### **Appendix H: Data analysis**

# H.1 Review question 1: Signs, symptoms and risk factors for gallstone disease

Insufficient information was available for data analysis.

### H.2 Review question 2: Diagnosing gallstone disease

### Results for diagnosing gallbladder stones

|         | Sens<br>(95%<br>CI) | Spec<br>(95%<br>CI) | +LR<br>(95%<br>CI) | -LR<br>(95%<br>CI) | AUC  | Log<br>Likelihoo<br>d | AIC    | BIC    |
|---------|---------------------|---------------------|--------------------|--------------------|------|-----------------------|--------|--------|
| US      | 1.00                | 0.14                | 1.16               | 0.01               | 0.87 | 26.32                 | -42.64 | -43.68 |
| 1 study | (1.00,              | (0.11,              | (1.13,             | (0.00,             |      |                       |        |        |
| Ahmed   | 1.00)               | 0.17)               | 1.20)              | 0.02)              |      |                       |        |        |

### Results for diagnosing cholecystitis

|                                          | Sens<br>(95%<br>CI)     | Spec<br>(95%<br>CI)     | +LR<br>(95%<br>CI)         | -LR<br>(95%<br>CI)      | AUC  | Log<br>Likeliho<br>od | AIC   | BIC   |
|------------------------------------------|-------------------------|-------------------------|----------------------------|-------------------------|------|-----------------------|-------|-------|
| MRCP<br>1 study<br>Hakanss<br>on         | 0.89<br>(0.70,<br>0.96) | 0.89<br>(0.50,<br>0.99) | 13.10<br>(1.72,<br>56.70)  | 0.16<br>(0.04,<br>0.40) | 0.88 | 4.60                  | 0.81  | -5.73 |
| US 3 studies De Vargas, Hakanss on, Park | 0.71<br>(0.28,<br>0.94) | 0.88<br>(0.64,<br>0.97) | 6.37<br>(2.07,<br>16.50)   | 0.36<br>(0.08,<br>0.79) | 0.89 | 5.95                  | -1.91 | -2.95 |
| MRI<br>1 study<br>Altun                  | 0.95<br>(0.71,<br>0.99) | 0.69<br>(0.41,<br>0.88) | 3.41<br>(1.51,<br>7.74)    | 0.12<br>(0.01,<br>0.46) | 0.94 | 4.55                  | 0.91  | -5.62 |
| CT<br>1 study<br>De<br>Vargas            | 0.95<br>(0.53,<br>1.00) | 0.88<br>(0.27,<br>0.99) | 20.80<br>(1.18,<br>124.00) | 0.14<br>(0.00,<br>0.70) | 0.94 | 5.26                  | -0.52 | -7.05 |

### H.3 Results for diagnosing common bile duct stones

|                                                 | Sens<br>(95%CI)         | Spec<br>(95%CI)         | +LR<br>(95%CI)           | -LR<br>(95%CI)          | AUC  | Log<br>Likelihoo<br>d | AIC    | BIC    |
|-------------------------------------------------|-------------------------|-------------------------|--------------------------|-------------------------|------|-----------------------|--------|--------|
| MRCP<br>8<br>studies<br>Chan,<br>Regan,<br>Soto | 0.83<br>(0.72,<br>0.91) | 0.90<br>(0.83,<br>0.95) | 9.15<br>(4.64,<br>16.60) | 0.19<br>(0.10,<br>0.32) | 0.64 | 16.27                 | -22.54 | -18.68 |

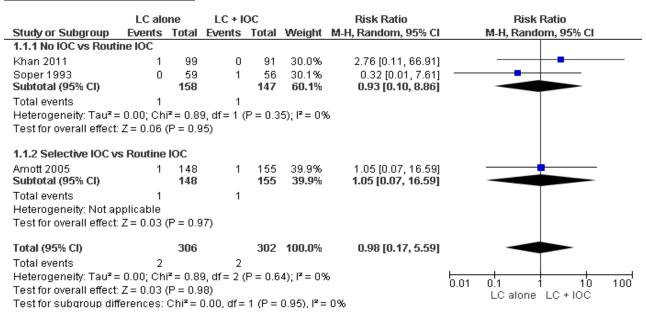
|                                                                                      | Sens                    | Spec                    | +LR                        | -LR                     |      | Log<br>Likelihoo |        |        |
|--------------------------------------------------------------------------------------|-------------------------|-------------------------|----------------------------|-------------------------|------|------------------|--------|--------|
|                                                                                      | (95%CI)                 | (95%CI)                 | (95%CI)                    | (95%CI)                 | AUC  | d                | AIC    | BIC    |
| (2002),<br>Griffin,<br>Kondo,<br>Stiris,<br>Sugiya<br>ms<br>(1998)                   |                         |                         |                            |                         |      |                  |        |        |
| 5 studies Regan, Riskes, Sugiya ma (1997), Sugiya ma (1998) Jovanov ic (2011)        | 0.70<br>(0.52,<br>0.83) | 0.88<br>(0.63,<br>0.97) | 9.80<br>(5.39,<br>16.60)   | 0.41<br>(0.32,<br>0.50) | 0.83 | 9.56             | -9.12  | -7.61  |
| EUS 3 studies Kondo, Polkows ki, Sugiya ma (1997)                                    | 0.94<br>(0.87,<br>0.97) | 0.94<br>(0.41,<br>1.00) | 51.70<br>(1.62,<br>321.00) | 0.08<br>(0.03,<br>0.16) | 0.95 | 11.32            | -12.65 | -13.69 |
| CTC<br>4<br>studies<br>Kondo,<br>Soto<br>(2000)<br>Stoto<br>(1999),<br>Polkows<br>ki | 0.82<br>(0.67,<br>0.91) | 0.84<br>(0.72,<br>0.92) | 5.42<br>(2.78,<br>9.92)    | 0.23<br>(0.11,<br>0.40) | 0.18 | 8.91             | -7.81  | -7.41  |
| CT<br>3<br>studies<br>Sugiya<br>ma<br>(1997),<br>Tseng,<br>Soto<br>(2000)            | 0.76<br>(0.69,<br>0.81) | 0.90<br>(0.66,<br>0.97) | 9.32<br>(2.32,<br>28.30)   | 0.28<br>(0.22,<br>0.36) | 0.79 | 7.38             | -4.76  | -5.80  |

# H.4 Review question 3: Predicting which people with asymptomatic gallbladder stones will develop complications

Insufficient information was available for data analysis

# H.5 Review question 4a: Managing asymptomatic gallbladder stones

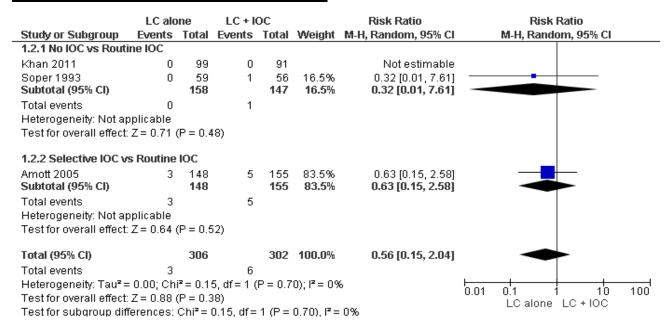
No evidence was identified for this review question


# H.6 Review question 4b Managing symptomatic gallbladder stones

# H.6.1 Laparoscopic cholecystectomy vs Laparoscopic cholecystectomy plus intraoperative cholangiography

#### Outcome 1: Bile leak

One study (Soper, 1993) reports that both groups had zero bile duct injuries. Unable to analyse zero event data.

