HIGH1 study (Wright 1998)1212-MD = 3.7 lower* MODERATEMODERATE1 study (Wright 1998)2936-MD = 3.7 lower* MD = 3.7 lower*MODERATE1 study (Engsberg 2006)2936-MD = 3 higher* VERY LOWVERY LOWMean change in active range of motion hip flexion/extension at 20m (Better indicated by higher values)MODERATE1 study (Engsberg 2006)2936-MD = 3 higher*VERY LOWMean change in passive ROM hip extension at 6m (Better indicated by higher values)MODERATEMD = 3 higher*VERY LOW	Mean change m	odified Ashworth	hip adductors at 9	m (Better indicate	d by lower values)	1				
1 study (Wright 1998)121212MD = 19.6 lower*MODERATE lower*Mean change in active range of motion hip flexion/extension at 8m (Better indicated by higher values)1 study (Engsberg 2006)2936-MD = 3 higher*VERY LOWMean change in range of motion hip extension at 9m (Better indicated by higher values)VERY LOW1 study (Steinbok 1997)1414-MD 19.1 higher (11.95 to 26.25 higher)*HIGH1 study (Wright 1998)1212-MD = 3.7 lower*MODERATE1 study (Wright 1998)1212-MD = 3.7 lower*MODERATE1 study (Wright (Engsberg 2006)2936-MD = 3 higher*VERY LOWMean change in active range of motion hip flexion/extension at 20m (Better indicated by higher values)MODERATE1 study (Wright (Engsberg 2006)2936-MD = 3 higher*VERY LOW1 study (Engsberg 2006)2936-MD = 3 higher*VERY LOWMean change in passive ROM hip extension at 6m (Better indicated by higher values)VERY LOWVERY LOW	(Steinbok	14	14	-	(1.54 to 0.66	MODERATE				
1998) Iower* Mean change in active range of motion hip flexion/extension at 8m (Better indicated by higher values) 1 study (Engsberg 2006) 2006) 36 - Mean change in range of motion hip extension at 9m (Better indicated by higher values) VERY LOW Mean change in range of motion hip extension at 9m (Better indicated by higher values) HIGH 1 study (Steinbok 1997) 14 - MD 19.1 higher (11.95 to 26.25 higher)* HIGH 1 study (Wright 1997) 12 12 - MD = 3.7 lower* MODERATE 1 study (Wright 1998) 12 12 - MD = 3.7 lower* MODERATE 1 study (Wright 1998) 29 36 - MD = 3 higher* VERY LOW 1 study (Wright (Engsberg 2006) 29 36 - MD = 3 higher* VERY LOW 1 study (Engsberg 2006) 36 - MD = 3 higher* VERY LOW Mean change in passive ROM hip extension at 6m (Better indicated by higher values) - MD = 3 higher* VERY LOW	Mean change in	active range of m	otion (ROM) hip e	xtension at 6m (Be	etter indicated by h	igher values)				
1study (Engsberg 2006)2936-MD = 3 higher*VERY LOWMean change in range of motion hip extension at 9m (Better indicated by higher values)MD = 3 higher*VERY LOW1study (Steinbok 1997)1414-MD 19.1 higher (11.95 to 26.25 higher)*HIGHMean change in active ROM hip extension at 12m (Better indicated by higher values)HIGHHIGH1 study (Wright 1998)1212-MD = 3.7 lower*MODERATEMean change in active range of motion hip flexion/extension at 20m (Better indicated by higher values)MD = 3 higher*VERY LOW1 study (Engsberg 2006)2936-MD = 3 higher*VERY LOWMean change in passive ROM hip extension at 6m (Better indicated by higher values)VERY LOW		12	12	-		MODERATE				
(Engsberg 2006)Image: Image:	Mean change in	active range of m	otion hip flexion/e	xtension at 8m (Be	etter indicated by	higher values)				
1 study (Steinbok 1997) 14 14 - MD 19.1 higher (11.95 to 26.25 higher)* HIGH Mean change in active ROM hip extension at 12m (Better indicated by higher values) MD = 3.7 lower* MODERATE 1 study (Wright 1998) 12 12 - MD = 3.7 lower* MODERATE Mean change in active range of motion hip flexion/extension at 20m (Better indicated by higher values) MODERATE MD = 3 higher* VERY LOW 1 study (Engsberg 2006) 29 36 - MD = 3 higher* VERY LOW Mean change in passive ROM hip extension at 6m (Better indicated by higher values) MD = 3 higher values) MD = 3 higher VERY LOW	(Engsberg	29	36	-	MD = 3 higher*	VERY LOW				
(Steinbok 1997)(11.95 to 26.25 higher)*Mean change in active ROM hip extension at 12m (Better indicated by higher values)1 study (Wright 1998)1212-MD = 3.7 lower*MODERATEMean change in active range of motion hip flexion/extension at 20m (Better indicated by higher values)1 study (Engsberg 2006)2936-MD = 3 higher*VERY LOWMean change in passive ROM hip extension at 6m (Better indicated by higher values)	Mean change in	range of motion h	nip extension at 9r	n (Better indicated	by higher values)					
1 study (Wright 1998) 12 12 - MD = 3.7 lower* MODERATE Mean change in active range of motion hip flexion/extension at 20m (Better indicated by higher values) 1 study (Engsberg 2006) 29 36 - MD = 3 higher* VERY LOW Mean change in passive ROM hip extension at 6m (Better indicated by higher values) VERY LOW	(Steinbok	14	14	-	(11.95 to 26.25	HIGH				
1998) Mean change in active range of motion hip flexion/extension at 20m (Better indicated by higher values) 1 study (Engsberg 2006) 2006) 36 Mean change in passive ROM hip extension at 6m (Better indicated by higher values)	Mean change in	active ROM hip e	xtension at 12m (E	Better indicated by	higher values)					
1 study (Engsberg 2006) 29 36 - MD = 3 higher* VERY LOW Mean change in passive ROM hip extension at 6m (Better indicated by higher values)		12	12	-	MD = 3.7 lower*	MODERATE				
(Engsberg 2006) Mean change in passive ROM hip extension at 6m (Better indicated by higher values)	Mean change in	active range of m	otion hip flexion/e	xtension at 20m (E	Better indicated by	higher values)				
	(Engsberg	29	36	-	MD = 3 higher*	VERY LOW				
1 study (Wright 12 12 - MD = 5.5 MODERATE	Mean change in passive ROM hip extension at 6m (Better indicated by higher values)									
	1 study (Wright	12	12	-	MD = 5.5	MODERATE				

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 171 of 219

1998)				higher*					
Mean change in	n passive ROM hip	extension at 12m	(Better indicated b	by higher values)					
1 study (Wright 1998)	12	12	-	MD = 0*	MODERATE				
Mean change modified Ashworth score at knee at 6m (Better indicated by lower values)									
1 study (Wright 1998)	12	12	-	MD = 1 lower*	MODERATE				
Mean change m	Mean change modified Ashworth at knee at 9m (Better indicated by lower values)								
1 study (Steinbok 1997)	14	14	-	MD 1 lower (1.45 to 0.55 lower)*	MODERATE				
Mean modified	Ashworth score at	knee at 12m (Bet	ter indicated by lov	wer values)	<u> </u>				
1 study (Wright 1998)	12	12	-	MD = 1 lower*	MODERATE				
Mean change in	active ROM knee	extension at 6m (Better indicated by	/ higher values)	<u> </u>				
1 study (Wright 1998)	12	12	-	MD = 23.6 higher*	MODERATE				
Mean change in	active range of m	otion knee flexion	/extension at 8m (Better indicated by	y higher values)				
1 study (Engsberg 2006)	29	36	-	MD = 4 higher*	VERY LOW				
Mean change ra	ange of motion at I	knee at 9m (Better	indicated by high	er values)					
1 study (Steinbok 1997)	14	14	-	MD 17.7 higher (7.73 to 27.67 higher)*	HIGH				
Mean change in	active ROM knee	extension at 12m	(Better indicated b	by higher values)	I				
1 study (Wright 1998)	Mean change =19.5 n=12	Mean change = -7.5 n=12	-	MD = 27 higher*	MODERATE				
Mean change ir	active range of m		/extension at 20m	(Better indicated I	ov higher				
values)				(· · · · · · · · · · · · · · · · · · ·				
1 study (Engsberg 2006)	29	36	-	MD = 4 higher*	VERY LOW				
Mean change ir values)	n active range of m	otion knee flexion	at initial contact a	at 8m (Better indica	ated by higher				
1 study (Engsberg 2006)	29	36	-	MD = 3 lower*	VERY LOW				
Mean change ir values)	active range of m	otion knee flexion	at initial contact a	at 20m (Better indi	cated by higher				
1 study (Engsberg 2006)	29	36	-	MD = 5 lower*	VERY LOW				

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 172 of 219

-		e extension at 6m						
1 study (Wright 1998)	12	12	-	MD = 7.5 lower*	MODERATE			
Mean change in	passive ROM kno	e extension at 12	n (Better indicated	l by higher values)				
1 study (Wright 1998)	12	12	-	MD = 3 higher*	MODERATE			
Mean change in passive ROM popliteal angle at 6 m (Better indicated by higher values)								
1 study (Wright 1998)	12	12	-	MD = 8.4 lower*	MODERATE			
Mean change in	passive ROM pop	oliteal angle at 12n	n (Better indicated	by higher values)				
1 study (Wright 1998)	12	12	-	MD = 4.7 lower*	MODERATE			
Mean modified	Ashworth score a	t ankle at 6m (Bett	er indicated by low	ver values)				
1 study (Wright 1998)	12	12	-	MD = 1 lower*	MODERATE			
Mean change m	odified Ashworth	at ankle at 9m (Be	tter indicated by lo	ower values)				
1 study (Steinbok 1997)	14	14	-	MD 1.5 lower (2.02 to 0.98 lower)*	HIGH			
Mean change m	odified Ashworth	score at ankle at 1	2m (Better indicat	ed by lower values	5)			
1 study (Wright 1998)	12	12	-	MD = 0.5 lower*	MODERATE			
Mean change in	active ROM at an	kle dorsiflexion 6r	n (Better indicated	by higher values)				
1 study (Wright 1998)	12	12	-	MD = 16.7 higher*	MODERATE			
Mean change in higher values)	active range of m	otion ankle dorsif	lexion/plantarflexio	on at 8m (Better in	dicated by			
1 study (Engsberg 2006)	29	36	-	MD = 1 higher*	VERY LOW			
Mean change ra	nge of motion at	ankle at 9m (Better	indicated by high	er values)				
1 study (Steinbok 1997)	14	14	-	MD 0.5 higher (7.51 lower to 8.51 higher)*	MODERATE			
Mean change in active ROM ankle dorsiflexion 12m (Better indicated by higher values)								
1 study (Wright 1998)	12	12	-	MD = 27 higher*	MODERATE			
Mean change in active range of motion ankle dorsiflexion/plantarflexion at 20m (Better indicated by higher values)								
1 study (Engsberg 2006)	29	36	-	MD = 1 lower*	VERY LOW			

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 173 of 219

1 study (Engsberg 2006)	29	36	-	MD = 1 higher*	VERY LOW			
Mean change in active range of motion ankle dorsiflexion/plantarflexion at initial contact at 20m (Better indicated by higher values)								
1 study (Engsberg 2006)	29	36	-	MD = 0*	VERY LOW			
Mean change in	extension foot pr	ogression angle a	t 8m (Better indica	ted by higher valu	es)			
1 study (Engsberg 2006)	29	36	-	MD = 3 lower*	VERY LOW			
Mean change in	extension foot pr	ogression angle a	t 20m (Better indic	ated by higher val	ues)			
1 study (Engsberg 2006)	29	36	-	MD = 6 lower*	VERY LOW			
Mean change in	passive ROM and	de dorsiflexion (KI	E) at 6m (Better ind	dicated by higher v	values)			
1 study (Wright 1998)	12	12	-	MD = 9.7 higher*	MODERATE			
Mean change in	passive ROM and	de dorsiflexion (KI	E) at 12m (Better in	ndicated by higher	values)			
1 study (Wright 1998)	12	12	-	MD = 11.2 higher*	MODERATE			
Mean change to	otal modified Ashv	orth score at 6m (read from graph) (Better indicated b	y lower values)			
1 study (McLaughlin 1998)	21	17	-	MD = 0.85 lower*	MODERATE			
Mean change to	Mean change total modified Ashworth score at 12m (Better indicated by lower values)							
1 study (McLaughlin 1998)	21	17	-	MD = 0.55 lower*	LOW			
Mean change to	otal modified Ashv	orth score at 24m	(Better indicated	by lower values)				
1 study (McLaughlin 1998)	Mean change = -0.88 n=21 ⁸⁰	Mean change = 0 n=17 ⁸¹	-	MD = 0.88 lower*	MODERATE			

1 * Calculated by the NCC-WCH

2 **Optimisation of function**

The three RCTs (McLaughlin 1998; Steinbok 1997; Wright 1998) reported GMFM outcomes for each dimension and total scores. Outcomes were assessed at 6 months, 9 months, 12 months or 24 months, depending on the study. The non-randomised prospective study reported GMFM percentage scores at 8 months and 20 months. A timed walk and gait analysis was conducted at 12 months in one RCT (Wright 1998) and at 8 months and 20 months in the non-randomised prospective study (Engsberg 2006).

Number of	Number of patients		Effect		Quality
studies	Selective dorsal	Therapy only - function	Relative	Absolute	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 174 of 219

	rhizotomy (SDR) and Therapy		(95% CI)	(95% CI)			
Mean change Gross motor function measure (GMFM) 88 score lying and rolling at 6m (Better indicated by higher values)							
1 study (Wright 1998)	12	12	-	MD = 3.1 lower*	MODERATE		
Mean change G	MFM score lying a	nd rolling at 9m (E	Better indicated by	higher values)			
1 study (Steinbok 1997)	14	14	-	MD = -0.2*	MODERATE		
Mean change G	MFM 88 score lyin	g and rolling at 12	m (Better indicate	d by higher values	;)		
2 studies (McLaughlin 1998; Wright 1998)	21	17	-	MD 0.84 lower (3.14 lower to 1.46 higher)*	LOW		
Mean change G	MFM 88 score lyin	g and rolling at 24	m (Better indicate	d by higher values	;)		
1 study (McLaughlin 1998)	21	17	-	MD 0.1 lower (2.25 lower to 2.05 higher)*	MODERATE		
Mean change G	MFM 88 score sitt	ing at 6m (Better i	ndicated by higher	values)			
1 study (Wright 1998)	12	12	-	MD = 11.7 higher*	MODERATE		
Mean change G	MFM score sitting	at 9m (Better indi	cated by higher va	lues)			
1 study (Steinbok 1997)	14	14	-	MD = 15 higher*	MODERATE		
Mean change G	MFM 88 score sitt	ing at 12m (Better	indicated by highe	er values)			
2 studies (McLaughlin 1998; Wright 1998)	21	17	-	MD 1.2 higher (5.58 lower to 7.98 higher)*	LOW		
Mean change G	MFM 88 score sitt	ing at 24m (Better	indicated by highe	er values)			
1 study (McLaughlin 1998)	21	17	-	MD 1.6 lower (8.63 lower to 5.43 higher)*	MODERATE		
Mean change GMFM 88 score crawl/kneel at 6m (Better indicated by higher values)							
1 study (Wright 1998)	12	12	-	MD = 0.3 higher*	MODERATE		
Mean change GMFM score crawl/kneel at 9m (Better indicated by higher values)							
1 study (Steinbok 1997)	14	14	-	MD = 7.7 higher*	MODERATE		
Mean change G	MFM 88 score cra	wl/kneel at 12m (B	etter indicated by	higher values)			
2 studies	21	17	-	MD 0.1 lower	LOW		