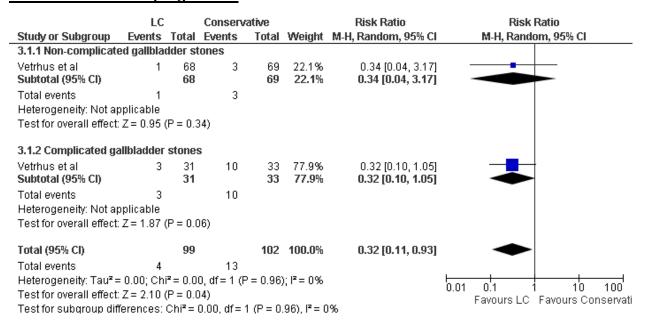

#### Outcome 2: Bile duct injury



#### Outcome 3: Length of stay

One study (Soper 1993) reports that both groups had a mean length of stay of 1 day. No measures of dispersion are reported.

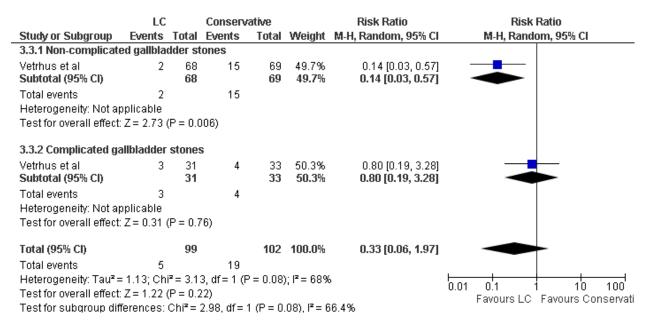
#### **Outcome 4: Missed common bile duct stones**




#### H.6.2 Laparoscopic cholecystectomy compared to cholecystostomy

No evidence was found

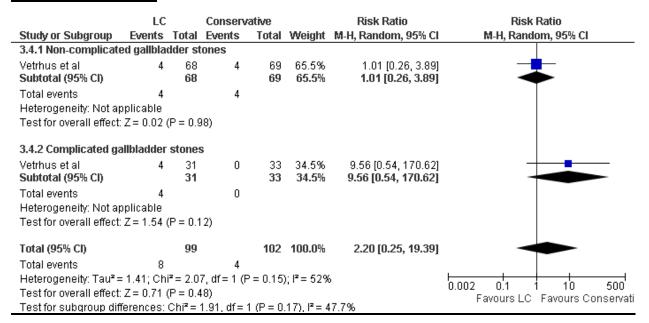
#### H.6.3 Laparoscopic cholecystectomy compared to conservative management


#### Outcome 1: Disease progression



#### Outcome 2: Aditional intervention required (cholecystectomy)

45/102 (44.1%) in the conservative management group required cholecystectomy

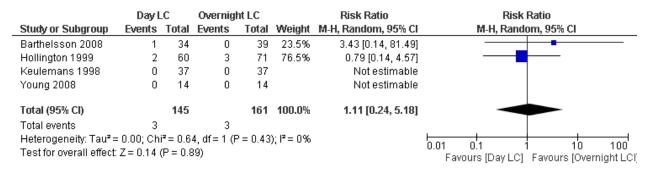

#### Outcome 3: Readmission (due to biliary pain)



#### Outcome 4: Length of stay

#### Not reported

#### **Outcome 5: Mortality**




# H.6.4 Day case laparoscopic cholecystectomy compared to planned inpatient laparoscopic cholecystectomy

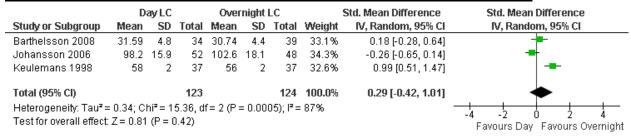
#### Outcome 1: Failed day case discharge

18/149 (12.1%) of patients in the day case arm had an unplanned inpatient admission.

#### Outcome 2: Readmission following laparoscopic cholecystectomy



#### Outcome 3: Length of stay


Data could not be pooled:

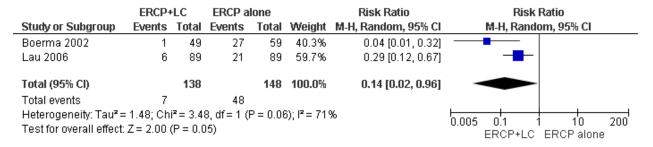
- Hollington (1999)
  - 31/71 day case patients required prolonged hospitalisation of 2 days or more
- Johansson (2006)
  - 48/52 day case patients were discharged within 4-6 hrs (4 patients were admitted),
  - o 42/48 inpatients were discharged on the first day after surgery
  - 6/48 inpatients were discharged on the second day after surgery
- Keulemans (1998)
  - post surgical length of stay was Mean=7.2 SD= 0.8 hrs for the day case group and Mean =31 SD=3 for the inpatient group

#### **Outcome 4: Mortality**

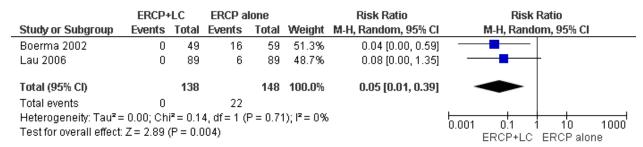
Not reported

#### Outcome 5: Quality of life on day 7 following laparoscopic cholecystectomy




### H.7 Review question 4c Managing common bile duct stones

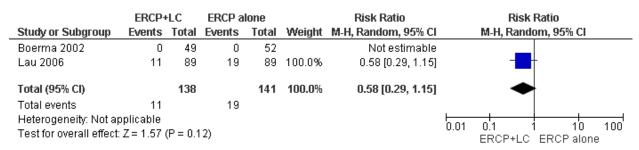
#### H.7.1 ERCP + Laparoscopic cholecystectomy compared to ERCP alone


#### **Outcome 1: Quality of life**

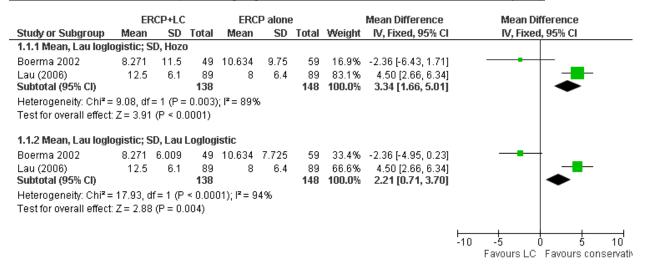
Not reported

#### Outcome 2: Disease recurrence/progression



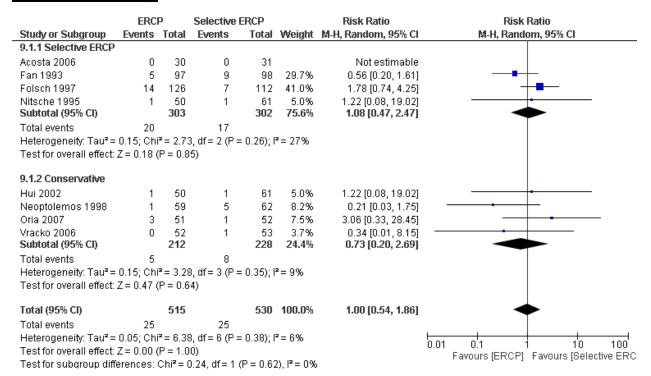

#### Outcome 3: Additional intervention required (ERCP)



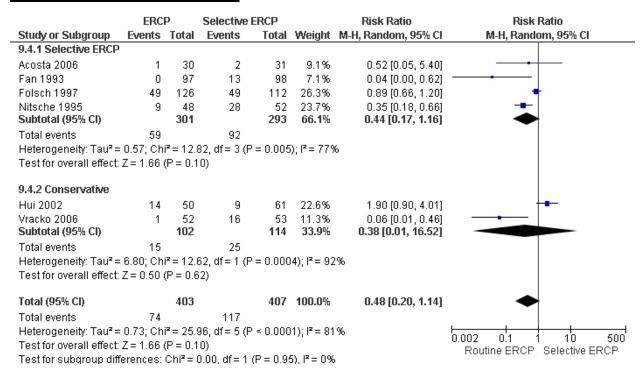

#### Outcome 4: Additional intervention required (cholecystectomy)

38/148 (25.7%) of people receiving ERCP alon required cholecystectomy

#### **Outcome 5: Mortality**



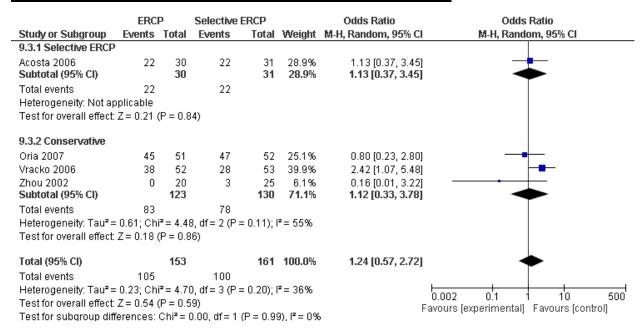

### Outcome 6: Length of stay, with sensitivity analysis for methods for calculating Mean and Standard Deviation (Lau Loglogistic with Hozo SD used in final analysis)



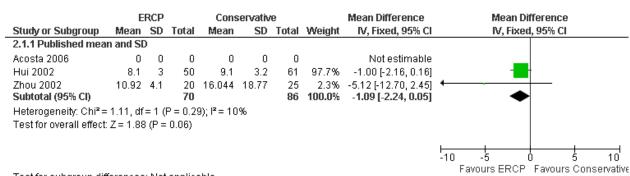

#### H.7.2 ERCP compared to conservative management

#### **Outcome 1: Mortality**




#### **Outcome 2: Disease progression**

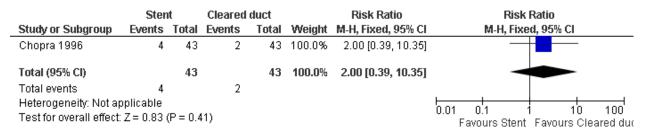



#### Outcome 3: Additional intervention required (ERCP)

|                                   | ERCI       | P                   | Selective      | ERCP       |             | Risk Ratio          | Risk Ratio                         |
|-----------------------------------|------------|---------------------|----------------|------------|-------------|---------------------|------------------------------------|
| Study or Subgroup                 | Events     | Total               | Events         | Total      | Weight      | M-H, Random, 95% CI | M-H, Random, 95% CI                |
| 9.2.1 Selective ERCP              |            |                     |                |            |             |                     |                                    |
| Acosta 2006                       | 0          | 30                  | 3              | 31         | 15.8%       | 0.15 [0.01, 2.74]   | <del></del>                        |
| Fan 1993                          | 0          | 97                  | 27             | 98         | 17.5%       | 0.02 [0.00, 0.30]   |                                    |
| Folsch 1997                       | 0          | 126                 | 22             | 112        | 17.4%       | 0.02 [0.00, 0.32]   | <del></del>                        |
| Nitsche 1995                      | 0          | 48                  | 10             | 52         | 17.1%       | 0.05 [0.00, 0.86]   |                                    |
| Subtotal (95% CI)                 |            | 301                 |                | 293        | 67.8%       | 0.04 [0.01, 0.16]   | •                                  |
| Total events                      | 0          |                     | 62             |            |             |                     |                                    |
| Heterogeneity: Tau² =             | 0.00; Chi  | $^2 = 1.46$         | 6, df = 3 (P : | = 0.69); f | ²=0%        |                     |                                    |
| Test for overall effect: :        | Z= 4.48 (  | $P \leq 0.0$        | 0001)          |            |             |                     |                                    |
| 9.2.2 Conservative                |            |                     |                |            |             |                     |                                    |
| Neoptolemos 1998                  | 0          | 59                  | 14             | 62         | 17.3%       | 0.04 [0.00, 0.59]   |                                    |
| Oria 2007                         | 0          | 51                  | 2              | 52         | 14.9%       | 0.20 [0.01, 4.14]   |                                    |
| Subtotal (95% CI)                 | 0          | 110                 | 2              | 114        | 32.2%       | 0.08 [0.01, 0.63]   |                                    |
| Total events                      | 0          |                     | 16             |            |             |                     |                                    |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi  | z = 0.76            | i, df = 1 (P : | = 0.39); F | ²= 0%       |                     |                                    |
| Test for overall effect:          | Z = 2.41 ( | P = 0.0             | 2)             |            |             |                     |                                    |
| Total (95% CI)                    |            | 411                 |                | 407        | 100.0%      | 0.05 [0.02, 0.16]   | •                                  |
| Total events                      | 0          |                     | 78             |            |             |                     |                                    |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi  | <sup>2</sup> = 2.58 | 3, df = 5 (P = | = 0.76): F | ²= 0%       |                     |                                    |
| Test for overall effect:          |            |                     |                | -71        |             |                     | 0.001 0.1 1 10 1000                |
| Test for subgroup diffe           | ,          |                     |                | (P = 0.57) | 7), I² = 0% | )                   | Favours ERCP Favours Selective ERC |