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 175 of 219

	[
(McLaughlin 1998; Wright 1998)				(6.61 lower to 6.41 higher)*	
Mean change G	MFM 88 score cra	wl/kneel at 24m (B	etter indicated by	higher values)	
1 study (McLaughlin 1998)	21	17	-	MD 0.3 lower (6.57 lower to 5.97 higher)*	MODERATE
Mean change G	MFM 88 score sta	nding at 6m (Bette	r indicated by high	ner values)	
1 study (Wright 1998)	12	12	-	MD = 4.2 higher*	HIGH
Mean change G	MFM score standi	ng at 9m (Better ir	dicated by higher	values)	
1 study (Steinbok 1997)	14	14	-	MD = 2.3 higher*	MODERATE
Mean change G	MFM 88 score sta	nding at 12m (Bett	er indicated by hig	iher values)	
2 studies (McLaughlin 1998; Wright 1998)	21	17	-	MD 2.6 higher (8.02 lower to 13.22 higher)*	LOW
Mean change G	MFM 88 score sta	nding at 24m (Bett	er indicated by hig	her values)	
1 study (McLaughlin 1998)	21	17	-	MD 3.4 lower (15.14 lower to 8.34 higher)*	MODERATE
Mean change G	MFM 88 score wal	k/run/jump at 6m (Better indicated by	y higher values)	
1 study (Wright 1998)	12	12	-	MD = 2.9 higher*	MODERATE
Mean change G	MFM score walk/r	un/jump at 9m (Be	tter indicated by h	igher values)	
1 study (Steinbok 1997)	14	14	-	MD = 6.0 higher*	MODERATE
Mean change G	MFM 88 score wal	k/run/jump at 12m	(Better indicated I	by higher values)	
2 studies (McLaughlin 1998; Wright 1998)	21	17	-	MD 0.5 higher (5.74 lower to 6.74 higher)*	LOW
Mean change G	MFM 88 score wal	k/run/jump at 24m	(Better indicated I	by higher values)	
1 study (McLaughlin 1998)	21	17	-	MD 1.6 higher (7.92 lower to 11.12 higher)*	MODERATE
Mean change to	otal GMFM 88 scor	e at 6m (Better inc	licated by higher v	alues)	
1 study (Wright 1998)	12	12	-	MD = 4.8 higher*	MODERATE
Mean change to	otal GMFM score a	t 9m (Better indica	ted by higher valu	es)	
1 study (Steinbok	14	14	-	MD 6.2 higher (2.26 to 10.14	MODERATE

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 176 of 219

1997)				higher)*					
Mean change to	otal GMFM 88 scor	e at 12m (Better in	dicated by higher	values)					
2 studies (McLaughlin 1998; Wright 1998)	33	29	-	MD 3.21 higher (0.09 lower to 6.5 higher)*	VERY LOW				
Mean change to	Mean change total GMFM 88 score at 24m (Better indicated by higher values)								
1 study (McLaughlin 1998)	21	17	-	MD 0.2 lower (7.28 lower to 6.88 higher)*	MODERATE				
Mean change in	GMFM score (%)	at 8m (Better indic	ated by higher val	ues)					
1 study (Engsberg 2006)	29	36	-	MD = 0*	VERY LOW				
Mean change in	GMFM score (%)	at 20m (Better ind	icated by higher va	alues)					
1 study (Engsberg 2006)	29	36	-	MD = 3 higher*	VERY LOW				
Mean change in	timed walk at 6m	ths (m/60secs) (Be	etter indicated by h	nigher values)					
1 study (Wright 1998)	12	12	-	MD = 3.1 lower*	MODERATE				
Mean change in	timed walk at 12r	nths (m/60secs) (E	letter indicated by	higher values)					
1 study (Wright 1998)	12	12	-	MD = 19.4 higher*	MODERATE				
Mean change in	Gait speed (cm/s	ec) at 8m (Better in	ndicated by higher	values)					
1 study (Engsberg 2006)	29	36	-	MD = 11 higher*	VERY LOW				
Mean change ve	elocity (m/s) gait a	nalysis at 12m (Be	etter indicated by h	nigher values)					
1 study (Wright 1998)	12	12	-	MD = 0.04 lower*	MODERATE				
Mean change in Gait speed (cm/sec) at 20m (Better indicated by higher values)									
1 study (Engsberg 2006)	29	36	-	MD = 18 higher*	VERY LOW				
Mean change in	use of assistive of	levice gait analysi	s at 12m (Better in	dicated by lower v	alues)				
1 study (Wright 1998)	12	12	-	MD = 0.25 higher*	MODERATE				

1 * Calculated by the NCC-WCH

2 Quality of life

3 No studies reported quality of life.

4 Adverse effects

- 5 Two RCTs (McLaughlin 1998; Steinbok 1997) and both case series (Abbott 1992; Kim 2001) reported
- 6 adverse effects. One RCT (McLaughlin 1998) used a structured adverse event questionnaire

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 177 of 219 1 administered to the parents by the investigators in person or by telephone at 3-month intervals. The

2 case series comprised retrospective reviews of children and young people who had undergone SDR

3 in hospitals in New York from 1986 to 1992 (Abbott 1992) or in Korea for the 10 years leading up to

- 4 2000 (Kim 2001).
- 5 No studies reported mortality rates.

6 Outcomes assessing pain were reported in one RCT (McLaughlin 1998) and in one case series (Kim 7 2001). The RCT reported that six of the 21 children and young people in the SDR plus physical 8 therapy group experienced a total of 14 incidents of back pain during the 24-month follow-up period, 9 compared to no incidents at all among the 17 children and young people in the physical therapy 10 group. (MODERATE) Lower extremity pain was reported by ten of the 21 children and young people 11 (a total of 11 incidents) in the SDR plus physical therapy group during the same follow-up period, 12 compared to 16 out of the 17 children and young people (19 incidents) in the physical therapy group. 13 (MODERATE) The case series (Kim 2001) reported that all 208 patients experienced postoperative 14 back pain, which was controlled well using an intravenous fentanyl drip for 3 days postoperatively. 15 The incidence of long-term back pain among children and young people who underwent SDR plus 16 physical therapy was 3.4% (7/208). (VERY LOW)

17 Both case series reported outcomes related to urinary problems (bladder dysfunction), although the 18 precise outcomes evaluated varied from study to study. Across both case series (Abbott 1992; Kim 19 2001), 7.2% (33/458) children who underwent SDR plus physical therapy experienced postoperative 20 urinary retention. (VERY LOW) One RCT (Steinbok 1997) reported transient urinary retention in one 21 of 14 children who underwent SDR plus physical therapy, and this resolved by the fourth 22 postoperative day; no cases were reported in the physical therapy group. (MODERATE) One case 23 series (Abbott 1992) reported that 0.4% of children (1/250) who underwent SDR plus physical therapy 24 required catheterisation 18 months after surgery. (VERY LOW) The other case series (Kim 2001) 25 reported that 1% (2/208) of children who underwent SDR plus physical therapy experienced long-term 26 urinary incontinence (no further details reported). (VERY LOW) One RCT (McLaughlin 1998) 27 recorded urinary adverse effects as part of the questionnaire administered to parents. Three of the 21 28 children and young people in the SDR plus physical therapy group reported one urinary adverse 29 event each during the 24-month follow-up period, compared to no events among the 17 children and 30 young people in the physical therapy group. (MODERATE)

One case series (Abbott 1992) reported an incidence rate of 1.2% (3/250) for postoperative ileus
 following SDR plus physical therapy. (VERY LOW)

One case series (Kim 2001) reported scoliosis rates in children following SDR surgery using
 laminectomy or laminoplasty; 8.6% (5/58) of children and young people developed scoliosis after
 laminectomy and 1.3% (2/150) developed scoliosis after laminoplasty. (VERY LOW)

Both case series examined outcomes relating to hip dislocation. In one study (Abbott 1992), 2.4% (6/250) of children and young people developed hip dislocation requiring a varus derotation osteotomy. In the other study (Kim 2001), 1% (2/208) of children and young people developed progressive hip migration requiring orthopaedic surgery.

40 Acceptability and tolerability

41 No studies reported acceptability and tolerability.

42 **Reduction of pain**

43 The evidence relating to pain is presented under adverse effects (see above).

44 Selective dorsal rhizotomy plus physical therapy versus 45 orthopaedic (soft tissue) surgery

46 **Reduction of spasticity and optimisation of movement**

47 No studies were identified for inclusion in relation to reduction of spasticity and optimisation of48 movement.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 178 of 219

1 **Optimisation of function**

2 Pediatric evaluation of disability inventory

Number of	Number of patier	nts	Effect		Quality			
studies	Selective dorsal rhizotomy (SDR) and Therapy	Orthopaedic surgery	Relative (95% Cl)	Absolute (95% CI)				
Mean change paediatric evaluation of disability inventory (PEDI) Functional skills: self care at 6m (Better indicated by higher values)								
1 study (Buckon 2004b)	18	7	-	MD 2.17 higher (1.93 lower to 6.27 higher)*	VERY LOW			
Mean change F	PEDI Functional sk	ills: self care at 12	m (Better indicated	d by higher values)			
1 study (Buckon 2004b)	18	7	-	MD 0.68 higher (4.36 lower to 5.72 higher)*	VERY LOW			
Mean change F	PEDI Functional sk	ills: self care at 24	m (Better indicated	d by higher values)			
1 study (Buckon 2004b)	18	7	-	MD 3.72 higher (1.90 lower to 9.34 higher)*	VERY LOW			
Mean change F	PEDI Functional sk	ills: mobility at 6m	(Better indicated	by higher values)				
1 study (Buckon 2004b)	18	7	-	MD 2.91 higher (2.05 lower to 7.87 higher)*	VERY LOW			
Mean change F	PEDI Functional sk	ills: mobility at 12r	n (Better indicated	l by higher values)				
1 study (Buckon 2004b)	18	7	-	MD 1.89 higher (3.75 lower to 7.53 higher)*	VERY LOW			
Mean change F	PEDI Functional sk	ills: mobility at 24r	n (Better indicated	l by higher values)				
1 study (Buckon 2004b)	18	7	-	MD 0.17 higher (6.30 lower to 6.64 higher)*	VERY LOW			
Mean change F	PEDI Functional sk	ills: social at 6m (E	Better indicated by	higher values)				
1 study (Buckon 2004b)	18	7	-	MD 0.10 higher (10.31 lower to 10.51 higher)*	VERY LOW			
Mean change PEDI Functional skills: social at 12m (Better indicated by higher values)								
1 study (Buckon 2004b)	18	7	-	MD 0.12 higher (8.16 lower to 8.40 higher)*	VERY LOW			
Mean change F	PEDI Functional sk	ills: social at 24m	(Better indicated b	y higher values)				
1 study (Buckon 2004b)	18	7	-	MD 0.82 higher (7.41 lower to 9.05 higher)*	VERY LOW			

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 179 of 219

Mean cha	ange P	EDI Caregiver ass	istance – self care	at 6m (Better indic	cated by higher va	lues)	
1 (Buckon 2004b)	study	18	7	-	MD 1.72 higher (4.04 lower to 7.48 higher)*	VERY LOW	
Mean cha	ange P	EDI Caregiver assi	istance – self care	at 12m (Better ind	licated by higher v	alues)	
1 (Buckon 2004b)	study	18	7	-	MD 2.44 lower (8.75 lower to 3.87 higher)*	VERY LOW	
Mean cha	ange P	EDI Caregiver assi	istance – self care	at 24m (Better ind	licated by higher v	alues)	
1 (Buckon 2004b)	study	18	7	-	MD 2.36 higher (3.68 lower to 8.40 higher)*	VERY LOW	
Mean cha	ange P	EDI Caregiver assi	istance – mobility	at 6m (Better indic	ated by higher val	ues)	
1 (Buckon 2004b)	study	18	7	-	MD 2.28 higher (2.93 lower to 7.49 higher)*	VERY LOW	
Mean cha	ange P	EDI Caregiver assi	istance – mobility	at 12m (Better indi	icated by higher va	alues)	
1 (Buckon 2004b)	study	18	7	-	MD 6.17 higher (0.83 lower to 13.17 higher)*	VERY LOW	
Mean cha	ange P	EDI Caregiver ass	istance – mobility	at 24m (Better indi	icated by higher va	alues)	
1 (Buckon 2004b)	study	18	7	-	MD 7.75 higher (1.81 lower to 17.31 higher)*	VERY LOW	
Mean cha	ange P	EDI Caregiver assi	istance – social at	6m (Better indicat	ed by higher value	es)	
1 (Buckon 2004b)	study	18	7	-	MD 0.32 lower (12.86 lower to 12.22 higher)*	VERY LOW	
Mean cha	Mean change PEDI Caregiver assistance – social at 12m (Better indicated by higher values)						
1 (Buckon 2004b)	study	18	7	-	MD 6.21 higher (1.94 lower to 14.36 higher)*	VERY LOW	
Mean cha	ange P	EDI Caregiver assi	istance – social at	24m (Better indica	ated by higher valu	ies)	
1 (Buckon 2004b)	study	18	7	-	MD 4.47 higher (7.34 lower to 16.28 higher)*	VERY LOW	

1 * Calculated by the NCC-WCH

2 Gross motor function measure

Number of	Number of patier	nts	Effect	Qualit			
studies	Selective dorsal rhizotomy (SDR) and Therapy	Orthopaedic surgery	Relative (95% CI)	Absolute (95% CI)			
Mean change g	Mean change gross motor function measure (GMEM) 88 score lying and rolling at 6m (Better indicated						

Mean change gross motor function measure (GMFM) 88 score lying and rolling at 6m (Better indicated

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 180 of 219

by highe	r value	s)				
l Buckon 2004b)	study	18	7	-	MD = 0	VERY LOW
Mean cha	ange G	MFM 88 score lyin	g and rolling at 12	m (Better indicate	d by higher values)
l Buckon 2004b)	study	18	7	-	MD = 0	VERY LOW
Mean cha	ange G	MFM 88 score lyin	g and rolling at 24	m (Better indicate	d by higher values)
l Buckon 2004b)	study	18	7	-	MD = 0	VERY LOW
Mean cha	ange G	MFM 88 score sitt	ing at 6m (Better in	ndicated by higher	values)	
l Buckon 2004b)	study	18	7	-	MD 0.57 higher (1.86 lower to 3.00 higher)*	VERY LOW
Mean cha	ange G	MFM 88 score sitt	ing at 12m (Better	indicated by highe	er values)	
l Buckon 2004b)	study	18	7 ⁷	-	MD 1.10 higher (1.55 lower to 3.75 higher)*	VERY LOW
Mean change GMFM 88 score sitting at 24m (Better indicated by higher values)						
l Buckon 2004b)	study	18 ⁸	7	-	MD 0.72 higher (2.21 lower to 3.65 higher)*	VERY LOW
Mean change GMFM 88 score crawl/kneel at 6m (Better indicated by higher values)						
l Buckon 2004b)	study	18	7	-	MD 4.29 higher (0.15 lower to 8.73 higher)*	VERY LOW
Mean cha	ange G	MFM 88 score cra	wl/kneel at 12m (B	etter indicated by	higher values)	
l Buckon 2004b)	study	18	7	-	MD 2.68 higher (1.99 lower to 7.35 higher)*	VERY LOW
Mean cha	ange G	MFM 88 score cra	wl/kneel at 24m (B	etter indicated by	higher values)	
l Buckon 2004b)	study	18	7	-	MD 2.99 higher (0.52 lower to 6.50 higher)*	VERY LOW
Mean cha	ange G	MFM 88 score sta	nding at 6m (Bette	r indicated by high	er values)	
l Buckon 2004b)	study	18	7	-	MD 4.87 lower (15.15 lower to 5.41 higher)*	VERY LOW
Mean cha	ange G	MFM 88 score sta	nding at 12m (Bett	er indicated by hig	her values)	
l Buckon 2004b)	study	18	7	-	MD 14.38 lower (29.07 lower to 0.31 higher)*	VERY LOW
Mean cha	ange G	MFM 88 score sta	nding at 24m (Bett	er indicated by hig	her values)	

1 s (Buckon 2004b)	study	18	7	-	MD 12.40 lower (30.68 lower to 5.88 higher)*	VERY LOW
Mean char	nge G	MFM 88 score wal	k/run/jump at 6m (Better indicated b	y higher values)	
1 s (Buckon 2004b)	study	18	7	-	MD 5.10 higher (4.33 lower to 14.53 higher)*	VERY LOW
Mean char	nge G	MFM 88 score wal	k/run/jump at 12m	(Better indicated I	by higher values)	
1 s (Buckon 2004b)	study	18	7	-	MD 1.69 lower (10.50 lower to 7.12 higher)*	VERY LOW
Mean char	Mean change GMFM 88 score walk/run/jump at 24m (Better indicated by higher values)					
1 s (Buckon 2004b)	study	18	7	-	MD 2.73 higher (13.30 lower to 18.76 higher)*	VERY LOW
Mean char	Mean change total GMFM 88 score at 6m (Better indicated by higher values)					
1 s (Buckon 2004b)	study	18	7	-	MD 1.02 higher (3.06 lower to 5.10 higher)*	VERY LOW
Mean char	nge to	tal GMFM 88 scor	e at 12m (Better in	dicated by higher	values)	
1 s (Buckon 2004b)	study	18	7	-	MD 2.51 lower (7.63 lower to 2.61 higher)*	VERY LOW
Mean char	nge to	tal GMFM 88 score	e at 24m (Better in	dicated by higher	values)	
1 s (Buckon 2004b)	study	18	7	-	MD 1.19 lower (8.29 lower to 5.91 higher)*	VERY LOW