#### Outcome 4: Additional intervention required (cholecystectomy)

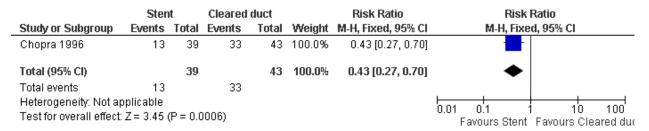



#### Outcome 6: Length of stay

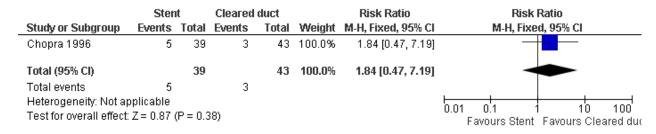


Test for subgroup differences: Not applicable

#### H.7.3 Biliary stent compared to cleared duct


#### **Outcome 1: Mortality**




#### **Outcome 2: Disease progression**

|                                                                            | Sten       | ıt       | Cleared | duct  |        | Risk Ratio         | Risk Ratio                        |
|----------------------------------------------------------------------------|------------|----------|---------|-------|--------|--------------------|-----------------------------------|
| Study or Subgroup                                                          | Events     | Total    | Events  | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI                |
| Chopra 1996                                                                | 10         | 43       | 8       | 43    | 100.0% | 1.25 [0.55, 2.86]  | -                                 |
| Total (95% CI)                                                             |            | 43       |         | 43    | 100.0% | 1.25 [0.55, 2.86]  | •                                 |
| Total events                                                               | 10         |          | 8       |       |        |                    |                                   |
| Heterogeneity: Not applicable Test for overall effect: Z = 0.53 (P = 0.60) |            |          |         |       |        |                    | 0.01 0.1 1 10 100                 |
| i est for overall eπect:                                                   | Z = 0.53 ( | (P = 0.6 | 10)     |       |        |                    | Favours Stent Favours Cleared duc |

#### **Outcome 3: Additional intervention required (ERCP)**



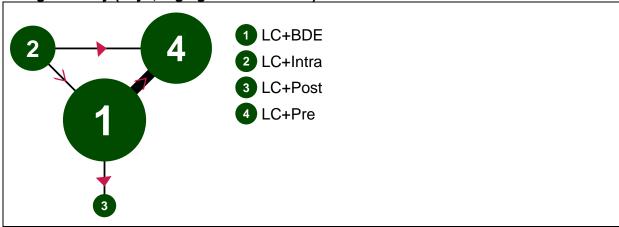
#### **Outcomes 4: Additional intervention required (cholecystectomy)**



#### Outcome 5: Length of stay

Not reported

#### H.7.4 Day case ERCP compared to planned inpatient ERCP


No evidence found

# H.7.5 ERCP with laparoscopic cholecystectomy compared to bile duct exploration with laparoscopic cholecystectomy

#### Outcome 1: Length of stay

Random-effects model preferred to fixed-effects (not shown) because of superior fit to data (DIC = 15.386 versus 349.374).

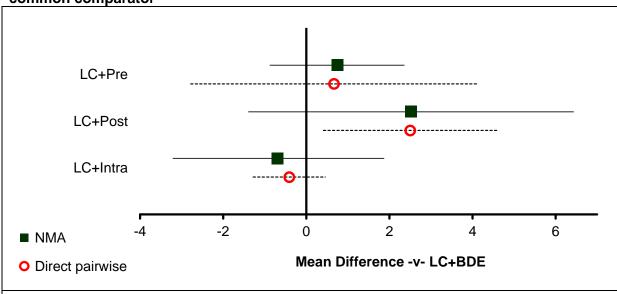
Length of stay (days; loglogistic estimation) - evidence network



Size of nodes is proportional to total number of participants randomised to receive the treatment in question across the evidence-base. Width of connecting lines is proportional to number of trial-level comparisons available. Arrowheads indicate direction of effect in pairwise data (a > b denotes a is more effective than b) – filled arrowheads show comparisons where one option is significantly superior (p<0.05); outlined arrowheads show direction of trend where effect does not reach statistical significance.

Length of stay (days; loglogistic estimation) - input data

|                                      | LC+BDE       | LC+Intra    | LC+Post     | LC+Pre       |
|--------------------------------------|--------------|-------------|-------------|--------------|
| ElGeidie,A.A. et al. (2011)          |              | 1.30 (0.50) |             | 3.00 (1.50)  |
| Bansal, V.K. et al. (2010)           | 4.20 (1.50)  |             |             | 4.00 (2.25)  |
| Rogers,S.J. et al. (2010)            | 5.30 (3.20)  |             |             | 6.60 (4.00)  |
| Noble,H. et al. (2009)               | 5.00 (1.25)  |             |             | 3.00 (1.25)  |
| Hong,D.F. et al. (2006)              | 4.66 (3.07)  | 4.25 (3.46) |             |              |
| Cuschieri, A. et al. (1999)          | 7.09 (1.30)  |             |             | 10.63 (1.42) |
| Rhodes,M. et al. (1998)              | 1.00 (6.25)  |             | 3.50 (2.50) |              |
| Values given are mean length of stay | in days (SD) | •           | •           | •            |

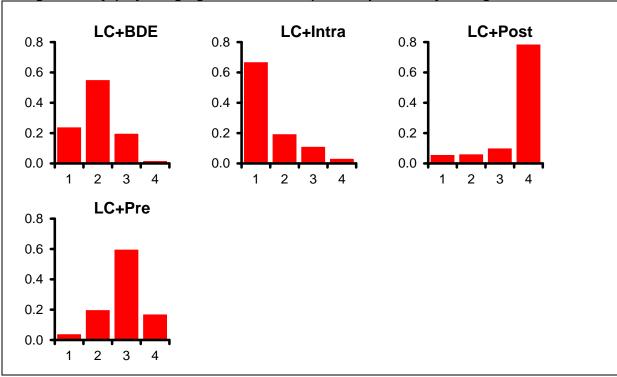

### Length of stay (days; loglogistic estimation) – relative effectiveness of all pairwise combinations

|          | +BDE                   | LC<br>+Intra           | LC<br>+Post            | LC<br>+Pre            |
|----------|------------------------|------------------------|------------------------|-----------------------|
| LC+BDE   |                        | -0.41<br>(-1.28, 0.46) | 2.50<br>(0.41, 4.59)   | 0.66<br>(-2.78, 4.11) |
| LC+Intra | -0.68<br>(-3.21, 1.88) |                        | -                      | 1.70<br>(1.39, 2.01)  |
| LC+Post  | 2.53<br>(-1.40, 6.44)  | 3.22<br>(-1.52, 7.86)  |                        | 1                     |
| LC+Pre   | 0.75<br>(-0.88, 2.36)  | 1.44<br>(-1.09, 3.95)  | -1.77<br>(-5.99, 2.48) |                       |

Values given are mean differences.

The segment below and to the left of the shaded cells is derived from the network meta-analysis, reflecting direct and indirect evidence of treatment effects (row versus column). The point estimate reflects the median of the posterior distribution, and numbers in parentheses are 95% credible intervals. The segment above and to the right of the shaded cells gives pooled direct evidence (random-effects pairwise meta-analysis), where available (column versus row). Numbers in parentheses are 95% confidence intervals.

Length of stay (days; loglogistic estimation) – relative effect of all options versus common comparator




Values greater than 0 favour LC+BDE; values less than 0 favour the comparator treatment. Solid error bars are 95% credible intervals; dashed error bars are 95% confidence interval.

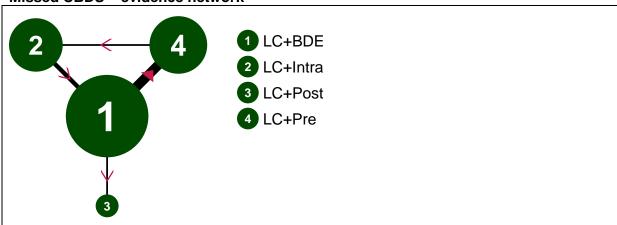
Length of stay (days; loglogistic estimation) - rankings for each comparator

|          | Probability best | Median rank (95%CI) |
|----------|------------------|---------------------|
| LC+BDE   | 0.239            | 2 (1, 3)            |
| LC+Intra | 0.668            | 1 (1, 4)            |
| LC+Post  | 0.056            | 4 (1, 4)            |
| LC+Pre   | 0.038            | 3 (1, 4)            |





Length of stay (days; loglogistic estimation) - model fit statistics


| Residual deviance           | Dbar  | Dhat    | pD     | DIC    | tau                          |
|-----------------------------|-------|---------|--------|--------|------------------------------|
| 13.84                       | 1.702 | -11.981 | 13.684 | 15.386 | 1.693 (95%CI: 1.148, 1.985)  |
| (compared to 14 datapoints) | 1.702 | -11.901 | 13.004 | 15.560 | 1.093 (93 %C1. 1.146, 1.963) |

#### Outcome 2: Missed common bile duct stones

Fixed-effects model preferred over random-effects (not shown) as simpler and negligible difference in model fit (FE DIC = 66.092; RE DIC = 66.659).

0.5 added to zero cells in synthesis.

#### Missed CBDS - evidence network

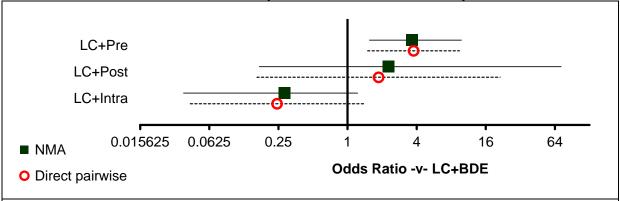


Size of nodes is proportional to total number of participants randomised to receive the treatment in question across the evidence-base. Width of connecting lines is proportional to number of trial-level comparisons available. Arrowheads indicate direction of effect in pairwise data (a > b denotes a is more effective than b) –

filled arrowheads show comparisons where one option is significantly superior (p<0.05); outlined arrowheads show direction of trend where effect does not reach statistical significance.

Missed CBDS - input data

| wiissed CDD3 – input data    | 1      | ı        | 1       | 1      |
|------------------------------|--------|----------|---------|--------|
|                              | LC+BDE | LC+Intra | LC+Post | LC+Pre |
| Ding,G. et al. (2014)        | 1/44   |          |         | 7/36   |
| ElGeidie,A.A. et al. (2011)  | 2/97   |          |         | 9/95   |
| ElGeidie,A.A. et al. (2011)  | 4/112  | 0/111    |         |        |
| Noble,H. et al. (2009)       |        | 0/90     |         | 0/100  |
| Koc,B. et al. (2013)         | 2/57   |          |         | 3/54   |
| Hong,D.F. et al. (2006)      | 3/141  | 1/93     |         |        |
| Nathanson,L.K. et al. (2005) | 1/41   |          | 2/45    |        |
| Sgourakis,G. & (2002)        | 1/36   |          |         | 1/42   |

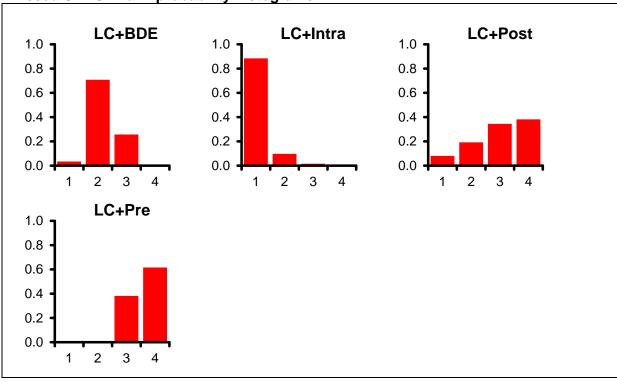

Missed CBDS - relative effectiveness of all pairwise combinations

| missed Obbo Telative encotiveness of an pairwise combinations |                       |                         |                       |                       |  |  |  |  |  |
|---------------------------------------------------------------|-----------------------|-------------------------|-----------------------|-----------------------|--|--|--|--|--|
|                                                               | LC<br>+BDE            | LC<br>+Intra            | LC<br>+Post           | LC<br>+Pre            |  |  |  |  |  |
| LC+BDE                                                        |                       | 0.24<br>(0.04, 1.38)    | 1.86<br>(0.16, 21.32) | 3.76<br>(1.49, 9.44)  |  |  |  |  |  |
| LC+Intra                                                      | 0.28<br>(0.04, 1.23)  |                         | -                     | 0.90<br>(0.02, 45.85) |  |  |  |  |  |
| LC+Post                                                       | 2.28<br>(0.17, 72.80) | 8.88<br>(0.41, 429.40)  |                       | -                     |  |  |  |  |  |
| LC+Pre                                                        | 3.64<br>(1.54, 9.86)  | 13.20<br>(2.43, 117.40) | 1.59<br>(0.04, 25.28) |                       |  |  |  |  |  |

Values given are odds ratios.

The segment below and to the left of the shaded cells is derived from the network meta-analysis, reflecting direct and indirect evidence of treatment effects (row versus column). The point estimate reflects the median of the posterior distribution, and numbers in parentheses are 95% credible intervals. The segment above and to the right of the shaded cells gives pooled direct evidence (random-effects pairwise meta-analysis), where available (column versus row). Numbers in parentheses are 95% confidence intervals.

#### Missed CBDS – relative effect of all options versus common comparator




Values greater than 1 favour LC+BDE; values less than 1 favour the comparator treatment. Solid error bars are 95% credible intervals; dashed error bars are 95% confidence interval.