1 * Calculated by the NCC-WCH

2 Quality of life

3 No studies reported quality of life.

4 Acceptability and tolerability

5 No studies reported acceptability and tolerability.

6 Reduction of pain

7 No studies reported reduction of pain.

8 Adverse effects

9 No studies reported adverse effects.

10 Evidence statement

Selective dorsal rhizotomy plus physical therapy versus physical therapy alone

13 Reduction of spasticity and optimisation of movement

- 14 With regard to trunk rotation and pelvic rotation, one non-randomised prospective study reported that
- 15 there were no significant differences in active range of motion at 8 months or 20 months when SDR
- 16 plus physical therapy was compared to therapy alone. (VERY LOW)

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 182 of 219 With regard to pelvic tilt, one non-randomised prospective study reported that there was no significant difference in active range of motion at 8 months when SDR plus physical therapy was compared to therapy alone (VERY LOW), although there was a statistically significant reduction in the SDR plus physical therapy group compared to the therapy alone group at 20 months. (VERY LOW)

5 With regard to hip joints, one RCT reported a statistically significant reduction in tone at the hip joint 6 (evaluated using the modified Ashworth scale) when SDR plus physical therapy was compared to 7 therapy alone at 9 months. (MODERATE) One RCT provided evidence of no difference in active or passive ROM hip extension when SDR plus physical therapy was compared to therapy alone at 6 8 9 months and 12 months. (MODERATE) One RCT reported a significantly improved ROM at the hip 10 joint when SDR plus physical therapy was compared to the therapy alone at 9 months. (HIGH) One 11 non-randomised prospective study reported that there was no significant difference in active ROM hip 12 flexion or extension at 8 months when SDR plus physical therapy was compared to therapy alone. 13 (VERY LOW) However, there was a statistically significant increase in active ROM in the SDR plus 14 physical therapy group compared to the therapy alone group at 20 months. (VERY LOW)

15 With regard to knee joints, two RCTs provided evidence of a statistically significant reduction in tone 16 at the knee joint (evaluated using the modified Ashworth scale) when SDR plus physical therapy was 17 compared to therapy alone. Assessments were made at 6 months and 12 months in one study and at 18 9 months in the other. (MODERATE) One RCT provided evidence of no difference in active or 19 passive ROM for knee extension or in passive ROM of the popliteal angle when SDR plus physical 20 therapy was compared to therapy alone at 6 months and 12 months. (MODERATE) No further details 21 realting to the popliteal angle were reported. One RCT reported a significantly improved ROM at the 22 knee joint when SDR plus physical therapy was compared to therapy alone at 9 months. (HIGH) One 23 non-randomised prospective study reported that there was no significant difference in active ROM 24 knee flexion or extension or for knee flexion at initial contact at 8 months or 20 months when SDR 25 plus physical therapy was compared to therapy alone. (VERY LOW)

26 With regard to the ankle joint, two RCTs provided evidence of a statistically significant reduction in 27 tone at the ankle joint (evaluated using the modified Ashworth scale) when SDR plus physical therapy 28 was compared to therapy alone. Assessments were made at 6 months and 12 months in one study 29 (MODERATE) and at 9 months in the other. (HIGH) One RCT provided evidence of a statistically 30 significant improvement in active and passive ankle dorsiflexion when SDR plus physical therapy was 31 compared to therapy alone at 6 months and 12 months. (MODERATE) One RCT reported no 32 statistically significant difference in ROM at the ankle when SDR plus physical therapy was compared 33 to therapy alone at 9 months. (MODERATE) One non-randomised prospective study reported that 34 there was no significant difference in active ROM ankle dorsiflexion or plantarflexion or for ankle 35 dorsiflexion or plantarflexion at initial contact at 8 months or 20 months when SDR plus physical 36 therapy was compared to therapy alone. (VERY LOW) The same study reported no significant 37 difference between groups in extension foot progression angle at 8 months, although a statistically 38 significant reduction was reported in the SDR plus physical therapy group compared to the therapy 39 alone group at 20 months. (VERY LOW)

40 With regard to total modified Ashworth scores, one RCT reported total modified Ashworth scores at 6 41 months, 12 months and 24 months. At 6 months there was no significant difference between the SDR 42 plus physical therapy group compared to the therapy-only group. (MODERATE) However, statistically

43 significant reductions in tone were identified at 12 months (LOW) and 24 months. (MODERATE)

44 **Optimisation of function**

45 With regard to the individual dimensions of the GMFM, three RCTs reported mean changes for lying 46 and rolling, crawling or kneeling, sitting, and walking, running or jumping at different time points. No 47 significant differences in scores for any of these dimensions were reported when SDR plus physical 48 therapy was compared to physical therapy alone at 6 months (one RCT; MODERATE), 9 months (one 49 RCT; MODERATE), 12 months (two RCTs; LOW) or 24 months (one RCT; MODERATE). Three 50 RCTs reported mean changes for the GMFM standing dimension at different assessment points. 51 There was evidence of a significant improvement in scores favouring the SDR plus physical therapy 52 group over the therapy-only group at 6 months (one RCT; HIGH), although results at 9 months (one 53 RCT; MODERATE), 12 months (two RCTs; LOW) and 24 months (one RCT; MODERATE) did not 54 differ significantly between groups.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 183 of 219 Three RCTs reported mean changes for total GMFM scores. There was evidence of a significant improvement in scores in the SDR plus physical therapy group compared to the therapy-only group at 9 months (one RCT; MODERATE), but the results at 6 months (one RCT; MODERATE), 12 months (two RCTS; VERY LOW) and 24 months (one RCT; MODERATE) did not differ significantly between treatment groups. One non-randomised prospective study reported no significant differences in GMFM percentage score at 8 months or 20 months when SDR plus physical therapy was compared to therapy alone. (VERY LOW)

8 With regard to walking, one RCT reported no statistically significant differences in the distance 9 children were able to walk in 60 seconds when SDR plus physical therapy was compared to physical 10 therapy alone at 6 months and 12 months. (MODERATE) One RCT reported no significant 11 differences in the findings of gait analysis for velocity or use of assistive devices when SDR plus 12 physical therapy was compared with therapy alone at 12 months. (MODERATE) One non-randomised 13 prospective study reported no significant difference between groups in gait speed at 8 months 14 although a statistically significant reduction was reported in the SDR plus physical therapy group 15 compared to the therapy alone group at 20 months. (VERY LOW)

16 Quality of life

17 No studies reported quality of life.

18 Adverse effects

19 No studies reported mortality rates.

20 Although one RCT and one case series evaluated back pain as an outcome, the clinical importance of 21 the results is unclear because the studies did not report whether the results excluded back pain 22 experienced routinely in the first few days or weeks after any type of back surgery. (MODERATE) 23 Lower extremity pain was reported in fewer children and young people in the SDR plus physical 24 therapy group compared to the physical therapy-only group during a 24-month follow-up period. 25 (MODERATE) A case series reported that all 208 patients experienced short-term postoperative back 26 pain that was controlled well using intravenous fentanyl for 3 days. The incidence of long-term back 27 pain was 3.4% (7/208) among children and young people who underwent SDR plus physical therapy. 28 (VERY LOW)

29 Two case series reported outcomes related to urinary problems (bladder dysfunction). Across both 30 case series 7.2% (33/458) of children who underwent SDR plus physical therapy experienced 31 postoperative urinary retention. (VERY LOW) An RCT reported transient urinary retention in one of 14 32 children who underwent SDR plus physical therapy, and this resolved by the fourth postoperative day; 33 no cases were reported in the therapy-only group. (MODERATE) One case series reported that 0.4% 34 of children (1/250) who underwent SDR plus physical therapy required catheterisation 18 months after 35 surgery. (VERY LOW) Another case series reported that 1% (2/208) of children who underwent SDR 36 plus physical therapy experienced long-term urinary incontinence. (VERY LOW) One RCT reported 37 that three of the 21 children and young people in the SDR plus physical therapy group experienced 38 one urinary adverse event each during the 24-month follow-up period, compared to no events among 39 the 17 children and young people in the therapy-only group. (MODERATE)

- One case series reported an incidence rate of 1.2% (3/250) for postoperative transient ileus following
 SDR plus physical therapy. (VERY LOW)
- 42 One case series reported scoliosis rates in children following SDR surgery using laminectomy (L1 to 43 S1) or laminoplasty (L1 to L5) and subsequent upper sacral laminectomy; 8.6% (5/58) of children and 44 young people developed scoliosis after laminectomy and 1.3% (2/150) developed scoliosis after 45 laminoplasty. (VERY LOW)
- Both case series examined outcomes relating to hip dislocation. One study reported that 2.4% (6/250)
 of children and young people developed hip dislocation requiring a varus derotation osteotomy. In the
 other study, 1% (2/208) of children and young people developed progressive hip migration requiring
 orthopaedic surgery.

50 Acceptability and tolerability

51 No studies reported acceptability and tolerability.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 184 of 219

1 Reduction of pain

2 The evidence relating to pain is presented above (under adverse effects).

Selective dorsal rhizotomy plus physical therapy versus orthopaedic (soft tissue) surgery

5 Reduction of spasticity and optimisation of movement

6 No studies reported reduction of spasticity and optimisation of movement.

7 **Optimisation of function**

8 One non-randomised comparative study that compared the effects of SDR and orthopaedic (soft

9 tissue) surgery at 6 months, 12 months and 24 months reported no statistically significant differences

10 between treatment groups for any of the PEDI functional skill or caregiver assistance domains at any

11 time point. (VERY LOW) The same study reported no statistically significant differences between 12 treatment groups for any of the individual dimensions of the GMFM or the total GMFM score at any

13 time point. (VERY LOW)

14 Quality of life

15 No studies reported quality of life.

16 Acceptability and tolerability

17 No studies reported acceptability and tolerability.

18 Reduction of pain

- 19 No studies reported reduction of pain.
- 20 Adverse effects
- 21 No studies reported adverse effects.

22 Other comparisons of interest

The GDG also prioritised evaluation of the following interventions and comparators, but no studies were identified for inclusion.

• SDR plus physical therapy versus botulinum toxin plus physical therapy

26

25

SDR plus physical therapy versus intrathecal baclofen plus physical therapy.

27 Health economics

28 The evidence identified in relation to clinical effectiveness included short- and medium-term outcomes 29 (that is, outcomes measured at up to 24 months) for two treatment comparisons: SDR plus physical 30 therapy versus physical therapy alone; and SDR plus physical therapy versus orthopaedic surgery 31 (soft tissue surgery). In the comparison of SDR plus physical therapy versus physical therapy alone a 32 statistically significant reduction in tone in lower extremity joints was reported, whereas no statistically 33 significant difference was reported for timed walking, gait analysis, optimisation of function, individual 34 dimensions of the GMFM, or total GMFM scores. In the comparison of SDR plus physical therapy 35 versus soft tissue surgery no evidence was identified in relation to reduction of spasticity or 36 optimisation of movement. For optimisation of function, however, the evidence identified reported no 37 statistically significant differences in individual domains of PEDI, in individual dimensions of the 38 GMFM, or total GMFM scores.

The cost of SDR is approximately £25,362, and this includes the cost associated with 7 weeks of hospital inpatient rehabilitation (Edwards 2010). Since no good-quality long-term outcome data (that is, outcomes measured at more than 24 months and, preferably, into adult life) are available it is not possible to determine whether the initial reduction in tone reported in the evidence would lead to clinically important long-term benefits. Conducting a cost effectiveness analysis requires estimates of long-term outcomes, such as improvements in quality of life. The only statistically significant benefit reported in the clinical evidence reviewed for the guideline was a reduction in tone in lower extremity

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 185 of 219 joints. However, the GDG was unable to extrapolate this to a clinically important long-term improvement in function that would represent an increase in quality of life. Based only on the available short- and medium-term clinical outcomes SDR cannot be said to be cost effective.

4 **Evidence to recommendations**

5 Relative value placed on the outcomes considered

6 SDR is a procedure intended to reduce muscle spasticity, outcome measures should, therefore, focus 7 on changes in tone in relevant muscles. In particular the GDG wished to know if reduced tone 8 resulted in improvements in function, including the child or young person's abilities in terms of self-9 care and walking (such as speed of walking). Independence in the tasks of daily living that required 10 walking and standing were considered important. Measures of stamina (distance walked in a given 11 time) were not reported in the evidence identified.

12 Much of the evidence reported findings in terms of scores intended to measure changes in muscle 13 tone (for example, Ashworth scores) or range of movement for a particular joint. The GDG considered 14 these findings far less valuable than those relating to function, independance or quality of life as they 15 found it difficult to interpret the reported scores in a clinically or socially meaningful way.

- Pain is a symptom of spasticity and presence of pain affects quality of life. The GDG considered reduction in pain to be an important outcome measure.
- 18 As SDR is an irreversible procedure, the risks of complications of the surgery, including non-specific

risks (such as infection) associated with other types of surgery, and the specific complications of

- 20 cutting dorsal nerve roots and performing laminectomy, are critical in decision making where the
- 21 benefits for the child or young person may be marginal over time.
- The GDG considered that the ideal long-term outcome would be the ability to maintain independent walking into adult life, but the evidence did not report that length of follow-up.

24 Consideration of clinical benefits and harms

25 Some short- and medium-term improvements in motor function as measured by individual dimensions 26 of the GMFM or total GMFM scores were statistically significant. However, even for those dimensions 27 where such effects were demonstrated (for example, standing or total score) the effects were not 28 consistent or sustained across all durations of follow-up considered in the evidence (6-24 months). 29 The GDG considered that if the observed improvements could be maintained through to adult life then 30 the outcomes of SDR would be clinically important. The improvements take time to appear, however, 31 and the GDG believes that in the first 6-12 months after the operation, quality of life for the child or 32 young person and their family may decrease temporarily because of postoperative adverse effects of 33 the surgery itself, the need for a period of inpatient therapy, and the prolonged rehabilitation period 34 that follows.

The short- and medium-term reductions in spasticity and optimisation of movement demonstrated in improvements in muscle tone or ROM in hip, knee and ankle joints were not consistent or sustained across all durations of follow-up considered in the evidence (6-24 months).

Although the risks of permanent morbidity following surgery are low, the potential consequences are serious. Children and young people, and their parents and carers, should be informed about the risks to facilitate informed decision making. The GDG noted differences in techniques for exposing dorsal nerve roots (laminectomy) and considered whether better exposure reduced the risks of damage to roots from the skin, bladder or bowel. The GDG noted that in one published study laminectomy of L1 to S1 was associated with a greater incidence of post-operative scoliosis than laminoplasty of L1 to L5 followed by upper sacral laminectomy.

- The GDG concluded that a strong recommendation to offer SDR could not be supported in the absence of high-quality evidence of a consistent and sustained (long-term) improvement in motor function or pain control. Anecdotal evidence from an unpublished report (Edwards 2010) suggests,
- 48 however, that in appropriately selected children and young people SDR may achieve such outcomes.

Pre-existing muscle shortening and bony deformity may interfere with post-operative rehabilitation and limit improvement in motor function. If surgery is postponed the child or young person will need to undergo a further period of postoperative recovery. It may take a child or young person up to 18 months to recover fully from major orthopaedic surgery, and so it may be appropriate to consider performing orthopaedic surgery before or at the same time as SDR.

6 The non-randomised study that compared SDR and orthopaedic (soft tissue) surgery showed no 7 significant differences between the two treatment groups in relation to any of the outcomes reported. 8 The GDG noted, however, that the evidence from this study was of very low quality and concluded 9 that it did not support a recommendation to offer soft tissue surgery instead of SDR, although the 10 GDG recognised that SDR and orthopaedic surgery might be performed sequentially for some 11 children and young people.

SDR does not avoid the need for orthopaedic surgery in the longer term. Onset of muscle shortening, bone or joint deformity, or scoliosis may cause pain or impair function and it is important, therefore, that the child or young person is offered regular reviews until they are fully grown (when the risk of new orthopaedic complications becomes much lower). Once a child or young person has undergone SDR, the epidural space is obliterated and epidural anaesthesia during subsequent orthopaedic surgery, or during childbirth, will not be possible.