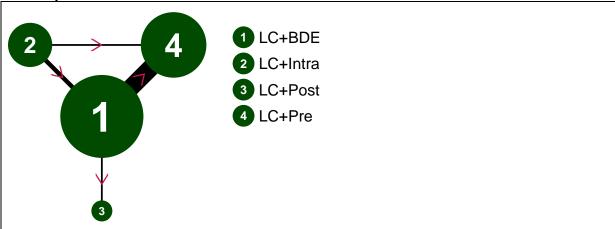
#### Missed CBDS - rankings for each comparator

|          | Probability best | Median rank (95%CI) |  |
|----------|------------------|---------------------|--|
| LC+BDE   | 0.035            | 2 (1, 3)            |  |
| LC+Intra | 0.885            | 1 (1, 2)            |  |
| LC+Post  | 0.080            | 3 (1, 4)            |  |
| LC+Pre   | 0.000            | 4 (3, 4)            |  |

#### Missed CBDS – rank probability histograms



#### Missed CBDS - model fit statistics


| Residual deviance           | Dbar   | Dhat   | pD     | DIC    |
|-----------------------------|--------|--------|--------|--------|
| 16.82                       | 55 570 | 4E 066 | 10 512 | 66,002 |
| (compared to 16 datapoints) | 55.579 | 45.066 | 10.513 | 66.092 |

#### Outcome 3: Failed procedure

Random-effects model preferred to fixed-effects (not shown) because of somewhat improved fit to data (DIC = 110.143 versus 115.052).

0.5 added to zero cells in synthesis.

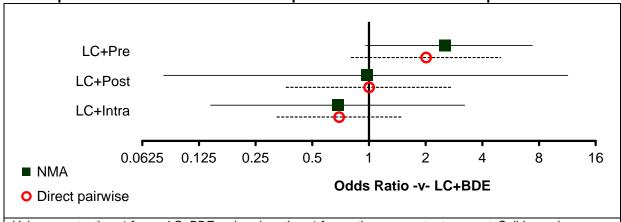
#### Failed procedure – evidence network



Size of nodes is proportional to total number of participants randomised to receive the treatment in question across the evidence-base. Width of connecting lines is proportional to number of trial-level comparisons available. Arrowheads indicate direction of effect in pairwise data (a > b denotes a is more effective than b) – filled arrowheads show comparisons where one option is significantly superior (p<0.05); outlined arrowheads show direction of trend where effect does not reach statistical significance.

Failed procedure - input data

|                              | LC+BDE | LC+Intra | LC+Post | LC+Pre |
|------------------------------|--------|----------|---------|--------|
| Ding,G. et al. (2014)        | 0/44   |          |         | 14/47  |
| ElGeidie, A.A. et al. (2011) | 7/110  |          |         | 6/111  |
| ElGeidie, A.A. et al. (2011) | 6/115  | 3/111    |         |        |
| Bansal,V.K. et al. (2010)    |        | 2/98     |         | 5/93   |
| Rogers,S.J. et al. (2010)    | 1/15   |          |         | 4/15   |
| Noble,H. et al. (2009)       | 2/57   |          |         | 1/55   |
| Koc,B. et al. (2013)         | 2/57   |          |         | 3/54   |
| Hong, D.F. et al. (2006)     | 15/141 | 8/93     |         |        |
| Sgourakis,G. & (2002)        | 4/28   |          |         | 5/32   |
| Cuschieri,A. et al. (1999)   | 1/133  |          |         | 7/136  |
| Rhodes,M. et al. (1998)      | 10/40  |          | 10/40   |        |

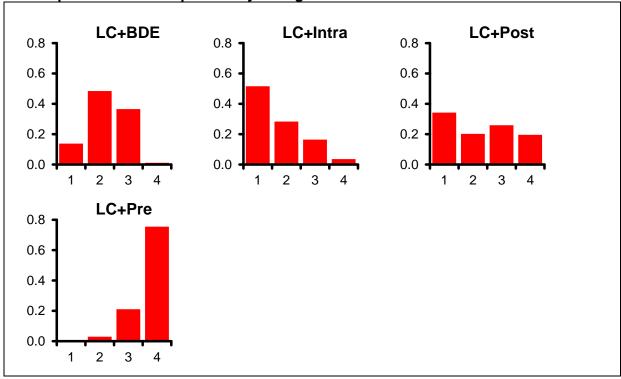

Failed procedure - relative effectiveness of all pairwise combinations

| Tanoa procoaaro Tolai | 0110011101100         | <del> </del>          |                       |                       |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                       | LC<br>+BDE            | LC<br>+Intra          | LC<br>+Post           | LC<br>+Pre            |
| LC+BDE                |                       | 0.69<br>(0.32, 1.48)  | 1.00<br>(0.36, 2.75)  | 2.01<br>(0.81, 5.00)  |
| LC+Intra              | 0.68<br>(0.14, 3.23)  |                       | -                     | 2.73<br>(0.52, 14.42) |
| LC+Post               | 0.98<br>(0.08, 11.41) | 1.44<br>(0.08, 26.99) |                       | -                     |
| LC+Pre                | 2.54<br>(0.96, 7.40)  | 3.72<br>(0.73, 21.02) | 2.58<br>(0.19, 39.89) |                       |

Values given are odds ratios.

The segment below and to the left of the shaded cells is derived from the network meta-analysis, reflecting direct and indirect evidence of treatment effects (row versus column). The point estimate reflects the median of the posterior distribution, and numbers in parentheses are 95% credible intervals. The segment above and to the right of the shaded cells gives pooled direct evidence (random-effects pairwise meta-analysis), where available (column versus row). Numbers in parentheses are 95% confidence intervals.

Failed procedure - relative effect of all options versus common comparator




Values greater than 1 favour LC+BDE; values less than 1 favour the comparator treatment. Solid error bars are 95% credible intervals; dashed error bars are 95% confidence interval.

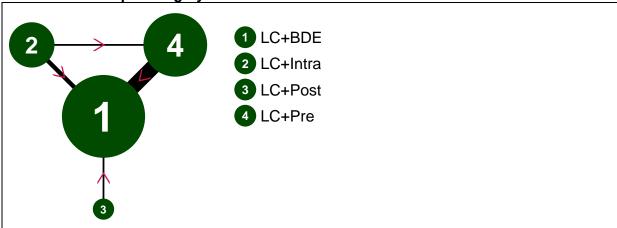
Failed procedure – rankings for each comparator

|          | Probability best | Median rank (95%CI) |
|----------|------------------|---------------------|
| LC+BDE   | 0.138            | 2 (1, 3)            |
| LC+Intra | 0.516            | 1 (1, 4)            |
| LC+Post  | 0.342            | 2 (1, 4)            |
| LC+Pre   | 0.004            | 4 (2, 4)            |

#### Failed procedure – rank probability histograms



#### Failed procedure - model fit statistics


| Residual deviance                 | Dbar   | Dhat  | рD     | DIC     | tau                         |
|-----------------------------------|--------|-------|--------|---------|-----------------------------|
| 22.71 (compared to 22 datapoints) | 91.416 | 72.69 | 18.726 | 110.143 | 0.973 (95%CI: 0.172, 1.877) |

#### Outcome 4: Conversion to open surgery

Random-effects model preferred to fixed-effects (not shown) because of somewhat improved fit to data (DIC = 91.58 versus 95.091).

0.5 added to zero cells in synthesis.

#### Conversion to open surgery - evidence network

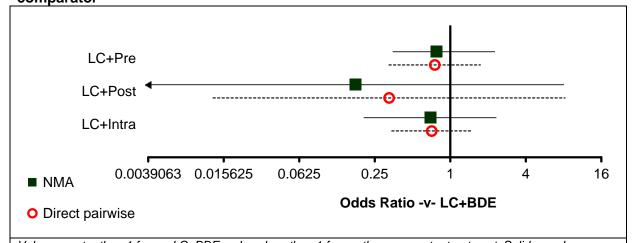


Size of nodes is proportional to total number of participants randomised to receive the treatment in question across the evidence-base. Width of connecting lines is proportional to number of trial-level comparisons available. Arrowheads indicate direction of effect in pairwise data (a > b denotes a is more effective than b) —

filled arrowheads show comparisons where one option is significantly superior (p<0.05); outlined arrowheads show direction of trend where effect does not reach statistical significance.

Conversion to open surgery - input data

| Conversion to open surgery – input dat | а<br>  | 1        |         |        |
|----------------------------------------|--------|----------|---------|--------|
|                                        | LC+BDE | LC+Intra | LC+Post | LC+Pre |
| Ding,G. et al. (2014)                  | 4/44   |          |         | 2/47   |
| ElGeidie,A.A. et al. (2011)            | 3/110  |          |         | 1/111  |
| ElGeidie,A.A. et al. (2011)            | 7/115  | 4/111    |         |        |
| Bansal, V.K. et al. (2010)             |        | 2/91     |         | 2/85   |
| Noble,H. et al. (2009)                 | 1/15   |          |         | 2/15   |
| Koc,B. et al. (2013)                   | 0/57   |          |         | 1/54   |
| Hong,D.F. et al. (2006)                | 15/141 | 8/93     |         |        |
| Sgourakis,G. & (2002)                  | 1/36   |          |         | 5/42   |
| Cuschieri,A. et al. (1999)             | 17/133 |          |         | 8/133  |
| Rhodes,M. et al. (1998)                | 1/40   |          | 0/40    |        |

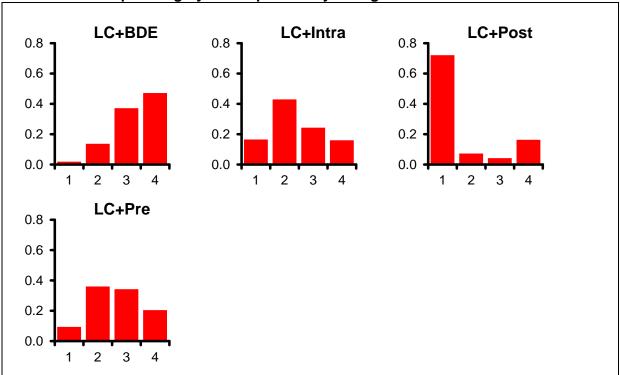

Conversion to open surgery - relative effectiveness of all pairwise combinations

|          | <u> </u>             |                       |                         |                      |
|----------|----------------------|-----------------------|-------------------------|----------------------|
|          | LC<br>+BDE           | LC<br>+Intra          | LC<br>+Post             | LC<br>+Pre           |
| LC+BDE   |                      | 0.71<br>(0.34, 1.48)  | 0.33<br>(0.01, 8.22)    | 0.75<br>(0.32, 1.74) |
| LC+Intra | 0.69<br>(0.20, 2.33) |                       | -                       | 1.07<br>(0.15, 7.79) |
| LC+Post  | 0.18<br>(0.00, 8.04) | 0.25<br>(0.00, 13.83) |                         | -                    |
| LC+Pre   | 0.78<br>(0.35, 2.27) | 1.13<br>(0.32, 5.35)  | 4.54<br>(0.10, 2560.00) |                      |

Values given are odds ratios.

The segment below and to the left of the shaded cells is derived from the network meta-analysis, reflecting direct and indirect evidence of treatment effects (row versus column). The point estimate reflects the median of the posterior distribution, and numbers in parentheses are 95% credible intervals. The segment above and to the right of the shaded cells gives pooled direct evidence (random-effects pairwise meta-analysis), where available (column versus row). Numbers in parentheses are 95% confidence intervals.

### Conversion to open surgery – relative effect of all options versus common comparator




Values greater than 1 favour LC+BDE; values less than 1 favour the comparator treatment. Solid error bars are 95% credible intervals; dashed error bars are 95% confidence interval.

Conversion to open surgery - rankings for each comparator

|          | Probability best | Median rank (95%CI) |  |
|----------|------------------|---------------------|--|
| LC+BDE   | 0.019            | 3 (2, 4)            |  |
| LC+Intra | 0.166            | 2 (1, 4)            |  |
| LC+Post  | 0.722            | 1 (1, 4)            |  |
| LC+Pre   | 0.094            | 3 (1, 4)            |  |

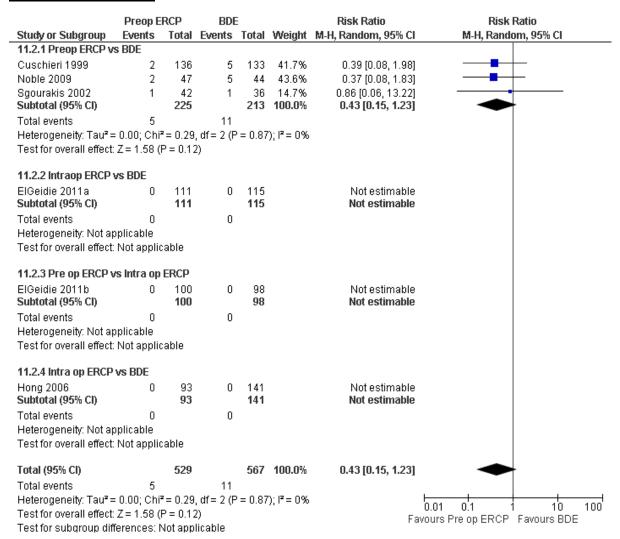
#### Conversion to open surgery – rank probability histograms



Conversion to open surgery - model fit statistics

| Residual deviance | Dbar  | Dhat   | pD   | DIC   | tau                         |
|-------------------|-------|--------|------|-------|-----------------------------|
| 19.86             | 76.68 | 61.781 | 14.9 | 91.58 | 0.542 (95%CI: 0.010, 1.692) |

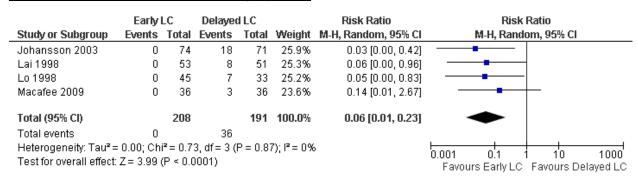
| Residual deviance           | Dbar | Dhat | pD | DIC | tau |
|-----------------------------|------|------|----|-----|-----|
| (compared to 20 datapoints) |      |      |    |     |     |