18 The GDG considered that rehabilitation after SDR is a process that would continue until the child or 19 young person was fully grown and it requires, therefore, a long-term commitment from child or young 20 person and their family. There might be a need for further periods of intensive inpatient rehabilitation 21 involving physiotherapy and use of additional or different orthoses compared to before surgery. Post-22 operative weakness in leg muscles is common, and targeted strength training will be an important 23 component of post-surgery therapy. Orthoses and other supportive devices (such as walking frames) 24 may be required to allow the child or young person to practice new skills and gain strength and 25 balance. The GDG recognised that children and young people may gain weight after SDR and this 26 may affect rehabilitation and motor function adversely. Dietary advice would be helpful, therefore, in 27 controlling weight gain.

The GDG considered that it would be important to ensure that the commitment required to follow a rehabilitation programme after SDR did not affect other aspects of the child or young person's life (such as education) adversely.

The GDG concluded that the evidence for a long-term or permanent reduction in spasticity after SDR was not strong, and that the evidence for a long-term improvement in gross motor function was even weaker.

34 Consideration of net health benefits and resource use

The GDG considered that the high initial cost of SDR would be justified only if improvements in motor function were maintained into adult life (for example, if the child or young person were to progress through one or more levels of the GMFCS). Alternatively, if a clinically important improvement in quality of life following SDR could be demonstrated then the procedure might be shown to be cost effective even in the absence of progression in terms of GMFCS levels.

40 The GDG also considered that a sustained reduction in spasticity might reduce the long-term 41 requirement for targeted resources, such as physiotherapy, orthotics and mobility equipment, and this 42 could result in significant cost savings to the NHS.

43 **Quality of evidence**

The quality of the evidence for reductions in spasticity and optimisation of movement ranged from very low to high. The quality of the evidence for improvement in function also ranged from very low to high. None of the evidence addressed long-term outcomes (that is, more than 24 months after surgery, and preferably through to adult life). The interventions and comparators evaluated in the included studies varied in relation to:

- 49
- the numbers of nerve roots divided and spinal segment levels involved

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 187 of 219 • the content of the physical therapy components of the interventions and comparators (in one study the children and young people who underwent SDR received a more intensive initial therapy programme than did the therapy-only group.

4 The numbers of children and young people involved in the studies were small and no subgroup 5 analyses were undertaken to try to identify clinical characteristics that might be associated with better 6 outcomes after SDR.

7 Other considerations

1

2

3

8 The GDG considered that children and young people undergoing SDR should be followed up 9 according to a standardised framework until they reached adulthood. Given the lack of good quality 10 outcome data, the GDG further considered that anonymised data should be collected through a 11 national audit of outcomes of SDR, including long-term outcomes and adverse effects. Since any one 12 centre offering SDR is likely to perform the procedure on only a small number of children or young 13 people each year, a national audit would allow more rapid collection of robust data, with the potential 14 for comparing different centres in the long term, provided the same validated outcome measures are 15 recorded in each centre. Collating and publishing data on adverse effects would provide information 16 about the benefits and risks associated with SDR, and this would be of importance to children and 17 young people considering SDR and their parents and carers. Such data might also allow comparisons 18 to be made between outcomes of different practices or techniques used during SDR, such as the 19 extent of bone removal and the number of rootlets cut.

20 In formulating their recommendations the GDG considered existing guidance contained in 'Selective 21 dorsal rhizotomy for spasticity in cerebral palsy' (NICE interventional procedure guidance 373). In particular, the GDG noted the importance of care being delivered by a multidisciplinary team with 22 23 specialist training and expertise in the care of spasticity and with access to the full range of treatment 24 options. 'Selective dorsal rhizotomy for spasticity in cerebral palsy' (NICE interventional procedure 25 guidance 373) emphasises that the SDR team would normally include a physiotherapist, a 26 paediatrician and surgeons, all with specific training and expertise. The GDG recognised that current 27 practice is to coordinate all aspects of clinical care for children and young people with spasticity and 28 co-existing motor disorders caused by non-progressive brain disorders (and their early 29 musculoskeletal complications) through multidisciplinary teams comprising similar groups of 30 healthcare professionals, and they recommended involvement of such teams as a general principle in 31 the provision of care for these children and young people (see Chapter 4).

32 Key conclusions

33 In the experience of the GDG, many children and young people have serious difficulties with walking 34 because of the degree of spasticity that is present, as well as weakness and poor selective motor, 35 control etc. The GDG recognised the longstanding knowledge of neurophysiological processes that result in spasticity, including the theoretical basis for expecting SDR to reduce muscle tone. The 36 37 limited evidence available demonstrated that SDR does indeed reduce tone, and the GDG recognised 38 that there was no reason to suspect that tone would increase subsequently (over a period of years) 39 because the procedure is irreversible. There was, however, a lack of evidence supporting a clinical 40 benefit of SDR in relation to optimisation of function. The GDG highlighted the evidence suggestive of 41 benefit in this area, particularly the improvements in the standing dimension of the GMFM at 6 months 42 and the total GMFM score at 9 months (although these effects were not consistent across all studies 43 nor sustained across all periods of follow-up, and most of the evidence was of low or moderate 44 quality). No evidence at all was identified in relation to quality of life.

The GDG considered that the available evidence supported further evaluation through clinical research of SDR as a treatment to improve walking ability. The GDG discussed and agreed six clinical criteria for identifying children and young people to whom SDR could be offered as part of research. The criteria were:

- 49 abnormal tone (pure spasticity)
- good leg muscle strength
- straight legs and minimal muscle shortening

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 188 of 219

- good selective motor control in the legs
- 2 good cognitive skills

3

not overweight.

4 The GDG considered that the clinical pattern represented by the combination of the six criteria was 5 most likely to be present in children and young people with spastic diplegia cerebral palsy who are in 6 GMFCS levels 1 to 3. The GDG considered that the possible functional gain in children and young 7 people in GMFCS level 1 was not sufficient to outweigh the risks of complications, and so they did not 8 recommend offering SDR to children and young people in this group. Children and young people in 9 GMFCS levels 2 and 3 were, however, thought likely to be able to derive the clinical benefit of 10 improved walking ability through undergoing SDR. Thus the GDG therefore prioritised further 11 research into the effectiveness and safety of SDR in children and young people in GMFCS levels 2 12 and 3. The GDG also highlighted in their research recommendations the importance of physical therapy (particularly physiotherapy) as an adjunctive treatment to improve the chances of a 13 14 successful outcome after SDR, since this reflected the evidence available currently.

In the GDG's view, SDR is more likely to be effective if spasticity is judged to be the major factor impairing movement. If weakness, dystonia, poor motor control or musculoskeletal deformities are the main cause of motor impairment, then SDR is much less likely to be effective. Poor selective motor control and dystonia will not be improved by SDR and will significantly affect the child or young person's ability to benefit from physical therapy during rehabilitation. Muscle weakness will worsen immediately after SDR, and a child or young person who is already weak may lose other skills (such as standing or walking) permanently following SDR.

No evidence was identified to support the use of SDR in more severely affected children, in children with hemiplegia, or in children and young people who have spasticity as the result of a head injury. The GDG acknowledged that in more severely affected children and young people, pain from spasticity affects quality of life and using SDR to reduce spasticity even when there is no likelihood of improved function might be justified once other treatments have been considered or used. The available evidence was, however, considered to be insufficient to recommend SDR in this context without further research.

The GDG noted that severe scoliosis might make SDR more difficult to perform, and the GDG concluded that SDR should not be offered to children and young people with this condition.

31 The GDG also noted that hip dislocation would reduce the effectiveness of SDR and make 32 postoperative rehabilitation difficult (because the child or young person might be in pain, and sitting 33 and standing might be difficult).

34 The postoperative rehabilitation period places significant demands on the child or young person and 35 their family. Providing physical therapy regularly for up to 2 years after performing SDR may present 36 difficulties for children and young people living in geographically remote areas. Therapists may need 37 to rely heavily on the child or young person's parents and other family members to supervise 38 exercises, and this could have an impact on family life, including quality of life for parents and siblings. 39 Children and young people with spasticity and co-existing learning difficulties or sensory impairments 40 might have difficulty coping with rehabilitation programmes, and this would need to be considered 41 carefully by parents or carers before consenting to treatment. Further research should, therefore, 42 consider the practicalities of life for the child and young people who have undergone SDR and their 43 parents or carers, and how healthcare services can be developed to support families in a variety of 44 circumstances.

The GDG recognised that SDR is one of a number of treatment options for children and young people and stressed that healthcare professionals might prefer to consider treatments with lower risks of adverse effects. Alternative treatments could include botulinum toxin type A injections or intrathecal baclofen, but no evidence was identified to allow comparison of the clinical benefits and harms between SDR and such treatments. Nevertheless, SDR is irreversible, and so everyone involved in making decisions about whether to choose SDR should first ensure that the procedure is appropriate for the individual child or young person.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 189 of 219

1 The GDG recognised that children and young people or their parents or carers may wish to explore all 2 available treatment options. Despite SDR being used in USA since the 1980s, and more than 1000 3 children and young people having received SDR in one centre, there is no good quality evidence that 4 the procedure results in clinically important improvements in motor function that are sustained over 5 several years. Children who can walk with walking aids before the age of 10 years may lose the ability 6 in teenage years because of weight gain or further muscle shortening or weakness. The available 7 evidence does not identify whether the loss of walking ability can be prevented by SDR. It is important 8 that children and young people considering SDR, and their parents or carers, are aware of the 9 shortcomings of the evidence. In formulating aspects of their research recommendations relating to 10 information for children and young people and their parents or carers the GDG mirrored existing guidance in 'Selective dorsal rhizotomy for spasticity in cerebral palsy' (NICE interventional procedure 11 12 guidance 373).

13 **Recommendations**

Number	Recommendation
114	Selective dorsal rhizotomy Offer selective dorsal rhizotomy to improve walking ability only in the context of clinical research.

14

Number Research recommendation

23 (KRR) Does selective dorsal rhizotomy followed by intensive rehabilitation performed between the ages of 3 and 9 years in children who are in GMFCS level 2 or 3 result in good community mobility as a young adult?

Why this is important

The available evidence relating to selective dorsal rhizotomy suggests that the procedure results in some short- and medium-term improvements in motor function. The effects reported were not consistent across all studies nor sustained across all durations of follow-up investigated (6-24 months). The GDG considered that if the observed improvements could be maintained through to adult life then the outcomes of selective dorsal rhizotomy would be clinically important and this would be a cost-effective treatment option. Further research is urgently needed to evaluate long-term outcomes (including adverse effects) of selective dorsal rhizotomy followed by an intensive rehabilitation programme involving physical therapy (and prioritising targeted strength training) compared with physical therapy alone. The research could be conducted using a range of designs, including randomised controlled trials and audits of outcomes from procedures already performed. The research should focus on selective dorsal rhizotomy performed: between the ages of 3 and 9 years in children with spasticity who are in GMFCS level 2 or 3 (because these children are likely to benefit most from selective dorsal rhizotomy); and before the development of significant contractures at the ankles, knees and hips. The following criteria should help to identify children who could be included in the research: abnormal tone (pure spasticity), good leg muscle strength, straight legs and minimal muscle shortening, good selective motor control in the legs, good cognitive skills, and not being overweight. Abnormal tone that is predominantly dystonia, and severe scoliosis or hip dislocation, should form part of the exclusion criteria. The research should: be coordinated through a multicentre research programme; use nationally agreed outcome measures (such as incidence of neurological impairment and spinal deformity, the need for additional operations, and assessment of disability, social inclusion, and quality of life) and follow-up periods to facilitate national audit; include assessment of the child's clinical

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 190 of 219 condition before and after selective dorsal rhizotomy using the same formally validated assessment techniques; consider the timing of selective dorsal rhizotomy in relation to orthopaedic surgery if the child has muscle shortening or torsional abnormalities; consider the involvement of the child, their parents, carers or other family members, and members of the local multidisciplinary child development team in the rehabilitation programme after discharge from hospital; monitor the child's clinical condition regularly until they are fully grown (to detect and manage weight gain and orthopaedic and spinal complications). The following information should be given to children and their parents or carers to facilitate informed decision making about participation in research: selective dorsal rhizotomy is irreversible; there is a risk of serious temporary or permanent postoperative complications (such as deterioration in walking ability or bladder function) and later complications such as spinal deformity; prolonged physiotherapy and aftercare will be needed; additional surgery may be needed; subsequent selective dorsal rhizotomy epidural anaesthesia will not be possible (for example, during additional surgery or childbirth); the evidence already available in relation to selective dorsal rhizotomy is based on studies involving small numbers of children, and there is currently no evidence from which to assess long-term outcomes (those experienced more than 24 months after performing selective dorsal rhizotomy, and preferably into adult life); confounding factors for long-term outcomes could include the natural history of the condition (for example, the child's condition might deteriorate over time regardless of whether or not selective dorsal rhizotomy is performed).

What is the effectiveness of SDR compared to CITB in children and young people who are in GMFCS level 4 or 5?

24

Health economics 11 1

11.1 Introduction 2

3 Health economic analysis allows decision makers to consider the opportunity costs alongside the 4 benefits of a treatment in order to decide if it is good value compared to the next best alternative. In 5 this guideline good guality published clinical evidence has been limited and therefore the benefits of 6 treatment have been based on GDG consensus. Where possible economic analysis has been 7 developed by working backwards from the NICE cost-effectiveness threshold to find what level of 8 effectiveness would be necessary in order to find an intervention cost-effective. This type of analysis 9 does not give cost-effectiveness results, but provides a framework to decide whether a treatment is 10 likely to be good value of NHS resources.

11 The NICE threshold is £20-£30,000 per quality adjusted life year. For the treatment of spasticity it is 12 the quality adjustment which is most important. Health related quality of life is measured in terms of 13 effect on mobility, self-care, ability to perform usual activities, pain/discomfort, and anxiety/depression. 14 The treatments in this guideline reduce spasticity which can reduce pain, improve function and 15 mobility, provide cosmetic improvements, and prevent deterioration which may have resulted in loss 16 of function. For many of the treatments considered in this guideline the GDG felt that the benefits to 17 health related quality of life are enough to justify the costs of treatment. Patient selection is important, 18 particularly for the intrathecal baclofen therapy (ITB) pump, selective dorsal rhizotomy (SDR) and 19 orthopaedic surgery, as only certain groups of patients are likely to benefit and treatment will not be 20 appropriate for other groups. Patient choice is also important as their active participation, such as in 21 therapy programmes and wearing orthoses, is key to the success of the treatment.

22 Given the lack of published evidence, further comparative research is necessary which captures 23 benefits in terms of function, pain, adverse events and quality of life ideally using the EQ-5D (a child 24 friendly version is available) or the Health Utilities Index which was developed for children. Long-term 25 outcomes are needed for the ITB pump, SDR and surgery as these are expensive treatments and 26 invasive with risks associated. Also the studies should be designed to allow sub-group analysis by 27 severity of spasticity in terms of gross motor function classification system (GMFCS), and also limb 28 involvement (hemiplegia, diplegia, and quadriplegia). Studies should be designed to allow data on 29 resource use to be collected to allow cost analysis. Cost-effectiveness analysis comparing treatments 30 for each sub-group will provide better information for decision making.

31 Each question includes a health economic summary based on the evidence and GDG opinion.

Physical therapy (physiotherapy and occupational 11.2 32 therapy) 33

34 As there was limited effectiveness evidence available for therapy it was not possible to develop an 35 economic evaluation and so a simple costing analysis was carried out using staff costs from the 36 PSSRU Unit Costs of health and social care 2010. This shows the costs of therapists providing care 37 in different settings and for hourly sessions once, twice or three times a week.

38	Table 11.1	Cost analysis for therapy				
		Cost per hour of client contact	Intensity (hour	s per week)		
			3x week	2x week	1x week	
	Community	£42	£6,048	£4,032	£2,016	

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 192 of 219

physio					
Hospital physio	£40	£5,760	£3,840	£1,920	
	Mean PT	£5,904	£3,936	£1,968	
Community OT	£42	£6,048	£4,032	£2,016	
Hospital OT	£43	£6,192	£4,128	£2,064	
	Mean OT	£6,120	£4,080	£2,040	

12

13

14

Cost data for therapy has limited use without associated benefits. The cost of increasing therapy for children with spasticity could be significant but without knowing the benefits of increasing therapy we cannot know if it will be cost-effective. From GDG discussions the therapist plays a key role not only in providing treatment, but also in assessing the patient, and providing information to the parents about, and ways to improve a child's daily tasks and activities.

7 11.3 Orthoses

As with therapy there was limited good quality effectiveness evidence so a cost analysis was
 conducted. The following service description was developed with the assistance of Exeter University
 and the Royal Berkshire NHS Foundation Trust.

- 11 Appointments:
 - 1. Assessment 20-30 minutes with a physiotherapist or occupational therapist, this includes taking measurements.
 - 2. Fitting 20-30minutes about two weeks after the assessment
- 153. Follow-up to check everything is okay, usually only for someone who has not had an orthosis before.

17 Orthotists start at band 5 and can work up to band 7 as a senior orthotist. Only a third of orthotists are 18 employed by the NHS with the rest working for private companies. Using the cost per hour of client 19 contact with a physiotherapist⁴³ (band 5 median) to represent the cost of an orthotist then the 20 appointments will cost about £27 (40mins) to £62 (1.5 hours) to supply and fit an orthosis if the 21 orthotist is employed in the NHS.

The cost of an AFO is about £120 to £300 each. The lower limb orthoses are usually custom made,
 whereas the upper limb orthoses can be stock products.

The orthosis needs to be replaced every 10-12 months or less depending on the child's rate of growth. The straps on the orthosis usually wear out after about 12months. If the orthosis does not fit well and is uncomfortable then the child will not wear it.

The minimum age a child can be fitted for an orthosis is 17/18 months. They can be worn throughoutthe growing period.

29 **11.4 Botulinum toxin**

Botulinum toxin (BoNT) works by relaxing spastic muscles. This could allow clinicians to address issues of weakness and functional difficulties brought about by the abnormal muscle tone. But it may also 'unmask' weak muscles and cause a temporary deterioration in function, and there are possible side effects of the toxin. The evidence from the literature review was unequivocal and so a costeffectiveness analysis was developed to consider what level of effect would be needed to find BoNT injections cost-effective by the NICE threshold.

⁴³ £42 per hour of client contact with a community physio, £40 with a hospital physio – the mean was used. Unit costs of health and social care 2010, PSSRU.

- 1 To begin with a cost analysis was conducted based on service descriptions from Leeds and Great 2 Ormond Street Hospital (GOSH).
- 3 The BoNT service team comprises:
- 4 2 consultants
- 5 a physiotherapist
 - an occupational therapist
- 7 a nurse

12

8 • a registrar

9 A new patient will have a detailed assessment to determine their suitability for BoNT treatment which 10 will be done by a consultant.

- 11 The assessment includes:
 - Clinical examination
- Video gait analysis
- 14 Goniometry
- 15 +/- Gross motor function measure
- Treatment goals are agreed and documented
- Integrated care pathway paperwork completed
- Patients are weighed, consent obtained, and the botulinum toxin prescribed
- 19 The administration of BoNT involves a day case admission unless it is an inpatient referral.
- 20 All admissions require:
- 21

22

- General examination to ensure fitness for sedation or general anaesthetic (GA)
- Parental consent for sedation / GA and for injection

The majority of injections will be performed under sedation in the treatment room. Muscles to be injected are identified by a member of the BoNT team and marked, and a local anaesthetic is administered (AMETOP). A sedative is administered (oral midazolam at a dose of 0.5mg/kg, maximum dose 15mg). Patients who are old enough to cooperate, and are in agreement, will be offered entonox analgesia (nitrous oxide). This is usually combined with ethyl chloride spray anaesthesia. Entonox is administered by trained nurses.

A member of the BoNT service team will perform the injections, using ultrasound guidance to locate the muscles. Once the child has woken and recovered they are discharged home. A handwritten discharge summary is completed, and a dictated summary is produced afterwards by team members.

Follow-up appointments use the same assessments as pre-injection. At GOSH there are two appointments at 3 and 17 weeks post injection; at Leeds the follow-up appointment is at 6 weeks.

34 **Costs**

The cost of a pre-assessment before BoNT is chosen as treatment is approximately £125 (Table 11.2). This includes overheads, such as office space. There may be additional costs for the equipment needed for the assessment but as the equipment will be used for assessment for other treatments and also other conditions the individual cost per use of, for example, a video camera will be low compared to the staff costs for an assessment.

40 Table 11.2 Costs of pre-assessment (PSSRU unit costs of health and social care 2009)

Selection and pre-assessment per hour patient contact 45min assessment
--

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 194 of 219

	1 consultants	£167	£125	
--	---------------	------	------	--

BoNT into muscles should be coded as (XD09Z) Torsion dystonia and other involuntary movements drugs band 1 as it is a high cost drug (NHS Classification Service Coding Clinic Vol. 3 June 2006 <u>www.connectingforhealth.nhs.uk/.../data/.../vol3 issue4 final.pdf accessed 30/11/10</u>). The reference cost for 2008-9 was £417 (lower quartile £214 – upper quartile £541). There is also a specialist uplift to tariffs for children of 78%, if this is applied then the cost increases to £742. This tariff will include all costs related to the procedure, the day case admission, drug costs, and staff.

8 Standard care will be taken as continuing oral drugs (Table 11.3) (physiotherapy and occupational
 9 therapy costs are assumed to be the same for both treatment arms).

10	Table 11.3	Cost of standard care for one year
----	------------	------------------------------------

Cost for one year	reference
£20.73	Children's BNF 2010-2011
	£1.59 per 84 tablets 10mg
	Doses range from 10-60mg daily depending on the child's age and weight
	-

11

12 Effects

13 The clinical evidence from the trials was variable for reducing spasticity and optimising movement and

function. The quality of life evidence only shows a significant benefit in the emotional role estimation.
 However, 66% to 81% of parents in one cross-over RCT rated BoNT treatment as good, very good or
 excellent.

The adverse events reported in the literature review for this question were; incontinence, short term muscle weakness (Reddishough 2002), one child with a history of epilepsy being admitted to hospital for seizure management shortly after injection (Russo 2007), In four studies grip weakness was reported (Boyd 2004, Fehlings 2000, Olesch 2010, Russo 2007). Other reports included nausea, vomiting, flu symptoms, coughing, soreness at injection site, respiratory infections, headache, fainting episodes, anxiety, depression, alopecia and fatigue.

Suggested costs for adverse events which are not transient are shown in Table 11.4Error! Reference
 source not found.. The GDG thought serious adverse events were very unlikely for patients
 receiving BoNT and so the baseline analysis has been done without adverse events.

26	Table 11.4	Costs for adverse effects (NHS reference costs 2008-9)
----	------------	--

Non-elective inpatient	average	Lower quartile	Upper quartile
Epilepsy syndrome without CC	£474	£335	£546
Acute upper respiratory tract infection and common cold	£469	£347	£546

27

28 Results

29 It is assumed that patients are referred to BoNT treatment when oral drugs stop working and all 30 patients continue with physiotherapy and occupational therapy. The comparator for BoNT will be

50 patients continue with physiotherapy and occupational therapy. The comparator for Boly I will be

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 195 of 219 continuing on oral drugs and the conservative assumption for this simple analysis is that patients do
 not deteriorate if they continue on oral drugs.

3 Using the data from the clinical evidence and the costs above a simple analysis shows the mean cost

4 per person having 2 sets of BoNT injections in a year is approximately £1,860 if the injections are

5 given in a day case setting and only one follow-up appointment is needed. The cost of standard care 6 is therefore approximately £21 per year.

If two follow-up appointments are needed at three and 17 weeks after the first set of injections then the average cost rises to £1,985. If BoNT is given three times in a year then costs increases to £2,727 per person per year. If adverse events are included then the cost increases to £1,855 if two sets of injections are given in a year

10 injections are given in a year.

11 There may be additional costs for the equipment used for assessment, but these will be used for other 12 assessments and was not thought likely to significantly change the overall costs of providing BoNT. 13 Therapy costs are not included as it assumed these would continue for patients not receiving BoNT.

14 The cost of standard care is therefore approximately £21 per year.

15 Table 5 Cost analysis for one set of injections of BoNT in one year

	Ν	unit cost	total cost
pre-assessment	159	£125	£19,915
injection as day case	159	£742	£118,019
follow-up	159	£125	£19,915

16

17 If the NICE threshold for cost-effectiveness of £20,000 is used, then BoNT would need to improve18 quality of life over one year by 0.09 for two sets of injections.

- 19 Incremental cost of BoNT 2 sets of injections in one year:
- 20 £1,860 £21 = £1,839

21

- 22 Cost ÷ QALYs = incremental cost effectiveness ratio
- 23 £1,839 ÷ QALYs = £20,000 per QALY
- 24 \pounds 1,839 ÷ £20,000 = 0.09

25

- 26 One set of injections in a year: $\pounds 972 \div \pounds 20,000 = 0.05$
- 27 Three sets of injections in one year: $\pounds 2,707 \div \pounds 20,000 = 0.14$

For patients who have moderate pain or discomfort approximately 75% would have to experience no pain or discomfort if given 2 sets of BoNT injections during a year. For patients with extreme pain or discomfort approximately 25% would have to experience only moderate pain or discomfort if given 3 sets of BoNT injections during a year.

For patients who have some problems with self care, and some problems performing their usual activities, 75% would have to improve so they had no problems with self-care or performing their usual activities if they have 2 sets of BoNT injections in a year.

The other way to consider the effectiveness of BoNT is as a prevention of deterioration; 75% of patients who have no pain are prevented from experiencing moderate pain if they are treated with BoNT after oral drugs fail; or 25% of patients who have moderate pain would be prevented from experiencing extreme pain; or 75% of patients who have no problems with self-care and performing usual activities are prevented from deteriorating so they have some problems with self-care and performing usual activities.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 196 of 219

1 Conclusion

There is uncertainty in this analysis as the clinical effectiveness evidence is variable. Only a small increase in quality of life is needed for this to be considered cost-effective at the NICE threshold, and so even with uncertain clinical effectiveness it is likely that BoNT will be found cost-effective to use. It seems from the clinical evidence that what is reported in the trials is not what the clinicians are looking for from BoNT in practice. Data on how BoNT treatment benefits children and young people in terms of mobility, self-care, usual activities, pain and discomfort, and anxiety and depression would be

8 needed for further economic evaluation.

9 **11.5** Intrathecal baclofen

10 Background literature

11 An economic evaluation set in the UK was identified in the literature search (Sampson 2002). The 12 evaluation was clear and it was easy to identify the sources for the costs and effectiveness. It did not 13 have a comparator intervention because the effectiveness evidence was based on case studies with 14 no control groups. As the evaluation was carried out in 1999 the costs needed to be updated and the 15 discount rate⁴⁴ used was 6%, the standard rate currently used by NICE is 3.5% for costs and 3.5% 16 (and 1.5%) for benefits. The model was fairly simple comparing the costs of testing, implanting the 17 pump and follow-up visits for 5 years (life of the battery for the pump), with the estimated benefits to 18 quality of life.

19 The effectiveness evidence was identified in a literature search. Trials were included if they had more 20 than one patient and an average follow-up of at least 6 months. Studies had to allow calculation of the

21 proportion of patients who achieved at least one of the following outcomes:

- 1. Bedbound patients becoming able to sit in a wheelchair
- 2. Patients who had severe difficulty sitting in a wheelchair being able to sit comfortably
- 24 3. Wheelchair users improving their wheelchair mobility
- 25 4. Wheelchair users improving their ability to transfer
- 26 5. Wheelchair-bound patients becoming ambulatory
- 27 6. Ambulatory patients improving their ability to walk
- 28 7. Improved ability to perform activities of daily living
- 29 8. Improved ease of nursing care

31

- 30 9. Patients with skin integrity problems who showed improvements in these symptoms
 - Reduction in spasm-related pain

The studies identified used a wide variety of different outcomes and the authors found that functional and quality of life outcomes were generally not measured using standard scores. In all the studies included patients had severe disabling spasticity that could no longer be treated by oral medications and where the patients had responded to a bolus dose of ITB. The studies included both children and adults with different causes of spasticity, but the results were reported for all patients together. The results of the included studies are shown in Table 11.6.

38 Table 11.6 Results of included studies (Sampson 2002)

		No. Of patients		
Outcome measure	No. Of studies	Affected	Responding (%)	

⁴⁴ A discount rate is applied to benefits and costs that will occur in the future to reflect our preference for benefits now and to defer costs.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 197 of 219

Bedbound patients becoming able to sit in a wheelchair	4	76	50 (66)
Patients who had severe difficulty sitting in a wheelchair being able to sit comfortably	3	36	31 (86)
Wheelchair users improving their wheelchair mobility	2	18	13 (72)
Wheelchair users improving their ability to transfer	3	26	25 (96)
Wheelchair-bound patients becoming ambulatory	3	36	4 (11)
Ambulatory patients improving their ability to walk	5	45	18 (40)
Improved ability to perform activities of daily living	3	62	45 (73)
Improved ease of nursing care	6	90	83 (92)
Patients with skin integrity problems who showed improvements in these symptoms	3	23	19 (83)
Reduction in spasm-related pain	6	62	55 (89)

As none of the studies used quality of life measures the EQ-5D scores were calculated based on the evidence review supported by clinical opinion (Table 11.7). The outcome measures used to estimate the EQ-5D scores are shown in bold in Table 11.6.

- 5 Three populations of patients were divided into the following categories:
- 6 Category 1: bedbound patients experiencing severe spasm-related pain
- 7 Category 2: bedbound patients who were not in pain
- 8 Category 3: wheelchair users with moderate spasm-related pain

Table 11.7	Estimated EQ-5		
Category Baseline quality of life value (EQ- 5D score)		Changes in quality of life measured by EQ-5D	Adjusted quality of life improvement
1	-0.594 (33333)	11% no change (33333)	0.50
		23% reduction in pain (33323)	
		66% reduction in pain, able to sit in wheelchair, reduction in anxiety and depression scores (23322)	
2	-0.208 (33313)	34% no change (33313)	0.27
		66% able to sit in wheelchair, reduction in anxiety and depression scores (23312)	
3	0.079 (23322)	11% no change (23322)	0.43
		73% reduction in pain, improved ability to care for self and perform ADL (22212)	
		16% reduction in pain only (23312)	
	Category 1 2	CategoryBaseline quality of life value (EQ- 5D score)1-0.594 (33333)2-0.208 (33313)	Category of life value (EQ- 5D score)Changes in quality of life measured by EQ-5D1-0.594 (33333)11% no change (33333) 23% reduction in pain (33323) 66% reduction in pain, able to sit in wheelchair, reduction in anxiety and depression scores (23322)2-0.208 (33313)34% no change (33313) 66% able to sit in wheelchair, reduction in anxiety and depression scores (23312)30.079 (23322)11% no change (23322) 73% reduction in pain, improved ability to care

10

11 Cost estimates were derived from 1999 data from 3 centres within the UK. Benefits of the ITB pump 12 were assumed to last 5 years as this is the lifetime of the pump's battery. Table 11.8 shows the costs

reported from 1999 and converted to 2008/9 costs (using the hospital and community health services

14 pay and prices index uplift (1.42) from the personal social services research unit (PSSRU) unit costs

15 of health and social care 2009 (Curtis 2009)).

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 198 of 219

1 Table 11.8 Costs of ITB test and pump (Sampson 2002)

	1999 Cost	1999 Cost 2008/9 Cost		
		Min	max	mean
Pre-screening assessment costs (30mins neurosurgeon time and outpatient clinic visit)	£330 - £556	£470	£792	£631
test dose (Lumbar puncture, lumbar catheter, procedure HRG A452: injection of a therapeutic substance, 2 days hospitalisation, drug costs, physiotherapist, and nursing time for patient observation)	£940 - £1570	£1,339	£2,236	£1,787
cost of implantation procedure (incl. cost of pump, catheter, procedure, drugs, 5-day inpatient stay)	£8730 - £10,260	£12,433	£14,612	£13,522
other costs (tests, pathology, radiology, microbiology), excluding potential transport costs	£550			£783
cost of follow-up (refill kit, drug costs, physiotherapist assessment, and outpatient visit) average of 4 to 8 refills per year	£140 - £150	£199	£214	£206
Procedure	£11,743			£16,724
follow-up 1 year	£870			£1,239
follow-up 5 years	£4,066			£5,790
TOTAL	£15,809			£22,514

2

18

19

3 Methods

This published economic evaluation was used as the basis for a new model which looked at the costeffectiveness of both testing and implanting the ITB pump. The costs of testing, implanting the pump and follow-up visits over 5 years have been taken from Sampson 2002 (Table 11.8).

As the model runs over 5 years, costs and benefits accrued after the first year are discounted by 3.5%
 for costs and 3.5% for benefits (1.5% tested for benefits)⁴⁴. The perspective of this evaluation is from
 the NHS, therefore only includes costs and benefits relevant to the NHS.

10 A treatment pathway was developed with the help of the GDG in which additional elements of 11 treatment have been identified that were not included in Sampson 2002. The main change to the 12 published model structure was the inclusion of comparator treatments. It was assumed that all 13 patients would receive physiotherapy and so this was not included in the model.