#### Outcome 5: More than 1 ERCP required to clear bile duct

Pre operative ERCP- Bansal 2/15, Cuscheri 7/150 = 5% overall

Intra operative ERCP- not reported

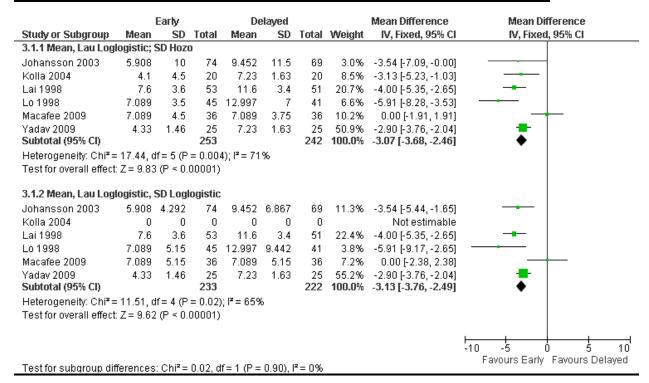
Post operative ERCP- Nathanson 11/45, Rhodes 7/40 = 21% overall


#### **Outcome 6: Mortality**



### H.8 Review question 5 Timing of intervention

# H.8.1 Early laparoscopic cholecystectomy compared to delayed laparoscopic cholecystectomy for acute cholecystitis.

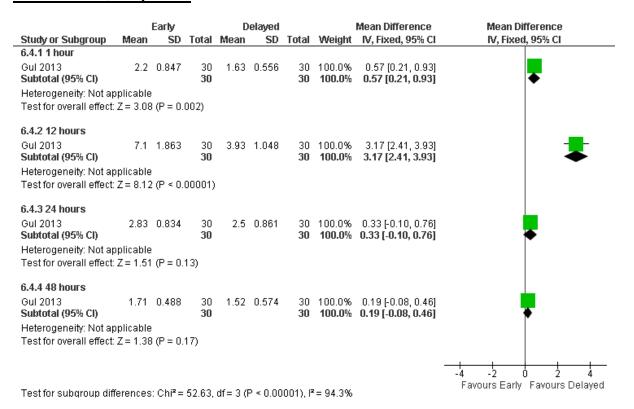

Outcome 1: Readmission due to symptoms



#### Outcome 2: Readmission due to surgical complications

Not reported

Outcome 3: Length of stay, with sensitivity analysis for methods for calculating Mean and Standard Deviation (Lau Loglogistic with Hozo SD used in final analysis)




#### **Outcome 4: Mortality**

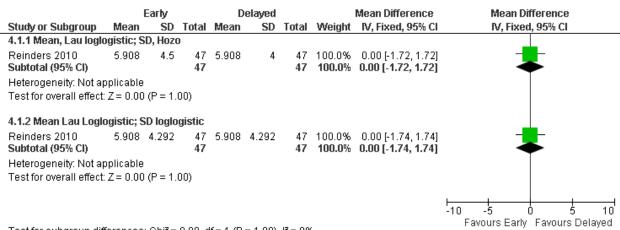
This outcome was reported by all four included studies, but no deaths were observed in any arm in any study.

|                                         | Early LC |       | arly LC Delayed LC |       | Risk Ratio |                     | Risk Ratio                    |
|-----------------------------------------|----------|-------|--------------------|-------|------------|---------------------|-------------------------------|
| Study or Subgroup                       | Events   | Total | Events             | Total | Weight     | M-H, Random, 95% CI | M-H, Random, 95% Cl           |
| Johansson 2003                          | 0        | 74    | 0                  | 71    |            | Not estimable       |                               |
| Kolla 2004                              | 0        | 20    | 0                  | 20    |            | Not estimable       |                               |
| Lai 1998                                | 0        | 53    | 0                  | 51    |            | Not estimable       |                               |
| Lo 1998                                 | 0        | 45    | 0                  | 41    |            | Not estimable       |                               |
| Total (95% CI)                          |          | 192   |                    | 183   |            | Not estimable       |                               |
| Total events                            | 0        |       | 0                  |       |            |                     |                               |
| Heterogeneity: Not ap                   | plicable |       |                    |       |            |                     | 0.01 0.1 1 10 100             |
| Test for overall effect: Not applicable |          |       |                    |       |            |                     | Favours early Favours delayed |

#### Outcome 5: Quality of life



# H.8.2 Early compared to delayed laparoscopic cholecystectomy after ERCP for common bile duct stones.


#### Outcome 1: Readmission due to symptoms

Not reported

#### Outcome 2: Readmission due to surgical complications

Not reported

Outcome 3: Length of stay, with sensitivity analysis for methods for calculating Mean and Standard Deviation (Lau Loglogistic with Hozo SD used in final analysis)



Test for subgroup differences:  $Chi^2 = 0.00$ , df = 1 (P = 1.00),  $I^2 = 0\%$ 

#### **Outcome 4: Mortality**

This outcome was reported but zero events happened in both arms.

#### **Outcome 5: Quality of life**

Not reported

### H.9 Review question 6 Patient information

#### **Themes**

#### Diet

- 83% said they received no post-operative dietary advice, yet many were able to state foods that were best avoided. (Blay, 2006)
- 13% requested additional information on diet (Blay, 2006)
- 4/23 patients requested additional information on diet (Blay, 2005)

#### Pain

o 7/23 patients requested more information on pain management (Blay, 2005)

#### Wounds

- Respondents had many questions about how their wounds should be cared for and how the wounds should normally look (Barthelsson, 2003)
- o 5/23 patients requested more information about wounds (Blay, 2005)

#### Resuming activity

- 65% of patients had not been told about how long it would take to resume normal activities. (Blay, 2006)
- 2/23 patients requested additional information on activity (Blay, 2005)
- o 6% of patients requested additional information on post operative activity (Blay 2006)

#### Waiting for elective surgery

 Some patients resign themselves to the wait, whereas others attempt to speed up treatment, look for information on the disease or treatment alternatives, or seek reassurance from relatives or care providers. (Hilkhuysen, 2005)

#### General information

- 14% said they received no information from PAC nurse (Blay, 2006)
- Several respondents had no memory of the information given by the surgeon on discharge from hospital (Barthelsson, 2003)
- Patients were not given definitive advice on how long they should expect to be in hospital. (Blay, 2006)
- Patient's knowledge of the disease and its natural course was considered to be important, as sufficient knowledge would prevent patients from restricting themselves unnecessarily, or experiencing unreasonable distress. (Hilkhuysen, 2005)
- Patients requested additional information on diet, self care after discharge, general preoperative information, postoperative activity, pain management, medical terminology. (Blay, 2006)
- Patients requested additional information on general information, wounds, pain management, dietary advice, bowel management, nausea and vomiting, activity, medications. (Blay, 2005)
- 31% of patients with internet access used it to acquire additional information about their operations and 58% used internet search engines to acquire additional information (Tamahankar, 2009)
- Of the people who searched the internet regarding their operations, 79% rated the information they found as good or very good. 23% were confused or worried about by the information they received (Tamahankar, 2009)
- 31% of people who received routine information would have liked extra information,
   36% of people who received routine information plus an information sheet would have

liked extra information- study doesn't state what information they wanted to receive. (King, 2004)