- 14 In the model the following three comparisons were considered:
- Children and young people considered suitable candidates have a pre-screening assessment and are tested before the pump is implanted. Patients who have a positive test will go on to have the pump implanted. Patients who have a negative test will have standard treatment.
 - 2. Children and young people considered suitable candidates by their clinicians have a prescreening assessment, and get the pump implanted without a test dose.
- ITB testing and pump is not available for any patients. Children and young people considered
 suitable candidates by their clinicians will continue to receive oral drugs.

No studies were identified that demonstrated the predictive value of the ITB test. Patients only had a pump implanted if the test was positive. After discussion with the GDG it appears that clinicians can

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 199 of 219 generally predict which patients will benefit from ITB treatment from their clinical characteristics. The
 test is used to demonstrate the effectiveness of ITB to the patient and help decide treatment goals.

The baseline analysis assumes no improvement in quality of life for children and young people who have the pump implanted and this is the same effect as standard therapy, a conservative assumption to reflect that little good quality comparative evidence is available. It is assumed that staying on

6 standard therapy resulted in no quality of life improvements, but also no deterioration.

The analysis was also run using the long-term quality of life effects from Sampson 2002 (Table 11.7),
although these are for adults and children whereas we are only interested in the effect on children and
young people.

Standard therapy will be the continuation of physiotherapy and oral drugs (baclofen) for 5 years (Table 11.9). It is assumed that patients with the ITB pump will also continue with physiotherapy and so this cost was not included in either arm of the model. Where the ITB treatment is unsuccessful and the patient has the pump removed they will go back to taking oral baclofen, assuming this will be six

14 months less cost than patients who go straight to standard therapy.

15 Table 11.9 Cost of standard therapy for one year

		Cost per year	reference
Standard therapy	Oral baclofen – 30mg per	£20.65	84 tablets 10mg = £1.59
	day (to represent an average dose)		Children's BNF 2010- 2011 /

16

The review of the clinical literature for the guideline found evidence of adverse effects related to both the test and implanting the pump and so these have been included in the model. Both procedures require a hospital stay and involve injections or a catheter inserted into the spinal cord. There is a risk of infection which can be minor and easily treated, or a major infection such as meningitis. The costs of treating these infections are shown in Table 11.10, the costs are assumed to be the same whether the infection is due to the test procedure or the pump implant procedure.

23 Table 11.10 Costs of treating infections due to test or implant procedures

		Cost	Additional length of stay	reference
Minor infection	course of Flucloxacillin oral solution (125mg/5mL 100ml)	£3.67	0 days	Children's BNF 2010-11
Major infection	Non-elective inpatient stay for major infection without complications*	£2,375	4.67 days	NHS reference costs 2009/10

24 *non-elective inpatient reference costs for infections range from £466 to £4,276 and have a length of stay of 1 to 7 days

In the model if a patient develops a major infection during the surgery the pump will be removed. Or if the pump fails to work they will have the pump removed. For some patients the pump will be implanted but a problem is found that requires a second operation to fix. The costs of removing the pump or having a second operation to correct a problem are reported in Table 11.11.

29 Table 11.11 Cost of removing the pump due to major infection

		Cost	Inpatient stay	reference
Pump removal	Cost of having pump implanted less the cost of	£13,522 - £9,446 =	5 days	Cost of implant procedure taken from Sampson 2002. Cost of pump and catheters taken from

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 200 of 219

DRAFT FOR CONSULTATION

	the pump	£4,077		the East Midland	ds Specialised
				Commissioning	Group -
				Commissioning	Policy for
				Intrathecal	Baclofen.
				25/09/2009.	
Catheter revision or	2 nd operation required to fix a	£3,383	1.63 days	Reference cost f years or under	or catheter 18
other correction	problem with the pump			NHS reference co	osts 2009/10

1

4

5

6

14

2 The following scenarios were included in the initial treatment pathway to be modelled, but no 3 evidence was identified in the clinical review and so they have been removed from the final model:

- 1. Technical failure of the pump which would require the pump to be removed.
 - 2. Where no effect is seen or the effect is too small then the dose is increased resulting in an additional follow-up visit.
- 73. Orthopaedic surgery. One possible outcome of using the ITB pump was thought to be delayed surgery and possibly prevention of surgery.

9 Results

10 The results of three small studies (reported in seven papers) from the review of clinical evidence were 11 combined to populate the baseline model parameters. The studies were:

- Awaad et al. study (Awaad 2003)
- Gilmartin-Krach et al. study (Gilmartin 2000; Krach 2004)
 - Hoving et al. study (Hoving 2007; Hoving 2009a; Hoving 2009b)

(see Table 11.21). Seven patients have been excluded from the clinical evidence from those who had a positive test but did not have the pump implanted. Six patients were excluded as they were ineligible to have a pump implanted, and the one death unrelated to treatment. Three of the children with a positive test chose not to have the pump implanted. Although it is not clear from the studies the exact reasons for these decisions they have been included in the analysis reflect the fact that some patients may choose not to have the pump implanted after the test (see Table 11.12).

	Model paramete	r Values from clinical	Inputs into model	Inputs into model
21 22	Table 11.12 rounded)	Clinical values and corresponding inputs for	or the test and no test arm	ns of the model (% values

Model parameter	Values from clinical evidence	Inputs into model (%) test arm	Inputs into model (%) no test arm
patients undergoing the test	117		
Negative test	7	6%	-
Positive test	110	94%	-
Pump implanted	100	97% (of positive tests)	100%
Positive test but pump not implanted	Included; 3 chose to stay on oral medications	3%	-
	Excluded; 1 death which was unrelated to the treatment		
	6 ineligible for a pump		

The GDG was asked to identify which adverse events should be included. Adverse events related to baclofen are considered to be transient with low cost implications and minimal impact on quality of life. Meningitis is a major adverse event which can cause death or serious disability, with high associated costs and is therefore included in the model. The risk of gastroenteritis was also included. It is assumed that if a patient has a major infection the pump will not be implanted.

7 The combined studies reported that 7 pumps were removed and 3 patients required second 8 operations to correct problems with the pump or catheter. One pump was removed due to lack of 9 effect of ITB after a positive test. (Table 11.13) In the model arm with no test it was assumed that the 10 7 children with negative test results would also have their pumps removed due to lack of effect.

11 Table 11.13 Clinical values and corresponding inputs for the test and no test arms of the model for adverse 12 events and pump removal (% values rounded)

Model parameter	Values from clinical evidence	Inputs into model (%) test arm	Inputs into model (%) no test arm
Major infection due to test	1	0.9%	-
Minor infection due to test	1	0.9%	-
Pump removed due to major infection	6	6%	6%
Pump removed due to lack of clinical improvement	1	1%	9.4%*
Second operation required	3	6%	6%

13 *includes the 7 children and young people who would have had a negative test result

The cost of care for a population of 100 children and young people was calculated. Table 11.14 reports the mean and total cost associated with specific events (test results, adverse events) throughout the clinical pathway and the total cost for children who were tested prior to planned treatment. Table 11.15 shows the same data for children who were not tested prior to treatment and were identified as suitable to have an ITB pump based on clinical judgement alone.

19Table 11.14Population numbers, mean and total cost of ITB treatment with testing (N=100) (figures are20rounded from the model)

	Number	Cost per patient	Total cost
Patients having a pre-screening assessment	100	£631	£63,091
Patients having a test	100	£1,787	£178,734
Major infection due to test	1	£2,375	£2,030
Minor infection due to test	1	£4	£3
Patients with positive test result	94		
Patients with negative test result	6		
Patients who stay on standard therapy	9	£97	£896
Negative test result	6		

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 202 of 219

Positive test result but choose not to have pump	2		
Positive test result but choose not to have pump	2		
Major infection due to test	1		
Patients who have pump implanted after positive test result	91	£14,306	£1,298,282
Number of patients who have pump removed	6	£4,077	£25,675
Due to infection during surgery	5	£2,375	£12,931
Lack of effect of baclofen	1		
Patients who go back to standard therapy after pump removed	6	£86	£545
Number of patients who have 2 nd surgery to fix a problem with the pump	3	£3,383	£9,211
Number of patients with pump at 5 year follow-up	84	£5,790	£488,998
Total cost of care of children and young people tested before pump implanted	100	£20,804	£2,080,396

¹

2 Table 11.15 Population numbers, mean and total cost of ITB treatment without testing (N=100) (figures are 3 rounded from the model)

	Number	Cost per patient	Total cost
Patients having a pre-screening assessment	100	£631	£63,091
Number of patients with pump implanted	100	£14,306	£1,430,587
Number of patients who have pump removed	15	£4,077	£60,487
Due to infection from surgery	6	£2,375	£14,249
Due to lack of or poor effect of baclofen	9		
Patients who go back to standard therapy after pump removed	15	£86	£1,283
Number of patients who have 2 nd surgery to fix a problem with the pump	3	£3,383	£10,150
Number of patients with pump at 5 year follow-up	85	£5,790	£493,102
Total cost of care of children and young people not tested before pump implanted	100	£20,729	£2,072,949

4

6 from the model)

	Number	Cost per patient	Total cost
Total cost of care of children and young people remaining on standard treatment	100	£97	£9,686

7

In an economic evaluation a new treatment is always compared with another treatment, or standard
 care. We are interested in the additional benefit of the new treatment above standard treatment and
 whether this incremental benefit is worth the additional cost. In this case standard therapy should be

11 chosen because implanting the pump is not worth the additional cost (approximately £20,000 per

12 patient over 5 years). However, if the analysis is run using the quality of life outcomes from Sampson

13 2002 then using the ITB pump is cost-effective compared to standard therapy in wheelchair users with

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 203 of 219

⁵ Table 11.16 Population numbers, mean and total cost of standard treatment (N=100) (figures are rounded

1 moderate spasm-related pain (Table 11.18). Implanting the pump without testing is cheaper and more

2 effective than testing first using these inputs, but the differences in the overall costs and benefits is

3 small (£20,804 vs. £20,729 per person, and 1.76 vs. 1.78 QALYs over 5 years).

4 Table 11.17 Quality of life improvement scores from Sampson 2002 used in sensitivity analysis

Treatment arm	Mean quality of life improvement per year	Total quality of life improvement over 5 years per person
		Discounted at 3.5%
Standard treatment	0	0
ITB pump with no test	0.43	2.01
ITB pump with testing	0.43	2.01

5

Table 11.18 Sensitivity analysis - Incremental cost-effectiveness results using quality of life outcomes from
 Sampson 2002 (benefits discounted by 3.5%)

Treatment arm	Effects	Incremental effects	Costs	Incremental costs	Incremental cost effectiveness ratio
Standard treatment	0		£9,686		
ITB pump with no test	171.1	171.1	£2,072,949	£2,063,263	£12,057
ITB pump with testing	169.7	-1.4	£2,080,396	£7,447	dominated

8

9 Table 11.19 Sensitivity analysis - Incremental cost-effectiveness results using quality of life outcomes from 10 Sampson 2002 (benefits discounted by 1.5%)

Treatment arm	Effects	Incremental effects	Costs	Incremental costs	Incremental cost effectiveness ratio
Standard treatment	0		£9,686		
ITB pump with no test	177.6	177.6	£2,072,949	£2,063,263	£11,607
ITB pump with testing	176.2	-1.5	£2,080,396	£7,447	dominated

11

12 There is considerable uncertainty in this model given the limited clinical evidence available to show 13 the effectiveness of the pump. Only one RCT was identified with a very small study population of 14 children and young people, but it was not a long-term study. Therefore the baseline assumption for 15 this model was that the ITB pump would have no effect on quality of life. This was tested in a 16 sensitivity analysis using estimated quality of life scores from Sampson 2002. Using these quality of 17 life scores the ITB pump becomes a cost-effective treatment compared to standard treatment. 18 Sampson 2002 included adults and children with different causes of spasticity and so these scores 19 may not be representative of the improvement in children and young people with spasticity caused by 20 non-progressive brain disorders. Also the scores were estimated based on their evidence review and 21 supporting clinical opinions.

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 204 of 219 1 Given the lack of evidence for improvement in guality of life the model was used to calculate what 2 level of effectiveness would be needed for the pump to be found cost-effective at the NICE threshold 3 of £20,000 per QALY. If the ITB pump improves quality of life by more than 0.25 each year for the 5 4 year lifetime of the pump, then implanting a pump would be cost-effective by the NICE threshold. For 5 6 this quality of life improvement 50% of wheelchair users with moderate spasm-related pain who had the pump implanted would have to experience a reduction in pain, improved ability to care for self and 7 improved ability to perform activities of daily living. Or these patients would be prevented from 8 experiencing increased pain, and they would not deteriorate so they were unable to care for 9 themselves or perform activities of daily living.

10 The effectiveness of testing is also uncertain. If there are no adverse events related to testing then the 11 QALYS gained are equal for both the group having testing and the group not having testing. But there 12 is still an additional cost related to testing patients, £1,787 per patient, which is not offset by the 13 additional number of surgeries required to remove the pump in this analysis. There would be a quality 14 of life decrement if the pump is removed but it would be short-term. The GDG believes that testing is 15 a valuable part of the treatment, as in some cases reducing spasticity can have a negative effect and 16 then the pump would not be appropriate. Also the test would allow children and young people and 17 their parents or carers to understand the effects of ITB and so make informed treatment choices and 18 feel confident in giving consent.

19 The main costs are related to implanting the pump. Sensitivity analysis could be performed varying 20 the costs included in the model. Given that standard therapy is so much cheaper than continuous ITB, 21 the other costs included in the model, for example treating infections, are minor compared to the 22 overall cost of testing and implanting the ITB pump. The costs used in this model were uplifted from 23 1999 costs and these may not be representative of the true current costs. A document for the East 24 Midlands Specialised Commissioning Group on the Commissioning Policy for Intrathecal Baclofen for 25 paediatrics, showed the costs of implanting an ITB pump for one year using 2009 costs. 26 (http://www.emscg.nhs.uk/Library/P008V2EMSCGPolicyforIntrathecalBaclofen.pdf (accessed 12 27 October 2010))

Test dose	£1,048	Admission usually 2 days
implant procedure	£ 901	AB05Z (for intermediate pain procedures)
device and catheters	£ 9,446	
refills (4 per year)	£3,599	
Total	£14,994	

28 Table 11.20 Cost of ITB pump for year for paediatrics (East Midlands Specialised Commissioning Group)

29

The costs from Sampson 2002 were more detailed and so used in the model, but these 2009 costs show that uplifting the 1999 is not significantly different. Using the East Midlands costs, the overall cost with the test and including a 5 year follow up was £28,213. This is higher than the costs used in the model, but when tested in the model these higher costs did not change the direction of the results.

34 Conclusion

35 ITB is much more expensive than standard treatment and its clinical value is uncertain. This analysis 36 illustrates the trade-off between the benefits of treatment, the risks, and the costs. This is based on 37 very limited, low quality data which suggests that the efficacy, and the risks and adverse events 38 associated with this treatment are not well known. A more detailed evaluation of the costs, benefits, 39 and risks of ITB require more long-term data, especially as this analysis suggests that ITB may be 40 beneficial in some groups of children but and cost-effective not all children.

Hoving et al study (3 papers)	17 children (all younger than 18 years)
Gilmartin-Krach et al	51 patients
study (3 papers)	(aged between 4 years and 31.3 years; mean 10y 3mo, median 11y 2mo)
Awaad et al study (1	49 (aged between 4 years and 32 years; mean age 13.09 y SD 7.49)
paper)	We know that 28 of these were younger than 18 years but it's unclear how many o those 28 are represented in the outcomes
TOTAL	117
Number of adverse effe	ects
Hoving et al study (3	-Total number of adverse effects: 9
papers)	-Total number of children affected: 8
	7 children slightly lethargic, including one who also experienced transient excessive hypotonia
	One child: excessive perspiration of hands and feet
	-Total number of <u>complications:</u> 19
	-Total number of children affected: 16
	14 children: symptoms of lowered CSF pressure
	3 children, CSF leaked from the catheter connection
	One child: radicular pain in his right leg postoperatively.
	One child: gastroenteritis
Gilmartin-Krach et al	-Total number of adverse effects: 29
study (3 papers)	-Total number of patients affected: 18
	(There were 7 adverse effects during placebo but unclear how many patients were involved. They are included in the figure given here)
	1 patient developed meningitis (withdraw from study)
	1 patient intercurrent gastroenteritis (withdraw from study)
	Nausea, vomiting and drowsiness were common effects reported during baclofen, bu unclear how many children involved in each of them
Awaad et al study (1 paper)	None reported
Number of patients with	h a positive test who went on to have the pump
Hoving et al study (3 papers)	17
Gilmartin-Krach et al study (3 papers)	44
Awaad et al study (1	39

Table 11.21Results of the review of clinical evidence for questions 5 and 6

paper) TOTAL

100

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 206 of 219

Hoving et al study (3 papers)	0
Gilmartin-Krach et al study (3 papers)	0
Awaad et al study (1	10
paper)	Reasons for this:
	3 patients elected to use oral medications
	2 had "family issues"
	1 child's body size was "too small"
	1 child died "unrelated to baclofen trial"
	1 child had "medical issues"
	1 child underwent spinal fusion
	1 family decided not to undergo implant at the time of the study, unclear why
TOTAL	10

Number of patients with a positive test who did not go to have the pump

Number of patients in whom the pump was effective at 12 months

Hoving et al study (3 papers)	17 (at 12 months)
Gilmartin-Krach et al study (3 papers)	40
Awaad et al study (1 paper)	18
TOTAL	75

Number of patients in which the pump was not effective due to baclofen not having an effect

Hoving et al study (3 papers)	0
Gilmartin-Krach et al study (3 papers)	0
Awaad et al study (1 paper)	1
TOTAL	1

Number of patients with adverse effects (or complications?) which required explantation of pump

Hoving et al study (3 papers)	None required explanation of the pump, but 3 procedure or device related events required children to undergo a second operation resulting in a prolonged hospital stay:
	1 incomplete operation
	1 abrupt lack of ITB effect 4 hours postoperatively
	1 postoperative pain at pump site
Gilmartin-Krach et al study (3 papers)	Total number of patients: 3 (unclear whether any of these patients were children)

Reasons:
The 3 because of infections of the pump pocket: 1 had a second pump re-implanted to complete study and the other 2 withdrew from study)
Total number of patients: 4 (unclear whether any of these patients were children)
Reasons:
Meningitis=1
Infection: 2 (1 was a "pocket infection", unclear about the other one)
Lack of effect-no clinical improvement: 1
(unclear if the latte the same patient in which the pump had to be stopped after 5 months because of a change of behaviour owing to an increased in seizure activity)
7 pumps explanted (unclear how many of these were in children)
3 procedure or device related events required children to undergo a second operation resulting in a prolonged hospital stay

1 11.6 Orthopaedic surgery

Given the lack of clinical evidence for the outcomes considered important for this question it was not possible to develop an economic evaluation. The question on timing of surgery and the need for monitoring would benefit from an economic evaluation. The increased costs of routinely monitoring children can be compared to the potential improvements in the effectiveness of surgery and reduction in need for further interventions.

7 A cost analysis was requested by the GDG and is presented here.

8 The cost of surgery varies in the reference costs depending on the limb, whether it is minor or major 9 surgery, and there is a 78% uplift to tariffs for children.

10 Reference costs were found for hip, knee, foot, hand, shoulder and upper arm, elbow and lower arm 11 procedures. They were classed as non-trauma, categories one and two. The reference costs were 12 grouped by procedure and whether it was minor, intermediate or major surgery. Within these groups a 13 weighted average cost was calculated from all procedures for categories one and two, with or without 14 complications. Costs ranged from £1.638 (minor hand procedures) to £6.118 (major hip procedures). 15 With the children's tariff uplift these become £2,915 to £10,889. The average length of stay ranged 16 from 1 day for hand procedures, to 21 days for major hip procedures. Scoliosis or surgery for other 17 spinal deformities cost on average £2,091 (£3,722 with uplift) and required on average 4 days in 18 hospital.

19 These costs are for a finished consultant episode and so do not include rehabilitation therapy in the 20 community after surgery.

21 **11.7 Selective dorsal rhizotomy**

Selective dorsal rhizotomy (SDR) is an operation where nerve roots are identified coming back into the spinal cord from the muscles in the legs and a percentage of them are cut. SDR has been offered in the UK since 1994 at Robert Jones and Agnes Hunt Orthopaedic and District Hospital NHS Trust (RJAH). In the 10 years up to 2006 they treated 27 patients.

A report for the Australian Medical Services Advisory Committee outlined the requirements for a centre to offer SDR. An experienced multidisciplinary team is necessary and a key aspect of the service is patient selection and monitoring. The surgery is performed by a paediatric neurosurgeon supported by specialists in paediatric anaesthesia, paediatric perioperative pain management, paediatric rehabilitation and intraoperative spinal monitoring. Postoperative care involves input from specialists in neurosurgery, paediatric rehabilitation, orthotics, orthopaedic surgery, physiotherapy,

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 208 of 219 occupational therapy, nursing psychology and social work. The report stated that the procedure is not
 technically difficult and staff can be trained quickly. (Selective Dorsal Rhizotomy. Assessment for
 Nationally Funded Centre Status. A report by the Medical Services Advisory Committee to the
 Australian Health Ministers' Advisory Council. November 2006)

5 The NICE IPG group were given an unpublished dissertation presenting a pilot economic analysis of 6 SDR in the UK (Edwards 2010). It was developed to determine whether a full-scale economic analysis 7 of SDR was needed and whether SDR should continue to be offered in the UK. The analysis was 8 based on a group of patients treated at the RJAH who had undergone SDR and had been regular 9 patients from 5 years old to post-adolescence and comprehensive hospital records were available. 10 The costs and outcomes for this group were retrospectively analysed.

- 11 The comparison group was four patients with spastic diplegia who had not been selected for SDR for
- 12 minimal clinical reasons. It was expected that these patients would have followed a very similar
- 13 pattern of musculoskeletal development and impairment to the SDR group had they not undergone
- 14 SDR.

The small numbers of patients included in the analysis makes the results of the economic evaluation uncertain, as was explained in the discussion of the dissertation. The literature review for this clinical question was limited. The only statistically significant benefit reported was a reduction in tone in lower extremity joints. As no good quality long term data was available it is not possible to say from the evidence whether the initial reduction in tone reported would lead to long term, clinically significant benefits. It was not possible to develop a cost-effectiveness analysis as it is necessary to have final

21 outcomes and the GDG were unable to extrapolate the reduction in tone to a potential long term 22 clinically significant improvement in function.

The cost analysis developed for the dissertation (Edwards 2010) was very detailed and gives a thorough understanding of the costs involved in SDR, the number of consultations needed and begins to look at the potential impact on need for further surgery. The costs are reproduced here. In order to understand how SDR fits into the NHS this cost data needs to be reviewed alongside good quality comparative long-term effectiveness data with a large enough population to capture the risks as well as the benefits.

29 **Costs**

A thorough cost analysis was conducted for each patient. A data collection sheet was used to record all contacts with the hospital or one of its outreach services in schools and clinics in other Trusts. Contact episodes were separately identified as outpatient appointments, multidisciplinary team sessions, gait assessments, orthotics supplies, hospital admissions, surgical or other in-patient interventions, and admissions for physiotherapy top-up.

They use a bottom-up approach where resource use was recorded and then costs applied, rather than taking tariffs or reference costs for episodes (Table 11.22).

RESOURCE	COST	Comment
Initial clinical screening		
Initial outpatient appointment	£94	Standard tariff
Gait assessment	£1245	Locally derived tariff
X-ray (spine and hips)	£25	Standard tariff
MRI of brain and spinal cord	£2467	Standard tariff
Paediatric consultant review of imaging	£21	15 minutes at consultant salary
Pre-operative assessment clinic		
Pre-op clinic attendance	£94	Standard tariff, includes consultant

37 Table 11.22 Unit costs for treatment

DRAFT FOR CONSULTATION

		time
Dietician	£13	Based on 0.5 hours of salary Band 6
Psychologist	£57	1.0 hour of salary Band 8a
Orthotist	£30	1.0 hour of salary Band 7
SDR – theatre procedure		
Theatre apportionment based on minutes – standard	£3600	Theatre time 240 mins x standard £15 per minute – includes all variable pay and non-pay resources
Theatre – surgeon (2)	£634	Two surgeons for 4 hours at standard salary
Special tooling – gold anspach drill	£130	A new drill at £130 per case
Intraoperative spinal monitoring		
Spinal monitoring	£2680	SLA Daily cost for team attending from Birmingham
Bioengineering support	£54	4 hours of in-house bioengineer Band 7
Recovery		
Recovery – paediatric nurses (2)	£40	Average of 1 hour in recovery
WARD: 7 weeks		
consultant ward round	£148	Weekly ward round by consultant, 20 mins per visit
Ward costs	£8459	Standard ward costs 49 days@ £172.64 per day
Dietician	£13	Follow up visit 0.5 hours
Psychologist	£28	Follow up visit 0.5 hours
Physiotherapy – group session	£277	Based on staff input x time divided by number of children in group
Physiotherapy – individual	£2217	
Hydrotherapy	£623	Based on staff input x time divided by number of children in group
Orthotics – contracture correction devices	£201	Approx. 15% of children supplied with CCD orthoses following surgery @£1340 per pair
Orthotist to fit and supply CCDs	£45	Total 1.5 hours orthotist time
Therapeutic electrical stimulation		1 in 5 children benefit from TES after surgery
	£160	Locally derived tariff, includes staff, admin and clerical, and non-pay costs.
Net total	£21,135	
Overheads	£4227	Calculated at 20% of total costs to incorporate capital, corporate and estates overheads

Grand Total	£25,362	

They did not include the cost of additional follow-up clinic visits since all patients are followed up routinely post-surgery. The costs of ankle foot orthosis and footwear whilst on the ward were not included because a high proportion of children with spastic diplegia routinely wear ankle foot orthoses. The neurophysiological spinal monitoring equipment was treated as a sunk cost as it is used for other spinal surgery and so was not included in the costing.

7 The mean cost of care for the SDR patients (from age 5 years to end of adolescent growth (16 years 8 girls, 18 years boys)) was £67,478 (median £71,404, range £47,511 to £86,880). In the non-SDR 9 group the mean cost of care was £63,542 (median £56,890, range £44,842 to £95,570).

10 They reported all the patient contacts for each group including musculoskeletal surgery (Table 11.23 11 and Table 11.24). They found the number of outpatient visits showed no significant variation between 12 groups. Non-SDR patients underwent an average of 3 periods of surgery in total and SDR an average 13 of 1.9, although the SDR patients spent longer in hospital (83 days compared to 57.5 in the non-SDR 14 group). However, these are small patient numbers.

Table 11.23	Patient contacts in SDR group			
Patient	Periods of surgery post SDR	Periods of surgery including SDR	Total inpatient days including top-up physio admission	Total outpatient visits
SDR1	0	1	62	33
SDR2	0	1	45	33
SDR3	2	3	107	38
SDR4	1	2	96	39
SDR5	0	1	51	40
SDR6	2	3	120	20
SDR7	1	2	103	34
SDR8	0	1	60	23
SDR9	2	3	103	36
Mean		1.9	83	32.9

16

17 Table 11.24 Patient contacts in non-SDR group

Patient	Periods of surgery	Total inpatient days including top-up physio admissions	Total outpatient visits
NON1	4	67	42
NON2	4	55	26
NON3	2	39	31
NON4	2	69	22
Mean	3	57.5	30.3

18

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 211 of 219 The cost data presented in the dissertation was thorough and provides useful information. Again these are small patient numbers and so it would not be productive to compare the groups. There is considerable uncertainty surrounding the effectiveness of SDR. In order to provide a useful analysis for decision making we would need to understand the long-term benefits and risks of treatment compared to the next best alternative.

1 12 References

2 Aarts 2010

Aarts,P.B., Jongerius,P.H., Geerdink,Y.A., Van,LimbeekJ, Geurts,A.C., Effectiveness of modified
 constraint-induced movement therapy in children with unilateral spastic cerebral palsy: A randomized
 controlled trial, Neurorehabilitation and Neural Repair, 24, 509-518, 2010

6 **Aarts 2011**

7 Aarts, P.B., Jongerius, P.H., Geerdink, Y.A., van, Limbeek J., Geurts, A.C., Modified Constraint-Induced

- 8 Movement Therapy combined with Bimanual Training (mCIMT-BiT) in children with unilateral spastic
- 9 cerebral palsy: how are improvements in arm-hand use established?, Research in Developmental
- 10 Disabilities, 32, 271-279, 2011

11 Abbott 1992

12 Abbott, R., Complications with selective posterior rhizotomy, Pediatric Neurosurgery, 18, 43-47, 1992

13 Ackman 2005

14 Ackman, J.D., Russman, B.S., Thomas, S.S., Buckon, C.E., Sussman, M.D., Masso, P., Sanders, J.,

- 15 D'Astous, J., Aiona, M.D., Shriners Hospitals, B.T.X., Comparing botulinum toxin A with casting for
- 16 treatment of dynamic equinus in children with cerebral palsy, Developmental Medicine and Child
- 17 Neurology, 47, 620-627, 2005

18 Awaad 2003

Awaad,Y., Tayem,H., Munoz,S., Ham,S., Michon,A.M., Awaad,R., Functional assessment following
 intrathecal baclofen therapy in children with spastic cerebral palsy, Journal of Child Neurology, 18, 26 34, 2003

22 Buckon 2001

Buckon,C.E., Thomas,S.S., Jakobson-Huston,S., Sussman,M., Aiona,M., Comparison of three ankle foot orthosis configurations for children with spastic hemiplegia, Developmental Medicine and Child
 Neurology, 43, 371-378, 2001

26 Buckon 2004a

27 Buckon, C.E., Thomas, S.S., Jakobson-Huston, S., Moor, M., Sussman, M., Aiona, M., Comparison of

27 Buckon, C.E., Thomas, C.S., Bakobson-Histon, C., Moor, M., Bussman, M., Rona, M., Comparison of
 28 three ankle-foot orthosis configurations for children with spastic diplegia, Developmental Medicine and
 29 Child Neurology, 46, 590-598, 2004

30 Buckon 2004b

Buckon,C.E., Thomas,S.S., Piatt,J.H.,Jr., Aiona,M.D., Sussman,M.D., Selective dorsal rhizotomy
 versus orthopedic surgery: a multidimensional assessment of outcome efficacy, Archives of Physical
 Medicine and Rehabilitation, 85, 457-465, 2004

34 Carlson 1997

Carlson,W.E., Vaughan,C.L., Damiano,D.L., Abel,M.F., Orthotic management of gait in spastic
 diplegia, American Journal of Physical Medicine and Rehabilitation, 76, 219-225, 1997

37 Denhoff 1975

38 Denhoff, E., Feldman, S., Smith, M.G., Litchman, H., Holden, W., Treatment of spastic cerebral-palsied 39 children with sodium dantrolene. Developmental Medicine and Child Neurology. 17, 736-742, 1975

40 **Department of Health 2005**

- 41 Department of Health 2005. National Service Framework for Long-term Conditions. March 2005.
- 42 Annexe 4 (based on figures in Neuro numbers: a brief review of the numbers of people in the UK with
- 43 a neurological condition)

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 213 of 219

1 Dodd 2003

2 Dodd,K.J., Taylor,N.F., Graham,H.K., A randomized clinical trial of strength training in young people 3 with cerebral palsy, Developmental Medicine and Child Neurology, 45, 652-657, 2003

4 **Dodd 2004**

5 Dodd,K.J., Taylor,N.F., Graham,H.K., Strength training can have unexpected effects on the self-6 concept of children with cerebral palsy, Pediatric Physical Therapy, 16, 99-105, 2004

7 Edwards 2010

8 Edwards, K. Economic analysis of selective dorsal rhizotomy in the UK, unpublished dissertation 2010

9 Elliott 2011

10 Elliott,C.M., Reid,S.L., Alderson,J.A., Elliott,B.C., Lycra arm splints in conjunction with goal-directed 11 training can improve movement in children with cerebral palsy, Neurorehabilitation, 28, 47-54, 2011

12 Fowler 2010

13 Fowler, E.G., Knutson, L.M., Demuth, S.K., Siebert, K.L., Simms, V.D., Sugi, M.H., Souza, R.B., Karim, R.,

Azen, S.P., Physical Therapy Clinical Research Network (PTClinResNet), Pediatric endurance and

15 limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: a randomized

16 controlled trial, Physical Therapy, 90, 367-381, 2010

17 **Gilmartin 2000**

Gilmartin,R., Bruce,D., Storrs,B.B., Abbott,R., Krach,L., Ward,J., Bloom,K., Brooks,W.H.,
 Johnson,D.L., Madsen,J.R., McLaughlin,J.F., Nadell,J., Intrathecal baclofen for management of
 spastic cerebral palsy: multicenter trial, Journal of Child Neurology, 15, 71-77, 2000

21 Gorton 2009

22 Gorton,G.E.,III, Abel,M.F., Oeffinger,D.J., Bagley,A., Rogers,S.P., Damiano,D., Romness,M.,

Tylkowski,C., A prospective cohort study of the effects of lower extremity orthopaedic surgery on
 outcome measures in ambulatory children with cerebral palsy, Journal of Pediatric Orthopedics, 29,
 903-909, 2009

26 Haslam 1974

Haslam,R.H., Walcher,J.R., Lietman,P.S., Kallman,C.H., Mellits,E.D., Dantrolene sodium in children
with spasticity, Archives of Physical Medicine and Rehabilitation,Arch Phys Med Rehabil, 55, 384388, 1974

30 Hoare 2010

Hoare,B.J., Wallen,M.A., Imms,C., Villanueva,E., Rawicki,H.B., Carey,L., Botulinum toxin A as an
 adjunct to treatment in the management of the upper limb in children with spastic cerebral palsy
 (UPDATE), Cochrane database of systematic reviews (Online), #2010. Date of Publication,
 CD003469-, 2010

35 Horstman 2007

Horstmann H. and Bleck E., Orthopaedic management in cerebral palsy. London: John Wiley andSons; 2007.

38 Houltram 2001

39 Houltram, J., Noble, I., Boyd, R.N., Corry, I., Flett, P., Graham, H.K., Botulinum toxin type A in the

40 management of equinus in children with cerebral palsy: an evidence-based economic evaluation,

41 European journal of neurology : the official journal of the European Federation of Neurological 42 Societies, 8 Suppl 5, -202, 2001

43 Hoving 2007

44 Hoving, M.A., van Raak, E.P., Spincemaille, G.H., Palmans, L.J., Sleypen, F.A., Vles, J.S., Dutch Study

45 Group on Child Spasticity., Intrathecal baclofen in children with spastic cerebral palsy: a double-blind,

46 randomized, placebo-controlled, dose-finding study, Developmental Medicine and Child Neurology,

47 49, 654-659, 2007

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 214 of 219

1 Hoving 2009a

- 2 Hoving, M.A., van Raak, E.P., Spincemaille, G.H., Palmans, L.J., Becher, J.G., Vles, J.S., Dutch Study
- 3 Group on Child Spasticity., Efficacy of intrathecal baclofen therapy in children with intractable spastic
- 4 cerebral palsy: a randomised controlled trial, European Journal of Paediatric Neurology, 13, 240-246,
- 5 2009

6 Hoving 2009b

- 7 Hoving,M.A., van Raak,E.P., Spincemaille,G.H., van Kranen-Mastenbroek,V.H., van,Kleef M., 8 Gorter,J.W., Vles,J.S., Dutch Study Group on Child Spasticity., Safety and one-year efficacy of
- 9 intrathecal baclofen therapy in children with intractable spastic cerebral palsy, European Journal of
- 10 Paediatric Neurology, 13, 247-256, 2009

11 Jevsevar 1993

Jevsevar D.S. and Karlin L.I., The relationship between preoperative nutritional status and
 complications after an operation for scoliosis in patients who have cerebral palsy, Journal of Bone and
 Joint Surgery – American Volume, 75, 880-4,1993

15 **Joynt 1980**

Joynt,R.L., Leonard,J.A.,Jr., Dantrolene sodium suspension in treatment of spastic cerebral palsy,
 Developmental Medicine and Child Neurology, 22, 755-767, 1980

18 Kanovsky 2009

- 19 Kanovsky, P., Bares, M., Severa, S., Richardson, A., Dysport Paediatric Limb Spasticity Study Group.,
- 20 Long-term efficacy and tolerability of 4-monthly versus yearly botulinum toxin type A treatment for
- 21 lower-limb spasticity in children with cerebral palsy, Developmental Medicine and Child Neurology,
- 22 51, 436-445, 2009

23 Katz-Leurer 2009

- 24 Katz-Leurer, M., Rotem, H., Keren, O., Meyer, S., The effects of a 'home-based' task-oriented exercise
- programme on motor and balance performance in children with spastic cerebral palsy and severe traumatic brain injury, Clinical Rehabilitation, 23, 714-724, 2009

27 Kay 2004

- Kay,R.M., Rethlefsen,S.A., Fern-Buneo,A., Wren,T.A.L., Skaggs,D.L., Botulinum toxin as an adjunct
 to serial casting treatment in children with cerebral palsy, Journal of Bone and Joint Surgery Series
- 30 A, 86, 2377-Series, 2004

31 Kim 2001

Kim,D.S., Choi,J.U., Yang,K.H., Park,C.I., Selective posterior rhizotomy in children with cerebral
 palsy: a 10-year experience, Childs Nervous System, 17, 556-562, 2001

34 Krach 2004

- 35 Krach,L.E., Kriel,R.L., Gilmartin,R.C., Swift,D.M., Storrs,B.B., Abbott,R., Ward,J.D., Bloom,K.K.,
- Brooks,W.H., Madsen,J.R., McLaughlin,J.F., Nadell,J.M., Hip status in cerebral palsy after one year of
- 37 continuous intrathecal baclofen infusion, Pediatric Neurology, 30, 163-168, 2004

38 **Kwon 2010**

- 39 Kwon, J.Y., Hwang, J.H., Kim, J.S., Botulinum toxin a injection into calf muscles for treatment of spastic
- 40 equinus in cerebral palsy: a controlled trial comparing sonography and electric stimulation-guided
- 41 injection techniques: a preliminary report, American Journal of Physical Medicine and Rehabilitation,
- 42 89, 279-286, 2010

43 **Lee 2008**

Lee, J.H., Sung, I.Y., Yoo, J.Y., Therapeutic effects of strengthening exercise on gait function of cerebral palsy, Disability and Rehabilitation, 30, 1439-1444, 2008

46 Liao 2007

- 47 Liao,H.F., Liu,Y.C., Liu,W.Y., Lin,Y.T., Effectiveness of loaded sit-to-stand resistance exercise for
- 48 children with mild spastic diplegia: a randomized clinical trial, Archives of Physical Medicine and
- 49 Rehabilitation, 88, 25-31, 2007

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 215 of 219

1 Lonstein 2011

2 Lonstein J.E., Koop S.E., Novachek T.F. et al., Results and complications following spinal fusion for 3 neuromuscular scoliosis in cerebral palsy and static encephalopathy using luque galveston 4 instrumentation: experience in 93 patients, Spine, June 13 ePub ahead of print, 2011

5 Mathew 2005a

6 Mathew, A., Mathew, M.C., Bedtime diazepam enhances well-being in children with spastic cerebral 7 palsy, Pediatric Rehabilitation, 8, 63-66, 2005

8 Mathew 2005b

9 Mathew, A., Mathew, M.C., Thomas, M., Antonisamy, B., The efficacy of diazepam in enhancing motor 10 function in children with spastic cerebral palsy, Journal of Tropical Pediatrics, 51, 109-113, 2005

11 McKinley 1980

12 McKinley, I., Hyde, E., Gordon, N., Baclofen: A team approach to drug evaluation of spasticity in 13 childhood, Scottish Medical Journal, Scott.Med.J., 25, S-S, 1980

14 McLaughlin 1998

15 McLaughlin, J.F., Bjornson, K.F., Astley, S.J., Graubert, C., Hays, R.M., Roberts, T.S., Price, R.,

- 16 Temkin, N., Selective dorsal rhizotomy: efficacy and safety in an investigator-masked randomized
- 17 clinical trial. [62 refs], Developmental Medicine and Child Neurology, 40, 220-232, 1998

18 **McNee 2007**

- 19 McNee, A.E., Will, E., Lin, J.P., Eve, L.C., Gough, M., Morrissey, M.C., Shortland, A.P., The effect of serial
- 20 casting on gait in children with cerebral palsy: preliminary results from a cross-over trial, Gait and
- 21 Posture, 25, 463-468, 2007

22 McNerney 2000

23 McNerney N.P., Mubarak S.J., and Wenger D.R., One-stage correction of the dysplastic hip in

- 24 cerebral palsy with the San Diego acetabuloplasty: results and complications in 104 hips, Journal of
- 25 Pediatric Orthopedics, 20, 93-103, 2000

26 Milla 1977

27 Milla, P.J., Jackson, A.D., A controlled trial of baclofen in children with cerebral palsy, Journal of 28 International Medical Research, 5, 398-404, 1977

29 Molenaers 2001

30 Molenaers, G., Desloovere, K., De, Cat J., Jonkers, I., De, Borre L., Pauwels, P., Nijs, J., Fabry, G., 31 De,Cock P., Single event multilevel botulinum toxin type A treatment and surgery: similarities and

32 differences, European Journal of Neurology, 8 Suppl 5, 88-97, 2001

33 **Motta 2008**

34 Motta, F., Stignani, C., Antonello, C.E., Effect of intrathecal baclofen on dystonia in children with 35 cerebral palsy and the use of functional scales, Journal of Pediatric Orthopedics, 28, 213-217, 2008

36 Newman 2007

37 Newman, C.J., Kennedy, A., Walsh, M., O'Brien, T., Lynch, B., Hensey, O., A pilot study of delayed 38 versus immediate serial casting after botulinum toxin injection for partially reducible spastic equinus,

39 Journal of Pediatric Orthopedics, 27, 882-885, 2007

40 Novak 2009

41 Novak, I., Cusick, A., Lannin, N., Occupational therapy home programs for cerebral palsy: double-blind, 42 randomized, controlled trial, Pediatrics, 124, e606-e614, 2009

43 Olesch 2010

- 44 Olesch, C.A., Greaves, S., Imms, C., Reid, S.M., Graham, H.K., Repeat botulinum toxin-A injections in
- 45 the upper limb of children with hemiplegia: a randomized controlled trial, Developmental Medicine and
- 46 Child Neurology, 52, 79-86, 2010

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 216 of 219

1 Radtka 2005

2 Radtka,S.A., Skinner,S.R., Johanson,M.E., A comparison of gait with solid and hinged ankle-foot 3 orthoses in children with spastic diplegic cerebral palsy, Gait and Posture, 21, 303-310, 2005

4 Ramstad 2010

- 5 Ramstad,K., Jahnsen,R., Lofterod,B., Skjeldal,O.H., Continuous intrathecal baclofen therapy in
- 6 children with cerebral palsy when does improvement emerge?, Acta Paediatrica, 99, 1661-1665,
 7 2010

8 Reddihough 2002

9 Reddihough,D.S., King,J.A., Coleman,G.J., Fosang,A., McCoy,A.T., Thomason,P., Graham,H.K.,
10 Functional outcome of botulinum toxin A injections to the lower limbs in cerebral palsy, Developmental
11 Medicine and Child Neurology, 44, 820-827, 2002

12 Rethlefsen 1999

Rethlefsen,S., Kay,R., Dennis,S., Forstein,M., Tolo,V., The effects of fixed and articulated ankle-foot
 orthoses on gait patterns in subjects with cerebral palsy, Journal of Pediatric Orthopaedics, 19, 470 474, 1999

16 **Rice 2009**

17 Rice, J., Waugh, M.C., Pilot study on trihexyphenidyl in the treatment of dystonia in children with 18 cerebral palsy, Journal of Child Neurology, 24, 176-182, 2009

19 Russo 2007

Russo,R.N., Crotty,M., Miller,M.D., Murchland,S., Flett,P., Haan,E., Upper-limb botulinum toxin A injection and occupational therapy in children with hemiplegic cerebral palsy identified from a population register: a single-blind, randomized, controlled trial, Pediatrics, 119, e1149-e1158, 2007

23 Sampson 2002

Sampson FC, et al. Functional benefits and cost/benefit analysis of continuous intrathecal baclofen infusion for the management of severe spasticity. J Neurosurg 96: 1052-1057, 2002

26 Scheinberg 2006

27 Scheinberg,A., Hall,K., Lam,L.T., O'Flaherty,S., Oral baclofen in children with cerebral palsy: a 28 double-blind cross-over pilot study, Journal of Paediatrics and Child Health, 42, 715-720, 2006

29 Senaran 2007

30 Senaran,H., Shah,S.A., Presedo,A., Dabney,K.W., Glutting,J.W., Miller,F., The risk of progression of 31 scoliosis in cerebral palsy patients after intrathecal baclofen therapy, Spine, 32, 2348-2354, 2007

32 Shaw 2008

Shaw,L., Price,C., van,Wijck F., Barnes,M., Graham,L., Ford,G.A., Shackley,P., Steen,N.,
 Rodgers,H., RCT to evaluate the clinical effect and cost-effectiveness of treating upper limb spasticity
 due to stroke with botulinum toxin, International Journal of Stroke, 3, 139, 2008-, 2008

36 Shaw 2010

Shaw,L., Rodgers,H., Price,C., van,WijckF, Shackley,P., Steen,N., Barnes,M., Ford,G., Graham,L.,
 BoTULS: A multicentre randomized controlled trial to evaluate the clinical effectiveness and cost effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A, Health
 Technology Assessment, 14, i-141, 2010

41 Shilt 2008

42 Shilt,J.S., Lai,L.P., Cabrera,M.N., Frino,J., Smith,B.P., The impact of intrathecal baclofen on the 43 natural history of scoliosis in cerebral palsy, Journal of Pediatric Orthopedics, 28, 684-687, 2008

44 Sienko-Thomas 2002

- 45 Sienko, Thomas S., Buckon, C.E., Jakobson-Huston, S., Sussman, M.D., Aiona, M.D., Stair locomotion
- 46 in children with spastic hemiplegia: the impact of three different ankle foot orthosis (AFOs)
- 47 configurations, Gait and Posture, 16, 180-187, 2002

Spasticity in children and young people with non-progressive brain disorders: full guideline DRAFT (October 2011) Page 217 of 219

1 Sponsella 2000

2 Sponseller P.D., LaPorte D.M., Hungerford M.W. et al., Deep wound infections after neuromuscular 3 scoliosis surgery: a multicenter study of risk factors and treatment outcomes, Spine, 25, 2461-6, 2000

4 Steinbok 1997

5 Steinbok,P., Reiner,A.M., Beauchamp,R., Armstrong,R.W., Cochrane,D.D., Kestle,J., A randomized 6 clinical trial to compare selective posterior rhizotomy plus physiotherapy with physiotherapy alone in 7 children with spastic diplegic cerebral palsy.[Erratum appears in Dev Med Child Neurol 1997

8 Nov;39(11):inside back cov], Developmental Medicine and Child Neurology, 39, 178-184, 1997

9 Surman 2009

Surman G, HemmingK et al Children with cerebral palsy: severity and trends over time. Paediatr
 Perinat Epidemiol 2009 Nov; 23(6):513-521

12 **Szoke 1998**

Szoke G., Lipton G., Miller F. et al., Wound infection after spinal fusion in children with cerebral palsy,
 Journal of Pediatric Orthopedics, 18, 727-33, 1998

15 **Thomason 2011**

Thomason,P., Baker,R., Dodd,K., Taylor,N., Selber,P., Wolfe,R., Graham,H.K., Single-event
 multilevel surgery in children with spastic diplegia: a pilot randomized controlled trial, Journal of Bone
 and Joint Surgery - American Volume, 93, 451-460, 2011

19 **Tsirikos 2008**

Tsirikos A.I., Lipton G., Chang W.N. et al., Surgical correction of scoliosis in pediatric patients with cerebral palsy using the unit rod instrumentation, Spine, 33, 1133-40, 2008

22 Unger 2006

Unger,M., Faure,M., Frieg,A., Strength training in adolescent learners with cerebral palsy: a
 randomized controlled trial, Clinical Rehabilitation, 20, 469-477, 2006

25 Wright 1998

Wright,F.V., Sheil,E.M., Drake,J.M., Wedge,J.H., Naumann,S., Evaluation of selective dorsal
 rhizotomy for the reduction of spasticity in cerebral palsy: a randomized controlled tria, Developmental
 Medicine and Child Neurology, 40, 239-247, 1998

29 Xu 2009

Xu,K., Yan,T., Mai,J., A randomized controlled trial to compare two botulinum toxin injection
 techniques on the functional improvement of the leg of children with cerebral palsy, Clinical
 Rehabilitation, 23, 800-811, 2009

33 Yang 2008

- 34 Yang, E.J., Rha, D., Kim, H.W., Park, E.S., Comparison of Botulinum Toxin Type A Injection and Soft-
- 35 Tissue Surgery to Treat Hip Subluxation in Children With Cerebral Palsy, Archives of Physical
- 36 Medicine and Rehabilitation, 89, 2108-2113, 2008

37

13 Abbreviations and glossary

- 3 The final published guideline will include a list of abbreviations and a glossary.
- 4 5
- 5
- 6
- 7 Appendices A–M are in a separate file.